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ABSTRACT

The goal of this project was to determine the reason for unexpected test failures through

analysis of Dell EMC motherboard testing log data. We began with an extensive exploration of our

extracted features, through a series of statistical analysis and plotting. Our solution consisted of

three components: a warning system to detect trend changes in feature values, a machine learning

model to predict failure tests, and the standardization of log data to increase efficiency of future

analysis. The warning system analyzes a group of test logs using time series and regression analysis

and outlier detection to calculate the date at which future tests would reach a mean value equal to an

outlier value of the current tests. The machine learning model was trained on 548 features from a

set of 826 passing and 511 failing boards to classify unlabeled data, and received a testing accuracy

of 63 percent. Lastly, we contributed a standardized log format proposal based upon JSON which

would increase the value of their log data. This was determined after the extensive time required

for parsing the different formats across test steps during feature extraction.
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EXECUTIVE SUMMARY

In this project, we applied machine learning algorithms and designs to a specific portion of

the Warnado product lifecycle from Dell EMC. The Warnado motherboards undergo system testing

before widespread launch and use. Dell EMC identified several shortfalls in their testing regimen

with regard to their handling and analysis of motherboard log data. To remedy these issues, we

researched, designed, and implemented a machine learning pipeline to parse motherboard log data

into usable features and apply machine learning models to the data. The models can accurately

determine whether a board has failed or not and provide useful debugging information such as

predictable trends in data.

We approached this project by using the data science process - through which, we explored

the raw data, identified useful features and components, reduced our feature set, performed ma-

chine learning trials, and analyzed trends and patterns to make conclusions. Our learning experi-

ments had two main components - classification and trend detection. Using various machine learn-

ing models such as support vector classifiers and clustering, we achieved a classification accuracy

of 63 percent on a sample of 1,337 motherboards from two different test versions. For trend de-

tection, we created a warning system application that performs trend analysis and detection across

log entries. This tool will help Dell EMC determine deviations from manufacturing specifications

and tolerance slippage.

We were able to identify some key factors that would improve Dell EMC’s workflow. The

final factor was standardizing the log data format, which would ready Dell EMC for the future of

big data and AI by having structured data that can easily be fed into a machine learning model. This

will save future data scientists weeks of data cleaning and feature extraction, allowing the process

to be expedited. The machine learning model serves as a tool for which Dell EMC can use to save

testing time on boards with inevitable failures. The warning system enables Dell EMC engineers

to easily monitor motherboard health trends. This exploratory project gave the Dell EMC team

iv



a better understanding of their motherboard log data, and will serve to increase the efficiency of

future projects.
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1 Introduction

As computing has continually increased in power, computation and automation have been

used in more and more scenarios to enhance productivity. Advances in artificial intelligence,

specifically in machine learning, have propelled expanded use of these technologies in manufactur-

ing and product development. In this project, we applied machine learning algorithms and designs

to this domain - using machine learning to classify and detect failing motherboards in product

testing.

Our project focused on a specific portion of the Warnado product lifecycle from Dell EMC.

The Warnado system is currently undergoing system testing before widespread launch and use.

However, Dell EMC had identified several shortfalls in their testing regimen. When a Warnado

motherboard fails, determining the cause of failure is time consuming. There is no automated

pipeline for failure or trend analysis. To analyze a specific motherboard failure, multiple log files

need to be sourced, collated, and reviewed by hand to determine the root cause of failure. This

manual review process is time intensive, and the granular level of analysis results in larger trends

being missed.

Automation of this analysis has been difficult due to the structuring of the log data itself.

The information for each board is spread between numerous files, and the format of the data itself

varies. While the data loosely follows a JSON format, individual features have wildly different

data representations - some are integers, others are entire paragraphs of text.

Our goal was to solve these shortfalls in Dell EMC’s process with new classification and

analysis tools for determining failures and trends in their motherboard tests. We researched, de-

signed, and implemented a machine learning model that can parse the motherboard log data into

usable features for machine learning applications, accurately determine whether a board has failed

or not, and provide useful debugging information such as predictable trends in data.

Upon completion, we implemented a robust data processing pipeline that achieved a classi-
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fication accuracy of 63 percent on a sample of 1337 motherboards from two different test versions

as well as created an application that performs trend analysis and detection across log entries. This

tool will help Dell EMC determine deviations from manufacturing specifications and tolerance

slippage.
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2 Sponsor Description

Dell EMC is the result of the 2015 merger between technology companies Dell and EMC.

Under the Dell EMC brand, they specialize in data storage, networking, information services,

virtualization, analytics, and cloud computing.

For our project, we worked alongside the PowerStore Platform and System Engineering

team, based out of Hopkinton, Massachusetts. This specific team focuses on designing and rapidly

deploying new hardware platforms and systems for industry and enterprise use.
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3 Background

To begin our work, we first turned to information on the Warnado data itself as well as

existing research and methodologies to determine possible paths forward.

3.1 Warnado

The Warnado boards are part of the Dell EMC PowerStore X family of data storage products.

These products are designed as a scalable data solution, focusing on enhanced resource utilization

and performance to allow for rapid growth and flexibility. Inside a PowerStore cluster, it is possible

to scale storage by installing or removing additional drives.

3.2 Machine Learning and Analysis Methods

Machine learning is a common method of data analysis and prediction within the field of

artificial intelligence. The following section will give an overview of common machine learning

designs and uses.

3.2.1 Multiple Instance Frameworks

Multiple instance frameworks (or multiple instance learning/MIL) refer to the set of machine

learning methods that utilize bagging in labeling. In MIL, class labels are defined on bags (sets)

of data - all instances in a negative bag are truly negative, while positive bags may contain false

positives.

3.2.2 Support Vector Machines

Support vector machines (SVM) are a commonly used method for binary classification in

machine learning. In the classification field, a subset of SVMs are used - these are known as

support vector classifiers (SVC). A support vector machine works by finding a hyperplane that

separates two classes. The location of the hyperplane is optimally defined by a series of vectors -
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these vectors ‘support’ the plane. In a SVM, loss is defined as the penalty for misclassification of

an element - this can be further refined in terms of margin. A hard margin refers to a SVM that has

no misclassifications. A soft margin allows for some misclassifications. Depending on the data,

there may or may not be a possible hard margin classifier.

For SVMs, hard margin loss classifiers provide better generalization performance than a tra-

ditional ramp loss SVM classifier model. Hard margin loss models also have greater performance,

especially for large data sets. (Poursaeidi, Kundakcioglu, 2014)

Support vector machines can be further enhanced through the creation of multiple instance

SVMs (MISVM). MISVMs treat bagged data as a singular classification event, rather than con-

sidering each point in a bag as a separate element (Cano, Melki, Ventura, 2018). Here, the model

predicts on each instance using a SVM and then trains the model to tell the instances’ classes, thus

using the multiple instance framework to provide classification (Murray, Hughes, Kreutz-Delgado,

2005).

Another approach to SVM data processing is spectrum representation (Fulp, 2008). With

spectrum representation, each observation is given each single-value representation; this “tag”

value represents the specific observation in a k-length sequence of observations. This labeling

results in bk possible sequences, where b is the number of different tag values. Here each sequence

is assigned a unique value f, which then becomes a feature value. The frequency of each sequence

in the k-length sequence of observations is then used to create a vector, where every value is

sequence-value:count. This vector is then used in the support vector machine for classification.

There are multiple adjustments that can be made to the spectrum representation method.

Additional features can be incorporated as well, such as observation times and observation con-

tent. However, adding more information must be balanced with sequence length as the number of

features grows exponentially.
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3.2.3 Outlier Detection

Outlier detection (also known as anomaly detection) is the identification of data points which

differ significantly from the majority body of data. While this can be done in multiple ways, this

section will focus on one particular algorithm known as isolation forest.

Isolation forests are an anomaly detection algorithm that randomly selects and partitions

features until they are isolated. Once this has been performed the outliers in the data will be distin-

guishable by residing in low density regions (Scikit-Learn, 2020). This attribute enables isolation

forests to have high accuracy and maintain performance even when dimensionality increases (Liu,

Ting, Zhou, 2008).

3.2.4 Time Series Analysis

In machine learning, time series analysis has been used for trend and outlier detection. A

time series is a series of data organized by its timestamp or point of collection. Temporally orga-

nized data lends itself well to trend detection (NIST, 2020).

Trend detection is a common analysis for time driven data. To get an initial overview of the

data, one of the most common approaches is to graphically plot the data. Once plotted, significant

trends can often be spotted by eye. To detect more nuanced trends, regression functions are often

overlaid onto the data. These regression plots both illustrate trends, as well as define equations that

model these trends.

There are further ways to analyze time series. Another more advanced approach to time

series data analysis is through a lag analysis. Normally, models consider the correlation between

consecutive data points. However, there can be trends which are offset, or ‘lag’ in the data. These

can be determined through a lag plot, where data points are measured against data sampled at an

earlier time. The shape of this plot can be used to determine autocorrelation - whether data is

correlated based on a time difference.

Lastly, one can perform stationarity analysis on time series - whether the data of a time series

is dependent on the time of collection. The Augmented Dickey-Fuller Test is typically used for this
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calculation. This test checks whether a unit root is present for the time series - a core characteristic

of non-stationarity. If the test passes, the time series has some form of trend. Otherwise, the time

series is truly stationary and there is no trend in the data.

3.2.5 Feature Selection

Feature selection is critical for creating workable datasets from large, sparse collections

of data. These algorithms are used for removing irrelevant, redundant, or otherwise negligible

features from the dataset to remove unneeded dimensionality. High dimensionality can result in

numerous problems in machine learning applications - too many features can result in the overfit-

ting of a model, therefore reducing performance in testing. High dimensionality can also diminish

the benefit of clustering - as more features are added, distances between observations begin to

equalize. This phenomenon is commonly known as ‘the curse of dimensionality’.

3.2.5.1 Chi Squared

Chi Squared is a statistical test to identify the correlation between two sets of samples or

if they are independent from each other. It can be applied to feature selection as each feature

is compared to the target variable to test for independence. (Jin, Xu, Bie, Guo, 2006) Once the

correlation between each feature and variable has been calculated using equation 3.1, the features

with the highest correlation value are selected. This will ensure that the features being used will

be the most correlated features with the target variable.

X2 = ∑
(Oi−Ei)

2

Ei

Where Oi = Observed Value and Ei = Expected Value

Figure 3.1. Chi Squared Calculation
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3.2.5.2 Mann-Whitney

The Mann-Whitney/Wilcoxon Signed Rank Test is a nonparametric test of the null hypoth-

esis that two samples are drawn from different populations (Mann, 1947). It returns a p-value that

roughly represents the probability of sampling again and getting different results.

3.2.5.3 Principal Component Analysis

Principal Component Analysis (PCA) is an unsupervised feature selection method that re-

duces a dataset to a set of representative, variable data. This set is produced through the calculation

of the principal components - the product of each weighted feature in the feature set. Through the

calculation of these components, PCA finds a representation of the dataset with low dimensional-

ity while still explaining the majority of the variance. This process removes redundant correlated

features as well as features that have little impact on the variance of the dataset (James, Witten,

Hastie, Tibshirani, 2013). Principal component values are calculated in order of decreasing fea-

ture variance. The first principal component is calculated as the normalized linear combination of

features following the following equation:

Zi = φ11X1 +φ21X2 + ...+φp1Xp

where ∑
p
j=1 φ 2

j1 = 1

Figure 3.2. First Principal Component Calculation
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3.2.6 Previous Work

Previous work in the field of hardware malfunction detection has shown that machine learn-

ing is a successful technique (Gonfalonieri, 2019). Predictive maintenance is the field of under-

standing when a piece of hardware is in need of maintenance by utilizing machine learning. By

allowing a computer to make decisions, the hardware can become scaliable. A human has to un-

derstand the warning signs and keep an eye on each piece of hardware, whereas a machine learning

algorithm can watch over all of them. Another approach is scheduled maintenance, but it can be

wasteful if preemptive, and catastrophic if done too late (Sipos, Fradkin, Moerchen, and Wang,

2014). The machine learning algorithm can give a warning when it predicts a piece of hardware

will fail and a human can assess the physical situation and make the required repairs. There are

many techniques to develop a machine learning algorithm capable of this and this section will

explore the process to creating one. There are three important steps that take place during a predic-

tive maintenance project. Having the right data available, framing the problem appropriately, and

evaluating the predictions properly (Gonfalonieri, 2019) .

When collecting data it is important to have both the data scientist and the domain expert

involved. The data should be collected over the life of the hardware and capture its deterioration

process. It’s important to understand when and what maintenance might have taken place over this

time frame as well. When collecting data there are a few questions that should be asked.

• Which question do we want the model to answer?

• Is it possible with the data we have at our disposal?

• Is the failure a sudden event, or is there a slow decline before complete malfunction?

• Is every recorded event labelled?

• When labelled events are available, what is the proportion of the number of events of each

type of failure and events of well functioning data?

• How long in advance should the model be able to indicate that a failure will occur?
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• What is the consequence of not predicting a failure or predicting a failure that will not hap-

pen?

• Which components are typically associated with this type of failure?

• Which parameters should be measured that most signify the state of component/machine

health?

• What is the required accuracy and frequency of the measurements needed?

Once the data has been collected, it is important to frame the problem correctly. This will come

with feature engineering, as the type of information contained in the data is revealed, the goal

of the model should be evaluated. Two models that can be trained on the data are a regression

model for the remaining useful lifetime and a classification model to predict failure within a given

time window. The regression model will need labeled data that describes the remaining useful life

(RUL) of the piece of hardware (Liu, Hu, and Jin, 2019). Transfer learning utilizing a LSTM model

can be an effective model to predict the RUL of a piece of hardware at any point in it’s life. For

classification, the different types of failures must be known and the model will classify the piece

of hardware with the error likely failure to occur (Gonfalonieri, 2019). This has the advantage that

the exact failure can be pinpointed and handled, where using RUL only gives an estimate of how

much longer the piece of hardware has. The disadvantage of a classification approach is that all the

failure types must be known and labeled. When there are failures that happen sparsely it could be

difficult to have knowledge of them. The RUL does not need to have that knowledge, just the end

of life date. When training the models, the data can be split into and trained on time chunks in order

to represent a board that is only part way through its life. Once the model has been developed and

implemented into the real world, the next step is considering where to add additional sensors. This

can be done by understanding where the features have blind spots and deriving new measurements

that could handle those shortcomings.

A multiple instance learning (MIL) model has also proven accurate when dealing with pre-

dictive maintenance. In preprocessing the data for an MIL model, the data is split into bins that
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are equal time periods or have equal frequency of data points. These equal data bins are known

as instances. Binning the data has the added benefit of dimensionality reduction and overfitting

being reduced (Murray, Hughes, Kreutz-Delgado, 2005). With MIL, if there is a failure in one

instance, the whole piece of hardware is considered a failure (Murray, Hughes, Kreutz-Delgado,

2005). Thus, to train a model each instance is input and trained to classify if the instance is a

failure or not. A model that has shown great success in classifying instances is SVM (Murray,

Hughes, Kreutz-Delgado, 2005). For SVMs, hard margin loss classifiers provide better generaliza-

tion performance than a traditional ramp loss SVM classifier model. Hard margin loss models also

have greater performance, especially for large data sets (Poursaeidi, Kundakcioglu, 2014). When

designing a SVM for MIL there are three questions that should be considered.

• For the set of consistent classifying hyperplanes, which MISVM encodes a feasible zero loss

solution for each consistent hyperplane?

• Do all feasible solutions with zero loss correspond to a consistent hyperplane?

– This is known as soundness

• Are the corresponding feasible solutions convex?

In practice, no MISVM can fulfill all three features. It is important to identify which features to

prioritize in development (Doran, Ray, 2014).
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4 Methodology

To begin our work, we first turned to information on the Warnado data itself as well as

existing research and methodologies to determine possible paths forward.

4.1 Iterative Development

Throughout this project, we utilized an iterative approach for our design and deliverable

creation. Iterative design allows for constant revision and growth, focusing on short development

cycles with a functional design at the end of each cycle. By keeping development cycles short, we

were able to solicit feedback from Dell EMC and our advisor weekly and incorporate it into our

deliverables for the following week. In addition to adding new features, we continually explored

data features and implemented them in our learning model. This allowed us to continually increase

the accuracy and performance of our machine learning pipeline.

This process broken down into several distinct phases (see Figure 4.1). The first of these

steps is requirements gathering - during this time, criteria are developed for the project and deliv-

erables. The end product is ideated based on requirements while considering design and practical

constraints. The next stage is planning. Here, ideas are developed to allow for a thorough and mea-

sured approach to development. Design, implementation, and evaluation are the next portion of the

process. Plans are turned into concrete architectural decisions and are implemented in software.

Evaluation and feedback from sponsors ensure that the deliverable is meeting expected functional-

ity and use. At this point, we consider whether or not the deliverable is capable of performing all

required tasks - if so, the deliverable is considered complete and the design is finalized. Otherwise,

the process begins again by returning to the planning phase.
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Figure 4.1. Illustration of the Iterative Design Process.

4.2 Data Science Process

In the field of data science, there is a general process used when approaching a problem.

This process has the following steps: data exploration, feature extraction, feature selection, model

development, and analysis of results (see Figure 4.2).
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Figure 4.2. Flow of the Data Science Process.

4.2.1 Data Exploration

The first step is data exploration. During this phase, we considered various questions that

would help us gain a deeper understanding of the provided data and what it can help us accomplish.

These questions are the following:

• Which question do we want the model to answer?

• Is it possible with the data we have at our disposal?

• Is the failure a sudden event, or is there a slow decline before complete malfunction?

• Which components are typically associated with this type of failure?

• Which parameters should be measured that most signify the state of component/machine

health?

To answer these questions, we created a series of data explorations to look for trends and notable

patterns in the data. For this task, we used Jupyter notebooks. This allowed for rapid development
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and prototyping, as notebooks allow for individual methods to be executed, doing away with the

need to write a more advanced UI for these initial tasks. In these explorations, we calculated

summary statistics of the features’ datasets as well as created visuals to display variation, skews,

and general pattern distribution. This enabled us to find relevant features that were valuable for

our future work and development. See Appendix A for graphs showing variance in features.

4.2.2 Data

Our data came in the form of log files for the Dell Warnado product line. Each board had a

directory of associated JSON files, containing test information, metadata, identifying information.

Log formats changed between testing versions, with our samples split between Dell’s v14 and v15

testing standards. Our data consisted of 780 v14 logs and 595 v15 logs, with a grand total of 1,375

logs. However, only 1,337 logs contained at least 50% of the features. Those additional 38 logs

were discarded.

Working with the two testware standards proved to be difficult. Between the two versions,

formatting for test results changed as well as some tests being deprecated and new ones added.

Similarly, testing information being spread between multiple files required us to compile informa-

tion from multiple sources for feature extraction.

To process the log data, we wrote a series of Python scripts to convert the raw data from log

files into workable formats for our learning pipeline.

4.2.3 Feature Extraction

To implement the feature extraction, we wrote a series of Python scripts for each test step in

which we found significant variance, data skewing, or other non-gaussian distribution. Specifically,

we were interested in differing distributions between passing and failing boards. Each script was

designed to write the selected features out to CSVs indexed by board UutId and whether that board

was a pass or failure. These extraction scripts were run over all board samples.

Features were selected from the following test steps:

• Drive max temp check
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• Drive media io

• Drive performance test

• Heath check

• Hw check

• Slic check

• Test step

Through our feature extraction algorithms, we had identified and extracted 548 distinct features

from the version 14 and 15 board logs.

4.2.4 Feature Selection

For feature selection, we implemented three common methods of statistical feature selection.

These feature selection methods were vital for reducing unnecessary data dimensionality. For the

project, we implemented and trialed the following three methods:

• Chi2

• Mann-Whitney

• Principal Component Analysis (PCA)

For more information on these feature reduction algorithms, please consult section 3.2.5. Below

are results from feature selection algorithms PCA and Mann-Whitney (See Figure 4.3 and 4.4).

16



Figure 4.3. PCA Variance Ranking by Principal Components
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Figure 4.4. Mann-Whitney Feature Rankings
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After finding significant data features, we tested possible data transformations to discern

clearer relations between the feature and whether the board was a failure or not.

4.2.5 Model Development and Tuning

After feature extraction and feature selection methods are performed, it is time to turn to

model development, training, and tuning. Leveraging the Python library ‘Scikit Learn’, we were

able to create several different classification models for our project and compare model accuracies.

The following models were created:

• Support Vector Classifier

– Linear

– Radial Basis Function

• Random Forest Classifier

• Naı̈ve Bayes Classifier

• XGBoost Classifier

For these models, we used a 70/10/20 data split. This left 70 percent of our data set for

model development and training, 10 percent of the data for model validation, and the remaining 20

percent was used for model testing.

4.3 Time Series Analysis

During our exploration of the data, the Dell EMC team presented us with a recent issue they

had faced. There were a growing number of motherboards failing within a battery test. The failures

were due to batteries showing voltages below their pass/fail criteria. Upon further investigation

through time series analysis, it was discovered that their boards had been trending towards lower

voltage values for the past few months. This sparked a plan to develop a warning system in order

to prevent surprises like this one. Time series analysis could be used to monitor motherboards over

time and warn the Dell EMC team if there are trend changes.
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We visualized the voltage trends through scatter plotting. The x-axis would show the date of

each board’s battery test, while the y-axis displays the voltage. This plotting was functionalized, in

order to be used within our warning system. Using the feature extraction script established earlier

in our project, a plot could be generated for each feature on an entire batch of logs.

Through the use of linear regression, a trendline could be displayed over the plot. The

severity of this line would indicate the need for a given feature to be warned of. If the values for

a feature are increasing or decreasing over time, Dell EMC, may want to investigate the source.

Depending on the cause of the change in trend, either the pass/fail criteria or method of performing

the given test may need to be adjusted.

4.4 Outlier Detection

We used outlier detection in order to isolate any anomalous boards within a given set of

motherboard testing logs. For this, we took advantage of the isolation forest (iForest) algorithm,

which locates anomalies within a dataset. The inlier range generated by iForest was overlaid over

the regression analysis for a set of test logs. This range serves to separate expected board values

from anomalous ones, for which investigation is recommended. When a trendline passes across this

threshold, the given feature would be flagged with a warning for the Dell EMC team to investigate.

When isolating anomalies, we used a low contamination value of 0.15 - 15 percent of values in the

dataset will be considered outliers - in order to prevent preemptive warnings that could result in

inefficient use of company time.

We picked the isolation forest algorithm due to its recorded success with large datasets. Iso-

lation forest is powerful with high dimensionality, especially where there are potentially irrelevant

features (Liu et al., 2008). Due to the nature of our application, this would be applicable. We

extracted as many features as we were able to during our allotted time, without the domain knowl-

edge to determine their value or redundancy. While we explored dimensionality reduction methods

for our machine learning application, we would be keeping the entire dimensionality for this por-

tion of the project. We will be monitoring all of the features we extracted from every portion of
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the testing procedure, as we have no reason to monitor only a subset of the test steps for changes

within trends.

Isolation forest has low processing time and does not require as much memory as other, more

traditional methods (Liu et al., 2008). This is due to the shorter tree paths required when isolating

anomalies, which are naturally separated within a dataset. This efficiency is advantageous for us

as Dell EMC users will manually be running the final program.

While this method is known for a high accuracy within global anomalies, it is not well suited

for anomalies that exist within the global inlier range (Gao et al., 2019). Fortunately, due to our

application of this algorithm, we will not be affected by this restraint. We are utilizing isolation

forest specifically to generate a range of expected values, and monitor trends within test steps that

begin to formulate outside of this boundary. For the purpose of monitoring the trends of entire

groups of motherboard test logs, we will not be focusing on local anomalies. Local anomalies

require multiple attributes to detect, and would not fit in with this trend change warning system.

4.5 Frameworks and Resources

To implement our design, we needed a versatile language capable of both exploration and

software programming. For this, we selected the incredibly popular and powerful language Python.

4.5.1 Python

There are multiple reasons why Python was chosen for this project. Due to its scripting and

interpretive nature, Python lends itself well to writing short, task oriented programs that can be

used for data exploration and extraction. These can then be combined to form larger portions of

our design.

Python is also incredibly popular in the data science and artificial intelligence fields. Due

to this, there are a multitude of packages and toolkits freely available to aid in our work. Some

of the most notable packages we used were: Pandas, Scikit Learn, and Seaborn. We have been

exposed to these libraries in our academic backgrounds, and have read about them used for industry

applications.
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4.5.1.1 Pandas

Pandas is a common library used for working with large quantities of data. It contains

mainly critical functions used for easily reading a variety of different data formats, preprocessing,

and manipulating data fields. This library was built on top of the Python NumPy library, which is a

standard library used for matrix manipulation. Pandas adds high level functionality, which makes

preprocessing data for analysis and AI applications elegant and straightforward.

4.5.1.2 Scikit-Learn

Scikit-Learn is a popular artificial intelligence and machine learning library built for Python.

Scikit-Learn contains functionality for preprocessing, dimensionality reduction, and many model-

ing techniques. This enabled us to focus on gathering results and testing, rather than reimplement-

ing machine learning and statistical models ourselves.

4.5.1.3 Seaborn

Seaborn is a graphical data visualization library built for Python on top of the existing Mat-

plotlib library. Seaborn allows for advanced graphing of data with simplified commands, reducing

time spent on actual graphic generation. We used this throughout our project to functionalize vi-

sualization for both exploring our data to generate questions, as well as presenting our results and

findings.

4.5.2 WPI Turing

Turing is WPI’s primary research cluster used for cloud computing by both faculty and

students. The cluster contains a total of 48 servers, comprising thirteen hundred CPU, over nine

terabytes of RAM, and 64 GPU. We utilized turing in order to run our preprocessing scripts on

large batches of motherboard test logs.
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4.6 Design

4.6.1 Feature Extraction

Given a ZIP archive of log files, the Python script will extract the features and create a

CSV (comma separated values) file that can then be handled by classification or the trend warning

system. First, the ZIP file is extracted in parallel to get the log file for each board. Then, every

metadata log file, such as UutDataLog.json and TestStepHistory.json are collected from each board

and concatenated to create individual data frames for each file. Once the data frames have been

created, the feature extraction scripts run. UutDataLog.json provides features based on values from

within the test steps. There are various custom functions that will extract individual features from

specific test steps and there is a general function that will extract features that are in the proposed

format that will be explored later. The general features are found by searching the output column

to find the desired format, extracting the features, and checking which test step they are located.

If the table contains more than one row instead of just collecting the value of the column, the

max, min, standard deviation, and mean of the columns will be collected and turned into features.

TestStepHistory.json provided the time each test step took to run. The test step run times were

extracted into features. Every feature that is extracted is put into a CSV, and once all the features

are extracted they are combined into one final data set. The format of this data set is that each row

represents a board keyed with a unique UutId and the columns are the extracted features. Once

the features have been extracted classification and trend detection can be run. The final data set is

saved as a CSV file. The flow of data during this program execution can be seen in Figure 4.5.
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Figure 4.5. Data Processing Pipeline

4.6.2 Classification

After the data has been extracted into CSV, the classifier methods can be utilized. The target

for the classifier is whether or not the board failed the tests. The classification scripts compare

different models andt parameters to get the best set of parameters for the right model. The script

outputs an accuracy report of each model and the best parameters. The script can also take the

input of a feature selection method. The types of feature selections that can take place are chi-

squared, principal component analysis, and Mann-Whitney test. Along with the feature selection

technique the number of features can be input into the script. This will pick the top number of

features specified by the user for the model testing. Once the features have been reduced, the 5
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machine learning techniques will be run: support vector classifier, k nearest neighbors, naive bayes

gaussian, random forest, and gradient boosting. A grid search is performed on each model in order

to find the best set of hyper parameters. The hyper parameters can be found in Figure 4.6.

Figure 4.6. Hyperparameters to be tuned for each model.

Once the best set of parameters has been found and the training is over, the results are

exported to a csv. Along with the model and feature selection technique, the results of running the

model on a testing set is recorded and the ground truth labels are included. This csv file will then

be run through the evaluator script. This script will calculate the accuracy, precision, and recall

of the model, alongside the values for a confusion matrix. This information will then be stored in
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Figure 4.7. Evaluation of Feature Selection Methods for Classification

a results.csv file. This data can then be plotted to visualize how the different models and feature

selection techniques performed against each other. An example of a visualization technique can be

seen in Figure 4.7 where Chi-Squared and PCA are compared on the machine learning models.

4.6.3 Trend Warning System

The trend warning system also uses the extracted features in the csv file. The warning system

interfaces with the user in three ways. By running the warning system the predicted date of the

trendline hitting an outlier value for each feature is calculated. For each feature this is stored in

a json object that can later be given to the user. The second way the user can interact is exactly

that, request the json object. In practice it will be the frontend requesting this information and then

parsing it for the user. This list can be filtered by the front end and the user can signify how they

want it done. The final way the user can interact with the trend warning system is requesting a

visualization of the information. An example of the visualization can be seen in Figure 4.8.
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Figure 4.8. Example of Outlier Detection

The image shows the features value over time, the upper and lower bound, and the trend line.

This image can be requested by the front end and displayed on the front end so the user can see

how a particular feature is trending and if there are many outliers in the data.
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5 Results

5.1 Classification

In order to achieve the best results, we trained each classification model using our three fea-

ture selection methods: Chi-Squared, Principal Component Analysis (PCA) and Mann-Whitney.

Chi-Squared and PCA performed the best and the results from our tests and can be seen below in

Figure 5.1. Chi-Squared had better results in general, with the XGBoost algorithm passing 95%

accuracy on the test set while PCA’s best result was a little below 80% accuracy on the test set.

Figure 5.1. Evaluation of Feature Selection Methods for Classification

The data to create these charts can be seen in table 5.1 and table 5.2 below. It should be noted

that in the chi squared table, the three SVC models predict that all the data points in the validation

set as negative thus giving them a precision and recall of 0.
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Model Number of folds Accuracy Accuracy std Precision Recall
SVClinear 5 0.6145 0.0268 0 0
SVCrb f 5 0.6145 0.0268 0 0
SVCpoly 5 0.6145 0.0268 0 0
kNN3 5 0.5432 0.0222 0.3990 0.3640

NBgaussian 5 0.4414 0.0255 0.3970 0.8622
RF 5 0.5861 0.0410 0.4261 0.2335

XGBoost 5 0.5621 0.0388 0.4123 0.3012
Table 5.1: Models performance with Chi Squared

Model Number of folds Accuracy Accuracy std Precision Recall
SVClinear 5 0.6516 0.0255 0.6115 0.2938
SVCrb f 5 0.6349 0.0277 0.5575 0.2600
SVCpoly 5 0.6058 0.0341 0.45797 0.0666
kNN3 5 0.5876 0.0287 0.4644 0.4204

NBgaussian 5 0.6152 0.0336 0.5145 0.1514
RF 5 0.6378 0.0416 0.5595 0.2944

XGBoost 5 0.6327 0.0295 0.5309 0.4223
Table 5.2: Models performance with PCA

Out of all of the machine learning classification algorithms we tried, Gradient Boosting

(XGBoost) had the highest accuracy when used with Chi-Squared feature selection. It may not

necessarily have the best results on new data presented to it though, since its high accuracy may be

the result of overfitting and data snooping. K Nearest Neighbors where K is 3, and Random Forest

both had accuracies of around 85% when using Chi-Squared feature selection and these results

were the second highest. None of the results mentioned above benefitted much from increasing the

number of features at 4 or 6, with the exception of XGBoost. Meanwhile, the results from PCA

had steady improvement through the addition of more features. We explore this further in Figure

5.2, where the accuracy with support vector classification steadily rises as more and more features

are introduced to its linear and radial basis function (rbf) algorithms. The two go from scoring

around just 65% accuracy with 10 features to a little bit over 70% with 40 features, the radial basis

function method outperforming the linear one.
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Figure 5.2. Evaluation of algorithms using PCA with up to 40 features

A continual issue we faced were null data values in our dataset. Due to the fact that different

testing suites from different companies returned different types of data, some of our features had

high null value counts. To combat this we removed features that were more than 80% null values

and filled the rest of the null values in with the target mean. To see the full distribution, consult

the figure provided in Appendix B. Appendix B is a graph that outlines the features that are more

than 10% null values. It represents the number of non null values that passed boards have minus

the number of non null values that failed boards have for a particular feature. The idea behind this

graph was that it would show us if a null value correlated to a failed board. Unfortunately what

this graph revealed to us instead, is that we have more failed boards than passing boards.
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5.2 Outlier and Trend Detection

Through our analysis, we found that certain features had distinguishable trends over time.

For example, Figure 5.3 depicts the isFailed class of the feature “Temperature std” as having a

lower slope than the passing class as time increases. We see a feature showing a distinguishable

trend over time again in Figure 5.4, where the feature “Temperature sensor 0” has a negative slope

over time depicted by a solid red line. The dotted red lines, the values of the highest and lowest

inliers, represent the range of normal values for the average to be within. Once the solid red line

crosses out of this territory it becomes worrisome and should be investigated. Using regression we

predict the date when this event will occur and warn Dell once that date is within a certain amount

of time.
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Figure 5.3. Example of distinguishable trends over time
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Figure 5.4. Example of outlier and trend detection
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6 Conclusions and Deliverables

6.1 Standardized Log Data Format

When the Warnado boards go through the testing suite, they run through multiple tests. After

each test, results are written out to various files such as UutItems.json. This file contains a list of

each test run and the time stamp it started and ended at. This was utilized to create the feature

that describes how long each test step took to run. Another file that was focused on was UutData-

Log.json. This was the largest file generated by the test and the one that the most time was spent on.

The rows in the log files are as follows: RowNumber, LogEntryId, ParentRegionId, Placeholder-

RegionId, EntryTime, EntryLevel, SourceType, SourceName, Tag, MessageFormat, MessageData,

and HasErrors. The three columns we focus on were SourceName, Tag, MessageData, and HasEr-

rors. SourceName has the name of the test step. The Tag column describes what is happening in

the current line of data. This can be the start or end of a test step or logging the results. We utilized

this column to split the data into different test steps. The MessageData column contains the data

that was output from the test. This column is where we pulled most of our features from as it has

distinct values. The format of this column was not consistent and ranged from json tables to human

readable text. Finally the HasErrors column was a boolean flag that was true if a test had errors

and false otherwise. This column splits the data into pass and fail as laid out by MIL.

As mentioned above, there is no standardization for the MessageData column. Each test step

has its own format to output the results of the test. This made it very difficult to extract features

from the tests as for each test we had to write custom code to extract the output. The format of the

output was very human readable, but was unstructured and was difficult to parse with a computer

as shown in Figure 6.1.
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Figure 6.1. Human Readable output
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Based on our findings, we compiled a list of test steps that should be reformatted into JSON

formatting. In addition, we wrote a document explaining our log data standardization proposal,

best practices for JSON formatting, and an itemized list of test steps with a brief description of

their current state. This proposal can be viewed in full in Appendix C.

We attempted to write a generalized text reader, but this still had to be custom fit to each test

step we wanted to extract features from. Of the 149 test steps throughout the data, we were only

able to extract features from 6 of them. This significantly hindered the development of this project

not only by the lack of features we had access to, but also the time it took to write custom feature

extraction for the test steps we used. While writing custom extraction code, we did find an output

that was in JSON and in the format of a table. Writing code to extract these features was much

simpler than parsing through than the other outputs we had come across. Our recommendation for

Dell EMC is to standardize the output of each test step to match this format to allow for future data

scientists to be able to more easily extract features and create models.

The format of the JSON is very similar to that of a table. There are three keys to the object:

Title, Columns, and Rows. The title key will give the name of what test was run and give context to

the data currently being displayed. This will allow each feature to have a deeper description than

just what test step it took place in, but also what exactly was being tested. The columns key will be

an array describing the columns in the table. These column names will become individual features

for the particular test. If the table contains more than one value each column can be split into

four different descriptors: mean, standard deviation, maximum, and minimum of column. These

descriptors can become individual features. This implementation can be utilized by future data

scientists as part of feature engineering and we encourage Dell EMC to just keep the list of values

and not the descriptors. The final key, rows, will be an array of arrays. The first layer of arrays (the

array of arrays) will be a list of rows of data, where each row of data is another array. Each row of

data will be an array where each index aligns with the column definition from above. An example

of how the output data should be formatted can be seen in Figure 6.2.

36



Figure 6.2. Proposed Output for each Test

6.2 Warning for Trend Detection

Based on the trends we found through outlier and trend detection, we created a program that

would alert and flag Dell EMC of specific features that would eventually drift into the outlier range

of values. We referenced these features as having reached “criticality”.

6.2.1 Front End

The front end of the program was written using JavaScript’s React library. The design was

kept simplistic, and covers just two pages, as there is only one main function. The main page

(shown in Figure 6.3) displays to the user the number of logs expected to reach a critical state

within the next month. This number is generated from the last time the program was run. To run

the program, the user must click the first of the two main buttons “Run Warning System”. This

will run on the ZIP file indicated by a parsed argument.
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Figure 6.3. A screenshot of the first page of the warning system UI

The second button, “View Logs”, links to the next page, shown in Figure 6.4. On entering

this page, the user is shown the most critical log. At the top, there is a header which states that the

“[Feature Name] will reach a critical value of [Outlier Value] by [MM/DD/YYYY]”. Alongside

this header, the original test log file and test step that this feature was extracted from are listed.

Underneath the information, a time series plot is presented with the regression line and outlier

range marked. On the left side of the page, there is a scroll bar. The bar contains each of the

extracted features. By default, this is sorted from nearest to furthest date of criticality. The bar

can also be sorted by individual test steps for further investigation between similar features. When

clicking on a feature within the bar, the information displayed on the page will change to that of

the selected feature.
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Figure 6.4. A screenshot of the second page of the warning system UI

6.2.2 Back End

The back end contains three endpoints. The first endpoint will execute the main warning

system script when the “Run Warning System” button is pressed. The second endpoint retrieves a

list of features, as a JSON file, generated by the main system script. Lastly, the third endpoint will

generate and retrieve individual charts each time a different feature is selected from the scroll bar.

This will save time by preventing the need for every chart to generate at once when the system is

run.

The main warning system script was written in Python. This script is a portion of the main

pipeline mentioned in section 4.6.1. The pipeline is called using specific arguments to indicate

that a zip file of raw log data must be formatted, feature extraction must be run, and the warning

system script must be called. The warning system script first collects timestamps for each unique

motherboard, these will be used when plotting the time series. One feature at a time, the script

processes an array of feature values (one for each motherboard). The Isolation Forest classifier is
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X = (y−b)
m

Figure 6.5. Linear Equation solved for Outlier Date

fit on these features, and each value is marked as an inlier or an outlier. SciPy’s statistical package

is used to calculate the linear regression function for the data. This gives us the slope and y-

intercept. By inputting the maximum and minimum inlier values sequentially as y, x is solved for.

As this is calculated for both the maximum and minimum inlier values, two x-values are generated.

The greater x-value is taken as the date of criticality because the smaller x-value would represent

a date in the past.

The script also contains functionality used to generate time series charts for each feature.

This function takes in the before mentioned data processing results, and uses them to create a time

series scatter plot using MatPlotLib and Seaborn.

Lastly, the script saves a JSON file containing all needed information to be displayed in the

front end. Following are the four attributes collected for each feature: the date of criticality, the

feature value at this date, and both the file and the test step from which the feature was extracted.

6.3 Final Conclusions

Through this project, we were able to identify some key factors that would improve Dell

EMC’s workflow. Determining how log data can be improved as well as developing a warning

system and application for trend detection will serve to improve Dell EMC’s design and produc-

tivity. Standardizing the log format readies Dell EMC for the future of big data and AI by having

structured data that can easily be fed into a machine learning model. This will save future data

scientists weeks of data cleaning and feature extraction to allow the process to be expedited. The

warning system enables Dell EMC engineers to easily monitor motherboard health trends. This

exploratory project gave the Dell EMC team a better understanding of their motherboard log data,

and will serve to increase the efficiency of future projects.
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8 Appendices

8.1 Appendix A: Feature Variance in Data Exploration

Figure 8.1. Std. Deviation of Processing Times by Step
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8.2 Appendix B: Nullcounts
Appendix B is a graph (following page) that outlines the features that are more than 10% null

values. It represents the number of non null values that passed boards have minus the number of
non null values that failed boards have for a particular feature.
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8.3 Appendix C: Log Standardization
See the following six pages for the Warnado Log Data Standardization Deliverable.

47



 

Warnado Log Data Standardization 
Proposed by the 2020-2021 WPI MQP team. 

 

Recommended Format: 
Through processing of the Warnado motherboard test logs, we found variance in data structures 
between test steps. We have determined an ideal format for the data, which would improve the 
efficiency of future projects. 

We recommend a JSON format, which is a language-independent format consisting of 
attribute-value pairs.  

Why this Format is Valuable: 
Firstly, it is important to note that any consistent data format is preferable to inconsistency. This 
enables data scientists to create standardized feature extraction or other processing scripts, 
which will work on all current and future log files. This can save a tremendous amount of time 
and infinitely increase scalability of the usage of the log data. 

We determined JSON as the most ideal format for two further reasons. One, it is both human 
and computer readable. The attribute-value pairs can be easily discerned by the human eye. 
More importantly, these pairs are computer readable, and can be parsed by many languages. 
Most IDEs can format JSON, and there are JSON specific web and software viewers. Second, 
the table-like format of JSON allows for details to be included with the log data. In the example 
shown in Figure 1, the data contains three attributes: ‘Title’, ‘Columns’, and ‘Rows’. The title 
allows for context to be provided for this portion of the test step. The column names are 
descriptors that will become individual feature names for the test. The rows contain the actual 
data, which can be featurized using statistical summaries such as the mean. 

{"Title":"Initial Drive Expander Phy count Summary", 

"Columns":["Drive 
Pos","invalid_dword_count","disparity_error_count","code_violation_error_count",
"loss_of_dword_sync_count","phy_reset_failed_count","phy_change_count","crc
_pmon_accumulation_count","in_connection_crc_error_count"], 

“Rows":[["0_A_2_0_2_0_5","7","7","7","0","0","11","0","0"],["0_A_2_0_2_0_6","62"
,"63","46","2","0","11","0","0"],["0_A_2_0_2_0_7","72","74","74","2","0","11","0","0"
],["0_A_2_0_2_0_0","190","194","136","4","0","11","0","0"],["0_A_2_0_2_0_1","17
9","184","184","5","0","11","0","0"] ... 

Figure 1. A Good Example Within the Log Data from the driveMediaIO Test Step 

 

 



 
 

The example in Figure 2 contains valuable information but requires manual attention to 
be parsed. As this is not a standard format, we had to review the structure of this data in 
order to create a parsing script. It is inefficient to manually create different scripts for 
each test step, and it can be time consuming to ensure we are collecting all valuable 
information. Most of the test steps contained within the UutDataLog.json ‘MessageData’ 
attribute, were in varying formats other than JSON. This inconsistency costs time which 
would be better spent analyzing the parsed information. 

2:|EMPTY|\r\nSPA IO Module Mezz 0 Port 3:/|EMPTY|\r\nSPA BBU Temperature 
Sensor 0:/40.30C|\r\nSPA BBU Temperature Sensor 1:|31.72C|\r\nSPA BBU 
Temperature Sensor 2:|31.51C|\r\nSPA BBU Internal Rail 
Voltage:|12.28V|\r\nSPA BBU Service Life:|1days|\r\nSPA BBU Storage 
Capacity:|22.80WHr|\r\nSPA BBU Deliverable Capacity:|22.80WHr|\r\nSPA BBU 
State of Health:|97%|\r\nSPA BBU Cell 0:|3.65V|\r\nSPA BBU Cell 
1:|3.64V|\r\nSPA BBU Cell 2:|3.72V|\r\nSPA BBU Cell 3:|3.57V|\r\nSPA BBU Cell 
4:|3.64V|\r\nSPA BBU Cell 5:|3.65V|\r\nSPA BBU Cell 6:|3.65V|\r\nSPA 

Figure 2. A Bad Example Within the Log Data from the healthCheck Test Step 

JSON Formatting Guidelines: 
When formatting data in JSON notation, there are several conventions that should be followed.  

Keys: 
● Names should be as clear and explicit as possible to enhance readability 
● The plurality of the key should match the key’s associated value 

○ Single values should have a singular key name while an array of values should 
have a plural key name 

 

{ “temp” : 46 } 

{ “temps” : [46, 21, 101, 20] } 

Figure 3. Example of key plurality matching 

 

Data Structure: 
● Data should be ‘flattened’ when possible 

○ Flattening is the practice of only utilizing Key-Value pairs, rather than nested data 
○ Do not group and nest data unnecessarily 
○ Data should only be nested when it makes semantic sense 

 

{ “SensorValues” : { 

{ “temperatureSensor” : 46 }, 
{ “voltageSensor” : 1.27 } 



 
 

} 
} 

Figure 4. Example of Unnecessary Data Grouping 

 

{ “temperatureSensor” : 46, 
  “voltageSensor” : 1.27 } 

Figure 5. Example of flattening data 

 

Data Integrity: 
● Keep types consistent in value arrays and lists 
● Omit null and ‘none’ values from the dataset 

For further information, we recommend consulting the Google JSON Style Guide. 

Priority List of Test Steps to Re-format: 
 

1. Formats which required regex parsing of the message data 
a. Hw_check 
b. health_check 
c. slic_check 

2. Format that required parsing for ‘Summary’ in ‘MessageData’ 
a. Drive_media_io 

 

Test Steps with good formatting: 

JSON Output 
Ace->Disc 
Ace->Gene (Nested) 
Ace->Gene 
Autonest 
Discovery 
Drive_ATI_Test 
Drive_AutoDump_Check 
Drive_BMS_Check 
Drive_CheckPrime_Test 
Drive_DB_Check 
Drive_DB_Update 
Drive_Defect_Test 
Drive_DST_DEFT_Test  
Drive_Eb0_Check 



 
 

Drive_Firmware_Check 
Drive_Format 
Drive_Format_Check 
Drive_GatheringEventHandlingInfo 
Drive_Helium_Check 
Drive_Latency_Test 
Drive_Max_Temperature_Check 
Drive_Media_IO 
Drive_Mode_Select 
Drive_Mode_Sense 
Drive_Pattern_Media 
Drive_Pattern_Media_Verify 
Drive_Percent_Life 
Drive_Performance_Test 
Drive_PopulationCheckTest 
Drive_PowerCycle_Test 
Drive_Power_Cycle 
Drive_Self_Test 
Drive_SmartData_Dump 
Drive_TestUnitReadyNoError 
Drive_Wpd_Check 
Gene->Disc 
Opal_Check 
Pull_IVE_Data 
Retired Die Check 
 

Test Steps in need of reformatting: 

Tables 

Clear SEL - Prints out table with | as seperator 
Dump SEL/SDR - Prints out table with | as seperator 
Sensor Check - Prints out table with | as seperator 
Drive_GatheringDriveInfo - Key Value list separated by : 
Drive_Firmware_Update - Key values list separated by : 
SLIC Check - Prints human readable list with : 
M2 Check - Table with no separators 
 

Console Results with ‘:’ delimiters 
BOB Check 
CMD Check 
CMOS Check 
HealthCheck 
Thermal Sensors check 



 
 

Console Results with ‘=’ delimiters 

BMC Check 
FAN Test 
MEZZ Check 
RTC Check 
TEQInitialize 
USB Test 
 

Text Output: 
BootMon 
CpuTest POST 
DiscoverIP 
PowerCycle 
PowerOff 
PxeBootSLES 
SerialConnect 
Set_ISC_Mode 
Set RTC 
UUID/PPIN Check 
 

Just Console Result: 
ArchiveLogs 
ArrayInfo 
BootMonInstalledOS 
CaptureLogs 
DownloadContent 
Front LED Check 
Incident_Check 
IPXEBoot 
HW Check 
Mobo Codeload 
M2 Blank 
NVMe Codeload 
PowerOn 
Ready_Linux_Boot 
RegisterOSInstall 
SP_Halt 
Set_Mfg_Mode 
Set_Temp_PXE 
SLES Shutdown 
 



 
 

Prints human readable lists with limited information 

BackendDiscovery 
CpuTest OS 
Disable soft error handlers for drive tests 
Error Init 
FirmwareDiscovery 
Full RAM Test 
IO Module Assembly 
PCIE Stress Test 
Power/CMD Check 
ResumeDiscovery 
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