
Spatial-Temporal Generative Adversarial Learning

A Dissertation

Submitted to the Faculty

of

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Doctor of Philosophy

in

Data Science

by

Yingxue Zhang

April 18, 2022

APPROVED:

Professor Yanhua Li
Worcester Polytechnic Institute
Advisor

Professor Xiangnan Kong
Worcester Polytechnic Institute
Committee Member

Professor Elke A. Rundensteiner
Worcester Polytechnic Institute
Head of Department

Professor Randy C. Paffenroth
Worcester Polytechnic Institute
Committee Member

Professor Xun Zhou
The University of Iowa
External Committee Member

Abstract

With the development of sensing and communication technologies, spatial-

temporal big data has been widely generated and used in urban life, which

helps to solve many problems related to smart cities, public safety, sustain-

ability and business. However, it is challenging to deal with the spatial-

temporal big data analytics problems (e.g., urban traffic estimation), because

the data contains complex spatial-temporal dependencies, and is highly re-

lated to many other complicated factors. Given the large amount of spatial-

temporal urban data, an important problem is how to successfully extract the

complex spatial-temporal dependencies to solve diverse urban problems. In

this dissertation, we will present an overview of my work that solves the

spatial-temporal big data analytics problems in a deep generative adversar-

ial perspective, and we will mainly introduce the spatial-temporal generative

adversarial learning and its urban applications from the following 4 different

perspectives.

1. Conditional Urban Traffic Estimation with Generative Adversarial Net-

works. The Conditional Urban Traffic Estimation problem aims to estimate

the resulting traffic status prior to the urban construction plan. This problem

is of great importance to urban development and transportation management,

yet is very challenging due to the complex spatial-temporal dependencies

and the relations between traffic and diverse urban conditions. To tackle this

problem, we propose three different generative adversarial networks includ-

ing TrafficGAN, Curb-GAN and C3-GAN.

2. Transferable Generative Adversarial Networks. Conventional methods

for conditional traffic estimation usually focus on supervised settings, which

require a large amount of labeled training data. However, in many urban plan-

ning applications, the large amount of traffic data in a new city can be hard

or impossible to acquire. To tackle the conditional traffic estimation prob-

lem in data scarcity situations, we propose a novel STrans-GAN to extracts

knowledge from multiple source cities to improve the estimation accuracy

and transfer stability.

3. Learning Human Driving Strategies. This topic mainly focuses on the

problem of human urban strategy analysis. This problem is hard to solve

due to two major challenges: (1) data scarcity and (2) data heterogeneity. To

solve the human urban strategy analysis problem in case of data scarcity and

data heterogeneity, we design a novel learning paradigm — Spatial-Temporal

Meta-GAIL (STM-GAIL), which can successfully learn diverse human urban

strategies from heterogeneous human-generated spatial-temporal urban data.

4. Urban Traffic Dynamics Prediction. Predicting traffic dynamics is of great

importance to urban development and transportation management. However,

it is very challenging to solve this problem due to spatial-temporal depen-

dencies and traffic uncertainties. In this topic, we solve the traffic dynamics

prediction problem from Bayesian meta-learning perspective and propose a

novel continuous spatial-temporal meta-learner (cST-ML).

Acknowledgements

I would like to give my warmest thanks to my adviser, Prof. Yanhua Li, for

his endless help and guidance. I sincerely thank him for encouraging me to

get through all the challenges in my research. I would like to thank my com-

mittee members, Prof. Xun Zhou, Prof. Xiangnan Kong and Prof. Randy C.

Paffenroth for their generous encouragement and suggestions to my disserta-

tion. I also thank all members in DSRG group for the opportunity to share

my works, and they always provided bright ideas and critical comments.

I would like to thank my collaborators, Prof. Xun Zhou, Prof. Zhi-Li Zhang,

Prof. Zhenming Liu, Dr. Jun Luo, Han Bao, for their novel research ideas,

critical comments and productive collaborations. They provided a lot of ex-

citing insights and incisive comments during our collaborations. I am also

looking forward to future collaborations.

I thank all members of our research group, especially Guojun Wu, Menghai

Pan, Huimin Ren, Xin Zhang, for helping me to improve my research projects

during our discussions.

Last but not least, I would like to thank my family, Zeyu Zhu and Ping Xue

for their love and supports all the way.

Publications

Publications Contributing to this Dissertation

In this section, I briefly summarize the publications pertinent to the topics covered in this

dissertation.

Topic 1: Conditional Urban Traffic Estimation with Generative Ad-

versarial Networks

Topic 1 of this dissertation deliberates on solving the conditional urban traffic estimation

problem with novel generative adversarial networks. The publications in this topic are

listed below.

1. [ICDM’19] Yingxue Zhang, Yanhua Li, Xun Zhou, Xiangnan Kong and Jun Luo.

TrafficGAN: Off-Deployment Traffic Estimation with Traffic Generative Adversarial

Networks. 2019 IEEE International Conference on Data Mining (ICDM).

2. [KDD’20] Yingxue Zhang, Yanhua Li, Xun Zhou, Xiangnan Kong and Jun Luo.

Curb-GAN: Conditional Urban Traffic Estimation through Spatio-Temporal Gener-

ative Adversarial Networks. In Proceedings of the 26th ACM SIGKDD Conference

on Knowledge Discovery and Data Mining (KDD’ 20).

ii

3. [ICDM’21] Yingxue Zhang, Yanhua Li, Xun Zhou, Zhenming Liu and Jun Luo.

C3-GAN: Complex-Condition-Controlled Urban Traffic Estimation through Gener-

ative Adversarial Networks. 2021 IEEE International Conference on Data Mining

(ICDM).

4. [TBD] Yingxue Zhang, Yanhua Li, Xun Zhou, Xiangnan Kong and Jun Luo. Off-

Deployment Traffic Estimation — A Traffic Generative Adversarial Networks Ap-

proach. IEEE Transactions on Big Data (TBD).

5. [Under submission] Yingxue Zhang, Yanhua Li, Xun Zhou, Zhenming Liu and Jun

Luo. C3-GAN+: Complex-Condition-Controlled Generative Adversarial Networks

with Enhanced Embeddings. Under submission.

Topic 2: Transferable Generative Adversarial Networks

Topic 2 of this dissertation focuses on solving the data scarcity problem when estimating

the urban traffic with transferable generative adversarial networks.

6. [Under submission] Yingxue Zhang, Yanhua Li, Xun Zhou, Xiangnan Kong and

Jun Luo. STrans-GAN: Spatially-Transferable Generative Adversarial Networks

for Urban Traffic Estimation. Under submission.

Topic 3: Learning Human Driving Strategies

Topic 3 of this dissertation focuses on learning diverse human driving strategies.

7. [Under submission] Yingxue Zhang, Yanhua Li, Xun Zhou, Xiangnan Kong and

Jun Luo. STM-GAIL: Spatial-Temporal Meta-GAIL for Learning Diverse Human

Driving Strategies. Under submission.

iii

Topic 4: Urban Traffic Dynamics Prediction

Topic 4 studies the urban traffic dynamics prediction problem.

8. [ICDM’20]Yingxue Zhang, Yanhua Li, Xun Zhou and Jun Luo. cST-ML: Contin-

uous Spatial-Temporal Meta-Learning for Traffic Dynamics Prediction. 2020 IEEE

International Conference on Data Mining (ICDM).

9. [TIST]Yingxue Zhang, Yanhua Li, Xun Zhou, Jun Luo and Zhi-Li Zhang. Urban

Traffic Dynamics Prediction — A Continuous Spatial-Temporal Meta-Learning Ap-

proach. ACM Transactions on Intelligent Systems and Technology (TIST).

iv

Contents

Publications ii

List of Figures viii

List of Tables xii

1 Overview 1

1.1 Introduction . 1

1.2 Dissertation Organization . 5

2 Conditional Urban Traffic Estimation with Generative Adversarial Networks 7

2.1 Conditional Urban Traffic Estimation with TrafficGAN 7

2.1.1 Overview . 7

2.1.2 Related Work . 14

2.1.3 Methodology . 15

2.1.4 Evaluation . 25

2.2 Spatial-Temporal Generative Adversarial Networks 33

2.2.1 Overview . 33

2.2.2 Related Work . 38

2.2.3 Methodology . 39

2.2.4 Evaluation . 47

v

CONTENTS

2.3 Complex-Condition-Controlled Urban Traffic Estimation 56

2.3.1 Overview . 56

2.3.2 Related Work . 60

2.3.3 Methodology . 62

2.3.4 Evaluation . 72

3 Transferable Generative Adversarial Networks 82

3.1 Spatially-Transferable Generative Adversarial Networks 82

3.1.1 Overview . 82

3.1.2 Related Work . 87

3.1.3 Methodology . 89

3.1.4 Evaluation . 98

4 Learning Human Driving Strategies 106

4.1 Spatial-Temporal Meta-GAIL . 106

4.1.1 Overview . 106

4.1.2 Related Work . 112

4.1.3 Methodology . 113

4.1.4 Evaluation . 122

5 Urban Traffic Dynamics Prediction 130

5.1 Continuous Spatial-Temporal Meta-Learning 130

5.1.1 Overview . 130

5.1.2 Related Work . 137

5.1.3 Methodology . 138

5.1.4 Evaluation . 144

vi

CONTENTS

6 Conclusion and Future Work 155

6.1 Conclusion . 155

6.2 Future Work . 158

6.2.1 Preference Reveal for Human Agents via Generative Adversarial

Meta Learning. 158

6.2.2 Explainable Generative Adversarial Networks 159

6.2.3 Novel Application Domains in Urban Intelligence 159

References 160

vii

List of Figures

2.1 Traffic condition changes around Olympic Village in Beijing, China . . . 9

2.2 Travel demand and traffic distribution of region R 10

2.3 Off-deployment traffic estimation problem 11

2.4 Solution framework . 13

2.5 Map gridding and regions illustration . 16

2.6 Propagation rule of dynamic convolutional layer, f refers to traffic features 18

2.7 Convolutional filter comparison, λ1 > λ2 20

2.8 TrafficGAN . 21

2.9 TrafficGAN architecture . 22

2.10 P1 value changes with λ . 26

2.11 P1 comparisons over 8 target regions (seen and unseen) 28

2.12 Spatial patterns of 9 “unseen” regions 29

2.13 Traffic conditions of an “unseen” region 30

2.14 Traffic condition forecast. (a) is the target region covering the Longgang

District; (b) is the actual traffic condition with current travel demand in the

region; (c) is the forecast traffic condition with a higher expected travel

demand, where more congestion appears; (d) indicates two possible rea-

sons for (c); . 32

viii

LIST OF FIGURES

2.15 Example of traffic estimation and evaluation for urban planning in Vaughan,

Canada. 34

2.16 Insight of the framework. 35

2.17 Propagation rule of DyConv. 40

2.18 Filter comparisons of standard Conv and DyConv. 41

2.19 Example of 2 heads attention. 42

2.20 Overview of Curb-GAN. 43

2.21 Comparisons of selected models in consecutive time slots in traffic speed

estimation. 50

2.22 Comparisons of selected models in consecutive time slots in taxi inflow

estimation. 51

2.23 Traffic status visualizations. 52

2.24 Impact of parameters in traffic speed estimation. 54

2.25 Impact of parameters in taxi inflow estimation. 55

2.26 Traffic before & after building subway stations. 57

2.27 Solution framework. 59

2.28 C3-GAN structure. 64

2.29 Visualizations of (1st row) traffic speed with bus route condition & (2nd

row) taxi inflow with travel demand condition. 78

2.30 Loss plots of traffic speed and taxi inflow estimation regarding to bus

route changes. 79

2.31 Impact of parameters on traffic speed and taxi inflow estimation with bus

route conditions. 79

3.1 An example of conditional traffic estimation by transferring knowledge

from multiple source cities (Shenzhen, Harbin, etc) to the target city

(Xi’An). 83

ix

LIST OF FIGURES

3.2 Solution framework. 85

3.3 STrans-GAN Overview. 90

3.4 Visualizations of (1st row) traffic speed estimation in Xi’An & (2nd row)

taxi inflow estimation in Chengdu. 100

3.5 Hyper-parameters studies on traffic speed estimation (Xi’An) and taxi in-

flow estimation (Chengdu). 102

4.1 Examples of taxi driver’s decision-making process (left), data scarcity and

heterogeneity challenges (right). 107

4.2 Solution framework. 108

4.3 Definition illustrations. 112

4.4 STM-GAIL structure. 115

4.5 Overall performance. 126

4.6 Performance on learning diverse strategies. 127

4.7 Impact of hyper-parameters on urban strategies learning with STM-GAIL. 127

4.8 Case studies: learned policies vs. ground-truth policies for two taxi drivers

in two cases. 129

5.1 Illustration of traffic dynamics. 131

5.2 Problem illustration. 135

5.3 Insight of the framework. 136

5.4 Deterministic black-box meta-learning. 138

5.5 cST-ML performs as a rolling window. 141

5.6 Map gridding and target grid cells illustration. 145

5.7 Comparisons of models in 6 consecutive hours in traffic speed prediction. 150

5.8 Comparisons of models in 6 consecutive hours in taxi inflow prediction. . 151

5.9 Impact of parameters in traffic speed prediction. 151

x

LIST OF FIGURES

5.10 Impact of parameters in taxi inflow prediction. 152

5.11 Traffic predictions of two target grid cells. 153

xi

List of Tables

2.1 Statistics Comparisons for an “Unseen” Region 27

2.2 Statistics Comparisons for a “Seen” Region 27

2.3 Notations . 37

2.4 Performance results on traffic speed estimation and taxi inflow estimation. 49

2.5 Variants of Curb-GAN evaluations. 49

2.6 Notations . 58

2.7 Dataset descriptions. 74

2.8 Performance on task 1: traffic speed and taxi inflow estimation based on

bus route changes. 77

2.9 Performance on task 2: traffic speed and taxi inflow estimation based on

travel demand changes. 77

3.1 Dataset descriptions. 98

3.2 Performance on experiment 1: traffic speed and taxi inflow estimation in

Xi’An. 98

3.3 Performance on experiment 2: traffic speed and taxi inflow estimation in

Chengdu. 99

3.4 Ablation Study: traffic speed and taxi inflow estimation in Xi’An. 103

4.1 Notations . 110

xii

LIST OF TABLES

5.1 Notations. 134

5.2 Performance on traffic speed prediction and taxi inflow prediction. 148

xiii

1

Overview

1.1 Introduction

With the development of sensing and communication technologies, spatial-temporal big

data has been widely generated and used in urban life, which helps to solve many prob-

lems related to smart cities, public safety, sustainability and business. However, it is

challenging to deal with the spatial-temporal big data analytics problems (e.g., urban traf-

fic estimation), because the data contains complex spatial-temporal dependencies, and

is highly related to many other complicated factors. Given the large amount of spatial-

temporal urban data, an important problem is how to successfully extract the complex

spatial-temporal dependencies to solve diverse urban problems. In this dissertation, we

will present an overview of my work that solves the spatial-temporal big data analytics

problems in a deep generative adversarial perspective, and we will mainly introduce the

spatial-temporal generative adversarial learning and its urban applications from the fol-

lowing 4 different perspectives.

1) Conditional Urban Traffic Estimation with Generative Adversarial Networks.

The rapid progress of urbanization has expedited the process of urban planning, e.g., new

1

1.1 INTRODUCTION

residential, commercial areas, which in turn boosts the local travel demand. Given an

urban development plan and the historical traffic observations over the road network, the

Conditional Urban Traffic Estimation problem aims to estimate the resulting traffic status

prior to the deployment of the plan. This problem is of great importance to urban devel-

opment and transportation management, yet is very challenging because the plan would

change the local travel demands drastically and the new travel demand pattern might be

unprecedented in the historical data. To tackle this problem, we propose three different

generative adversarial networks:

(i) TrafficGAN. The novel deep generative model TrafficGAN captures the shared pat-

terns across spatial regions of how traffic conditions evolve according to travel demand

changes and underlying road network structures. In particular, TrafficGAN captures the

road network structures through a dynamic filter in the dynamic convolutional layer. We

evaluate our TrafficGAN using a large-scale traffic data collected from Shenzhen, China.

Results show that TrafficGAN can more accurately estimate the traffic conditions com-

pared with all baselines. We also showcase that TrafficGAN can identify potential traffic

issues in some regions and suggest possible reasons.

(ii) Curb-GAN. The proposed Curb-GAN can capture both spatial and temporal depen-

dencies of urban traffic, it adopts and advances the conditional GAN structure through a

few novel ideas: (1) dealing with various travel demands as the “conditions” and generat-

ing corresponding traffic estimations, (2) integrating dynamic convolutional layers to cap-

ture the local spatial auto-correlations along the underlying road networks, (3) employ-

ing self-attention mechanism to capture the temporal dependencies of the traffic across

different time slots. Extensive experiments on two real-world spatio-temporal datasets

demonstrate that our Curb-GAN outperforms major baseline methods in estimation accu-

racy under various conditions and can produce more meaningful estimations.

(iii) C3 − GAN . Beside capturing spatial and temporal dependencies, we propose a

2

1.1 INTRODUCTION

novel Complex-Condition-Controlled Generative Adversarial Network (C3-GAN) for ur-

ban traffic estimation of a region under various complex conditions. C3-GAN features

the following three novel designs on top of standard cGAN model: (1) an embedding

network mapping the complex conditions to a latent space to find high-quality represen-

tations of the urban conditions; (2) an inference network to enhance the relations between

the embedded latent vectors and the traffic data; (3) a unique architecture to better cap-

ture the spatial dependencies of traffic, and a training algorithm for C3-GAN to guaran-

tee the network stability and performance. Extensive experiments on real-world datasets

demonstrate that our C3-GAN produces high-quality traffic estimations and outperforms

state-of-the-art baseline methods.

2) Transferable Generative Adversarial Networks. Conditional traffic estimation

is a vital problem in urban plan deployment, which can help evaluate urban construction

plans and improve transportation efficiency. Conventional methods for conditional traffic

estimation usually focus on supervised settings, which require a large amount of labeled

training data. However, in many urban planning applications, the large amount of traffic

data in a new city can be hard or impossible to acquire. To tackle the conditional traffic es-

timation problem in data scarcity situations, we formulate the problem as a spatial transfer

generative learning problem. Compared to prior spatial transfer learning frameworks with

only single source city, we propose to extracts knowledge from multiple source cities to

improve the estimation accuracy and transfer stability, which is a technically more chal-

lenging task. As a solution, we propose a new cross-city conditional traffic estimation

method — Spatially-Transferable Generative Adversarial Networks (STrans-GAN) with

novel pre-training and fine-tuning algorithms. STrans-GAN preserves diverse traffic pat-

terns from multiple source cities through traffic clustering, and incorporates meta-learning

idea into the pre-training process to learn a well-generalized model. During fine-tuning,

we propose to add a cluster matching regularizer to realize the flexible adaptation in differ-

3

1.1 INTRODUCTION

ent scenarios. Through extensive experiments on multiple-city datasets, the effectiveness

of STrans-GAN is proved.

3) Learning Human Driving Strategies. With large amounts of human-generated

spatial-temporal urban data (e.g., GPS trajectories of vehicles, passengers’ trip data on

buses and trains, etc.), human urban strategy analysis has become an important problem

in many urban scenarios. This problem is hard to solve due to two major challenges: (1)

data scarcity (i.e., each human agent can only provide limited observations) and (2) data

heterogeneity (i.e., having mixed observations from many different human agents). Most

of the existing works on this problem usually require a large amount of historical observa-

tions aiming to correctly infer a human agent’s urban strategy and thus fail to properly ad-

dress both challenges at the same time. To solve the human urban strategy analysis prob-

lem in case of data scarcity and data heterogeneity, we design a novel learning paradigm

— Spatial-Temporal Meta-GAIL (STM-GAIL), which can successfully learn diverse hu-

man urban strategies from heterogeneous human-generated spatial-temporal urban data.

STM-GAIL models the human decision processes as variable length Markov decision

processes (VLMDPs) and incorporates the surrounding spatial feature patterns (e.g., traf-

fic volume patterns, etc.) into states to better capture the spatial-temporal dependencies

of human decisions. Besides, STM-GAIL learns diverse human urban strategies from the

meta-learning perspective, and can distinguish various human urban strategies by adding

an inference network on top of the standard GAIL. STM-GAIL can be quickly adapted to

a new human expert’s urban strategy with a single trajectory. Extensive experiments on

real-world human-generated spatial-temporal dataset are performed. STM-GAIL presents

significant improvement over state-of-the-art baseline models when learning human urban

strategies.

4) Urban Traffic Dynamics Prediction. Urban traffic status (e.g., traffic speed and

volume) is highly dynamic in nature, namely, varying across space and evolving over

4

1.2 DISSERTATION ORGANIZATION

time. Thus, predicting such traffic dynamics is of great importance to urban development

and transportation management. However, it is very challenging to solve this problem

due to spatial-temporal dependencies and traffic uncertainties. In this paper, we solve the

traffic dynamics prediction problem from Bayesian meta-learning perspective and pro-

pose a novel continuous spatial-temporal meta-learner (cST-ML), which is trained on a

distribution of traffic prediction tasks segmented by historical traffic data with the goal

of learning a strategy that can be quickly adapted to related but unseen traffic predic-

tion tasks. cST-ML tackles the traffic dynamics prediction challenges by advancing the

Bayesian black-box meta-learning framework through the following new points: 1) cST-

ML captures the dynamics of traffic prediction tasks using variational inference, and to

better capture the temporal uncertainties within tasks, cST-ML performs as a rolling win-

dow within each task; 2) cST-ML has novel designs in architecture, where CNN and

LSTM are embedded to capture the spatial-temporal dependencies between traffic status

and traffic related features; 3) novel training and testing algorithms for cST-ML are de-

signed. We also conduct experiments on two real-world traffic datasets (taxi inflow and

traffic speed) to evaluate our proposed cST-ML. The experimental results verify that cST-

ML can significantly improve the urban traffic prediction performance and outperform all

baseline models especially when obvious traffic dynamics and temporal uncertainties are

presented.

1.2 Dissertation Organization

The remainder of this dissertation is organized as follows. In Chapter 2, we introduce

our work about Conditional Urban Traffic Estimation with Generative Adversarial Net-

works, which contains three different novel generative adversarial networks [1, 2, 3] for

conditional urban traffic estimation. And in Chapter 3, our proposed transferable gener-

5

1.2 DISSERTATION ORGANIZATION

ative adversarial network can successfully solve the data scarcity problem in urban traffic

estimation. In Chapter 4 which is for our Learning Human Driving Strategies, a Spatial-

temporal Meta-GAIL is designed to learn diverse human driving strategies. In Chapter

5, a novel continuous spatial-temporal meta-learning framework is designed for urban

traffic dynamics prediction. A conclusion of this dissertation is drawn in Chapter 6.

For consistency and to allow the reader to easily jump from one topic to another,

we present the detailed research for each topic in a largely self-contained set of sections

following this particular pattern:

• Overview: Includes the introduction and preliminaries of the project (including

definitions and notations);

• Related work: Reviews the related state-of-the-arts and analyzes their pros and

cons, and also identifies the novelty of our work.

• Methodology: Introduces the details of the proposed method, including the objec-

tive function, detailed architecture and training and testing algorithms.

• Evaluation: Presents extensive experiments, this part contains the data description,

introduction of baseline models, the evaluation metrics, the experimental settings

and the final evaluation results.

6

2

Conditional Urban Traffic Estimation

with Generative Adversarial Networks

2.1 Conditional Urban Traffic Estimation with Traffic-

GAN

2.1.1 Overview

2.1.1.1 Introduction

Over the past a few decades, we have witnessed drastic urbanization at the global scale.

It is reported that the world’s urban population ratio has reached 54% in 2014, and it is

projected that by 2050, two-thirds of the world population will live in urban areas[4].

With the rapid progress of urbanization, urban planning is becoming a vital problem

concerning with resources allocation, urban transportation efficiency and living environ-

ment. The fast development of new residential and commercial areas always comes with

population growth, which in turn increases the travel demands and the risk of worsening

traffic conditions due to the overload of the transportation infrastructures. For example,

7

2.1 CONDITIONAL URBAN TRAFFIC ESTIMATION WITH TRAFFICGAN

the Olympic Village was built in the northern area of Beijing for the 2008 Olympic Games

with many new residential and commercial areas constructed in its nearby areas as illus-

trated in Fig. 5.1. The population in that region increased drastically after 2008, which

significantly worsened the local traffic conditions [5]. This could have been avoided if

more thorough and accurate traffic evaluation had been done before the constructions.

Therefore, it is crucial to foresee both positive and negative impacts on traffic conditions

before an urban construction plan is deployed. In our work, we refer to such a problem

as “off-deployment traffic estimation” problem. Solving this problem is technically chal-

lenging, since no new data can be collected before deployment in an area, while old data

collected before deployment fails to capture the traffic pattern changes.

The traffic estimation problem has been extensively studied in the literature [6, 7, 8,

9, 10]. These works use the historical traffic data of regions to build machine learning

models that capture the correlations among the past traffic, environmental features and

the future traffic. However, when predicting the traffic impact of a newly developed con-

struction plan, these models will fail because they cannot capture the future traffic pattern

changes caused by the new deployment plan due to the lack of training samples. Tradi-

tionally in civil engineering, agent-based simulation models [11] or physical models [12]

are used to estimate the projected traffic volume after constructions. However, these mod-

els rely heavily on model choice and parameter settings, which are not transferable across

urban regions.

In this paper, we propose a novel traffic generative adversarial network (TrafficGAN)

to tackle the off-deployment traffic estimation problem. The proposed TrafficGAN cap-

tures the traffic correlations along the underlying road networks, and can estimate traffic

conditions prior to deployment of a construction plan. Our main contributions are sum-

marized as follows:

• We model the off-deployment traffic estimation problem as a traffic data generation

8

2.1 CONDITIONAL URBAN TRAFFIC ESTIMATION WITH TRAFFICGAN

Figure 2.1: Traffic condition changes around Olympic Village in Beijing, China

problem, and propose a novel deep generative model – TrafficGAN, which captures the

shared patterns across spatial regions of how traffic conditions evolve according to travel

demand changes and underlying road network structures.

• We evaluate TrafficGAN using a large scale traffic data collected during 7/2016-12/2016

from Shenzhen, China. The unique dataset represents a wide range of regions with di-

verse travel demands and traffic conditions in both rural and urban areas. Our results

demonstrate that our proposed TrafficGAN can accurately estimate the traffic conditions

compared with all baselines. When applying TrafficGAN to a number of representative

regions with higher (than their current) travel demands, we showcase the issues of those

regions (in case of new construction plan deployed) and identify potential reasons of the

issues.

2.1.1.2 Definitions

Urban planning, especially, governmental zoning1, is a process of planning land use and

development in a target region, in which certain land uses (e.g., residential, commercial)

are permitted or prohibited [13]. In this work, we focus on urban deployment and zoning

plans when developing certain new residential or commercial areas in a target region,

which will potentially promote the population size and influence the travel demand in

1https://en.wikipedia.org/wiki/Zoning

9

https://en.wikipedia.org/wiki/Zoning

2.1 CONDITIONAL URBAN TRAFFIC ESTIMATION WITH TRAFFICGAN

Figure 2.2: Travel demand and traffic distribution of region R

the region. Denote a city under planning as R0, e.g., Shenzhen City in China bounded

by [22.534◦, 22.87◦] in latitude and [113.77◦, 114.40◦] in longitude. As defined below,

we partition R0 into grid cells (as the smallest granular region to characterize the traffic

status) and form target regions R’s as collections of grid cells.

Definition 1 (Grid cell s). The planning city R0 is partitioned into N0 grid cells with

equal side-length in latitude and longitude, denoted as S = {si}, where 1 ≤ i ≤ N0, i ∈

N.

Definition 2 (Target region R). A target region R is a square geographic region in R0,

formed by ℓ× ℓ grid cells. Formally, R = ⟨s, ℓ⟩ is uniquely defined by an anchor grid cell

s on its top-left corner and a number ℓ of grid cells on the side1.

In our study, grid cells are the minimum units where traffic status and travel demands

are measured. Alternatively, urban planning and traffic estimation will be performed at a

target region. As a result, a region is analogous to an “image”, where grid cells are viewed

as “pixels”. Fig. 2.5a visualizes grid cells of Shenzhen, China and Fig. 2.5b illustrates the

target region examples with ℓ = 10.

Definition 3 (Travel demand of a grid cell and a target region). The travel demand

of a geographic area captures the total number of departures in a period of time, e.g.,

one hour interval. Thus, we denote the travel demand of a grid cell s as ds ∈ N. Given

a target region R, DR is an ℓ × ℓ matrix representing the travel demand distribution of

1Note that target regions can also be defined as rectangles rather than squares. For simplicity, we use
square shape of target regions in this work.

10

2.1 CONDITIONAL URBAN TRAFFIC ESTIMATION WITH TRAFFICGAN

Figure 2.3: Off-deployment traffic estimation problem

all grid cells in R. Moreover, we denote the total travel demand of a target region R as

dR ∈ N, which is the sum of travel demands in all grid cells within R, i.e., dR =
∑

s∈R ds

=
∑

1≤i,j≤lDR(i, j).

In general, it is hard to obtain the total travel demand in a region including all trans-

port modes. In this work, we use the demand for taxis to represent the regional travel

demand, where many studies have shown that taxi demands represent the total demands

quite well [14, 15].

Definition 4 (Traffic status of a grid cell and traffic distribution of a target region).

Traffic status includes various measures representing the quality of traffic in a geographic

region, such as average driving speed, traffic inflow/outflow, traffic volume, etc. Taking

traffic inflow as an example, we denote ms as the traffic inflow of grid cell s in a period

of time. Similar, given a target region R with ℓ × ℓ grid cells, we denote an ℓ × ℓ matrix

MR as the traffic distribution in R.

Each element of MR represents the taxi inflow in a grid cell. As shown in Fig. 2.2,

the whole matrix MR can be viewed and visualized as an “image” characterizing the

underlying traffic distribution of a target region R, where each pixel represents a grid

(e.g., gird s, the small red box in the map).

Definition 5 (Urban deployment plan). An urban deployment plan in a target region

R is referred to a plan to construct new residential or commercial areas in the region R

without changing the road structures. As a part of the plan, the expected travel demand

11

2.1 CONDITIONAL URBAN TRAFFIC ESTIMATION WITH TRAFFICGAN

after deployment is specified1, denoted by d̂R.

Clearly, an urban deployment plan will lead to an updated regional travel demand

d̂R, which in turn would significantly affect the regional traffic distribution MR. The

goal of our work is to estimate MR(d̂R), which reflects the potential traffic burden to be

introduced by a deployment plan and can be used by the planning authorities to evaluate

the pros and cons of urban deployment plans. The problem is formally defined as below.

Problem definition. Given a city area R0 partitioned into grid cells S, the citywide his-

torical travel demands and traffic distributions DR0,t and MR0,t are available over a time

span 1 ≤ t ≤ T . For a target region R = ⟨s, ℓ⟩ and a deployment plan in R with the

expected travel demand d̂R, we aim to estimate the traffic distributionMR(d̂R).

Fig. 5.2 illustrates an example of the problem. The series of matrices on the left are

the historical traffic distributions and travel demands for each time slot. The map on the

right is the estimated traffic distribution (MR(d̂R)) based on an expected travel demand

d̂R=350 of the proposed plan.

2.1.1.3 Data Description

In effect, all kinds of personal vehicle data can be used, especially the GPS trajectories and

other spatial-temporal data records. In this paper, we use two real-world traffic datasets,

(1) taxi GPS data; (2) road map data. For consistency, all datasets are collected from the

same time interval, i.e., from Jul 1st to Dec 31st, 2016 in Shenzhen, China.

Taxi GPS data contains GPS records collected from taxis in Shenzhen, China from Jul

1st to Dec 31st, 2016. There are 17,877 taxis equipped with GPS sensors, each GPS

sensor generates a GPS record every 40 seconds on average. Overall, a total number of

51,485,760 GPS records are collected each day, each record contains five key data fields

including taxi ID, time stamp, passenger indicator, latitude and longitude. The passenger

1The expected travel demand d̂R after deploying a construction plan is assumed given in this paper,
which can be done by commonly used Four-Steps demand forecasting approaches in Civil Engineering [16].

12

2.1 CONDITIONAL URBAN TRAFFIC ESTIMATION WITH TRAFFICGAN

Figure 2.4: Solution framework

indicator field is a binary value indicating whether a passenger is on board.

Road map. In our study, we use the Google GeoCoding1 to retrieve the bounding box of

Shenzhen. The bounding box is defined between 22.534◦ to 22.87◦ in latitude and 113.77◦

to 114.40◦ in longitude. Shenzhen road map2 is shown in Fig. 2.5.

2.1.1.4 Solution Framework

Fig. 4.2 outlines our off-deployment traffic estimation framework, which takes taxi GPS

data and road map data as inputs, processes the data in three stages to get the output:

• Stage 1 (Data Preprocessing): In this stage, we partition the road map into small grid

cells and calculate the travel demands and traffic status (i.e., taxi inflow) of all grid cells

and time intervals.

• Stage 2 (TrafficGAN Training): In this stage, we train TrafficGAN, a novel gener-

ative model for traffic estimation. TrafficGAN automatically captures the shared pat-

terns across spatial regions of how traffic distributions evolve according to travel demand

changes and underlying road network structures.

• Stage 3 (Urban Plan Evaluation): In this stage, the generator obtained from Stage 2

will be used to estimate the future traffic distributionMR(d̂R) for a target region R, given

1https://developers.google.com/maps/documentation/geocoding/
2http://www.openstreetmap.org/

13

https://developers.google.com/maps/documentation/geocoding/
http://www.openstreetmap.org/

2.1 CONDITIONAL URBAN TRAFFIC ESTIMATION WITH TRAFFICGAN

a deployment plan with the expected travel demand d̂R. Depending on traffic distribution

requirement defined by the urban planners/authorities, the deployment plan is accepted or

rejected.

2.1.2 Related Work

Urban planning is a technical and political process concerning with urban data analysis,

urban data mining, off-deployment evaluation and urban design. The off-deployment

evaluation problem is a vital and difficult part among all the urban problems. Related

works are summarized below.

Traffic volume prediction. Some previous works focus on traffic volume prediction from

different perspectives. For example, [17] proposes a hybrid framework that integrates

both state-of-art machine learning techniques and well-established traffic flow theory to

estimate citywide traffic volume. In [18] and [19], the authors develop models to predict

the road traffic volume and crowd flows in subway stations. These work assume un-

changed urban settings and predict the traffic volume over time and locations. However,

in this work we aim to generate the traffic distributions under various travel demands,

which are significant changes to the urban settings.

Graph Convolutional Networks (GCN). [20] is usually used to classify the nodes in a

graph. It can be seen as a generalization of neural network models like CNN to graphs

and networks. GCN applies graph convolutional layers inside the model with a feature

matrix and an adjacency matrix as inputs, where each row of the feature matrix contains

the features of one node, and the adjacency matrix is a representative description of the

graph structure. Even though GCN takes the graph structure and the correlation between

two nodes into consideration in convolution process, it is not a generative model which is

in need to solve the traffic estimation problem.

Deep Learning for Urban Computing. Urban Computing is a general research area

14

2.1 CONDITIONAL URBAN TRAFFIC ESTIMATION WITH TRAFFICGAN

which integrates urban sensing, data management and data analysis as a unified process

to explore, analyze and solve crucial problems related to people’s everyday life [21, 22,

23, 24]. With the recent rapid development of deep learning techniques, many researchers

have made attempts to use deep learning models to solve urban computing problems. For

example, Yuan et al. [24] propose to use a variation of the ConvLSTM model to predict

traffic accidents. Wu et al use recurrent neural networks (RNN) to predict trajectories.

Huang et al. [22] employ a deep attention model to predict crimes. Li et al. [23] employ

a reinforcement learning method to dynamically reposition shared bikes. These work,

however, do not use a generative model and they are very different from our problem.

Other Generative Models have been discussed previously when motivating the Traffic-

GAN model. They do not capture irregular spatial structures of the road networks and the

traffic correlations and thus could not effectively solve our problem.

2.1.3 Methodology

2.1.3.1 Stage 1: Data Preprocessing

Map Gridding For the ease of implementation in practice, we adopt the grid based method,

which simply partitions the map into equal side-length grids [25, 26]. The grid based

method has the advantage of allowing us to adjust the side-length of grids, which helps

to examine and understand impacts of the grid size. In this paper, we divide the map of

Shenzhen City into 40 × 50 grid cells with a side-length l1 = 0.0084◦ in latitude and

l2 = 0.0126◦ in longitude.

Given all 40 × 50 grid cells in Shenzhen, we choose target region size ℓ = 10 as an

example in this study, where our TrafficGAN actually applies to any target region size.

Thus, there are in total 1, 271 possible target regions with size 10 × 10. As shown in

Fig. 2.5b, the upper-left red box is the first region in Shenzhen, to get new regions, we

15

2.1 CONDITIONAL URBAN TRAFFIC ESTIMATION WITH TRAFFICGAN

Figure 2.5: Map gridding and regions illustration

can slide it horizontally for p grid cells, 0 ≤ p ≤ 40, and/or vertically for q grid cells,

0 ≤ q ≤ 30, p, q ∈ N. The location of each region is described with a tuple (i, j) which

indicates the coordinates of the first grid cell (the upper-left one) in the region, i.e., the

row and column index 0 ≤ i ≤ 30, 0 ≤ j ≤ 40, i, j ∈ N. However, it is unnecessary and

too costly to use data from all 1, 271 regions as training data. Instead, we set p = q = 5

and get 63 regions covering entire Shenzhen city as target regions, extract their traffic

distributions and travel demands over time.

Travel Demand. We use six months taxi GPS records of Shenzhen, China in 2016 to

extract the travel demand of each grid cell and region in Shenzhen. In each time slot, i.e.,

one hour, we count the total pickup events within each grid cell and each ℓ × ℓ region.

Since in each GPS record, the passenger indicator value indicates whether a passenger is

on board, which can be easily used to monitor the pickup information.

Traffic Distribution. Traffic distributions reflect the traffic status in a region, which can

be quantified with many measures such as traffic speed, volume, inflow/outflow. Taking

traffic inflow as an example, it is a crucial metric capturing the amount of arrivals in

each grid cell. Since it is hard to obtain the total traffic inflow in a grid cell including all

transport modes, in this paper, we use taxi inflow to represent the traffic inflow and many

studies has proved its effectiveness [27, 28]. In each time slot of each day, we count all

taxis which stay or arrive at each grid cell as the taxi inflow.

16

2.1 CONDITIONAL URBAN TRAFFIC ESTIMATION WITH TRAFFICGAN

2.1.3.2 Stage 2: TrafficGAN Training

Taking an analogy, our “off-deployment traffic estimation” problem is similar as image

generation problem, where the traffic distribution of a region can be viewed as a gray-

scale “image”, where the traffic status (e.g., inflow) of each grid can be viewed as a

“pixel” value. Thus, image generation approaches, such as GANs [29], sound a promising

solution. However, the unique challenges of our problem prevent the state-of-the-art GAN

models from solving it. In this section, we highlight the technical challenges of our

problem, summarize the state-of-the-art generative models, and introduce our TrafficGAN

for off-deployment traffic estimation problem.

Challenges. To solve the off-deployment traffic estimation problem, we aim to gen-

erate the traffic distributions with respect to various travel demands and the road network

structures in the target region, which is a challenging task for the following reasons:

• Traffic correlations along road networks. In a target region R, the traffic of neighbor-

ing grids along the underlying road networks has strong correlations. Capturing such

correlations is non-trivial since the correlation patterns are defined by the road network

structures, which may have irregular shapes (rather than squares or rectangles).

• Conditioned Traffic Distribution Generation. The generated traffic distribution is mean-

ingful only when conditioned on the given region R and the travel demand dR. However,

how to design a generative model that outputs the traffic distributions for a desired region

and travel demand is challenging.

Preliminaries. Generative adversarial networks (a.k.a. GANs) [29] have been widely

employed to many applications, including image, text generation, domain adaptation, etc.

GAN includes a generator which generates a new data instance with input as a random

code in a low dimensional space, and a discriminator which evaluates input data instances

for authenticity.

Conditional GANs with deep convolutional layers (cDCGANs) [30] are composed of

17

2.1 CONDITIONAL URBAN TRAFFIC ESTIMATION WITH TRAFFICGAN

Figure 2.6: Propagation rule of dynamic convolutional layer, f refers to traffic features

multiple convolutional layers in both generator and discriminator to obtain better gener-

ation quality for primarily image data, and introduce a condition as input in both gener-

ator and discriminator to guarantee not only the generated data is close to the real, but

also matches the input condition. cDCGAN seems a feasible method to solve the off-

deployment traffic estimation problem since it can control the outputs by conditions and

the convolutional layers can capture local patterns with filters. However, it is still hard

to capture the traffic correlations along road networks accurately due to filters’ fixed size

and shape.

Below, we introduce a measure of traffic correlation across grid cells and develop

TrafficGAN. As a generative model, TrafficGAN integrates the traffic correlations for

traffic generations.

Quantifying Traffic Correlation. We introduce traffic correlation to capture the in-

herent traffic dependence between a grid cell pair. For each grid cell, there is time series

traffic data (taxi inflow) over the entire study time period. We calculate the Pearson corre-

lation coefficient between time series of a grid cell pair to quantify their traffic correlation.

Pearson correlation coefficient [31] measures the linear correlation between variables X

and Y , where X and Y are time series taxi inflow data of two grid cells in our case. The

Pearson correlation coefficient a can be calculated by the formula below, where X and Y

are the mean of X and Y :

aXY =

∑n
i=1

(
Xi −X

) (
Yi − Y

)√∑n
i=1

(
Xi −X

)2√∑n
i=1

(
Yi − Y

)2 , (2.1)

18

2.1 CONDITIONAL URBAN TRAFFIC ESTIMATION WITH TRAFFICGAN

where a ∈ [−1, 1]. If a ∈ [−1, 0), the two grid cells are negatively correlated, a = 0

means two grid cells don’t have any linear correlation, a ∈ (0, 1] indicates two cells are

positively correlated. For an ℓ × ℓ region R, its corresponding traffic correlation matrix

A is a symmetric ℓ2× ℓ2 matrix, where the entry aij is the traffic correlation between grid

cell si and sj , si, sj ∈ R.

In a road network, nearby road segments (resp. nearby grid cells) often have stronger

correlations in traffic according to the First Law of Geography [32]. In fact, the effective

traffic correlations are generally positive, since if a road segment (resp. a grid cell) has

traffic congestion, the road segments adjacent to it (resp. nearby grid cells) are likely

to have high traffic volumes, the similar trend indicates positive correlations. However,

the traffic correlations between distant road segments (resp. distant grid cells) are weak

due to the lack of direct traffic connections. In our work, for a specific grid cell, we

only consider its nearby grid cells which are directly connected with it by roads and thus

(likely) to have positive traffic correlations. To remove other uncorrelated grids, we set a

threshold λ ∈ (0, 1) such that we set aij = 0, if aij < λ.

After removing the uncorrelated grids by the threshold λ, we perform row normaliza-

tion for the traffic correlation matrixA as Eq. 2.2, so it will not affect the scale of features

when multiplied to the feature matrix in Eq. 2.11.

aij =
aij∑ℓ2

j=1 aij
. (2.2)

Next, we will elaborate on how to integrate the traffic correlation matrix for traffic distri-

butions estimation and generation.

TrafficGAN. In this paper, to solve the challenges mentioned above, we propose a

novel conditional generative model – TrafficGAN which can capture the traffic corre-

lations of road networks, control the generation results with desired region and travel

19

2.1 CONDITIONAL URBAN TRAFFIC ESTIMATION WITH TRAFFICGAN

Figure 2.7: Convolutional filter comparison, λ1 > λ2

demand conditions, and generate realistic traffic distributions. TrafficGAN consists of a

generator G and a discriminator D, and it applies dynamic convolutional layers in G and

D.

The goal of dynamic convolutional layer is to learn a function of traffic features in a

region including traffic inflow, volume, speed, etc. The input of dynamic convolutional

layer includes two parts: • A traffic feature matrixH of size N × F0 (N : number of grid

cells in a region, N = ℓ× ℓ; F0: initial number of traffic features).

• A non-negative and row-normalized traffic correlation matrixA of size N ×N .

The output is a new feature matrix after one-layer convolution. The layer-wise prop-

agation rule is:

Hi+1 = f (Hi,A) = σ (AHiWi+1) , (2.3)

whereHi is the feature matrix of a region got after ith layer and is the input of the (i+1)th

layer, Wi+1 is the weight matrix in (i + 1)th layer and σ is an activation function. The

rule is illustrated in Fig. 2.17.

Dynamic Filter. In the propagation, since the traffic correlation matrix is multiplied by

the traffic feature matrix, for each grid cell, the new features after one-layer propagation

is the weighted sum of all grid cells features within the corresponding region, and we

can treat the correlations between the current grid cell and any other grid cells (i.e., the

corresponding row in correlation matrix) as a filter, whose shape and size are irregular

and controlled by these correlations. Hence, we say such filters are dynamic since the the

20

2.1 CONDITIONAL URBAN TRAFFIC ESTIMATION WITH TRAFFICGAN

Figure 2.8: TrafficGAN

filter of each grid cell would be different and changeable.

Dynamic Convolutional Layer vs. Standard Convolutional Layer. Fig. 2.18 illustrates

the difference between a standard convolutional layer and a dynamic convolutional layer

(with different threshold λ). By introducing the traffic correlation matrix A in dynamic

convolutional layer, a dynamic “filter” is created and applied to the feature matrix H ,

where the size and the shape of the dynamic filter is controlled by A and the threshold

λ, when λ changes, the dynamic filter for the same grid cell could be different. The

filters are marked in yellow, and the blue block represents the target grid. The filter of a

standard convolutional layer (Fig. 2.18(a) has fixed size, e.g., a 3×3 square, which cannot

naturally captures the traffic correlations along the road networks and would include some

grids with no roads or some girds having low traffic correlations. In contrast, the dynamic

filters created by the traffic correlation matrix (in Fig. 2.18(b)-2.18(c)) align with the road

network very well. Moreover, comparing Fig. 2.18(b) and Fig. 2.18(c), it is clear that a

smaller threshold λ leads to a larger range of dynamic filter, and vice versa.

Besides the dynamic filter, another filterW in Eq. 2.11 performs convolution on traf-

fic features in each grid cell. Moreover, the corresponding dynamic de-convolutional

layer is the same structure as the dynamic convolutional layer as shown in Fig 2.17.

This is because the matrix operation of the dynamic convolutional layer and dynamic

de-convolutional layer is invariant. We omit the detailed proof for brevity.

TrafficGAN Architecture. To tackle the challenge of conditioned traffic distribution

generation, we introduce conditional generative model structure in designing TrafficGAN.

Fig. 5.5 shows the overall structure of TrafficGAN. The goal of the generator G is to gen-

21

2.1 CONDITIONAL URBAN TRAFFIC ESTIMATION WITH TRAFFICGAN

Figure 2.9: TrafficGAN architecture

erate traffic distributions with respect to the region location loc and travel demand d. The

input of the generator G includes three parts, i) a low-dimensional code vector z, ran-

domly sampled from Gaussian distribution, ii) condition vector c = [loc, d], defining the

desired region and travel demand and iii) a traffic correlation matrixAloc. The discrimina-

tor D takes three inputs, i) a traffic distribution M , ii) condition information c = [loc, d]

and iii) a traffic correlation matrix Aloc. D outputs a scalar indicating whether the traffic

distribution M is real and whether the input M and c are matched. The detailed struc-

tures of generator G and discriminator D are detailed in Fig. 2.9, len(c) represents the

number of conditions in c. In generator, c is concatenated into z such that the generator

is conditioned by c, which means the generator G builds the mapping from distribution

pz(z) to a traffic distribution G(c,Aloc, z). In our case, N = 100, F0 = 1 since the only

traffic feature is taxi inflow.

TrafficGAN Loss Function In TrafficGAN, the generator G aims to generate “like-

real” traffic distributions so that the discriminator D cannot distinguish the generated

traffic distributions from the real traffic distributions well. For the discriminator D, it

aims to rise the score of real traffic distributions, lower down the score of generated traffic

distributions, and lower down the score of mismatched pairs of traffic distributions and

conditions. As a result, the loss function of TrafficGAN is in the form of Eq. 5.7, modeled

22

2.1 CONDITIONAL URBAN TRAFFIC ESTIMATION WITH TRAFFICGAN

as a MinMax game. (See more details in [33].)

min
G

max
D

V (D,G) = EM∼pdata(M)[logD(c,Aloc,M)]

+ Ez∼pz(z)[log(1−D(G(c,Aloc, z)))]. (2.4)

Input: Training iteration K, a training set Z = {(c1,A1
loc,M

1), · · · , (cn,An
loc,M

n)},
initialized G and D.

Output: Well trained G and D.
1: In each training iteration iter:
2: repeat
3: Sample Z0 = {(c1,A1

loc,M
1), · · · , (cm,Am

loc,M
m)} from training set Z, where

m < n.
4: Sample N = {z1, z2, · · · , zm} from Gaussian distribution.
5: Generate T̃ = {M̃ 1, · · · ,M̃m} with G, where M̃ i = G(ci,Ai

loc, z
i).

6: Sample T̂ = {M̂ 1,M̂ 2, · · · ,M̂m} from training set Z, where each M̂ i is mis-
matched with (ci,Ai

loc).
7: Update D with Eq. 3.5 to maximize Eq. 2.15.
8: Update G with Eq. 3.6 to maximize Eq. 2.17.
9: until iter > K.

Algorithm 1: TrafficGAN Training Process

Training Process. During the training process, we apply batch gradient descent. The

detailed training process is shown in Algorithm 9, where the discriminator D and the

generator G are updated in line 3 – 7 and line 8, respectively.

In each training iteration, we update the parameters θD of D with Eq. 2.15 and Eq. 3.5,

where ηD is the learning rate.

ṼD =
1

m

m∑
i=1

(
log(1−D(ci,Ai

loc,M̃
i))

+ logD(ci,Ai
loc,M

i) + log(1−D(ci,Ai
loc,M̂

i))
)
, (2.5)

θD = θD + ηD▽ṼθD(θD). (2.6)

23

2.1 CONDITIONAL URBAN TRAFFIC ESTIMATION WITH TRAFFICGAN

Then, we update the parameters θG of G with Eq.2.17 and Eq.3.6, where ηG is the learning

rate.

ṼG =
1

m

m∑
i=1

logD(G(ci,Ai
loc, z

i)), (2.7)

θG = θG + ηG▽ṼθG(θG). (2.8)

2.1.3.3 Stage 3: Urban Plan Evaluation

The generator G obtained from Stage 2 can be used by urban planners to evaluate urban

construction plans at various locations, and search for more appropriate plans. To do so,

given an urban deployment plan, the generator G takes (i) the expected travel demand d̂R,

(ii) the location of the target region R, (iii) traffic correlation matrix of R, and (iv) random

code vector z, as inputs to generate traffic distributions for the plan to be evaluated.

Note that future traffic distributions hinge on many factors such as weather, etc. To

capture the entire distribution of what the future traffic will look like over all potential

(hidden) factors, we randomize a large number L of random code vectors to regen-

erate the traffic distributions for the urban plan. All L generated traffic distributions

[M̃ 1, · · · ,M̃L] are used to capture the future traffic distributions. The urban planners

can summarize and evaluate various statistics of their interests using the L generated

traffic distributions, for example, the mean, variance, minimum, maximum of L traffic

distributions as outlined below.

Traffic mean distribution. The average of L generated traffic distributions reflects the

average traffic status in the target region R after the plan is deployed. The positive or

negative impacts of the urban construction plan on the local traffic status in R can be

analyzed with the average generated distribution.

Traffic variance distribution. Similarly, we can take the variance of traffic status (e.g.,

inflow) in each grid cell in R to obtain a traffic variance distribution, which indicates the

24

2.1 CONDITIONAL URBAN TRAFFIC ESTIMATION WITH TRAFFICGAN

fluctuation of the generated traffic status in each grid cell.

2.1.4 Evaluation

We conduct experiments to evaluate our proposed TrafficGAN with baseline approaches

using large scale real world taxi GPS data.

2.1.4.1 Experiment Design

We performed two sets of experiments: (i) Generate traffic distributions in a target region

R that was “seen” by TrafficGAN in the training set but under other travel demands. To do

this, we remove the traffic distribution MR of R under a specific travel demand dR from

the training set, and train our model with the rest of the data. Then we let TrafficGAN

generate the traffic distribution M̃R under dR and compare them with the removedMR.

(ii) Generate traffic distributions for an “unseen” target region R with a specific target

travel demand dR, where R was not included in the training set, therefore, TrafficGAN has

never seen traffic distributions of R under any travel demand during training process. We

extract the real traffic distributions of R from the original taxi GPS dataset and treat them

as the ground truths, then we use the well-trained generator of TrafficGAN to generate the

same number of traffic distributions and compare them with the ground truths. Obviously,

the second task is more challenging.

In this paper, Euclidean distance and mean absolute percentage error (MAPE) are

used to evaluate the quality of a generated traffic distribution against the ground truth

traffic distribution of a target region R. Euclidean distance is defined as follows. For the

ground-truth vector V = (v1, · · · , vn) and the predicted vector V̂ = (v̂1, · · · , v̂n), the

25

2.1 CONDITIONAL URBAN TRAFFIC ESTIMATION WITH TRAFFICGAN

Figure 2.10: P1 value changes with λ

Euclidean distance and MAPE between V and V̂ is:

∥V̂ − V ∥2 =

√√√√ n∑
i=1

(v̂i − vi)2. (2.9)

MAPE =
1

n

n∑
i=1

|vi − v̂i| /vi, (2.10)

We define statistics P1—P4 (measured by Eq. 2.9), P ′
1—P ′

4 (measured by Eq. 2.10)

to measure and evaluate the difference between the generated traffic distribution and the

ground-truth traffic distribution.

•P1 and P ′
1: For each R and dR pair, we calculate the average traffic distribution using

real traffic distributions and refer to it as “true average distribution”. We also calculate

the average of generated traffic distributions and refer to it as “generated average dis-

tribution”. The “true average distribution” and “generated average distribution” can be

reshaped into two vectors, the smaller Euclidean distance and MAPE between the two

vectors (denoted with P1 and P ′
1, respectively) reflect that the mean of the generated data

are similar to the mean of the true data.

•P2, P3 and P ′
2, P ′

3: Under the condition of target region R and target travel demand dR,

for each grid cell s ∈ R, we calculate the Euclidean distance and MAPE between s in

26

2.1 CONDITIONAL URBAN TRAFFIC ESTIMATION WITH TRAFFICGAN

Table 2.1: Statistics Comparisons for an “Unseen” Region

TrafficGAN cGAN cDCGAN smoothing regression
P1 956.78 14321.60 1452.82 1178.62 55302.89
P ′
1 3.55 1710.41 3.71 21.27 220.79

P2 420.50 7096.76 523.37 NA NA
P ′
2 0.65 253.48 1.25 NA NA

P3 314.21 1914.90 539.78 NA NA
P ′
3 0.87 400.30 3.09 NA NA

P4 5249.24 73505.63 7519.95 NA NA
P ′
4 0.65 253.48 1.25 NA NA

Table 2.2: Statistics Comparisons for a “Seen” Region

TrafficGAN cGAN cDCGAN smoothing regression
P1 896.95 14436.03 1473.42 1418.74 57792.57
P ′
1 4.35 1669.10 6.43 207.04 527.47

P2 361.74 6393.57 455.25 NA NA
P ′
2 0.73 247.53 2.13 NA NA

P3 277.67 1837.80 512.83 NA NA
P ′
3 0.89 403.26 5.04 NA NA

P4 4560.26 66524.57 6857.47 NA NA
P ′
4 0.73 247.53 2.13 NA NA

real traffic distributions and in generated distributions so that we have N = ℓ2 Euclidean

distances and MAPEs for all s ∈ R. The mean of them (denoted as P2 and P ′
2) indicate

on average the similarity between the generated data and the true data for each grid cell.

The standard deviation of these Euclidean distances and MAPEs are denoted as P3 and

P ′
3.

•P4 and P ′
4 refer to the Euclidean distance and MAPE between real traffic distributions

and generated traffic distributions with various travel demands. We combine all the re-

al/generated traffic distributions with different travel demands as two huge matrices and

reshape them into two vectors and calculate the Euclidean distance and MAPE between

them, which indicate whether the traffic distributions conditioned on different travel de-

mands are realistic or not.

27

2.1 CONDITIONAL URBAN TRAFFIC ESTIMATION WITH TRAFFICGAN

Figure 2.11: P1 comparisons over 8 target regions (seen and unseen)

2.1.4.2 Baseline Models

We compare our TrafficGAN with four baseline approaches below.

Standard cGAN [33]. Without deep convolutional layers, the generator and discrimina-

tor are both composed of four fully-connected layers and the first three layers are activated

by ReLU, output of the generator is activated by hyperbolic tangent function, and the out-

put of discriminator is fed to Sigmoid function.

Conditional DCGAN [30]. The generator and discriminator of cDCGAN are composed

of four transposed convolutional/convolutional layers and the first three layers are batch

normalized and activated by leaky ReLU, the output of the generator is activated by hy-

perbolic tangent function, and the output of discriminator is activated by Sigmoid.

Spatial smoothing approach with neighboring regions[34]. This method uses the traf-

fic distributions of 9 closest regions under the same travel demand to compute a mean

distribution as the resulting estimation. Note we only use available data in the training

set to estimate and we will ignore a neighboring region if its data is not available for this

travel demand.

Regression [35]. Ridge regression is applied to estimate the taxi inflow of each grid cell

with the location of the grid cell and the travel demand as predictors.

2.1.4.3 Experiment Settings

In the experiments, we obtain 122, 472 traffic distributions of Shenzhen, China from Jul

1st to Dec 31st in 2016. We train TrafficGAN, cGAN and cDCGAN both for 200 epochs,

28

2.1 CONDITIONAL URBAN TRAFFIC ESTIMATION WITH TRAFFICGAN

Figure 2.12: Spatial patterns of 9 “unseen” regions

and randomly sample code z from a standard normal distribution with µ = 0, σ = 1. All

models are trained using Adam [11] with β1 = 0.5 and β2 = 0.999, and a learning rate of

2× 10−5 for the first 10 epochs and linearly decayed to 2× 10−6. In the training process,

we use batch stochastic gradient descent with a batch size of 128.

2.1.4.4 Evaluation Results

λ selection. As we illustrated in Fig. 2.18, as a parameter of TrafficGAN, the correlation

threshold λ would influence the performance of the generation. First we test the impact

of different λ on the results. In Fig. 2.10, we pick two ”seen” regions and two “unseen”

regions with specific travel demands to see how their P1 performances change with λ. We

can see when λ moves from 0 to 0.4, the performance slightly improves (P1 decreasing)

but with big fluctuations. P1 becomes more stable with smaller fluctuations when 0.4 <

λ < 0.5. When λ > 0.6, the P1 increases drastically indicating bad performance. Based

on our test when λ = 0.47, almost all regions have the lowest P1. Thus, in this paper,

we pick 0.47 as the proper value of λ, all the following experiments are conducted with

λ = 0.47.

Statistics comparisons with four baselines. With λ = 0.47, we have the P1 values

29

2.1 CONDITIONAL URBAN TRAFFIC ESTIMATION WITH TRAFFICGAN

Figure 2.13: Traffic conditions of an “unseen” region

for 4 “seen” and 4 “unseen” regions in Fig. 2.11, where TrafficGAN always has the lowest

P1 indicating the mean of the generated data with TrafficGAN is the closest to the true

data. Other statistics also have similar results.

We pick two representative regions (seen and unseen) as target regions with a specific

travel demand. All the statistics are shown in Table. 2.1 and Table. 2.2. For both “seen”

and “unseen” regions, TrafficGAN presents the lowest error in all statistics, which indi-

cates the generated traffic distributions with TrafficGAN are much closer to the real ones.

Compared with cGAN and cDCGAN, our TrafficGAN model brings down the P1 error

by up to 93.79% and 39.12% on the “seen” region and up to 93.32% and 34.14% on the

“unseen” region.

Spatial pattern visualization. In this part, we visualize the generated/estimated traf-

fic distributions and compare them with the real one. Here the traffic distributions are

normalized to the same scale. Fig. 2.12 shows the visualizations of spatial patterns of

9 connected “unseen” regions, where each region has a corresponding travel demand.

Fig. 2.12a marks the locations of selected 9 regions with red color on the whole city map.

Fig. 2.12b shows the zoomed-in road map of the 9 regions. Fig. 2.12c shows the true

30

2.1 CONDITIONAL URBAN TRAFFIC ESTIMATION WITH TRAFFICGAN

average distribution and Fig. 2.12d shows the generated average distribution with Traffic-

GAN. Fig. 2.12e - 2.12h show the generated/estimated average traffic distribution of the

baselines. Obviously, the generated average distribution with TrafficGAN captures the

structure of the underlying road networks of all 9 “unseen” regions. TrafficGAN clearly

outperforms all the baselines which cannot accurately learn the spatial patterns of “un-

seen” regions and they usually overestimate or underestimate the value in each grid cell.

Traffic condition visualization. Moreover, in the traffic estimation problem, we fo-

cus more on estimating the traffic conditions in roads. Fig. 2.13 shows the traffic condi-

tions in all roads in an “unseen” region under a specific travel demand, where the roads

in red indicate congestion, the yellow roads indicates slight congestion, and the green

ones represent no traffic congestion. Fig. 2.13a shows the location of this “unseen” re-

gion. Fig. 2.13b is the road map of the “unseen” region with high travel demand locations

marked. Fig. 2.13c shows actual traffic condition in the data. Fig. 2.13d shows the gen-

erated traffic condition with TrafficGAN, which is highly similar to the ground truth.

Fig. 2.13e - 2.13h show the results of the baselines. Clearly, the results of TrafficGAN

outperforms all baselines. Results on the “seen” regions also suggest the same trend,

where TrafficGAN can better capture the road networks and generate more realistic traf-

fic distributions than all baselines. Due to space limit, we only present the results on

“unseen” regions since it is a harder task.

In conclusion, TrafficGAN is a success in traffic estimation, which can not only cap-

ture the shared patterns across spatial regions of how traffic conditions evolve according to

travel demand changes and underlying road network structures, but also provide realistic

estimation of the traffic conditions in roads based on different travel demands.

31

2.1 CONDITIONAL URBAN TRAFFIC ESTIMATION WITH TRAFFICGAN

Figure 2.14: Traffic condition forecast. (a) is the target region covering the Longgang Dis-
trict; (b) is the actual traffic condition with current travel demand in the region; (c) is the
forecast traffic condition with a higher expected travel demand, where more congestion ap-
pears; (d) indicates two possible reasons for (c);

2.1.4.5 Case Studies

To further utilize our TrafficGAN, we look into real traffic condition evaluation cases

in urban planning. As we mentioned earlier in this paper, the traffic condition always

changes with the travel demand and rural areas usually have lower travel demands than

urban areas. Therefore, it is a good opportunity to apply TrafficGAN in practice to fore-

cast the possible traffic conditions under a not-yet-observed travel demand in an area.

For example, in 2018, Shenzhen government announced the plan to expropriate res-

idential building. A large part of residential buildings to be expropriated are located in

Longgang District. The goal of the expropriation is to build new residential and commer-

cial areas in Longgang. The urban off-deployment traffic estimation can be performed

before the expropriation and construction.

Longgang District is mainly located in the region marked with red box in Fig. 2.14a.

The current average travel demand is 192. Fig. 2.14b shows the current traffic conditions.

If new residential and business areas are built in Longgang, the travel demand would

grow rapidly to 800 [16]. Fig. 2.14c shows the predicted traffic conditions of nearby

roads under this expected travel demand. Compared with the current traffic conditions

in Fig. 2.14b, apparently the overall traffic inflow is higher, the average traffic inflow

increases drastically in two places marked in Fig. 2.14c. Fig. 2.14d illustrates possible

reasons for the traffic congestion after the construction, i.e., compacted roads and the

32

2.2 SPATIAL-TEMPORAL GENERATIVE ADVERSARIAL NETWORKS

poor design of lanes in these areas.

2.2 Spatial-Temporal Generative Adversarial Networks

2.2.1 Overview

2.2.1.1 Introduction

The fast urbanization in recent years has brought huge impacts on urban traffic due to the

growth of urban population, which potentially increases the travel demands and the risk of

worsening traffic conditions caused by the overload of the transportation infrastructures.

Therefore, urban traffic estimation has acted an important role in the process of urban

development, which can provide insights for urban planning, traffic management and

resource allocation, and help to improve the urban transportation efficiency and living

environment [36]. For example, as shown in Figure 4.1, new sports village was planed

to be built in Vaughan, Canada by the local government in 2019, which would increase

the local travel demands to a great extent. Considering the potential traffic pressure the

construction would bring, the plan was finally rejected [37]. Thus, urban traffic estimation

is a critical step when evaluating an urban development plan before its deployment.

Given an urban development plan (with new travel demands it would produce), the un-

derlying road network, and the historical traffic observations, the problem of conditional

urban traffic estimation aims at evaluating the deployment plan by estimating traffic status

under the new travel demands in consecutive time slots.

The conditional urban traffic estimation problem is challenging and difficult to solve

due to the following reasons:

(1) Traffic status heavily depends on travel demands. Major changes in travel demands

due to emergencies or urban constructions (e.g., a newly constructed commercial center

33

2.2 SPATIAL-TEMPORAL GENERATIVE ADVERSARIAL NETWORKS

Figure 2.15: Example of traffic estimation and evaluation for urban planning in Vaughan,
Canada.

or hospital) could drastically change the traffic status [1]. In such a scenario, data-driven

approaches may not effectively estimate the traffic after the demand changes due to the

lack of data.

(2) Spatial auto-correlations. The traffic status in nearby locations tends to correlate

with each other. Capturing such auto-correlations is non-trivial. However, in a traffic

network, the strength of traffic spatial auto-correlations varies at different locations and

highly depends on the underlying road network structures.

(3) Temporal auto-correlations. Traffic status at the same location also exhibits strong

auto-correlations over time. The traffic status at one location is highly correlated with its

precedents. Such impacts also bring big challenges when estimating the urban traffic.

To estimate the urban traffic, many estimation methods have been proposed from dif-

ferent perspectives. The classic traffic estimation methods have been extensively studied

in the literature [7, 8, 9, 10]. These works train machine learning models using historical

traffic data trying to capture the correlations among the past traffic, environmental features

and the future traffic. However, when predicting the traffic impacts of drastic increased

(or decreased) travel demands, these models would fail because they cannot capture the

future traffic changes caused by the travel demand changes due to the lack of training

samples.

34

2.2 SPATIAL-TEMPORAL GENERATIVE ADVERSARIAL NETWORKS

Figure 2.16: Insight of the framework.

Moreover, in recent years, there have been a lot of urban traffic prediction works using

deep neural networks to model spatial and temporal auto-correlations. [38] used stacked

autoencoders to predict the travel demands. [39] and [40] used ConvLSTM and ConvGRU

to predict traffic accidents and crowd density. Others [41, 42] used the combination of

CNN and LSTM to predict the road traffic speed and crowd flows. These models captured

the temporal and spatial dependencies simultaneously, however, they did not consider the

impact of conditions (e.g., travel demand changes), cannot accurately capture the spatio-

temporal auto-correlations with various travel demands, and thus fail to provide long-term

predictions without any prior knowledge. A more recent work [1] proposed a TrafficGAN

model to solve the traffic estimation problem. However, TrafficGAN ignores the temporal

auto-correlations of traffic status and can only make snapshot estimations.

To tackle the aforementioned challenges and solve the conditional urban traffic es-

timation problem, in this paper, we propose a novel Conditional Urban Traffic Genera-

tive Adversarial Network (Curb-GAN), which can provide effective traffic estimations in

consecutive time slots based on different travel demands. Figure 5.3 shows the solution

framework, where the proposed Curb-GAN utilizes conditional GAN structure to control

the generated traffic based on various travel demands, and the well-trained generator is

35

2.2 SPATIAL-TEMPORAL GENERATIVE ADVERSARIAL NETWORKS

used to estimate future traffic. Curb-GAN features a few novel designs, including us-

ing dynamic convolutional layers to capture the spatial auto-correlations along the road

networks, and applying self-attention mechanism to capture the traffic temporal depen-

dencies across different time slots. Our main contributions are summarized as follows:

• We model the conditional traffic estimation problem as a traffic data generation prob-

lem, and propose a novel deep generative model Curb-GAN, which can generate future

traffic estimations in consecutive time slots based on different travel demands in any

region of a city.

• Building blocks containing dynamic convolutional layers and self-attention mechanism

are designed to capture the shared patterns across spatio-temporal regions of how traffic

status evolves according to time changes, travel demand changes and underlying road

network structures.

• We conduct extensive experiments on two real-world spatio-temporal datasets (taxi in-

flow and traffic speed) to evaluate our proposed Curb-GAN. The experiment results ver-

ify that Curb-GAN can significantly improve the urban traffic estimation performance

and outperform all existing baseline methods on both datasets.

2.2.1.2 Preliminaries

In this section, we first introduce the preliminaries used in this paper and then formalize

the conditional urban traffic estimation problem.

Notations and Definitions We list the notations that will be used throughout the paper in

Table. 5.1.

Definition 1 (Grid cells). We split the city into I × J grid cells with equal side-length in

latitude and longitude, denoted as S = {sij}, where 1 ≤ i ≤ I, 1 ≤ j ≤ J .

Definition 2 (Target region). A target region R is a square geographic region in the city,

36

2.2 SPATIAL-TEMPORAL GENERATIVE ADVERSARIAL NETWORKS

Table 2.3: Notations

Notations Descriptions
i, j Locations(coordinates in a grid world)
S = {sij} Grid cells
R = {Rij} All target regions
Ns = ℓ2 ∈ N Number of grid cells in a region
Nt ∈ N Number of time slots within a day
τin ∈ N Number of days of historical traffic observations
DR = {dRt } Travel demand sequence of one day in R
MR = {MR

t } Traffic distribution sequence of one day in R
AR = {AR

t } Traffic correlation matrix sequence in R
CR = {CR

t } Traffic condition sequence of one day in R

formed by Ns = ℓ × ℓ grid cells. The whole city can be split into overlapping regions

R = {Rij}, where Rij = ⟨sij, ℓ⟩ is uniquely defined by an anchor grid cell sij on its

top-left corner and a number ℓ of grid cells on the side1.

Definition 3 (Travel demand). The travel demand of an area captures the total number

of departures in a period of time. Thus, we denote the travel demand of a grid cell s in

time slot t as dst ∈ N. Moreover, the travel demands of a target region R within a day

is denoted as a sequence DR = {dR1 , . . . , dRNt
} ∈ NNt , where dRt is the sum of travel

demands in all grid cells within R in time slot t, i.e., dRt =
∑

s∈R dst ∈ N.

Definition 4 (Traffic status and traffic distribution). Traffic status indicates the quality

of traffic, which can be measured by traffic speed, traffic inflow/outflow, traffic volume,

etc. We denote ms
t as the average traffic status of grid cell s in time slot t. The traffic distri-

butions of a target region R within a day is denoted as a tensor MR = {MR
1 , . . . ,M

R
Nt
} ∈

RNt×ℓ×ℓ, where we denote the ℓ× ℓ matrixMR
t as the traffic distribution in R in time slot

t, each entry ofMR
t is ms

t , where s ∈ R.

Definition 5 (Traffic correlation matrix). The traffic correlation matrices of a target

region R within a day is denoted as a tensor AR = {AR
1 , . . . ,A

R
Nt
} ∈ RNt×Ns×Ns , where

AR
t is a traffic correlation matrix of size Ns × Ns in region R in time slot t [1], AR

t is

1Note that target regions can also be defined as rectangles rather than squares. For simplicity, we use
square shape of target regions in this work.

37

2.2 SPATIAL-TEMPORAL GENERATIVE ADVERSARIAL NETWORKS

non-negative and row-normalized.

Traffic correlations capture the inherent traffic dependencies between a grid cell pair

(i.e., auto-correlations). We use Pearson correlation coefficient of each pair of grid cells to

quantify their corresponding traffic correlations. Note here we assume that traffic status at

different locations are either positively correlated or independent. Negative correlations,

though theoretically possible, are not considered in this paper.

Problem Definition A city area is partitioned into regions R, given τin × ∥R∥ samples

of D and M, for one specific target region R, we aim to estimate the traffic distribu-

tions M̂R = {M̂R
1 , . . . ,M̂

R
Nt
} in consecutive time slots based on a given expected travel

demand sequence D̂R = {d̂R1 , . . . , ˆdRNt
}.

2.2.2 Related Work

Urban Traffic Prediction. Previous works focused on urban traffic prediction from dif-

ferent perspectives. There are some previously published works focusing on predicting

an individual’s movement based on their location history such as [43, 44]. They mainly

forecast millions of individuals’ mobility trajectories rather than the aggregated traffic

conditions in a region. Some other researchers aimed to predict travel speed and traffic

volume on roads. For example, [17] proposed a hybrid framework that integrated both

state-of-art machine learning techniques and well-established traffic flow theory to esti-

mate citywide traffic volume. In [18] and [19], the authors developed models to predict the

road traffic volume and crowd flows in subway stations. These work assumed unchanged

urban settings and predict the traffic volume over time and locations. Traditionally in

civil engineering, agent-based simulation models [11] or physical models [12] were used

to estimate the projected traffic volume after constructions. However, these models rely

heavily on model choice and parameter settings, which are not transferable across urban

regions. In our work, we focus on studying the spatio-temporal auto-correlations of traffic

38

2.2 SPATIAL-TEMPORAL GENERATIVE ADVERSARIAL NETWORKS

and predict regional traffic based on different local travel demands.

Deep Learning for Spatio-Temporal Prediction. Deep learning methods have inspired

many spatio-temporal applications. For example, CNNs were widely used in grid data

modeling like citywide flow prediction [45] and taxi demand inference [46], since it can

capture the spatial auto-correlations and thus provide good traffic estimations. Besides,

RNNs [47] were also widely applied in spatio-temporal prediction problems due to their

success in sequence learning. For example, [48] and [49] applied RNN to tackle video

prediction and travel time estimation problem, respectively. In addition, [40] used Con-

vLSTM to to predict crowd density which captured temporal and spatial dependencies

simultaneously and [41] used the combination of CNN and LSTM to predict the road

traffic speed. Yuan et al. [39] proposed to use a variation of the ConvLSTM model to pre-

dict traffic accidents. Huang et al. [22] employed a deep attention model to predict crimes.

Li et al. [23] employed a reinforcement learning method to dynamically reposition shared

bikes. However, all these above studies are only trying to capture the spatial and temporal

auto-correlations of traffic, they did not consider the impact of travel demand changes.

In our study, we study the impact of travel demand changes and spatio-temporal auto-

correlations simultaneously.

2.2.3 Methodology

To solve the conditional urban traffic estimation problem, we are inspired by the con-

ditional GAN [33] model, since our traffic estimation problem is similar to conditional

image sequences generation problem, where the travel demand can be treated as a con-

dition, the traffic distribution of a region in one time slot can be treated as an“image”

and the traffic status of each grid can be viewed as a “pixel” value. Thus, the condi-

tional GAN (cGAN) structure could be potentially used to solve the conditional traffic

estimation problem. However, the unique challenges (2) and (3) of our problem men-

39

2.2 SPATIAL-TEMPORAL GENERATIVE ADVERSARIAL NETWORKS

tioned previously prevent the state-of-the-art cGAN models from solving it, since simple

cGAN model cannot capture the spatial and temporal auto-correlations of traffic very

well. Hence, we propose a novel generative model – Curb-GAN which can more accu-

rately capture the spatial auto-correlations and temporal dependencies of traffic, control

the generation results with desired travel demands, and generate realistic traffic estima-

tions in consecutive time slots.

In this section, we introduce the architecture of Curb-GAN for traffic estimation prob-

lem. Following the conditional GAN structure, Curb-GAN consists of a generator G and

a discriminator D, and both the generator and discriminator apply dynamic convolutional

layers [1] and self-attention mechanism [50] to deal with the spatial and temporal auto-

correlations of traffic.

2.2.3.1 Dynamic Convolutional Layer (DyConv)

In urban areas, the strength of traffic spatial auto-correlations is often heterogeneous,

which mostly relies on the locations and the complex underlying road structures. Based

on the First Law of Geography [32], nearby locations and closely connected roads often

have stronger traffic spatial auto-correlations. Hence, we apply dynamic convolutional

layers in both G and D, which can better capture the diverse footprints of spatial auto-

correlations of traffic status.

Figure 2.17: Propagation rule of DyConv.

The input of the dynamic convolutional layer includes: (1) a traffic status matrix HR

of size Ns× dstatus (dstatus: number of traffic status measures, if traffic status is represented

40

2.2 SPATIAL-TEMPORAL GENERATIVE ADVERSARIAL NETWORKS

Figure 2.18: Filter comparisons of standard Conv and DyConv.

by only one measure, e.g., traffic speed, then dstatus = 1) and (2) a traffic correlation matrix

AR.

The layer-wise propagation rule of DyConv is presented in Eq. 2.11 and the output of

DyConv is a new traffic status matrix:

HR
i = f

(
HR

i−1,A
R
)
= σ

(
ARHR

i−1Wi

)
, (2.11)

where HR
i is the output traffic status matrix of region R in i-th layer, Wi is the weight

matrix and σ is an activation function. The rule is illustrated in Figure 2.17.

The traffic correlation matrix AR in DyConv can also be viewed as a “filter”, similar

to the filter in a standard convolutional layer (Conv), which is applied to images and has

fixed size and regular shape. The “filter” in DyConv created byAR is applied to the traffic

status matrix HR which has irregular shape and size. As shown in Figure 2.18, the filter

of standard Conv would cover some grids having no roads or very low traffic correlations

and thus cannot capture the roads accurately, but the “filter” created by AR in DyConv

exactly captures the road structures sinceAR can control the shape and size of the “filter”

to make it only cover the grid cells which have very strong traffic correlations.

41

2.2 SPATIAL-TEMPORAL GENERATIVE ADVERSARIAL NETWORKS

Figure 2.19: Example of 2 heads attention.

2.2.3.2 Self-Attention Mechanism (SA)

After applying the dynamic convolutional layer to capture the spatial auto-correlations of

urban traffic, we are seeking a way to capture the temporal dependencies. Self-attention

mechanism [50], which is mostly used in Seq2Seq models, achieves excellent perfor-

mance when dealing with language modeling and machine translation problems. Self-

attention mechanism handles sequential data including text, audios and videos, and learn

the temporal dependencies from it. Compared with LSTM and GRU, self-attention mech-

anism is computed in parallel, and thus requires less time to train and results in higher

training quality.

The input and output of a self-attention layer are two sequences of vectors. In the

self-attention process, each vector in the input sequence is linearly transformed into three

vectors called query, key and value. Each output vector is computed as a weighted sum

of all the values, where the weights are the outputs of a softmax layer, and the inputs of

the softmax layer are scaled dot products of the corresponding query with all keys. Since

a sequence of queries, keys and values can be combined in matrices form Q, K and V

42

2.2 SPATIAL-TEMPORAL GENERATIVE ADVERSARIAL NETWORKS

Figure 2.20: Overview of Curb-GAN.

and computed in parallel, the self-attention function is calculated in Eq. 2.12.

Attention(Q,K,V) = softmax
(
QKT/

√
dk

)
V (2.12)

where dk is the dimension ofK.

In this work, we apply multi-head self-attention mechanism, where the queries, keys

and values are linearly transformed h times and thus we get h different attentions, which

are then concatenated together and go through a linear transformation to get the final

values, the multi-head self-attention is calculated with Eq. 2.13.

MultiHead(Q,K,V) = Concat (head1, . . . , headh)W
O

where headi = Attention
(
QWQ

i ,KWK
i ,VW V

i

) (2.13)

where WQ
i ∈ Rdmodel ×dk ,WK

i ∈ Rdmodel ×dk ,W V
i ∈ Rdmodel ×dv and WO ∈ Rhdv×dmodel are

parameter matrices, dv is the dimension of V and dmodel is the dimension of the outputs.

Figure 2.19 shows an example of 2-head attention.

43

2.2 SPATIAL-TEMPORAL GENERATIVE ADVERSARIAL NETWORKS

2.2.3.3 Curb-GAN Architecture

To provide daily consecutive traffic estimations conditioned on expected travel demands,

we employ the conditional GAN (cGAN) structure to make it possible to control the esti-

mations by different travel demands. Figure 5.5 shows the overall structure of Curb-GAN.

Curb-GAN contains a generator G and a discriminator D. The generator G aims to gen-

erate sequences of traffic distributions in consecutive time slots which are similar to the

real ones so that the discriminator D cannot distinguish the generated traffic distribution

sequences from the real sequences well.

The generator G aims to generate daily sequential traffic distributions with respect to

the daily travel demand sequence DR in a specific region. The input of the generator G in-

cludes three parts, i) a noise tensor Z = {z1, . . . ,zNt} ∈ RNt×Ns×Ns , randomly sampled

from Gaussian distribution, ii) a condition tensor CR = {CR
1 , . . . ,C

R
Nt
} ∈ RNt×Ns×4,

where CR
t is a matrix of size Ns × 4 defining the region location of R, travel demand

and current time slot, i.e., CR
t = Repeat(Concat(i, j, dRt , t)), where (i, j, dRt , t) are con-

catenated to one vector and repeat for Ns times to form the matrix CR
t , and iii) a traffic

correlation matrix tensor AR. In generator, CR is concatenated into Z and it builds the

mapping from distribution pZ(Z) to a traffic distribution G(CR,AR,Z).

The discriminator D tries to rise the output score if the input is real traffic distribution

sequence, and lower down the score if the input is generated traffic distribution sequence.

D takes three inputs, i) a one day traffic distribution tensor MR, ii) a condition tensor CR

and iii) a traffic correlation matrix tensor AR. D outputs a scalar indicating whether the

input traffic distribution tensor MR is real and whether the input MR and CR are matched.

The detailed structures of generator G and discriminator D are illustrated in Figure 5.5(a)

and Figure 5.5(b).

As a result, the loss function of Curb-GAN is in the form of Eq. 5.7, modeled as a

44

2.2 SPATIAL-TEMPORAL GENERATIVE ADVERSARIAL NETWORKS

Min-Max game with an additional L2 penalty. (See more details in [33].)

min
G

max
D

V (D,G) = EM∼pdata(M)[logD(C,A,M)]

+ EZ∼pZ(Z)[log(1−D(G(C,A,Z)))]. (2.14)

Inside the generator and discriminator, we apply dynamic convolutional layer and

self-attention mechanism, which help to capture the spatio-temporal auto-correlations.

As shown in Figure 5.5, there are two building blocks inside G and D – Building Block

1 and Building Block 2, both can be stacked for several times.

Building Block 1 is composed of DyConvs followed by batch normalization and activa-

tion functions like ReLU or LeakyReLU. In Building Block 1, the number of DyConvs is

equal to Nt, and all DyConvs can share the parameters.

Building Block 2 is composed of a multi-head self-attention layer and a feed-forward net-

work composed of two fully-connected layers activated by ReLU. Both the self-attention

layer and the feed-forward network are followed by an addition operation and a layer

normalization [50].

Input: Training iteration k, a training set P, initialized G and D.
Output: Well trained G and D.

1: In each training iteration iter:
2: repeat
3: Sample P0 from training set P.
4: Sample B from Gaussian distribution.
5: Generate Õ with G.
6: Sample Ô from training set Z.
7: Update D with Eq. 3.5 to maximize Eq. 2.15.
8: Update G with Eq. 3.6 to maximize Eq. 2.17.
9: until iter > k.

Algorithm 2: Curb-GAN Training Process

45

2.2 SPATIAL-TEMPORAL GENERATIVE ADVERSARIAL NETWORKS

2.2.3.4 Curb-GAN Training

During the training process, we apply BPTT (backpropagation through time). The de-

tailed training process is shown in Algorithm 9, where the discriminator D and the

generator G are updated in line 3 – 7 and line 8, respectively. Denote the training set

which contains n samples as P = {(C1,A1,M1), · · · , (Cn,An,Mn)}, Denote P0 =

{(C1,A1,M1), · · · , (Cm,Am,Mm)} (line 3) as a subset of P containing m samples, where

m < n. Denote B = {Z1,Z2, · · · ,Zm} as a set of m noise tensors sampled from Gaus-

sian distribution (line 4), Õ = {M̃1, · · · , M̃m} as a set of m traffic distribution tensors

generated with G (line 5), where M̃i = G(Ci,Ai,Zi). Denote Ô = {M̂1, M̂2, · · · , M̂m}

as a set of m traffic distribution tensors sampled from the training set P (line 6), each M̂i

is mismatched with (Ci,Ai). In each training iteration, we update the parameters θD of

D with Eq. 2.15 and Eq. 3.5, where ηD is the learning rate.

ṼD =
1

m

m∑
i=1

(
log(1−D(Ci,Ai, M̃i))

+ logD(Ci,Ai,Mi) + log(1−D(Ci,Ai, M̂i))
)
, (2.15)

θD = θD + ηD▽ṼθD(θD). (2.16)

Then, we update the parameters θG of G with Eq.2.17 and Eq.3.6, where ηG is the learning

rate.

ṼG =
1

m

m∑
i=1

logD(G(Ci,Ai,Zi)), (2.17)

θG = θG + ηG▽ṼθG(θG). (2.18)

After training, we use the well-trained generator to generate the estimated traffic distri-

butions in consecutive time slots of target regions with expected travel demand sequences.

46

2.2 SPATIAL-TEMPORAL GENERATIVE ADVERSARIAL NETWORKS

2.2.4 Evaluation

In this section, We first describe the two real-world spatio-temporal datasets and then

introduce baselines and the evaluation metrics. Finally, we present and analyze our ex-

periment results in detail.

2.2.4.1 Dataset Descriptions

We validate the effectiveness of our model on two real-world data sets: (1) traffic speed

and (2) taxi inflow.

• Traffic speed. The hourly average traffic speed is extracted from GPS records collected

from taxis in Shenzhen, China from Jul 1st to Dec 31st, 2016. In this estimation task,

we first partition Shenzhen City into 40 × 50 grid cells. The traffic status in each grid

cell is measured by average traffic speed, and there are 4416 time slots (i.e., one hour)

over 6 months. Then for each time slot (i.e., one hour), we obtain traffic distributions

and travel demands of training regions, and use the daily traffic distribution sequences

and travel demand sequences of training regions to train the model. The goal of this

task is to estimate the traffic distribution sequence M̂R of a test region R conditioned

on the expected travel demand sequence D̂R.

• Taxi inflow. The taxi inflow data is collected from taxis in Shenzhen, China from July

1st to Dec. 31st, 2016. In each time slot (i.e., one hour) of each day, the taxi inflow is

the count of all taxis that stayed or arrived at each grid cell. In this estimation task, the

entire Shenzhen City is partitioned into 40× 50 grid cells, and the traffic status in each

grid cell is measured by taxi inflow. With the knowledge of D and M for all training

regions, for a specific test region R, given the expected travel demand sequence D̂R,

we aim at estimating the traffic distribution sequence M̂R.

47

2.2 SPATIAL-TEMPORAL GENERATIVE ADVERSARIAL NETWORKS

2.2.4.2 Baselines

• Spatial smoothing with neighboring regions [34]. In each time slot, this method uses

the traffic distributions of 9 closest regions under the same travel demand to compute

a mean distribution as the resulting estimation. Note we only use available data in

the training set to estimate and we will ignore a neighboring region if its data is not

available for this travel demand.

• ConvLSTM [51, 52]. This method uses conditional GAN structure, and applies Con-

vLSTM inside both generator and discriminator to provide sequential estimated traffic

distributions.

• FC-SA [50, 52]. This method uses conditional GAN structure, and applies stacked

fully-connected layers and self-attention layers inside both generator and discriminator.

• CNN-SA [52, 53]. This method uses conditional GAN structure and applies stacked

standard convolutional layers and self-attention layers inside generator and discrimina-

tor.

• FC-LSTM [52, 54]. This method uses conditional GAN structure and applies stacked

fully-connected layers and multi-layer LSTM inside generator and discriminator.

• CNN-LSTM [52, 55]. This method uses conditional GAN structure and applies stacked

standard convolutional layers and multi-layer LSTM inside generator and discriminator.

• DyConv-LSTM [1, 52]. This method uses conditional GAN structure and applies

stacked dynamic convolutional layers and multi-layer LSTM inside generator and dis-

criminator.

48

2.2 SPATIAL-TEMPORAL GENERATIVE ADVERSARIAL NETWORKS

Table 2.4: Performance results on traffic speed estimation and taxi inflow estimation.

Methods Smoothing ConvLSTM FC-SA CNN-SA FC-LSTM CNN-LSTM DyConv-LSTM Curb-GAN

Traffic speed
RMSE 16.37 18.90 44.30 38.06 128.03 30.15 22.72 13.34
MAPE 0.94 1.07 3.44 3.02 3.70 2.27 1.26 0.76

Taxi inflow
RMSE 37.71 38.73 40.30 38.54 41.11 38.20 37.33 36.29
MAPE 27.56 10.43 79.75 52.25 36.92 62.02 16.88 5.88

Table 2.5: Variants of Curb-GAN evaluations.

Methods 2DyConv+1SA 3DyConv+1SA 4DyConv+1SA 4DyConv+2SA 4DyConv+3SA

Traffic speed
RMSE 219.10 19.43 17.73 20.67 13.34
MAPE 5.44 1.09 0.91 0.95 0.76

Taxi inflow
RMSE 62.05 59.98 41.66 37.03 36.29
MAPE 138.21 33.15 28.16 16.85 5.88

2.2.4.3 Evaluation Metrics

We use mean absolute percentage error (MAPE) and rooted mean square error (RMSE)

to evaluate Curb-GAN:

MAPE =
1

NsNt

Ns∑
s=1

Nt∑
t=1

|ys,t − ŷs,t| /ys,t (2.19)

RMSE =

√√√√ 1

NsNt

Ns∑
s=1

Nt∑
t=1

(ys,t − ŷs,t)
2 (2.20)

where ys,t is the ground-truth traffic status observed in the s-th grid cell and t-th time slot,

and ŷs,t is the corresponding prediction.

2.2.4.4 Experimental Settings

The whole Shenzhen city is divided to 40× 50 grid cells with a side-length l1 = 0.0084◦

in latitude and l2 = 0.0126◦ in longitude. Each region is of size 10 × 10, i.e., ℓ = 10

and Ns = 100. Thus, there are in total 1, 271 possible target regions with size 10 × 10.

However, it is unnecessary and too costly to use data from all 1, 271 regions to train the

model. Instead, we select 63 regions covering entire Shenzhen city as target regions for

training, extract their traffic distributions and travel demands over time, and use the rest

49

2.2 SPATIAL-TEMPORAL GENERATIVE ADVERSARIAL NETWORKS

Figure 2.21: Comparisons of selected models in consecutive time slots in traffic speed esti-
mation.

of regions for testing.

The daily time interval for the data used to train all the models are from 7:00am to

7:00pm, where each hour is a time slot and we have 12 time slots per day, i.e., Nt = 12.

Thus, the sequence lengths of DR, D̂R, MR, M̂R and AR are 12.

To extract the travel demands, in each time slot of a day, i.e., one hour, we count the

total taxi pickup events within each grid cell and each region. In general, it is hard to

obtain the total travel demand in a region including all transport modes. In this work,

we use the demand for taxis to represent the regional travel demand, where many studies

have shown that taxi demands represent the total demands quite well [14, 15].

The structure of Curb-GAN is as follows: the Building Block 1 is stacked for 4 times,

the Building Block 2 is staked 3 times, where 2-head self-attention is used. The initial in-

put feature of building block 1 in generator is 104, the hidden features of stacked building

block 1 are {64,32,16,1}. The initial input feature of building block 1 in discriminator is

5, the hidden features of stacked building block 1 are {16,32,64,1}. Curb-GAN is trained

using Adam optimizer [56] with β1 = 0.5 and β2 = 0.999, and a learning rate of 2×10−4

for 1500 epochs with a batch size of 64.

50

2.2 SPATIAL-TEMPORAL GENERATIVE ADVERSARIAL NETWORKS

Figure 2.22: Comparisons of selected models in consecutive time slots in taxi inflow estima-
tion.

2.2.4.5 Results

Average performance results. The performances of the competing baselines and Curb-

GAN are shown in Table 5.2. For each dataset, we randomly pick one test region to

calculate RMSE and MAPE with Nt = 12, Ns = 100, and similar results are got for other

test regions. For deep models, we train and test each of them five times, the statistics

are calculated using average generation results conditioned by the same travel demand

sequence as the ground-truth.

In traffic speed estimation, Curb-GAN outperforms all the baselines on both metrics.

Specifically, Curb-GAN shows 52.77% and 55.38% improvements on RMSE and MAPE

beyond all baselines on average, respectively. Compared with FC-LSTM, FC-SA, CNN-

LSTM and CNN-SA, Curb-GAN achieves significant improvements, because it explicitly

models the relationships between different locations using DyConv. Smoothing seems to

have low RMSE by simply averaging the traffic distributions of nearby regions, but it

produces higher MAPE, which indicates bad spatio-temporal auto-correlations learned

since the traffic of nearby regions cannot provide accurate estimates for the target region.

DyConv-LSTM simultaneously captures the spatial and temporal auto-correlations

and it uses LSTM to handle the temporal dependencies, but its estimations are not as

good as Curb-GAN due to the limitations of model expressiveness and non-parallel com-

putations of LSTM and thus lead to more training time and lower generation quality.

51

2.2 SPATIAL-TEMPORAL GENERATIVE ADVERSARIAL NETWORKS

Figure 2.23: Traffic status visualizations.

In taxi inflow estimation, similar to traffic speed estimation, Curb-GAN significantly

outperforms the baseline models by 6.48% and 77.63% improvements on average on

RMSE and MAPE, respectively. The most competitive models are smoothing, ConvL-

STM and DyConv-LSTM, but Curb-GAN can better learns the spatio-temporal patterns

and thus obtain lower errors.

Performance in consecutive time slots. Since Curb-GAN is able to provide traf-

fic estimations in consecutive time slots, to illustrate the effectiveness of Curb-GAN in

traffic estimations in each time slot, we conduct experiments on Curb-GAN and four

most competitive baseline models including ConvLSTM, DyConv-LSTM, CNN-SA and

smoothing. The statistics are calculated in each time slot with Nt = 1, Ns = 100 using

the average generation results of a specific test region based on the same travel demand

sequence as the ground-truth.

In traffic speed estimation, as shown in Figure 2.21(a) and Figure 2.21(b), the Curb-

GAN has the best performance in each hour from 7:00 to 19:00. In taxi inflow estimation,

we got similar results in Figure 2.22(a) and Figure 2.22(b) that Curb-GAN outperforms

the other four competitive baselines in both metrics from 7:00 to 19:00. These evaluations

prove that the Curb-GAN can better capture the spatio-temporal auto-correlations and

thus has a stable and excellent ability in estimating urban traffic in consecutive time slots.

Traffic estimation visualizations To clearly validate the estimated traffic by Curb-

52

2.2 SPATIAL-TEMPORAL GENERATIVE ADVERSARIAL NETWORKS

GAN against the ground-truth, we visualize the traffic distributions over the road net-

works. As shown in Figure 2.23, we pick two time slots of a day, i.e., rush hour (7:00-

8:00) and non-rush hour (15:00-16:00), and visualize the traffic status on the road map

of a specific region in Shenzhen. The ground-truth visualizations are compared with the

estimation visualizations of Curb-GAN and the other four competitive baseline models.

Due to page limit, we only use traffic speed to measure the traffic status but we got similar

results using taxi inflow.

In Figure 2.23, there are obvious traffic changes around the residential area and sub-

way station (marked) between rush and non-rush hours in ground-truth visualizations.

However, Smoothing, CNN-SA and DyConv-LSTM did not capture such spatio-temporal

auto-correlations very well, as there is no traffic changes between the two hours, and the

traffic status along the roads is different from the ground-truth. Even though smoothing

and DyConv-LSTM got very competitive statistic results in Table 5.2 and Figure 2.21,

they still cannot produce good estimations due to bad spatio-temporal patterns learned.

ConvLSTM shows some traffic changes between two hours, but it produces worse spa-

tial patterns compared with Curb-GAN. By contrast, our Curb-GAN generates reason-

able traffic changes around residential area and subway station between rush and non-

rush hours, which suggests that Curb-GAN can capture the spatial and temporal auto-

correlations of traffic very well and produce more reliable traffic estimations then all

baselines.

Evaluations on Curb-GAN parameters Curb-GAN has many settings including the

number of stacked layers of Building Block 2 and Building Block2, initial dimension of

noise, the number of heads in self-attention mechanism, etc. To investigate the robustness

of Curb-GAN, we present the results under various parameter settings in both tasks.

Since the number of stacked Building Block 1 (DyConv layers) and Building Block 2

(self-attention layers) inside generator and discriminator could influence the final estima-

53

2.2 SPATIAL-TEMPORAL GENERATIVE ADVERSARIAL NETWORKS

Figure 2.24: Impact of parameters in traffic speed estimation.

tion results, we evaluate the Curb-GAN with 2,3,4 stacked layers of Building Block 1 and

1,2,3 stacked layers of Building Block 2. The evaluations results are shown in Table 2.5.

In both tasks, the more layers of Building Block 2 (self-attention) we use, the lower er-

ror we get in both metrics. It is because more layers of self-attention can better learned

the temporal dependencies of traffic. When the number of DyConv layers increases from

2 to 4, the errors significantly decrease, which indicates too few of DyConv layers are

not enough to capture the spatial auto-correlations, the structure of Curb-GAN should be

adjusted to get the best estimation results for different datasets.

Next we test the impact of dimension of noise (See Figure 2.24(a) and Figure 2.25(a)),

where the errors are both high when the noise dimension is too low or too high. With low

dimension of noise, the fewer number of weights in DyConv is not enough to learn the

spatial patterns, and it would need more time and training epochs to get good estimation

results if the noise dimension is too high.

Then we test the impact of the head numbers in self-attention layers, Figure 2.24(b)

and Figure 2.25(b) show the model performance with different number of heads and the

same training epochs. The model with 2-head self-attention has better performance than

the model with 1-head does, but with the number of heads increasing, the errors keep

54

2.2 SPATIAL-TEMPORAL GENERATIVE ADVERSARIAL NETWORKS

Figure 2.25: Impact of parameters in taxi inflow estimation.

increasing. This indicates that more heads would record different temporal dependen-

cies including local and long-term dependencies, but too many heads would weaken the

capability of capturing the effective information and lead to higher errors.

We also change the number of hidden features in DyConv. The results of two tasks

are shown in Figure 2.24(c) and Figure 2.25(c). Since we apply four layers of DyConv

(four stacked Building Block 1) in traffic speed estimation, here we change the number of

hidden feature of the first DyConv layer. We find that the model performance is sensitive

to the hidden features, more hidden features in DyConv lead to better performance, which

indicates more weights in DyConv can better capture the spatial patterns of traffic.

55

2.3 COMPLEX-CONDITION-CONTROLLED URBAN TRAFFIC ESTIMATION

2.3 Complex-Condition-Controlled Urban Traffic Estima-

tion

2.3.1 Overview

2.3.1.1 Introduction

Given the road network of a city and the historical traffic status (e.g., volume, speed) over

the network under various complex conditions (e.g., travel demands, constructions, transit

line designs) in the city, the problem of conditional urban traffic estimation problem aims

at generating realistic traffic distribution projections of the city under new, previously

unseen environmental conditions.

The urban traffic estimation problem has long been an important issue in various as-

pects of urban planning, including bus route planning, traffic management, land use de-

sign, etc. Accurate urban traffic estimation can not only help to reduce traffic congestion

and improve the public transportation efficiency, but also provide insights for new urban

constructions. For example, as illustrated in Figure 4.1, since the taxi demand greatly

influenced the local traffic in Shenzhen, China, new subway stations were planned to be

built to reduce the local taxi demand and thus release the traffic burden. Before the de-

ployment, traffic estimations were conducted aiming to find the the best locations for new

subway stations. Therefore, urban traffic estimation is an important step when evaluating

an urban construction plan.

Challenges. Realistic and accurate urban traffic estimation is usually sophisticated and

challenging due to the following reasons:

(1) Complex conditions. The urban conditions that affect traffic distributions are usually

complex and unstructured in representation, such as multi-dimensional tensors or matri-

ces (e.g., subway routes) instead of simple labels or numeric measures. The complexity of

56

2.3 COMPLEX-CONDITION-CONTROLLED URBAN TRAFFIC ESTIMATION

Figure 2.26: Traffic before & after building subway stations.

the conditions leads to difficulties in building a strong connection between the conditions

and the traffic distribution, making it hard to capture the traffic changes caused by these

factors.

(2) Complex traffic spatial dependencies1. The traffic status at a location is usually cor-

related with the traffic status in nearby locations. Such traffic dependencies are hard to

capture since the underlying complex road networks usually lead to diverse traffic pat-

terns.

The urban traffic estimation problem has received a lot of attentions in recent years.

While most of the works addressed the second challenge above, the first challenge is still

unaddressed. Some works [7, 8, 57] try to solve this problem with classical machine

learning models. However, when estimating traffic status regarding to complex condi-

tions, they typically cannot get good performance since they are incapable of dealing

with complex conditions and accurately capturing traffic changes.

Recently, many works have focused on applying deep neural networks to solve traffic

estimation problem. For example, stacked autoencoder [38] and ConvLSTM [39, 51] are

used to predict travel demands and traffic accidents, respectively. These models greatly

improve the prediction accuracy, however, they did not consider the impact of conditions

and thus fail to solve the conditional urban traffic estimation problem. Besides, Traffic-

1In this paper, we focus on getting the estimation of the average traffic under specific conditions so do
not consider the temporal dependencies here.

57

2.3 COMPLEX-CONDITION-CONTROLLED URBAN TRAFFIC ESTIMATION

Table 2.6: Notations

Notations Descriptions
i, j Locations (coordinates in a grid world)
S = {sij} Grid cells within a city
h ∈ Rm×n Traffic condition
x ∈ Rm×n Traffic distribution
z ∈ Rv Randomly sampled noise
c ∈ Ru Embedded latent vector

GAN [1] and Curb-GAN [2] take simple conditions into account and estimate traffic with

advanced GAN models. However, both of them cannot handle complex conditions, which

usually lead to model collapse or instability.

Contributions. In this paper, we aim to solve the conditional urban traffic estimation

problem and tackle both of the aforementioned challenges from a traffic data generation

perspective. We propose a novel model — Complex-Condition-Controlled Generative

Adversarial Network (C3-GAN), which can successfully estimate traffic of an area based

on complex urban conditions. Figure 4.2 is our solution framework. Our C3-GAN fea-

tures an embedding network and an inference network on top of the standard conditional

GAN model, the well-trained embedding network and generator can be used for future

traffic estimation. Our main contributions can be summarized as follows:

• We formulate the conditional urban traffic estimation problem as a traffic data genera-

tion problem, and propose a novel model — Complex-Condition-Controlled Generative

Adversarial Network (C3-GAN). C3-GAN handles complex urban conditions through

an embedding network which transforms the complex conditions to latent vectors, and

an inference network which enhances the connections between the embedded vectors

and the traffic data.

• We design a unique architecture for C3-GAN to target the complex spatial dependen-

cies challenge. C3-GAN applies convolutional layers inside each model component to

capture the traffic spatial dependencies, moreover, shared convolutional layers between

58

2.3 COMPLEX-CONDITION-CONTROLLED URBAN TRAFFIC ESTIMATION

Figure 2.27: Solution framework.

the discriminator and the inference network help to capture spatial dependencies of

traffic more efficiently, and thus get good performance. A novel training algorithm for

C3-GAN is also designed to guarantee the network stability, where part of the shared

convolutional layers are used to update the embedding network periodically aiming to

encourage good representation and avoid divergence.

• We perform extensive experiments on real-world datasets to evaluate our C3-GAN.

The experimental results prove that C3-GAN can significantly improve the urban traffic

estimation performance and outperform state-of-the-art baseline methods.

2.3.1.2 Preliminaries

The notations used in this paper are listed in Table 5.1. Next, we introduce the definitions

and our problem statement.

Definition 1 (Grid cells). A whole city is divided into m × n grid cells, which have

equal side-length in latitude and longitude. We denote the set of grid cells in the city as

S = {sij}, where 1 ≤ i ≤ m and 1 ≤ j ≤ n.

59

2.3 COMPLEX-CONDITION-CONTROLLED URBAN TRAFFIC ESTIMATION

Definition 2 (Urban conditions). Urban conditions (e.g., travel demands, time of the

day, etc) usually have strong correlations with road traffic. In this paper, we only con-

sider complex urban conditions, e.g., bus routes, rainfall intensity, etc. These complex

conditions are usually presented in matrix form, thus, we denote a matrix h ∈ Rm×n as

one feature map of the city in a period of time, where each element hs ∈ R of the matrix

indicates the corresponding condition in a specific grid cell s ∈ S.

For example, if we use travel demand of a city as an urban condition, h will be a

m×n travel demand matrix, each entry of the matrix indicates the average travel demand

of a grid cell during a specific time slot.

Definition 3 (Traffic status and traffic distribution). Traffic status indicates the basic

knowledge of the road traffic, which can be measured by different measurements, e.g.,

traffic speed, traffic volume, etc. We denote xs as the average traffic status of a grid cell

s ∈ S within a period of time, and a matrix x ∈ Rm×n as the traffic distribution of the

city.

Problem Statement: A city area is partitioned into grid cells S, given historical samples

of complex urban conditions H = {ht} and traffic distributions X = {xt} over a time

span 1 ≤ t ≤ T , we aim to estimate the future traffic distributions x̃ given a set of new

features h̃.

2.3.2 Related Work

Now, we summarize the literature from two related areas, including urban traffic estima-

tion, and generative adversarial networks.

Urban traffic estimation. There are many previous works focusing on urban traffic

estimation. For example, a novel framework is proposed to predict traffic volume in

the work [17] which combines classic machine learning techniques and well-established

traffic flow theory, the work [18] utilizes location-based social media to predict the traffic

60

2.3 COMPLEX-CONDITION-CONTROLLED URBAN TRAFFIC ESTIMATION

volume, and the work [19] proposes a real-time framework to predict crowd flows. All of

these models are hard to get good performance when estimating traffic status regarding to

complex conditions since they cannot deal with complex conditions very well.

Recently, deep learning has been successfully applied to various spatial-temporal pre-

diction problems. For example, some works [45, 46] apply convolutional neural networks

in citywide flow prediction and taxi demand inference, which help to better capture the

spatial dependencies of data. Other works such as [49] and [41] try to apply recurrent

neural networks [47] and LSTM [58] to tackle video prediction and travel time/speed

prediction problem, since RNN and LSTM are good at learning long-term dependencies

of data. Moreover, ConvLSTM [51] is also widely used in spatial-temporal prediction

area, for example, the work [40] applies a variant of ConvLSTM to predict crowd den-

sity. However, all these works are not capable of taking complex conditions into account,

some of them only consider simple conditions, the others do not include conditions in

their models at all, thus, these existing models are improper to solve our conditional ur-

ban traffic estimation problem especially with complex conditions.

Generative adversarial networks. The core idea of the GAN model is to train the gen-

erator through the discriminator, where the discriminator is also being updated aiming

to tell the real data from the fake data. GAN is widely applied in many areas, such as

image generation, text-to-image translation, video prediction, etc. In recent years, a lot of

GAN models are proposed. For example, CycleGAN [59] and StarGAN [60] are used for

unsupervised image-to-image translation, cGAN [33] is the basis of other variants such

as BiCoGAN [61] for supervised conditional generation, C-RNN-GAN [52] is designed

for continuous sequential data generation. All these GAN models are successful in im-

age generation, but when estimating traffic, most of them would fail since it is hard to

capture the traffic dependencies and the correlations between traffic and various complex

conditions at the same time. For traffic estimation, TrafficGAN [1] and Curb-GAN [2]

61

2.3 COMPLEX-CONDITION-CONTROLLED URBAN TRAFFIC ESTIMATION

are proposed, but they work only when simple conditions are included, and thus cannot

be used to estimate traffic based on complex conditions.

2.3.3 Methodology

Built upon the state-of-the-art (SOTA) literatures in generative models, we propose C3-

GAN for the conditional urban traffic estimation problem. C3-GAN address the two

challenges we mentioned previously with its unique designs:

(1) Complex conditions challenge: the proposed C3-GAN introduces an embedding net-

work and an inference network on top of the original cGAN to extract high-quality repre-

sentations of the complex conditions and produce good generation results,

(2) Complex traffic spatial dependencies challenge: C3-GAN applies convolutional lay-

ers inside each model component to capture the traffic spatial dependencies, moreover,

shared convolutional layers between the discriminator and the inference network help to

capture spatial dependencies of traffic more efficiently, and thus get good performance.

Besides, to guarantee the model stability, a novel training algorithm for C3-GAN is also

designed.

2.3.3.1 SOTA of Deep Generative Models

Various generative adversarial networks (GANs) have been proposed to build mappings

from simple distributions to data corpuses, e.g., images, texts, etc [29, 52]. The general

idea of conditional GANs matches the problem of urban traffic estimation very well.

Below, we briefly introduce two GAN models that are relevant to our C3-GAN, namely,

the conditional GAN [33] and InfoGAN [62], and discuss the technical gaps for them to

solve our problem.

Conditional GAN. The conditional generative adversarial network (cGAN) is a deep

generative model proposed by Mirza et al. [33]. The generation process of cGAN is

62

2.3 COMPLEX-CONDITION-CONTROLLED URBAN TRAFFIC ESTIMATION

governed by conditions, which tackles a min-max game as shown in Eq. 2.21. The goal

of the generator G is to learn a distribution matching the real data distribution pdata using

random noises z ∼ pz and conditions h, the discriminator D aims to distinguish the true

data pairs from the generated (“fake”) ones.

min
G

max
D

LcGAN(G,D) =Ex∼pdata [logD(x,h)]

+ Ez∼pz [log(1−D(G(z,h)))].

(2.21)

Limitation of cGAN. Since our goal is to generate urban traffic estimations x using com-

plex conditions h (e.g., bus routes, travel demands), our intuition is to apply cGAN frame-

work. However, cGAN usually deals with simple conditions (e.g., discrete or continuous

numbers), once the conditions become more complex (e.g., multi-dimensional tensors or

matrices), it is hard for standard cGAN to build strong connections between x and h and

generate reasonable results due to the high-dimensionality of h.

InfoGAN. InfoGAN proposed by Chen et al. [62] is an extension of GAN model [29],

which adds a mutual information based regularizer to enable disentangled representations.

To learn the semantic features of data, InfoGAN first splits the latent code into two parts

— the disentangled code vector c and the remaining code vector z, and then maximizes

the mutual information I(c;G(c, z)) and thus realize the goal of distinguishing data in an

unsupervised fashion. The objective is given by the following expression:

min
G

max
D

LGAN(G,D)− λI(c;G(c, z)), (2.22)

where LGAN(G,D) = Ex∼pdata [logD(x)] + Ez∼pz [log(1−D(G(z)))].

Limitation of InfoGAN. Even though InfoGAN enables disentangled representations, it

cannot be used to realize conditional traffic estimation with urban conditions (e.g., bus

routes, travel demands). InfoGAN learns data representations from unlabeled data in a

63

2.3 COMPLEX-CONDITION-CONTROLLED URBAN TRAFFIC ESTIMATION

Figure 2.28: C3-GAN structure.

unsupervised learning paradigm, which means the training data does not include corre-

sponding conditions, thus, InfoGAN does not solve conditional generation problem and

cannot be used to solve our problem. However, we are inspired by InfoGAN loss (espe-

cially the mutual information based regularizer) which can help to build strong connec-

tions between the generated data and the conditions.

2.3.3.2 Objective

Given the limitations of SOTA works of generative models to our traffic estimation prob-

lem, we propose a novel model C3-GAN to tackle the conditional urban traffic estimation

problem. The overview of C3-GAN is shown in Figure 3.3(a). In C3-GAN, we first

focus on solving the complex condition challenge, thus, we propose to transform high-

dimensional h to low-dimensional vector c ∈ Ru with an embedding network E. The

embedded latent vectors c should reflect key characteristics of the corresponding urban

conditions h. Once we use the embedded vector c and noise z ∼ pz to generate the urban

traffic x ∼ G(z, c), we need to ensure that the generated x is like real and matches the

original condition h, and also guarantee that the embedded latent vector c can accurately

infer the corresponding traffic x.

Since we use the embedding c of urban condition h for generation, the objective can

64

2.3 COMPLEX-CONDITION-CONTROLLED URBAN TRAFFIC ESTIMATION

be written as:

min
G

max
D

V (G,D) = Ex∼pdata [logD(x,h)]

+ Ez∼pz [log(1−D(G(z, c),h))]. (2.23)

Eq.3.1 alone is certainly not good enough to produce good generation results, since the

quality of c and the connections between c and x are not guaranteed. Borrowing the idea

from InfoGAN, maximizing the mutual information I(c; (G(z, c),h)) can help to build

strong connections between c and generated x.

In information theory, mutual information between two random variables X and Y

measures the “amount of information” learned from Y about X . The mutual information

between X and Y and be written as:

I(X;Y) = H(X)−H(X | Y) = H(Y)−H(Y | X). (2.24)

Based on Eq.2.24, the mutual information I(X;Y) can be interpreted as the reduction

of uncertainty in X when Y is provided. I(X;Y) = 0 represents X and Y are indepen-

dent and knowing one variable reveals nothing about the other; by contrast, maximizing

I(X;Y) means Y can provide the most information about X .

Hence, to enhance the connections between embedded vectors c and the generated

traffic x, we propose to maximize I(c; (G(z, c),h)) instead of I(c;G(z, c)), since both

of x ∼ G(z, c) and h contain the information of c, which indicates G(z, c) and h to-

gether have stronger mutual information with c than G(z, c) alone does. Thus, maximiz-

ing I(c; (G(z, c),h)) can not only enhance the control of c over generated x ∼ G(z, c)

but also potentially accelerate the convergence. Therefore, we add a mutual information

65

2.3 COMPLEX-CONDITION-CONTROLLED URBAN TRAFFIC ESTIMATION

regularizer to Eq.3.1:

min
G

max
D

VI(G,D) = V (G,D)− λI(c; (G(z, c),h));

where c = E(h).

(2.25)

In practice, the mutual information term I(c; (G(z, c),h)) is hard to characterize an-

alytically, since we do not have the access to the posterior distribution P (c|(G(z, c),h)).

Instead, we can calculate the lower bound of I(c; (G(z, c),h)) and use the an auxil-

iary distribution Q(c|(G(z, c),h)) to approximate P (c|(G(z, c),h)). We denote x̂ =

(G(z, c),h) for simplicity, the lower bound of I(c; (G(z, c),h)) is as follows:

I(c; (G(z, c),h)) = H(c)−H(c | (G(z, c),h))

= Ex∼G(z,c),h∼pdata

[
Ec′∼P (c|x̂) [logP (c′ | x̂)]

]
+H(c)

= Ex∼G(z,c),h∼pdata [DKL(P (· | x̂)∥Q(· | x̂))︸ ︷︷ ︸
≥0

+ Ec′∼P (c|x̂) [logQ (c′ | x̂)]] +H(c)

≥ Ex∼G(z,c),h∼pdata

[
Ec′∼P (c|x̂) [logQ (c′ | x̂)]

]
+H(c)

= LI(G,Q),

(2.26)

where Q is the auxiliary distribution, and we can treat Q as a inference neural network

which uses x̂ to infer c just as illustrated in Figure 3.3(a). Moreover, we can simply omit

H(c) in LI(G,Q) since it is a constant when c is sampled from a fixed distribution. As a

result, our final objective is as Eq.2.27:

min
G,Q

max
D

V (D,G,Q) = V (G,D)− λLI(G,Q);

where c = E(h).

(2.27)

66

2.3 COMPLEX-CONDITION-CONTROLLED URBAN TRAFFIC ESTIMATION

2.3.3.3 Practical challenges of Embedding Network

In our final objective Eq.2.27, a good fixed embedding network E is required, and three

networks including G, D and Q are jointly trained. However, in practice, finding a good

embedding is very challenging [63]. To mitigate this challenge, here are two naive ap-

proaches to obtain the embedding network:

(1) We can simply apply a randomly chosen embedding network for the purpose of trans-

forming complex conditions h to simple embeddings c. This method obviously doesn’t

present good performance, since a random embedding network cannot successfully ex-

tract features and usually lead to bad performance.

(2) The embedding network E can be jointly trained with the whole network. The objec-

tive function with a trainable E is as follows:

min
G,Q,E

max
D

V (D,G,Q,E) (2.28)

= Ex∼pdata [logD(x,h)] + Ez∼pz [log(1−D(G(z, E(h)),h))]

− λEx∼G(z,c),h∼pdata

[
Ec′∼P (E(h)|x̂) [logQ (c′ | x̂)]

]
− λH(E(h)).

However, the whole training process may oscillate and fail to converge, namely, the pos-

terior distribution P (E(h)|x̂) keeps changing with the evolving E(h), which makes Q

network have non-stationary targets and finally results in divergence. In addition, since

E keeps training, H(E(h)) cannot be ignored and will be maximized, which eventually

results in an embedded distribution with high entropy.

Therefore, to get a good embedding network and avoid the problems mentioned above,

we propose a uniquely designed architecture and training algorithm for our C3-GAN.

Next, we will introduce the detailed architecture and training algorithm of our model and

67

2.3 COMPLEX-CONDITION-CONTROLLED URBAN TRAFFIC ESTIMATION

explain why they can help guarantee generation quality and model stability.

2.3.3.4 C3-GAN Architecture

To tackle the complex spatial dependencies challenge, we design a unique architecture

for C3-GAN. Figure 3.3(b) shows the detailed architecture of C3-GAN, which contains

an embedding network E, a generator G, a discriminator D and an inference network Q.

C3-GAN applies convolutional layers inside each model component to capture the traffic

spatial dependencies, moreover, shared convolutional layers between the discriminator

and the inference network help to capture spatial dependencies of traffic more efficiently,

and thus get good performance. Next, we will introduce our model architecture in detail.

The embedding network E aims to find a good latent representation for the high-

dimensional urban condition h. The input of E is an original condition h, the output

is a low-dimensional latent vector c. Inside E, we have several convolutional layers,

which help to capture the spatial patterns of urban conditions, each one is followed by a

batch normalization and activated by Leaky ReLU [64], the final fully-connected layer is

activated by hyperbolic tangent function.

The generator G aims to generate like-real traffic distributions with respect to an

embedded latent vector c. The input of the generator G includes i) a noise vector z, which

is randomly sampled from Gaussian distribution, i.e., z ∼ pz, and ii) an embedded latent

vector c. G outputs the generated traffic distribution x ∼ G(z, c). Inside the generator

G, c and z are concatenated together and go through some convolutional layers, where

all the layers but the last one are batch normalized and activated by ReLU, the last layer

is activated by hyperbolic tangent.

The discriminator D aims to distinguish the real data from the generated data by

giving high score if the input x is from real data and matches the urban condition h. It

yields a low score if the input x is “fake” or does not match the input h. Its input includes

68

2.3 COMPLEX-CONDITION-CONTROLLED URBAN TRAFFIC ESTIMATION

i) traffic distribution x, which can be real data sampled from the dataset or fake data

generated by the generator, i.e., x ∼ pdata or x ∼ G(z, c), and ii) the urban condition h.

The inference network Q aims to recover the distribution of latent vector c using

(x,h) pairs, so Q takes the same input as D, which includes x and h. In our design, Q

and D share all convolutional layers and have separated fully-connected final layers, the

shared convolutional layers between the Q and D can capture spatial patterns of traffic

more efficiently and thus improve the training efficiency. As shown in Figure 3.3(b), we

denote the shared part as N , the unique linear transformations for Q network is denoted as

QHead, the last fully-connected layer for D is denoted as DHead, thus, the discriminator

D is composed of N and DHead, and the Q network is composed of N and QHead.

QHead includes some fully-connected layers and outputs the mean and variance of

the c distribution. DHead only contains one fully-connected layer activated by Sigmoid

and outputs a score between 0 and 1 indicating the extent to which the data is real. Within

the shared network N , we separate it into two parts—Nx and Nh, each of which contains

separated convolutional layers aligned with batch normalizations and activation functions

to deal with the input x or h independently. And here we need guarantee that the archi-

tecture of Nh is the same as the architecture of E.

2.3.3.5 Training and Testing Algorithms

In order to get a good embedding network and avoid the problems mentioned previously,

a novel training algorithm for C3-GAN is also designed to guarantee the network stability,

where part of the shared convolutional layers are used to update the embedding network

periodically aiming to encourage good representation and avoid divergence. In this sec-

tion, we first explain the training stabilization trick, and then introduce our training and

testing algorithm.

Training stabilization trick with E. To solve the stability challenge, we propose to

69

2.3 COMPLEX-CONDITION-CONTROLLED URBAN TRAFFIC ESTIMATION

update E periodically by copying Nh parameters, which means we first fix E and train

G, D and Q with our final objective Eq. 2.27, and then copy the parameters of Nh to

E every k iterations. In this way, we not only avoid the problems, but also get a good

embedding network and stable training performance. Next, we list the reasons why E

can be updated using Nh parameters, and then we answer the question why E needs to be

updated periodically:

(1) Nh is used to deal with the original condition h independently, thus, the inputs and

outputs of Nh and E are in the same form;

(2) Nh and E have the same architecture, the convolutional layers inside Nh apply filters

to capture spatial patterns of h, the well-updated convolutional layers can also help to

find good representations of the original conditions;

(3) since N contains shared layers between D and Q, Nh is in fact a part of Q. Based on

the objective of Q in Eq.2.27, Nh is trained to maximize the mutual information between

c and (x,h) pairs, which partially reduces the information loss between c and h and thus

helps to find good representations of h. Therefore, it is feasible to update E with Nh, and

in this way E is guaranteed to be updated towards a good direction.

Besides, updating E periodically can avoid divergence and improve training stability

(as validated in [65]). Since we know keeping updating E online makes the final objective

different and lead to divergence, by contrast, fixing E for some iterations and updating

it periodically makes the whole network stick to our final objective in Eq. 2.27, and also

makes divergence or oscillations much more unlikely. Next, we introduce the details of

the training and testing algorithms.

C3-GAN Training algorithm. Based on our final objective Eq. 2.27, we can get the

objective functions for D, G and Q separately. Denote θ as the parameters of D, η as the

70

2.3 COMPLEX-CONDITION-CONTROLLED URBAN TRAFFIC ESTIMATION

learning rate, we update the discriminator D with Eq. 3.5:

LD(θ) = Ex∼pdata [logD(x,h)]

+ Ez∼pz [log(1−D(G(z, c),h))],

θ = θ + η▽θLD(θ). (2.29)

For the generator G, we denote ψ as the parameters of G, the loss function and up-

dating rule for G is as follows:

LG(ψ) = Ez∼pz [log(1−D(G(z, c),h))]

− λEx∼G(z,c),h∼pdata

[
Ec′∼P (c|x̂) [logQ (c′ | x̂)]

]
,

ψ = ψ − η▽ψLG(ψ). (2.30)

For the inference network Q, we denote ω as the parameters of Q, we update Q with

Eq. 4.9:

LQ(ω) = −λEx∼G(z,c),y∼pdata

[
Ec′∼P (c|x̂) [logQ (c′ | x̂)]

]
,

ω = ω − η▽ωLQ(ω). (2.31)

The detailed training process is shown in Algorithm 1, where D is updated in line 6,

G and Q are updated in line 7 and line 8, respectively. For the embedding network E,

we update it using Nh parameters every k iterations. More precisely, every k iterations

we copy the network Nh to the embedding network E and use the new E to transform

original conditions to latent vectors for the following k updates.

C3-GAN Testing algorithm. When testing the model, we feed the selected new condi-

tions into the embedding network and get the latent vectors, which then go through the

71

2.3 COMPLEX-CONDITION-CONTROLLED URBAN TRAFFIC ESTIMATION

Input: Total training iterations K, E updating period k (k < K), a training set, initial-
ized G, D (including N and DHead), Q (including N and QHead) and E.

Output: Well trained G, D, Q and a good embedding network E.
1: In each training iteration iter:
2: repeat
3: Sample a batch of data {(x,h)} from the training set.
4: Transform {h} to a batch of latent vectors {c} with E.
5: Sample a batch of noise vectors {z} from Gaussian distribution.
6: Update D with Eq. 3.5.
7: Update G with Eq. 3.6.
8: Update Q with Eq. 4.9.
9: if iter mod k = 0 then Copy Nh parameters to E.

10: end if
11: until iter > K.

Algorithm 3: C3-GAN Training Process

well-trained generator with random noises and get our final estimations (See Alg 4).

Input: New conditions {h̃}, well-trained E and G.
Output: Traffic estimations {x̃}.

1: Transform {h̃} to latent vectors {c̃} with E.
2: Sample noise vectors {z} from Gaussian distribution.
3: Output traffic estimations x̃ = G(z, c̃) with generator G.

Algorithm 4: C3-GAN Testing Process

2.3.4 Evaluation

In this section, we will first introduce the real-world datasets we use, and then present

baselines and evaluation metrics. At last, we provide our experimental results.

2.3.4.1 Dataset and Experiment Descriptions

Dataset Descriptions. We validate our model on real-world datasets: (1) traffic speed,

(2) taxi inflow, (3) bus routes and (4) travel demand. The detailed information of the

dataset is shown in Table 3.1.

72

2.3 COMPLEX-CONDITION-CONTROLLED URBAN TRAFFIC ESTIMATION

• Traffic speed. The hourly average traffic speed is extracted from GPS records col-

lected from taxis in Shenzhen, China from Jul 1st to Dec 31st, 2016. The whole city

is partitioned into 40 × 50 grid cells with a side-length l1 = 0.0084◦ in latitude and

l2 = 0.0126◦ in longitude, and the traffic status in each grid cell is measured by average

traffic speed. The data size is (1944, 1, 40, 50), which means there are 1944 traffic

distributions in total, and each traffic distribution is a 40× 50 matrix.

• Taxi inflow. The data is collected from taxis in Shenzhen, China from July 1st to Dec.

31st, 2016. Taxi inflow is the count of all taxis that stayed or arrived at each grid cell

within one hour. The data size is (1944, 1, 40, 50), which indicates there are 1944 traffic

distributions (of 1-hour slot) in total, each traffic distribution is a 40× 50 matrix.

• Bus routes. The bus data is collected from 20 different bus routes in Shenzhen, China

from July 1st to Dec 31st, 2016. Since there are 990 bus routes in total in Shenzhen

City, and only a few of them got updated during July 1st to Dec 31st, 2016, thus, we

randomly sample 20 bus routes for simplicity which includes both the unchanged and

updated ones. For each bus route, we have the bus route map which is also divided into

40× 50 grid cells, and the value of each grid cell indicates the number of buses passing

this area within one hour. The data size is (1944, 20, 40, 50), which indicates there are

1944 time slots (1-hour), each time slot has 20 bus route maps, and each bus route map

is a 40× 50 matrix, so the data dimension for each time slot is 20× 40× 50.

• Travel demand. The travel demand data is collected from taxis GPS records in Shen-

zhen, China from July 1st to Dec. 31st, 2016. To extract the travel demands, in each

time slot of a day, i.e., one hour, we count the total taxi pickup events within each

grid cell. In general, it is hard to obtain the total travel demand including all transport

modes. In this work, we use the demand for taxis to represent the local travel demand,

where many studies have shown that taxi demands represent the total demands quite

73

2.3 COMPLEX-CONDITION-CONTROLLED URBAN TRAFFIC ESTIMATION

Table 2.7: Dataset descriptions.

Dataset Timespan Data size Dimension
Traffic speed 07/01/2016-12/31/2016 (1944, 1, 40, 50) 40× 50

Taxi inflow 07/01/2016-12/31/2016 (1944, 1, 40, 50) 40× 50

Bus routes 07/01/2016-12/31/2016 (1944, 20, 40, 50) 20× 40× 50

Travel demand 07/01/2016-12/31/2016 (1944, 1, 40, 50) 40× 50

well [2, 14, 15]. The data size is also (1944, 1, 40, 50), which indicates there are 1944

travel demand maps (in 1-hour slot), and each travel demand map is a 40× 50 matrix.

Experiment Descriptions. We introduce all different traffic estimation experiments we

conducted below.

• Task 1: traffic speed and taxi inflow estimation based on bus route changes. In this

task, we study how the bus route changes (as urban condition) influence the traffic, thus,

we estimate the traffic distributions in Shenzhen City given the complex bus routes as

conditions which should be 20× 40× 50 tensors, and traffic speed and taxi inflow are

both estimated. All the data including traffic speed, taxi inflow and bus route data is

divided into training set (90% of data) and testing set (the remaining 10%).

• Task 2: traffic speed and inflow estimation based on travel demand changes. In

this task, we study how the travel demand changes influence the traffic status, thus, we

estimate the traffic distributions in Shenzhen City given the complex travel demands as

conditions which are 40× 50 matrices. All the data including traffic speed, taxi inflow

and travel demand data is also divided into training set (90% of data) and testing set

(the remaining 10%).

2.3.4.2 Baselines

To evaluate the effectiveness of our model, we compare our C3-GAN with state-of-the-art

methods1. We first use the following two baselines to validate that standard cGAN cannot
1Here we do not compare our model with InfoGAN since InfoGAN cannot be used for conditional

generation and thus cannot estimate traffic using urban conditions at all.

74

2.3 COMPLEX-CONDITION-CONTROLLED URBAN TRAFFIC ESTIMATION

successfully estimate urban traffic based on complex urban conditions:

• cGAN [33]. This is the standard conditional GAN, which applies convolutional

layers inside both generator and discriminator.

• cGAN+L1 [66]. This method uses standard conditional GAN structure. The objec-

tive of discriminator stays unchanged, while the generator is trained using both the

adversarial loss and the L1 loss.

Then, we use two baseline methods to validate that cGAN with a single embedding

network E or a Q network is not good enough to solve the traffic estimation problem with

complex conditions:

• cGAN+E [67]. This method uses a predefined embedding network E (namely, a

randomly selected network) to transform the original complex conditions to low-

dimensional conditions. With the embedded conditions in a latent space, the stan-

dard conditional GAN is applied.

• IcGAN [68, 69]. Invertible conditional GAN (IcGAN) adds an encoder Q to the

standard conditional GAN structure, where Q aims to inverse the mapping of a

cGAN, i.e., mapping a image into a latent space and a conditional representation.

Next, to evaluate how our C3-GAN addresses the practical challenge, namely, training

stability, we further compare our model with two naive approaches:

• cGAN+Q+E1 [33, 62]. This method has the same architecture with C3-GAN,

while E is randomly chosen embedding network. The objective is the same as

Eq. 2.27.

• cGAN+Q+E2 [33, 62]. This method has the same architecture with C3-GAN,

while all the four neural networks including G, D, Q, and E are jointly trained

with objective Eq. 2.28.

75

2.3 COMPLEX-CONDITION-CONTROLLED URBAN TRAFFIC ESTIMATION

Besides, we also have state-of-the-art GAN models for traffic estimation as baselines:

• Curb-GAN [2, 70]. Curb-GAN applies self-attention and convolutional layers to

deal with sequential data generation problem, here only convolutional layers are

applied to generate average traffic estimations. The generator is trained with the

adversarial loss and the L2 loss together.

• TrafficGAN [1] TrafficGAN solves the conditional traffic estimation problem, where

the conditions are simple discrete values. TrafficGAN applies several dynamic con-

volutional layers inside generator and discriminator to capture spatial patterns of

traffic.

2.3.4.3 Evaluation Metrics

In our experiments, mean absolute percentage error (MAPE) and rooted mean square

error (RMSE) are used to evaluate our model:

MAPE =
1

ns

ns∑
i=1

|yi − ŷi| /yi,

RMSE =

√√√√ 1

ns

ns∑
i=1

(yi − ŷi)
2, (2.32)

where ns is the total number of grid cells in the target city area, yi is the ground-truth

traffic status observed in one grid cell si, and ŷi is the corresponding predicted result.

2.3.4.4 Experimental Settings

In the experiment, since we parametrize the auxiliary distribution Q(c|(G(z, c),h)) as a

neural network, its form depends on the true posterior P (c|(G(z, c),h)). We found that

simply treating Q(c|(G(z, c),h)) as a factored Gaussian distribution is sufficient.

76

2.3 COMPLEX-CONDITION-CONTROLLED URBAN TRAFFIC ESTIMATION

Table 2.8: Performance on task 1: traffic speed and taxi inflow estimation based on bus route
changes.

Methods cGAN cGAN+L1 Curb-GAN TrafficGAN cGAN+E IcGAN cGAN+Q+E1 cGAN+Q+E2 C3-GAN

Traffic speed
RMSE 49.08 36.81 44.52 108.78 104.41 80.94 29.05 62.42 16.79
MAPE 6.68 2.92 3.32 62.43 60.76 42.38 2.48 45.75 1.64

Taxi inflow
RMSE 524.62 415.78 730.66 1579.56 1494.72 1771.25 251.23 293.08 143.07
MAPE 65.67 15.38 64.66 670.33 649.39 631.32 14.58 36.31 10.86

Table 2.9: Performance on task 2: traffic speed and taxi inflow estimation based on travel
demand changes.

Methods cGAN cGAN+L1 Curb-GAN TrafficGAN cGAN+E IcGAN cGAN+Q+E1 cGAN+Q+E2 C3-GAN

Traffic speed
RMSE 19.73 60.07 48.90 69.31 23.37 84.17 18.32 70.02 13.75
MAPE 3.24 12.42 8.34 39.39 6.62 45.40 2.83 45.23 1.31

Taxi inflow
RMSE 170.09 300.15 758.76 1364.87 1570.29 1872.08 28.05 410.71 19.81
MAPE 10.98 30.96 165.10 430.21 381.00 799.81 5.75 97.32 4.54

For all experiments, we use Adam[56] for online optimization and apply batch normalization[71]

after most layers. The detailed structure of C3-GAN in our experiments is as follows: the

generator G contains 4 convolutional layers with kernel sizes {5, 7, 7, 6} and output

channels {1024, 128, 64, 1}; the discriminator D and the inference network Q share

some layers denoted as N which is partitioned into Nx and Nh, Nx includes four convo-

lutional layers with kernel sizes {6, 7, 7, 5} and output channels {64, 128, 1024, 128};

Nh includes four convolutional layers with kernel sizes {6, 7, 7, 5} and output channels

{64, 128, 1024, 128} and one fully-connected layer; DHead contains only one fully-

connected layer and QHead contains 3 fully-connected layers, besides, the embedding

network E has the same structure as Nh.

2.3.4.5 Results

Overall performance results. In this part, we present the overall performance of our

C3-GAN compared with all baseline models on two different traffic estimation tasks. For

all deep models, we train and test all methods five times, and we pick the best trained

model and show the testing results including RMSE and MAPE. We have the following

observations based on all statistics from both tasks.

First, the overall performance of task 1 is presented in Table 3.2, which includes both

77

2.3 COMPLEX-CONDITION-CONTROLLED URBAN TRAFFIC ESTIMATION

Figure 2.29: Visualizations of (1st row) traffic speed with bus route condition & (2nd row)
taxi inflow with travel demand condition.

traffic speed and taxi inflow estimation based on bus route changes, we find the classic

baseline models including cGAN, cGAN+L1, Curb-GAN and TrafficGAN present high

testing errors (i.e., high RMSE and high MAPE), which indicates these methods cannot

deal with the conditional generation regarding to complex conditions very well. Besides,

compared with our C3-GAN, the two baseline models incluing cGAN+E and IcGAN

still present bad performance, which means it is not enough to only equip cGAN with a

simple randomly pre-defined embedding network or an inference network. Furthermore,

the high testing error of the baseline cGAN+Q+E1 tell us it is very important to find a

proper embedding network. As for the baseline model cGAN+Q+E2, the reason why it

produce high testing errors is the embedding network keeps updating online, which easily

leads to divergence and instability during training process. The performance of task 2 is

shown in Table 3.3 which presents similar results.

Traffic estimation visualizations. To further validate the effectiveness of our C3-

GAN, we visualize the traffic distributions over the road networks. In both tasks, the

well-trained C3-GAN and baseline models are tested on our test set, given a certain urban

condition, we compare the average generated results of each model with the ground truth.

As shown in Figure 3.4, when estimating the traffic speed regarding to bus route

changes, we visualize the ground-truth traffic distributions in Shenzhen City and the cor-

78

2.3 COMPLEX-CONDITION-CONTROLLED URBAN TRAFFIC ESTIMATION

Figure 2.30: Loss plots of traffic speed and taxi inflow estimation regarding to bus route
changes.

Figure 2.31: Impact of parameters on traffic speed and taxi inflow estimation with bus route
conditions.

responding estimation results generated by our C3-GAN and some competitive baselines

including cGAN, Curb-GAN and cGAN+Q+E1. Clearly, cGAN and Curb-GAN output

low quality traffic estimations, since it is hard for both of them to deal with complex

conditions. The bad performance of cGAN+Q+E1 indicates that a random embedding

network doesn’t guarantee good generation results. In contrast, our C3-GAN generates

reasonable traffic distributions compared to the ground-truth, which indicates our C3-

GAN can build a strong connection between the complex conditions and the traffic and

thus produce more reliable traffic estimations.

When estimating the taxi inflow regarding to travel demand changes, the visualiza-

tions are presented in the second row of Figure 3.4. It is obvious that our C3-GAN pro-

79

2.3 COMPLEX-CONDITION-CONTROLLED URBAN TRAFFIC ESTIMATION

duces the most realistic traffic estimation compared to the ground truth, and outperforms

other competitive baselines. For brevity, we omit the visualizations of taxi inflow estima-

tion based on bus route changes and the traffic speed estimation based on travel demand

changes, both of which have similar results to Figure 3.4.

Model stability. From previous experimental results, we have shown our C3-GAN is

effective in traffic estimation, next, we will study the stability of our model. In Section

3.4, we explained the reason why our C3-GAN can improve the model stability compared

with the naive approach which has trainable embedding net mentioned in Section 3.3.

Our results below provide experimental evidence to prove that C3-GAN can improve the

training stability and avoid divergence compared with the baseline cGAN+Q+E2 which

is exactly the naive approach mentioned in Section 3.3.

As shown in Figure 2.30, we present two typical loss plots of our C3-GAN and the

baseline cGAN+Q+E2, both of the models are trained for 2000 epochs. Figure 2.30(a) and

Figure 2.30(b) are the generator training loss of our C3-GAN and cGAN+Q+E2 in the ex-

periments of traffic speed and taxi inflow estimation regarding to bus route changes. Ap-

parently, cGAN+Q+E2 is easy to diverge (Figure 2.30(a)) or be unstable (Figure 2.30(b)),

since the losses usually present great vibrations after 1500 epochs. In contrast, our C3-

GAN converges much faster, which also demonstrates that the architecture and training

algorithm of C3-GAN are successful in improving model stability.

Evaluations on hyper-parameters. Since our C3-GAN contains many different

hyper-parameters including the dimension of embedded vectors, updating frequency of

the embedding network, batch size, etc. Next, we evaluate the impacts of different hyper-

parameters and present the evaluation results. For all hyper-parameters, each time we

only adjust one of them with the others fixed.

As shown in Figure 4.7(a), we fixed all other parameters of C3-GAN and adjust the

dimension of embedded vectors, we find that the estimation performance is sensitive to

80

2.3 COMPLEX-CONDITION-CONTROLLED URBAN TRAFFIC ESTIMATION

the embedding dimension. For both of speed and inflow estimation regarding to bus route

changes. Obviously, low embedding dimension presents bad performance, since the low-

dimensional embedded vectors are not good representations of the original conditions.

Besides, the high embedding dimensions usually result in worse performance, which in-

dicates it is harder to build strong connections between more complex latent vectors and

the traffic.

Figure 4.7(b) shows the estimation performance with different updating frequency

of the embedding network, and we get high errors when we update E with very high

or low frequency. The high updating frequency of E will lead to the situation where the

whole model keeps training without getting a better embedding network, the low updating

frequency will influence the training efficiency of the whole network, both of the scenarios

present bad performance or longer training time.

Figure 4.7(c) is the estimation performance based on different λ. λ should be chosen

based on the cGAN objective scale, improper λ would affect the final generation perfor-

mance, and in our experiments, the best choice of λ is 0.1.

As shown in Figure 4.7(d), we find that the estimation performance is sensitive to

batch size. Large batch size results in bad estimation performance in our experiments,

which also matches the conclusions in the work [72] stating when using a large batch,

there is a significant degradation in the generalization ability of the model.

Last but not the least, we evaluate the impact of the random noise dimension. As

shown in Figure 4.7(e), we find the estimation errors are high when the noise dimension

is very low or high. With low noise dimension, the fewer weights within the network are

not enough to learn the spatial dependencies of traffic. In contrast, if the noise dimension

is too high, more weights need to be trained and more training epochs are needed.

81

3

Transferable Generative Adversarial

Networks

3.1 Spatially-Transferable Generative Adversarial Net-

works

3.1.1 Overview

3.1.1.1 Introduction

Conditional traffic estimation is a critical problem in urban development, especially in

land use planning, subway routes planning, etc. Given the road network of a city, its

historical traffic status, and an urban development plan which usually leads to new local

travel demands, the conditional urban traffic estimation problem aims to accurately esti-

mate the future traffic status based on the changing travel demands. Solving such problem

not only provides insights to evaluate the feasibility of the urban deployment plan, but also

helps to reduce potential traffic congestion and improves local transportation efficiency.

A number of data-driven methods have achieved success on single-city conditional

82

3.1 SPATIALLY-TRANSFERABLE GENERATIVE ADVERSARIAL
NETWORKS

Figure 3.1: An example of conditional traffic estimation by transferring knowledge from
multiple source cities (Shenzhen, Harbin, etc) to the target city (Xi’An).

traffic estimation, such as classical machine learning models [7, 8, 57] or GAN-based

models including CurbGAN [2] and TrafficGAN [1]. However, these methods typically

require large amount of training data of the target city and are unable to perform well

in case of data scarcity, e.g., when estimating the traffic in a previously unseen city or a

newly-built region. A simple idea to address the data scarcity issue would be to “borrow”

enough training data from other cities if they are available. However, due to spatial hetero-

geneity and local traffic pattern differences, such tricks usually result in poor estimation

quality.

An effective solution to the data scarcity problem is to employ a transfer learning

paradigm, which avoids training models directly using the limited data of a “new” city

but transfers urban knowledge from other source cities (with abundant data) to the target

city (with insufficient data) to enable good performance [73]. In this paper, we aim at

developing a spatial transfer generative learning framework for cross-city conditional

urban traffic estimation in case of data scarcity.

Prior art. Unfortunately, existing spatial transfer learning techniques may not directly

solve our cross-city conditional traffic estimation problem. For example, RegionTrans [74],

TL-DCRNN [75] and STCNet [76] borrow the transfer leaning framework to forecast fu-

ture traffic using historical time-series traffic data. However, in most of the urban transfer

leaning methods, only one source city is used to extract transferred knowledge. To enable

83

3.1 SPATIALLY-TRANSFERABLE GENERATIVE ADVERSARIAL
NETWORKS

good transfer performance, these methods have to guarantee that the source city and the

target city have a lot in common, or it would turn out to be a failure if the two cities are

too different [77].

Some works try to transfer knowledge from multiple cities, which potentially in-

creases the diversity of the source data and thus avoids the high-similarity constraint be-

tween source cities and target cities. For example, a new transfer framework [78] tries to

generate mobility data for a target city by transferring knowledge from multiple source

cities. MetaST [79] focuses on time series traffic prediction using multiple cities as source

cities. However, both of them cannot solve the conditional traffic estimation problem,

since they did not consider the impact of travel demands and the diverse traffic patterns in

different cities.

Our insight. When solving the cross-city conditional traffic estimation problem in the

transfer learning paradigm, compared to one single source city, the shared knowledge

extracted from multiple source cities would contain more comprehensive traffic patterns,

and provide more information about how traffic status changes along the complex road

networks in different regions. Therefore, transferring from multiple source cities may

greatly improve the estimation accuracy and transfer stability. For example, as illustrated

in Figure 4.1, with a new urban construction plan to be evaluated in Xi’An City which

only has little traffic data available, we can borrow the traffic knowledge extracted from

multiple source cities (e.g., Shenzhen, Harbin and Chengdu) to provide more accurate

traffic estimations for Xi’An.

Challenges. In this paper, we study the problem of conditional traffic estimation in case

of data scarcity by transferring knowledge from multiple source cities. However, such

cross-city conditional traffic estimation problem is hard to solve due to two key chal-

lenges:

(1) Knowledge extraction and transfer. The traffic patterns between travel demands and

84

3.1 SPATIALLY-TRANSFERABLE GENERATIVE ADVERSARIAL
NETWORKS

Figure 3.2: Solution framework.

local traffic status highly depend on the complex road networks and vary from region to

region and time to time, which lead to the difficulties in knowledge extraction and trans-

fer. When multiple cities are considered as source cities, the traffic patterns become even

more complicated and thus harder to learn and transfer.

(2) Knowledge adaptation. The extracted knowledge should be well-adapted to the target

city. Since different regions of the target city in different time slots could have different

traffic patterns, the extracted knowledge should be adapted to all these scenarios in dif-

ferent ways. Thus, how to perform the knowledge adaption in a flexible manner is very

important but challenging.

Contributions. To solve the cross-city conditional urban traffic estimation problem in

case of data scarcity, we propose to estimate traffic in a data generation perspective under

the multiple-city transfer learning setup. Hence, a new spatial transfer generative learning

framework — Spatially-Transferable Generative Adversarial Networks (STrans-GAN) is

proposed, which successfully tackles both of the aforementioned challenges and provides

accurate traffic estimations based on various travel demands. Figure 4.2 is our solution

framework. To solve the first challenge, traffic clustering is performed to aggregate all

85

3.1 SPATIALLY-TRANSFERABLE GENERATIVE ADVERSARIAL
NETWORKS

historical traffic data from multiple source cities into different clusters based on their

traffic patterns, and then in the pre-training process, meta-learning idea is incorporated to

learn a good global-initialized model from all clusters. To address the second challenge,

the pre-trained STrans-GAN can be adapted to any scenario of the target city with only

few samples by adding an extra cluster matching regularizer. Our main contributions can

be summarized as follows:

• To the best of our knowledge, we are the first to solve the cross-city conditional traffic

estimation problem in case of data scarcity from a spatial transfer generative learning

perspective, and propose a novel method — Spatially-Transferable Generative Adver-

sarial Networks (STrans-GAN).

• STrans-GAN preserves various traffic patterns from multiple source cities through traf-

fic clustering, and incorporates meta-learning idea into the pre-training process to learn

a global generalized model, which targets the first challenge. During fine-tuning, a

new cluster matching regularizer is added to realize the flexible adaptation in different

scenarios and thus addresses the second challenge.

• Extensive experiments on multiple-city datasets are performed to evaluate the effec-

tiveness of our STrans-GAN. The experimental results prove that STrans-GAN signifi-

cantly improves the urban traffic estimation performance and outperforms state-of-the-

art baselines.

3.1.1.2 Preliminaries

In this section, we first introduce the definitions and then formally define our problem.

Definition 1 (Grid cells). A city is partitioned into m1 × m2 grid cells, each grid cell

has equal side-length in latitude and longitude. The set of grid cells of one city is defined

as S = {sij}, where ⟨i, j⟩ indicates the coordinates of the grid cell sij , 1 ≤ i ≤ m1 and

86

3.1 SPATIALLY-TRANSFERABLE GENERATIVE ADVERSARIAL
NETWORKS

1 ≤ j ≤ m2.

Definition 2 (Target region). A target region R is a square geographic region in a city,

formed with r × r grid cells. A whole city can be split into multiple regions R = {Rij},

where ⟨i, j⟩ indicates the coordinates of the top-left grid cell in the region Rij .

Definition 3 (Travel Demand). The travel demand of an area captures the total number

of departures in a period of time. Thus, during one time period, the travel demand of a

grid cell s is denoted as ds ∈ N0, and the travel demand of a target region is denoted with a

matrix dR ∈ Nr×r
0 , where each entry ds within the matrix dR indicates the corresponding

travel demand of the grid cell s within the region R. In this study, we use the demand for

taxis to represent travel demand just as many literature works [1, 2, 15].

Definition 4 (Traffic status and traffic distribution). Traffic status is the basic knowl-

edge of the road network traffic at a grid cell, which can be measured by traffic speed,

traffic inflow/outflow, etc. We denote xs as the average traffic status of a grid cell s within

a period of time, and denote xR ∈ Rr×r as the traffic distribution matrix of the region R,

which is an r × r matrix composed of traffic status of all grid cells within the region.

Problem Statement: Given multiple source cities Usource = {ui
source} and one target

city utarget partitioned into grid cells, historical samples of travel demands Dsource = {dR}

and traffic distributions Xsource = {xR} from all source cities, and only a small amount

of historical samples of travel demands Dtarget = {dR} and traffic distributions Xtarget =

{xR} from the target city, we aim to estimate the future traffic distributions {x̃R} for a

set of new travel demands {d̃R} from the target city utarget.

3.1.2 Related Work

In this section, we summarize the literature works from two related areas: 1) urban traffic

estimation, and 2) urban transfer learning.

Urban traffic estimation. In recent years, more and more studies have focused on ur-

87

3.1 SPATIALLY-TRANSFERABLE GENERATIVE ADVERSARIAL
NETWORKS

ban traffic estimation problem. Some works [7, 8, 17, 18, 19, 57] tried to apply classic

machine learning methods to solve this problem. For example, the work [17] proposes

to predict traffic volume by combining machine learning techniques and well-established

traffic flow theory, and the works [19, 43, 44] propose novel frameworks to predict crowd

flows and individual’s movement.

Other works borrowed deep learning frameworks to solve various spatial-temporal

prediction problems. For example, some works [45, 46] focus on citywide flow predic-

tion and traffic demand prediction using CNN to better capture the spatial dependencies

of urban data. Other works such as [41, 48, 49] try to solve travel time prediction and

traffic speed prediction problems using recurrent neural networks [47] and LSTM [58]

aiming to better capture the temporal dependencies within the data. Moreover, the work

[40] tries to predict crowd density with ConvLSTM [51] to capture both spatial and tem-

poral dependencies simultaneously. In addition, many previous works propose to solve

the traffic estimation problem using generative adversarial networks [29]. For example,

TrafficGAN [1], Curb-GAN [2] are proposed to estimate future traffic in an geographi-

cal region, C3-GAN [3] tries to estimate traffic based on complex traffic related features.

However, all these works would fail once lacking training samples.

Urban transfer learning. Transfer learning is a subarea in machine learning, which

focuses on extracting and learning knowledge in one problem and applying it to a different

but related problem. Transfer learning has been applied to many different urban scenarios,

e.g., many urban computing applications including traffic prediction, events detection,

and urban deployment borrow transfer learning framework to solve urban data scarcity

problem [73].

In previous studies, some works including [74, 75, 76, 77] propose novel traffic pre-

diction frameworks on top of transfer leaning. For example, Wang et al. [80] propose

to use transfer learning to solve ride-sourcing car detection problem. Among all these

88

3.1 SPATIALLY-TRANSFERABLE GENERATIVE ADVERSARIAL
NETWORKS

works, only one source domain is used to extract and learn knowledge. Some other works

try to transfer knowledge from multiple source domains to target domains. For example,

He et al. propose a novel mobility prediction framework [78] which transfers knowledge

learned from multiple source cities to target cities aiming to generate mobility data for

the target. Yao et al. [79] try to solve the traffic prediction problem using multiple cities

as source cities. However, all these works cannot be generalized to solving conditional

traffic estimation problem, and they did not consider the impact of travel demands and

diverse traffic patterns.

3.1.3 Methodology

Inspired by generative adversarial networks (GAN) [29], we are trying to solve the cross-

city conditional traffic estimation problem in a traffic data generation perspective. The

state-of-the-art conditional GAN (cGAN) model [33] seems to be a promising method,

and we can view travel demands as conditions and traffic distributions as “images”. How-

ever, training a good cGAN model requires a large amount of training data to ensure the

convergence. If we perform traffic estimation in a city which faces data scarcity, cGAN

would definitely fail due to the lack of training samples.

Thus, to better solve the cross-city conditional traffic estimation problem in case of

data scarcity, we propose a spatial transfer generative learning framework — STrans-

GAN which combines the generative model with multiple-city transfer learning paradigm.

STrans-GAN also addresses the aforementioned challenges with novel designs:

(1) Knowledge extraction and transfer. To tackle the first challenge, we propose a unique

architecture and a pre-training algorithm. STrans-GAN preserves various traffic patterns

through traffic clustering, and incorporates meta-learning idea into the pre-training pro-

cess to learn a well-initialized model.

(2) Knowledge adaptation. During fine-tuning, we propose to add an extra cluster match-

89

3.1 SPATIALLY-TRANSFERABLE GENERATIVE ADVERSARIAL
NETWORKS

Figure 3.3: STrans-GAN Overview.

ing regularizer to realize the flexible adaptation in different scenarios of the target city.

Besides, a novel fine-tuning algorithm is proposed.

In this section, we first introduce our STrans-GAN architecture, and then detail the

novel knowledge transfer and fine-tuning processes.

3.1.3.1 Model Architecture

STrans-GAN is a framework designed to solve the cross-city conditional urban traffic

estimation problem in the multiple-city transfer learning setup. Since the effectiveness

of GANs in traffic estimation has been proved in recent studies [1, 2], in this work, we

design our STrans-GAN on top of cGAN. STrans-GAN has convolutional layers inside to

better capture the complex spatial traffic dependencies, and combines the adversarial loss

with L1 regularizer to improve the estimation performance during pre-training process.

Figure 3.3(a) is the detailed architecture of our STrans-GAN, which is composed of a

generator G and a discriminator D.

The generator G aims to learn a distribution x ∼ G(z,d) which matches the real

data distribution pdata. The input of the generator G includes i) a noise vector z randomly

sampled from Gaussian distribution, i.e., z ∼ pz, and ii) the travel demand d. G outputs

the generated traffic distribution x ∼ G(z,d). Inside the generator, d and z are first

concatenated together and then pass the stacked transposed convolutional layers, all the

layers are batch normalized and activated by ReLU or hyperbolic tangent function.

90

3.1 SPATIALLY-TRANSFERABLE GENERATIVE ADVERSARIAL
NETWORKS

The discriminator D aims to distinguish the real traffic distributions from the gen-

erated ones by giving a high score if the input x is sampled from the training set and

matches the travel demand d, or producing a low score if the input x is a generated one

or does not match the input d. The discriminator has two components including DBody

and DHead, the input of DBody includes i) a traffic distribution x, which could be sampled

from the dataset or generated by the generator, i.e., x ∼ pdata or x ∼ G(z,d), and ii) the

travel demand d. Inside DBody, d and x are concatenated together and pass all stacked

convolutional layers, all the layers are batch normalized and activated by leaky ReLU or

hyperbolic tangent function. The output of DBody is a vector which can be viewed as the

embedding of the input pair (i.e., travel demand and traffic distribution), the embedding

vector passes DHead which contains a single fully-connected layer to get the final score.

The basic objective function is as Eq. 3.1:

LcGAN(G,D) =Ex∼pdata [logD(x,d)]

+ Ez∼pz [log(1−D(G(z,d),d))].

(3.1)

To avoid overfitting and improve the estimation performance, we combine the Eq. 3.1

with L1 regularizer [66]:

LL1(G) = Ex∼pdata ,z∼pz [∥x−G(z,d)∥1] , (3.2)

thus, the final objective is as Eq. 3.3:

L(G,D) = LcGAN(G,D) + αLL1(G), (3.3)

and the optimization process is a min-max game, i.e., minG maxD L(G,D), where the

generator tries to minimize the loss while the discriminator tries to maximize it.

91

3.1 SPATIALLY-TRANSFERABLE GENERATIVE ADVERSARIAL
NETWORKS

3.1.3.2 Knowledge Transfer

The STrans-GAN introduced above only works when enough training data available, once

data scarcity appears, it is hard to get a well-trained model. To better solve the traffic

estimation problem especially in a city facing data scarcity problem, we propose to enable

the STrans-GAN to learn from multiple source cities, which means the knowledge learned

from source cities can be subsequently transferred to new target cities.

However, knowledge extraction and transfer from multiple source cities to the target

city is very challenging. Given the traffic data (including traffic status and travel de-

mands) and the road networks from multiple source cities, the key steps of knowledge

transfer includes (i) disentangling and preserving different traffic patterns from multiple

sources, and (ii) learning an initialized STrans-GAN by which the learned knowledge can

be transferred. Thus, we first perform traffic clustering to detect different traffic patterns,

and then design a novel pre-training algorithm which incorporates meta-learning idea to

learn a well-initialized STrans-GAN.

Traffic Clustering. Each region in each source city may present various traffic patterns

in different time slots, if the traffic distributions from all source cities are simply mixed

together, the diversities of traffic patterns are ignored, which usually leads to very limited

improvements than leaning from scratch (proved in the experiments). Thus, it is important

to recognize different traffic patterns from multiple source cities.

Clustering is an effective way to disentangle patterns from data. However, given dif-

ferent source cities, we usually do not know what the proper number of clusters is, and

whether the traffic data is clustered in a good way. To study how the number of clus-

ters affect the performance and what number of clusters would be better for the given

source cities, we apply k-means [81] to cluster the traffic data (i.e., travel demand and

traffic distribution pairs from all source cities). K-means is a flexible clustering method,

it would produce different clusters based on different initial centroids, which helps to ex-

92

3.1 SPATIALLY-TRANSFERABLE GENERATIVE ADVERSARIAL
NETWORKS

plore the best clustering way for different source cities, more empirical proofs are shown

in Section 3.1.4.6.

For a region R in a specific time slot, we have a travel demand d and a traffic distri-

bution x, and the average travel demand d̄ and average traffic status x̄ can be viewed as

features to perform k-means clustering, where d̄ = (
∑
d)/r2, x̄ = (

∑
x)/r2.

In the traffic clustering, we execute the following four steps alternatively: (1) choose

the number of clusters and randomly initialize the centroid for each traffic cluster; (2)

assign all the traffic data pairs to their closest cluster centroid; (3) calculate the average

feature of all traffic data within the cluster, and assign the new centroid for each newly

formed cluster to the data point which is the closest to the average feature, (4) repeat

previous two steps. Besides, the number of clusters is a hyper-parameter which will be

tuned in the experiments.

Input: Total training iterations K1, n traffic clusters (i.e., tasks), the innerloop k, initial-
ized θG, θD, ϕG, and ϕD.

Output: Pre-trained θG, θD.
1: for iteration← 1 to K1 do
2: for cluster← 1 to n do
3: ϕG ← θG.
4: ϕD ← θD.
5: Sample a batch of data {(x,d)}.
6: for innerloop← 1 to k do
7: Sample a batch of noise vectors {z}.
8: Update ϕD with Eq. 3.5.
9: Update ϕG with Eq. 3.6.

10: end for
11: Update θD one step with Eq. 3.7.
12: Update θG one step with Eq. 3.8.
13: end for
14: end for

Algorithm 5: STrans-GAN Pre-training Process

Pre-training. After clustering, the traffic data with similar patterns is clustered to-

gether, and the traffic patterns detection is finished, the next step is to find a way to make

93

3.1 SPATIALLY-TRANSFERABLE GENERATIVE ADVERSARIAL
NETWORKS

the traffic knowledge preserved in each cluster transferable. Thus, we propose a novel

pre-training algorithm for our STrans-GAN on top of meta-leaning method Reptile [82],

this new algorithm trains a global initialized STrans-GAN using the data from all clusters,

and the traffic knowledge is preserved in the parameters of the pre-trained STrans-GAN.

Since the data in each cluster has similar patterns, we can treat each cluster as a traffic

estimation task τ and get the estimation loss Lτ using the traffic data (i.e., traffic demand

and traffic distribution pairs) within cluster τ . During the pre-training process, our goal

is to find the well-initialized generator and discriminator parameters θG and θD using all

training tasks (i.e., clusters), which can quickly converge on a new task τ ′ with little data

and few adaptation steps by minimizing the loss Lτ ′ .

The objective of the pre-training process is as follows:

minθG,θD Eτ

[
Lτ

(
Uk
τ (θG,θD)

)]
, (3.4)

where U corresponds to one step of stochastic gradient descent [83] on D and G with

respect to the loss in Eq 3.3, and we denote ϕG,ϕD = Uk
τ (θG,θD) as the adapted param-

eters of G and D after k steps of gradient descent in task τ .

The detailed pre-training algorithm is as Alg 9. The adapted parametersϕD andϕG of

STrans-GAN for each cluster is updated using Eq 3.5 and Eq 3.6. After adapting ϕG and

ϕD k steps in the innerloop, we update one step of θD and θG using Eq 3.7 and Eq 3.8.

L(ϕD) = Ex∼pdata [logD(x,d)]

+ Ez∼pz [log(1−D(G(z,d),d)],

ϕD = ϕD + η▽ϕD
L(ϕD). (3.5)

94

3.1 SPATIALLY-TRANSFERABLE GENERATIVE ADVERSARIAL
NETWORKS

Input: Total fine-tuning iterations K2, n traffic clusters (i.e., tasks), dataset for fine-
tuning, pre-trained θG, θD.

Output: Fine-tuned θG, θD.
1: Get the centroid embeddings for each cluster vc = Dbody(xc,dc).
2: for iteration← 1 to K2 do
3: Sample a batch of data {(x,d)} from fine-tuning set
4: Sample a batch of noise vectors {z}.
5: Update θD with Eq. 3.12.
6: Update θG with Eq. 3.13.
7: end for

Algorithm 6: STrans-GAN Fine-tuning Process

L(ϕG) = Ez∼pz [log(1−D(G(z,d),d))] + αLL1(G),

ϕG = ϕG − η▽ϕG
L(ϕG). (3.6)

θD = θD + λ(θD − ϕD). (3.7)

θG = θG + λ(θG − ϕG). (3.8)

We can get a good global initialized STrans-GAN through this pre-training process

since its final outputs θG and θD can reach the point which has minimum distance to each

task just as illustrated in Eq 3.9, and this has been proved by many works [82, 84].

min
θG,θD

∑
τ

|θD − ϕτ
D|+ |θG − ϕτ

G| . (3.9)

In Eq 3.9, ϕτ
G and ϕτ

D are the optimal parameters of discriminator and generator for task

τ . Hence, if we have a new task τ ′ which is similar to one of the training tasks, θG and

θD can adapt to ϕτ ′
G , ϕτ ′

D very fast, and thus the rapid and easy model generalization is

realized.

95

3.1 SPATIALLY-TRANSFERABLE GENERATIVE ADVERSARIAL
NETWORKS

3.1.3.3 Model Fine-tuning

Once we get a well-initialized STrans-GAN, we need to adapt it to the target city. How-

ever, a target city would have many different regions, each region would present different

traffic patterns during different time slots, and it is common that the traffic distributions

for a specific region belong to different traffic clusters. Thus, fine-tuning the pre-trained

STrans-GAN with Eq 3.3 is not good enough, since it cannot guarantee that the pre-trained

STrans-GAN can be correctly adapted to the corresponding traffic clusters for different

traffic distributions.

To fine-tune the STrans-GAN parameters on the target city with few fine-tuning sam-

ples, we need to ensure the STrans-GAN can detect the traffic patterns for each sample

(i.e., travel demand and traffic distribution pair) and also generate reasonable traffic dis-

tributions, in other words, we need to make the fine-tuning process flexible for different

traffic patterns. To realize this goal, firstly, we should guarantee the STrans-GAN can

produce like-real traffic distributions based on different travel demands, which has been

realized by adversarial loss and the L1 loss shown in Eq 3.3. Besides, we add a clus-

ter matching regularizer, which enables the pre-trained STrans-GAN to be automatically

adapted to different clusters based on different traffic patterns presented by the data. Dur-

ing fine-tuning, for each data sample of the target city, the cluster matching regularizer

tries to minimize the distance between the data sample embedding and its corresponding

cluster embedding, which helps the STrans-GAN to produce better generation results and

present more clear traffic patterns. The cluster matching regularizer is defined as follows:

Lc(D) = E [∥vc − v∥1] ,

vc = Dbody(xc,dc),v = D′
body(x,d).

(3.10)

In Eq 3.10, for each data sample (x,d) from the target city, we first figure out the exact

cluster c that the data sample (x,d) belongs to by calculating the distance between the data

96

3.1 SPATIALLY-TRANSFERABLE GENERATIVE ADVERSARIAL
NETWORKS

sample and each cluster centroid and choosing the closest cluster, and then we get the cen-

troid embedding vc for cluster c by passing the centroid to Dbody, i.e., vc = Dbody(xc,dc),

where (xc,dc) is the centroid of cluster c and Dbody is from the pre-trained discriminator.

For the data sample (x,d) in the target city, we also get its current embedding v using

D′
body, which is the discriminator being fine-tuned. We minimize the distance between the

two embeddings, and thus realize the flexible fine-tuning.

The final objective during the fine-tuning process is as follows:

V (G,D) = LcGAN(G,D) + αLL1(G)− βLc(D), (3.11)

and the optimization process is minGmaxD V (G,D).

The detailed fine-tuning algorithm is as Alg 10. The parameters of STrans-GAN are

fine-tuned using Eq 3.12 and Eq 3.13. After fine-tuning, the generator G can be used for

traffic estimation in any region of the target city.

V (θD) = Ex∼pdata [logD(x,d)]

+ Ez∼pz [log(1−D(G(z,d),d)]− βLc(D),

θD = θD + η▽θDV (θD). (3.12)

V (θG) = Ez∼pz [log(1−D(G(z,d),d))] + αLL1(G),

θG = θG − η▽θGV (θG). (3.13)

97

3.1 SPATIALLY-TRANSFERABLE GENERATIVE ADVERSARIAL
NETWORKS

Table 3.1: Dataset descriptions.

City Data Timespan City size Data size

Shenzhen
Speed

07/01/16-12/31/16 40× 50 (155520,5,5)Inflow
Demand

Harbin
Speed

07/01/15-12/31/15 40× 50 (151440,5,5)Inflow
Demand

Chengdu
Speed

10/01/16-10/31/16 20× 20 (4784,5,5)Inflow
Demand

Xi’An
Speed

10/01/16-10/31/16 20× 20 (4368,5,5)Inflow
Demand

Table 3.2: Performance on experiment 1: traffic speed and taxi inflow estimation in Xi’An.

Methods Smoothing cGAN Curb-GAN TrafficGAN Single-TL Multi-TL RegionTrans MetaST STrans-GAN

Speed
RMSE 14.062±0.471 19.255±0.726 15.748±0.562 14.783±0.578 13.783±0.242 11.702±0.685 14.697±0.281 14.771±0.572 5.881±0.133
MAPE 0.524±0.019 0.818±0.028 0.590±0.023 0.596±0.017 0.381±0.012 0.348±0.017 0.557±0.021 0.566±0.015 0.241±0.007

Inflow
RMSE 144.335±4.258 102.938±4.213 188.368±6.244 101.168±3.321 112.379±4.321 105.986±5.299 137.457±5.928 118.219±4.576 79.362±2.784
MAPE 2.796±0.021 0.912±0.068 1.589±0.158 1.837±0.110 0.787±0.062 0.878±0.044 3.258±0.352 0.860±0.025 0.445±0.016

3.1.4 Evaluation

3.1.4.1 Dataset and Experiment Descriptions

Dataset Descriptions. In our experiments, we collect traffic data including travel de-

mand, taxi inflow and traffic speed from multiple cities (i.e., Chengdu, Xi’An, Shenzhen

and Harbin) to evaluate our STrans-GAN. The detailed information of datasets is shown

in Table 3.1.

In each city, with map gridding method, the whole city is partitioned into equal-sized

grid cells, and we collect three different traffic datasets, i.e., traffic speed, taxi inflow and

travel demand. During each time slot (i.e., one hour), traffic speed is the average speed

extracted from taxis GPS records; taxi inflow indicates the total number of taxis that

get into a grid cell; and travel demand calculates the total number of taxi pickup events

within a grid cell. In this study, we use the demand for taxis to represent travel demand,

and many studies have shown the effectiveness of using taxi demand to represent travel

98

3.1 SPATIALLY-TRANSFERABLE GENERATIVE ADVERSARIAL
NETWORKS

Table 3.3: Performance on experiment 2: traffic speed and taxi inflow estimation in Chengdu.

Methods Smoothing cGAN Curb-GAN TrafficGAN Single-TL Multi-TL RegionTrans MetaST STrans-GAN

Speed
RMSE 15.879±0.262 32.650±0.821 23.098±0.679 20.738±0.592 22.229±0.671 23.322±0.542 18.991±0.312 25.393±0.524 11.763±0.231
MAPE 0.758±0.037 1.655±0.048 0.890±0.028 0.911±0.016 0.395±0.022 0.274±0.032 0.679±0.032 0.947±0.034 0.176±0.011

Inflow
RMSE 241.975±6.634 449.551±8.946 223.745±7.267 378.909±8.918 503.079±12.982 278.867±6.213 588.33±10.192 240.394±7.214 95.597±4.423
MAPE 8.198±0.625 12.833±0.827 5.653±0.261 12.740±0.672 5.181±0.337 4.681±0.224 12.754±0.482 5.729±0.121 1.181±0.033

demand [1, 2, 14, 15]. More details about the dataset in each city are as follows:

• Shenzhen. The traffic data collected in Shenzhen, China is from Jul 1st to Dec 31st,

2016. The whole city is partitioned into 40 × 50 grid cells with a side-length l1 =

0.0084◦ in latitude and l2 = 0.0126◦ in longitude, and each region is formed by 5 × 5

grid cells. There are 155,520 region-wise traffic distributions in total, and each traffic

distribution is a 5× 5 matrix.

• Harbin. The traffic data collected in Harbin, China is from Jul 1st to Dec 31st, 2015.

Harbin City is partitioned into 40 × 50 grid cells with a side-length l1 = 0.0084◦ in

latitude and l2 = 0.0126◦ in longitude, and each region is formed by 5 × 5 grid cells.

There are 151,440 region-wise traffic distributions in total.

• Chengdu The traffic data is collected from only one district of Chengdu, China, which

is partitioned into 20 × 20 grid cells with multiple 5 × 5 regions, each grid cell has a

side-length l1 = 0.0038◦ in latitude and l2 = 0.0045◦ in longitude. The data time span

is from Oct 1st to Oct 31st, 2016. The total number of traffic distributions is 4,784.

• Xi’An. Similar to Chengdu, the traffic data in Xi’An is also collected from one district,

which is also partitioned into 20 × 20 grid cells with a side-length l1 = 0.0041◦ in

latitude and l2 = 0.0048◦ in longitude. The data time span is from Oct 1st to Oct 31st,

2016. The total number of traffic distributions is 4,784.

Experiment Descriptions. In our evaluation section, we conduct 2 different experiments

to prove the effectiveness of our STrans-GAN:

99

3.1 SPATIALLY-TRANSFERABLE GENERATIVE ADVERSARIAL
NETWORKS

Figure 3.4: Visualizations of (1st row) traffic speed estimation in Xi’An & (2nd row) taxi
inflow estimation in Chengdu.

• Experiment 1: traffic speed and taxi inflow estimation in Xi’An. In this experiment,

we treat Shenzhen, Harbin and Chengdu as source cities, and view Xi’An as the target

city. Given new travel demands of different regions in Xi’An, we aim to estimate the

corresponding traffic speed and taxi inflow. Besides, 70% of data from Xi’An is used

for fine-tuning, the remaining 30% is used for testing.

• Experiment 2: traffic speed and taxi inflow estimation in Chengdu. In this exper-

iment, we treat Shenzhen, Harbin and Xi’An as source cities, and view Chengdu as

the target city. Given new travel demands of different regions in Chengdu, we aim to

estimate both traffic speed and taxi inflow. Similarly, we also use 70% of data from

Chengdu for fine-tuning, and the remaining for testing.

3.1.4.2 Baselines

To verify the existing traffic estimation methods cannot produce good estimations when

the target city has data scarcity problem, we compare our model with the state-of-the-art

traffic estimation models:

• Spatial Smoothing [34]. Given one target region and its travel demand, this method

selects the traffic distributions from nearby regions which have similar travel demands

100

3.1 SPATIALLY-TRANSFERABLE GENERATIVE ADVERSARIAL
NETWORKS

and then computes an average traffic distribution as the final estimation.

• cGAN [33]. The conditional GAN applies convolutional layers inside both generator

and discriminator. We use travel demands as conditions to estimate the corresponding

traffic distributions.

• Curb-GAN [2, 70]. Curb-GAN applies self-attention and convolutional layers to deal

with sequential traffic data generation problem. The generator is trained with the ad-

versarial loss and L1 loss together.

• TrafficGAN [1, 66] TrafficGAN applies dynamic convolutional layers inside both gen-

erator and discriminator, and the generator is trained using both adversarial loss and L2

loss.

Besides, we compare our STrans-GAN with state-of-the-art transfer leaning methods

including both single-source and multi-source transfer learning methods:

• Multi-TL Multi-source transfer learning uses the same architecture as STrans-GAN,

but it is trained with simply mixed data from all source cities without clustering.

• Single-TL Single-source transfer learning uses the same architecture as STrans-GAN,

but only has one source city for training.

• RegionTrans [74] This model targets time-series traffic prediction problem and only

allows knowledge transfer from one source city to the target.

• MetaST [79] This model supports knowledge transfer from multiple cities, which treats

each city as a task without considering different traffic patterns and directly applies

MAML [85].

101

3.1 SPATIALLY-TRANSFERABLE GENERATIVE ADVERSARIAL
NETWORKS

Figure 3.5: Hyper-parameters studies on traffic speed estimation (Xi’An) and taxi inflow
estimation (Chengdu).

3.1.4.3 Evaluation Metrics

In our experiments, mean absolute percentage error (MAPE) and rooted mean square

error (RMSE) are used to evaluate our model:

MAPE =
1

ns

ns∑
i=1

|yi − ŷi| /yi,RMSE =

√√√√ 1

ns

ns∑
i=1

(yi − ŷi)
2, (3.14)

where ns is the total number of grid cells in the target region, yi is the ground-truth

traffic status observed in one grid cell si, and ŷi is the corresponding estimated value.

3.1.4.4 Experimental Settings

For both experiments, we use data from three different source cities for pre-training, and

select 70% of the data from the target city for fine-tuning and use the remaining 30%

for testing. All models are updated using Adam optimizer [56]. The learning rate is

set to 2 × 10−5. The batch size is 32. Besides, we set α = 0.1, β = 0.1, λ = 0.1.

The detailed structure of STrans-GAN in our experiments is as follows: the generator G

contains 4 transposed convolutional layers with kernel sizes {5, 5, 5, 5} and output feature

dimensions {1024, 128, 64, 1}; the discriminator Dbody includes four convolutional layers

with kernel sizes {5, 5, 5, 5} and output channels {64, 128, 1024, 1024}. And the Dhead

only has one single fully-connect layer.

102

3.1 SPATIALLY-TRANSFERABLE GENERATIVE ADVERSARIAL
NETWORKS

Table 3.4: Ablation Study: traffic speed and taxi inflow estimation in Xi’An.
Methods STrans-GANc STrans-GANp STrans-GANf STrans-GANr STrans-GAN

Speed
RMSE 11.702± 0.685 19.88±1.295 18.624±0.899 15.354±0.825 5.881±0.133
MAPE 0.348±0.017 0.899±0.055 0.754±0.067 0.684±0.043 0.241±0.007

Inflow
RMSE 105.986±5.299 107.266±5.837 113.265±7.399 94.682±4.829 79.362±2.784
MAPE 0.878±0.044 0.897±0.079 0.925±0.081 0.681±0.032 0.445±0.016

3.1.4.5 Experimental Results

Estimation Performance. In this part, we provide the evaluation statistics for our STrans-

GAN and all baselines in both experiment. All deep models are trained and fine-tuned

three times, and during testing time, we estimate the traffic for 16 different regions in the

target city, and finally calculate the statistics using Eq 3.14. Based on the performance

shown in Table 3.2 and Table 3.3, we have the following observations.

In both experiments, the traditional smoothing method has very high MAPE, which

means the estimation at each grid cell is not accurate due to not considering local traffic

patterns; other state-of-the-art traffic estimation models (including cGAN, TrafficGAN

and Curb-GAN) do not provide good estimation results due to the lack of training sam-

ples. Besides, the single-source transfer learning methods (i.e., RegionTrans and Single-

TL) have low estimation quality, since these methods only take one city as source city,

once the source city doesn’t present similar traffic patterns to the target city, these methods

would fail. For the multi-source transfer learning methods (i.e., MetaST and Multi-TL),

they cannot detect different traffic patterns in each source city, and thus they are unable to

guarantee the model performance. Our STrans-GAN outperforms all baseline models in

both experiments since it takes diverse traffic patterns into consideration and learns a good

initialization from multiple source cities, and it is also successfully adapted to different

scenarios in the target city.

Estimation Visualization. To further validate the effectiveness of our STrans-GAN,

for both target cities including Xi’An and Chengdu, we present the visualizations of the

ground-truth and the estimated traffic distributions over the road networks.

As shown in Figure 3.4, we visualize the traffic distributions including the ground-

103

3.1 SPATIALLY-TRANSFERABLE GENERATIVE ADVERSARIAL
NETWORKS

truth and the estimation results generated by our STrans-GAN and some competitive

baselines (i.e., cGAN, Curb-GAN, metaST and RegionTrans) in Xi’An City (the 1st row)

and Chengdu City (the 2nd row). Obviously, in both experiments, cGAN and Curb-GAN

cannot capture the traffic patterns very well due to the lack of data. MetaST and Region-

Trans also present low quality estimations, they cannot identify different traffic patterns

from source cities and fail to transfer useful knowledge to different target regions in the

target city. In contrast, our STrans-GAN generates reasonable traffic distributions which

are close to the ground-truth, and our STrans-GAN is able to successfully extract traffic

knowledge from multiple source cities and adapt to the target city in a flexible way.

3.1.4.6 Hyper-parameter Studies

In our STrans-GAN, there are many hyper-parameters which may influence the model

performance. In this section, we study how hyper-parameters influence the estimation

performance of our STrans-GAN. The evaluated hyper-parameters includes the number

of traffic clusters, embedding dimension, innerloop, λ and α.

From the results shown in Fig 4.7(a), we find in different target cities, the ideal number

of traffic clusters varies since different cities would present different traffic patterns. In

Xi’An City, the ideal number of traffic clusters is 5, in Chengdu City, the best number

of traffic clusters is 10, which indicates Chengdu City has more complex traffic patterns

compared to the traffic in Xi’An City.

In Fig 4.7(b), when updating the global-initialized STrans-GAN parameters θG and

θD during pre-training process, the step size λ matters. Too small or large λ hinders

convergence. For both experiments, the ideal step size λ should be 0.1.

In Fig 4.7(c), we can find the estimation performance is sensitive to the value of α, α

should be chosen based on the adversarial loss scale to ensure the whole loss scale keeps

the same, in our experiments, the best choice of α is 0.1.

104

3.1 SPATIALLY-TRANSFERABLE GENERATIVE ADVERSARIAL
NETWORKS

In Fig 4.7(d), we investigate how the embedding dimension influences the estimation

performance. We find in both experiments, larger embedding dimension provides better

estimation results, which indicates that larger embedding dimension can better preserve

traffic patterns and potentially improve the estimation performance.

In Fig 4.7(e), the value of innerloop in Alg 9 is the number of steps when we adapt

to each traffic cluster, and we study how the number of innerloop affects performance.

It is obvious that too small or too large innerloop value usually leads to longer time to

converge. In our experiments, the ideal number of innerloop should be 10 or 20.

Ablation Studies. Our STrans-GAN is composed of multiple components, includ-

ing traffic clustering, pre-training, fine-tuning, and cluster matching regularizer, in this

section, to verify the contribution of each component in our model, we present ablation

studies.

As shown in Table 3.4, we estimate traffic speed and taxi inflow with Xi’An City as

the target city, and compare our STrans-GAN with STrans-GANp, STrans-GANc, STrans-

GANr, STrans-GANf . STrans-GANc removes the traffic clustering module, STrans-

GANp removes the pre-training part. In STrans-GANf , fine-tuning process is removed.

And in STrans-GANr, the clustering matching regularizer is removed. Apparently, if

pre-training module is removed in STrans-GANp, the cluster matching regularizer cannot

work without a pre-trained model, and the limited data in the target city cannot support

GAN training; if fine-tuning module is removed, the model cannot directly estimate the

traffic in the target city without access to any data from the target; if the cluster matching

regularizer is removed, the traffic clustering does not contribute to the fine-tuning process

at all. Thus, each component in our Strans-GAN is important and contributes to the final

estimation performance.

105

4

Learning Human Driving Strategies

4.1 Spatial-Temporal Meta-GAIL

4.1.1 Overview

4.1.1.1 Introduction

In human urban decision-making processes (e.g., taxi drivers’ passenger-seeking pro-

cesses as shown in Figure 4.1(a), travelers’ transit mode choices, etc.), human agents

devise their own “strategies” to optimize their objectives (e.g., maximizing revenue, min-

imizing travel time, etc.). These strategies are usually implicit to observers and even the

agents themselves, which govern the daily mobility patterns of the human agents. Human

urban strategy analysis aims at extracting and understanding how the human decisions

are made using the observed human-generated spatial-temporal urban data (e.g., GPS tra-

jectories of taxis and personal vehicles, passengers’ trip data on buses and trains, etc.).

This is an important problem in many urban intelligence scenarios such as ride-sharing

vehicle dispatching, public transportation management, and autonomous driving, etc.

Challenges. The human urban strategy analysis problem is challenging due to the fol-

106

4.1 SPATIAL-TEMPORAL META-GAIL

Figure 4.1: Examples of taxi driver’s decision-making process (left), data scarcity and het-
erogeneity challenges (right).

lowing two reasons. Firstly, learning from observations usually requires large amounts

of training data from the agent being studied. However, in many urban cases, it is hard

to collect abundant mobility data from a single human agent (i.e., data scarcity chal-

lenge). Second, data collected from urban scenarios is often heterogeneous, meaning that

it records behaviors of many different expert agents following various urban strategies

(i.e., data heterogeneity challenge, See Figure 4.1(b) for example). This makes it even

harder to extract explicit and reliable strategies of a target agent.

Prior works. Over the last few years, many imitation learning algorithms have been

proposed to conduct the human urban strategy analysis. For example, Ho et al. proposed

generative adversarial imitation learning (GAIL) [86] which can successfully learn human

decision-making strategies and accurately mimic human behaviors in various scenarios

using deep neural networks (DNNs). Pan et al. proposed an Explainable xGAIL [87]

to demonstrate the learning processes of GAIL in many real world cases. Zhang et al.

extended the standard GAIL to conditional GAIL (cGAIL) [88] to unveil taxi drivers’

driving policies by transferring knowledge across taxi drivers. Moreover, TrajGAIL [89]

proposed by Zhang et al. incorporates the self-attention mechanism into GAIL to capture

the long-term decision dependencies and learn the human decision strategies.

However, all these prior methods fail to properly address the above aforementioned

107

4.1 SPATIAL-TEMPORAL META-GAIL

Figure 4.2: Solution framework.

challenges at the same time. These methods learn human urban strategies from scratch

and require a large amount of historical behaviors of a single human agent, aiming to

correctly infer her urban strategies. In case of data scarcity (i.e., each agent has limited

observations) and heterogeneity (i.e., having mixed observations from many agents), such

as inferring the driving strategies of a new taxi driver based on all drivers’ trajectories, all

of these methods may fail.

Other works including InfoGAIL [90] proposed by Li et at. and MetaIL [91] pro-

posed by Yu et at. aiming to learn a well-generalized policy which can be adapted to

new related tasks. Unfortunately, they only focus on learning different skills from visual

demonstrations and do not consider diverse urban spatial-temporal conditions, and thus

cannot successfully learn various human urban strategies in complex urban scenarios.

Contributions. To solve the human urban strategy analysis problem in case of data

scarcity and data heterogeneity, in this work, a novel learning paradigm —Spatial-Temporal

Meta-GAIL (STM-GAIL) is proposed, which can successfully learn diverse human ur-

ban strategies from heterogeneous human-generated spatial-temporal urban data. Our

solution framework is shown in Figure 2. STM-GAIL contains three model components

including a policy network, a reward network and an inference network. It models the

108

4.1 SPATIAL-TEMPORAL META-GAIL

human urban decision-making processes as variable length Markov decision processes

(VLMDPs). STM-GAIL learns diverse human urban strategies from a meta-learning per-

spective, which exploits the structural similarity among a distribution of human experts’

urban strategies and optimizes for rapid adaptation to a new strategy with a single trajec-

tory.

Our main contributions can be summarized as follows:

• We make the first attempt to learn diverse human urban decision-making strategies in

case of data scarcity and data heterogeneity, and propose the Spatial-Temporal Meta-

GAIL (STM-GAIL), which incorporates the spatial-temporal dependencies of human

decisions into GAIL framework by modeling the human urban decision-making pro-

cesses as variable length Markov decision processes (VLMDPs) and taking the sur-

rounding spatial feature patterns (e.g., traffic volume patterns, travel demand patterns,

etc.) as part of the states.

• STM-GAIL learns diverse human strategies from the meta-learning perspective, novel

objective, architecture and algorithms are designed. In STM-GAIL, an inference net-

work is designed on top of the standard GAIL, which infers the latent variables of

diverse human strategies in an unsupervised way by maximizing the mutual informa-

tion between the latent space and trajectories. STM-GAIL can be generalized to a new

human expert’s urban strategy with a single trajectory.

• Extensive experiments on real-world human-generated spatial-temporal dataset (i.e.,

taxi trajectory dataset representing the taxi drivers’ passenger-seeking processes) are

performed to validate the effectiveness of our STM-GAIL. The experimental results

show that our STM-GAIL has significant improvement compared to state-of-the-art

baselines when learning human urban strategies.

109

4.1 SPATIAL-TEMPORAL META-GAIL

Table 4.1: Notations

Notations Descriptions
C = {cij} Grid cells within a city
S = {st} State set
A = {at} Action set
T = {τ} Trajectory set
H = {h} History set
c ∼ p(c) latent vector representing a specific strategy
π(a | s, h, c) Policy network
πE(a | s, h, c) Empirical policy from the data
r(s, a | h, c) Reward network
Q(c | τ) Inference network
θ, ω, ψ Parameters of π, r, Q

4.1.1.2 Preliminaries

Human-generated spatial-temporal urban data is collected from expert human agents to

learn human urban decision-making strategies. In general, human-generated spatial-

temporal urban data is a set of human mobility trajectories (e.g., taxi GPS trajectories)

which contains sequences of states and actions. In this section, we list the notations in

Table 5.1, introduce some definitions, and formally define our problem.

Definition 1 (Grid cells). A city is partitioned into m1 × m2 grid cells, each grid cell

has equal side-length in latitude and longitude. The set of grid cells of a city is defined as

C = {cij}, where 1 ≤ i ≤ m1 and 1 ≤ j ≤ m2. Each grid cell is associated with a set of

features (e.g., traffic speed, traffic volume, etc.) indicating the current status of the grid

cell [1, 2, 3].

Definition 2 (States). A state at time t is defined as a multi-dimensional tensor st ∈

Rm×r×r, which is composed of m different feature maps d ∈ Rr×r, each element dc ∈ R

inside a feature map d indicates a feature (e.g., latitude, longitude, time of the day, traffic

speed, travel demand, etc.) of a specific grid cell c at time t. The set of states is defined

as S = {st}.

In most of the existing works, a state only characterizes the current status (e.g., lati-

110

4.1 SPATIAL-TEMPORAL META-GAIL

tude, longitude, time of the day, traffic speed, traffic volume, etc.) of a specific grid cell.

However, the human agents would also consider the status of the surrounding area when

making urban decisions. Thus, in most of the urban scenarios, a state should characterize

the status of both the current grid cell and its neighboring r× r grid cells as illustrated in

Figure 4.3(a).

Definition 3 (Actions). An action at is a decision made by a human agent at state st,

which is governed by a specific urban strategy. By following an action at, the human

agent transits from the current state st to the next state st+1 as shown in Figure 4.3(b).

The set of actions is defined as A = {at}.

Definition 4 (Trajectories and History). A trajectory τ is a sequence of states and ac-

tions that a human agent traverses and takes when completing a task, i.e., τ = (s0, a0, · · · , sT , aT).

The history of a trajectory τ at time step t includes all states and actions prior to t, i.e.,

ht−1 = (s0, a0, · · · , st−1, at−1). The set of trajectories is defined as T = {τ}. The set of

histories is defined as H = {h}.

Definition 5 (Policy). The policy function π : S × H 7→ [0, 1] controls what action

to perform in each state, which is a probability distribution defined as π(at | st, ht−1)

indicating the probabilities of choosing different actions given the current state st and the

history ht−1.

Definition 6 (Reward). The reward function is defined as r : S × A × H 7→ R, i.e.,

r(st, at | ht−1), which provides a numerical score based on a state st and an action at

given the history ht−1, and incentivizes a human agent to achieve a goal in a task.

Problem Statement. Given a set of heterogeneous trajectories T generated by a wide

range of expert human agents, and a few trajectories T̃ collected from new experts, we

aim to learn the urban decision-making strategies of new experts, i.e., the policy function

π(a | s, h).

111

4.1 SPATIAL-TEMPORAL META-GAIL

Figure 4.3: Definition illustrations.

4.1.2 Related Work

In this section, we summarize the literature works from two related areas: 1) imitation

learning, and 2) meta learning.

Imitation Learning. Imitation learning also known as learning from demonstrations

aims to learn the policies from expert demonstrations. Most of the imitation learning

methods model the decision making processes as Markov Decision Processes (MDPs)

[92, 93, 94, 95]. For example, GAIL [86] borrows the generative adversarial networks

(GANs) framework and applies two neural networks as policy net and reward net to learn

the policies of experts from demonstrations. Many works extend the GAIL framework to

diverse urban applications, for example, Kuefler et al. try to use GAIL based model to

imitate the expert drivers’ behaviors in autonomous driving [96]. Zhang et al. extend

the standard GAIL to conditional GAIL (cGAIL) [88] to unveil taxi drivers’ policies

by transferring knowledge across taxi drivers and locations. To deal with the spatial-

temporal urban strategy learning problem, only a few works model the decision making

processes as variable length Markov decision processes (VLMDPs) to capture the long-

term decision dependencies. For example, TrajGAIL [89] incorporates the self-attention

mechanism into GAIL framework and learns the human decision-making strategies in the

VLMDP setup. However, all these methods learn strategies from scratch and require a

112

4.1 SPATIAL-TEMPORAL META-GAIL

large amount of demonstrations, and cannot learn the diverse urban strategies directly.

Meta Learning. Meta learning [82, 85, 97] tries to learn a generalized model from train-

ing tasks which can be fast adapted into new related tasks with a few samples. Meta

learning has been applied to many areas including supervised/unsupervised learning and

imitation learning. For example, in meta imitation learning, many prior works focus on

learning diverse tasks from mixed experts’ demonstrations [98, 99, 100]. Moreover, one-

shot imitation learning [91, 101, 102, 103] demonstrates impressive results on learning

new tasks using a single demonstration, however, it requires a large amount of training

tasks and needs prior knowledge on the task distribution. All these works did not consider

the uniqueness of learning urban strategies, and cannot successfully capture the spatial-

temporal dependencies of human decisions. In this work, we propose Spatial-Temporal

Meta GAIL (STM-GAIL) which incorporates the spatial-temporal decision dependencies

into the GAIL framework and learns diverse urban decision-making strategies from het-

erogeneous human-generated spatial-temporal urban data.

4.1.3 Methodology

Built upon the standard generative adversarial imitation learning (GAIL [86]), we pro-

pose a novel STM-GAIL to learn diverse human urban strategies. STM-GAIL takes the

spatial and temporal dependencies into consideration by incorporating the feature maps

of surrounding areas into states and modeling the human decision-making processes as

VLMDPs. Moreover, ConvLSTM [51] is applied to each model component (including

the policy network, the reward network and the inference network) to better capture the

spatial-temporal dependencies of a trajectory (See Section 4.1.3.1 and 5.1.3.3).

In addition, to tackle data scarcity and heterogeneity challenges, STM-GAIL learns

diverse human urban strategies from the meta-learning perspective, an inference network

is designed on top of the standard GAIL, which infers the latent variables of diverse

113

4.1 SPATIAL-TEMPORAL META-GAIL

human strategies in an unsupervised way. STM-GAIL can be generalized to a new human

urban strategy with a single trajectory (See Section 4.1.3.2, 5.1.3.3 and 5.1.3.4).

4.1.3.1 Modeling Human Sequential Decision-Making Process as VLMDP

Limitations of MDP. Over recent years, a large amount of works have focused on learn-

ing human decision-making strategies by modeling decision-making processes as Markov

decision processes (MDPs) [104]. In general, MDP models have a strong Markov prop-

erty assumption [105], namely, an agent makes an action at only based on the current state

st instead of any prior states and actions (i.e., history ht−1). Thus, in MDPs, the policy

and reward functions of a human agent should be π(at | st) and r(st, at), respectively,

rather than π(at | st, ht−1) and r(st, at | ht−1).

However, in many urban scenarios, the Markov property does not hold, human agents

would consider their previous states and decisions, as well as the surrounding environ-

ments when making future decisions. For example, as illustrated in Figure 4.1(a), when

looking for a new passenger, a taxi driver’s decisions of which direction to go not only

depend on his current and previous locations, but also depend on the surrounding travel

demand. Such spatial-temporal dependencies of human mobility are complicated and

hard to capture when learning human urban strategies.

Human sequential decision-making processes as VLMDP.

To capture the long-term dependency of human decisions, we model the decision-

making process as a variable length Markov decision process (VLMDP) [19], which in-

cludes an agent as the decision maker and an environment that interacts with the agent. A

VLMDP is defined as a 5-tuple ⟨S, A, P , r, γ⟩, where S is the state space, A is the action

space; P denotes the transition function, e.g., P (st|ht−1) is the transition probability of

transiting to state st by following the history ht−1; r : S×A×H 7→ R is the bounded re-

ward function that outputs a reward value for a given state-action-history triple; γ ∈ (0, 1]

114

4.1 SPATIAL-TEMPORAL META-GAIL

Figure 4.4: STM-GAIL structure.

is a discount factor. The initial states are determined by the distribution p(s0) : S 7→ [0, 1].

The actions are chosen through a stationary and stochastic policy π : S ×H 7→ [0, 1]. A

decision making process forms a trajectory τ = (s0, a0, · · · , sT , aT), where T is the ter-

minal time step.

In this work, we use expectation with respect to a policy π to denote the expec-

tation with respect to the trajectories it generates. For instance, Eπ[r(s, a | h)] =

Est,ht−1,at∼π

[∑T
t=0 γ

tr (st, at | ht−1)
]

denotes the following sampling processes includ-

ing s0 ∼ p(s0), at ∼ π (· | st, ht−1), and st ∼ P (st | ht−1). Each agent aims to maxi-

mize its expected cumulative reward Eπ[r(s, a | h)] by optimizing the policy π.

Based on the variable length Markov decision process (VLMDP), we design the

Spatial-Temporal Meta-GAIL (STM-GAIL) to learn diverse human urban strategies.

4.1.3.2 Objective

In many previous MDP works [86, 87, 88, 106], the human strategy learning problem

can be modeled as a constrained optimization problem as below:

max
r

min
π

: −H(π),

s.t. : Eπ[r(s, a)] = EπE
[r(s, a)],∑

a∈A

π(a | s) = 1, ∀s ∈ S.

(4.1)

115

4.1 SPATIAL-TEMPORAL META-GAIL

However, Eq 4.1 does not consider any temporal dependencies of decisions. In this

work, to incorporate the long-term temporal dependencies of human decisions and adapt

the human strategy learning problem to VLMDP, the problem is re-formulated as Eq 4.2 [89]:

max
r

min
π

: −H(π),

s.t. : Eπ[r(s, a | h)] = EπE
[r(s, a | h)],∑

a∈A

π(a | s, h) = 1, ∀s ∈ S.

(4.2)

In Eq 4.2, H(π) is a γ-discounted causal entropy, which measures the uncertainty of a

policy distribution π(a | s, h), i.e., H(π) =
∑T

t=0

∑
ht
γtπ (at | st, ht−1) log π (at | st, ht−1) .

πE is the empirical policy observed from the collected human expert’s mobility data.

Eq 4.2 aims to find the policy π(a | s, h) with maximum causal entropy H(π), and find

the reward function r(s, a | h) such that the expected reward of a trajectory under π

matches that under the empirical policy πE .

To solve the human strategy learning problem defined in Eq 4.2, Zhang et.al [89]

prove it is equivalent to solving a min-max problem as Eq 4.3:

min
π∈Π

max
r
−λ1H(π) + EπE

[log(r(s, a | h))] + Eπ[log(1− r(s, a | h))]. (4.3)

Apparently, Eq 4.3 is similar to the objective of generative adversarial networks (GANs) [29,

33, 52], and it is natural to employ the GAN framework, where the policy function π and

the reward function r can be viewed as a generator and a discriminator, respectively.

Even though Eq 4.3 can capture the spatial-temporal dependencies of decisions very

well, it cannot deal with the data scarcity and heterogeneity problem. Eq 4.3 can learn a

single human expert’s urban strategy with access to abundant trajectories, once we can-

not collect enough historical trajectories from the human expert, this method would fail.

Moreover, when facing the data heterogeneity problem, namely, the trajectories are col-

116

4.1 SPATIAL-TEMPORAL META-GAIL

lected from different human experts, Eq 4.3 would simply assume all trajectories are pro-

duced by one human expert and fail to learn different urban strategies from the dataset.

Thus, to deal with the data scarcity and heterogeneity problems, we introduce a latent

variable c to our policy function and reward function, i.e., π(a|s, h, c) and r(s, a | h, c),

respectively. In general, c ∼ p(c) would be a latent vector representing a specific strategy

of a human expert in the latent space. To enable the latent variable c to identify different

strategies, a constraint on c should be added to Eq 4.3. Inspired by InfoGAN [62], where

the latent variable is incorporated to enable disentangled representations by discovering

the salient semantic features of the data distribution, we propose to add a mutual informa-

tion regularizer to Eq 4.3 to encourage strong connections between c and the generated

human trajectories. The mutual information between the latent variable and trajectories

is denoted as I(c; τ), the objective with the mutual information regularizer is as follows:

min
π∈Π

max
r

EπE
[log(r(s, a | h, c))] + Eπ[log(1− r(s, a | h, c))]

− λ1H(π)− λ2I(c; τ).

(4.4)

In Eq 4.4, the latent variable c helps to identify different strategies in a heterogeneous

dataset and also enable fast generalization to new strategies with few samples. However,

in practice, it is hard to directly maximize the mutual information I(c; τ) without the

access to the posterior distribution P (c|τ). Instead, we calculate the variational lower

bound [62, 107] of I(c; τ) and use an auxiliary distribution Q(c|τ) to approximate the

117

4.1 SPATIAL-TEMPORAL META-GAIL

true posterior P (c|τ):

I(c; τ) = H(c)−H(c | τ)

= Eτ∼π(·|s,h,c),c′∼P (c|τ) [logP (c′ | τ)] +H(c)

= Eτ∼π(·|s,h,c)[DKL(P (· | τ)∥Q(· | τ))︸ ︷︷ ︸
≥0

+ Ec′∼P (c|τ)[logQ(c′ | τ)]] +H(c)

≥ Ec∼p(c),τ∼π(·|s,h,c)[logQ(c | τ)] +H(c)

= LI(π,Q),

(4.5)

where p(c) is a prior distribution, Q is the auxiliary distribution, and we can treat Q as an

inference neural network, which uses τ to infer c. As a result, the final objective for our

Spatial-Temporal Meta-GAIL (STM-GAIL) is as Eq 5.7:

min
π,Q

max
r

EπE
[log(r(s, a | h, c))] + Eπ[log(1− r(s, a | h, c))]

− λ1H(π)− λ2LI(π,Q).

(4.6)

4.1.3.3 Model Architecture

In our final objective Eq 5.7, a policy network π, a reward network r and an inference net-

work Q are required. Figure 5.5 shows the detailed architecture of STM-GAIL, which ap-

plies ConvLSTM [51] inside each model component to better capture the spatial-temporal

dependencies of human decisions in a trajectory.

The policy network π outputs an action distribution π(at|st, ht−1, c) based on the

current state st, the history ht−1 and the latent vector c. A specific action at will be

sampled from the distribution, i.e., at ∼ π(at|st, ht−1, c). Given the sampled action at,

the next state st+1 is directly provided by the environment (through the transition function

118

4.1 SPATIAL-TEMPORAL META-GAIL

P (st+1|ht)
1), which is combined with the extended history ht and latent vector c as the

new input of the policy network, i.e., at+1 ∼ π(at+1|st+1, ht, c). Thus, the policy network

works in an auto-regressive way. Inside the policy network π, the current state st and

the latent vector c are concatenated together and pass a ConvLSTM, the history ht−1 is

stored within the hidden states [51] of ConvLSTM. The output of the ConvLSTM passes

a fully-connected layer and a softmax function [109] to get the probabilities of choosing

different actions.

The reward network r can be viewed as a discriminator, which aims to distinguish

the positive data from the negative data by giving high scores if the input τ is collected

from expert human agents, and giving low scores if the input τ is generated by the policy

network. The input of the reward network includes i) the current state st and action at, ii)

the history ht−1 and iii) the latent vector c. The output of the network is a score from 0 to

1. Inside the reward network r, all the states, actions and the latent vector are concatenated

together and pass a ConvLSTM and two fully-connected layers, the output is activated by

Sigmoid function [110].

The inference network Q aims to infer the distribution of latent vector c using the

generated trjectory τ . Q takes a trajectory generated by the policy network as the in-

put, and outputs a latent vector c. Inside the inference network Q, the input trajectory

passes a ConvLSTM and two fully-connected layers activated by hyperbolic tangent func-

tion [111].

4.1.3.4 Training and Testing Algorithms

To optimize Eq 5.7, novel training and testing algorithms are proposed.

STM-GAIL Training algorithm. In Eq 5.7, a prior distribution p(c) is required. How-

ever, for most urban scenarios, we do not have access to p(c) but instead have human

1In this work, we are in a model-free setup, thus, we do not need access to the transition function [108].

119

4.1 SPATIAL-TEMPORAL META-GAIL

agent trajectories sampled from T, we use the following generative process:

τ ∼ T, c ∼ Q(c | τ) (4.7)

to synthesize latent variables, which approximates the prior distribution when π and Q are

trained to optimality, the effectiveness has been validated by Yu et al. [112]. The detailed

training process is in Algorithm 9.

Input: Trajectories collected from diverse human experts D = {τi}, initial parameters
of policy network, reward network and inference network θ0, ω0, ψ0.

Output: Learned policy network πθ, reward network rω and inference network Qψ.
1: repeat
2: Sample two batches of trajectories τE and τ ′E: τE, τ ′E ∼ D

3: Infer a batch of latent codes c from τE: c ∼ Qψ(c | τE).
4: Sample trajectories τ using the policy network πθ with the latent code fixed during

each rollout, i.e. τ ∼ πθ(τ | c).
5: Update ω with Adam [56] to maximize Eq. 4.8 using τ ′E and τ .
6: Update ψ with Adam [56] to minimize Eq. 4.9 using τ .
7: Update θ with TRPO [113] to minimize Eq. 4.10.
8: until Convergence

Algorithm 7: STM-GAIL Training Process

Based on Eq. 5.7, we can get the objective functions for π, r and Q separately. Denote

ω as the parameters of reward network r, η as the learning rate, we update the reward

network with Eq. 4.8:

Lr(ω) = EπE
[log(rω(s, a | h, c))] + Eπ[log(1− rω(s, a | h, c))],

ω = ω + η▽ωLr(ω). (4.8)

120

4.1 SPATIAL-TEMPORAL META-GAIL

Input: Trajectories DTest = {τ̃i} collected from diverse new human experts (each ex-
pert only provides one single trajectory τ̃i), learned policy network πθ and inference
network Qψ.

Output: Generated trajectories for each human expert.
1: repeat
2: Infer the latent code c̃i from τ̃i: c̃i ∼ Qψ(c | τ̃i).
3: Generate trajectories τ̂ for the human expert using πθ with c̃i fixed during each

rollout, i.e. τ̂ ∼ πθ(τ | ci).
4: until Testing finished for DTest

Algorithm 8: STM-GAIL Testing Process

Denote ψ as the parameters of the inference network Q, we update Q with Eq. 4.9:

LQ(ψ) = −λ2Ec∼p(c),τ∼π(·|s,h,c)[logQψ(c | τ)],

ψ = ψ − η▽ψLQ(ψ). (4.9)

Denote θ as the parameters of the policy network π, our goal is to minimize the

objective for πθ using Trusted Region Policy Optimization (TRPO) [113], the objective

for πθ is as below:

Lπ(θ) = Eπθ
[log(1− r(s, a | h, c))]− λ1H(πθ)− λ2LI(πθ, Q). (4.10)

STM-GAIL Testing algorithm. Given a latent vector of a new strategy, the learned pol-

icy network can easily produce more trajectories and imitate the real policy. Thus, during

the testing process, we have the trajectories collected from diverse new human experts,

each human expert only needs to provide one single trajectory. For each urban strategy,

we first use the well-trained Qψ to infer the corresponding latent vector from a trajectory,

and then use the learned πθ and the latent vector to produce more trajectories which are

similar to the real ones governed by the real policy. The detailed testing algorithm is in

Algorithm 10.

121

4.1 SPATIAL-TEMPORAL META-GAIL

4.1.4 Evaluation

In this section, we introduce the real-world dataset, baseline models and the metrics that

we use to evaluate our STM-GAIL, and present extensive experimental results.

4.1.4.1 Data and Experiment Description

In our experiment, we aim to learn the taxi drivers’ passenger-seeking strategies from the

collected passenger-seeking trajectories.

Dataset Description. The passenger-seeking trajectories are collected from 17,877 taxis

in Shenzhen, China from July 1 to Sep 31, 2016. Each passenger-seeking trajectory is

formed by multiple GPS records of a taxi. A GPS record includes five attributes including

the taxi plate ID, longitude, latitude, time stamp and passenger indicator which is a binary

value indicating whether a passenger is on board (e.g., 0 indicates no passenger on board

and 1 otherwise). The passenger-seeking trajectories are formed by consecutive GPS

records with passenger indicator being 0.

To learn the passenger-seeking strategies using our STM-GAIL, we need formulate

the problem in a VLMDP setup and construct the state space and action space.

State Space. We first partition the Shenzhen City into 40× 50 equal-sized grid cells with

a side-length l1 = 0.0084◦ in latitude and l2 = 0.0126◦ in longitude. And we divide

the time of a day into five-minute time slots. A state of a grid cell is defined as a multi-

dimensional tensor which is composed of different feature maps of its neighboring 5 × 5

grid cells in a specific time slot. The features include travel demand, traffic speed, taxi

inflow, waiting time, distance to POIs, current location and current time slot. All the

features provide the spatial and temporal information of a state, which help taxi drivers

make decisions when seeking passengers. More information about the states and features

is in Appendix A.

Action Space. When a taxi is in a specific state, the taxi driver has 10 actions to choose

122

4.1 SPATIAL-TEMPORAL META-GAIL

from, including going to 8 neighboring grid cells, staying at the current grid cell, and

terminating the trip.

Experiment Description. In this experiment, we study how taxi drivers make decisions

when seeking passengers. Given the historical trajectories of different expert drivers in

Shenzhen, China, the state space and the action space, we aim to learn the passenger-

seeking strategies for diverse taxi drivers. All the expert drivers and their historical trajec-

tories (i.e., 45 expert drivers with 40 trajectories for each individual) are randomly split

into training set (85%, approximately 40 drivers with 1600 trajectories) and testing set

(15%, approximately 5 drivers with 200 trajectories). Our model is trained using training

set and the learned policy network is tested on testing set.

4.1.4.2 Baselines

To evaluate our model, we compare STM-GAIL with state-of-the-art imitation learning

methods. Firstly, to validate that the standard imitation learning methods cannot learn

diverse human decision-making strategies, we compare our proposed STM-GAIL with

standard GAIL and TrajGAIL listed below:

• GAIL [86]. GAIL models human decision-making processes as MDPs, and it contains

a policy network π(a | s) and a reward network r(s, a). Both of the two networks are

composed of several fully-connected layers.

• TrajGAIL [89]. TrajGAIL models human decision-making processes as VLMDPs,

and it contains a policy network π(a | s, h) and a reward network r(s, a | h). Tra-

jGAIL applies self-attention [50] mechanism in each network to tackle the temporal

dependencies of decisions.

Next, we compare our STM-GAIL with state-of-the-art meta imitation learning meth-

ods including cGAIL, InfoGAIL and MetaIL, which do not consider the spatial-temporal

123

4.1 SPATIAL-TEMPORAL META-GAIL

dependencies in the human decision-making processes:

• cGAIL [88]. cGAIL tries to learn strategies for different taxi drivers by incorporating

the driver ID as a condition c into the policy network π(a | s, c) and reward network

r(s, a | c). cGAIL models human decision-making processes as MDPs, and applies

convolutional layers in each network.

• InfoGAIL [90]. InfoGAIL models human decision-making processes as MDPs and

aims to learn diverse strategies for agents. InfoGAIL has a policy network π(a | s, c)

which incorporates a latent vector c indicating a specific task, a reward network r(s, a)

shared by all tasks, and an inference network Q(c | τ), all the model components apply

fully-connected layers inside.

• MetaIL [91]. MetaIL is a One-Shot Imitation Learning method aiming to learn an ini-

tialized policy network which can be fast adapted to new tasks. MetaIL is trained on

tasks belonging to one distribution and tested on new tasks from the same task distribu-

tion.

Moreover, to validate both spatial and temporal dependencies are important when

learning diverse human strategies, we have two baseline models including Temporal

Meta-GAIL (TM-GAIL) and Spatial Meta-GAIL (SM-GAIL):

• TM-GAIL [89, 90]. Temporal Meta-GAIL (TM-GAIL) has the same objective as our

STM-GAIL. However, it ignores the spatial patterns in the decision-making processes,

and only applies LSTM[58] inside each network to capture the long-term dependencies

of decisions.

• SM-GAIL [89, 90]. Spatial Meta-GAIL (SM-GAIL) has the same objective as STM-

GAIL. However, it ignores the long-term dependencies of decisions, and only applies

convolutional layers inside each network to capture the spatial dependencies.

124

4.1 SPATIAL-TEMPORAL META-GAIL

4.1.4.3 Evaluation Metrics

In our experiment, we use two metrics to evaluate our STM-GAIL including i) Jensen–Shannon

(JS) divergence ii) L2-Norm:

• Jensen–Shannon (JS) divergence. Jensen–Shannon divergence is a method of

measuring the similarity between two probability distributions P and Q:

JSD(P ||Q) = H(
P +Q

2
)− 1

2
(H(P) +H(Q)), (4.11)

where H(P) is the Shannon entropy for distribution P . In our experiments, JS

divergence is used to measure the similarity between the learned policy (i.e., π) and

the empirical ground-truth policy (i.e., πE).

• L2-Norm. L2-Norm (i.e., Euclidean distance) is used to measure the distance be-

tween the trajectories generated by the learned policy and the trajectories sampled

from the empirical ground-truth policy. L2-Norm is defined as below:

L2(P,Q) =

√√√√ n∑
i=1

(pi − qi)
2, (4.12)

where P = (p1, · · · , pn) and Q = (q1, · · · , qn) can be viewed as two trajectories.

4.1.4.4 Experimental Settings

In the experiment, we parametrize the auxiliary distribution Q(c | τ) as a neural network,

and its form depends on the true posterior P (c | τ). We found that simply treating Q(c | τ)

as a factored Gaussian distribution is sufficient.

For all experiments, we use Adam[56] for online optimization. The detailed structure

of STM-GAIL is as follows: the policy network π contains one ConvLSTM layer and

125

4.1 SPATIAL-TEMPORAL META-GAIL

Figure 4.5: Overall performance.

one fully-connected layer activated by softmax function. The reward network r contains

one ConvLSTM layer and two fully-connected layers, the final fully-connected layer is

activated by Sigmoid. The Inference network Q has the same architecture as the reward

network with one ConvLSTM layer and two fully-connected layers, the final layer is

activated by hyperbolic tangent. The kernel size for all ConvLSTM layers is (3, 3). During

training, the batch size is set to 64, and the learning rate is 1×10−5.

4.1.4.5 Results

Overall performance. We first present the overall performance of our STM-GAIL com-

pared with all baseline models when learning taxi drivers’ diverse passenger-seeking

strategies. For each model, we use 1600 trajectories collected from 40 taxi drivers as

the training set (i.e., each taxi driver provides 40 historical trajectories), and select 5 new

drivers (each provides one single trajectory) as the testing set. For each new driver, we

first infer his/her latent vector with the trajectory and use the learned policy to produce

100 trajectories. To evaluate whether the learned policy network with a specific latent

vector is close to the taxi driver’s real policy, we compare the generated trajectories with

the ground-truth trajectories for each taxi driver and calculate the JS Divergence (JSD)

and L2 Norm. In this part, we test each taxi driver for three times, and present the average

126

4.1 SPATIAL-TEMPORAL META-GAIL

Figure 4.6: Performance on learning diverse strategies.

Figure 4.7: Impact of hyper-parameters on urban strategies learning with STM-GAIL.

JS Divergence (JSD) and L2-Norm of all testing drivers.

As shown in Figure 4.5, compared with our STM-GAIL, we find the imitation learning

methods including GAIL and TrajGAIL have higher errors for both metrics, which indi-

cates the two models cannot distinguish different strategies and fail to learn diverse human

strategies since they assume all training trajectories are from one single expert driver.

Besides, the meta imitation learning methods including cGAIL, InfoGAIL and MetaIL

simply model the human decision-making processes as MDPs and ignore the spatial-

temporal dependencies of human decisions, which usually leads to poor performance

when learning diverse urban strategies. The higher errors of TM-GAIL and SM-GAIL

indicate both spatial and temporal dependencies are important when learning diverse hu-

man urban strategies. In our proposed STM-GAIL where ConvLSTM is employed in

each model component, it can successfully capture spatial-temporal dependencies of hu-

man decisions and distinguish different human expert strategies.

Performance on learning diverse strategies. Since our STM-GAIL is able to learn

127

4.1 SPATIAL-TEMPORAL META-GAIL

diverse human urban strategies, we further investigate whether it can successfully mimic

diverse expert drivers’ behaviors. In this section, we present the statistics for each testing

driver in our testing set.

As shown in Figure 4.6, we compare our STM-GAIL with some competitive baseline

models. For each testing driver in our testing set, STM-GAIL presents the lowest errors

for both metrics (see Figure 4.6(a) and Figure 4.6(b)). GAIL and TrajGAIL cannot dis-

tinguish taxi drivers’ different strategies; cGAIL only use the driver ID to tell different

drivers instead of learning the unstructured patterns and connections among strategies,

which leads to higher errors and vibrations in strategies learning; SM-GAIL cannot suc-

cessfully capture the temporal dependencies of human decisions and thus produces poor

performance; TM-GAIL ignores the spatial patterns in the decision-making process which

results in higher errors. By contrast, our STM-GAIL learns the unstructured patterns of

diverse strategies using an inference network, and models the decision-making processes

as VLMDPs, which guarantee the good performance in learning diverse human urban

strategies.

Ablation Study. We also study how hyper-parameters influence the strategy learning per-

formance in our STM-GAIL. In this section, the evaluated hyper-parameters include the

number of drivers in training set, the number of training trajectories each driver provides,

batch size and λ2 in our objective Eq 5.7.

As shown in Figure 4.7(a), we find if the training trajectories are collected from more

taxi drivers, the learned policy would be better adapted to different testing drivers’ strate-

gies. In Figure 4.7(b), we find if each driver provides more trajectories in the training

process, STM-GAIL can learn diverse driving strategies better and thus produce lower

errors. In Figure 4.7(c), we can find the performance is sensitive to the value of λ2, λ2

should be chosen based on the loss scale to ensure the whole loss scale keeps the same, in

our experiments, the best choice of λ2 should be 1. In Figure 4.7(d), we find the batch size

128

4.1 SPATIAL-TEMPORAL META-GAIL

Figure 4.8: Case studies: learned policies vs. ground-truth policies for two taxi drivers in
two cases.

also influences the learning performance. Large batch size results in good performance in

our experiments.

Case Study. To further investigate how STM-GAIL performs when learning different

urban strategies in different scenarios, we directly compare the learned policies of STM-

GAIL with the empirical ground-truth policies in a few representative case studies.

We first select two taxi drivers and get their empirical policies from their mobility

data. For a specific state, we present the probabilities of choosing different actions using

the learned policies of STM-GAIL, cGAIL and InfoGAIL. We find that for both test-

ing drivers in two different representative states (see Figure 5.11(a) and Figure 5.11(b)),

baseline models including cGAIL and InfoGAIL do not present stable performance in

action selection. By contrast, the policies learned by STM-GAIL match the ground-truth

policies very well, which indicate our STM-GAIL can successfully learn diverse urban

strategies by capturing spatial-temporal dependencies of decisions and learning the latent

space of strategies.

129

5

Urban Traffic Dynamics Prediction

5.1 Continuous Spatial-Temporal Meta-Learning

5.1.1 Overview

5.1.1.1 Introduction

Over past a few decades, the rapid population growth has accelerated the process of ur-

banization, which in turn brings huge impacts on the urban traffic including the increasing

traffic volume, worse traffic condition and the overload of the transportation infrastruc-

tures. As a result, accurately predicting the highly dynamic traffic status (e.g., traffic

volume, speed and inflow) has become a crucial work for urban development aiming to

reduce congestion and increase mobility, since it can not only provide insights for urban

planning, help to improve the efficiency of public transportation, but also guarantee the

public safety [36].

Given the underlying road network and the historical traffic observations, the problem

of traffic dynamics prediction aims at forecasting short-term traffic status in consecutive

time slots. However, there are many practical challenges before solving this problem:

130

5.1 CONTINUOUS SPATIAL-TEMPORAL META-LEARNING

Figure 5.1: Illustration of traffic dynamics.

1) Spatial-temporal dependencies. It is the most common challenge when dealing with

traffic dynamics prediction problem, since the traffic status would be influenced by the

nearby environments, road networks and its previous traffic status.

2) Traffic dynamics and temporal uncertainties. In traffic dynamics prediction, the most

difficult part is to capture and model the dynamics of traffic status, since urban traffic

always contains temporal uncertainties due to sudden travel demand changes, unexpected

events or extreme weather. For example, Figure 5.1 is an illustration of traffic dynamics,

where it is possible that the traffic patterns are almost consistent in the first two days but

show obvious fluctuations and temporal uncertainties in the next few days. The reasons of

such considerable changes in traffic patterns could be a thunder storm, a large sports event

or a car crash. In general, irregular and drastic traffic changes caused by these factors

are hard to capture using traditional time series models due to their non-periodicity and

rareness (i.e., lacking training samples).

A lot of research efforts have been put into the traffic dynamics prediction area. Some

works use traditional machine learning methods and time series models to predict urban

traffic. Works such as [114, 115] and [116] use support vector regression (SVR) to capture

the relationships between traffic and environmental features. Another work[117] presents

a traffic prediction method which combines the SARIMA model and multi-input autore-

131

5.1 CONTINUOUS SPATIAL-TEMPORAL META-LEARNING

gressive (AR) model with genetic algorithm (GA) optimization. In addition, deep neural

networks are also widely used in urban traffic prediction works. For example, works [38]

and [24] predict travel demands and traffic accidents using autoencoders and ConvLSTM,

respectively. Other works including [41] and [42] combine CNN and LSTM to predict

the traffic speed and crowd flows. However, these models do not consider the situation

where the traffic shows strong non-stationarity.

Moreover, a few works are inspired by meta-learning and try to apply existing meta-

learning methods to solve the traffic dynamic prediction problem. For example, a recent

work [118] combines meta graph attention and meta recurrent neural network to cap-

ture spatial and temporal dependencies simultaneously. Another work[119] learns the

meta-knowledge from multiple cities and performs the spatial-temporal traffic prediction.

However, these works still do not consider the temporal uncertainties in prediction and

they do not extract meta-knowledge directly from traffic time series. Therefore, they have

limited capabilities to learn traffic patterns that are rarely seen in the historical data.

In this paper, we try to solve the short-term traffic dynamics prediction problem and

tackle the unique challenges mentioned before from the Bayesian meta-learning perspec-

tive. A novel continuous spatial-temporal meta-learner (cST-ML) is proposed, which is

trained on a distribution of traffic prediction tasks generated by traffic time series data with

the goal of learning a strategy that can be quickly generalized to related but unseen traffic

prediction tasks from the same task distribution. cST-ML captures the spatial-temporal

dependencies of traffic as well as the temporal uncertainties and dynamics through vari-

ational inference and rolling windows. Our main contributions are summarized as fol-

lows:

• We are the first to solve the traffic dynamics prediction problem from the Bayesian

meta-learning perspective and propose a novel continuous spatial-temporal meta-learner

cST-ML. cST-ML advances the Bayesian black-box meta-learning framework to cap-

132

5.1 CONTINUOUS SPATIAL-TEMPORAL META-LEARNING

ture traffic dynamics and temporal uncertainties. (See Sec 5.1.3.2.)

• cST-ML features some novel designs in the architecture. cST-ML is composed of an in-

ference network and a decoder, where CNN and LSTM are embedded to realize the goal

of capturing traffic spatial-temporal dependencies. Novel algorithms are also designed

for cST-ML training and testing. During meta-training and testing, in each task, cST-

ML performs traffic prediction as a rolling window which not only keeps the task uncer-

tainties but also maintains the temporal uncertainties within each task. (See Sec 5.1.3.3

and Sec 5.1.3.4.)

• We conduct extensive experiments on two real-world traffic datasets (taxi inflow and

traffic speed) to evaluate our proposed cST-ML. The experimental results verify that

cST-ML can significantly improve the urban traffic prediction performance and out-

perform all existing baseline methods on both datasets especially when obvious traffic

dynamics and temporal uncertainties are presented. (See Sec 5.1.4.)

The rest of the paper is organized as follows: Section II provides the overview of

the paper, Section III details the design of cST-ML. We present the experimental results

in Section IV and discuss related work in Section V. Finally, we conclude the paper in

Section VI.

5.1.1.2 Preliminaries

In this section, we define the traffic dynamics prediction problem, and outline our solution

framework. Table 5.1 lists the notations used in the paper.

In a city, urban traffic status can be characterized by many statistics, such as traffic

volumes, speed, inflow/outflow, etc, which are of great interests to urban planners and

researchers for transportation planning, traffic evaluation and more. These statistics are

dynamic in nature, namely, varying across space and evolving over time. Hence, we

133

5.1 CONTINUOUS SPATIAL-TEMPORAL META-LEARNING

Table 5.1: Notations.

Notations Descriptions
S = {sij} Grid cells
Rij A target region
Nt ∈ N Number of time slots in each task
τ ∈ N Number of tasks
X t Traffic related features at t
yt Traffic status at t
w Rolling window size
θ Parameters of meta-learner
Ti = {Dtr

i ,D
ts
i } One traffic prediction task

ϕi Adapted parameters for task Ti

divide an urban area into grid cells as defined below. Each grid cell represents a target

area for urban dynamics prediction.

Definition 1 (Grid cells). We divide a city into I × J grid cells with equal side-length

(e.g., 1× 1km), denoted as S = {sij}, where 1 ≤ i ≤ I, 1 ≤ j ≤ J .

Definition 2 (Target region for a target grid cell). For a target grid cell sij , its target

region is a square geographic region with sij in center, formed by ℓ× ℓ grid cells, denoted

with Rij = ⟨sij, ℓ⟩.

In our study, we assume the traffic status in a target grid cell sij has high spatial

correlations with the other grid cells within its target region.

Definition 3 (Traffic related features). All features that will influence the traffic status

are traffic related features, e.g., time of the day, travel demand, etc. For a grid cell s,

we denote xt as one feature of s in time slot t. For a target region R, we denote X t as

one feature map of R in time slot t, where X t is a ℓ × ℓ matrix. Since there could be

multiple features, all the feature maps in region R in time slot t can be denoted with a

tensorX t = {X t
1, . . . , X

t
n} ∈ Rn×ℓ×ℓ, where n ∈ N+ is the number of features.

Definition 4 (Traffic status). Traffic status indicates the quality of traffic, which can

be measured by traffic inflow/outflow, average driving speed, etc. We denote yt as the

average traffic status of grid cell s in time slot t.

134

5.1 CONTINUOUS SPATIAL-TEMPORAL META-LEARNING

Figure 5.2: Problem illustration.

In this paper, we choose one specific measure of traffic status as the target of predic-

tion, other measures if available can be treated as traffic related features during prediction.

Definition 5 (Traffic prediction task.) A traffic prediction task Ti is composed of a set

of paired (X t, yt) in Nt consecutive time slots, which is divided into a training set Dtr
i

and a testing set Dts
i , i.e., Ti = {(X1

i , y
1
i), . . . , (X

Nt
i , yNt

i)} = {Dtr
i ,D

ts
i }.

Problem Definition. For a specific target grid cell s, given all the historical traffic data,

we aim to predict the traffic status {ŷt} in consecutive time slots based on the available

traffic related features {X t}. Since our goal is using meta-learning to solve this problem,

the problem is transformed as follows:

in meta-learning setup, the historical time series traffic data is segmented into τ tasks,

we assume all the tasks are sampled from the same distribution, Ti ∼ p(T). During

meta-training, we aim to train a meta-learner (with parameters θ) whose objective is to

minimize the expected loss with respect to θ over all training tasks sampled from p(T):

θ⋆ = argmin
θ

ETi∼p(T)L
(
ϕi,D

ts
i

)
, and ϕi = fθ

(
Dtr

i

)
. (5.1)

During meta-testing, the meta-learner is evaluated on unseen testing tasks from the same

135

5.1 CONTINUOUS SPATIAL-TEMPORAL META-LEARNING

Figure 5.3: Insight of the framework.

task distribution. When predicting the future traffic, which can be view as a new testing

task, we have:

ŷt = fθ⋆
(
Dtr,X t

)
, (5.2)

where Dtr = {(X1, y1), . . . , (X t−1, yt−1)} includes a few training data in the current

task. The problem is illustrated in Figure 5.2.

Solution Framework Figure 5.3 shows the solution framework. All the historical traffic

data including traffic status and traffic related features is segmented into different small

tasks. cST-ML is modeled based on Bayesian black-box meta-learning framework com-

bined with novel designs which help to capture traffic uncertainties and spatial-temporal

dependencies. During meta-training, the cST-ML is applied to each meta-training task to

perform traffic prediction, the parameters of cST-ML are updated based on the predicted

loss. The well-trained cST-ML can be fast adapted to any new traffic prediction tasks and

exhibit excellent performance during meta-testing time. The detailed data preparation

and task segmentation process will be presented in Section IV. We will first introduce the

methodologies in the next section.

136

5.1 CONTINUOUS SPATIAL-TEMPORAL META-LEARNING

5.1.2 Related Work

Urban Traffic Prediction. In urban traffic prediction area, some works focused on traf-

fic volume and crowd flow prediction. For example, one work [17] proposed a citywide

traffic volume estimation framework which combined machine learning techniques and

traffic flow theory. Another work [19] developed novel real-time framework offering ac-

curate arrival crowd flow prediction at subway stations. In addition, a lot of works adopt

and advance the existing methods to predict urban traffic. For example, works such as

[114, 115] and [116] applied support vector regression to predict future traffic and took

environmental features into consideration. The paper [117] proposed a traffic prediction

method which combined SARIMA model and autoregressive model with genetic algo-

rithm optimization. Another paper [45] tried to predict citywide flow using CNN which

better captured traffic spatial dependencies. Yuan et al. [24] tried to predict traffic acci-

dents with ConvLSTM. In our work, we aim to solve the urban traffic prediction problem

using Bayesian meta-learning framework and capture traffic spatial-temporal dependen-

cies and temporal uncertainties simultaneously.

Meta-Learning. A meta-learner is learned from training tasks and can be fast adapted

into new tasks with just a few samples. The idea of meta-learning has been applied to

many areas including supervised/unsupervised learning, reinforcement learning and even

image generation. The state-of-the-art meta-learning methods including MAML [85],

Reptile [82], SNAIL [120], MOCA [97], etc. MAMAL and Reptile learn a good initial-

ization of a model which can be finetuned in new tasks. SNAIL is a black-box meta-

learning method, where the black-box can be viewed as the meta-learner. They are not

Bayesian meta-learning methods and do not consider any task uncertainties. MOCA aug-

ments a meta-learning algorithm with a differentiable Bayesian changepoint detection

scheme, but it is not used to deal with time series predictions. In traffic prediction area,

some works applied meta-learning methods to solve traffic prediction problem. For ex-

137

5.1 CONTINUOUS SPATIAL-TEMPORAL META-LEARNING

Figure 5.4: Deterministic black-box meta-learning.

ample, the work [118] combined meta graph attention and meta recurrent neural network

to capture spatial and temporal dependencies simultaneously. Another work [119] learn

the meta-knowledge from multiple cities and perform the spatial-temporal traffic predic-

tion. However, these two works still did not consider the task and temporal uncertainties

in prediction.

5.1.3 Methodology

In this section, we detail the key challenges of the urban dynamics prediction problem,

and introduce our continuous spatial-temporal meta-learning framework.

5.1.3.1 Key challenges

State-of-the-art Meta-Learning. The goal of meta-learning is to train a model that can

quickly adapt to a new task using only a few data points. To accomplish this, the meta-

learner fθ is trained during a meta-training process on a set of training tasks which are

sample from the same task distribution, i.e., Ti ∼ p(T), such that the trained meta-learner

can quickly adapt to new unseen tasks using only a small number of examples. In effect,

the meta-learning problem treats entire tasks as training examples and it is a generalization

across tasks rather than across data points. For each task Ti, there are two sets of data Dtr
i

and Dts
i , where Dtr

i is for task adaption and getting task specific parameters ϕi, Dts
i is used

138

5.1 CONTINUOUS SPATIAL-TEMPORAL META-LEARNING

for calculating the loss and updating meta-learner parameters θ. The deterministic black-

box meta-learner’s objective is the same as Eq. 5.1, where the loss function L(ϕi,D
ts
i)

can be mean-squared error.

The deterministic black-box meta-learning framework is illustrated in Figure 5.4. The

common structure of black-box meta-learning is RNN based, where for task Ti, the pa-

rameters of RNN can be viewed as θ, the hidden state ϕi is the adapted parameters for

the current task, and the last cell of RNN is used for testing. Thus, the distribution

q (ϕi|Dtr
i , θ) is deterministic in this setup, which means there is no uncertainties in Dtr

i ,

i.e., ϕi = fθ (D
tr
i). However, in traffic dynamics prediction problem, even though the

tasks are segmented based on time (e.g., everyday traffic is a task), there still exist tempo-

ral uncertainties and dynamics for each task, thus, deterministic black-box meta-learning

is not enough when dealing with the traffic dynamics prediction problem.

Furthermore, Bayesian black-box meta-learning is developed to capture the task un-

certainties, its objective is to maximize the log likelihood lower bound across all meta-

training tasks:

max
θ

ETi [Eq(ϕi|Dtr
i ,θ)

[
log p

(
ytsi |Xts

i , ϕi

)]
−DKL

(
q
(
ϕi|Dtr

i , θ
)
∥p (ϕi|θ)

)
],

(5.3)

where q is the inference network and parameterizes the mean and log-variance diagonal

of a Gaussian distribution, and ϕi is sampled from this distribution. Since the adapted

parameters ϕi is sampled, it can capture the uncertainties of tasks during each adaptation

process.

Challenges. The Bayesian black-box meta-learning only captures the uncertainties be-

tween tasks, it does not consider the complex traffic spatial-temporal dependencies and

temporal uncertainties within tasks. Thus, in traffic dynamics prediction, we need to in-

corporate the spatial-temporal dependencies and temporal uncertainties within tasks into

the Bayesian black-box meta-learning framework and design unique structures for meta-

139

5.1 CONTINUOUS SPATIAL-TEMPORAL META-LEARNING

learner to tackle these challenges.

5.1.3.2 cST-ML Modeling

To address the challenges highlighted above, now we are in a position to develop contin-

uous spatial-temporal meta-learning (cST-ML) framework.

Following the original Bayesian black-box meta-learning, to deal with the uncertain-

ties in task adaptation, we treat the adapted parameters as a latent variable. We approxi-

mate the likelihood with variational lower bound (ELBO), the ELBO is derived in Eq. 5.4.

log p(x) ≥ Eq(z|x)[log p(x, z)] +H(q(z|x))

= Eq(z|x)[log p(x|z)]−DKL(q(z|x)∥p(z)),
(5.4)

where z is the latent variable and x is the real data, DKL is the Kullback-Leibler diver-

gence, p(x|z) can be treated as an decoder and q(z|x) is the inference network, p(z) ∼

N(0, 1).

In traffic dynamics prediction, to advance the Bayesian black-box meta-learning frame-

work and take uncertainties within tasks into consideration, we first segment the historical

traffic data into τ tasks, for each task, instead of directly dividing the current task into Dtr
i

and Dts
i and applying cST-ML only once, we slide cST-ML as a rolling window within the

task. Just as illustrated in Figure 5.5(b). The rolling windows capture the inner temporal

uncertainties within tasks and thus help to improve the prediction accuracy.

In this situation, for task Ti and its jth rolling window, we have specific Dtr
i,j and Dts

i,j .

Eq.5.5 is the log likelihood lower bound of the jth rolling window in task Ti:

Lθ(ϕi,j,D
ts
i,j) = Eq(ϕi,j |Dtr

i,j ,θ)

[
log p

(
ytsi,j|Xts

i,j, ϕ
)]

−DKL

(
q
(
ϕi,j|Dtr

i,j, θ
)
∥p(ϕi,j|θ)

)
,

(5.5)

where q is the inference network and parameterizes the mean and log-variance diagonal of

140

5.1 CONTINUOUS SPATIAL-TEMPORAL META-LEARNING

Figure 5.5: cST-ML performs as a rolling window.

a Gaussian distribution, and ϕi,j is sampled from this distribution for each rolling window,

the Kullback-Leibler divergence can be approximated using the reparameterization trick

(see more information in [121]). Compared with Eq.5.4, the latent variable corresponds

to the adapted parameter ϕi,j , and the information we use to infer ϕi,j includes Dtr
i,j and θ.

The log likelihood lower bound of all rolling windows within task Ti is presented in

Eq.5.6.

Lθ(Ti) =
∑
j

Lθ(ϕi,j,D
ts
i,j)). (5.6)

Thus, in traffic dynamics prediction problem, the final objective is to maximize the

log likelihood lower bound across all meta-training tasks:

max
θ

ETi [Lθ(Ti)]. (5.7)

5.1.3.3 cST-ML Architecture

We also design unique structures for cST-ML to tackle the complex spatial-temporal traf-

fic dependencies. The structure of our cST-ML is composed of an inference network and

a decoder. The inference network tries to encode the training data within a task into a la-

tent distribution which captures the spatial patterns of the current location and also learns

141

5.1 CONTINUOUS SPATIAL-TEMPORAL META-LEARNING

the temporal dependencies and uncertainties, the decoder is responsible for the predic-

tion using the testing data within the same task. Figure 5.5 shows the overall structure of

cST-ML.

The Inference Network is CNN and LSTM based and is actually the adaptation pro-

cess of a task, which takes in the Dtr
i,j and extracts information from Dtr

i,j , aiming to

output a latent distribution which captures uncertainties of the jth rolling window in Ti.

The input of the inference network includes two parts, i) Dtr
i,j = {(X1

i , y
1
i), . . . , (X

t
i , y

t
i)},

where t < Nt, and ii) a vectorm containing memories from the previous rolling windows

within the current task Ti, which is actually the hidden state of the LSTM in the last time

step. In the first rolling window of Ti, the input memory is a zero vector.

Since X t is a tensor for each time slot, yt is first enlarged to an ℓ × ℓ matrix and

concatenates with X t, and then the concatenated tensor goes through a few layers of

CNN activated by ReLU which can capture the spatial dependencies of local traffic. The

output sequence then concatenates with the memory vector and becomes the input of the

LSTM, the hidden state of LSTM in the last time slot t goes through fully-connected

layers and produces the mean and log variance of a Gaussian distribution q
(
ϕi,j|Dtr

i,j, θ
)
.

The Decoder aims to produce the prediction ŷts based on X ts where (X ts, yts) ∈

Dts
i,j , the prediction loss is calculated using yts and ŷts. Decoder takes two inputs, i)

the adapted information ϕi,j sampled from q
(
ϕi,j|Dtr

i,j, θ
)

and ii) X ts. X ts first goes

through a few layers of CNN activated by ReLU and then concatenates with ϕi,j , the

results pass fully-connected layers activated by Sigmoid function and we get the final

prediction ŷts. The detailed structure of the inference network and decoder are illustrated

in Figure 5.5(a).

142

5.1 CONTINUOUS SPATIAL-TEMPORAL META-LEARNING

Input: Task distribution p(T), window size w, step size c = 1, initialized cST-ML fθ0 .
Output: Well trained cST-ML.

1: while not done do
2: Sample a task Ti ∼ p(T).
3: Prepare Dtr

i,j and Dts
i,j for each rolling window in Ti

4: for all rolling windows in Ti do
5: Sample ϕi,j from q

(
ϕi,j|Dtr

i,j, θ
)
.

6: Compute log likelihood using Eq.5.5.
7: end for
8: Update θ with Adam [56] to maximize Eq.5.6.
9: end while

Algorithm 9: Meta-Training

5.1.3.4 cST-ML Training and Testing

Since we perform cST-ML as a rolling window within tasks, assume the rolling win-

dow size is w and step size is 1, for the 1st rolling window, we use the first w − 1 data

points {(X1
i , y

1
i), . . . , (X

w−1
i , yw−1

i)} in Ti as input of the inference network and use

Xw
i as the input of decoder to predict ŷwi , thus, Dtr

i,j = {(X1
i , y

1
i), . . . , (X

w−1
i , yw−1

i)}

and Dts
i,j = {(Xw

i , y
w
i)}, just as illustrated in Figure 5.5. Then, we use data points

{(X2
i , y

2
i), . . . , (X

w
i , y

w
i)} as input of inference network and use Xw+1 as the input of

decoder to predict ŷw+1 and so on so forth. In this situation, for task Ti and its jth rolling

window, we have specific Dtr
i,j and Dts

i,j , and we backpropagate through the total loss of all

rolling windows in task Ti to update meta-learner θ (i.e., the parameters of both inference

network and decoder).

The detailed meta-training process is shown in Algorithm 9. We repeatedly sample

tasks from the task distribution, for each sampled task, we compute the total log likelihood

for all rolling windows and update θ once.

After training, the well-trained meta-learner θ can fast adapt to any new tasks. The

meta-testing algorithm is shown in Algorithm 10. In meta-testing, to predict the future

traffic, we define a new testing task T = {(X1, y1), . . . , (X t−1, yt−1)}, after the predic-

143

5.1 CONTINUOUS SPATIAL-TEMPORAL META-LEARNING

Input: A new task T = {(X1, y1), . . . , (X t−1, yt−1)} with availableX t, . . . ,XNt , win-
dow size w = t, step size c = 1, well-trained cST-ML fθ⋆ .

Output: Predicted values {ŷt, . . . , ŷNt}.
1: Define Dtr = {(X1, y1), . . . , (X t−1, yt−1)} and Dts = {X t} as the first rolling

window in T

2: for all rolling windows in T do
3: ŷt = fθ⋆ (D

tr,Dts).
4: Update Dtr = {(X2, y2), . . . , (X t, ŷt)} and Dts = {X t+1} for the next rolling

window.
5: end for

Algorithm 10: Meta-Testing

tion of ŷt, we update the Dtr and Dts of the current rolling window and slide the window

to get more predictions.

5.1.4 Evaluation

In this section, we conduct extensive experiments on real-world traffic datasets to evaluate

our cST-ML. We first describe the datasets and introduce experiments, then we present

baselines compared with our model and the evaluation metrics. Finally, the experiment

results are presented and analyzed in detail.

5.1.4.1 Dataset Descriptions

Preprocessing of Dataset

We evaluate our model on the real-world datasets including (1) traffic speed, (2) taxi

inflow and (3) travel demand, all of which are extracted from Shenzhen, China from Jul

1st to Dec 31st. In the preprocessing step, we first apply map gridding to the whole

Shenzhen City, where the city is partitioned into 40 × 50 grid cells, for each target grid

cell, its target region is the 5× 5 matrix with the target grid cell in center. Thus, there are

in total 1, 656 possible target grid cells. The map gridding method, the target grid cells

and its corresponding target regions are illustrated in Figure 5.6.

144

5.1 CONTINUOUS SPATIAL-TEMPORAL META-LEARNING

Figure 5.6: Map gridding and target grid cells illustration.

Traffic speed, taxi inflow and travel demand are all extracted from taxi GPS records

collected in Shenzhen, China from Jul 1st to Dec 31st, 2016. In each time slot (i.e., one

hour) of each day, taxi inflow is the number of taxis that stay or arrive at a target grid cell,

travel demand is the number of taxi pickups within a target grid cell. In effect, it is hard

to obtain the travel demands of all transport modes in a target grid cell, thus, we use taxi

demands to represent travel demands, and many studies have shown that taxi demand is a

very representative measure of travel demand [14, 15].

Experiment Descriptions

Next, we describe our two traffic prediction experiments we will perform in detail.

• Traffic speed prediction. In speed prediction, the traffic status in each grid cell is

measured by average traffic speed, and there are 12 time slots per task, i.e., Nt = 12,

and thus 184 tasks over 6 months. All the tasks are divided into meta-training tasks (the

first 80% of all tasks) and meta-testing tasks (the rest of 20%). We treat travel demands,

traffic inflow and the time of the day as traffic related features, and use meta-training

tasks to train the model and use meta-testing tasks to do evaluations. The goal of this

task is to predict the traffic speed of a target grid cell s based on the historical available

features.

• Taxi inflow prediction. Similar to traffic speed prediction, in the taxi inflow prediction,

the traffic status in each grid cell is measured by taxi inflow. We view travel demands,

145

5.1 CONTINUOUS SPATIAL-TEMPORAL META-LEARNING

traffic speed and the time of the day as traffic related features. There are also 12 time

slots per task, i.e., Nt = 12, and 184 tasks over 6 months. All the tasks are divided

into meta-training tasks (the first 80% of all tasks) and meta-testing tasks (the rest of

20%). We aim to train the model with meta-training tasks and evaluate the model using

meta-testing tasks.

5.1.4.2 Baselines

• HA [119] For each grid cell, Historical Average method (HA) predicts the traffic status

for a target grid cell based on its average status of the previous time slots.

• Regression [35]. This method applies ridge regression to predict the future traffic sta-

tus, the predictors are the corresponding traffic related features. The training data are

used to train the regression model and the testing data are used for evaluations.

• ARIMA [122]. Auto-Regressive Integrated Moving Average (ARIMA) is a conven-

tional parametric based time-series model. Here we view the historical traffic status as

time-series data and apply ARIMA to predict the future traffic status.

• LSTM [52, 54]. This method uses LSTM to predict the future traffic status using traffic

related features as input. The daily traffic related features can be viewed as an input

sequence, which goes through CNNs first and then passes LSTM to get the predicted

traffic status sequence.

• SNAIL [120]. It is an state-of-the-art deterministic black-box meta-learning method.

SNAIL utilizes attention layers to get the deterministic adapted parameters for each task

instead of sampling from a distribution, where the task uncertainties are not considered.

• BBML [123]. It is the Bayesian black-box meta learning method without memory

vector and rolling windows. The structure of this baseline is same as cST-ML, however,

146

5.1 CONTINUOUS SPATIAL-TEMPORAL META-LEARNING

it does not apply rolling windows and there is no memories kept within a task.

5.1.4.3 Evaluation Metrics

We use mean absolute percentage error (MAPE) and rooted mean square error (RMSE)

for evaluations:

MAPE =
1

T

T∑
t=1

|yt − ŷt| /yt, (5.8)

RMSE =

√√√√ 1

T

T∑
t=1

(yt − ŷt)
2, (5.9)

where yt is the ground-truth traffic status observed in the target grid cell s in the t-th time

slot, and ŷt is the corresponding prediction, T is the total number of time slots to perform

prediction.

5.1.4.4 Experimental Settings

The whole Shenzhen city is divided into 40×50 grid cells with a side-length l1 = 0.0084◦

in latitude and l2 = 0.0126◦ in longitude. The target region for a target grid cell is of size

5× 5, i.e., ℓ = 5. Thus, there are in total 1, 656 possible target grid cells in Shenzhen city.

In the experiment, we can select any possible target grid cell to perform traffic predictions.

The time interval for each task used to train the cST-ML are from 7:00am to 7:00pm,

where each hour is a time slot and we have 12 time slots per day/task, i.e., Nt = 12. Thus,

we have Ti = {(X1
i , y

1
i), . . . , (X

12
i , y12i)}.

The structure of cST-ML is as follows: two layers of CNN are utilized before LSTM

in the inference network, the input channel of the first CNN is 4, the output channel is

64, the kernel size is 3, stride is 1 and padding is 1; for the second CNN layer, the input

channel is 64, the output channel is 128, the kernel size is 5, stride is 1 and padding is 0. In

decoder, we still use two layers of CNN combined with a linear transformation. cST-ML

147

5.1 CONTINUOUS SPATIAL-TEMPORAL META-LEARNING

Table 5.2: Performance on traffic speed prediction and taxi inflow prediction.

Methods HA Regression ARIMA LSTM SNAIL BBML cST-ML

Traffic speed

1h
RMSE 2.993 2.224 2.160 2.923 2.216 6.805 1.055
MAPE 0.170 0.124 0.124 0.156 0.126 0.379 0.058

3h
RMSE 2.545 2.249 2.517 2.674 2.278 5.408 2.119
MAPE 0.126 0.112 0.110 0.125 0.114 0.304 0.093

6h
RMSE 3.120 3.035 3.711 3.000 2.933 5.360 2.685
MAPE 0.197 0.183 0.221 0.199 0.171 0.328 0.164

Taxi inflow

1h
RMSE 56.833 37.356 26.902 37.501 29.715 24.749 16.461
MAPE 0.239 0.159 0.120 0.160 0.116 0.104 0.061

3h
RMSE 65.929 38.572 35.551 38.940 31.191 31.382 19.258
MAPE 0.237 0.145 0.119 0.147 0.097 0.117 0.064

6h
RMSE 64.777 31.937 38.734 32.781 25.592 29.253 18.744
MAPE 0.235 0.111 0.124 0.114 0.079 0.106 0.061

is trained using Adam optimizer [56] with β1 = 0.5 and β2 = 0.999, and a learning rate

of 2× 10−4 for 2000 times task samplings, the window size is 5 with step size equal to 1.

5.1.4.5 Evaluation Results

Average prediction performance. First, we conduct experiments to compare the aver-

age prediction performance of our proposed cST-ML and six competing baseline models.

The results are shown in Table 5.2. In the table, for a specific target grid cell, we present

the RMSE and MAPE results for one-hour, three-hour and six-hour traffic speed predic-

tion and taxi inflow prediction. For meta-based models (including cST-ML, BBML and

SNAIL), we randomly pick 5 meta-testing tasks in both of the traffic speed and taxi inflow

predictions, compute the one-hour, three-hour and six-hour RMSE and MAPE for each

testing task and report the average results in the table. For other models, we use the same

testing data to compute the statistics.

In traffic speed prediction, according to the average RMSE and MAPE in one-hour,

three-hour and six-hour predictions, cST-ML outperforms all the baseline models. Com-

pared with BBML model, cST-ML always has great improvements in both metrics, even

though the two methods are both Bayesian black-box meta-learning based. The reason is

that in cST-ML, the memory vector can help to capture the temporal dependencies of traf-

fic within each task, and the rolling windows can better capture the temporal uncertainties

148

5.1 CONTINUOUS SPATIAL-TEMPORAL META-LEARNING

which lead to better prediction performance.

SNAIL is a deterministic black-box meta-learning method which does not consider

any uncertainties of tasks, but it achieves competitive performance in some cases (i.e.,

six-hour traffic speed and taxi inflow predictions), the reason is that we view daily traffic

as one task in meta-training and meta-testing, for one specific target grid cell, in most of

cases, the everyday traffic is similar which means there is less task uncertainties, and thus

SNAIL can achieve competing prediction performance sometimes.

LSTM is used as a seq2seq model in traffic prediction, which utilizes the traffic related

features to predict the traffic status, so it does not rely on the previous traffic status in

testing or prediction process which could result in larger prediction errors.

Compared with the traditional traffic prediction baseline models including HA, Re-

gression and ARIMA, cST-ML achieves significant improvements since it not only cap-

tures the traffic spatial-temporal dependencies but also the temporal uncertainties. On

the contrary, these traditional models only consider either the temporal dependencies or

the relationships between traffic status and features, and they cannot deal with the traffic

uncertainties very well.

In taxi inflow prediction, we get similar prediction results. SNAIL and BBML are

the most competitive baselines compared with other baseline models, which indicates

they can better learns the spatial-temporal patterns of traffic, and thus obtain lower errors.

However, cST-ML is more powerful due to its novel design.

Detailed performance in consecutive time slots. In this part, we are aiming to prove the

effectiveness of our cST-ML in traffic predictions in each time slot (e.g., one hour). In

urban traffic prediction problem, the good average prediction performance is not enough,

since we expect to get more accurate prediction for each specific time slot. Thus, we

conduct experiments and provide detailed prediction performance for each time slot (i.e.,

one hour). The statistics are calculated based on 5 meta-testing tasks in both of the traffic

149

5.1 CONTINUOUS SPATIAL-TEMPORAL META-LEARNING

Figure 5.7: Comparisons of models in 6 consecutive hours in traffic speed prediction.

speed and taxi inflow predictions, in each time slot, we report the average RMSE and

MAPE of all 5 testing tasks.

In traffic speed prediction, the detailed performance is presented in Figure 5.7. As

shown in Figure 5.7(a) and Figure 5.7(b), our cST-ML achieves the best prediction per-

formance in most of the time slots, but in some cases, some baseline models would have

slightly better performance, for example, ARIMA has the best performance at 14:00 and

SNAIL has the best performance at 16:00. However, the performance of baselines includ-

ing ARIMA and SNAIL presents higher volatilities and thus the prediction performance

is much more unstable.

In taxi inflow prediction, as shown in Figure 5.8(a) and Figure 5.8(b), our cST-ML also

achieves the best prediction performance except in a few time slots, for example, BBML

and SNAIL have slightly better performance than cST-ML at 14:00 hour and 17:00, re-

spectively. However, similar to Figure 5.7, the performance of all baseline models still

presents much higher volatilities in prediction performance, in contrast, cST-ML displays

more stable and accurate predictions in general, which also proves that cST-ML can bet-

ter capture the traffic uncertainties and complex spatial-temporal dependencies, therefore,

cST-ML provides more accurate and stable traffic prediction in consecutive time slots.

Evaluations on cST-ML parameters. cST-ML has many hyper-parameters, e.g., rolling

window size, task length, etc. In this part, we conduct experiments to evaluate the impacts

150

5.1 CONTINUOUS SPATIAL-TEMPORAL META-LEARNING

Figure 5.8: Comparisons of models in 6 consecutive hours in taxi inflow prediction.

Figure 5.9: Impact of parameters in traffic speed prediction.

of different hyper-parameters on our cST-ML. In Figure 5.9 and Figure 5.10, the exper-

imental results are presented to demonstrate how different values of hyper-parameters

influence the performance of cST-ML. Specifically, the hyper-parameters we aim to an-

alyze includes rolling window size, task length, the number of training iterations, the

dimension of hidden states in LSTM (inside the inference network of cST-ML) and the

dimension of mean and log variance, which are used to define the output distribution of

inference network in cST-ML. All the statistics in Figure 5.9 and Figure 5.10 are MAPEs

of 3-hour predictions, which are computed using 5 meta-testing tasks in both of traffic

speed prediction and taxi inflow prediction.

As shown in Figure 5.9(a) and Figure 5.10(a), the prediction performance is sensitive

to rolling window size. The errors are both high when the rolling window size is too

small or large. When the rolling window size is small (e.g., window size equal to 3 or 4),

we only use a few data points (e.g., 2 or 3 data points) within a task to do the next step

151

5.1 CONTINUOUS SPATIAL-TEMPORAL META-LEARNING

Figure 5.10: Impact of parameters in taxi inflow prediction.

prediction, where little traffic information is provided in task adaptation and thus leads to

high prediction errors. However, if the the rolling window size is too large, the temporal

uncertainties are less captured, when the rolling window size equal to the task length, no

temporal uncertainties within a task can be captured, which also lead to poor prediction

performance.

In Figure 5.9(b) and Figure 5.10(b), task length also influences the performance of our

model and when task length is equal to 12, we have the best performance. Since the his-

torical traffic data (from 7:00am to 7:00pm every day) can be viewed as time series data,

if we segment the tasks by 12 hours, each task contains complete traffic information of

one day. In general, everyday traffic patterns are similar, the assumption that all tasks are

sampled from the same distribution is satisfied in meta-learning framework, which leads

to higher prediction accuracy. On the contrary, if the tasks are not segmented by 12 hours,

tasks may display greatly different traffic patterns where the meta-learning assumption is

hard to be satisfied and thus usually results in high prediction errors.

In Figure 5.9(c) and Figure 5.10(c), we can easily conclude that the more training

iterations we have, the lower prediction errors cST-ML produces. Since in each training

iteration, we randomly sample a task from the task distribution, the more times we sample,

the better meta-knowledge we get through the whole training process which certainly will

lead to better performance.

We also change the dimensions of hidden states in LSTM (inside the inference net-

152

5.1 CONTINUOUS SPATIAL-TEMPORAL META-LEARNING

Figure 5.11: Traffic predictions of two target grid cells.

work of cST-ML). The results are shown in Figure 5.9(d) and Figure 5.10(d). We find that

the model performance is very sensitive to the dimension of hidden states, higher dimen-

sion leads to better performance, which indicates more spatial and temporal information

is kept by LSTM.

Similarly, we analyze how the dimension of mean and log variance influence perfor-

mance in Figure 5.9(e) and Figure 5.10(e). Mean and log variance are the outputs of infer-

ence network in cST-ML, by which the distribution of adapted parameters is determined.

We find that higher dimension leads to lower error, which indicates more information of

the output distribution is captured in a task.

5.1.4.6 Case Studies

To further illustrate the effectiveness of our cST-ML to capture traffic dynamics, we per-

form a case study in this subsection. Since different locations could show different traffic

patterns, e.g., in Figure 5.11(a), two representative target grid cells G1 and G2 are pre-

sented, the target region of G1 contains a residential area and the target grid cell G2 is

153

5.1 CONTINUOUS SPATIAL-TEMPORAL META-LEARNING

close to a train station. As shown in Figure 5.11(b), the historical traffic (i.e., 7 days taxi

inflow) are plotted, where the taxi inflow of G2 presents obvious fluctuations and no reg-

ular patterns can be captured since the travel demand in G2 varies every day, while the

daily traffic patterns of G1 are more consistent due to the similar daily travel demands

in this area. In this case study, we study the traffic prediction performance of our cST-

ML when dealing with such two different target grid cells. We compare our cST-ML

with three competitive baselines and the performance is shown in Figure 5.11(c) and (d).

When performing traffic prediction in a location with obvious temporal dynamics such

as G2, cST-ML outperforms all other baselines, while in a location with consistent traffic

patterns like G1, some baselines can provide reasonable predictions as well. This case

demonstrates that our cST-ML has excellent capability to deal with traffic dynamics and

temporal uncertainties and thus tends to present better performance when local traffic

presents greater fluctuations and irregular patterns.

154

6

Conclusion and Future Work

6.1 Conclusion

In this dissertation, we will conclude all the works in the following four domains.

Conditional Urban Traffic Estimation with Generative Adversarial Networks. In

this domain, we propose and investigate a novel conditional traffic estimation problem,

namely, estimating the impact of travel demands on regional traffic status. Solving this

problem is crucial to potentially avoid traffic issues caused by sudden greatly improved

travel demands, e.g., emergencies and new urban constructions. In this topic, a novel gen-

erative model - TrafficGAN was proposed. Using traffic data (e.g., taxi inflow) from all

regions under different travel demands, TrafficGAN is trained to capture the fundamen-

tal patterns of how traffic condition evolves with respect to the travel demand changes

and underlying road network structures. With such knowledge, the obtained generator

is capable of generating realistic traffic conditions within a region for a not-yet-observed

travel demand. Moreover, we also propose a novel Curb-GAN to estimate urban traffic

based on various travel demands. Curb-GAN is capable of modeling both spatial and tem-

poral auto-correlations and producing a sequence of estimated traffic in consecutive time

155

6.1 CONCLUSION

slots. Using real-world spatio-temporal traffic data, we evaluated our Curb-GAN on two

datasets. The well-trained generator is capable of generating realistic traffic distribution

sequences in a region given a not-yet-observed travel demand sequence, and our proposed

Curb-GAN significantly outperforms all baseline models. Besides, we propose a novel

Complex-Condition-Controlled Generative Adversarial Network (C3-GAN) to estimate

the regional urban traffic based on complex urban conditions, e.g., new bus routes, rain-

fall intensity and travel demands. In C3-GAN, we design i) an embedding network to map

the complex urban conditions to a latent space and extract high-quality representations of

conditions, ii) an inference network to enhance the relations between the embedded latent

vectors and the traffic data, iii) a unique architecture and a training algorithm to guar-

antee the network stability and performance. Our experimental results using real-world

datasets demonstrate that our models outperforms state-of-the-art baselines in traffic esti-

mation problems.

Transferable Generative Adversarial Networks. In this domain, we tackle the

cross-city conditional traffic estimation problem in case of data scarcity, and we propose

to perform traffic estimation with a novel spatial transfer generative learning framework

— STrans-GAN, which combines generative models with transfer learning in multiple

source cities setup. STrans-GAN preserves various traffic patterns through clustering,

and incorporate meta-learning idea into the pre-training process to learn a good global

generalized model. During fine-tuning, we propose to add a cluster matching regularizer

aiming to realize the flexible adaptation in different scenarios. Besides, novel pre-training

and fine-tuning algorithms are proposed. Through extensive experiments on multiple-city

datasets, the effectiveness of STrans-GAN is proved, which significantly improves the

estimation performance and outperforms all state-of-the-art baseline methods.

Learning Human Driving Strategies. In this domain, we make the first attempt

to solve the human urban strategy analysis problem in case of data scarcity and data

156

6.1 CONCLUSION

heterogeneity, and propose a novel imitation leaning paradigm —Spatial-Temporal Meta-

GAIL (STM-GAIL), which can successfully learn diverse human urban strategies from

heterogeneous human-generated spatial-temporal urban data. In our STM-GAIL, we in-

corporate the spatial-temporal dependencies of human decisions into GAIL framework,

and propose to learn diverse human urban strategies from the meta-learning perspective,

where an inference network is designed on top of the standard GAIL to infer the latent

variables of diverse human strategies in an unsupervised way by maximizing the mutual

information between the latent space and trajectories. STM-GAIL can be generalized to

a new human urban strategy with a single trajectory. Extensive experiments on real-world

dataset are performed to validate the effectiveness of STM-GAIL. The experimental re-

sults show that our STM-GAIL has significant improvement compared to state-of-the-art

baselines when learning human decision-making strategies.

Urban Traffic Dynamics Prediction. In this domain, we solve the traffic dynamics

prediction problem using Bayesian meta-learning framework. We propose a novel con-

tinuous spatial-temporal meta-learner (cST-ML), which learns a general traffic dynamics

prediction strategy from historical traffic data (segmented into tasks) and could be quickly

adapted to new prediction tasks containing just a few samples and exhibited excellent pre-

diction performance. cST-ML captures the traffic spatial-temporal dependencies and the

traffic uncertainties through new features in both objective and architecture beyond the

original Bayesian black-box meta-learning. Novel training and testing algorithms are

designed for cST-ML where the traffic temporal uncertainties and dynamics are better

kept by rolling windows. We conduct experiments on real-world traffic datasets (taxi in-

flow and traffic speed) to evaluate our proposed cST-ML. The experiment results verify

that cST-ML can significantly improve the urban traffic prediction performance especially

when obvious traffic uncertainties are presented and significantly outperforms all baseline

models.

157

6.2 FUTURE WORK

6.2 Future Work

6.2.1 Preference Reveal for Human Agents via Generative Adversar-

ial Meta Learning.

In urban area, it is necessary to learn how the taxi drivers make decisions when seeking

passengers, how they learn to drive more efficiently, and how they respond to various traf-

fic conditions, etc. Such knowledge facilitates the understanding of the human learning

processes and supports behavioral studies. In the third topic of this dissertation, with the

help of large-scale urban taxi trajectory data, we investigate the behaviors and strategies of

taxi drivers by designing a novel spatial-temporal meta GAIL on top of meta-learning and

generative adversarial imitation learning (GAIL) to learn diverse human driver strategies

and thus improve the business practices of taxi services.

In the future, I will also look into the problems of learning preferences from more di-

verse human agents. For example, for financial agents in financial area, current methods

of extracting human financial agents’ investing preference is Robo-advising techniques,

where the robo advisors are expected to provide individual-specific financial advice to its

clients based on their own preference. Recovering an agent’s preference via some tradi-

tional methods like questionnaire, however, may lead to strong cognitive and behavioral

bias. Learning from demonstrations methods such as inverse reinforcement learning and

imitation learning can help to solve the preference reveal problem by learning the invest-

ment preference directly from people’s past investment behaviors. In the future, I will

focus on developing new techniques to recover the preference of various human agents

from their past behaviors.

158

6.2 FUTURE WORK

6.2.2 Explainable Generative Adversarial Networks

In this dissertation, we mainly study the generative adversarial network and its diverse

applications on spatial-temporal urban big data, however, all of the generative models are

”black-box” in nature, which means it is hard to explain the connection between the in-

put and output, and it is also difficult to interpret how each layer inside the generator or

discriminator influences the final model performance. In my future research, we can fo-

cus more on developing explainable generative adversarial networks for Spatial-temporal

Urban Data. Explainable generative adversarial networks is a sub-area of Explainable

Artificial Intelligence (XAI), which can help to explain the function of neural networks

in side GANs and interpret the model output. For instance, the STrans-GAN introduced

in the second topic of this dissertation can be further explained to help urban decision-

makers understand what kind of cities are more appropriate to be treated as source cities

for a specific target city.

6.2.3 Novel Application Domains in Urban Intelligence

In this dissertation, we mainly study the problems in the domains of urban traffic estima-

tion and human behavior analysis. There are still many other application problems which

would benefit a lot from current techniques of spatial-temporal urban big data analytics,

such as urban accidents prediction problem (e.g., crime accidents prediction and traffic

accidents prediction), precipitation nowcasting problem, human mobility analysis, smart

taxis problems, etc. These problems are also highly related to spatial-temporal data, and

in the future, it is possible to capture both spatial and temporal dependencies within the

data with novel graph neural networks, attention-based models, etc.

159

References

[1] Yingxue Zhang, Yanhua Li, Xun Zhou, Xiangnan Kong, and Jun Luo. TrafficGAN:

Off-deployment traffic estimation with traffic generative adversarial networks. In

ICDM, 2019. 5, 34, 35, 37, 40, 48, 58, 61, 76, 83, 87, 88, 90, 99, 101, 110

[2] Yingxue Zhang, Yanhua Li, Xun Zhou, Xiangnan Kong, and Jun Luo. Curb-gan:

Conditional urban traffic estimation through spatio-temporal generative adversarial

networks. In Proceedings of the 26th ACM SIGKDD International Conference on

Knowledge Discovery Data Mining, KDD ’20, 2020. 5, 58, 61, 74, 76, 83, 87, 88,

90, 99, 101, 110

[3] Yingxue Zhang, Yanhua Li, Xun Zhou, Zhenming Liu, and Jun Luo. C3-GAN:

Complex-condition-controlled urban traffic estimation through generative adver-

sarial networks. In 2021 IEEE International Conference on Data Mining (ICDM),

2021. 5, 88, 110

[4] World urbanization prospects 2014, 2014. 7

[5] Jake Hooker. Beijing Announces Traffic Plan for Olympics. The New York Times,

2008. 8

[6] Haowei Su and Shu Yu. Hybrid GA based online support vector machine model

for short-term traffic flow forecasting. In APPT, pages 743–752, 2007. 8

160

REFERENCES

[7] Ryan Herring, Aude Hofleitner, Pieter Abbeel, and Alexandre M. Bayen. Estimat-

ing arterial traffic conditions using sparse probe data. In ITSC, pages 929–936,

2010. 8, 34, 57, 83, 88

[8] Pablo Samuel Castro, Daqing Zhang, and Shijian Li. Urban traffic modelling and

prediction using large scale taxi GPS traces. In Pervasive, pages 57–72, 2012. 8,

34, 57, 83, 88

[9] Jing Yuan, Yu Zheng, Chengyang Zhang, Wenlei Xie, Xing Xie, Guangzhong Sun,

and Yan Huang. T-drive: driving directions based on taxi trajectories. In GIS,

pages 99–108, 2010. 8, 34

[10] Jing Yuan, Yu Zheng, Xing Xie, and Guangzhong Sun. Driving with knowledge

from the physical world. In KDD, pages 316–324, 2011. 8, 34

[11] Benhamza Karima, Salah Ellagoune, Hamid Seridi, and Herman Akdag. Agent-

based modeling for traffic simulation. June 2019. 8, 38

[12] John Taplin. Simulation models of traffic flow. 08 2008. 8, 38

[13] Anika Singh Lemar. Zoning as Taxidermy: Neighborhood Conservation Districts

and the Regulation of Aesthetics. Indiana Law Journal, 90:1525–1590, 09 2015.

9

[14] Naoto Mukai and Naoto Yoden. Taxi demand forecasting based on taxi probe data

by neural network. In IIMSS, pages 589–597, 2012. 11, 50, 74, 99, 145

[15] Eric J. Gonzales, Ci (Jesse) Yang, Ender Faruk Morgul, and Kaan Ozbay. Modeling

taxi demand with gps data from taxis and transit. Technical report, Mineta National

Transit Research Consortium, 2014. 11, 50, 74, 87, 99, 145

[16] Michael G. McNally. The Four-Step Model, chapter 3, pages 35–53. 12, 32

161

REFERENCES

[17] Xianyuan Zhan, Yu Zheng, Xiuwen Yi, and Satish Ukkusuri. Citywide traffic

volume estimation using trajectory data. TKDE, 29(2):272–285, 2017. 14, 38, 60,

88, 137

[18] Xinyue Liu, Xiangnan Kong, and Yanhua Li. Collective traffic prediction with

partially observed traffic history using location-base social media. In CIKM, pages

2179–2184, 2016. 14, 38, 60, 88

[19] Ermal Toto, Elke A. Rundensteiner, Yanhua Li, Richard Jordan, Mariya Ishutkina,

Kajal Claypool, Jun Luo, and Fan Zhang. Pulse: A real time system for crowd

flow prediction at metropolitan subway stations. In ECMLPKDD, pages 112–128,

2016. 14, 38, 61, 88, 137

[20] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph con-

volutional networks. In ICLR, 2017. 14

[21] Hao Wu, Ziyang Chen, Weiwei Sun, Baihua Zheng, and Wei Wang. Modeling

trajectories with recurrent neural networks. In IJCAI, pages 341–350, 2017. 15

[22] Chao Huang, Junbo Zhang, Yu Zheng, and Nitesh V Chawla. DeepCrime: Atten-

tive hierarchical recurrent networks for crime prediction. In CIKM, pages 1423–

1432, 2018. 15, 39

[23] Yexin Li, Yu Zheng, and Qiang Yang. Dynamic bike reposition: A spatio-temporal

reinforcement learning approach. In KDD, pages 1724–1733, 2018. 15, 39

[24] Zhuoning Yuan, Xun Zhou, and Tianbao Yang. Hetero-convlstm: A deep learning

approach to traffic accident prediction on heterogeneous spatio-temporal data. In

Proceedings of the 24th ACM SIGKDD International Conference on Knowledge

Discovery & Data Mining, pages 984–992, 2018. 15, 132, 137

162

REFERENCES

[25] Yanhua Li, Moritz Steiner, Jie Bao, Liming Wang, , and Ting Zhu. Region sam-

pling and estimation of geosocial data with dynamic range calibration. In ICDE,

pages 1096–1107, 2014. 15

[26] Yanhua Li, Jun Luo, Chi-Yin Chow, Kam-Lam Chan, Ye Ding, and Fan Zhang.

Growing the charging station network for electric vehicles with trajectory data an-

alytics. In ICDE, pages 1376–1387, 2015. 15

[27] Bing Zhu and Xin Xu. Urban principal traffic flow analysis based on taxi trajecto-

ries mining. In ICSI, pages 172–181, 2015. 16

[28] Jingyi Guo, Xianghua Li, Zili Zhang, and Junwei Zhang. Traffic flow fluctuation

analysis based on beijing taxi gps data. In KSEM, pages 452–464, 2018. 16

[29] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,

Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets.

In NeurIPS, pages 2672–2680. 2014. 17, 62, 63, 88, 89, 116

[30] Jon Gauthier. Conditional generative adversarial nets for convolutional face gener-

ation. 2015. 17, 28

[31] Jan Hauke and Tomasz Kossowski. Comparison of values of pearson’s and spear-

man’s correlation coefficients on the same sets of data. Quaestiones Geographicae,

30(2):87 – 93, 2011. 18

[32] Waldo R Tobler. A computer movie simulating urban growth in the detroit region.

Economic geography, 46(sup1):234–240, 1970. 19, 40

[33] Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets. In

CoRR abs/1411.1784, 2014. 23, 28, 39, 45, 61, 62, 75, 89, 101, 116

163

REFERENCES

[34] Arthur Getis. A history of the concept of spatial autocorrelation: A geographer’s

perspective. Geographical Analysis, 40:297–309, 07 2008. 28, 48, 100

[35] Ishteaque Alam, Dewan Md. Farid, and Rosaldo J. F. Rossetti. The prediction of

traffic flow with regression analysis. In IEMIS, pages 661–671, 2019. 28, 146

[36] Yu Zheng, Licia Capra, Ouri Wolfson, and Hai Yang. Urban computing: concepts,

methodologies, and applications. TIST, 2014. 33, 130

[37] Dina Al-Shibeeb. Vaughan council rejects Sports Village expansion after 4-year

debate. YorkRegion, 2019. 33

[38] Yisheng Lv, Yanjie Duan, Wenwen Kang, Zhengxi Li, Fei-Yue Wang, et al. Traffic

flow prediction with big data: A deep learning approach. IEEE Transactions on

Intelligent Transportation Systems, 2015. 35, 57, 132

[39] Zhuoning Yuan, Xun Zhou, and Tianbao Yang. Hetero-convlstm: A deep learn-

ing approach to traffic accident prediction on heterogeneous spatio-temporal data.

2018. 35, 39, 57

[40] Ali Zonoozi, Jung jae Kim, Xiao-Li Li, and Gao Cong. Convolutional recurrent

model for crowd density prediction with recurring periodic patterns. In IJCAI,

2018. 35, 39, 61, 88

[41] Haiyang Yu, Zhihai Wu, Shuqin Wang, Yunpeng Wang, and Xiaolei Ma. Spa-

tiotemporal recurrent convolutional networks for traffic prediction in transportation

networks. Sensors, 2017. 35, 39, 61, 88, 132

[42] Zhiyong Cui, Ruimin Ke, and YinhaiWang. Deep stacked bidirectional and unidi-

rectional lstm recurrent neural network for network-wide traffic speed prediction.

In 6th International Workshop on Urban Computing, 2017. 35, 132

164

REFERENCES

[43] Zipei Fan, Xuan Song, Ryosuke Shibasaki, and Ryutaro Adachi. Citymomentum:

An online approach for crowd behavior prediction at a citywide level. In ACM

UbiComp, 2015. 38, 88

[44] Xuan Song, Quanshi Zhang, Yoshihide Sekimoto, and Ryosuke Shibasaki. Predic-

tion of human emergency behavior and their mobility following large-scale disas-

ter. In SIGKDD, 2014. 38, 88

[45] Junbo Zhang, Yu Zheng, and Dekang Qi. Deep spatio-temporal residual networks

for citywide crowd flows prediction. CoRR, 2016. 39, 61, 88, 137

[46] Huaxiu Yao, Fei Wu, Jintao ke, Xianfeng Tang, Yitian Jia, Siyu Lu, Pinghua Gong,

and Jieping Ye. Deep multi-view spatial-temporal network for taxi demand predic-

tion. 2018. 39, 61, 88

[47] Junyoung Chung, Çaglar Gülçehre, KyungHyun Cho, and Yoshua Bengio. Empir-

ical evaluation of gated recurrent neural networks on sequence modeling. CoRR,

2014. 39, 61, 88

[48] Yunbo Wang, Mingsheng Long, Jianmin Wang, Zhifeng Gao, and Philip S. Yu.

Predrnn: Recurrent neural networks for predictive learning using spatiotemporal

lstms. In NIPS, 2017. 39, 88

[49] Dong Wang, Junbo Zhang, Wei Cao, Jian Li, and Yu Zheng. When will you arrive?

estimating travel time based on deep neural networks. In AAAI, 2018. 39, 61, 88

[50] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need.

CoRR, 2017. 40, 42, 45, 48, 123

165

REFERENCES

[51] Xingjian Shi, Zhourong Chen, Hao Wang, Dit-Yan Yeung, Wai-Kin Wong, and

Wang chun Woo. Convolutional lstm network: A machine learning approach

for precipitation nowcasting. Advances in neural information processing systems,

2015. 48, 57, 61, 88, 113, 118, 119

[52] Olof Mogren. C-RNN-GAN: continuous recurrent neural networks with adversar-

ial training. CoRR, 2016. 48, 61, 62, 116, 146

[53] Adams Wei Yu, David Dohan, Minh-Thang Luong, Rui Zhao, Kai Chen, Moham-

mad Norouzi, and Quoc V. Le. Qanet: Combining local convolution with global

self-attention for reading comprehension. CoRR, 2018. 48

[54] Jiachen Zhao, Fang Deng, Yeyun Cai, and Jie Chen. Long short-term memory

- fully connected (lstm-fc) neural network for pm2.5 concentration prediction.

Chemosphere, 2019. 48, 146

[55] Jeff Donahue, Lisa Anne Hendricks, Sergio Guadarrama, Marcus Rohrbach, Sub-

hashini Venugopalan, Kate Saenko, and Trevor Darrell. Long-term recurrent con-

volutional networks for visual recognition and description. CoRR, 2014. 48

[56] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.

In ICLR, 2015. 50, 77, 102, 120, 125, 143, 148

[57] R. A. Anand, L. Vanajakshi, and S. C. Subramanian. Traffic density estimation

under heterogeneous traffic conditions using data fusion. In 2011 IEEE Intelligent

Vehicles Symposium (IV), pages 31–36, 2011. 57, 83, 88

[58] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Com-

put., 1997. 61, 88, 124

166

REFERENCES

[59] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei Efros. Unpaired image-to-

image translation using cycle-consistent adversarial networks. In ICCV, 2017. 61

[60] Y. Choi, M. Choi, M. Kim, J. Ha, S. Kim, and J. Choo. Stargan: Unified gener-

ative adversarial networks for multi-domain image-to-image translation. In 2018

IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018. 61

[61] Ayush Jaiswal, Wael AbdAlmageed, Yue Wu, and Premkumar Natarajan. Bidirec-

tional conditional generative adversarial networks, 2018. 61

[62] Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter

Abbeel. Infogan: Interpretable representation learning by information maximizing

generative adversarial nets. CoRR, 2016. 62, 63, 75, 117

[63] Y. Bengio, A. Courville, and P. Vincent. Representation learning: A review and

new perspectives. IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, 35(8):1798–1828, 2013. 67

[64] Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve restricted boltz-

mann machines. In ICML, pages 807–814, 2010. 68

[65] V. Mnih, K. Kavukcuoglu, D. Silver, and et al. Human-level control through deep

reinforcement learning. Nature, 2015. 70

[66] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei Efros. Image-to-image trans-

lation with conditional adversarial networks. In CVPR, 2017. 75, 91, 101

[67] P. Chonwiharnphan, P. Thienprapasith, and E. Chuangsuwanich. Generating real-

istic users using generative adversarial network with recommendation-based em-

bedding. IEEE Access, 2020. 75

167

REFERENCES

[68] Guim Perarnau, Joost van de Weijer, Bogdan Raducanu, and Jose M. Álvarez.

Invertible conditional gans for image editing. CoRR, 2016. 75

[69] Jeff Donahue, Philipp Krähenbühl, and Trevor Darrell. Adversarial feature learn-

ing. ICLR, 2017. 75

[70] Philipp Krahenbuhl, Jeff Donahue, Trevor Darrell, and Alexei Efros. Context en-

coders: Feature learning by inpainting. In CVPR, 2016. 76, 101

[71] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep net-

work training by reducing internal covariate shift. CoRR, abs/1502.03167, 2015.

77

[72] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy,

and Ping Tak Peter Tang. On large-batch training for deep learning: Generalization

gap and sharp minima. CoRR, 2016. 81

[73] Leye Wang, Bin Guo, and Qiang Yang. Smart city development with urban transfer

learning. Computer, 51(12):32–41, 2018. 83, 88

[74] Leye Wang, Xu Geng, Xiaojuan Ma, Feng Liu, and Qiang Yang. Cross-city trans-

fer learning for deep spatio-temporal prediction. In Proceedings of the Twenty-

Eighth International Joint Conference on Artificial Intelligence, IJCAI-19, pages

1893–1899. International Joint Conferences on Artificial Intelligence Organiza-

tion, 7 2019. 83, 88, 101

[75] Tanwi Mallick, Prasanna Balaprakash, Eric Rask, and Jane Macfarlane. Transfer

learning with graph neural networks for short-term highway traffic forecasting. In

2020 25th International Conference on Pattern Recognition (ICPR), pages 10367–

10374, 2021. 83, 88

168

REFERENCES

[76] Chuanting Zhang, Haixia Zhang, Jingping Qiao, Dongfeng Yuan, and Minggao

Zhang. Deep transfer learning for intelligent cellular traffic prediction based on

cross-domain big data. IEEE Journal on Selected Areas in Communications,

37(6):1389–1401, 2019. 83, 88

[77] Ying Wei, Yu Zheng, and Qiang Yang. Transfer knowledge between cities. KDD

’16. Association for Computing Machinery, 2016. 84, 88

[78] Tianfu He, Jie Bao, Ruiyuan Li, Sijie Ruan, Yanhua Li, Li Song, Hui He, and

Yu Zheng. What is the human mobility in a new city: Transfer mobility knowl-

edge across cities. In Proceedings of The Web Conference 2020, WWW ’20, page

1355–1365, New York, NY, USA, 2020. Association for Computing Machinery.

84, 89

[79] Huaxiu Yao, Yiding Liu, Ying Wei, Xianfeng Tang, and Zhenhui Li. Learning from

multiple cities: A meta-learning approach for spatial-temporal prediction. In The

World Wide Web Conference, WWW ’19, page 2181–2191, New York, NY, USA,

2019. Association for Computing Machinery. 84, 89, 101

[80] Leye Wang, Xu Geng, Jintao Ke, Chen Peng, Xiaojuan Ma, Daqing Zhang, and

Qiang Yang. Ridesourcing car detection by transfer learning. CoRR, 2017. 88

[81] S. Lloyd. Least squares quantization in pcm. IEEE Transactions on Information

Theory, 28(2):129–137, 1982. 92

[82] Alex Nichol and John Schulman. Reptile: a scalable metalearning algorithm. 03

2018. 94, 95, 113, 137

[83] Léon Bottou. Large-scale machine learning with stochastic gradient descent. In

Yves Lechevallier and Gilbert Saporta, editors, Proceedings of COMPSTAT’2010,

pages 177–186. Physica-Verlag HD, 2010. 94

169

REFERENCES

[84] Louis Clouâtre and Marc Demers. FIGR: few-shot image generation with reptile.

CoRR, 2019. 95

[85] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning

for fast adaptation of deep networks. In Proceedings of the 34th International

Conference on Machine Learning - Volume 70, page 1126–1135, 2017. 101, 113,

137

[86] Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. In

D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett, editors, Advances in

Neural Information Processing Systems, volume 29. Curran Associates, Inc., 2016.

107, 112, 113, 115, 123

[87] Menghai Pan, Weixiao Huang, Yanhua Li, Xun Zhou, and Jun Luo. Xgail: Ex-

plainable generative adversarial imitation learning for explainable human decision

analysis. In Proceedings of the 26th ACM SIGKDD International Conference on

Knowledge Discovery amp; Data Mining, KDD ’20, page 1334–1343, 2020. 107,

115

[88] Xin Zhang, Yanhua Li, Xun Zhou, and Jun Luo. cgail: Conditional generative

adversarial imitation learning—an application in taxi drivers’ strategy learning.

IEEE Transactions on Big Data, pages 1–1, 2020. 107, 112, 115, 124

[89] Xin Zhang, Yanhua Li, Xun Zhou, Ziming Zhang, and Jun Luo. Trajgail: Tra-

jectory generative adversarial imitation learning for long-term decision analysis.

In 2020 IEEE International Conference on Data Mining (ICDM), pages 801–810,

2020. 107, 112, 116, 123, 124

[90] Yunzhu Li, Jiaming Song, and Stefano Ermon. Infogail: Interpretable imitation

learning from visual demonstrations. In Proceedings of the 31st International Con-

170

REFERENCES

ference on Neural Information Processing Systems, NIPS’17, page 3815–3825.

Curran Associates Inc., 2017. 108, 124

[91] Chelsea Finn, Tianhe Yu, Tianhao Zhang, Pieter Abbeel, and Sergey Levine. One-

shot visual imitation learning via meta-learning. In Proceedings of the 1st Annual

Conference on Robot Learning, volume 78 of Proceedings of Machine Learning

Research, pages 357–368. PMLR, 13–15 Nov 2017. 108, 113, 124

[92] Dean A. Pomerleau. Efficient training of artificial neural networks for autonomous

navigation. Neural Computation, 3(1):88–97, 1991. 112

[93] Stephane Ross and Drew Bagnell. Efficient reductions for imitation learning. In

Proceedings of the Thirteenth International Conference on Artificial Intelligence

and Statistics, volume 9 of Proceedings of Machine Learning Research, pages 661–

668. PMLR, 13–15 May 2010. 112

[94] Jonathan Ho, Jayesh K. Gupta, and Stefano Ermon. Model-free imitation learning

with policy optimization. In Proceedings of the 33rd International Conference

on International Conference on Machine Learning - Volume 48, ICML’16, page

2760–2769, 2016. 112

[95] Pieter Abbeel and Andrew Y. Ng. Apprenticeship learning via inverse reinforce-

ment learning. ICML ’04, page 1. Association for Computing Machinery, 2004.

112

[96] Alex Kuefler, Jeremy Morton, Tim Wheeler, and Mykel Kochenderfer. Imitating

driver behavior with generative adversarial networks. In 2017 IEEE Intelligent

Vehicles Symposium (IV), pages 204–211, 2017. 112

[97] James Harrison, Apoorva Sharma, Chelsea Finn, and Marco Pavone. Continuous

171

REFERENCES

meta-learning without tasks. In Advances in Neural Information Processing Sys-

tems, volume 33, pages 17571–17581. Curran Associates, Inc., 2020. 113, 137

[98] Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan Wierstra, and Timothy

Lillicrap. Meta-learning with memory-augmented neural networks. In Proceed-

ings of the 33rd International Conference on International Conference on Machine

Learning - Volume 48, ICML’16, page 1842–1850. JMLR.org, 2016. 113

[99] Kate Rakelly, Aurick Zhou, Deirdre Quillen, Chelsea Finn, and Sergey Levine.

Efficient off-policy meta-reinforcement learning via probabilistic context variables,

2019. 113

[100] Tsendsuren Munkhdalai and Hong Yu. Meta networks. In Proceedings of the

34th International Conference on Machine Learning, volume 70 of Proceedings of

Machine Learning Research, pages 2554–2563. PMLR, 06–11 Aug 2017. 113

[101] Yan Duan, Marcin Andrychowicz, Bradly C. Stadie, Jonathan Ho, Jonas Schneider,

Ilya Sutskever, Pieter Abbeel, and Wojciech Zaremba. One-shot imitation learning,

2017. 113

[102] Tianhe Yu, Pieter Abbeel, Sergey Levine, and Chelsea Finn. One-shot hierarchical

imitation learning of compound visuomotor tasks. CoRR, abs/1810.11043, 2018.

113

[103] Tianhe Yu, Chelsea Finn, Annie Xie, Sudeep Dasari, Tianhao Zhang, Pieter

Abbeel, and Sergey Levine. One-shot imitation from observing humans via

domain-adaptive meta-learning. CoRR, abs/1802.01557, 2018. 113

[104] Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic

Programming. John Wiley amp; Sons, Inc., USA, 1st edition, 1994. 114

172

REFERENCES

[105] Rick Durrett. Probability: Theory and Examples. Cambridge Series in Statistical

and Probabilistic Mathematics. Cambridge University Press, 4 edition, 2010. 114

[106] Brian D. Ziebart, Andrew Maas, J. Andrew Bagnell, and Anind K. Dey. Maximum

entropy inverse reinforcement learning. In Proceedings of the 23rd National Con-

ference on Artificial Intelligence - Volume 3, AAAI’08, page 1433–1438. AAAI

Press, 2008. 115

[107] Ben Poole, Sherjil Ozair, Aaron van den Oord, Alexander A. Alemi, and George

Tucker. On variational bounds of mutual information, 2019. 117

[108] Jan Gläscher, Nathaniel Daw, Peter Dayan, and John P. O’Doherty. States versus

rewards: Dissociable neural prediction error signals underlying model-based and

model-free reinforcement learning. Neuron, 66(4):585–595, 2010. 119

[109] Weiyang Liu, Yandong Wen, Zhiding Yu, and Meng Yang. Large-margin softmax

loss for convolutional neural networks, 2017. 119

[110] Jun Han and Claudio Moraga. The influence of the sigmoid function parameters

on the speed of backpropagation learning. In Proceedings of the International

Workshop on Artificial Neural Networks: From Natural to Artificial Neural Com-

putation, IWANN ’96, page 195–201, Berlin, Heidelberg, 1995. Springer-Verlag.

119

[111] B.L. Kalman and S.C. Kwasny. Why tanh: choosing a sigmoidal function. In

[Proceedings 1992] IJCNN International Joint Conference on Neural Networks,

volume 4, pages 578–581 vol.4, 1992. 119

[112] Lantao Yu, Tianhe Yu, Chelsea Finn, and Stefano Ermon. Meta-inverse reinforce-

ment learning with probabilistic context variables. In Advances in Neural Informa-

tion Processing Systems, volume 32. Curran Associates, Inc., 2019. 120

173

REFERENCES

[113] John Schulman, Sergey Levine, Philipp Moritz, Michael Jordan, and Pieter Abbeel.

Trust region policy optimization. In Proceedings of the 32nd International Con-

ference on International Conference on Machine Learning - Volume 37, ICML’15,

page 1889–1897. JMLR.org, 2015. 120, 121

[114] Manoel Castro-Neto, Young-Seon Jeong, Myong-Kee Jeong, and Lee Han. Online-

svr for short-term traffic flow prediction under typical and atypical traffic condi-

tions. Expert Systems with Applications, 36:6164–6173, 2009. 131, 137

[115] Yuxing Sun, Biao Leng, and Guan Wei. A novel wavelet-svm short-time passenger

flow prediction in beijing subway system. Neurocomputing, 166, 04 2015. 131,

137

[116] Yuliang Cong, Jianwei Wang, and Xiaolei Li. Traffic flow forecasting by a least

squares support vector machine with a fruit fly optimization algorithm. Procedia

Engineering, 137:59 – 68, 2016. 131, 137

[117] Xianglong Luo, Liyao Niu, and Shengrui Zhang. An algorithm for traffic flow

prediction based on improved sarima and ga. KSCE Journal of Civil Engineering,

22:1–9, 05 2018. 131, 137

[118] Zheyi Pan, Yuxuan Liang, Weifeng Wang, Yong Yu, Yu Zheng, and Junbo Zhang.

Urban traffic prediction from spatio-temporal data using deep meta learning. In

KDD, 05 2019. 132, 138

[119] Huaxiu Yao, Yiding Liu, Ying Wei, Xianfeng Tang, and Zhenhui Li. Learning from

multiple cities: A meta-learning approach for spatial-temporal prediction. In The

World Wide Web Conference, page 2181–2191, 2019. 132, 138, 146

[120] Nikhil Mishra, Mostafa Rohaninejad, Xi Chen, and Pieter Abbeel. A simple neural

174

REFERENCES

attentive meta-learner. In International Conference on Learning Representations,

2018. 137, 146

[121] Diederik P Kingma and Max Welling. Auto-encoding variational bayes, 2013. 141

[122] M. Tan, S. C. Wong, J. Xu, Z. Guan, and P. Zhang. An aggregation approach to

short-term traffic flow prediction. IEEE Transactions on Intelligent Transportation

Systems, pages 60–69, 2009. 146

[123] Chelsea Finn. Bayesian meta-learning. https://cs330.stanford.edu/

slides/cs330_bayesian_metalearning.pdf, 2019. [Online]. 146

175

https://cs330.stanford.edu/slides/cs330_bayesian_metalearning.pdf
https://cs330.stanford.edu/slides/cs330_bayesian_metalearning.pdf

	Publications
	List of Figures
	List of Tables
	1 Overview
	1.1 Introduction
	1.2 Dissertation Organization

	2 Conditional Urban Traffic Estimation with Generative Adversarial Networks
	2.1 Conditional Urban Traffic Estimation with TrafficGAN
	2.1.1 Overview
	2.1.2 Related Work
	2.1.3 Methodology
	2.1.4 Evaluation

	2.2 Spatial-Temporal Generative Adversarial Networks
	2.2.1 Overview
	2.2.2 Related Work
	2.2.3 Methodology
	2.2.4 Evaluation

	2.3 Complex-Condition-Controlled Urban Traffic Estimation
	2.3.1 Overview
	2.3.2 Related Work
	2.3.3 Methodology
	2.3.4 Evaluation

	3 Transferable Generative Adversarial Networks
	3.1 Spatially-Transferable Generative Adversarial Networks
	3.1.1 Overview
	3.1.2 Related Work
	3.1.3 Methodology
	3.1.4 Evaluation

	4 Learning Human Driving Strategies
	4.1 Spatial-Temporal Meta-GAIL
	4.1.1 Overview
	4.1.2 Related Work
	4.1.3 Methodology
	4.1.4 Evaluation

	5 Urban Traffic Dynamics Prediction
	5.1 Continuous Spatial-Temporal Meta-Learning
	5.1.1 Overview
	5.1.2 Related Work
	5.1.3 Methodology
	5.1.4 Evaluation

	6 Conclusion and Future Work
	6.1 Conclusion
	6.2 Future Work
	6.2.1 Preference Reveal for Human Agents via Generative Adversarial Meta Learning.
	6.2.2 Explainable Generative Adversarial Networks
	6.2.3 Novel Application Domains in Urban Intelligence

	References

