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Abstract 

The famous Black-Scholes formula provided the first mathematically sound 

mechanism to price financial options. It is based on the assumption, that daily 

random stock returns are identically normally distributed and hence stock prices 

follow a stochastic process with a constant volatility. Observed prices, at which 

options trade on the markets, don’t fully support this hypothesis. Options 

corresponding to different strike prices trade as if they were driven by different 

volatilities. 

To capture this so-called volatility smile, we need a more sophisticated 

option-pricing model assuming that the volatility itself is a random process. The 

price we have to pay for this stochastic volatility model is that such models are 

computationally extremely intensive to simulate and hence difficult to fit to 

observed market prices. This difficulty has severely limited the use of stochastic 

volatility models in the practice. 

In this project we propose to overcome the obstacle of computational 

complexity by executing the simulations in a massively parallel fashion on the 

graphics processing unit (GPU) of the computer, utilizing its hundreds of parallel 

processors. 

We succeed in generating the trillions of random numbers needed to fit a 

monthly options contract in 3 hours on a desktop computer with a Tesla GPU. 

This enables us to accurately price any derivative security based on the same 

underlying stock. In addition, our method also allows extracting quantitative 

measures of the riskiness of the underlying stock that are implied by the views of 

the forward-looking traders on the option markets. 
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1. Background 

1.1 Volatility of risky investments 

For risk-free investments, such as treasury bonds, we often describe its return 

using the following differential equation: /t tdB B rdt . Here /t tdB B  means 

the relative return of the bond during the infinitesimal period dt , and r is the 

interest rate. 

For risky investments, like stocks, we need an extra term to model the 

uncertainty of their returns. The dynamics of the stock returns become the 

following stochastic differential equation: 
/t t tdS S rdt dW 

.  Here tW
   

refers to the standard Brownian motion, which is a stochastic process with 

continuous path and independent increment
~ (0, )t sW W N t s 

;  is known 

as the volatility, it is defined as the standard deviation of the stock return over 

a certain period (often a year). Commonly, stock returns will fluctuate more 

with higher value of volatility. 

 

1.2 European style options 

A European call option is a financial contract between two parties: at a 

prescribed time in the future (known as the time of expiry T), the holder of the 

option has the right (but not the obligation) to purchase a underlying asset (like 

stock) at a prescribed amount (known as a the strike price K); while the writer 

of the contract has the potential obligation to sell the underlying asset if the 

holder wants to buy. The payoff of a European call option at expiry takes the 

form: max( ,0)TS K . 

A European put option has similar conditions as a European call, except that 

the holder has the right to sell the underlying asset to the writer at expiry at 

strike price. The payoff of a European put option at expiry takes the form: 



max( ,0)TK S .  

“Moneyness” is defined to be the ratio of strike K over the current underlying 

price tS . If the option could be exercised at the current time t for a positive 

payoff for the holder (i.e. tK S for a call or tK S  for a put), then the 

option is called to be “in-the-money”. The opposite case when an option is not 

to be exercised (i.e. tK S for a call or tK S for a put) is called to be 

“out-of-the-money”. Out-of-the-money options are often traded by investors to 

hedge against large losses. Finally, “at-the-money” (ATM) refers to the case 

when the strike price is equal to the current underlying stock price 

(moneyness=1).  

 

1.3  Black-Scholes-Merton model 

Black-Scholes-Merton (BSM) model provided the first mathematically sound 

formula to price European style option. In this model, the dynamics of the 

underlying stock return take the form /t t tdS S rdt dW 
, where the drift r is 

the risk-free rate of return, and the volatility   is assumed to be a constant. 

This is equivalent to say that the stock price process is a Geometric Brownian 

Motion and implies that the stock return at time t is normally distributed with 

mean rt  and variance 2t .  

Under these assumptions, one can derive explicit formulas to price European 

options written on stock tS with strike K and expiry T . The price of a European 

call option at time t is ( )

1 2( , ) ( ) ( ) r T t

t tC S t N d S N d Ke   , while the price of a 

European put option at time t is ( )

2 1( , ) ( ) ( )r T t

t tP S t Ke N d S N d    , where N() 

is the cumulative density function for a standard normal distribution, and,      

2

1

ln( / ) ( / 2)( )tS K r T t
d

T t





  



 



2

2

ln( / ) ( / 2)( )tS K r T t
d

T t





  



 

Notice that when we choose certain strike price and expiry, the 

Black-Scholes-Merton formula becomes a one-to-one correspondence between 

option price (C or P) and volatility  : option price= ( , , , ; )BSM tf S t K T   . The 

option price will be higher if the underlying stock price (or return) is more 

variable (i.e. has higher volatility   ).
  

 

1.4 Implied volatility  

Given the observed European option price obsV  for a contract with strike price 

K and expiry T, the implied volatility IV is defined to be the value of the volatility 

parameter that must go in to the BSM formula to match this observed price:  

( , , , ; )obs

BSM tV f S t K T IV  

If the BSM model is accurate, we must have ( , , , )tIV t S K T  for any K and T. 

But this does not hold for real-life market prices. 

 

1.5 Monte Carlo option pricing 

The Monte Carlo estimator of option price is the average of discounted payoff 

under the arbitrage-free martingale measure. The algorithm looks like: 

Step1: Get N random samples of TS , (1) (2) ( ){ , ,..., }N

T T TS S S  ( If TS follows 

certain distribution, generate directly from this distribution; If not, simulate N 

trajectories of the process under martingale measure to get the end price 

( )i

TS  ) 

Step2: Calculate the payoff ( ) ( )( )i i

T TV payoff S  for each i. 

Step3: The option price at time t=0 is estimated to be ( )

0

1 N
rT i

T

i

e V
N





 , where 

rTe  is the discount factor. 

The Law of Large Numbers ensures that this estimation converge to f(X) when



N  , while the Central Limit Theory shows that the error of this estimation 

is (1/ )O N  . 

 

1.6 Numerical solution of SDE’s (Euler scheme) 

To simulate the trajectory of a random process X, ( , ) ( , )t t tdX f t X dt g t X dWt  , 

over the time interval [0,T], one simple way is to use the Euler scheme. To do this, 

we discretize the interval in to N subintervals and denote T/N by t , 

it i t  ,i=0,1,…N. 

To estimate the value of X at time it   , based on the information from the 

previous time step 1it   , the Euler scheme provides the following formula:  

1 1 1 11 1( , ) ( , )( )
i i i i i it t i t i t t tX X f t X t g t X W W

         .We assume that the value of X 

at time 0 is 0X .  

Euler scheme is strongly convergent with order 1/2, which indicates that

1/2

0| ( ) ( ) | , ,E X T X T C T        . Here X  is the time-discretized 

approximation of the continuous-time process X, with   as the maximum time 

increment of the discretization. 

 

1.7 Stochastic volatility model 

Instead of assuming the volatility to be a constant, a more sophisticated but 

realistic approach is to treat volatility as a random process tV  . Commonly, we 

choose tV  to be a mean-reverting process, like the Ornstein–Uhlenbeck (OU) 

process, the dynamic of which takes the form ( )t t tdV m V dt dW      . Here 

  represent the speed of reverting, while m and    represent the mean and 

volatility of the OU process respectively. 

Under the risk-neutral martingale measure, the stochastic volatility model looks 



like: 

 (1)

t t tdS rdt dW   

 | |t tV   

 (2)( ( , ))t t tdV m V g dt dW        

Note that there is an extra term appears in the drift of OU process to satisfy the 

no-arbitrage condition of the market. Here   represents the market price of 

volatility and   represents the correlation between the two Wiener process 

(1)

tW  and (2)

tW  that drive the stock process and respectively. And ( , )g    can 

be written as 21
t

r
  




   . 

 

 

2. Statement of the problem and its main challenges 

2.1 Deviation of the BSM model from the reality 

As said earlier in chapter 1.4, the BSM’s assumption about constant volatility 

does not hold in general. Instead, we can observe a pattern called “volatility 

smile” from real option market. Keeping parameters tS , t and T fixed, solve 

( , , , ; )obs

BSM tV f S t K T IV  for the implied volatility IV for pairs of corresponding 

strike price K and observed option price obsV   values. We get a function of IV 

with respect to K (or K/ tS ). The graph of this function, also called as “volatility 

smile curve”, is typically downward sloping when K is smaller than or near to the 

current stock price tS  (moneyness1), while it is upward sloping for K greater 

than tS (moneyness>1) as shown in figure 2.1. 



 
Figure 2.1  Volatility smile curve 

The BSM model also assumes that the underlying stock returns follow Normal 

distribution (mentioned in chapter 1.3).  This assumption is often violated in 

practice. The common opinion in finance is that Normal model tends to 

under-evaluate investment risk – extreme cases are more likely to happen than 

that predicted by Normal distribution. Tremendous losses, such as market 

crashes, would happen with a probability close to 0 in a “Normally distributed 

world”. But in reality, we experienced market crashes approximately every 10 

years. Hence, the real returns of stocks should have heavier tails than the normal 

distribution as shown in figure 2.2, which allocate more probabilities to large 

losses and large gains. 



  

Figure 2.2  Real stock return (histogram) compared to normally distributed return (black 

curve) 

 

2.2 Goal and purpose 

Volatility smile is something we can observe from the option market and heavier 

tails of return distributions are what we expect in stock market – these two 

should be connected in the real world. The major goal of this project to is to find 

the heavy-tailed distribution that yields the correct smile curve as observed from 

the option market data. 

Once we have determined the real return distributions, we can extract useful 

information about the underlying stocks form it. Risk measures, such as 

Value-at-Risk (VaR) and Expected Shortfall (ES) can be calculated directly from 

those distributions. Notice that the future return distributions determined this 

way contain the perceptions of option market participants. As a result, 

information from such distributions can be very helpful for investors to better 

manage the investment risk. 

 

2.3 Challenges 

The real return distributions are very difficult to determine statistically. First of all, 



they belong to no known parametric families. The only information we know is 

that the distributions have heavy tails. Second, since the tails represent rare 

events, to correctly estimate them, extremely large number of outcomes are 

needed. For example, if the market crashes happened once every ten years, to 

correctly determine the probability of crashes statistically, one needed stock 

market data for more than 100 years, which is impossible. Also, it’s inappropriate 

to use data from a long time ago to estimate the future distribution. 

 

 

3. Proposed approach 

The idea of the proposed approach is to get return distributions by fitting 

suitable model to the option market data. The “suitable model” here refers to 

the stochastic volatility model mentioned in chapter 1.7, which provide the 

dynamics for both the stock process and volatility process: 

(1)

t t tdS rdt dW  , | |t tV   

(2)( ( , ))t t tdV m V g dt dW        

How can we choose those parameters appear in the SDEs ?  The answer is to 

use the “inverse approach”: we first build the model with the parameters as 

unknown variables, and then keep changing the parameters iteratively, 

implement the model and get several outcomes based on various sets of 

parameters. In this process, there will be one special set of parameters which 

brings the outcome closest to our target outcome. This is the set of parameters 

we want to use for the model. 

For the inverse problem in this project, the “outcomes” are the smile curves 

computed from the stochastic volatility model and the “target outcome” is the 

smile curve observed from option market data. The detailed steps can be 

explained by the following flow chart: 



 

Figure 3.1  Flow chart of the model fitting approach 

The outer-most loop in the flow chart represents the model-fitting process. Once 

we input a set of parameters, we will get a smile curve from simulation and 

compare it to the market smile curve. To determine how close the two curves 

are, we construct an objective function ( )f x , here ( , , , , ) 'x m    . If 

1 2{ , ,... }pa a a are the p points that form the market smile curve and 

1 2{ ( ), ( ),..., ( )}pb x b x b x are the corresponding p points that form the simulated 

smile curve using parameter vector x , then the value of the objective function is 

2

1

( ) ( ( ))
p

i i i

i

f x w a b x


  , where the iw  are some constants representing the 

weights we want to give to the various points. We fit the model to the market 

data by finding the “optimal” parameter vector x  that minimizes the objective 



function f. Computationally, we find the optimal parameter vector using the 

Nelder-Mead multi-dimensional iterative optimization algorithm implemented in 

the R computational statistics environment. The advantage of the Nelder-Mead 

method is that it is robust and uses only function value of ( )f x , requires no 

derivatives. However, the convergence is relatively slow; it often requires 

800-1200 iterations to find the optimum. 

The middle loop of the flowchart implements Monte Carlo option pricing (with 

sample size N) as described in chapter 1.5. Notice that once we change the 

volatility term in the SDE of the stock process from a constant to a random 

process, we no longer know the distribution of the stock price at expiration date. 

The only way to get ( ) , 1,2,...i

TS i N  is to simulate the whole trajectory of the 

stock process. That is why we have the inner-most loop, which represents the 

simulations of the trajectories for both the volatility process and the stock 

process. The simulation is done by the Euler scheme mentioned in chapter 1.6.  

To sum up, in each of the 800-1200 optimization iterations, Monte Carlo method 

needs to be done with sample size N, and each of the N samples requires the 

simulation of M points on the trajectories for volatility and stock processes. 

Overall, the whole inverse approach is extremely compute intensive, mainly due 

to the fact that N need to be as large as 1 million to accurately reflect the tails of 

the return distribution. 

 

 

4. Use of massively parallel computing  

4.1 The need for high performance parallel computing 

In chapter 3, we introduced the model-fitting approach. Once we get the set of 

optimized parameters, we can use them to simulate the stock price process and 

then get the future return distribution. Note that those parameters and 

corresponding distribution vary among different stocks, and they are also 



changing over time.  If we want to manage the risk of a portfolio that contains 

several stocks in a timely manner, the whole model-fitting process (as described 

in the flowchart) is needed to be redone many times. Thus, it is curial that a 

single model-fitting process (for one stock and one day) can be done within a 

reasonably short time. 

If we implement our model on the CPU, computing the steps in the three layers 

of loops sequentially, the time to find the set of optimized parameters for one 

stock and one day would be 75 hours (about three days). Obviously, this 

approach is not feasible because we may miss the best opportunity to adjust the 

portfolio and the anticipated future return distribution may have already 

changed during these 3 days. 

The reason why this process is so time-consuming is that the sample size N of the 

Monte Carlo simulation needs to be as large as 1 million. But one good thing is 

that the sample paths are independent of each other, thus, the Monte Carlo 

option pricing loop in the model-fitting process can be parallelized. That is, 

instead of simulating N stock price paths one after another, we want to simulate 

them simultaneously. To do this, we introduce massively parallel GPU computing 

in to our project. 

 

4.2 GPU computing and CUDA  

A GPU (graphic processing unit) has far more processing cores than a common 

CPU has. With a limited number of sophisticated ALUs (algorithm and logic units), 

a CPU is most suitable to perform fast sequential operations. In contrast, GPU is 

designed to process multiple pixels at one time and has hundreds of parallel 

cores, which is ideal for data-parallel operations. In our case, the Monte Carlo 

path generations are exactly “data-parallel operations”: the generation of each 

path is using same commands (Euler scheme) but must be executed on different 

data (normally distributed increments). 

Controlling the GPU requires specialized software tools and language. We use 



Nvidia’s CUDA (Compute Unified Device Architecture), which is an extension to 

the standard C language, and some other tools like nvcc CUDA –C compiler, CUDA 

runtime and mathematical libraries. Briefly speaking, CUDA provided a way that 

one could compile some kinds of special programs in Visual Studio, which will be 

executed on GPU. This is done by “kernel calls”. A “kernel” in CUDA refers to a 

special type of function which will be running on GPU but can be invoked by CPU 

code. Once a kernel function is called, a grid of parallel threads will be generated 

by CUDA, and they are further equally divided into blocks. One block of threads 

will be assigned to the same stream multi-processor and execute the same 

commands. In our case, each thread is responsible for the simulation of one 

volatility trajectory and one stock trajectory. Thus, our kernel function needs to 

generate 1 million parallel threads. 

 

4.3 Performance Optimization 

To achieve best performance on GPU, several steps of optimization are needed to 

be done. 

First of all, one needs to choose appropriate size for blocks. The goal is that there 

must be an overwhelming number of blocks to saturate GPU processors with 

jobs waiting for execution. Yet, choosing the number of blocks to be the 

maximum 1 million is still not good enough. Previously, we introduced that block 

is the unit for thread organization. But in terms of thread execution, the unit is a 

“warp” and each warp contains 32 threads. Thus, the dimension of one block is 

best to be the multiple of 32. In our project, we choose the number of threads in 

one block to be 32 and there will be 31250 of such blocks in total. 

Secondly, we need to make good the use of high speed on-ship memory, also 

known as shared memory. In our Monte Carlo path generation, the first step is to 

generate the normal distributed increments (dW) for both the volatility and stock 

processes. Altogether, there will be 2*1million*256 such increments (of float 

type) generated and stored in GPU global memory. For each thread to complete 



the simulation of an entire volatility path and an entire stock process, it has to 

visit the global memory for 2*256 times to get the increments, which is a great 

waste of time. One approach is to upload those random increments into high 

speed shared memory. It is much faster for threads to access on chip shared 

memory than global memory. However, for each block, the size of shared 

memory is limited to be 16384 bytes (4096 floats), it is impossible for each 

thread to upload all the increments it need to complete the whole path 

simulation at a time, given that there are 32 threads in each block. The solution 

is to divide the path generation (containing 256 time points) into 8 stages. At the 

beginning of each stage, we upload the 2*32*32 random increments need for 

this stage in to the pre-allocated shared cache, and then begin the simulations 

using the end values from previous stage as the initial values. To get around the 

limited resources of shared memory, replacements are done in place – that is, 

the random increments in shared cache are gradually replaced by the simulated 

trajectories. After each stage, the end value of stock process and volatility 

process are stored and the shared cache is then filled with random increments 

for the next stage. 

Finally, we need to coalesce global memory access to reduce effects of high 

memory latency. Although we have made good use of high speed shared 

memory, we still need to access to global memory 8 times to simulate the entire 

trajectories. To speed up this process, the best thing we can do is to let the 32 

threads in a block accessing the 32 continuous addresses in the global memory – 

this is known as the memory coalescing technique. 

After these improvements, to finish the whole model-fitting process for one 

stock and one day, it only takes 15 minutes when we implement the Monte Carlo 

path generation part into parallel GPU computing. There’s an approximately 300 

times speed-up compared to the one done purely by CPU. 

  

 



5. Use of penalty functions (soft constraints) and data 

smoothing  

5.1  The structure of output files 

The high performance GPU computing introduced in Chapter 4 made it possible 

to implement the model-fitting process for several stocks each day in real time. 

Below is a snap shot of the one of the output file: 

Ticker MSFT     

Expiry 8/17/2007     

Current Date 7/6/2007 7/9/2007 7/10/2007 7/11/2007 … 

Input  

DTM 30 29 28 27 … 

Interest Rate 0.0118306 0.027561 0.0317223 0.03949 … 

S0 29.97 29.87 29.33 29.49 … 

Strike prices (vector)    … 

Market IV (vector)    … 

Output 

Optimized IV (vector)    … 

Objective 

Value 

1.31E-05 3.65E-05 7.58E-05 5.06E-05 … 

gamma 0.2638264 0.239423 0.0640914 0.262009 … 

rho -0.149856 -0.15625 -0.165675 -0.18285 … 

alpha 2.6915851 2.463546 2.3344001 2.297636 … 

m 0.0211545 0.063173 0.0772335 0.098175 … 

beta 0.4719973 0.438384 0.3945709 0.390613 … 

Table 5.1 

This is an example of the contract MSFT-08/17/2007. Each column represents 

the result from fitting the model for one stock (MSFT) and for one day (Current 

Date). Begin with days to maturity (DTM) =30 and moving towards the expiry, we 

observed different stock prices (S0), market implied volatility (Market IV) each 

day and use them as input. Then, in the second part of the table, we get the 

optimized parameters (gamma,rho,alpha,m,beta) and their corresponding 

simulated implied volatilities (Optimized IV) for each data date. 

To get reasonable optimized parameters and to further obtain stable risk 

measures (which will be explained in Chapter 6) for each date, we need to 



employ two special techniques: using penalty functions and smoothing inputs. 

 

5.2  Penalty functions 

Previously in Chapter3, we have constructed an objective function, f (gamma, 

rho, alpha, m, beta), and we said that the way to found the optimized set of 

parameters is to plug f into the Nelder-Mead optimizer. The Nelder-Mead 

optimizer is stable for non-differentiable objective functions, like our f( ), but one 

drawback is that this method does not accept constraints on parameters. That is, 

for each parameter, it is possible for it to go from negative infinity to infinity, 

which is unwanted. 

In our case, some of the parameters must be bounded to ensure reasonable 

simulations. Firstly, the parameter “m” represents the mean value of the 

volatility process, which should be positive. Secondly, the parameter “rho” 

represents the correlation between stock price and the level of volatility in the 

market, thus must be negative. Finally, the parameter “gamma” represents the 

market price of stochastic volatilities. Although it is hard to say the “gamma” 

should be bounded within some specific values, intuitively, “gamma” cannot be 

too large and we can conclude from past experience that large “gamma” will 

cause troubles thus it is unwanted. 

Although sometimes we could get simulated smile curve very close to the market 

one based on negative “m”, positive “ rho” or very large “gamma”, those 

optimized parameters go against their financial meanings, and will cause troubles 

later on when we use them to measure the risk. 



Since we are unable to add hard constraints like “m>0” to the optimizer, one way 

to bounded the optimized parameters is to use penalty function, also known as a 

“soft constraint”. To do this, we plug into the optimizer a new function g(gamma, 

rho, m, alpha,beta), which is constructed by :   

g(gamma, rho, alpha, m, beta) 

=f(gamma, rho, alpha, m, beta)+P(gamma, rho, m). 

Here P() is the penalty function, which is a weighted sum of the three individual 

penalties for gamma, rho and m. Since we want to minimized the value of g(), 

once a parameter goes beyond its proposed boundary, the P() function will take 

on positive values, which slow down the minimizing of g(). By doing this, large 

“gamma”, positive “rho” and negative “m” will be punished during the 

optimization process. In addition, care is taken to assure that the distance f and 

penalty P components of the penalized objective are of comparable size. 

The soft constraint technique made it possible for us to obtain reasonable 

optimized parameters. Notice that in the table shown at the beginning of 

Chapter 5, the numbers in row “gamma” are all reasonably small and we have all 

negative numbers in row “rho”, positive numbers in row “m”. 

 

5.3 Smoothing input data 

Not all the market-observed implied volatilities (or option prices) can reflect the 

real market condition accurately. Say, at a specific day, the trading volume of a 

MSFT option with certain strike price can be very small, which results in odd 

value of implied volatility. To diminish that kind of effect, we are using the 



technique called input smoothing. The idea is simple: instead of inputting the 

market implied volatilities for one day into the optimization process, we input 

the average of a week’s implied volatilities. For example, the “mktIV” at DTM=30 

in the table is actually the average of the market implied volatility from five days: 

DTM=30,31,32,33,34; and the “mktIV” at DTM=29 is the average from 

DTM=29,30,31,32,33; so on and so force. 

If intra-day option and stock prices are available, then the averaging can take 

place over the implied volatilities observed during the same day. 

 

 

6. Results and findings: Measures of risk 

6.1 Return distribution and risk measures 

After we found the optimized parameters, which bring the simulated smile curve 

closest to the market smile curve, we can use them to form the stock return 

distribution. For the convenience of comparison, we want the return distribution 

for all stocks and all dates to be annualized and risk-neutral. To do this, for each 

stock and each date, plug the corresponding optimized parameters and T=1 into 

the path-simulation algorithm (the inner-most loop in flowchart), and get the 

stock prices at the final points of the 1 million sample paths, 

(1) (2) ( ){ , ,... }N

T T T TS S S S . Then, to convert the year end prices into risk-neutral 

return, we are using : ( )( ) log( / 0)i

TR i S S r   . The 1 million outcomes 

R={R(1),R(2),…R(N)} contain all the information we want about the return 

distribution. 

As a continuation of table 5.1, below are the risk measures for ticker MSFT based 

on the information from contract 07/18/2007: 

 

 

 



Ticker MSFT     

Expiry 7/18/2007     

Current Date 7/6/2007 7/9/2007 7/10/2007 7/11/2007 … 

DTM 30 29 28 27 … 

Output: risk measures 

VaR 5% -0.47593 -0.49369 -0.49713 -0.50228 … 

VaR 1% -0.72548 -0.75393 -0.75822 -0.76687 … 

VaR 0.1% -1.08199 -1.13121 -1.13484 -1.14714 … 

VaR 0.01% -1.47181 -1.52259 -1.53554 -1.53317 … 

VaR 95% 0.257355 0.266021 0.267935 0.259498 … 

VaR 99% 0.435004 0.449728 0.452899 0.440269 … 

VaR 99.9% 0.67957 0.703477 0.710497 0.694464 … 

VaR 99.99% 0.93372 0.965724 0.966211 0.953331 … 

ES 5% -0.63122 -0.65648 -0.66026 -0.66686 … 

ES 1% -0.88091 -0.9191 -0.9237 -0.93223 … 

ES 0.1% -1.24483 -1.29944 -1.31007 -1.31665 … 

ES 0.01% -1.63603 -1.70682 -1.7326 -1.74169 … 

ES 95% 0.367442 0.380412 0.382752 0.37227 … 

ES 99% 0.542443 0.561905 0.565338 0.551676 … 

ES99.9% 0.791389 0.820218 0.825364 0.806448 … 

ES 99.99% 1.024343 1.076397 1.083471 1.057516 … 

Mean -0.08654 -0.08873 -0.08842 -0.09405 … 

Standard 

Deviation 

0.227276 0.235459 0.236841 0.236054 … 

Skewness -0.44625 -0.47165 -0.47877 -0.50717 … 

Kurtosis 4.662717 4.743076 4.754733 4.784459 … 

Table 6.1 

At the bottom part of the chart, we have the four most important moments of 

the return distribution: mean standard deviation, skewness and kurtosis. 

Skewness is defined as 
3

2 3/2

[( ) ]

( [( ) ])

E R mean

E R mean




 to measure the asymmetry of the 

distribution, while kurtosis is defined as 
4

2 2

[( ) ]

( [( ) ])

E R mean

E R mean




 to measure the 

“peakedness” of the distribution. If returns were normally distributed, they 

would have skewness=0 and kurtosis=3. Here we have negative skewness and 

larger kurtosis than that of normal distribution. Negative skewness indicates that 

the tail on the left side of the probability density function is longer than the right 

side. For return distribution, it means that extreme losses are more likely to 



happen than extreme gains. Higher kurtosis indicates that more of the variance 

is the result of infrequent extreme deviations, as opposed to frequent modestly 

sized deviations. That is, if two distributions have the same variance, the one 

with higher kurtosis will have heavier tails. For return distribution, it means that 

the probabilities for large losses and gains are higher than normal distributed 

returns. 

“VaR ”stands for“ Value at Risk, which is the most widely used numerical 

measure of risk. Briefly speaking, VaR p% is the p% quantile of the return 

distribution. VaR 5%,1%,0.1% and 0.01% contains the information about losses, 

while VaR 95%,99%,99.9% and 99.99% contains the information about gains. For 

instance, VaR 1%=-0.72548 indicates that the probability for the annual rate of 

return less than -0.72548 is 1%, that is, with 99% confidence, we know that the 

stock price after 1 year will not fall below S0*exp(-0.72548)=0.48*S0. Likewise, 

VaR99%=0.435004 indicate that we know with 99% confidence that the stock 

price after 1 year cannot rise above S0*exp(0.435004)=1.54. 

“ES” stands for “Expected Shortfall”, which is another important risk measure. It 

is also known as the conditional Value at Risk or average Value at Risk. For 

example, 0.1% ( ( ) | ( ) 0.1%)ES mean R i R i VaR  . 

 

6.2  Evolution of return distributions and risks over time 

In table 6.1, each column represents a prediction of the future stock return. The 

difference is that they are based on different information: for example, stock 

return distribution in column DTM=30 reflects the market participants’ 

perception on 7/6/2007; when it comes to 7/9/2007, those participants may 

change their perception based on some news they heard about MSFT or any 

other kind of information during the three days, which brings a slightly different 

version of future return distribution in column DTM=29. 

Once we’ve got the output file for a stock like table 6.1, we can easily observe 

the evolution of return distribution and risks over time. For the ticker MSFT, the 



return distribution basically remains the same from DTM=30 (7/6/2007) to the 

expiry (7/18/2007). Below are how the return density look like on DTM=30, 

DTM=20 and DTM=10 respectively. 

Evolution of implied return distributions over time: MSFT 

 
Figure 6.1                 Figure 6.2                Figure 6.3 

MSFT DTM=30             MSFT DTM=20            MSFT DTM=10 

Different from MSFT, if we take a look at the output file for ticker CSCO with the 

same expiry 7/18/2007, we will find that the market perspective for CSCO stock 

return changed significantly during the same month. Figure 6.4, 6.5 and 6.6 are 

the return distribution densities at DTM=30, DTM=20 and DTM=10 respectively. 

As time approaches expiry, the return distribution from market participants’ 

perception becomes more and more “spread out”, which indicates that people 

somehow felt that the potential risk to invest in CSCO stock was growing. 

Evolution of implied return distributions over time: CSCO 

 
Figure 6.4                Figure 6.5                Figure 6.6 

CSCO DTM=30            CSCO DTM=20            CSCO DTM=10 

The evolution of VaR values for CSCO and MSFT in figure 6.7 tells the same story: 



 

Figure 6.7 Evolution of Value-at-Risk (VaR) 

 

In figure 6.7, the absolute value of VaRs from loss side (0.01%,0.1%,1%) are 

plotted for ticker MSFT and CSCO respectively. In the course of one month, while 

the VaRs for MSFT extracted from option data did not changed so much, those 

for CSCO had increased sharply. Yet, the stock price of Cisco remained virtually 

unchanged during the same period. This means that the information contained 

in figure 6.8 could not have been obtained by observing only the stock market. 

The information about the evolution or risks could help investors to adjust their 

strategy in time. For example, based on the information showed in figure 6.7, an 

investor who originally included certain shares of CSCO in his portfolio may 

consider reducing his exposures to CSCO to keep the risk of his portfolio in a low 

level. 

 

6.3 Comparison of return distributions across different stocks 

The flexibility of our modeling approach made it possible for us to fit our 

stochastic volatility model to a wide variety of companies’ stocks. And the high 

performance GPU computing made it possible for us to get the output files like 

table 6.1 for several stocks each day. At a given day, we can compare the return 

distributions across different stocks. 



Again, we take an example of the contracts expired on 8/17/2007 and we 

consider the ticker MSFT, INTC and F. Standing at 7/20/2007 (DTM=20), we got 

their return distribution densities shown in figure 6.8,6.9 and 6.10. Those three 

densities illustrate the wide variation of the market participant anticipation 

about the future returns expected from different companies. 

Return distribution of the different stocks on the same day 

 

Figure 6.8                Figure 6.9                Figure 6.10 

MSFT DTM=20            INTC DTM=20             F DTM=20 

A comparison of risk measures across these three stocks is also available: 

 
MSFT INTC F 

VaR 5% -0.5138 -0.6973 -1.0095 

VaR 1% -0.8177 -1.0772 -1.5924 

VaR 0.1% -1.2653 -1.6259 -2.4342 

VaR 0.01% -1.7291 -2.1727 -3.2992 

VaR 95% 0.3441 0.3604 0.5672 

VaR 99% 0.5749 0.6138 0.9624 

VaR 99.9% 0.906 0.9679 1.5177 

VaR 99.99% 1.2622 1.3326 2.0999 

Mean -0.0621 -0.1263 -0.1577 

Standard 

Deviation 

0.267 0.3282 0.49 

Table 6.2 

Table 6.2, figure 6.8, 6.9 and 6.10 shows us the same story: If we rank these 

three stocks in terms of risk, it will be: MSFT<INTC<F. Investors can make good 

use of this information to form their portfolio. For a risk-averse investor, it is 

better for him to allocate more exposure on stocks like MSFT; while for a 

risk-seeker who would like to take on higher risks for large gains, he may want to 

choose stocks like Ford. 



 

 

7. Comparison between different models 

7.1 Introduction to Heston model 

Previously in chapter 1.7, we introduce the stochastic model based on Ornstein–

Uhlenbeck (OU) process. Another possible stochastic model is the Heston model, 

which takes the form: 

(1)

t t tdS rdt dW  , t tV 
 

(2)( ( , ))t t t tdV m V g dt V dW        

Different from the OU model, the process Vt here represents the variance 

process and the volatility term is the square root of Vt. Using the same model 

fitting approach as described in chapter 3, we are able to fit the Heston model to 

the option market data and extract risk measures. 

 

7.2 Comparison between Heston model and OU model 

For some data dates, OU model gives us a better fit to the market smile curve; 

while for some other dates, Heston model may work better. But for most of the 

cases, like the MSFT 8/17/2007 contract, the two models gave approximately the 

same accuracies of fits. 

Take an example of the case DTM=20 for this contract, the market implied 

volatility curve is available for moneyness from 90% to 110%. The far 

out-of-the-money or far in-the-money options had very low liquidity, thus we 

could not calculate reliable implied volatilities based on their prices – this is true 

for most of the data dates. The simulated smile curves under both the OU model 

and Heston model fit to the market smile curve very well for moneyness from 90% 

to 110%. 

However, when we extend the two simulated smile curves for moneyness from 

50% to 150%, we get the following graph: 



 
Figure 7.1 Volatility smiles based on different models 

The farther we get in-the-money or out-of-the-money, the more the two curve 

diverge. The smile curves under OU model tend to be steeper and more 

pronounced than that under Heston model, with higher implied volatilities at 

both sides. Corresponding to figure 7.1, risk measures extracted form market 

data based on these two models are also different: 

 OU Heston 

VaR 5% -0.513821386 -0.370221775 

VaR 1% -0.817692315 -0.564807189 

VaR 0.1% -1.265257085 -0.831924802 

VaR 0.01% -1.729066825 -1.080225329 

VaR 95% 0.344071326 0.266760695 

VaR 99% 0.57491967 0.420942406 

VaR 99.9% 0.906041173 0.627273124 

VaR 99.99% 1.26223359 0.817352383 

Mean -0.062128472 -0.038902367 

Standard Deviation 0.26695421 0.196178877 

Skewness -0.410082946 -0.275810662 

Kurtosis 5.117631168 4.105952588 

Table 7.1 

Both table 7.1 and figure 7.1 told us the same story: Compared to OU model 

previously used in Chapter 6, risks tend to be “under-estimated” in Heston 

model. This is not only true for ticker MSFT at 7/20/2007, in fact, it’s a common 



phenomenon for most of the data date when both the OU model and Heston 

model could fit to the market. 

 

7.3 Further discussion 

Although it is hard to say which model is better in general, our flexible 

model-fitting approach implemented by high performance GPU computing 

enable us to compare different stochastic models. In the area of investment risk 

management, “model risk” plays an important role. Given the information like 

table 7.1, risk managers can make better decisions to choose appropriate model 

for their specific problems. 
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