

1

W o r c e s t e r P o l y t e c h n i c I n s t i t u t e

Richard O'Brien
Ben Sharron
Alex Shoop
Khazhy Kumykov

Angelo Gordon: Loan Data Governance

I

Loan Data Governance

A Major Qualifying Project

 Submitted to the Faculty of

WORCESTER POLYTECHNIC INSTITUTE

 in partial fulfilment of the requirements for the

degree of Bachelor of Science.

Date: December 18th, 2015

Project ID: KMS-AG11.

Report Submitted to:
Kevin Sweeney, Jon Abraham, Michael Ciaraldi, Arthur Gerstenfeld, Huang Xinming

This report represents work of WPI undergraduate students submitted to the faculty as evidence of a

degree requirement. WPI routinely publishes these reports on its web site without editorial or peer
review. For more information about the projects program at WPI, see
http://www.wpi.edu/academics/ugradstudies/project-learning.html

II

ABSTRACT

The purpose of this project was to build a quick, intuitive, customizable reconciliation tool for
Angelo, Gordon & Co. The current tool was strong in functionality but weak in user interface.
New reconciliations took weeks of setup and generated hard-to-read reports. Further, every
report cost money. We worked closely with the sponsor to develop an extremely intuitive and
user-friendly tool that is free to use, and only take minutes to create new, large reconciliations.

III

ACKNOWLEDGEMENTS

We would like to acknowledge Worcester Polytechnic Institute for providing us with the
opportunity to complete our MQP at the Wall Street Project Center. As well we would like to
say thank you for all the help from our advisors Kevin Sweeney, Jon Abraham, Michael Ciaraldi,
Arthur Gerstenfeld, and Xinming Huang for their guidance throughout the preparation and
completion of this MQP.

As well, we would like to thank our sponsor Angelo, Gordon & Co. for providing us the
opportunity to work with them and their support throughout the project. We would also like to
specifically thank Scott Burton, Andrew Rosslee, and Cindy Aguilar for their pivotal roles in
guiding our group.

IV

EXECUTIVE SUMMARY

During the course of business, Angelo, Gordon & Co. exchanges and creates large amounts of
data regarding loan pools that they buy, sell, and transform. This means that data comes from
third party vendors, who are buying and selling, and data is created internally due to
transformations and financial maneuvers performed on these pools. As well, since these pools
are so large, the transactions can take a lengthy amount time to complete. This means that
values of the exchange can change between the time when the exchange happened and when
the loans are actually received. With all these different sources of data, and no standardized
means of entering the data across the board, as well as the time delay of actually acquiring
product, mismatches in data of different types, whether it be name value or otherwise, are
bound to occur.

To become more transparent, Angelo, Gordon & Co. has outsourced its official accounting to a
third party firm. The company, though, still maintains its own accounting records, meaning that
there is yet another outside source of data that the company must keep their books in sync
with.

The current tool used to reconcile data is good for very detailed reconciliations, for example if
the firm wanted to reconcile everything down to the penny. However, every report generated
costs money because they require custom reports, the user interface is not very intuitive, and
generating any new reports takes an abundance of time (on the order of weeks).

Our project was to create a simple, quick reconciliation tool that could be used for reconciling
loan taxonomies. This tool could be run from the terminal using one command, and would
check loan taxonomies between databases, then email out an error report to users notifying
them of mismatches on multiple levels of data. The tool could also have a translation table
input into it, so that it would not output already known and accepted differences among
databases as well as to provide a different key mapping between sources. The input and output
format was chosen to be Excel files, so that reports could be opened and manipulated easily by
any member of the company. As well, the entire user interface was designed to be extremely
intuitive, requiring virtually no learning curve, compared to the current confusing tool.

V

TABLE OF CONTENTS

ABSTRACT ... II

ACKNOWLEDGEMENTS ... III

EXECUTIVE SUMMARY .. IV

TABLE OF CONTENTS ... V

LIST OF FIGURES .. VII

LIST OF TABLES ... VIII

1 CHAPTER 1: INTRODUCTION ... 1
1.1 Current Process ..1
1.2 Problem Statement ...2
1.3 Quick Rec Tool Overview ...4
1.4 Purpose ...4

2 CHAPTER 2: BACKGROUND INFORMATION ... 5
2.1 Python ...5
2.2 SQL ...5
2.3 Hedge Funds ..6
2.4 Angelo Gordon ..6
2.5 Loan Trading ...8
2.6 Data management ... 10

2.6.1 Quantity of Data ... 10
2.6.2 Implementing Standards ... 10

3 CHAPTER 3: METHODOLOGY .. 11
3.1 Planning and Analysis .. 11

3.1.1 Version management .. 11
3.1.2 Feasibility ... 11
3.1.3 Discussions With Potential Users ... 11

3.2 Design .. 12
3.2.1 Balancing Usability With Functionality.. 12
3.2.2 Setting Direction .. 14
3.2.3 Front End .. 16
3.2.4 Human or Automated Mismatch Correction ... 16

3.3 Development ... 17
3.3.1 Creating The Loan Pool Name Reconciliation Tool ... 17
3.3.2 Integrating a Configuration File ... 19
3.3.3 Choosing Input Types .. 23
3.3.4 Creating The Output File ... 24
3.3.5 Email Reporting ... 29
3.3.6 Integrating a Translation Table .. 29
3.3.7 Reconciling On Multiple Attributes .. 30
3.3.8 Reconciling Numeric Values ... 32
3.3.9 Aggregation .. 33

VI

3.3.10 User Reporting .. 34
3.3.11 Adding SQL Preprocessor .. 39
3.3.12 Reducing Runtime ... 39
3.3.13 Refactoring and Commenting the Code ... 40

4 CHAPTER 4: IMPLEMENTATION .. 41
4.1 Testing ... 41

4.1.1 The Testing Process ... 41
4.1.2 Mock Data Testing ... 41
4.1.3 Real Data Testing ... 42
4.1.4 Sponsor Testing ... 42

4.2 Documentation ... 43
4.2.1 The Purpose and Process of Documentation .. 43
4.2.2 Internal Documentation .. 44
4.2.3 Written Documentation .. 45
4.2.4 Use Cases ... 46

5 CHAPTER 5: RESULTS .. 52
5.1 Finished Product .. 52

5.1.1 Logic Overview .. 52
5.1.2 Final Functionality ... 53
5.1.3 Final User Interface ... 53

6 CHAPTER 6: CONCLUSION ... 55
6.1 Limitations .. 55

6.1.1 Two Table Reconciliations .. 55
6.1.2 SQL Statements ... 55
6.1.3 Recognizing Logical Groups with No Logical Pair .. 55

6.2 Extension ... 56
6.2.1 Ability to Reconcile More Than Two Tables .. 56
6.2.2 Recognizing Logical Groups ... 56
6.2.3 GUI For Configuration and Execution .. 56

6.3 Recommendations .. 57

7 INDEPENDENT STUDIES FOR THE PROJECT .. 58
7.1 Richard O’Brien .. 58

7.1.1 Independent Computer Science Studies ... 58

8 WORKS CITED .. 59

9 APPENDIX A: DOCUMENTATION ... 60
9.1 Program Document .. 60
9.2 Software Document ... 72
9.3 Use Case Document ... 73

10 APPENDIX B: WEEKLY STATUS REPORTS ... 74

11 APPENDIX C: CODE FOR QUICK REC TOOL ... 80

12 APPENDIX D: EXTENSION OF HIGH SPEED EQUITIES TRADING RESEARCH STUDY 119

VII

LIST OF FIGURES

Figure 1: IVP Functionality ... 1
Figure 2: Simple Loan Pool Taxonomy.. 3
Figure 3: Simple Loan Aggregation ... 3
Figure 4: Securitization of Loans .. 7
Figure 5: Another Look at Loan Securitization .. 8
Figure 6: Mortgage Market Simplified ... 9
Figure 7: Example Output File .. 13
Figure 8: Finalized Workflow Diagram ... 15
Figure 9: Modular Nature of the Quick Rec Tool .. 18
Figure 10: .ini File Format .. 20
Figure 11: 1st Excel File Iteration .. 21
Figure 12: 2nd Excel File Iteration ... 22
Figure 13: 3rd Excel File Iteration .. 23
Figure 14: 1st Test Output File .. 24
Figure 15: Possible Attribute Output Formats .. 25
Figure 16: 1st Iteration of the Full Output ... 26
Figure 17: 2nd Iteration Output File .. 27
Figure 18: 2nd Output File Iteration Source Tab .. 27
Figure 19: 3rd Output File Iteration Key Exceptions .. 28
Figure 20: 3rd Iteration Output File Attribute Exceptions.. 29
Figure 21: Translating Values ... 29
Figure 22: Absolute Tolerance Example ... 32
Figure 23: Percent Tolerance Example ... 33
Figure 24: 1st Iteration of Error Reporting .. 35
Figure 25: 2nd Iteration of Error Reporting ... 36
Figure 26: 2nd Iteration Error Log .. 36
Figure 27: User Reporting Last Iteration Complete Run ... 37
Figure 28: User Reporting Last Iteration Error .. 38
Figure 29: User Reporting Last Iteration Log .. 38
Figure 30: Documentation ... 44
Figure 31: Written Documentation Example .. 46
Figure 32: Use Case 1 Excel Key Pair Reconciliation Description Tab .. 47
Figure 33: Use Case 1 Excel Key Pair Reconciliation ... 47
Figure 34: Use Case 1 Database Key Pair Reconciliation ... 48
Figure 35: Use Case 2 Attribute Reconciliation ... 48
Figure 36: Use Case 3 Translation .. 49
Figure 37: Use Case 4 Aggregation ... 49
Figure 38: Use Case 4 Advanced Aggregation & Rolling up ... 50
Figure 39: Quick Rec Tool Logical Overview ... 52
Figure 40: Configuration File .. 60
Figure 41: Source Translation Table ... 61
Figure 42: Target Translation Table .. 61
Figure 43: Example Source ... 68
Figure 44: Example Target.. 69
Figure 45: Key Output From Example Data .. 70
Figure 46: Attribute Exceptions Output From Example .. 70
Figure 47: Source Tab ... 71

VIII

LIST OF TABLES

Table 1: Mismatch Types ... 14
Table 2: Example of Illogical Data Mismatches .. 17
Table 3: Example Source Attribute Table ... 31
Table 4: Example Target Attribute Table .. 31
Table 5: Aggregation Example 1 ... 33
Table 6: Aggregation Example 2 ... 33
Table 7: Logical Group Without A Logical Pair .. 55

1

1 CHAPTER 1: INTRODUCTION

1.1 Current Process

Before understanding the process that Angelo, Gordon & Co. currently uses, it is important to
note that the firm has outsourced its official accounting to a third party for the sake of
transparency with clients. Though this is true, they still maintain internal accounting and this
actually adds another outside source of data that the company reconciles with.

The current reconciliation tool the firm uses is called IVP Recon. It is a very detailed
reconciliation tool useful for very accurate checks (for example reconciling loan values down to
the penny) and has an abundance of functionality. It is a very useful tool if the firm wants to set
up something like a cash reconciliation and then run the same reconciliation over and over for a
long time. The image below shows only some of its functionality and gives an idea of how
detailed this software can be.

Figure 1: IVP Functionality

The tool has a few major issues: It can be very time consuming to set up new reconciliations,
the user interface is not very intuitive and every new reconciliation costs a fee for custom
reports.

The software takes time on the order of days simply to set up a new reconciliation. One of the
main reasons for this is that IVP Recon does not allow for reconciliations on only select columns
of database tables and on top of this, in one of the first steps, the program makes the user
input all column pairs that are being reconciled. This single step alone takes days to complete
and is generally outsourced to India. Due to the time difference, this means that this step in the

2

process alone won’t be completed for roughly two days. After this lengthy step, there are many
more steps that help define the functionality the user wants to be displayed in the report they
receive, but all could be completed in a matter of hours. Overall though, by the time the new
reconciliation is set up days have passed, potentially causing it to already be obsolete.

The user interface of the software also takes a long time to learn due to its complex nature. Due
to the depth of the functionality of this tool, many problems arise with the user interface such
as there being many sub-menus within sub-menus for each step. Since the software is also so
precise as well as having a wide range of functionality, the user must enter specific sets of data
in very specific places in order to accomplish the desired functions. For example if the user
wanted to have “functionality 1” be in the output, there is a specific area perhaps within a
specific menu of a specific step in the set-up process that pertains to “functionality 1”. If the
user doesn’t know where this is, prepare for a lot of clicking and searching. Unfortunately the
immense functionality of the software also leads to immense difficulty for the user entering
data.

The final key issue that the firm has with this software is that every new reconciliation they
generate costs a fee, because they have to have a custom report generated for them. The
generic output file that the IVP Recon produces is not geared towards intuitive usability. The
generic report outputs massive amounts of data regarding mismatches into an immense table
with no obvious organization, no filterability, and a lack of most other details that would allow a
user to easily understand what is going on. Thus the firm has a custom formatted report
generated with every new reconciliation. This not only costs money, every single time a new
reconciliation is needed, but also takes time because the software company needs to build
Angelo, Gordon & Co. this new report. This may take time on the order of weeks, which further
adds to the time issue.

Overall the current process works very well for very accurate reconciliations that they want to
run repetitively for a long time. It is not suitable for smaller and frequently updated
reconciliations that don’t need pinpoint precision.

1.2 Problem Statement

Angelo, Gordon and Co. often wants to do quick checks of loan taxonomies between databases
or Excel files to ensure that no information is being lost, entered incorrectly, or corrupted in
some other way. Since there are both internal and external sources of data being input, these
frequent comfort checks are very important. However if the firm wants a simple taxonomy
check or aggregation check between loan pools on separate databases or Excel files, the current
software is cumbersome taking a large amount of time to set up, having a complicated user
interface, not allowing for reconciling of only certain columns of tables and costing money with
each new report. The company needs a tool for quick, customizable, and easy reconciliations,
which any user could perform. The tool also needs to be built so it is easily extended for other
uses.

3

Simple examples of a taxonomy or an aggregation the tool may be used for can be seen below.

Figure 2: Simple Loan Pool Taxonomy

Figure 3: Simple Loan Aggregation

All Loans

Loan Pool
1

Loan 1 Loan 2

Loan Pool
2

Loan 3 Loan 4

Loan Pool
3

Loan 5 Loan 6

Total
Value

Loan Pool
1 Value

Loan 1
Value

Loan 2
Value

Loan Pool
2 Value

Loan 3
Value

Loan 4
Value

Loan Pool
3 Value

Loan 5
Value

Loan 6
Value

4

1.3 Quick Rec Tool Overview

The program our group built will be referred to as the Quick Rec Tool throughout this report.
The Quick Rec Tool was built using Python along with downloaded packages such as openpyxl
and smtplib. It also takes SQL statements as input to communicate with databases. The Quick
Rec Tool can be run entirely from the command line. The run time is very short. In order to run
a reconciliaton on two tables, each containing roughly 10,000 rows, the program only needs
about five minutes. To avoid a user having to learn a complicated front end and navigation
through menus, all the input and output files are Excel files. The Excel file is an ideal input
because of its versatility, natural structure, and widespread use throughout Angelo, Gordon &
Co.

1.4 Purpose

The project had a dual mandate, to deliver the functionality of a quick, customizable and simple
reconciliation tool, and to deliver the tool such that it can be altered and built upon for further
use.

• First and foremost, the tool’s purpose was to be customizable. The reconciliations that
were going to be run using the Quick Rec Tool were often not going to be on entire
tables but only certain columns. There had to be an easy way for the user to enter this
customization.

• The tool had to be intuitive, and all functionality and data had to be able to be altered

simply, and by a non-programmer. Someone had to be able to sit down and easily figure
the tool out.

• The Quick Rec Tool had to be powerful. Users had to be able to reconcile names or

numbers as well as perform aggregations on columns, input translations tables, and
more.

• The tool had to be quick. Generating reports needed to be done in seconds or minutes

as opposed to days or weeks.

• The tool was built so it could be easily altered and expanded upon. This doesn’t simply
mean building flexible, and well organized code. This also meant thorough
documentation of the program and input files in order to ensure that future users and
builders know exactly what they need. We developed both video and written
documentation.

5

2 CHAPTER 2: BACKGROUND INFORMATION

2.1 Python

“Python is an interpreted, object-oriented, high-level programming language with dynamic
semantics. Its high-level built in data structures, combined with duck typing and dynamic
binding, make it very attractive for Rapid Application Development, as well as for use as a
scripting or glue language to connect existing components together. Python's simple, easy to
learn syntax emphasizes readability and therefore reduces the cost of program maintenance”
(Long, 2014). Python’s syntax is more similar to common English than some other popular
languages, and its format forces appropriate indentation for coding, using this to erase the
need for ending statements at the end of for loops, if statements, and logical structures of that
nature.

“Python supports modules and packages, which encourages program modularity and code
reuse. The Python interpreter and the extensive standard library are available in source or
binary form without charge for all major platforms, and can be freely distributed” (Long, 2014).
The project conducted by this team used numerous packages to perform functions specifically
designed for interactions with other software such as Excel and email.

Openpyxl was an open source Python package designed to allow for easy interaction with Excel
documents. The package allows opening, reading, writing, editing and more.

Smtplib is another open source Python package that allows for easy interaction with the SMTP
email protocol from a Python program. This package, as well as MIME, was used to send emails
to end-users and attach output reports to those emails.

There are also many modules within Python such as re, which can aid in performing smaller
functions. For example the module re allowed the program to parse input using regular
expressions.

2.2 SQL

SQL stands for Structured Query Language and it is a computer language used to communicate
with databases (sqlcourse.com, 2015). “SQL is a common language used for relational database
management systems. SQL statements are used to perform tasks such as update data on a
database, or retrieve data from a database. Some common relational database management
systems (DBMS) that use SQL are: Oracle, Sybase, Microsoft SQL Server, Access, Ingres, etc.”
(sqlcourse.com, 2015).

6

A relational database system contains objects called tables. The data or information for the
database is stored in these tables. “Tables are uniquely identified by their names and are
comprised of columns and rows. Columns contain the column name, data type, and any other
attributes for the column. Rows contain the records or data for the columns” (sqlcourse.com,
2015).

2.3 Hedge Funds

“Hedge funds are alternative investments using pooled funds that may use a number of
different strategies in order to earn active return, or alpha, for their investors” (Hedge Funds
Investopedia, 2015). They are typically far smaller than banks and other financial services
companies, with a large fund having employees numbering in the hundreds as opposed to the
thousands. Hedge funds cater to high net worth clients, whether that be individual investors or
corporate. In order to invest in a hedge fund as an individual one must have greater than $1
million in net worth, and have greater than $200,000 annual income.

“Hedge funds may be aggressively managed or make use of derivatives and leverage in both
domestic and international markets with the goal of generating high returns. Because hedge
funds may have low correlations with a traditional portfolio of stocks and bonds, allocating an
exposure to hedge funds can be a good diversifier” (Hedge Funds Investopedia, 2015). Hedge
funds are also largely unregulated, though they can be considered large players in some
markets.

The term hedge fund is a very broad and flexible term that covers a wide range of investment
management styles. The basic idea of the whole industry though is that they invest other
peoples’ money using strategies designed to create an absolute return regardless of the
direction of the market.

2.4 Angelo Gordon

Angelo, Gordon & Co. is a privately held registered investment advisor and hedge fund
headquartered in New York City, NY with tens of billions in assets under management. Though
headquartered in New York, Angelo, Gordon & Co. has locations all over the globe, in Los
Angeles, Hong Kong, London and more. (Angelo Gordon, 2014) The firm may appear small
compared to a large bank, yet with over 360 employees they are large with respect to most
hedge funds.

A hedge fund is essentially a company that invests on behalf of high net-worth individuals and
other high net worth clients. They are largely unregulated due to the fact that they cater to
sophisticated investors.

The company is dedicated to alternative investing, meaning that they seek to generate an
absolute return regardless of the direction of the market by exploiting inefficiencies in selected

7

markets and capitalizing on situations that are not in the mainstream of investment
opportunities. The markets they focus on are the Credit, Real Estate, and Private Equity.

A major part of the business model is buying large pools of loans, the size of which could never
be purchased by any individual investor (think hundreds of millions of dollars), and then
splitting, packaging, or performing some other function to them that allows the firm to sell
these loans for a maximized value and a profit. The following figure shows the process of
securitization of a loan. Hedge funds like Angelo, Gordon & Co. buy in the capital markets.

Figure 4: Securitization of Loans

Below is another illustration of where hedge funds are involved in this specific market. This
diagram specifically also references what happens when the system breaks down as it did
during 2008. Notice where it says “Hedge funds stop buying.”

8

Figure 5: Another Look at Loan Securitization

In order facilitate the buying and selling of these massive pools of loans, the fund has databases
that store data regarding the pools they have bought and sold. For example these databases
store a pool name, the value of the pool and other data of that nature. These databases need
to be accessed by multiple different departments within the firm in order for the company to
understand its current risk, obligations, equity, and more. Problems can arise with consistency
of data between databases since data is originating from multiple sources with no standardized
method of labeling between the sources.

2.5 Loan Trading

Loan trading differs based on who the loan is being issued to, an individual or a company. Since
mortgages, loans issued to individuals, are what is most pertinent to Angelo, Gordon & Co. the

9

focus of this section will be on the primary mortgage markets and it will ignore syndicated loans
(loans offered by a group of lenders generally to a large company, government, etc.). A
simplified illustration of the primary and secondary Mortgage market can be seen below.

Figure 6: Mortgage Market Simplified

The first step in mortgage market is that the borrower enters the primary market. Banks,
mortgage banks and mortgage brokers make up this primary market, though there is little
relevant difference between the three, so we will simply consider them all banks. The banks
compete over the business of the borrower and eventually the borrower selects a bank to take
out a mortgage with. Once the borrower picks a company, then that bank becomes the
mortgage originator. The originator generally makes money from fees charged to originate the
mortgage. From here the process moves to the aggregator. (Your Mortgage Investopedia, 2015)

The originator generally sells the new mortgage to the aggregator very quickly since they used
their own funds to issue it. Aggregators have close ties to Wall Street and to government
entities like Fannie Mae and Freddie Mac and primarily securitize the loans into Mortgage
Backed Securities (MBS). They are large financial institutions that collect loans and aggregate
them into pools (securities) to be sold again. They can also split larger pools into smaller ones
called tranching. If the originator didn’t immediately sell the new mortgage on market, it is
generally because they are acting as the aggregator. (Your Mortgage Investopedia, 2015)

The third step is a securities dealer. Most Wall Street brokerage firms have an MBS trading
desk. The goal of these institutions is to sell the mortgages to investors by using a multitude of
strategies. Major investors here are hedge funds like Angelo, Gordon & Co. There are a lot of

10

creative strategies that are used here, some that were responsible for the near financial
collapse in 2008.

The last step is the investors buying in the secondary market. Investors aren’t just hedge funds
though; they are banks, pension funds, insurance companies and more. After this step a loan
can follow many different paths until it’s completely paid off (Secondary Markets Investopedia,
2015).

2.6 Data management

2.6.1 Quantity of Data

When buying a stock or a bond, individuals and companies are not physically handed a piece of
paper signifying their ownership of that one individual asset; instead it is all done virtually.
However, the amount of assets any individual owns does not necessarily require any data
management on their part. When firms buy pool of loans worth hundreds of millions of dollars,
the amount of data they now have to manage becomes massive due to the sheer number of
individual loans involved in the transaction. The quantity and granularity of this data requires
firms who are involved in this process to incorporate strict and careful data management. This
means having multiple databases where the data is stored, as well as having backups, security,
and careful data management standards.

2.6.2 Implementing Standards

Since the amount of data that is being managed is not only very detailed, going as far down as
describing each individual loan, but also is very important, for losing some data means losing a
loan, standards become a key requirement to be implemented in any firm. By standards, we
mean naming and storage standards that allow universal understanding of which data is where
within the firm. Though this may seem obvious and sound easy, there are many obstacles that
get in the way of this.

The first is that often the data comes into the firm in the form of massive tables from third
party vendors. This means that the data coming in may be organized and labeled in many
different ways depending on whom it is received from. The question then becomes how to, or if
it is even worth it to, convert so much data to a standard the firm has established, as opposed
to just leaving it and dealing with the difficulties that arise from different labeling conventions
within their system down the road.

The second issue that often arises is that many different organizations within a firm may be
utilizing and organizing the data differently. The traders may like the data organized one way
for their ease of use, but accounting may want the data organized another way for their
calculations. This issue is a lot easier for financial firms to control though. By implementing a
cross-company policy, though some divisions may be less happy than others, the data will
remain consistent.

11

3 CHAPTER 3: METHODOLOGY

3.1 Planning and Analysis

3.1.1 Version management

Before even beginning to build the program our group knew that there would be a large
amount of functionality in this tool, which invariably meant many different iterations of certain
aspects as well as many bugs. Version control was going to be an essential part of the project,
and so while building the group set up a Git repository using Dropbox to store the files. This
way we could always revert back to a previous working version, were we to destroy something
while changing an aspect of the program. Both are free software easily located and installed on
the Internet.

3.1.2 Feasibility

Initial feasibility analysis determined that the project along with all accompanying aspects of
the project, such as documentation, would be feasible to complete in the term. The very first
day, the group sat down with the sponsor to define the exact expectations and deliverables of
the project. As the project progressed, brief daily meetings were had with the sponsor to
ensure the projects goals remained reasonable. Additionally, weekly conference calls with
project advisors helped ensure the project stayed on course and expectations were being
managed appropriately.

Though the project was not budgeted with extra time, due to the pace at which functionalities
of the Quick Rec Tool were completed, multiple times entire parts of the project were
completely overhauled to account for a new format of input for a user, or a simpler and more
logical method of running the program or outputting results due to new information coming to
light.

It was immediately recognized that the project would not expand into standardizing the data
entry methods into the databases, and simply remain building the reconciliation tool.
Standardizing data entry was still a work in progress for the firm. It is also a logical area of
expansion for the project given more time.

3.1.3 Discussions With Potential Users

During the planning stage and throughout the project, the group had frequent discussions with
potential users in order to ensure that the product was being built to their liking. Meetings with
users were held weekly at a minimum and meetings with the project sponsor were held roughly
daily. Our group determined that weekly meetings with potential users was the best way to
mediate the conflict of interests between the sponsor, who cared more about functionality of
the program, and the end users, who cared more about intuitive interaction with the program.
Though the meetings were generally focused on making features more user-friendly and often

12

resulted in changes to the output file or the input file, they were also responsible for some of
the key functionality that was built into the tool such as the translation table functionality.

A common theme throughout these meetings was focusing on creating quick and efficient recs.
The idea of quick recs was that users didn’t want to have to wait days of even hours for
reconciliations. The two primary uses of this system according to potential end users was to be
able to start many recs at the end of a day, let them work for a while, and then have all of the
outputted reports emailed to employees before the next morning and on demand comfort
checks of data between databases. This meant set-up couldn’t be a hassle or take an inordinate
amount of time. The idea of efficient recs was that the tool would be able to create
reconciliations focused only around certain elements of the table that the user deemed
important. Essentially the users didn’t want to sift through excess data when doing the recs,
and this would also help them be quicker.

The discussions with the users throughout the project put a strong emphasis on balancing
usability with functionality, as well as having the recs be customizable.

3.2 Design

3.2.1 Balancing Usability With Functionality.

Usability was a top priority throughout the entire process of designing and building features of
the application. The user interface was one of the weaknesses of the current reconciliation tool
mostly caused by its extensive functionality. The Quick Rec Tool was designed to be simpler and
extremely user friendly, yet still get the job done. Think of the current tool as driving a stick
shift, whereas the Quick Rec Tool was designed to be driving an automatic. Since the group also
knew that the end user of the program hadn’t been determined, the Quick Rec Tool had to be
designed so that someone of any background could easily learn, run, and use it.

The Quick Rec Tool had a fairly large amount of functionality and flexibility. The core
functionality of the programs was to run reconciliations on multiple columns in either
databases or Excel files. However, the Quick Rec Tool could also run aggregations over multiple
columns and output exceptions within a specified tolerance for each attribute, as well as have
translations input by the user so it would ignore specified mismatches in data. The application
then would output all exceptions to an Excel file in a predetermined format and then email this
file to employees who would go fix the mismatches. Choosing the functionality in any
reconciliation is completely up to the user and what they input. Aggregations, translations, and
emails was completely optional.

Having all this functionality and flexibility for the user raised two main concerns with usability:
having an intuitive input and having a readable output.

13

Having an intuitive configuration file meant making the file a format that was familiar to all
users, had obvious structure, and could be handled easily by the program. After testing multiple
file types, the group decided that the optimal input format for both the general configuration
and translation table was an Excel file. An Excel file provides natural structure due to its grid
format, was familiar to everyone in the firm, and there already existed Python packages
specially designed to handle Excel input. Excel files also allowed all of the configuration and
translation input to be in one workbook, simply on different sheets.

The top concern regarding the output was readability. The file format was defined at the start
of the project to be a CSV file so it could be opened in Excel, eventually simply being a straight
Excel (xlsx) file. After consulting with employees in the firm, and using the custom outputs from
the current reconciliation tool as a template, we crafted the exception output to be broken into
two sheets. The first sheet in the file shows mismatches between input in the keys, and the
second sheet shows mismatches in the attributes being checked on. Below is an example of
exceptions in the output file.

Figure 7: Example Output File

14

The naming of the mismatches was also decided upon by surveying potential end users. The
name of the mismatch was meant to provide enough clarity such that the reader could easily
see the error, but also is broad enough to describe a full bin of problems. The types of
mismatches can be seen in the table below.

Table 1: Mismatch Types

Types Of Mismatch Meaning
Case Mismatch There is a mismatch in the case somewhere

between the two names. (Ex: bob  Bob)
Style Mismatch There is a difference in either non-

alphanumeric formatting or there is the word
“Project” before one name and not the other.
(Ex: Project bob  bob

Partial Match After a style mismatch has been checked, if
part of either name is within the other then it
is a partial mismatch. (Ex: bob  bobby)

Numeric Mismatch There is a difference outside the specified
tolerance between two numbers, regardless of
whether aggregation occurs or not. (4.2  4
with tolerance of .1)

In Source Not Target (No Match) Applies only to keys: The value is in the source
table but not in the target table. (Ex: Bob 
___)

In Target Not Source (No Match) Applies only to keys: The value is in the target
table but not in the source table. (Ex ___ 
Bob)

Finally, to ensure usability of the finished program, all portions that have interactions with the
user (the input file consisting of both the configuration and translation tables as well as the
output) have detailed written and video documentation. The written documentation comes in
the form of Word file guides as well as Excel tutorial files. This means that even if the user
doesn’t find the interface intuitive, there are many resources a user could go to in order to
understand the software.

3.2.2 Setting Direction

Though the size of the team had been split in half, the original project description had been
thrown out, and the new one involved building an entire Python program from scratch, the
group had little issues setting direction.

The first step was a meeting with the sponsor to clarify the vision of the project. This happened
on the very first day within hours of arriving in the office. During this meeting, we discussed the
immediate and long-term goals of the project, as well as resources our group would need, and

15

other project essential matters. After leaving this meeting the group felt we understood the
macro concepts of the project and the immediate path forwards well enough to draw out a
workflow diagram for the application as well as identify the major components that would be
included. The workflow diagram of the program is reproduced below.

Figure 8: Finalized Workflow Diagram

Once we had this diagram in place, the immediate priority was to get core functionality of the
main rec tool portion completed. This meant completing the configuration handler, the
database handler, and the output methods.

As the project progressed, the group set direction by maintaining a to-do list, and updating it
after each meeting with the sponsor or other employees. These meetings with the sponsor
ranged from approximately three times a week during the early build, to approximately daily
during the later portion of the build. Meetings with other employees were held approximately
once or twice a week. Frequent meetings and a to do list ensured that the project always
headed in the direction the sponsor and employees wished, and that if any issues arose that
may change that direction, the sponsor knew of them immediately so the project wouldn’t
flounder for days on end.

16

The group also maintained direction by scheduling weekly conference calls with its group of
advisors. These meetings helped address issues the team wasn’t yet aware of, and suggest
solutions to problems the team may have been having at the time. The status reports from
each meeting can be seen in Appendix B.

3.2.3 Front End

The Quick Rec Tool’s front end was designed to be extremely user friendly. The entire Quick Rec
Tool is run from the command line, which means that the user interface is only the terminal
and the input file.

To simplify the front end even more, the user doesn’t even have to open the terminal and type
anything in. There are batch files that will run the program by simply double clicking the file.

The other part of the front end is the input file, an Excel file that was designed to be as user
friendly as possible. The group went through many iterations and consultations with users to
arrive at the optimal format. The input file is further discussed in chapter four.

3.2.4 Human or Automated Mismatch Correction

Early during the build of the Quick Rec Tool there was uncertainty as to whether the program
was supposed go into the source of the data, the database or Excel file, and actually change the
table entries to correct mismatches or output a list of exceptions with error type for employees
to manually change.

The program was initially designed and built with automated error correction as an optional
functionality, under the assumption that if it weren’t wanted it would be easier to remove than
to build later if it were to become wanted. After multiple meetings with sponsors and potential
users to further define the Quick Rec Tool's purpose, it was decided that automated error
correction would not be a feature of the tool for three key reasons: the security of having a
human change data entries was desired, often human correction was going to be required
anyways due to illogical data in the sources, and it required a lot of extra permissions.

The idea of the program going into an input data source and changing entries has a lot of
potential repercussions that neither side, the project team nor the company, thought were
worth the potential time saved by implementing an auto-fix feature. The first repercussion was
that if there was ever an error with how the program read a mismatch, or how the program
was run that affected what it thought was “correct” and the Quick Rec Tool was allowed to go
into source data and change values, it could potentially destroy a vast amount of correct data. If
the tool even had the potential to destroy correct data, the risk versus reward of using it often
for quick checks didn’t make sense. Not to mention, that if the end user wanted to see what
data was changed, the end user error reporting functionality had to be in the program
regardless. Having no automated fix allowed for the security of an employee seeing the error
report and then interpreting changes that needed to be made, as opposed to seeing changes

17

that were made and having to fix bad corrections if they existed. The latter destroys trust in the
program.

The second major reason the automated error reporting was unanimously decided against was
due to the fact that there were values in the tables that didn’t match up logically, and so a
computer wouldn’t be able to correct them. A mock example below shows data similar to what
existed.

Table 2: Example of Illogical Data Mismatches

Source Data Target Data
Example 1 Project Example 1231231453432-asbd
Example 2 Project Example 1233453242643-ajfnfj
Example 3 Project Example 1244536450393-ajnfb
None Project Example 1245432221256-ajneh

As you can see above, there is clearly some sort of relationship between the values in the two
databases, though there are three values in the source with Example in their name and four in
the target. Yet, there is no clear mapping that would logically make sense, such as Example 1
mapping to Example A or something along those lines. Thus a computer wouldn’t be able to
correct these mismatches or even pair them up without some sort of extra information. Data
mismatches like this appeared in many tests the group ran, so having a human go in and input
the corrections would often be unavoidable anyways. This also influenced simply making all the
corrections done by human interaction with the data source.

Finally in order to have the Quick Rec Tool go into a data source and edit, for databases the
users would have to have permissions to write data entries into many databases. This simply
wasn’t a realistic expectation for the user to have that many permissions unless the person
running the program was in a position like a database administrator.

In the end, it simply made more sense to have the Quick Rec Tool do the reporting of data
errors and then have a human go in and fix them.

3.3 Development

3.3.1 Creating The Loan Pool Name Reconciliation Tool

The first step of the development process was creating the loan pool name reconciliation tool.
This was the highest-level functionality of the tool; essentially the tool needed to be able check
one name against another and determine if they matched. If they didn’t match, the Quick Rec
Tool also needed to provide some sort of helpful information to the user as to why they weren’t
matching, like a mismatch in letter case for example.

18

Since we had no database access, this core functionality was developed using Excel workbooks
as input. The program was being built to reference cells, then check the values between the
cells. This very first step eventually became influential in determining the input types as well.

In order to make the program work with whatever input we needed, and to better organize the
code, a decision was made early on to modularize the Quick Rec Tool. From the instant of first
building, it was determined that the Quick Rec Tool would have a main function responsible for
passing data from handler to handler, but the calculations and inputting and outputting would
all be done in different handlers. Notice the modular nature in the original design of the
program in the figure below.

Figure 9: Modular Nature of the Quick Rec Tool

The creation of the loan pool name reconciliation functionality was actually the inception of the
Input Handler, Configuration Handler, Exception Handler and Output Handler.

The Input Handler was built to read an Excel file and import data from Excel files then pass that
data along. It was mostly completed during this stage, since it is designed to read any generic
Excel file based on the specifications of the configuration file.

19

The Configuration Handler was written during the original build, though was by no means
complete. The very first configuration type was a simple text file, so the Configuration Handler
was built to be able to import and pass along data from a plain text file. Since there wasn’t
much functionality, the Configuration Handler didn’t have to take in much data, and so it was
very simplistic as well at this stage.

The Exception Handler was designed to parse through all the data and then store all the
exceptions in a list of some form, which was then to be passed to the Output Handler. During
this original build it was decided that the exception handler would store its data in a list of
objects holding dictionaries with the exception data.

The Output Handler was originally designed to simply be passed data and then output the data
to the Excel file. Though we believed the major functionality of the Output Handler was mostly
done during the pool name reconciliation build as well, it turned out later that this was not the
case because the layout of the output file changed and the file type of the output changed from
CSV to Excel.

Overall, the original build of the highest-level core functionality took roughly a week. After
which, the Quick Rec Tool was tested against mock data, and then against data pulled from
databases and transposed into Excel files. It required several small bug fixes, though no major
overhauls in logic of any of the methods or the main function immediately after.

3.3.2 Integrating a Configuration File

Along with integrating a configuration file, the program required building a Configuration
Handler. This was the portion of the Quick Rec Tool that was responsible for reading through
the configuration file and passing the configuration data to the rest of the program so that the
Quick Rec Tool could pull data and find exceptions. As the configuration file format changed
though, so did the Configuration Handler.

Originally the configuration file format was a plain text document. The justification for this was
that every user has familiarity with a text file. The Configuration Handler was originally created
to be able to parse data from a plain text file, by recognizing certain strings in the configuration
text file. The data from the Configuration Handler would then be passed to the other handlers
so that they could do their specific functions. The nature of the Configuration Handler in the
way that the program needed to be taken in by the program forced the text file to have a
format. However the file lacked any evident structure, which resulted in the necessity of
memorizing the format adding an additional burden on the user. As well, since a lot of the data
the sponsor wanted to do reconciliations on was already in Excel files, putting information in
the proper format into a text file for longer reconciliations would be very laborious.

The next iteration of the file was an .ini file. The Configuration Handler changed to support this,
but since an .ini file is very similar to a text file except that it has a defined structure, this didn’t
involve many major changes to the Configuration Handler. Switching to an .ini file format lost

20

some familiarity with the user, but solved the issue of the configuration file having no evident
structure, since this file format comes with headings and then defines property names and
property values.

Figure 10: .ini File Format

This however did not solve the issue that reconciliations of multiple columns were difficult to
input due to the fact that they needed to be put in pairwise ordered comma delineated lists.
Around this time, the translation table was also being implemented into the program and an
additional issue arose because the configuration file and translation table were in two different
files. For convenience and intuitive user interface it was essential that everything be in one
place.

The final iteration for the configuration file format was a change to an Excel file format. This
required a major overhaul of the entire Configuration Handler. The Configuration Handler
changed from recognizing strings in lines of text documents, to recognizing values in specific
cells. It required the use of a whole new module, openpyxl, so that it would even be able to
read the Excel files. The Configuration Handler now pulled values from cells based on keys in
the first column, among other things. The input process became more consistent with this
change.

As well, the Excel format had the same familiarity as a generic text file with the users. It also
had a built in format with its grids. This format made the most sense as an input file since the
output went to an Excel file as well. Additionally, the firm has many existing spreadsheets it
wanted to run reconciliations on and copying cell values between Excel files is easier. We were
also able to add comments that would ensure the user understood what to insert into the
fields, further instilling intuitive use into the program. The translation table was also migrated
to other tabs within the configuration file, since Excel has the functionality to have multiple
worksheets within the same workbook.

21

Figure 11: 1st Excel File Iteration

On the second iteration of the Excel file the group took care of the issue of comma delineated
lists causing the user to have to put a lot of labor into running reconciliations on multiple
columns in a table. Moving the comments to the left, and allowing each table column name to
be entered in a separate cell solved the problem. This also meant that users could just cut and
paste selections of headers into the designated column name cells if they wanted to, speeding
up the process of entering more detailed reconciliations significantly.

The Configuration Handler did not need any significant changes for the remainder of the
iterations since all that was changed was where the file looked for data within an Excel file, not
the file format it had to deal with.

Color-coding and helpful additional text was also instilled in this second iteration of the file. As
well, the one large table was separated into two smaller ones at the sponsor’s request. The
purple table below deals with source info, such as whether it is a database or Excel or what the
table name is. The yellow table deals with individual features of the table such as what the key
column names are. The additional text helps guide the user where to enter data by appearing
or disappearing next to the purple table.

22

Figure 12: 2nd Excel File Iteration

The third and final iteration of the Excel configuration file incorporated data validation, and
compatibility with the preprocessor. The preprocessor was a functionality added later in the
project which basically took database input and converted it to an Excel file to be read by the
Quick Rec Tool. It is described in detail later in the report. The configuration file had some
important fields changed in order to be compatible with this. The third iteration of the Excel file
also added data validation drop down lists to display the user their options in entering certain
fields like “Server” or “on” and “off” switches as well as splitting the translation table up into
two separate tabs.

23

Figure 13: 3rd Excel File Iteration

3.3.3 Choosing Input Types

At the beginning of the project, while the group and the sponsor were still trying to feel out the
purpose of the Quick Rec Tool, the input type was solely Excel files. The immediate and obvious
choice for how to use the program was that the firm had many spreadsheets just hanging
around and they wanted to know which were up to date, and what was mismatching between
them. For the original build of the main functionality, the program was only compatible with
Excel files.

The group created the Input Handler module in order to encapsulate reading Excel files. The
Input Handler’s functionality is so basic that it virtually hasn't changed since its inception.

However, then the project switched to more of a user focus. The end user was unknown, and
the amount of knowledge and their potential uses were also unknown. This gave the Quick Rec
Tool a necessity for broad functionality. The program was changed to add database input types.
In order to query a database, the user wouldn’t have a file they input like the Excel input type,
but instead would fill in specific fields, then the tool would build a SQL query out of those fields.

After this was completed, the sponsor took time to refine the focus of the tool and the vision of
whom the end user would be. The end user was likely going to be an employee who knew how
to construct SQL statements, needed to run rather complex reconciliations and the purpose of
the tool still needed to remain as broad as possible. Therefore the input type was readjusted a
final time. The Quick Rec Tool could still handle both Excel and database inputs however for

24

database inputs, the user now only had to input a SQL file which had the query they wanted
inside of it. This allowed more complex recs and simplified the user interface greatly.

3.3.4 Creating The Output File

The output file needed to be in a format that could be easily handled and manipulated by an
end user. The original output file format was designed to be a CSV so that it could be opened in
Excel, a program we were sure all users were familiar with.

Like many other features, the output file took multiple iterations. Originally, an Output Handler
was created with the job of taking the exceptions and outputting them into the CSV file. The
two test tables we used can be seen below. The first figure is the very first output table ever
created. It had non-descriptive headers, and was very simplistic.

Figure 14: 1st Test Output File

25

Figure 15: Possible Attribute Output Formats

Figure 13 shows the group's attempts to determine the best format for displaying attribute
exceptions, taking creative input from the sponsor and tweaking it based on the functionality
that was already in place.

The original, truly functioning, output file was named by the date and time it was created, to
distinguish it from others the user may make. A screen shot of the original output file and
format can be seen in the figure below. It contained data separated into two tables, one for key
exceptions and the other for attribute exceptions. It also had descriptive headers.

26

Figure 16: 1st Iteration of the Full Output

The next iteration of the output file required an overhaul of the original Output Handler. The
sponsor wanted two additional tabs to be added to the output, one containing a table of all the
values associated with keys that had matches found in the source, and the other for all values
associated with keys that had matches in the target. This meant rewriting the Output Handler
because a CSV can’t have tabs added to it, although it is easily opened in Excel. The output file
type would now have to be an Excel file. The Output Handler was changed to handle outputting
to Excel and formatting with three tabs, the first with exceptions and the other two listing data
from the source and target input streams. To help organize the output, the tabs were named
Exceptions, Source, and Target. By sponsor request, the group changed the output file to be
named for the configuration file used as opposed to the date it was created. The name was now
always EXCEPTIONS_configfilenamehere. The second iteration of the output file can be seen in
the figures below, highlighting the Exceptions tab and the Source tab.

27

Figure 17: 2nd Iteration Output File

Figure 18: 2nd Output File Iteration Source Tab

28

The final iteration of the output file didn’t involve any major changes to the Output Handler,
but did reorganize the file. Instead of having three tabs where the data was displayed and two
tables on the first tab, the two tables were separated and one was put on a new tab. The new
iteration had the first tab dedicated to key exceptions, the second tab dedicated to attribute
exceptions, the third to source matches and the fourth to target matches. Additionally, a
percent difference (“diff”) was added to the attributes table so the user could see by what
percentage numeric mismatches were incorrect. An example showing the Key Exceptions and
Attribute Exceptions tabs can be seen in the figures below.

Figure 19: 3rd Output File Iteration Key Exceptions

29

Figure 20: 3rd Iteration Output File Attribute Exceptions

3.3.5 Email Reporting

The Email Handler gives the Quick Rec Tool the functionality to automatically generate an
email, attach the exceptions file, and send it to end users. This handler uses a few different
Python packages such as smtplib and MIME to generate the email and attach the exception file.
To do this the Email Handler gets passed information from the Configuration Handler about the
email body and addresses. Once the output file has been created, it is attached in the email,
and the email information has been received from the configuration file, the Email Handler
sends out the finished exception report to the user.

The default subject line that is given to any email is, “Rec Tool: Found ____ Exceptions!” The
blank is the number of exceptions found. The default body statement is, “This is an automated
message from the rec tool. Do not respond.” The body text can be changed by editing the text
file named email_body.txt found in the same directory as the Quick Rec Tool.

3.3.6 Integrating a Translation Table

Figure 21: Translating Values

30

The Translation Handler was part of the original core functionality of the Quick Rec Tool. In the
group's first meeting with a potential user a few days into the build, the user's first suggestion
was to include a translation table to associate keys that didn't match and avoid outputting
known breaks that weren’t considered incorrect.

The Translation Handler functionality took a few iterations to complete. The first iteration was
building the original core functionality, where the handler would take the values the program
received from the inputs, convert any translations, and then pass them to the rest of the
program for exception processing. This was designed to work with an .ini file on the first
iteration.

The second iteration of the Translation Handler was when the translation table format changed
to an Excel file. The logic of the code remained the same, however similar to the Configuration
Handler changes when the configuration file switched to Excel, the Translation Handler had to
be changed to be able to receive data in a new format. Further changes also had to be made
because the translation table was then moved into the same file as the configuration table.

The last major iteration of adding a translation table emerged during original testing of the
feature. It was after it was moved into the correct location, where it would remain, albeit split
into two tabs in the configuration file (one for source, one for target). The Translation Handler
had a major bug when checking attributes. The handler would change any key names that were
being translated, but then when it went to go look up attributes for the translated values, they
didn’t exist in the original file they had come from, because they had been translated. This
meant that the program couldn’t find any attributes for the translated value, and thus couldn’t
properly reconcile them. In order to fix this, the group created an “untranslate” feature which
was held within the Exception Handler, that would switch translated values back specifically for
the purpose of looking up their attributes. This sounds extremely inefficient, but we needed to
translate the key values back before retrieving and checking the attributes, because otherwise
the program wouldn’t be able to create the key pairing to know which attributes to check
against each other.

After this the Translation Handler had some small bug fixes, but most of the work was done to
decrease the run time of translating all the value. The run time was decreased significantly
towards the end of the project, so that translating many (think thousands) of values didn’t
noticeably change the overall run time.

3.3.7 Reconciling On Multiple Attributes

After the original build of the core functionality, the obvious next step was to begin reconciling
attributes. This meant adding to the Exception Handler, which already had the functionality to
check for matches in strings from its original build purpose of checking keys. Notice an example
table below that has the key highlighted in yellow and the attributes highlighted in orange. This
may be something like what users wanted to check.

31

Table 3: Example Source Attribute Table

Source
loan_id loan_name pool_name pool_owner pool_seller loan_value

1 Mercury 1 mercury bob Richard 20
2 Mercury 2 mercury bob Richard 30
3 Mercury 3 mercury bob Dick 45
4 Mercury 4 mercury Mary glenn 250
5 Mercury 5 mercury Mary Glenn 250
6 Preakness 1 Preakness John Jake 100
7 Preakness 2 Preakness John Jacob 100
8 Preakness 3 Preakness John Jacob 100
9 preakness 4 preakness Dave C. Marcus 40

10 preakness 5 preakness Dave C. Mark 19
11 kentucky 1 KENTUCKY Ryan Carol 125
12 kentucky 2 KENTUCKY Ryan Carol 126
13 beatles 1 beatles bob Richard 150
14 beatles 2 beatles bob Dick 150
15 beatles 3 beatles bob richard 151.1
16 Belmont 1 BELMONT Frank Lenny 78.9
17 Belmont 2 BEMLONT Jim Larry 30

Table 4: Example Target Attribute Table

Target
loan_id name pool owner seller value

1 Mercury 1 mercury bob Richard 20
2 Mercury-2 Mercury bob Richard 25
3 mercury 3 mercury bob Dick 45
4 Mercury 4 mercury Mary glenn 249
5 Mercury 5 mercury Mary Glenn 250
6 Preakness1 Preakness John Jake 100
7 Preakness 2 Preakness John Jacob 99.9
8 PREAKNESS 3 PREAKNESS John Jacob 100
9 preakness 4 preakness Dave C. Marcus 40

10 preakness 5 preakness Dave C. Mark 20
11 kentucky KENTUCKY Ryan Carol 125
12 kentucky 2 KENTUCKY Ryan Carol 126
13 beatles 1 ABBEY ROAD bob Richard 150
14 beatles 2 ABBEY ROAD bob Dick 150
15 beatles 3 ABBEY ROAD bob richard 151
16 Belmont 1 BELMONT Frank Lenny 80
17 Bemlont 2 BEMLONT Jim Larry 30

Checking multiple attributes meant that the Exception Handler was given the functionality to be
able to take key pairings it created from the original key check, and then use those pairings to
check each pair of attributes that were under the keys.

32

As well, the Configuration Handler and configuration file both needed to be changed to bring
the attributes' data into the program. The meant adding the necessary fields to the
configuration file and adding the functionality to read and recognize the fields as attributes into
the Configuration Handler.

3.3.8 Reconciling Numeric Values

After adding the functionality to reconcile multiple attributes, the next step was adding the
ability to reconcile numeric values. Before this feature was added the Quick Rec Tool could only
reconcile strings.

This step involved adding additional functionality to the Exception Handler. The handler was
given the ability to check for exceptions between both string and numeric values. For the
Exception Handler to check numeric values, it was roughly the same process as matching
strings; it simply looked for the exact value in the other data source.

However, the group recognized that having to have an absolutely perfect match between
numeric values isn’t always realistic with rounding, and larger numbers. Thus, the group added
tolerance functionality for numeric attributes.

Upon original development, the Exception Handler was programmed to be able to have
numeric inputs in the configuration file that would correspond to an absolute tolerance of by
how much two numbers could vary from each other and still be considered a match. Notice the
arrow pointing to the tolerance in the figure of the configuration file below.

Figure 22: Absolute Tolerance Example

An absolute tolerance, though, can be equally limiting if the user is dealing with a wide range of
values. Say for example the user had a column of loan pool values and one pool had a value of a
million dollars while the other had a value of a hundred dollars. An absolute tolerance wouldn’t
do nearly as much for the million-dollar pool as the hundred-dollar pool. Thus an optional
percentage tolerance was added. The percentage tolerance takes a percent of the source value,
sets it as the tolerance, and then checks to see if the target value is within that tolerance.
Notice the arrow pointing to the percentage tolerance below.

33

Figure 23: Percent Tolerance Example

A bug the team encountered upon testing the numeric attribute reconciliation functionality
after creating it was that sometimes when the tolerance was set to 0, two numbers that
appeared exact matches would be output as mismatches. The reason was that in rounding the
numbers would be off by a minuscule decimal such as .0000001, and so technically their
difference was not zero. To avoid this we instituted that a tolerance of 0 is actually a tolerance
of .0001 and rounded off long decimals, this way errors that are too small to take any effect like
minute rounding errors wouldn’t be output.

3.3.9 Aggregation

Once the functionality to reconcile numeric attributes was added, the next step was adding
aggregation functionality to the Quick Rec Tool. The new capability was programmed into the
Input Handler since it was a process of manipulating the input as opposed to being somewhere
like the Exception Handler, since aggregation alone had nothing to do with exceptions. There
were many instances where Angelo, Gordon & Co. would need to aggregate numeric values,
such as any instance when they needed to aggregate loan values up to a pool value that many
of the loans belonged to.

There would also be instances where the firm would want to aggregate strings. The only
aggregation that can be performed on strings is counting. The tables below show an example
where the strings of the loan names in the table Target: Individual Loans need to be counted
with respect to what pool they are in and then reconciled against the Number of Loans in the
table Source: Pools.

Table 5: Aggregation Example 1

Source: Pools
Pool Name Number of Loans Pool Location
Pool 1 2 On Shore
Pool 2 1 Off Shore

Table 6: Aggregation Example 2

Target: Individual Loans

34

Loan Name Pool Name Loan Location
Loan 1 Pool 1 On Shore
Loan 2 Pool 1 Off Shore
Loan 3 Pool 2 Off Shore
Loan 4 Pool 2 Off Shore

In the source table above Pool 1 correctly has two loans listed under Number of Loans, however
Pool 2 has only one listed, which is incorrect. The program knows which loans belong to which
pool by using a distinguishing key, such as Pool Name in the target table in this example.

Aggregation can also be combined with simple string checking functionality. The columns Pool
Location and Loan Location in the source and target table respectively illustrate this purpose.
Though the function counts the number of loans and reconciles that attribute using
aggregation, in the same reconciliation, the Quick Rec Tool could also check if the loan locations
were properly matching the pool locations. The program would notify the user running a
reconciliation of the tables above that Loan 2 in the target table has an incorrect loan location.

3.3.10 User Reporting

An ongoing process throughout development was ensuring the Quick Rec Tool had clear and
concise error reporting. This meant both that the program would give the user an appropriate
amount of updates regarding the internal workings of the program and that it would fail
gracefully when it encountered input errors.

The user needs to be aware of what the program is doing in order to judge how long the
program will run and to be sure it is actually running. Just hitting run and watching a blank
screen would leave a lot of uncertainty as to what is going on behind the scenes and make the
Quick Rec Tool seem like a black box. As well, if something is input incorrectly, there is no
functionality we could code in to try to guess what the user would mean, like auto-correct, so
instead our group decided to provide custom alerts that give the user useful information as to
what they did wrong.

The user reporting is housed mostly in the main function of the Quick Rec Tool, though appears
in other places like the Input Handler, where potentially erroneous information would cause
breaks that the main function is unaware of.

The first iteration of user reporting was only console error reporting. The program used the
built in reporting that Python automatically comes with. The terminal displayed a generic error
report when something went wrong automatically, and pointed to specific locations in the code
where the error occurred. An example can be seen in the figure below.

35

Figure 24: 1st Iteration of Error Reporting

However, our group realized that the person running this tool will not understand these cryptic
error messages, and leaving this sort of dirty dump is bad practice. It also breaks the fourth wall
of our program because it forces the user to go into code. Thus the first iteration did not truly
accomplish its goal of making the program more transparent to users and didn’t tell the user
anything about the internal process as it happened.

The second iteration added print statements and a log to the user reporting. The print
statements printed out a report of the major processes in real time to the terminal, such as
when it was translating values. The log file was of the file type .log and would have a
description of the error that had occurred. This way the user knew what was happening as the
program ran and, instead of navigating a code dump to find an error, the person was told in
plain English what had gone wrong. Another addition to the program was that the user now
needed to press enter in order to exit the program. This way the print statements wouldn’t just
disappear the second the program stopped due to an error. An example of the second iteration
of user reporting can be seen in the two figures below.

36

Figure 25: 2nd Iteration of Error Reporting

Figure 26: 2nd Iteration Error Log

The last iteration of user reporting involved refining the existing structure that was in place. The
log was moved to a .txt file since it was simply a more familiar file type. The print statements
were also copied into the log, so the user could see exactly where the program stopped when
looking at the error. Finally, the print statements were made more precise. Instead of being
only over major functionality like aggregation or translation, the print statements were made to

37

be more granular, such as notifying the user on every hundred pairs of matched keys. Below is
an example of the terminal when the program executes without a problem, the terminal when
it encounters an error, and the log once an error is encountered for the last iteration of user
reporting.

Figure 27: User Reporting Last Iteration Complete Run

38

Figure 28: User Reporting Last Iteration Error

Figure 29: User Reporting Last Iteration Log

39

3.3.11 Adding SQL Preprocessor

The SQL preprocessor was added after numerous previous changes to how databases should be
handled by the Quick Rec Tool. Originally, the prevailing idea regarding the program's handling
of databases, was that the tool would be designed so the user would never have to input SQL in
order to access a database table. This meant that the configuration file essentially made the
user build fake SQL statement by filling in many different cells. There were a few different
iterations on how this was done, creating different layouts of the configuration file with
different boxes to be filled in by the user. Some of them were rather confusing. One notable
iteration was when there was a cell to be filled in called, “Table,” but if someone were using an
Excel file as input there would be no table name associated with the file. Another notable
example was that we wanted more functionality added to the potential database queries, so
we added a cell where the user could optionally type in a SQL “where” clause, and then the
program would use that in its SQL query. In this case the user needed to know SQL anyways, so
it defeated the purpose of having the user dodge the SQL statement with all the other fields
being filled in.

As the project progressed this method of having the user dodge SQL began to not only seem
clunky, but also ineffective at accomplishing the queries the sponsor wanted. Since a lot of the
data comes to the firm from third parties, in order to query a specific set of data a user may
want, it often results in many join statements and a where clause. Using the fill-in-the-blank
style we had couldn’t accomplish such complex queries. As well, the sponsor had the ability to
save SQL queries in SQL files and so once a query was typed out correctly, as long as the user
had some way of knowing which file was which, they would never need to type out that SQL
query again. Additionally, it became clear that the target user base would likely know SQL.

As a result, the SQL Preprocessor was created. This was designed to be an entirely separate
function that could act on its own, but could also be utilized by the Quick Rec Tool. The
Preprocessor takes a SQL file, essentially just a file with a SQL statement in it, as input and then
queries the necessary server and database, parses through the table, then outputs the data to
an Excel file in a way that can be easily taken in by the Quick Rec Tool. Though the Preprocessor
can be run on its own, and used for separate actions other than working with the Quick Rec
Tool, its primary purpose is to act as the intermediary between the Quick Rec Tool and
Databases. Since the Preprocessor was added, the Quick Rec Tool only takes Excel input into
the program itself, because any database input is preprocessed automatically.

3.3.12 Reducing Runtime

Towards the end of the project, runtime became a major concern. All the major functionality
had been essentially completed, but it didn’t matter how perfectly the program caught
exceptions or how easy it was to use if the Quick Rec Tool didn’t run in a reasonable amount of
time.

40

Upon initial completion of most of the functionality, running a larger reconciliation, on two
Excel files with somewhere around 10,000 rows each, would take upwards of forty-five minutes
to an hour. If translations were added in then the program would take even longer. This wasn’t
a very feasible time for the purpose of the program, to deliver a quick customizable comfort
check

Among other minor changes, some data structures were altered and many of the calculations
were front-loaded allowing for a large reduction in time spent checking for exceptions and
doing translations. After all of these optimizations, the Quick Rec Tool could run a large
reconciliation on two Excel files with roughly 10,000 rows a piece in around five minutes, a
reasonable amount of time for comfort checks.

3.3.13 Refactoring and Commenting the Code

A concerted effort was put into making the code understandable. The code was refactored
after almost every major completion in functionality. As well, once all the functionality was
complete, the group took some time to focus on making the code readable and logically
ordered as well as sorted into the different modules of the overall program for ease of access to
any future developers.

Comments can be found regularly throughout all aspects of the Quick Rec Tool as well. They
mention the major functionality of every method as well as describe important parts of the
code that may not be completely obvious to the reader.

41

4 CHAPTER 4: IMPLEMENTATION

4.1 Testing

4.1.1 The Testing Process

Testing the software was not a final step, saved for once the project was believed to be
complete, but instead was done every time a new core functionality was completed. For
example, the Quick Rec Tool was thoroughly tested when it originally was only able to check
pool names, then again when the translation table was implemented and every time that
functionality was changed, then when aggregation was added, and so on. This process of
constant testing may have been time-intensive, but ensured we were building the program
upon a solid foundation, as opposed to one riddled with bugs that would cause trouble later.

The testing process typically followed a three-step method. The first step was that our project
team would test the functionality in question against mock data that would simulate a scenario
requiring the new functionality. Once all of the bugs were fixed from that, we would move on
to step two and test the functionality on Excel files populated with data that we were given by
our sponsor or databases we had read only access too. Finally, once the functionality checked
out, we would notify our sponsor and he would do some testing of his own, and then give us
feedback on his findings. Even when he found no additional errors, it also gave him a chance to
give immediate feedback on the usability of the program with the new functionality, and offer
suggestions to make the added complexity of the new feature more user-friendly. This process
probably saved time in the end, because bug fixes were generally small as opposed to major
overhauls of the program.

4.1.2 Mock Data Testing

The first step in testing every major change to the Quick Rec tool was to test the program
against Excel spreadsheets and local, custom databases holding mock data. The mock data was
easily customized to test whichever feature we wanted, and generally held less data. This step
can be likened to having the program take a standardized test, because it would give us general
knowledge of the big issues, but not knowledge of most of the small abstract ones or any
corner cases that were unforeseen when designing the test case. To test, we would deliberately
break parts of the data in the populated spreadsheets or tables, and make sure that the
program caught all instances of the break. If it didn’t, then we knew something was wrong with
the function and it had to be debugged.

A frequent bug we found while using this methodology of testing was that the function we had
added would only catch the first instance of the exceptions occurring. Had we not known
exactly what we broke, then we may have been fooled because we see the function correctly
output an exception, however, it would only output the first instance, which wasn’t helpful.

42

That would create a false sense of trust in the user and more importantly, leave incorrect data
behind.

This form of testing was also nice because the group had finished the first major step in
functionality, having the program be able to check loan pool names against each other, before
we had access to databases. Having this step in the beginning allowed us to completely nullify
what would have been a delay.

Testing with mock data was very effective in correcting larger logical errors in the program,
since we were specifically able to design and run data through the program that would test for
them. To test for all possible anomalies we moved to real data testing in phase two.

4.1.3 Real Data Testing

The second step in the testing process was using real data as input sources to see how the
Quick Rec Tool handled large amounts of actual data. Testing using some actual use cases
ensured that the program would be exposed to all possible errors that could arise, even the
ones we couldn’t think of. This step in testing can be likened to holding a microscope to the
program, or putting it through final exams week. After this, we would know all of the little
abstract anomalies in data that revealed bugs.

This testing often made the team add more case-by-case input checking. An example of a
functionality that was further refined using this method was the programs ability to
differentiate a number and a string. For example, when the key value is a number (such as a
numeric ID) the program must convert it to a string in order to properly compare it. Even
though humans are able to ignore this fact when comparing the values, at the first iteration
something like this confused the program because it was expecting a string value for the keys
and it found a number. However, after noticing errors like this with the program during testing
we refined the code to make type-checking more robust. For example, the program now
assumes that keys will always be treated as strings and convert appropriately. This way it
wouldn’t become confused over something like this and mistake it for a numeric value.

The real data testing instilled confidence in the team that any form of data would not trip up
that the program’s new functionality. The next step was exposing the new part of the Quick Rec
Tool to the sponsor.

4.1.4 Sponsor Testing

During earlier phases of the build, sponsor testing was often done along with the group, and
was brief. Later in the build it became a more distinct and formal stage of testing.

For the first few completed parts of the core functionality, the group would coordinate a quick
meeting with the sponsor where he would guide us through different additional data sets he

43

wanted to see the Quick Rec Tool run on, and simultaneously the meeting would also function
as a status update meeting.

As the program further neared completion, this stage in testing became crucial because the
sponsor would test the program on many additional data sets, specifically data sets that he
intended to reconcile using the finished product at a later date. Most of the errors found here
were minor and required small tweaks or bug fixes, though as previously mentioned, the test
run often resulted in suggestions about user interaction of the new feature or about macro
changes to the program.

Once this phase of testing was completed the functionality was considered complete as well,
and the group would move on to the next major step in the build.

4.2 Documentation

4.2.1 The Purpose and Process of Documentation

The purpose of producing documentation for the Quick Rec Tool was to ensure usability and
total user comprehension of the program once the project team had left and was no longer
around to answer questions. Since the group was unaware who would be using the program, or
trying to build further on top of the current functionality, the team added both internal and
external sources of documentation to make the program as transparent as possible.

The internal documentation consists of comments, data validation, and other helpful text
inserted into the input files. The comments section is a series of statements that explains what
is supposed to go into each individual field. The data validation of the server, database, and
other cells helps ensure the reader understands the valid choices of inputs. This data validation
creates dynamic lists so that the user can choose a value to input into the cell as opposed to
typing one in. The file also includes other helpful text which helps notify the user which cells
should be filled in or not. Notice the comments section in the second column, the data
validation on the server cell, and the helpful text next to the input file in the figure below.

44

Figure 30: Documentation

For external documentation, the group created both a guide to running the program as well as
a guide to the software and packages used to create the program. Documentation was also
produced in the form of use cases since the project group recognized that some ways of
conveying the information might be more effective than others depending on who was the end-
user.

The process of documentation was a continuous one. After completion or changes to any major
functionality in the program, written documentation was reproduced for two reasons: to
ensure nothing would be forgotten, and to ensure the sponsor would be able to test the new
functionality appropriately.

All of the documentation can be seen in Appendix A.

4.2.2 Internal Documentation

The first documentation a user would likely encounter is the internal documentation. It is
essentially the first line of defense against a user not understanding how to operate the Quick
Rec Tool. The internal documentation consists of in-file comments, data validation, and other
helpful text that will appear depending on which cells are filled in.

The internal documentation is only designed to be quick reminders to the user. If users need a
little nudge in the right direction, internal documentation will likely be what they refer too and
will likely help them. It is mainly there for convenience as opposed to deep understanding.

45

Multiple different forms of comments and helpful hints add some depth to the internal
documentation. If the comments do fail, there is the added security that the comments
combined with the data validation or additional helpful text may succeed.

4.2.3 Written Documentation

The second line of defense against user confusion is the external documentation. This
documentation was designed so that a user could quickly search for the answer to a question if
the internal documentation wasn’t enough to solve their issue. The written documentation
contains detailed descriptions, notes, examples, and images of the different parts of the
application that the user would interact with. The written documentation is included in
Appendix A.

The written documentation is separated into two different files, a program document and a
software document. The program document gives detailed explanations of the input file,
output file, logs, and launching the program, so if the user wants a detailed explanation on any
specific aspect of the program, they should reference the written documentation. The figure
below illustrates how the document combines many different methods such as screen shots,
bullet points and more to explaining different aspects of the program.

46

Figure 31: Written Documentation Example

4.2.4 Use Cases

The goal of the use cases, which were specifically requested by the sponsor, is that they are
designed to act like training wheels for the user. There are six use case documents, which all
thoroughly show the process of performing a single function. They also build on top of each
other since the more complex processes naturally build on top of the simpler ones. The first
two use case is a simple key comparison, one for Excel sources, the other for database, the
second is an attribute comparison (which requires a key comparison to be done in order to do
so), the third employs a translation, the fourth is an aggregation (which requires attribute
comparisons), and the fifth is a complex reconciliation with aggregation as well as roll ups. The
figures below are screenshots of the six files.

47

Figure 32: Use Case 1 Excel Key Pair Reconciliation Description Tab

Figure 33: Use Case 1 Excel Key Pair Reconciliation

48

Figure 34: Use Case 1 Database Key Pair Reconciliation

Figure 35: Use Case 2 Attribute Reconciliation

49

Figure 36: Use Case 3 Translation

Figure 37: Use Case 4 Aggregation

50

Figure 38: Use Case 4 Advanced Aggregation & Rolling up

The use cases each have a description tab, which runs the reader through the reconciliation
that will be displayed in the configuration tab. This first tab also often displays both tables that
will be reconciled next to the text box holding the description. The configuration tab has red
numbers inserted into the files. These numbers correspond to a flow chart immediately below
the configuration table. This process as well as the order of the numbers indicates the order to
fill out the cells of the spreadsheet in. The process describes exactly what has been filled out in
the example, and what should be filled out or left blank in order to accomplish the goal. The
files also have additional in-cell comments added to them to clarify what to enter into each cell.
In addition to a walkthrough, these files could also be used as a shortcut if the user knows what
functionality they want, but doesn’t want to fill out a configuration sheet from scratch. The use
cases are organized in a subdirectory within the same directory that the program is stored. Each
use case has another sub directory of its own with an example source and target file that go
along with the use case configuration file.

Inside the first use case subdirectory, the use cases describes how to do a simple key
reconciliation on one key pair with two Excel files. It is the most basic reconciliation that can
possibly be done. There is a use case on performing a key reconciliation between two Excel files
and between one Excel file and one SQL file. This way the user has a tutorial on filling out the
sheet with database inputs.

The second use case subdirectory holds a file that describes how to reconcile attributes. The
reconciliation builds off the first, creating continuity between this file and the double Excel
source in use case one.

51

The third use case subdirectory holds a file that adds in translations. It also builds off the first
two files and gives clear directions on how to add translations.

The fourth and fifth use case subdirectories hold the most complex reconciliations. The fourth
use case discusses a basic aggregation from a table containing loans and their values, to a table
containing pools with their respective values. The fifth use case explains a complex
reconciliation with three keys and five attributes where some attributes are simply rolled up
and may look as though they need aggregation but don’t while other attributes do in fact
require aggregation. It tries to clarify the difference between aggregations and simply
performing one-to-many or many-to-many attribute comparisons.

52

5 CHAPTER 5: RESULTS

5.1 Finished Product

5.1.1 Logic Overview

The logical overview of the finished Quick Rec Tool can be seen in the figure below.

Figure 39: Quick Rec Tool Logical Overview

The main function in the program acts as the hub. Different functionalities are stored in
separate modules. For example the function of generating exceptions falls to the Exception
Handler.

On the top level of the logic resides the Translation Handler. This module does not directly feed
into the main, but instead feeds into the Configuration Handler since the translation table
resides in the configuration file. The Translation Handler works with the Configuration Handler

53

to create a translation table that is then passed to the main function and used to translate the
data that is retrieved from the Input Handler.

The SQL Parser takes SQL files as input and converts them to Excel files that are then passed to
the Input Handler along with any other Excel inputs. The SQL Parser also has the capability to be
run independently to simply perform the conversion of SQL output to an Excel format.

The Input Handler and the Configuration Handler both feed directly into the main function of
the Quick Rec tool. The Input Handler takes in data from the main function that was gathered
by the Configuration Handler. The Input Handler performs the function of extracting data from
the input data sources as well as performing aggregation. This data is then passed back into the
main function.

Once source data has entered the main function, the Exception Handler begins working. The
Exception Handler takes in source data and generates all exceptions. The matches and
exceptions are then returned to the main function.

The Output Handler and the Email Handler are the two potential end points. The Output
Handler performs the function of outputting all the data to the output Excel file and formatting
it appropriately. If email functionality is off then the program ends here.

If the email functionality is turned on, the Email Handler formats an email, and attaches the
output file to it. The email is then sent to all specified email addresses. The program then ends
here.

5.1.2 Final Functionality

The finished Quick Rec Tool can find exceptions between numeric types within a tolerance and
string types in data from either Excel worksheets or databases. The program can reconcile two
tables each containing multiple key and attribute columns. It can avoid outputting mismatches
a user already knows exists or create non-standard key pairings using a translation table, and
can aggregate over source attributes, target attributes, or both. All exceptions generated are
output to an easy to understand Excel file along with data regarding the target and source
matches. The program also has a verbose functionality that allows the user to decide whether
to output attribute information for unmatched keys. The Quick rec Tool can lastly email the
output file to specified recipients for easy dissemination of information.

5.1.3 Final User Interface

The final user interface is merely two Excel files and a batch file. The configuration file and the
output file are the two Excel files that the user has to interact with. The configuration file is
designed to be user friendly, having data validation, comments, and copious documentation.
The output is formatted, specifically to the sponsor's liking, ensuring it is easy to consume and
data is presented in a logical and readable way. The batch file provides the user with a more

54

hands-on approach to initiate the program than typing in the command manually. The user
then has to hit enter to exit the program. The final user interface is simple and intuitive.

55

6 CHAPTER 6: CONCLUSION

6.1 Limitations

6.1.1 Two Table Reconciliations

The current limitation to the amount of tables a user can reconcile is two. If someone wants to
reconcile more tables, that person must use the other reconciliation tool IVP Recon. In order to
add a feature for reconciling more than two tables, it would involve extreme complications in
the user interface. Though the user can only reconcile two tables, within each table there is no
limitation on how many keys or attributes that the user can do reconciliations on.

6.1.2 SQL Statements

Another limitation of the tool is that in order to do reconciliation on a database, the user has to
input a SQL file. This means that the tool is inaccessible to someone who wants to reconcile a
table in a database, but isn’t capable of creating a SQL query for that database.

Originally, a user could simply input the server, the database, the table, and the columns that
he or she wished to reconcile into the configuration file, and then the Quick Rec Tool would go
retrieve the data. No knowledge of SQL was necessary. However, after testing this feature, and
further exploring the potential uses of the program, the sponsor determined that this wouldn’t
work for many of the SQL searches that the company needed to perform. Since the company
often receives their data and tables from third party vendors, this means that the queries for
specific data they want to reconcile can be massive SQL statements with many joins and
specific conditions. An example of this is performing a reconciliation only wanting data as of a
certain date. These complex searches couldn’t be done easily with the relatively simple user
interface. In order to add the capability of doing such SQL queries, and not have the user just
input SQL would have made the configuration file a complete mess. Thus it was decided that if
the user wanted to query data from a database, they would simply use a file containing the full
SQL statement and run it through the preprocessor. This turns it into an Excel file which would
then be automatically run through the rec tool.

6.1.3 Recognizing Logical Groups with No Logical Pair

If the Quick Rec Tool finds a group of data as is displayed in the table below, there isn’t very
much it can do with it. There appears to be no logical pairing between any of these values.

Table 7: Logical Group Without A Logical Pair

 Source Target

56

Hud 1 Hud-128gcsjq827ey9ei

Hud 2 Hud-128uhckhbcwfbwe

Hud 3 Hud-12832icndsicn2ocj

 Hud-128wejncqbciekek

However, this is a limitation of the program. Instead of outputting the group to the user and
mentioning that they have some sort of clear relationship, though the specifics of this
relationship can’t be determined, instead it simply outputs all the values in the source as
missing in the target and all the values in the target as missing in the source. It is difficult to
match these types of groups in such a vague way without unintentionally causing more precise
pairs to match other similar values as a group, so it was avoided.

6.2 Extension

6.2.1 Ability to Reconcile More Than Two Tables

The most feasible extension would be adding in the functionality to reconcile more than two
tables. The logic and complexity of eliminating this limitation would be considerable, though
can be done. Changes would end up happening to almost all of the different handlers within
the Quick Rec Tool, which assume a source-target relationship. An additional difficulty would be
formatting the new configuration file in the most intuitive possible way.

6.2.2 Recognizing Logical Groups

Another extension for the program would be an ability to recognize logical groups that don’t
have a logical pair. This functionality is difficult to program and it could potentially add a lot of
run time to the program with all of the additional checks. The Quick Rec Tool would have to
comb through all names that don’t have a match, and look for very high-level matches, then
output these matches to the user in a logical sense. Therefore these high level matches would
probably have to be output into a third table in the output file, which could add unnecessary
complication to the output of the tool.

6.2.3 GUI For Configuration and Execution

If all the functionality that Angelo, Gordon & Co. could ever want was complete, then a
graphical user interface could be developed. The danger in this is that the GUI is what causes
the main issues in the current reconciliation tool that the company uses, IVP Recon. The GUI
would have to be designed in a minimalistic way, with the least possible navigating necessary

57

by the user. We would want to avoid the mistakes of having menus within menus within
menus, and forcing the completion of certain steps before the ability to fill out others, which
cause issues currently.

6.3 Recommendations

The primary recommendation the group has after completion of this project is to continue
implementing standardization of labeling values in databases and Excel files. The group
recommends this be done both internally, and to possibly convert data upon reception from
external sources.

The Quick Rec Tool could have dramatically increased functionality if this were the case. There
is even a small possibility that the tool would become obsolete if a standard was implemented
if there weren’t ever any breaks in the data, but it is unlikely. It is more likely that the Quick Rec
Tool would be able to be extended to automatically make corrections to mismatches since it
knew exactly what to change values from and to. This would eliminate all the man-hours that
still exist in the process. Humans have to take the error report the Quick Rec Tool generates
and fix the breaks manually since they aren’t sure what naming conventions the tool will find in
the database, and don’t necessarily know to change breaks in the data without getting into
each individual data set and seeing how it works.

Implementing a clearly defined standard of labeling values, and determining which values are
correct would make it possible to transform the Quick Rec Tool from a quick, customizable
reconciliation tool, to a fully automated reconciliation and break fixing tool.

58

7 INDEPENDENT STUDIES FOR THE PROJECT

7.1 Richard O’Brien

7.1.1 Independent Computer Science Studies

In preparation for this project and over the course of it, I was largely working outside my
comfort zone. Though I was at home in the world of finance and mathematics, the project more
implicitly called upon the fields and directly called for a large amount of computer science.
Having only ever taken one computer science course in my life I was playing catch up early and
often. Having a group of two ensured I was going to be intimately involved in every part of the
project.

Fortunately my one computer science course had been in Python, which happened to be the
language we used to build the program. The complexity of the programming involved in
creating the Quick Rec Tools functionality required me to do more than simply brush up on my
Python, but instead forced me to expand my knowledge in the subject. I used the book Python
Programming For the Absolute Beginner as well as online resources like CodeAcademy.com to
expand my knowledge.

Probably the most crucial independent learning I did pertained to version management and
using the command line. I had never done projects using version management before, so the
tools and concept were entirely new to me. Version management is essentially that you save
different copies of the project in different places, so if you mess anything up while you are
building a part of the program, you always have a safe and working copy to revert back to. This
was done using software called Git, and all the commands to control Git are done through the
command line. I learned about Git and version management at CodeAcademy.com as well.

The previous extent of my knowledge using the command line was typing in one command to
run a game I used to play in high school. Thus not only did I have to learn all about version
management but also how to use the command line to run the version management as well as
navigate my computer and install Python packages needed to run the Quick Rec Tool. I learned
about the command line at CodeAcademy.com, though Stackoverflow.com also played a key
role.

Finally the program had to connect to Microsoft SQL servers, so I had to learn how to do SQL
queries. CodeAcademy.com again came to my rescue, teaching me the basics of SQL.

59

8 WORKS CITED

ANGELO, GORDON. (2014). Retrieved December 9, 2015, from
https://www.angelogordon.com/ NJ: Pearson/Prentice Hall.

Behind The Scenes Of Your Mortgage. (2015, April 18). Retrieved December 9, 2015, from
http://www.investopedia.com/articles/pf/07/secondary_mortgage.asp

Finance and Development. (2015). Retrieved December 9, 2015, from
http://www.imf.org/external/pubs/ft/fandd/2007/12/dodd.htm

Hedge Fund Definition | Investopedia. (2015, November 20). Retrieved December 9, 2015, from
http://www.investopedia.com/terms/h/hedgefund.asp

IVP Polaris. (n.d.). Retrieved December 9, 2015, from https://www.ivp.in/portfolio/ivp-polaris/

Long, J. (2014). Python Programming For Beginners: Quick And Easy Guide For Python
Programmers. CreateSpace Independent Publishing Platform.

Secondary Mortgage Market Definition | Investopedia. (2015, April 17). Retrieved December 9,
2015, from http://www.investopedia.com/terms/s/secondary_mortgage_market.asp

Securitization Audit. (n.d.). Retrieved December 9, 2015, from
http://thepatriotswar.com/index.php/securitization-audit/

Welcome to SQLCourse.com! (2015). Retrieved December 9, 2015, from
http://www.sqlcourse.com/

http://www.imf.org/external/pubs/ft/fandd/2007/12/dodd.htm
http://www.investopedia.com/terms/h/hedgefund.asp
https://www.ivp.in/portfolio/ivp-polaris/
http://www.investopedia.com/terms/s/secondary_mortgage_market.asp
http://thepatriotswar.com/index.php/securitization-audit/

60

9 APPENDIX A: DOCUMENTATION

9.1 Program Document

Formatting The Input File.
Description: The input file format is that of an Excel file. The default configuration file is named
config.xlsx. If the user wishes to make their own configuration file, they are free to do so as long
as they follow the same structure as the default. The format must remain the same because
values are pulled and identified by their position in the spreadsheet. If the user chooses to use
their own configuration file, they simply input that files name at the appropriate position in the
command line argument to launch the file.

Important Notes:

• Both the configuration table and the translation table are in the same file.
• A user should change neither configuration, nor the translation tables’ formats.
• The configuration file consists of a configuration table and translation tables. The first

sheet in the file is the configuration table; the second and third sheets are the
translation table for source and target.

• The tab “Server Data” is simply data used to create data validation on the configuration
table. There is never any input on this tab.

Screen Shots:

Figure 40: Configuration File

61

Figure 41: Source Translation Table

Figure 42: Target Translation Table

62

Formatting The Configuration Table
Description: The “Config” sheet is separated into two tables. The purple table specifies input
type, and macro information about the sources of data. The yellow table specifies the detailed
information about the sources of data.

Important Notes:

• The Source is the set of data that is considered “correct.” The Target is the set of data
being reconciled against the source. If neither set of data is considered “correct” these
terms are arbitrary.

• If the cell is highlighted in red, do not change it.

Format: Below is the Format of the input file.

Top Table

Field Name (DO NOT EDIT) Field Value

Source

<Enter “Excel” or “database” Here>
• If “Excel” is entered, will take Excel files as inputs
• If database is entered, will take tables from databases as

inputs

Target

<Enter Server Name Here>
• Server to access source database in.
• May be the same as the target_server.

Input Type

<Name of the Source Table Here>
• Names must be entered exactly (case sensitive)
• For Excel files this name is arbitrary.

Don’t leave blank, used in translations and aggregation.

Input File

<Enter Name of File for Excel/Database>
• Names must be entered exactly (case sensitive)
• If database, this will be a SQL file.

Server

<Enter Server Name Here>
• Names must be entered exactly (case sensitive)
• Server to access database in.
• If name doesn’t appear on drop down list, add it to the table

on “Server Data” tab.

Database

<Enter Server Name Here>
• Names must be entered exactly (case sensitive)
• Server to access database in.
• If name doesn’t appear on drop down list, add it to the table

on “Server Data” tab.

63

Bottom Table

source_key_columns

<Key Column Names From Source File/Database Here>
• Each element in key column should be unique
• One value per cell. Unlimited number of cells.
• Names must be entered exactly (case sensitive)
• Order should reflect the order of target_key_columns.
• Ex. 1st entry in target_key_columns reconciled to first entry

in source_key_columns.

target_key_columns

<Key Column Names From Target File/Database Here>
• Each element in key column should be unique
• One value per cell. Unlimited number of cells.
• Names must be entered exactly (case sensitive)
• Order should reflect the source_key_columns order.
• Ex. 1st entry in source_key_columns reconciled to first

entry in target_key_columns.

source_columns

<Attribute Column Names From Source File/Database Here>
• One value per cell. Unlimited number of cells.
• Names must be entered exactly (case sensitive)
• Order should reflect the order of target_columns.
• Ex. 1st entry in target_columns reconciled to first entry in

source_columns.

source_aggregation_types

 <Aggregation Types For Source Table Here>
• Aggregations performed on source columns.
• One value per cell. Unlimited number of cells.
• Choose none for a column not aggregated.
• Order of types matches order of columns.

Types: count, sum, min, max, avg, none.

target_columns

<Attribute Column Names From Target File/Database Here>
• One value per cell. Unlimited number of cells.
• Names must be entered exactly (case sensitive)
• Order should reflect the order of source_columns.
• Ex. 1st entry in source_columns reconciled to first entry in

target_columns.

target_aggregation_types

<Aggregation Types For Target Table Here>
• Aggregations performed on target columns.
• One value per cell. Unlimited number of cells.
• Choose none for a column not aggregated.
• Order of types matches order of columns.

Types: count, sum, min, max, avg, none.

tolerances

<List of Tolerances for Numerical Value Here>
• Only apply to numerical values in source/target columns.
• Order of tolerances reflects order of numerical values.
• Do not need to write none for non-numeric values

verbose

<“on” Or “off” Here>
• Lists all the key mismatches again with each individual

attribute in the attributes mismatches table on the output
file.

email <“on” Or “off” Here>

64

Full Example: Below is an example of the file with all fields filled in.

• Toggle email output feature.

subject_line
<Email Subject Line Here>

• Ex: Rec Tool Output.

to_addresses

<To Addresses For Email Here>
• One value per cell. Unlimited number of cells.
• Ex: email1@site.com, email2@example.com…

from_addresses
<Rec Tool Email Address Here>

• Ex: rectool@example.com

65

Translation Table
Description: The translation table provides an opportunity for known differences between
databases to avoid being output as mismatches. By entering the corresponding data in the
translation_table.xlsx file, the user can have the program ignore known mismatches between
the databases. It is located on the “Translation” sheet of the input file.

Important Notes:

1. Case and non-alphanumeric values matter. This is to avoid incorrect translations.
2. The translation table only handles one to one translations. In the full example below,

“beatles” should only translate to “ABBEY ROAD”, not to an additional value as well,
such as “ABBEY ROAD” and “Richard”.

3. The tab “Source” is for translating values in the source to values in the target data set
4. The tab “Target” is for translating values in the target to values in the source data set.
5. Both “Source” and “Target” tabs have the same format.

Example:

TAB NAME: Data set where the value is located

Column Source Value Target Value
 Name of column where
value is located Value you want to translate Value you want to translate to

Full Example: Below is an example of the file with all fields filled in.

Column Source Value Target Value

pool_name beatles ABBEY ROAD

pool_seller Dick Richard

pool_seller Jake Jacob

66

Running the Program
Description: The whole program can be run from the terminal or by double clicking the .bat file
named rectool.bat

Important Notes:

• If you encounter any errors, there are two logs that will give a detailed message as to
why the error was encountered

o Rec Tool Log: rectool_log.txt
o SQL Parser Log: sqlparser_log.txt

67

Output File
Description: The output file consists of four tabs: Key Exceptions, Exceptions, Target, and
Source. The exceptions tab displays any mismatches in data found between the two data sets
that were input. The key exceptions are listing in a table on the first tab, and attribute
exceptions are listed in a table on the second tab. The Source tab has all the values in the
source data set that had matches found in the target data set. Similarly the Target tab has all
the values in the target data set that had matches in the source.

Important Notes:

• The verbose option in the configuration file changes how much data is displayed in the
output. If verbose is on, then any key that has no match, or no close match (Style, Case)
all its attributes are listed in the attribute mismatch table. If verbose is off, the
attributes are not listed in the table below, and the complete mismatch is simply noted
in the top table containing key mismatches.

Examples:

Consider these example source and target sets of data as well as their output file.

68

Figure 43: Example Source

69

Figure 44: Example Target

70

Figure 45: Key Output From Example Data

Figure 46: Attribute Exceptions Output From Example

71

Figure 47: Source Tab

72

9.2 Software Document

Python Version 2.7.10
Description: This is the version of Python used.
Location: https://www.Python.org/downloads/
Important Notes:

• ConfigParser in 2.7.10  configparser in 3.5.0

Openpyxl
Description: This package is necessary for the manipulation of Excel files.
Download Instructions: Can be downloaded through pip.

Input File Format
Description: The import file is an Excel file with the configuration info on the first sheet and
translation table on the second. For example, the document should be saved as mysample.xlsx
More info: See the program setup guide.

Mail Server
Description: In order to send the e-mail with the attached CSV, a mail server must be set up on
the computer. If there is none, SendMail was used while building the program.
Location: https://www.sendmail.com/sm/open_source/
Important Notes:

• This link is to the open source version.

Don't have
Pip

Install Pip

Go to
Terminal

Type "sudo
easy_install

pip"

Follow "Have
Pip"

instructions

Have Pip

Go to
Terminal

type "pip
install

openpyxl"

73

• If you encounter problems and an email server is installed, ensure you have permissions
to access it.

PYODBC: Server Package
Description: pyodbc makes it easy to connect to databases using ODBC. It implements the DB
API 2.0 specification, but adds even more convenience. The library is designed to be stand-
alone. It does not have other dependencies and only uses Python's built-in data types.
More Info: https://github.com/mkleehammer/pyodbc
Download Instructions:

9.3 Use Case Document

The use case documentation is uploaded in separate documents along with the report.

Don't have
Pip

Install Pip

Go to
Terminal

Type "sudo
easy_install

pip"

Follow "Have
Pip"

instructions

Have Pip

Go to
Terminal

type "pip
install

pyodbc"

74

10 APPENDIX B: WEEKLY STATUS REPORTS

75

76

77

78

79

80

11 APPENDIX C: CODE FOR QUICK REC TOOL

Rectool (Main Function)

#!/usr/local/bin/Python
"""
Main method and rec checks.

Angelo Gordon
Ben Sharron and Richard O'Brien
Rec Tool
"""

import re
import sys
import os
import logging
import getpass
from sqlparser import SqlParser
from rec_lib.config_handler import ConfigHandler
from rec_lib.input_handler import InputHandler
from rec_lib.exception_handler import ExceptionHandler
from rec_lib.output_handler import OutputHandler
from rec_lib.email_handler import EmailHandler

def _recursive_string_check(element):
 """Check for two levels of strings."""
 if isinstance(element, str) or isinstance(element, unicode):
 return True
 elif isinstance(element, list):
 return _recursive_string_check(element[0])
 else:
 return False

def _strip_aggr(element):
 """Strip aggr(col) to col."""
 pattern = re.compile(r'(.*\(|\))')
 return pattern.sub('', element)

def _to_boolean(element):
 """Convert config string to boolean, raising an error on bad input."""
 true_vals = ('on', 'true', 'yes', 1)
 false_vals = ('off', 'false', 'no', 0)

 if element in true_vals:
 return True

81

 elif element in false_vals:
 return False
 else:
 raise IOError('%s must be one of on, off, yes, no, '
 'true, false, 0 or 1.', element)

def _parse_tol(tol):
 """Turn inputted tolerance value into a dictionary object."""
 if tol[-1] == '%':
 return {'type': 'percent', 'value': float(tol[0:-1])}
 elif tol.lower() != 'none':
 return {'type': 'number', 'value': float(tol)}
 else:
 return None

def _strip_filename(filename):
 """Strip extension off inputted filename."""
 pattern = re.compile(r'(.*[\\/])|(\..*)')
 return pattern.sub('', filename)

def _join_columns(col_list, sep):
 """Convert a list of list of strings to a joined list of strings."""
 return [sep.join(column) for column in col_list]

def _get_source_input_file(config):
 """Helper function to determine input for source."""
 source_input_type = config.get('source_input_type')
 source_file = config.get('source_file')

 # Perform database-style check if source input type is database
 if source_input_type == 'database':
 print 'Connecting to Source server...'
 logging.info('Connecting to Source server...')
 source_server = config.get('source_server')
 source_database = config.get('source_database')

 # Parse SQL file and retrieve Excel file
 source_input_file = SqlParser(
 source_server, source_database, source_file, None).execute()
 # Perform Excel-style check if source input type is Excel
 elif source_input_type == 'Excel':
 source_input_file = source_file
 else:
 raise IOError('Source input type is neither Excel nor database: %s',
 source_input_type)

 return source_input_file

82

def _get_target_input_file(config):
 """Helper function to determine input for target."""
 target_input_type = config.get('target_input_type')
 target_file = config.get('target_file')

 # Perform database-style check if target input type is database
 if target_input_type == 'database':
 print 'Connecting to Target server...'
 logging.info('Connecting to Target server...')
 target_server = config.get('target_server')
 target_database = config.get('target_database')

 # Parse SQL file and retrieve Excel file
 target_input_file = SqlParser(
 target_server, target_database, target_file, None).execute()
 # Perform Excel-style check if target input type is Excel
 elif target_input_type == 'Excel':
 target_input_file = target_file
 else:
 raise IOError('Target input type is neither Excel nor database: %s',
 target_input_type)

 return target_input_file

def main():
 """Main method where program execution begins."""
 # Set up logger
 open('rectool_log.txt', 'w').close()
 logging.basicConfig(filename='rectool_log.txt', filemode='w',
 level=logging.INFO)

 # Parse config filename from command line argument
 if len(sys.argv) == 2:
 config_file = sys.argv[1]
 else:
 raise IOError('Expected 1 command line argument, received %s: %s',
 str(len(sys.argv) - 1), str(sys.argv[1:]))

 # Set up config handler
 config = ConfigHandler(config_file)

 source_key_columns = config.get_list('source_key_columns')
 target_key_columns = config.get_list('target_key_columns')
 source_columns = config.get_list('source_columns')
 target_columns = config.get_list('target_columns')
 tolerances = config.get_list('tolerances')

 email = _to_boolean(config.get('email'))
 verbose = _to_boolean(config.get('verbose'))

 print 'Reading source input file...'
 logging.info('Reading source input file...')

83

 source_input_file = _get_source_input_file(config)
 source_handler = InputHandler(source_input_file)
 source_key_columns_str = \
 '; '.join(source_key_columns) + ' ({})'.format(source_input_file)

 print 'Reading target input file...'
 logging.info('Reading target input file...')
 target_input_file = _get_target_input_file(config)
 target_handler = InputHandler(target_input_file)
 target_key_columns_str = \
 '; '.join(target_key_columns) + ' ({})'.format(target_input_file)

 output_file = 'EXCEPTIONS_{}.xlsx'.format(_strip_filename(config_file))
 output_handler = OutputHandler(output_file)

 source_aggregation_types = config.get_list('source_aggregation_types')
 target_aggregation_types = config.get_list('target_aggregation_types')

 source_aggr_on = len(source_aggregation_types) > 0
 target_aggr_on = len(target_aggregation_types) > 0

 # Generate headers
 key_header_list = ['Source Key: {}'.format(source_key_columns_str),
 'Target Key: {}'.format(target_key_columns_str),
 'Error Types']

 attr_header_list = ['Source Key: {}'.format(source_key_columns_str),
 'Target Key: {}'.format(target_key_columns_str),
 'Source Attribute',
 'Target Attribute',
 'Source Value',
 'Target Value',
 'Error Type',
 'Diff']

 print 'Retrieving key columns...'
 logging.info('Retrieving key columns...')
 source_key_columns_lists = \
 source_handler.get_key_columns(source_key_columns)
 target_key_columns_lists = \
 target_handler.get_key_columns(target_key_columns)

 # Translation handler
 trans_handler = config.get_translation_handler()

 print 'Translating key values...'
 logging.info('Translating key values...')
 trans_source_key_columns_lists = trans_handler.translate_source_multiple(
 source_key_columns, source_key_columns_lists)
 trans_target_key_columns_lists = trans_handler.translate_target_multiple(
 target_key_columns, target_key_columns_lists)

 # Set up key name exception handler, retrieve exceptions, and output them

84

 print 'Retrieving key exceptions...'
 logging.info('Retrieving key exceptions...')
 exc_handler = ExceptionHandler()
 exc_handler.retrieve_key_exceptions(trans_source_key_columns_lists,
 trans_target_key_columns_lists)

 print "Outputting key exceptions to file '{}'...".format(output_file)
 logging.info("Outputting key exceptions to file '%s'...", output_file)
 key_exc_list = exc_handler.get_key_exc_list()

 if len(key_exc_list) > 0:
 output_handler.output_key_header(key_header_list)
 output_handler.output_key_exceptions(key_exc_list)

 # Un-translate key pairing into original values
 exc_handler.untranslate(source_key_columns_lists,
 target_key_columns_lists,
 trans_source_key_columns_lists,
 trans_target_key_columns_lists)

 # Extract individual primary key lists
 (paired_source_key_list, paired_target_key_list) = (
 exc_handler.split_key_pairing())

 # Output core data
 output_handler.output_source_column(
 source_key_columns_str, _join_columns(paired_source_key_list, '; '))
 output_handler.output_target_column(
 target_key_columns_str, _join_columns(paired_target_key_list, '; '))

 # Check if column_name and target_name lists are same length
 if len(source_columns) != len(target_columns):
 raise IOError(
 'An error has occurred in source_columns or target_columns. '
 'Either there is an extra value or a missing value.')

 # Iterate through attributes
 for source_col_name, target_col_name in zip(
 source_columns, target_columns):
 # Get relevant source columns (aggregating if necessary)
 print 'Getting values from {} table for attribute: {}'.format(
 source_input_file, source_col_name)
 logging.info('Getting values from %s table for attribute: %s',
 source_input_file, source_col_name)

 if source_aggr_on:
 try:
 src_aggr_type = source_aggregation_types.pop(0)
 except IndexError:
 print 'WARNING: Missing aggregation type for attribute {} ' \
 'for the source table. Assuming none.'.format(
 source_col_name)
 logging.warning(

85

 'WARNING: Missing aggregation type for attribute %s '
 'for the source table. Assuming none.', source_col_name)
 src_aggr_type = 'none'

 if source_aggr_on and src_aggr_type != 'none':
 source_attr_columns_list = (
 source_handler.get_column_with_aggregation(
 paired_source_key_list, source_col_name, src_aggr_type))

 source_col_name = '{}({})'.format(src_aggr_type, source_col_name)
 else:
 source_attr_columns_list = source_handler.get_column(
 paired_source_key_list, source_col_name)

 # Get relevant target columns (aggregating if necessary)
 print 'Getting values from {} table for attribute: {}'.format(
 target_input_file, target_col_name)
 logging.info('Getting values from %s table for attribute: %s',
 target_input_file, target_col_name)

 if target_aggr_on:
 try:
 tgt_aggr_type = target_aggregation_types.pop(0)
 except IndexError:
 print 'WARNING: Missing aggregation type for attribute {} ' \
 'for the target table. Assuming none.'.format(
 target_col_name)
 logging.warning(
 'WARNING: Missing aggregation type for attribute %s '
 'for the target table. Assuming none.', target_col_name)
 tgt_aggr_type = 'none'

 if target_aggr_on and tgt_aggr_type != 'none':
 target_attr_columns_list = (
 target_handler.get_column_with_aggregation(
 paired_target_key_list, target_col_name, tgt_aggr_type))

 target_col_name = '{}({})'.format(tgt_aggr_type, target_col_name)
 else:
 target_attr_columns_list = target_handler.get_column(
 paired_target_key_list, target_col_name)

 # Check if attributes are strings
 try:
 source_is_str = _recursive_string_check(source_attr_columns_list)
 except:
 raise IOError('Error accessing attribute %s in source table.',
 source_col_name)

 try:
 target_is_str = _recursive_string_check(target_attr_columns_list)
 except:
 raise IOError('Error accessing attribute %s in target table.',

86

 target_col_name)

 # Get tolerance
 try:
 tol = _parse_tol(tolerances.pop(0))
 except (TypeError, IndexError):
 tol = None

 # If the attributes are strings, translate and retrieve exceptions
 if source_is_str and target_is_str:
 if tol is not None:
 print 'WARNING: tolerance {} given for non-numeric ' \
 'attributes: {} and {}'.format(
 str(tol['value']), source_col_name, target_col_name)
 logging.warning(
 'WARNING: tolerance %s given for non-numeric attributes: '
 '%s and %s', str(tol['value']),
 source_col_name, target_col_name)
 tol = None

 # Translate attribute exceptions
 if source_aggr_on:
 for index, attr_list in enumerate(source_attr_columns_list):
 source_attr_columns_list[index] = (
 trans_handler.translate_source(source_col_name,
 attr_list))
 else:
 source_attr_columns_list = trans_handler.translate_source(
 source_col_name, source_attr_columns_list)

 if target_aggr_on:
 for index, attr_list in enumerate(target_attr_columns_list):
 target_attr_columns_list[index] = (
 trans_handler.translate_target(target_col_name,
 attr_list))
 else:
 target_attr_columns_list = trans_handler.translate_target(
 target_col_name, target_attr_columns_list)
 # Attribute types don't match
 elif source_is_str or target_is_str:
 raise IOError('Corresponding attributes {} and {} are not '
 'of the same type.'.format(
 source_col_name, target_col_name))
 # Check tolerance for None when comparing numbers
 else:
 if tol is None:
 print 'WARNING: No tolerance given for numeric attributes: '
 '{} and {}. Using default of 0.'.format(
 source_col_name, target_col_name)
 logging.warning(
 'WARNING: No tolerance given for numeric attributes: '
 '%s and %s. Using default of 0.',
 source_col_name, target_col_name)

87

 tol = {'type': 'number', 'value': 0}

 print 'Retrieving attribute exceptions for attributes: ' \
 '{} and {}'.format(source_col_name, target_col_name)
 logging.info(
 'Retrieving attribute exceptions for attributes: %s and %s',
 source_col_name, target_col_name)

 # Retrieve attribute exceptions
 exc_handler.retrieve_exceptions(source_col_name,
 target_col_name,
 source_attr_columns_list,
 target_attr_columns_list,
 tol)

 # Output core data
 if source_is_str and source_aggr_on:
 output_handler.output_source_column(
 source_col_name, _join_columns(source_attr_columns_list, '; '))
 else:
 output_handler.output_source_column(
 source_col_name, source_attr_columns_list)

 if target_is_str and target_aggr_on:
 output_handler.output_target_column(
 target_col_name, _join_columns(target_attr_columns_list, '; '))
 else:
 output_handler.output_target_column(
 target_col_name, target_attr_columns_list)

 # If verbose mode, add additional info for missing or extra names
 if verbose:
 # Strip output fluff off to use source handler again
 source_col_name = _strip_aggr(source_col_name)

 # Get missing name list for this attribute
 missing_names = exc_handler.get_missing_names()

 if len(missing_names) > 0:
 # Check for aggregation
 if source_aggr_on and src_aggr_type != 'none':
 missing_name_vals = \
 source_handler.get_column_with_aggregation(
 missing_names,
 source_col_name,
 src_aggr_type)

 source_col_name = '{}({})'.format(
 src_aggr_type, source_col_name)
 else:
 missing_name_vals = source_handler.get_column(
 missing_names, source_col_name)

88

 # Attribute is a string
 if _recursive_string_check(missing_name_vals):
 # Translate attributes
 if source_aggr_on and src_aggr_type != 'none':
 for index, attr_list in enumerate(missing_name_vals):
 missing_name_vals[index] = \
 trans_handler.translate_source(
 source_col_name, attr_list)
 else:
 missing_name_vals = trans_handler.translate_source(
 source_col_name, missing_name_vals)

 # Retrieve exceptions for missing names
 exc_handler.retrieve_missing_name_exc(source_col_name,
 missing_name_vals)

 # Strip output fluff off to use target handler again
 target_col_name = _strip_aggr(target_col_name)

 # Get extra name list for this attribute
 extra_names = exc_handler.get_extra_names()

 if len(extra_names) > 0:
 # Check for aggregation
 if target_aggr_on and tgt_aggr_type != 'none':
 extra_name_vals = \
 target_handler.get_column_with_aggregation(
 extra_names,
 target_col_name,
 tgt_aggr_type)

 target_col_name = '{}({})'.format(
 tgt_aggr_type, target_col_name)
 else:
 extra_name_vals = target_handler.get_column(
 extra_names, target_col_name)

 # Attribute is a string
 if _recursive_string_check(extra_name_vals):
 # Translate attributes
 if target_aggr_on and tgt_aggr_type != 'none':
 for index, attr_list in enumerate(extra_name_vals):
 extra_name_vals[index] = \
 trans_handler.translate_target(
 target_col_name, attr_list)
 else:
 extra_name_vals = trans_handler.translate_target(
 target_col_name, extra_name_vals)

 # Retrieve exceptions for extra names
 exc_handler.retrieve_extra_name_exc(target_col_name,
 extra_name_vals)

89

 # Output exceptions for attributes
 if len(source_columns) > 0:
 print "Outputting attribute exceptions to file '{}'...".format(
 output_file)
 logging.info("Outputting Attribute Exceptions to file '%s'...",
 output_file)
 attr_exc_list = exc_handler.get_attr_exc_list()

 if len(attr_exc_list) > 0:
 output_handler.output_attr_header(attr_header_list)
 output_handler.output_attr_exceptions(attr_exc_list)

 # Get number of exceptions found
 num_exceptions = exc_handler.get_num_exceptions()

 # Set up email handler and send email if EMAIL is turned on
 if email:
 print 'Configuring and sending email...'
 logging.info('Configuring and sending email...')
 subject_line = config.get('subject_line')
 to_addresses = config.get_list('to_addresses')
 from_address = '{}@angelogordon.com'.format(getpass.getuser())
 body_filename = 'email_body.txt'

 script_dir = os.path.dirname(__file__)
 body_file = os.path.join(script_dir, body_filename)

 mail_server = 'mail.angelogordon.com'

 if num_exceptions > 0:
 subject_line += ': Found {} exceptions!'.format(
 str(num_exceptions))
 else:
 subject_line += ': No exceptions found.'

 email = EmailHandler(mail_server)

 email.add_file(output_file)
 email.send(from_address, to_addresses, subject_line, body_file)

if __name__ == '__main__':
 # pylint: disable=broad-except
 try:
 main()
 except Exception:
 ERROR = sys.exc_info()[1]
 logging.error(ERROR)
 print 'An error has occurred. ' \
 'Check the log for more info: rectool_log.txt'
 finally:
 raw_input('Hit Enter to exit.')

90

SQL Parser

#!/usr/local/bin/Python
"""
Main method and SQL parsing.

Angelo Gordon
Ben Sharron and Richard O'Brien
SQL Parser
"""

import re
import sys
import logging
from sql_lib.sql_handler import SQLHandler
from sql_lib.output_handler import OutputHandler

def _strip_filename(filename):
 """Strip extension of inputted filename."""
 pattern = re.compile(r'(.*[\\/])|(\..*)')
 return pattern.sub('', filename)

class SqlParser(object):
 """Parse a SQL file and converts the result to an Excel output."""

 def __init__(self, server_name, database_name, sql_file, output_file):
 """Initialize SqlParser object and set up log file."""
 open('sqlparser_log.txt', 'w').close()
 logging.basicConfig(
 filename='sqlparser_log.txt', filemode='a', level=logging.INFO)

 self.server_name = server_name
 self.database_name = database_name
 self.sql_file = sql_file

 if output_file is None:
 self.output_file = '{}.xlsx'.format(_strip_filename(sql_file))
 print 'Using default output file: {}'.format(self.output_file)
 logging.info('Using default output file: %s', self.output_file)
 else:
 self.output_file = output_file

 def execute(self):
 """Execute SQL code and output as Excel file."""
 # Set up input and retrieve dictionary of results
 print 'Querying database...'
 logging.info('Querying database...')
 in_handler = SQLHandler(self.server_name, self.database_name)
 try:
 query_dict = in_handler.execute(self.sql_file)

91

 except:
 error = sys.exc_info()[1]
 raise IOError(
 'Could not execute SQL statement in {} on server {}: '
 '{}'.format(self.sql_file, self.server_name, error))

 # Set up output handler
 print 'Outputting result...'
 logging.info('Outputting result...')
 out_handler = OutputHandler(self.output_file)

 for col_name, col_vals in query_dict.iteritems():
 print 'Outputting {}'.format(col_name)
 logging.info('Outputting %s', col_name)
 try:
 out_handler.output_column(col_name, col_vals)
 except:
 raise IOError(
 'Could not output results to {}'.format(self.output_file))

 print 'Saving result in {}'.format(self.output_file)
 logging.info('Saving result in %s', self.output_file)
 try:
 out_handler.save()
 except:
 raise IOError(
 'Could not save results in {}'.format(self.output_file))

 return self.output_file

if __name__ == '__main__':
 # pylint: disable=broad-except
 try:
 if len(sys.argv) == 4:
 SERVER_NAME = sys.argv[1]
 DATABASE_NAME = sys.argv[2]
 SQL_FILE = sys.argv[3]
 OUTPUT_FILE = None
 elif len(sys.argv) == 5:
 SERVER_NAME = sys.argv[1]
 DATABASE_NAME = sys.argv[2]
 SQL_FILE = sys.argv[3]
 OUTPUT_FILE = sys.argv[4]
 else:
 raise IOError('Expected 3 or 4 command line arguments, '
 'received {}: {}'.format(
 str(len(sys.argv) - 1), str(sys.argv[1:])))

 SQL_FILE_NAME = _strip_filename(SQL_FILE)

 SqlParser(SERVER_NAME, DATABASE_NAME, SQL_FILE, OUTPUT_FILE).execute()
 except Exception:
 ERROR = sys.exc_info()[1]

92

 logging.error(ERROR)
 print 'An error has occurred.' \
 'Check the log for more info: sqlparser_log.txt'
 finally:
 raw_input('Hit Enter to exit.')

93

SQL Parser SQL Handler

#!/usr/local/bin/Python
"""
Performs statement-driven database retrieval given an SQL file as input.

Angelo Gordon
Ben Sharron and Richard O'Brien
SQL Handler module
"""

import pyodbc

class SQLHandler(object):
 """Handler for accessing database with a statement and return as a dict."""

 def __init__(self, server, database):
 """Initialize DB_Handler object."""
 self.server = server
 self.database = database

 def execute(self, sql_filename):
 """Read SQL file as input and execute SQL on saved server."""
 with open(sql_filename, 'r') as sql_file:
 query = sql_file.read()

 # Throttles non-results
 query = "SET NOCOUNT ON;\n" + query

 if self.database and len(self.database):
 conn = pyodbc.connect(
 'DRIVER={{SQL Server}};SERVER={};DATABASE={}'
 ';TrustedConnection=yes'.format(self.server, self.database))
 else:
 conn = pyodbc.connect(
 'DRIVER={{SQL Server}};SERVER={};TrustedConnection=yes'.format(
 self.server))
 cursor = conn.cursor()

 result = {}

 for row in cursor.execute(query).fetchall():
 cols = [t[0] for t in cursor.description]

 for col, value in zip(cols, row):
 if col not in result:
 result[col] = []
 result[col].append(value)
 conn.close()
 return result

94

SQL Parser Output Handler

#!/usr/local/bin/Python
"""
Handles outputting values to an Excel file.

Angelo Gordon
Ben Sharron and Richard O'Brien
Output Handler module
"""

from openpyxl import Workbook

class OutputHandler(object):
 """Handler for outputting inputted columns to given Excel file."""

 def __init__(self, filename):
 """Initialize output state and workbook."""
 self.filename = filename
 self.out_col = 1
 self.workbook = Workbook()
 self.sheet = self.workbook.active
 self.sheet.title = 'SQL Output'

 def output_column(self, col_name, col_list):
 """Output a column of data into the given sheet."""
 row_num = 1

 self.sheet.cell(row=row_num, column=self.out_col).value = col_name

 for col_val in col_list:
 row_num += 1
 self.sheet.cell(row=row_num, column=self.out_col).value = col_val

 self.out_col += 1

 def save(self):
 """Save workbook."""
 self.workbook.save(self.filename)

95

Rec Tool Abstract Exceptions

#!/usr/local/bin/Python
"""
Provides abstract functionality for exceptions.

Angelo Gordon
Ben Sharron and Richard O'Brien
Abstract Exception module
"""

class AbsException(object):
 """Generic abstract class to factor out exception methods."""

 _KEY_LIST = []

 def __init__(self, source_val, target_val, err_type):
 """Initialize Abstract Exception object."""
 self.exc = {
 'source_val': source_val,
 'target_val': target_val,
 'err_type': err_type
 }

 def get_exc_strings(self):
 """Return exception dictionary with list values converted to strings."""
 str_exc = {}

 for (key, value) in self.exc.iteritems():
 if isinstance(value, list):
 value = '; '.join(value)

 str_exc[key] = value

 return str_exc

 def add_vals(self, exc_dict):
 """Add new values to the exception object."""
 for (key, value) in exc_dict.iteritems():
 self.exc[key] = value

 @classmethod
 def get_keys(cls):
 """Return constant list of keys for exception object."""
 return cls._KEY_LIST

96

Rec Tool Attribute Exceptions

#!/usr/local/bin/Python
"""
Object for exceptions found betweens attribute values.

Angelo Gordon
Ben Sharron and Richard O'Brien
Attribute Exception class
"""

from rec_lib.abs_exceptions import AbsException

class AttrException(AbsException):
 """An Exception found in an attribute."""

 _KEY_LIST = ['source_key', 'target_key', 'source_attr', 'target_attr',
 'source_val', 'target_val', 'err_type', 'diff']

 def __init__(self, source_val, target_val, err_type):
 """Initialize exception object."""
 super(AttrException, self).__init__(source_val, target_val, err_type)

 def add_values(
 self, source_key, target_key, source_attr, target_attr, diff):
 """Add name values to exception object."""
 super(AttrException, self).add_vals({
 'source_key': source_key,
 'target_key': target_key,
 'source_attr': source_attr,
 'target_attr': target_attr,
 'diff': diff
 })

97

Rec Tool Configuration Handler

#!/usr/local/bin/Python
"""
Handles the configuration file parsing.

Angelo Gordon
Ben Sharron and Richard O'Brien
Config Handler module
"""

import openpyxl
import warnings
from rec_lib.translation_handler import TranslationTableHandler

class ConfigHandler(object):
 """Handler for configuring the program attributes."""

 def _get_single_value(self, row, col):
 """Get value from known location."""
 val = self.sheet.cell(row=row, column=col).value

 if val is None:
 return ['']
 else:
 return [val]

 def _initialize_attributes(self):
 """Initialize attributes dicitonary and translation handler."""
 self.attributes = {}

 warnings.filterwarnings("ignore")
 self.workbook = openpyxl.load_workbook(self.filename)
 self.sheet = self.workbook.get_sheet_by_name('Config')
 self.source_trans_sheet = self.workbook.get_sheet_by_name(
 'Source Translation')
 self.target_trans_sheet = self.workbook.get_sheet_by_name(
 'Target Translation')
 self.trans_handler = TranslationTableHandler(
 self.source_trans_sheet, self.target_trans_sheet)

 for row_num in range(2, self.sheet.max_row + 1):
 # Only get up to the first space for key
 try:
 row_key = self.sheet.cell(
 row=row_num, column=1).value.split(' ')[0]
 except (IndexError, AttributeError):
 continue

 if row_key == 'source':
 self.attributes['source_input_type'] = (

98

 self._get_single_value(row_num, 3))
 self.attributes['source_file'] = (
 self._get_single_value(row_num, 5))
 self.attributes['source_server'] = (
 self._get_single_value(row_num, 7))
 self.attributes['source_database'] = (
 self._get_single_value(row_num, 9))
 continue

 if row_key == 'target':
 self.attributes['target_input_type'] = (
 self._get_single_value(row_num, 3))
 self.attributes['target_file'] = (
 self._get_single_value(row_num, 5))
 self.attributes['target_server'] = (
 self._get_single_value(row_num, 7))
 self.attributes['target_database'] = (
 self._get_single_value(row_num, 9))
 continue

 # Get values from next non-empty cells
 row_vals = []

 column = 3
 row_val = self.sheet.cell(row=row_num, column=column).value
 while not row_val is None:
 if isinstance(row_val, str) or isinstance(row_val, unicode):
 row_val = row_val.strip()
 else:
 row_val = str(row_val)

 row_vals.append(row_val)
 column += 1
 row_val = self.sheet.cell(row=row_num, column=column).value

 self.attributes[row_key] = row_vals

 def __init__(self, filename):
 """Initialize config handler."""
 self.filename = filename
 self._initialize_attributes()

 def get(self, attribute):
 """Retrieve an attribute's singular value from the dictionary."""
 try:
 return self.attributes[attribute][0]
 except:
 raise KeyError('Key in the config file '
 'is incorrect/missing: {}'.format(attribute))

 def get_num(self, attribute):
 """Retrieve an attribute's singular value as an integer."""
 try:

99

 return int(self.attributes[attribute][0])
 except:
 raise KeyError('Key in the config file '
 'is incorrect/missing: {}'.format(attribute))

 def get_list(self, attribute):
 """Retrieve an attribute's values as a list."""
 try:
 return self.attributes[attribute]
 except:
 raise KeyError('Key in the config file '
 'is incorrect/missing: {}'.format(attribute))

 def get_translation_handler(self):
 """Retrieve and return the translation handler."""
 return self.trans_handler

100

Rec tool Email Handler

#!/usr/local/bin/Python
"""
Creates and sends email with attachment.

Angelo Gordon
Ben Sharron and Richard O'Brien
Email functionality
"""

from os.path import basename
import smtplib
from email.mime.text import MIMEText
from email.mime.application import MIMEApplication
from email.mime.multipart import MIMEMultipart

class EmailHandler(object):
 """Handle email functionality and sending emails."""

 def __init__(self, server):
 """Initialize email message."""
 self.server = server
 self.filename_list = []

 def add_file(self, filename):
 """Add file to the email."""
 self.filename_list.append(filename)

 def send(self, from_address, to_addresses, subject, body_file):
 """Send email."""
 msg = MIMEMultipart()

 msg['Subject'] = subject
 msg['From'] = from_address
 msg['To'] = ', '.join(to_addresses)

 try:
 with open(body_file, 'rb') as body:
 msg.attach(MIMEText(body.read()))
 except IOError:
 print "Body file not found, leaving body blank."
 except:
 raise IOError("Error opening body file: %s" % body_file)

 # Iterate over each file and attach it to the email
 for filename in self.filename_list:
 with open(filename, 'rb') as attached_file:
 attachment = MIMEApplication(
 attached_file.read(),
 Content_Disposition='attachment; filename=%s' %

101

 basename(filename),
 Name=basename(filename))
 msg.attach(attachment)

 server = smtplib.SMTP(self.server)
 server.sendmail(from_address, to_addresses, msg.as_string())

102

Rec Tool Exception Handler

#!/usr/local/bin/Python
"""
Uses matching rules to validate input and create exception lists.

Angelo Gordon
Ben Sharron and Richard O'Brien
Generating and Storing Exceptions
"""

import re
import copy
from rec_lib.key_exceptions import KeyException
from rec_lib.attr_exceptions import AttrException

_ALPHA = .0001

def _check_names(source_names, target_names):
 """Check two key name lists for equivalency."""
 match_types = []

 for source_name, target_name in zip(source_names, target_names):
 if source_name == target_name:
 match_types.append('Match')
 continue

 stripped_source_name = source_name.upper()
 stripped_target_name = target_name.upper()

 if stripped_source_name == stripped_target_name:
 match_types.append('Case Mismatch')
 continue

 stripped_source_name = re.sub(r'\W+', '', stripped_source_name)
 stripped_target_name = re.sub(r'\W+', '', stripped_target_name)

 if stripped_source_name[0:7] == 'PROJECT':
 stripped_source_name = stripped_source_name[7:]
 if stripped_target_name[0:7] == 'PROJECT':
 stripped_target_name = stripped_target_name[7:]

 if stripped_source_name == stripped_target_name:
 match_types.append('Style Mismatch')
 continue

 if stripped_source_name in stripped_target_name or \
 stripped_target_name in stripped_source_name:
 match_types.append('Partial Match')
 continue

103

 match_types.append('No Match')

 return match_types

def _check_numbers(source_numbers, target_numbers, tolerance):
 """Check two key name lists for equivalency."""
 match_types = []

 for source_number, target_number in zip(source_numbers, target_numbers):
 if tolerance['type'] == 'number':
 if round(abs(source_number - target_number), 6) <= \
 tolerance['value'] + _ALPHA:
 match_types.append('Match')
 else:
 match_types.append('Numeric Mismatch (tolerance: {})'.format(
 str(tolerance['value'])))
 elif tolerance['type'] == 'percent':
 if round(abs(source_number - target_number), 6) <= \
 ((tolerance['value'] + _ALPHA) / 100) * source_number:
 match_types.append('Match')
 else:
 match_types.append('Numeric Mismatch (tolerance: {}%)'.format(
 str(tolerance['value'])))

 return match_types

def _flatten_lists(key_pairing, sources_list, targets_list):
 """Flatten out imperfect list pairs."""
 if isinstance(sources_list[0], list):
 new_key_pairing = []
 new_sources_list = []
 new_targets_list = []

 for (key_set, src_list, tgt) in \
 zip(key_pairing, sources_list, targets_list):
 for elt in src_list:
 new_key_pairing.append(key_set)
 new_sources_list.append(elt)
 new_targets_list.append(tgt)

 return _flatten_lists(
 new_key_pairing, new_sources_list, new_targets_list)
 elif isinstance(targets_list[0], list):
 new_key_pairing = []
 new_sources_list = []
 new_targets_list = []

 for (key_set, src, tgt_list) in \
 zip(key_pairing, sources_list, targets_list):
 for elt in tgt_list:
 new_key_pairing.append(key_set)

104

 new_sources_list.append(src)
 new_targets_list.append(elt)

 return _flatten_lists(
 new_key_pairing, new_sources_list, new_targets_list)
 else:
 return (key_pairing, sources_list, targets_list)

def _get_diff(source_val, target_val):
 """Retrieve percentage difference between values."""
 if isinstance(source_val, str) or isinstance(source_val, unicode):
 return ''
 if isinstance(target_val, str) or isinstance(target_val, unicode):
 return ''

 if source_val == 0:
 return "100%"

 return '{}%'.format(
 str(round(100 * (target_val - source_val) / source_val, 2)))

class ExceptionHandler(object):
 """Handler for exceptions found during execution."""

 def __init__(self):
 """Initialize list of exceptions and headers for outputting."""
 self.key_pairing = []
 self.key_exc_list = []
 self.attr_exc_list = []
 self.missing_names = []
 self.extra_names = []

 def _add_key_exception(self, exc):
 """Add key exception to list."""
 self.key_exc_list.append(exc)

 def _add_attr_exception(self, exc):
 """Add attribute exception to list."""
 self.attr_exc_list.append(exc)

 def get_num_exceptions(self):
 """Get number of exceptions."""
 return len(self.key_exc_list) + len(self.attr_exc_list)

 def retrieve_key_exceptions(self, sources_list, targets_list):
 """Generate key name exceptions for two lists and save key pairing."""
 sources_list_copy = copy.deepcopy(sources_list)
 targets_list_copy = copy.deepcopy(targets_list)

 found_source_keys = {
 tuple(source_entry): False for source_entry in sources_list_copy[:]

105

 }
 found_target_keys = {
 tuple(target_entry): False for target_entry in targets_list_copy[:]
 }

 # Prioritize matches that aren't partial
 for source_entry in sources_list_copy[:]:
 if found_source_keys[tuple(source_entry)]:
 continue

 for target_entry in targets_list_copy[:]:
 if found_target_keys[tuple(target_entry)]:
 continue

 check_result = _check_names(source_entry, target_entry)

 if 'No Match' not in check_result and \
 'Partial Match' not in check_result:
 if check_result != ['Match']*len(check_result):
 exc = KeyException(
 source_entry, target_entry, check_result)
 self._add_key_exception(exc)

 self.key_pairing.append([source_entry, target_entry])
 found_source_keys[tuple(source_entry)] = True
 found_target_keys[tuple(target_entry)] = True

 # Output every hundreth pair
 if len(self.key_pairing) % 100 == 0:
 print 'Found key pair {} of up to {}: ' \
 '{} and {}'.format(
 str(len(self.key_pairing)),
 str(len(sources_list_copy)),
 source_entry, target_entry)

 break

 for source_entry in sources_list_copy[:]:
 if found_source_keys[tuple(source_entry)]:
 continue
 for target_entry in targets_list_copy[:]:
 if found_target_keys[tuple(target_entry)]:
 continue

 check_result = _check_names(source_entry, target_entry)

 if 'No Match' not in check_result:
 exc = KeyException(
 source_entry, target_entry, check_result)
 self._add_key_exception(exc)

 self.key_pairing.append([source_entry, target_entry])
 found_source_keys[tuple(source_entry)] = True

106

 found_target_keys[tuple(target_entry)] = True

 # Output every hundreth pair
 if len(self.key_pairing) % 100 == 0:
 print 'Found key pair {}: {} and {}'.format(
 str(len(self.key_pairing)),
 source_entry, target_entry)

 break

 for source_entry in sources_list_copy[:]:
 if not found_source_keys[tuple(source_entry)]:
 found_source_keys[tuple(source_entry)] = True
 exc = KeyException(source_entry, '', ['In Source Not Target'])
 self._add_key_exception(exc)
 self.missing_names.append(source_entry)

 for target_entry in targets_list_copy[:]:
 if not found_target_keys[tuple(target_entry)]:
 found_target_keys[tuple(target_entry)] = True
 exc = KeyException('', target_entry, ['In Target Not Source'])
 self._add_key_exception(exc)
 self.extra_names.append(target_entry)

 def untranslate(
 self, orig_source, orig_target, trans_source, trans_target):
 """Revert values of translated key pairing and missing/extra names."""
 # Return early if there was no translation
 if orig_source == trans_source and orig_target == trans_target:
 return

 key_pairing_copy = copy.deepcopy(self.key_pairing)
 missing_names_copy = copy.deepcopy(self.missing_names)
 extra_names_copy = copy.deepcopy(self.extra_names)

 for index, key_pair in enumerate(key_pairing_copy[:]):
 source_vals = key_pair[0]
 target_vals = key_pair[1]

 if source_vals not in orig_source:
 orig_val = orig_source[trans_source.index(source_vals)][:]

 key_pairing_copy[index][0] = orig_val

 if target_vals not in orig_target:
 orig_val = orig_target[trans_target.index(target_vals)][:]

 key_pairing_copy[index][1] = orig_val

 for (index, name) in enumerate(missing_names_copy[:]):
 if name not in orig_source:
 orig_val = orig_source[trans_source.index(name)][:]

107

 missing_names_copy[index] = orig_val

 for (index, name) in enumerate(extra_names_copy[:]):
 if name not in orig_target:
 orig_val = orig_target[trans_target.index(name)][:]

 extra_names_copy[index] = orig_val

 self.key_pairing = key_pairing_copy
 self.missing_names = missing_names_copy
 self.extra_names = extra_names_copy

 def retrieve_exceptions(self, source_attr, target_attr,
 sources_list, targets_list, tolerance):
 """Generate exceptions for two lists given a key pairing."""
 (key_pairing, sources_list, targets_list) = _flatten_lists(
 self.key_pairing, sources_list, targets_list)

 if tolerance is None:
 check_results = _check_names(sources_list, targets_list)
 else:
 check_results = _check_numbers(
 sources_list, targets_list, tolerance)

 for (key_pair, source_val, target_val, result) in zip(
 key_pairing, sources_list, targets_list, check_results):
 if result != 'Match':
 exc = AttrException(source_val, target_val, result)
 exc.add_values(key_pair[0], key_pair[1],
 source_attr, target_attr,
 _get_diff(source_val, target_val))

 self._add_attr_exception(exc)

 def retrieve_missing_name_exc(self, source_attr, sources_list):
 """Generate missing name exceptions for a sources list."""
 for (key_name, source_val) in zip(self.missing_names, sources_list):
 exc = AttrException(source_val, '', 'In Source Not Target')
 exc.add_values(key_name, '', source_attr, '', '')
 self._add_attr_exception(exc)

 def retrieve_extra_name_exc(self, target_attr, targets_list):
 """Generate extra name exceptions for a targets list."""
 for (key_name, target_val) in zip(self.extra_names, targets_list):
 exc = AttrException('', target_val, 'In Target Not Source')
 exc.add_values('', key_name, '', target_attr, '')
 self._add_attr_exception(exc)

 def get_missing_names(self):
 """Return list of source key names that don't have a match."""
 return self.missing_names

 def get_extra_names(self):

108

 """Return list of target key names that don't have a match."""
 return self.extra_names

 def get_key_exc_list(self):
 """Return the list of key exceptions."""
 return self.key_exc_list

 def get_attr_exc_list(self):
 """Return the list of attribute exceptions."""
 return self.attr_exc_list

 def split_key_pairing(self):
 """Return a split up version of the key pairing."""
 return ([key[0] for key in self.key_pairing],
 [key[1] for key in self.key_pairing])

109

Rec Tool Key Exceptions

#!/usr/local/bin/Python
"""
Object for exceptions found betweens key name values.

Angelo Gordon
Ben Sharron and Richard O'Brien
Key_Exception class
"""

from rec_lib.abs_exceptions import AbsException

class KeyException(AbsException):
 """An Exception found in the primary key."""

 _KEY_LIST = ['source_val', 'target_val', 'err_type']

 def __init__(self, source_val, target_val, err_type):
 """Initialize exception object."""
 super(KeyException, self).__init__(source_val, target_val, err_type)

110

Rec Tool Input Handler

#!/usr/local/bin/Python
"""
Excel workbook retrieval and storage.

Angelo Gordon
Ben Sharron and Richard O'Brien
Input Handler module
"""

import openpyxl
import warnings

def _aggregate(input_list, aggr_type):
 """Helper function to perform aggregation."""
 if aggr_type == 'count':
 return len(input_list)
 elif aggr_type == 'max':
 return max(input_list)
 elif aggr_type == 'min':
 return min(input_list)
 elif aggr_type == 'sum':
 total = 0.0

 for num in input_list:
 total += float(num)

 return total
 elif aggr_type == 'avg':
 total = 0.0

 for num in input_list:
 total += float(num)

 return total / len(input_list)
 else:
 raise IOError("Unknown aggregation type '{}'".format(aggr_type))

def _clean_list(input_list):
 """Clean up list if the inner lists all have one element each."""
 new_list = []

 for sublist in input_list:
 if len(sublist) > 1:
 return input_list
 else:
 new_list.append(sublist[0])

 return new_list

111

class InputHandler(object):
 """Accesses values from an Excel file and parses and stores them."""

 def __init__(self, filename):
 """Initialize workbook, as well as the separate sheets and state."""
 self.filename = filename
 self.table_key_nums = []
 self.key_rows_hash = {}
 warnings.filterwarnings("ignore")
 self.workbook = openpyxl.load_workbook(filename)
 self.sheet_names = self.workbook.get_sheet_names()
 self.sheet = self.workbook.get_sheet_by_name(self.sheet_names[0])

 def get_key_columns(self, col_names):
 """Return unique key column values and save key columns."""
 result = []

 for col_val in col_names:
 for col_num in range(1, self.sheet.max_column + 1):
 if self.sheet.cell(row=1, column=col_num).value == col_val:
 self.table_key_nums.append(col_num)
 break
 else:
 raise IOError("Key column '{}' not found in file: {}.".format(
 col_val, self.filename))

 for row_num in range(2, self.sheet.max_row + 1):
 row_vals = []

 for col_num in self.table_key_nums:
 val = str(self.sheet.cell(row=row_num, column=col_num).value)
 if val:
 if isinstance(val, unicode):
 val = val.encode('ascii', 'ignore')
 row_vals.append(val)

 if len(row_vals) > 0:
 if not tuple(row_vals) in self.key_rows_hash:
 result.append(row_vals)
 self.key_rows_hash[tuple(row_vals)] = [row_num]
 else:
 self.key_rows_hash[tuple(row_vals)].append(row_num)

 return result

 def get_column(self, key_list, col_name):
 """Return row values for column in source table as list."""
 result = []

 for col_num in range(1, self.sheet.max_column + 1):
 if self.sheet.cell(row=1, column=col_num).value == col_name:

112

 col_number = col_num
 break
 else:
 raise IOError("Column '{}' not found in file: {}.".format(
 col_name, self.filename))

 for key_set in key_list:
 entry_set = []

 # If key is not in file
 if not tuple(key_set) in self.key_rows_hash:
 return []

 for row_num in self.key_rows_hash[tuple(key_set)]:
 val = self.sheet.cell(row=row_num, column=col_number).value

 if val:
 if isinstance(val, unicode):
 val = val.encode('ascii', 'ignore')
 entry_set.append(val)
 else:
 entry_set.append('')

 result.append(entry_set)

 return _clean_list(result)

 def get_column_with_aggregation(self, key_list, col_name, aggr_type):
 """Return given column with aggregation from given table as list."""
 result = []

 for col_num in range(1, self.sheet.max_column + 1):
 if self.sheet.cell(row=1, column=col_num).value == col_name:
 col_number = col_num
 break
 else:
 raise IOError("Column '{}' not found in file: {}.".format(
 col_name, self.filename))

 for key_set in key_list:
 entry_set = []

 # If key is not in file
 if not tuple(key_set) in self.key_rows_hash:
 return []

 for row_num in self.key_rows_hash[tuple(key_set)]:
 val = self.sheet.cell(row=row_num, column=col_number).value

 if val:
 entry_set.append(val)

 result.append(_aggregate(entry_set, aggr_type))

113

 return result

114

Rec Tool Output Handler

#!/usr/local/bin/Python
"""
Handles the outputting of found exceptions to an Excel file.

Angelo Gordon
Ben Sharron and Richard O'Brien
Output Handler
"""

from openpyxl.workbook import Workbook
from openpyxl.styles import numbers
from rec_lib.key_exceptions import KeyException
from rec_lib.attr_exceptions import AttrException

def _is_num(val):
 """Return if the value is a number."""
 return isinstance(val, int) or isinstance(
 val, float) or isinstance(val, long)

def _output_column(sheet, col_num, col_name, col_list):
 """Helper function that outputs a column of data into the given sheet."""
 row_num = 1

 sheet.cell(row=row_num, column=col_num).value = col_name

 for col_val in col_list:
 row_num += 1

 sheet.cell(row=row_num, column=col_num).value = col_val

 if _is_num(col_val):
 sheet.cell(
 row=row_num, column=col_num).number_format = (
 numbers.FORMAT_NUMBER_COMMA_SEPARATED1)

def _output_header(header_list, sheet):
 """Output header list."""
 col_num = 1

 for header_val in header_list:
 sheet.cell(row=1, column=col_num).value = header_val
 col_num += 1

class OutputHandler(object):
 """Handler for outputting exceptions and data found during execution."""

115

 def __init__(self, filename):
 """Initialize output state and workbook."""
 self.filename = filename

 self.source_col = 1
 self.target_col = 1

 self.workbook = Workbook()
 self.sheets = {
 'Key Exceptions': self.workbook.active,
 'Attribute Exceptions': self.workbook.create_sheet(),
 'Source': self.workbook.create_sheet(),
 'Target': self.workbook.create_sheet()
 }

 self.sheets['Key Exceptions'].title = 'Key Exceptions'
 self.sheets['Attribute Exceptions'].title = 'Exceptions'
 self.sheets['Source'].title = 'Source'
 self.sheets['Target'].title = 'Target'

 def output_key_header(self, header_list):
 """Output header list for keys."""
 _output_header(header_list, self.sheets['Key Exceptions'])

 self.workbook.save(self.filename)

 def output_attr_header(self, header_list):
 """Output header list for attributes."""
 _output_header(header_list, self.sheets['Attribute Exceptions'])

 self.workbook.save(self.filename)

 def output_key_exceptions(self, key_exc_list):
 """Output key exception list into exceptions sheet."""
 output_row = 2

 key_list = KeyException.get_keys()

 for exc in key_exc_list:
 col_num = 1

 for key in key_list:
 self.sheets['Key Exceptions'].cell(
 row=output_row, column=col_num).value = (
 exc.get_exc_strings()[key])
 col_num += 1

 output_row += 1

 output_row += 1

 self.workbook.save(self.filename)

116

 def output_attr_exceptions(self, attr_exc_list):
 """Output attribute exception list into exceptions sheet."""
 output_row = 2

 key_list = AttrException.get_keys()

 for exc in attr_exc_list:
 col_num = 1

 for key in key_list:
 val = exc.get_exc_strings()[key]

 if _is_num(val):
 self.sheets['Attribute Exceptions'].cell(
 row=output_row, column=col_num).value = float(val)
 self.sheets['Attribute Exceptions'].cell(
 row=output_row, column=col_num).number_format = (
 numbers.FORMAT_NUMBER_COMMA_SEPARATED1)
 elif isinstance(val, str) and len(val) > 0 and val[-1] == '%':
 self.sheets['Attribute Exceptions'].cell(
 row=output_row, column=col_num).value = (
 float(val[:-1]) / 100)
 self.sheets['Attribute Exceptions'].cell(
 row=output_row, column=col_num).number_format = (
 numbers.FORMAT_PERCENTAGE_00)
 else:
 self.sheets['Attribute Exceptions'].cell(
 row=output_row, column=col_num).value = val

 col_num += 1

 output_row += 1

 self.workbook.save(self.filename)

 def output_source_column(self, col_name, col_list):
 """Output given list under given header into source sheet."""
 _output_column(self.sheets['Source'], self.source_col,
 col_name, col_list)
 self.workbook.save(self.filename)
 self.source_col += 1

 def output_target_column(self, col_name, col_list):
 """Output given list under given header into target sheet."""
 _output_column(self.sheets['Target'], self.target_col,
 col_name, col_list)
 self.workbook.save(self.filename)
 self.target_col += 1

117

Rec Tool Translation Handler

#!/usr/local/bin/Python
"""
Module for handling translation for source and target input.

Angelo Gordon
Ben Sharron and Richard O'Brien
Translation Table Handler module
"""

import copy

def _translate(sheet, mapping, column, source_values):
"""Translate list for given sheet and column."""
source_values_copy = copy.deepcopy(source_values)

if sheet.max_row == 1 or column not in mapping:
return source_values_copy

Check for translations
for index, given_name in enumerate(source_values[:]):
if given_name in mapping[column]:
source_values_copy[index] = mapping[column][given_name]

return source_values_copy

def _translate_multiple(sheet, mapping, columns, source_values_list):
"""Translate list of lists for given sheet and columns."""
source_values_list_copy = copy.deepcopy(source_values_list)

if sheet.max_row == 1:
return source_values_list_copy

Check for translations
for source_index, source_values in enumerate(
source_values_list_copy[:]):
for index, (col_name, col_value) in enumerate(
zip(columns[:], source_values[:])):
if col_name in mapping and col_value in mapping[col_name]:
source_values_list_copy[source_index][index] = (
mapping[col_name][col_value])

return source_values_list_copy

def _get_mapping(sheet):
"""Get mappings of column names to sheet rows for both sheets."""
mapping = {}

Iterate through all source file rows
for row_num in range(2, sheet.max_row + 1):
row_column = str(sheet.cell(row=row_num, column=1).value)

118

row_source_value = str(sheet.cell(row=row_num, column=2).value)
row_target_value = str(sheet.cell(row=row_num, column=3).value)

if isinstance(row_column, unicode):
row_column = row_column.encode('ascii', 'ignore')

if isinstance(row_source_value, unicode):
row_source_value = row_source_value.encode('ascii', 'ignore')

if isinstance(row_target_value, unicode):
row_target_value = row_target_value.encode('ascii', 'ignore')

if row_column not in mapping:
mapping[row_column] = {row_source_value: row_target_value}
else:
mapping[row_column][row_source_value] = row_target_value

return mapping

class TranslationTableHandler(object):
"""Handler for translation table instance."""

def __init__(self, source_trans_sheet, target_trans_sheet):
"""Initialize workbook, as well as the separate sheets."""
self.source_sheet = source_trans_sheet
self.target_sheet = target_trans_sheet

self.source_mapping = _get_mapping(self.source_sheet)
self.target_mapping = _get_mapping(self.target_sheet)

def translate_source(self, column, source_values):
"""Translate column in source sheet."""
return _translate(
self.source_sheet, self.source_mapping, column, source_values)

def translate_target(self, column, source_values):
"""Translate column in target sheet."""
return _translate(
self.target_sheet, self.target_mapping, column, source_values)

def translate_source_multiple(self, columns, source_values):
"""Translate multiple columns in source sheet."""
return _translate_multiple(
self.source_sheet, self.source_mapping, columns, source_values)

def translate_target_multiple(self, columns, source_values):
"""Translate multiple columns in target sheet."""
return _translate_multiple(
self.target_sheet, self.target_mapping, columns, source_values)

119

12 APPENDIX D: EXTENSION OF HIGH SPEED EQUITIES TRADING
RESEARCH STUDY

1. Introduction

 In January 2015, Hans R. Stoll published a study in the Asia-Pacific Journal of Financial

Studies examining High Speed Equities Trading, A.K.A. High Frequency Trading (HFT), and its

effect on the general market during the years 1993 to 2012 (Stoll, 2015). This appendix seeks to

examine Stoll’s study and attempt to replicate and extend a number of his findings using

publicly and freely available data. In particular we aim to expand his observations through the

most recent few years to determine if the conclusions that he had drawn remain relevant and

accurate in the context of this new information. While Stoll used data from both the New York

Stock Exchange (NYSE) and Nasdaq/OMX to support his claims of the effect that HFT has on the

market, our team focuses only on collecting and analyzing data from the NYSE which would

both limit the scope of our research and allow more focus on extending the existing conclusions

to the current day. Our conclusions are drawn from this research and seek to bolster the

conclusions Stoll formed as well as introduce our own analysis of the data to determine the

implications of HFT on the greater market.

120

2. Background

 With the rise of computing technology, and the introduction of this technology into the

financial sector, a family of algorithmic trading strategies known broadly as High-Frequency

Trading (HFT) emerged. This set of strategies takes advantage of electronic trading tools that

have replaced human brokers, as well as low-latency technology and high-speed connections to

perform trades precisely and efficiently. These tools allow traders to implement new

techniques such as algorithmically trading short-term positions quickly and in high volumes to

make a profit on the minute margins of change in equity prices. They also, however, allow

techniques such as “quote stuffing” which attempts to deny information to other traders by

overwhelming the trade queue with quotes that are then rescinded at the last minute. These

strategies, and other derived strategies, however, have been criticized as contributing factors to

so-called “flash crashes” that have cost investors trillions of dollars.

 One of the more well known flash crashes was the crash of May 6, 2010. In less than an

hour, securities such as the Dow Jones, Nasdaq Composite, and S&P 500 all collapsed and

rebounded very quickly; the Dow Jones in particular dropped more than 600 points before

rebounding. Nobody expected or could predict the 2010 flash crash. One of the most discussed

potential reasons for the flash crash is HFT, since one can execute a technique in HFT where the

computer program would set up a large trade to be placed, but then cancel it at the very last

second. This technique known as quote stuffing, as previously defined, allows traders to

artificially manipulate the market. It can also disrupt the market and cause extreme anomalies

as seen in the 2010 flash crash.

121

3. Data

 To investigate the effect of HFT on the market, and to replicate as well as extend Stoll’s

research paper, our team analyzed data from the New York Stock Exchange (NYSE), both for the

full exchange and individual equities. Due to time constraints as well as the resources available

to us, we chose to only extend the study’s analysis for the NYSE rather than also including

analysis on the Nasdaq as seen in Stoll’s paper. In order to reproduce the results from the

study, the team examined 300 total NYSE stocks with data available from 1993 until present;

we grouped 100 stocks from each of three market capitalization groups: large, mid, and small

cap. Market capitalization is calculated by multiplying a company’s shares outstanding by the

current market price of one share (Market Cap, 2016). This data was pulled and analyzed from

Yahoo Finance using python scripts to access their API. We then used the available data for

these stocks to calculate several relevant measures to determine the potential impact of HFT

on the NYSE during this time. The result of the team’s investigation follows.

122

4. Trade size and trade frequency

 The first measurement the team attempted to replicate from the study was the change

in average trade size of transactions on the NYSE during the period in question. Since the

requisite data to calculate this measure for individual stocks was not freely available, the team

compromised to compare Stoll’s study’s findings to our examination of trade size changes

across the entire exchange of the NYSE. We used the data available on the NYSE’s website

(NYSE, 2016) to find the daily values for the amount of available shares in the exchange and the

amount of trades on the given day. We had to concatenate the 1993-2000 data with the recent

2000-present data in order to consider all values. The average trade size on a given day was

calculated by taking of the total amount of shares available and dividing by the amount of

trades done. The average trade size in shares is plotted for comparison and analysis in Figure 1.

123

Figure 1: Average trade size across the NYSE for years 1993-2015

It’s worth noting the spike anomaly in our graph at around the beginning of 2004. This is

due to an inconsistency in the data that is provided by the NYSE through the Consolidated Tape

Association (CTA) which provides “supplemental” trade data for trades prior to January 2004,

but not for trade data after this date. This inconsistency manifests itself as a sharp jump in the

calculated Average Trade Size at that time due to a decrease in the reported number of trades

performed.

When looking at the overall trend of the NYSE’s average trade size across time, Stoll’s

research paper found a steady decrease in recent years in average trade size. This correlates

with an increase in the use of algorithms to perform trades quickly as well as a decline in the

auxiliary costs in performing trades that would allow for traders to perform a higher number of

124

smaller volume trades. Fortunately, ignoring the spike in the beginning of 2004, our data fits

this trend as well, demonstrating that the effect is consistent even across the exchange as a

whole and in the recent years of 2012-2015.

125

5. Effect of high frequency trading on market quality

5.1 Bid-Ask spread

One of the suggested effects of the introduction of high speed trading was a decrease in

the bid-ask spread on average. The Stoll paper suggests a trend downwards with a sharp

decline in 2001 that they attribute to a switch from fractional to decimal stocks, and a general

downward trend thereafter.

In order to calculate bid-ask spread we used an estimator as described in Corwin and

Shultz’s research paper using daily high and low prices (Corwin et al., 2012). As seen in Figure 2,

we do not see a similar dramatic drop in 2001 that was attributed to a change from fractional

to decimal pricing, which may be a result of the estimator assuming that bid-ask spread is

continuous rather than discrete. We do however see, from 2003 to 2007 bid-ask spread is

mostly constant, and after 2010 it is as well, which suggests that even with the introduction and

adoption of high speed trading, we do not see a significant drop in the average bid-ask spread

in the market. This matches Stoll’s observation that “there is no indication that spreads

increased after 2005 as HF trading became more common,” (Stoll, 2015, p.777). We do see a

slight downward trend for bid-ask spread for the high-cap group continuing after 2013, which

may suggest an effect, however note that the decrease is seen after average trade size has

stabilized.

126

Figure 2: Percentage spread of Corwin-Schultz bid-ask estimator.

5.2 Volatility

In a similar vein to Stoll’s paper, we wanted to see if the effect of HFT has any effect on

volatility in the market, especially when looking at recent years. Generally speaking, one would

guess an increase in volatility because of the large and rapid amount of trades occurring during

HFT. One of the methods of calculating volatility that Stoll used was to compute the intra-day

variance of trade-to-trade prices and then average them for the designated month.

Unfortunately our team did not have access to intra-day data for our chosen stocks. We

decided to use the second method from Stoll’s paper which involves calculating variance of

daily stock returns.

For each of the market cap stock groups, we retrieved the daily close prices and

calculated the average of all the stocks for a designated day. We then calculated the 365-day

variance of our average daily close prices and plotted our results across time as seen in Figure

3.

127

Figure 3: Variance of daily NYSE stock returns.

When comparing our figure to Stoll’s daily variance volatility graph, our figure follows

the same general trend. From just looking at the high cap stocks, the dot-com bubble and the

2007-2008 financial crisis are very pronounced. The stock volatility generally hovers around the

average close price variance of 10, with the exception of anomalies. Our volatility analysis

suggests that HFT can be correlated with the gradual increase in volatility over the recent years.

128

6. Conclusion and comments

 Although the introduction of electronic trading began around 1999 after electronic

exchanges were authorized by the Securities and Exchanges Commission in 1998 (SEC), it is

important to remember that the introduction and usage of HFT started becoming more

prevalent around 2005. Taking this into consideration and when looking at the average trade

size trend, the average trade size has decreased as expected. This downward trend coincides

with the introduction and continued adoption of HFT. We also can observe that the average

trade size reaches a level of saturation after the 2007-2008 financial crisis. One might infer that

for the average trade size to reach this steady level, the proportion of traders who use HFT has

plateaued, leading to a stability in this measure.

When looking at our results for bid-ask spread, although our analysis used a bid-ask

estimation formula, it is clear that bid-ask spread has stayed steady since the introduction of

HFT around 2005 - ignoring the 2007-2008 crisis anomaly. Even in the years of increased HFT

adoption in the later years, bid-ask spread does not seem to correspond with the adoption of

HFT.

In regards to HFT’s effect on volatility on the NYSE, it can be inferred from our volatility

analysis that HFT could be a factor in the gradual increase in volatility on the overall market.

After 2005, even when ignoring the spike of the financial crisis, volatility has steadily increased

across the recent years. This can be correlated with the increase in trade activity thanks to the

rapid nature of HFT.

 We can therefore conclude that there is no evidence that the introduction of HFT has a

meaningful, negative impact on the market, at least in the case of the NYSE and based on the

129

measurements we have examined. Our result is consistent with the result of Stoll’s paper

where he also concludes that HFT failed to have a negative effect on the market.

130

References:

Corwin, Shane A., and Paul Schultz, 2012, “A simple way to estimate bid-ask spreads from daily
high and low prices”, Journal of Finance, 67, pp. 719–759.

Market Capitalization Definition. Website. Retrieved from:
http://www.investopedia.com/terms/m/marketcapitalization.asp

Quote Stuffing Definition. Website. Retrieved from:
http://www.investopedia.com/terms/q/quote-stuffing.asp

NYSE Data Library. Website. Retrieved from: https://www.nyse.com/data/transactions-
statistics-data-library

(SEC) SECURITIES AND EXCHANGE COMMISSION, “Regulation of Exchanges and Alternative
Trading Systems”, 17 CFR Parts 202, 240, 242 and 249, Release No. 34-40760; File No. S7-12-98;
RIN 3235-AH41. Retrieved from: https://www.sec.gov/rules/final/34-40760.txt

Stoll, H., 2015, “High Speed Equities Trading: 1993–2012”, Asia-Pacific Journal of Financial
Studies, 43, pp. 767-797.

http://www.investopedia.com/terms/m/marketcapitalization.asp
http://www.investopedia.com/terms/q/quote-stuffing.asp
https://www.nyse.com/data/transactions-statistics-data-library
https://www.nyse.com/data/transactions-statistics-data-library
https://www.sec.gov/rules/final/34-40760.txt

	ABSTRACT
	ACKNOWLEDGEMENTS
	EXECUTIVE SUMMARY
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	1 CHAPTER 1: INTRODUCTION
	1.1 Current Process
	1.2 Problem Statement
	1.3 Quick Rec Tool Overview
	1.4 Purpose

	2 CHAPTER 2: BACKGROUND INFORMATION
	2.1 Python
	2.2 SQL
	2.3 Hedge Funds
	2.4 Angelo Gordon
	2.5 Loan Trading
	2.6 Data management
	2.6.1 Quantity of Data
	2.6.2 Implementing Standards

	3 CHAPTER 3: METHODOLOGY
	3.1 Planning and Analysis
	3.1.1 Version management
	3.1.2 Feasibility
	3.1.3 Discussions With Potential Users

	3.2 Design
	3.2.1 Balancing Usability With Functionality.
	3.2.2 Setting Direction
	3.2.3 Front End
	3.2.4 Human or Automated Mismatch Correction

	3.3 Development
	3.3.1 Creating The Loan Pool Name Reconciliation Tool
	3.3.2 Integrating a Configuration File
	3.3.3 Choosing Input Types
	3.3.4 Creating The Output File
	3.3.5 Email Reporting
	3.3.6 Integrating a Translation Table
	3.3.7 Reconciling On Multiple Attributes
	3.3.8 Reconciling Numeric Values
	3.3.9 Aggregation
	3.3.10 User Reporting
	3.3.11 Adding SQL Preprocessor
	3.3.12 Reducing Runtime
	3.3.13 Refactoring and Commenting the Code

	4 CHAPTER 4: IMPLEMENTATION
	4.1 Testing
	4.1.1 The Testing Process
	4.1.2 Mock Data Testing
	4.1.3 Real Data Testing
	4.1.4 Sponsor Testing

	4.2 Documentation
	4.2.1 The Purpose and Process of Documentation
	4.2.2 Internal Documentation
	4.2.3 Written Documentation
	4.2.4 Use Cases

	5 CHAPTER 5: RESULTS
	5.1 Finished Product
	5.1.1 Logic Overview
	5.1.2 Final Functionality
	5.1.3 Final User Interface

	6 CHAPTER 6: CONCLUSION
	6.1 Limitations
	6.1.1 Two Table Reconciliations
	6.1.2 SQL Statements
	6.1.3 Recognizing Logical Groups with No Logical Pair

	6.2 Extension
	6.2.1 Ability to Reconcile More Than Two Tables
	6.2.2 Recognizing Logical Groups
	6.2.3 GUI For Configuration and Execution

	6.3 Recommendations

	7 INDEPENDENT STUDIES FOR THE PROJECT
	7.1 Richard O’Brien
	7.1.1 Independent Computer Science Studies

	8 WORKS CITED
	9 APPENDIX A: DOCUMENTATION
	9.1 Program Document
	9.2 Software Document
	9.3 Use Case Document

	10 APPENDIX B: WEEKLY STATUS REPORTS
	11 APPENDIX C: CODE FOR QUICK REC TOOL
	12 APPENDIX D: EXTENSION OF HIGH SPEED EQUITIES TRADING RESEARCH STUDY

