
Risk Measures Extracted from Option Market Data Using

Massively Parallel Computing

A Professional Master’s Project

Submitted to the Faculty of the

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Professional Degree of

Master of Science

in

Financial Mathematics by

Min Zhao

April,2011

Approved:

Professor Domokos Vermes, Advisor

Professor Bogdan Vernescu, Head of Department

Abstract

The famous Black-Scholes formula provided the first mathematically sound

mechanism to price financial options. It is based on the assumption, that daily

random stock returns are identically normally distributed and hence stock prices

follow a stochastic process with a constant volatility. Observed prices, at which

options trade on the markets, don’t fully support this hypothesis. Options

corresponding to different strike prices trade as if they were driven by different

volatilities.

To capture this so-called volatility smile, we need a more sophisticated

option-pricing model assuming that the volatility itself is a random process. The

price we have to pay for this stochastic volatility model is that such models are

computationally extremely intensive to simulate and hence difficult to fit to

observed market prices. This difficulty has severely limited the use of stochastic

volatility models in the practice.

In this project we propose to overcome the obstacle of computational

complexity by executing the simulations in a massively parallel fashion on the

graphics processing unit (GPU) of the computer, utilizing its hundreds of parallel

processors.

We succeed in generating the trillions of random numbers needed to fit a

monthly options contract in 3 hours on a desktop computer with a Tesla GPU.

This enables us to accurately price any derivative security based on the same

underlying stock. In addition, our method also allows extracting quantitative

measures of the riskiness of the underlying stock that are implied by the views of

the forward-looking traders on the option markets.

Acknowledgement

With great pleasure, I would like to give special thanks to my advisor, Professor

Domokos Vermes, for his guidance, support and encouragement during the 2

years of my graduate study at WPI. I also wish to thank Professor Marcel Blais

and Professor Hasanjan Sayit, for all the great lectures they gave about financial

mathematics.

Contents

1. Background

1.1 Volatility of risky investments

1.2 European style options

1.3 Black-Sholes-Merton model

1.4 Implied volatility

1.5 Monte Carlo option pricing

1.6 Numerical solution of SDE’s (Euler scheme)

1.7 Stochastic volatility model

2. Statement of the problem and its main challenges

2.1 Deviation of the BSM model from the reality

2.2 Goal and purpose

2.3 Challenges

3. Proposed approach

4. Use of massively parallel computing

4.1 The need for high performance parallel computing

4.2 GPU computing and CUDA

4.3 Performance optimization

5. Use of penalty functions (soft constraints) and data smoothing

5.1 The structure of output files

5.2 Penalty functions

5.3 Smoothing input data

6. Results and findings: Measures of risk

6.1 Return distribution and risk measures

6.2 Evolution of return distributions and risks over time

6.3 Comparison of return distributions across different stocks

7. Results and findings: Comparison between different models

7.1 Introduction to Heston model

7.2 Comparison between Heston model and OU model

7.3 Further discussion

8. References

1. Background

1.1 Volatility of risky investments

For risk-free investments, such as treasury bonds, we often describe its return

using the following differential equation: /t tdB B rdt . Here /t tdB B means

the relative return of the bond during the infinitesimal period dt , and r is the

interest rate.

For risky investments, like stocks, we need an extra term to model the

uncertainty of their returns. The dynamics of the stock returns become the

following stochastic differential equation:
/t t tdS S rdt dW 

. Here tW

refers to the standard Brownian motion, which is a stochastic process with

continuous path and independent increment
~ (0,)t sW W N t s 

;  is known

as the volatility, it is defined as the standard deviation of the stock return over

a certain period (often a year). Commonly, stock returns will fluctuate more

with higher value of volatility.

1.2 European style options

A European call option is a financial contract between two parties: at a

prescribed time in the future (known as the time of expiry T), the holder of the

option has the right (but not the obligation) to purchase a underlying asset (like

stock) at a prescribed amount (known as a the strike price K); while the writer

of the contract has the potential obligation to sell the underlying asset if the

holder wants to buy. The payoff of a European call option at expiry takes the

form: max(,0)TS K .

A European put option has similar conditions as a European call, except that

the holder has the right to sell the underlying asset to the writer at expiry at

strike price. The payoff of a European put option at expiry takes the form:

max(,0)TK S .

“Moneyness” is defined to be the ratio of strike K over the current underlying

price tS . If the option could be exercised at the current time t for a positive

payoff for the holder (i.e. tK S for a call or tK S for a put), then the

option is called to be “in-the-money”. The opposite case when an option is not

to be exercised (i.e. tK S for a call or tK S for a put) is called to be

“out-of-the-money”. Out-of-the-money options are often traded by investors to

hedge against large losses. Finally, “at-the-money” (ATM) refers to the case

when the strike price is equal to the current underlying stock price

(moneyness=1).

1.3 Black-Scholes-Merton model

Black-Scholes-Merton (BSM) model provided the first mathematically sound

formula to price European style option. In this model, the dynamics of the

underlying stock return take the form /t t tdS S rdt dW 
, where the drift r is

the risk-free rate of return, and the volatility  is assumed to be a constant.

This is equivalent to say that the stock price process is a Geometric Brownian

Motion and implies that the stock return at time t is normally distributed with

mean rt and variance 2t .

Under these assumptions, one can derive explicit formulas to price European

options written on stock tS with strike K and expiry T . The price of a European

call option at time t is ()

1 2(,) () () r T t

t tC S t N d S N d Ke   , while the price of a

European put option at time t is ()

2 1(,) () ()r T t

t tP S t Ke N d S N d    , where N()

is the cumulative density function for a standard normal distribution, and,

2

1

ln(/) (/ 2)()tS K r T t
d

T t





  




2

2

ln(/) (/ 2)()tS K r T t
d

T t





  




Notice that when we choose certain strike price and expiry, the

Black-Scholes-Merton formula becomes a one-to-one correspondence between

option price (C or P) and volatility  : option price= (, , , ;)BSM tf S t K T  . The

option price will be higher if the underlying stock price (or return) is more

variable (i.e. has higher volatility ).

1.4 Implied volatility

Given the observed European option price obsV for a contract with strike price

K and expiry T, the implied volatility IV is defined to be the value of the volatility

parameter that must go in to the BSM formula to match this observed price:

(, , , ;)obs

BSM tV f S t K T IV

If the BSM model is accurate, we must have (, , ,)tIV t S K T  for any K and T.

But this does not hold for real-life market prices.

1.5 Monte Carlo option pricing

The Monte Carlo estimator of option price is the average of discounted payoff

under the arbitrage-free martingale measure. The algorithm looks like:

Step1: Get N random samples of TS , (1) (2) (){ , ,..., }N

T T TS S S (If TS follows

certain distribution, generate directly from this distribution; If not, simulate N

trajectories of the process under martingale measure to get the end price

()i

TS)

Step2: Calculate the payoff () ()()i i

T TV payoff S for each i.

Step3: The option price at time t=0 is estimated to be ()

0

1 N
rT i

T

i

e V
N





 , where

rTe is the discount factor.

The Law of Large Numbers ensures that this estimation converge to f(X) when

N  , while the Central Limit Theory shows that the error of this estimation

is (1/)O N .

1.6 Numerical solution of SDE’s (Euler scheme)

To simulate the trajectory of a random process X, (,) (,)t t tdX f t X dt g t X dWt  ,

over the time interval [0,T], one simple way is to use the Euler scheme. To do this,

we discretize the interval in to N subintervals and denote T/N by t ,

it i t  ,i=0,1,…N.

To estimate the value of X at time it , based on the information from the

previous time step 1it  , the Euler scheme provides the following formula:

1 1 1 11 1(,) (,)()
i i i i i it t i t i t t tX X f t X t g t X W W

         .We assume that the value of X

at time 0 is 0X .

Euler scheme is strongly convergent with order 1/2, which indicates that

1/2

0| () () | , ,E X T X T C T        . Here X is the time-discretized

approximation of the continuous-time process X, with  as the maximum time

increment of the discretization.

1.7 Stochastic volatility model

Instead of assuming the volatility to be a constant, a more sophisticated but

realistic approach is to treat volatility as a random process tV . Commonly, we

choose tV to be a mean-reverting process, like the Ornstein–Uhlenbeck (OU)

process, the dynamic of which takes the form ()t t tdV m V dt dW    . Here

 represent the speed of reverting, while m and  represent the mean and

volatility of the OU process respectively.

Under the risk-neutral martingale measure, the stochastic volatility model looks

like:

 (1)

t t tdS rdt dW 

 | |t tV 

 (2)((,))t t tdV m V g dt dW      

Note that there is an extra term appears in the drift of OU process to satisfy the

no-arbitrage condition of the market. Here represents the market price of

volatility and  represents the correlation between the two Wiener process

(1)

tW and (2)

tW that drive the stock process and respectively. And (,)g   can

be written as 21
t

r
  




  .

2. Statement of the problem and its main challenges

2.1 Deviation of the BSM model from the reality

As said earlier in chapter 1.4, the BSM’s assumption about constant volatility

does not hold in general. Instead, we can observe a pattern called “volatility

smile” from real option market. Keeping parameters tS , t and T fixed, solve

(, , , ;)obs

BSM tV f S t K T IV for the implied volatility IV for pairs of corresponding

strike price K and observed option price obsV values. We get a function of IV

with respect to K (or K/ tS). The graph of this function, also called as “volatility

smile curve”, is typically downward sloping when K is smaller than or near to the

current stock price tS (moneyness1), while it is upward sloping for K greater

than tS (moneyness>1) as shown in figure 2.1.

Figure 2.1 Volatility smile curve

The BSM model also assumes that the underlying stock returns follow Normal

distribution (mentioned in chapter 1.3). This assumption is often violated in

practice. The common opinion in finance is that Normal model tends to

under-evaluate investment risk – extreme cases are more likely to happen than

that predicted by Normal distribution. Tremendous losses, such as market

crashes, would happen with a probability close to 0 in a “Normally distributed

world”. But in reality, we experienced market crashes approximately every 10

years. Hence, the real returns of stocks should have heavier tails than the normal

distribution as shown in figure 2.2, which allocate more probabilities to large

losses and large gains.

Figure 2.2 Real stock return (histogram) compared to normally distributed return (black

curve)

2.2 Goal and purpose

Volatility smile is something we can observe from the option market and heavier

tails of return distributions are what we expect in stock market – these two

should be connected in the real world. The major goal of this project to is to find

the heavy-tailed distribution that yields the correct smile curve as observed from

the option market data.

Once we have determined the real return distributions, we can extract useful

information about the underlying stocks form it. Risk measures, such as

Value-at-Risk (VaR) and Expected Shortfall (ES) can be calculated directly from

those distributions. Notice that the future return distributions determined this

way contain the perceptions of option market participants. As a result,

information from such distributions can be very helpful for investors to better

manage the investment risk.

2.3 Challenges

The real return distributions are very difficult to determine statistically. First of all,

they belong to no known parametric families. The only information we know is

that the distributions have heavy tails. Second, since the tails represent rare

events, to correctly estimate them, extremely large number of outcomes are

needed. For example, if the market crashes happened once every ten years, to

correctly determine the probability of crashes statistically, one needed stock

market data for more than 100 years, which is impossible. Also, it’s inappropriate

to use data from a long time ago to estimate the future distribution.

3. Proposed approach

The idea of the proposed approach is to get return distributions by fitting

suitable model to the option market data. The “suitable model” here refers to

the stochastic volatility model mentioned in chapter 1.7, which provide the

dynamics for both the stock process and volatility process:

(1)

t t tdS rdt dW  , | |t tV 

(2)((,))t t tdV m V g dt dW      

How can we choose those parameters appear in the SDEs ? The answer is to

use the “inverse approach”: we first build the model with the parameters as

unknown variables, and then keep changing the parameters iteratively,

implement the model and get several outcomes based on various sets of

parameters. In this process, there will be one special set of parameters which

brings the outcome closest to our target outcome. This is the set of parameters

we want to use for the model.

For the inverse problem in this project, the “outcomes” are the smile curves

computed from the stochastic volatility model and the “target outcome” is the

smile curve observed from option market data. The detailed steps can be

explained by the following flow chart:

Figure 3.1 Flow chart of the model fitting approach

The outer-most loop in the flow chart represents the model-fitting process. Once

we input a set of parameters, we will get a smile curve from simulation and

compare it to the market smile curve. To determine how close the two curves

are, we construct an objective function ()f x , here (, , , ,) 'x m    . If

1 2{ , ,... }pa a a are the p points that form the market smile curve and

1 2{ (), (),..., ()}pb x b x b x are the corresponding p points that form the simulated

smile curve using parameter vector x , then the value of the objective function is

2

1

() (())
p

i i i

i

f x w a b x


  , where the iw are some constants representing the

weights we want to give to the various points. We fit the model to the market

data by finding the “optimal” parameter vector x that minimizes the objective

function f. Computationally, we find the optimal parameter vector using the

Nelder-Mead multi-dimensional iterative optimization algorithm implemented in

the R computational statistics environment. The advantage of the Nelder-Mead

method is that it is robust and uses only function value of ()f x , requires no

derivatives. However, the convergence is relatively slow; it often requires

800-1200 iterations to find the optimum.

The middle loop of the flowchart implements Monte Carlo option pricing (with

sample size N) as described in chapter 1.5. Notice that once we change the

volatility term in the SDE of the stock process from a constant to a random

process, we no longer know the distribution of the stock price at expiration date.

The only way to get () , 1,2,...i

TS i N is to simulate the whole trajectory of the

stock process. That is why we have the inner-most loop, which represents the

simulations of the trajectories for both the volatility process and the stock

process. The simulation is done by the Euler scheme mentioned in chapter 1.6.

To sum up, in each of the 800-1200 optimization iterations, Monte Carlo method

needs to be done with sample size N, and each of the N samples requires the

simulation of M points on the trajectories for volatility and stock processes.

Overall, the whole inverse approach is extremely compute intensive, mainly due

to the fact that N need to be as large as 1 million to accurately reflect the tails of

the return distribution.

4. Use of massively parallel computing

4.1 The need for high performance parallel computing

In chapter 3, we introduced the model-fitting approach. Once we get the set of

optimized parameters, we can use them to simulate the stock price process and

then get the future return distribution. Note that those parameters and

corresponding distribution vary among different stocks, and they are also

changing over time. If we want to manage the risk of a portfolio that contains

several stocks in a timely manner, the whole model-fitting process (as described

in the flowchart) is needed to be redone many times. Thus, it is curial that a

single model-fitting process (for one stock and one day) can be done within a

reasonably short time.

If we implement our model on the CPU, computing the steps in the three layers

of loops sequentially, the time to find the set of optimized parameters for one

stock and one day would be 75 hours (about three days). Obviously, this

approach is not feasible because we may miss the best opportunity to adjust the

portfolio and the anticipated future return distribution may have already

changed during these 3 days.

The reason why this process is so time-consuming is that the sample size N of the

Monte Carlo simulation needs to be as large as 1 million. But one good thing is

that the sample paths are independent of each other, thus, the Monte Carlo

option pricing loop in the model-fitting process can be parallelized. That is,

instead of simulating N stock price paths one after another, we want to simulate

them simultaneously. To do this, we introduce massively parallel GPU computing

in to our project.

4.2 GPU computing and CUDA

A GPU (graphic processing unit) has far more processing cores than a common

CPU has. With a limited number of sophisticated ALUs (algorithm and logic units),

a CPU is most suitable to perform fast sequential operations. In contrast, GPU is

designed to process multiple pixels at one time and has hundreds of parallel

cores, which is ideal for data-parallel operations. In our case, the Monte Carlo

path generations are exactly “data-parallel operations”: the generation of each

path is using same commands (Euler scheme) but must be executed on different

data (normally distributed increments).

Controlling the GPU requires specialized software tools and language. We use

Nvidia’s CUDA (Compute Unified Device Architecture), which is an extension to

the standard C language, and some other tools like nvcc CUDA –C compiler, CUDA

runtime and mathematical libraries. Briefly speaking, CUDA provided a way that

one could compile some kinds of special programs in Visual Studio, which will be

executed on GPU. This is done by “kernel calls”. A “kernel” in CUDA refers to a

special type of function which will be running on GPU but can be invoked by CPU

code. Once a kernel function is called, a grid of parallel threads will be generated

by CUDA, and they are further equally divided into blocks. One block of threads

will be assigned to the same stream multi-processor and execute the same

commands. In our case, each thread is responsible for the simulation of one

volatility trajectory and one stock trajectory. Thus, our kernel function needs to

generate 1 million parallel threads.

4.3 Performance Optimization

To achieve best performance on GPU, several steps of optimization are needed to

be done.

First of all, one needs to choose appropriate size for blocks. The goal is that there

must be an overwhelming number of blocks to saturate GPU processors with

jobs waiting for execution. Yet, choosing the number of blocks to be the

maximum 1 million is still not good enough. Previously, we introduced that block

is the unit for thread organization. But in terms of thread execution, the unit is a

“warp” and each warp contains 32 threads. Thus, the dimension of one block is

best to be the multiple of 32. In our project, we choose the number of threads in

one block to be 32 and there will be 31250 of such blocks in total.

Secondly, we need to make good the use of high speed on-ship memory, also

known as shared memory. In our Monte Carlo path generation, the first step is to

generate the normal distributed increments (dW) for both the volatility and stock

processes. Altogether, there will be 2*1million*256 such increments (of float

type) generated and stored in GPU global memory. For each thread to complete

the simulation of an entire volatility path and an entire stock process, it has to

visit the global memory for 2*256 times to get the increments, which is a great

waste of time. One approach is to upload those random increments into high

speed shared memory. It is much faster for threads to access on chip shared

memory than global memory. However, for each block, the size of shared

memory is limited to be 16384 bytes (4096 floats), it is impossible for each

thread to upload all the increments it need to complete the whole path

simulation at a time, given that there are 32 threads in each block. The solution

is to divide the path generation (containing 256 time points) into 8 stages. At the

beginning of each stage, we upload the 2*32*32 random increments need for

this stage in to the pre-allocated shared cache, and then begin the simulations

using the end values from previous stage as the initial values. To get around the

limited resources of shared memory, replacements are done in place – that is,

the random increments in shared cache are gradually replaced by the simulated

trajectories. After each stage, the end value of stock process and volatility

process are stored and the shared cache is then filled with random increments

for the next stage.

Finally, we need to coalesce global memory access to reduce effects of high

memory latency. Although we have made good use of high speed shared

memory, we still need to access to global memory 8 times to simulate the entire

trajectories. To speed up this process, the best thing we can do is to let the 32

threads in a block accessing the 32 continuous addresses in the global memory –

this is known as the memory coalescing technique.

After these improvements, to finish the whole model-fitting process for one

stock and one day, it only takes 15 minutes when we implement the Monte Carlo

path generation part into parallel GPU computing. There’s an approximately 300

times speed-up compared to the one done purely by CPU.

5. Use of penalty functions (soft constraints) and data

smoothing

5.1 The structure of output files

The high performance GPU computing introduced in Chapter 4 made it possible

to implement the model-fitting process for several stocks each day in real time.

Below is a snap shot of the one of the output file:

Ticker MSFT

Expiry 8/17/2007

Current Date 7/6/2007 7/9/2007 7/10/2007 7/11/2007 …

Input

DTM 30 29 28 27 …

Interest Rate 0.0118306 0.027561 0.0317223 0.03949 …

S0 29.97 29.87 29.33 29.49 …

Strike prices (vector) …

Market IV (vector) …

Output

Optimized IV (vector) …

Objective

Value

1.31E-05 3.65E-05 7.58E-05 5.06E-05 …

gamma 0.2638264 0.239423 0.0640914 0.262009 …

rho -0.149856 -0.15625 -0.165675 -0.18285 …

alpha 2.6915851 2.463546 2.3344001 2.297636 …

m 0.0211545 0.063173 0.0772335 0.098175 …

beta 0.4719973 0.438384 0.3945709 0.390613 …

Table 5.1

This is an example of the contract MSFT-08/17/2007. Each column represents

the result from fitting the model for one stock (MSFT) and for one day (Current

Date). Begin with days to maturity (DTM) =30 and moving towards the expiry, we

observed different stock prices (S0), market implied volatility (Market IV) each

day and use them as input. Then, in the second part of the table, we get the

optimized parameters (gamma,rho,alpha,m,beta) and their corresponding

simulated implied volatilities (Optimized IV) for each data date.

To get reasonable optimized parameters and to further obtain stable risk

measures (which will be explained in Chapter 6) for each date, we need to

employ two special techniques: using penalty functions and smoothing inputs.

5.2 Penalty functions

Previously in Chapter3, we have constructed an objective function, f (gamma,

rho, alpha, m, beta), and we said that the way to found the optimized set of

parameters is to plug f into the Nelder-Mead optimizer. The Nelder-Mead

optimizer is stable for non-differentiable objective functions, like our f(), but one

drawback is that this method does not accept constraints on parameters. That is,

for each parameter, it is possible for it to go from negative infinity to infinity,

which is unwanted.

In our case, some of the parameters must be bounded to ensure reasonable

simulations. Firstly, the parameter “m” represents the mean value of the

volatility process, which should be positive. Secondly, the parameter “rho”

represents the correlation between stock price and the level of volatility in the

market, thus must be negative. Finally, the parameter “gamma” represents the

market price of stochastic volatilities. Although it is hard to say the “gamma”

should be bounded within some specific values, intuitively, “gamma” cannot be

too large and we can conclude from past experience that large “gamma” will

cause troubles thus it is unwanted.

Although sometimes we could get simulated smile curve very close to the market

one based on negative “m”, positive “ rho” or very large “gamma”, those

optimized parameters go against their financial meanings, and will cause troubles

later on when we use them to measure the risk.

Since we are unable to add hard constraints like “m>0” to the optimizer, one way

to bounded the optimized parameters is to use penalty function, also known as a

“soft constraint”. To do this, we plug into the optimizer a new function g(gamma,

rho, m, alpha,beta), which is constructed by :

g(gamma, rho, alpha, m, beta)

=f(gamma, rho, alpha, m, beta)+P(gamma, rho, m).

Here P() is the penalty function, which is a weighted sum of the three individual

penalties for gamma, rho and m. Since we want to minimized the value of g(),

once a parameter goes beyond its proposed boundary, the P() function will take

on positive values, which slow down the minimizing of g(). By doing this, large

“gamma”, positive “rho” and negative “m” will be punished during the

optimization process. In addition, care is taken to assure that the distance f and

penalty P components of the penalized objective are of comparable size.

The soft constraint technique made it possible for us to obtain reasonable

optimized parameters. Notice that in the table shown at the beginning of

Chapter 5, the numbers in row “gamma” are all reasonably small and we have all

negative numbers in row “rho”, positive numbers in row “m”.

5.3 Smoothing input data

Not all the market-observed implied volatilities (or option prices) can reflect the

real market condition accurately. Say, at a specific day, the trading volume of a

MSFT option with certain strike price can be very small, which results in odd

value of implied volatility. To diminish that kind of effect, we are using the

technique called input smoothing. The idea is simple: instead of inputting the

market implied volatilities for one day into the optimization process, we input

the average of a week’s implied volatilities. For example, the “mktIV” at DTM=30

in the table is actually the average of the market implied volatility from five days:

DTM=30,31,32,33,34; and the “mktIV” at DTM=29 is the average from

DTM=29,30,31,32,33; so on and so force.

If intra-day option and stock prices are available, then the averaging can take

place over the implied volatilities observed during the same day.

6. Results and findings: Measures of risk

6.1 Return distribution and risk measures

After we found the optimized parameters, which bring the simulated smile curve

closest to the market smile curve, we can use them to form the stock return

distribution. For the convenience of comparison, we want the return distribution

for all stocks and all dates to be annualized and risk-neutral. To do this, for each

stock and each date, plug the corresponding optimized parameters and T=1 into

the path-simulation algorithm (the inner-most loop in flowchart), and get the

stock prices at the final points of the 1 million sample paths,

(1) (2) (){ , ,... }N

T T T TS S S S . Then, to convert the year end prices into risk-neutral

return, we are using : ()() log(/ 0)i

TR i S S r  . The 1 million outcomes

R={R(1),R(2),…R(N)} contain all the information we want about the return

distribution.

As a continuation of table 5.1, below are the risk measures for ticker MSFT based

on the information from contract 07/18/2007:

Ticker MSFT

Expiry 7/18/2007

Current Date 7/6/2007 7/9/2007 7/10/2007 7/11/2007 …

DTM 30 29 28 27 …

Output: risk measures

VaR 5% -0.47593 -0.49369 -0.49713 -0.50228 …

VaR 1% -0.72548 -0.75393 -0.75822 -0.76687 …

VaR 0.1% -1.08199 -1.13121 -1.13484 -1.14714 …

VaR 0.01% -1.47181 -1.52259 -1.53554 -1.53317 …

VaR 95% 0.257355 0.266021 0.267935 0.259498 …

VaR 99% 0.435004 0.449728 0.452899 0.440269 …

VaR 99.9% 0.67957 0.703477 0.710497 0.694464 …

VaR 99.99% 0.93372 0.965724 0.966211 0.953331 …

ES 5% -0.63122 -0.65648 -0.66026 -0.66686 …

ES 1% -0.88091 -0.9191 -0.9237 -0.93223 …

ES 0.1% -1.24483 -1.29944 -1.31007 -1.31665 …

ES 0.01% -1.63603 -1.70682 -1.7326 -1.74169 …

ES 95% 0.367442 0.380412 0.382752 0.37227 …

ES 99% 0.542443 0.561905 0.565338 0.551676 …

ES99.9% 0.791389 0.820218 0.825364 0.806448 …

ES 99.99% 1.024343 1.076397 1.083471 1.057516 …

Mean -0.08654 -0.08873 -0.08842 -0.09405 …

Standard

Deviation

0.227276 0.235459 0.236841 0.236054 …

Skewness -0.44625 -0.47165 -0.47877 -0.50717 …

Kurtosis 4.662717 4.743076 4.754733 4.784459 …

Table 6.1

At the bottom part of the chart, we have the four most important moments of

the return distribution: mean standard deviation, skewness and kurtosis.

Skewness is defined as
3

2 3/2

[()]

([()])

E R mean

E R mean




 to measure the asymmetry of the

distribution, while kurtosis is defined as
4

2 2

[()]

([()])

E R mean

E R mean




 to measure the

“peakedness” of the distribution. If returns were normally distributed, they

would have skewness=0 and kurtosis=3. Here we have negative skewness and

larger kurtosis than that of normal distribution. Negative skewness indicates that

the tail on the left side of the probability density function is longer than the right

side. For return distribution, it means that extreme losses are more likely to

happen than extreme gains. Higher kurtosis indicates that more of the variance

is the result of infrequent extreme deviations, as opposed to frequent modestly

sized deviations. That is, if two distributions have the same variance, the one

with higher kurtosis will have heavier tails. For return distribution, it means that

the probabilities for large losses and gains are higher than normal distributed

returns.

“VaR ”stands for“ Value at Risk, which is the most widely used numerical

measure of risk. Briefly speaking, VaR p% is the p% quantile of the return

distribution. VaR 5%,1%,0.1% and 0.01% contains the information about losses,

while VaR 95%,99%,99.9% and 99.99% contains the information about gains. For

instance, VaR 1%=-0.72548 indicates that the probability for the annual rate of

return less than -0.72548 is 1%, that is, with 99% confidence, we know that the

stock price after 1 year will not fall below S0*exp(-0.72548)=0.48*S0. Likewise,

VaR99%=0.435004 indicate that we know with 99% confidence that the stock

price after 1 year cannot rise above S0*exp(0.435004)=1.54.

“ES” stands for “Expected Shortfall”, which is another important risk measure. It

is also known as the conditional Value at Risk or average Value at Risk. For

example, 0.1% (() | () 0.1%)ES mean R i R i VaR  .

6.2 Evolution of return distributions and risks over time

In table 6.1, each column represents a prediction of the future stock return. The

difference is that they are based on different information: for example, stock

return distribution in column DTM=30 reflects the market participants’

perception on 7/6/2007; when it comes to 7/9/2007, those participants may

change their perception based on some news they heard about MSFT or any

other kind of information during the three days, which brings a slightly different

version of future return distribution in column DTM=29.

Once we’ve got the output file for a stock like table 6.1, we can easily observe

the evolution of return distribution and risks over time. For the ticker MSFT, the

return distribution basically remains the same from DTM=30 (7/6/2007) to the

expiry (7/18/2007). Below are how the return density look like on DTM=30,

DTM=20 and DTM=10 respectively.

Evolution of implied return distributions over time: MSFT

Figure 6.1 Figure 6.2 Figure 6.3

MSFT DTM=30 MSFT DTM=20 MSFT DTM=10

Different from MSFT, if we take a look at the output file for ticker CSCO with the

same expiry 7/18/2007, we will find that the market perspective for CSCO stock

return changed significantly during the same month. Figure 6.4, 6.5 and 6.6 are

the return distribution densities at DTM=30, DTM=20 and DTM=10 respectively.

As time approaches expiry, the return distribution from market participants’

perception becomes more and more “spread out”, which indicates that people

somehow felt that the potential risk to invest in CSCO stock was growing.

Evolution of implied return distributions over time: CSCO

Figure 6.4 Figure 6.5 Figure 6.6

CSCO DTM=30 CSCO DTM=20 CSCO DTM=10

The evolution of VaR values for CSCO and MSFT in figure 6.7 tells the same story:

Figure 6.7 Evolution of Value-at-Risk (VaR)

In figure 6.7, the absolute value of VaRs from loss side (0.01%,0.1%,1%) are

plotted for ticker MSFT and CSCO respectively. In the course of one month, while

the VaRs for MSFT extracted from option data did not changed so much, those

for CSCO had increased sharply. Yet, the stock price of Cisco remained virtually

unchanged during the same period. This means that the information contained

in figure 6.8 could not have been obtained by observing only the stock market.

The information about the evolution or risks could help investors to adjust their

strategy in time. For example, based on the information showed in figure 6.7, an

investor who originally included certain shares of CSCO in his portfolio may

consider reducing his exposures to CSCO to keep the risk of his portfolio in a low

level.

6.3 Comparison of return distributions across different stocks

The flexibility of our modeling approach made it possible for us to fit our

stochastic volatility model to a wide variety of companies’ stocks. And the high

performance GPU computing made it possible for us to get the output files like

table 6.1 for several stocks each day. At a given day, we can compare the return

distributions across different stocks.

Again, we take an example of the contracts expired on 8/17/2007 and we

consider the ticker MSFT, INTC and F. Standing at 7/20/2007 (DTM=20), we got

their return distribution densities shown in figure 6.8,6.9 and 6.10. Those three

densities illustrate the wide variation of the market participant anticipation

about the future returns expected from different companies.

Return distribution of the different stocks on the same day

Figure 6.8 Figure 6.9 Figure 6.10

MSFT DTM=20 INTC DTM=20 F DTM=20

A comparison of risk measures across these three stocks is also available:

MSFT INTC F

VaR 5% -0.5138 -0.6973 -1.0095

VaR 1% -0.8177 -1.0772 -1.5924

VaR 0.1% -1.2653 -1.6259 -2.4342

VaR 0.01% -1.7291 -2.1727 -3.2992

VaR 95% 0.3441 0.3604 0.5672

VaR 99% 0.5749 0.6138 0.9624

VaR 99.9% 0.906 0.9679 1.5177

VaR 99.99% 1.2622 1.3326 2.0999

Mean -0.0621 -0.1263 -0.1577

Standard

Deviation

0.267 0.3282 0.49

Table 6.2

Table 6.2, figure 6.8, 6.9 and 6.10 shows us the same story: If we rank these

three stocks in terms of risk, it will be: MSFT<INTC<F. Investors can make good

use of this information to form their portfolio. For a risk-averse investor, it is

better for him to allocate more exposure on stocks like MSFT; while for a

risk-seeker who would like to take on higher risks for large gains, he may want to

choose stocks like Ford.

7. Comparison between different models

7.1 Introduction to Heston model

Previously in chapter 1.7, we introduce the stochastic model based on Ornstein–

Uhlenbeck (OU) process. Another possible stochastic model is the Heston model,

which takes the form:

(1)

t t tdS rdt dW  , t tV 

(2)((,))t t t tdV m V g dt V dW      

Different from the OU model, the process Vt here represents the variance

process and the volatility term is the square root of Vt. Using the same model

fitting approach as described in chapter 3, we are able to fit the Heston model to

the option market data and extract risk measures.

7.2 Comparison between Heston model and OU model

For some data dates, OU model gives us a better fit to the market smile curve;

while for some other dates, Heston model may work better. But for most of the

cases, like the MSFT 8/17/2007 contract, the two models gave approximately the

same accuracies of fits.

Take an example of the case DTM=20 for this contract, the market implied

volatility curve is available for moneyness from 90% to 110%. The far

out-of-the-money or far in-the-money options had very low liquidity, thus we

could not calculate reliable implied volatilities based on their prices – this is true

for most of the data dates. The simulated smile curves under both the OU model

and Heston model fit to the market smile curve very well for moneyness from 90%

to 110%.

However, when we extend the two simulated smile curves for moneyness from

50% to 150%, we get the following graph:

Figure 7.1 Volatility smiles based on different models

The farther we get in-the-money or out-of-the-money, the more the two curve

diverge. The smile curves under OU model tend to be steeper and more

pronounced than that under Heston model, with higher implied volatilities at

both sides. Corresponding to figure 7.1, risk measures extracted form market

data based on these two models are also different:

 OU Heston

VaR 5% -0.513821386 -0.370221775

VaR 1% -0.817692315 -0.564807189

VaR 0.1% -1.265257085 -0.831924802

VaR 0.01% -1.729066825 -1.080225329

VaR 95% 0.344071326 0.266760695

VaR 99% 0.57491967 0.420942406

VaR 99.9% 0.906041173 0.627273124

VaR 99.99% 1.26223359 0.817352383

Mean -0.062128472 -0.038902367

Standard Deviation 0.26695421 0.196178877

Skewness -0.410082946 -0.275810662

Kurtosis 5.117631168 4.105952588

Table 7.1

Both table 7.1 and figure 7.1 told us the same story: Compared to OU model

previously used in Chapter 6, risks tend to be “under-estimated” in Heston

model. This is not only true for ticker MSFT at 7/20/2007, in fact, it’s a common

phenomenon for most of the data date when both the OU model and Heston

model could fit to the market.

7.3 Further discussion

Although it is hard to say which model is better in general, our flexible

model-fitting approach implemented by high performance GPU computing

enable us to compare different stochastic models. In the area of investment risk

management, “model risk” plays an important role. Given the information like

table 7.1, risk managers can make better decisions to choose appropriate model

for their specific problems.

8. References

[1]Jean-Pierre Fouque, George Papanicolaou and K.Ronnie Sircar, “Derivative in

Financial Markets with Stochastic Volatility”, Cambridge University Press,2000.

[2]Jim Gatheral, “The Volatility Surface”, Wiley Finance,2004.

[3]Stefano M. Iacus, “Simulation and Inference for Stochastic Differential

Equations”, Springer, 2008.

[4]Thomas Mikosch, “Elementary Stochastic Calculus”, World Scientific, 1998.

[5]Paul Glaseerman, “Monte Carlo Method in Financial Engineering”, Springer,

2004.

[6]Jason Sanders and Edward Kandrot, “CUDA by Examples”, Nvidia, 2010.

[7]David B. Kirk and Wen-mei W. Hwu, “Programming Massively Parallel

Processors”, Nvidia, 2010.

[8]WPI research report “Restructuring Option Chain Data Sets Using Matlab”

written by Alison Wooden, May 2010.

[9] WPI research report “Financial Option Trading Data Analysis” written by Jun

Zhang, Dec 2010.

