
1

A Green Approach to a Multi-Protocol Wireless

Communications Network

A Major Qualifying Project

Submitted to the Faculty of

Worcester Polytechnic Institute

in partial fulfillment of the requirements for the

Degree in Bachelor of Science

in

Electrical and Computer Engineering

By

Travis Collins

Patrick DeSantis

David Vecchiarelli

Date: 3/15/11

Sponsoring Organization:

University of Limerick:

Project Advisors:

Professor Alexander Wyglinski, Advisor

This report represents work of WPI undergraduate students submitted to the faculty as evidence of a

degree requirement. WPI routinely publishes these reports on its web site without editorial or peer

review. For more information about the projects program at WPI, see

http://www.wpi.edu/Academics/Projects.

http://www.wpi.edu/Academics/Projects

2

Abstract

The goal of this project is to increase the battery life of mobile wireless devices. This is achieved

by having the wireless device select between two wireless protocols, ZigBee and Wi-Fi, based on

transmission energy and bandwidth requirements. Using the concepts of sensing and adaptation from

cognitive radio, the system monitors the bandwidth and selects the lowest power intensive wireless

protocol while still maintaining an acceptable quality of service for the desired task.

3

Acknowledgements

Without the help from certain individuals the completion of this project would not have been

possible. Some of these people have helped us by giving us guidance while others have helped us by

supplying us the resources to get us through the day.

First, we would like to thank Worcester Polytechnic Institute and the Interdisciplinary and Global

Studies Division for making the necessary arrangements for us to come to Ireland and because without

them we would not have been given the opportunity to study in Ireland. Most of all we would like to

thank Professor Alexander Wyglinski for advising our project and providing us with guidance and

encouragement each week.

We would like to thank the Univserity of Limerick for providing us with a place to work

everyday and the resources needed to construct our project. Special thanks to Dr. Sean McGrath for

overseeing our project and acting as oour academic advisor during our time at UL. Thank you Liaoyuan

Zeng “Brunt” for helping us with any questions, co-advising our project, and your speedy acquisition of

materials. We would also like to thank Niall Brownen for answering any questions we had and for co-

advising our project.

Finally, we thank Charlotte Tuohy, our local coordinator for the project center, for arranging and

managing our housing as well as assisting us in grocery shopping each week.

4

Executive Summary

With the ever-increasing amount of laptops, cell phones, portable media players, global

positioning systems, and other mobile devices each accessing the internet around the world, the power

consumed by wireless communications systems is only increasing. According to IEEE ICC 2009 Panel

on Green Communications "currently 3% of the world-wide energy is consumed by the ICT (Information

& Communications Technology) infrastructure that causes about 2% of the world-wide CO2 emissions,

which is comparable to the world-wide CO2 emissions by airplanes or one quarter of the world-wide CO2

emissions by cars" [1]. Current methods for saving power in electrical devices that use radios, such as

cell phones and laptops, include Power Saving Mode (PSM), sleep states, and user controlled actions like

putting a cell phone in airplane mode. All of these techniques are effective at reducing the energy

consumption of radios on a small scale, but even these methods do not reduce the pollution resulting from

te ICT industry. One solution to this growing energy problem is to increase the battery life of mobile

devices. By making batteries last longer the carbon footprint resulting from the manufacturing of

batteries can be reduced.

The goal of this project was to develop a multi-protocol wireless network, that combines the energy

efficiency of the ZigBee protocol IEEE 802.15.4 and the speed and high bandwidth of the Wi-Fi protocol

IEEE 802.11 in order to improve the energy efficiency of current Wi-Fi only networks. The network also

possesses cognitive radio attritubes that analyze and react to the surrounding radio environment. The

ZigBee radios would be used only for low bandwidth applications, for which Wi-Fi would be in a power

save or low traffic state. Then when additional bandwidth is needed the Wi-Fi connection is initiated.

The benefits of this network are an extended battery life as well as a decreased impact on the

environment, through the conservation of electrical energy.

The project was broken up into three main modules; (1) the ZigBee communication network, (2) the

Wi-Fi-ZigBee switching algorithm, and (3) the power management and evaluation module. The ZigBee

communication section comprised of the development of the ZigBee wireless network. This included

setting up a an adhoc network between two ZigBee development board modules. Once a network was set

up, a method for transferring files was constructed. Finally, the ZigBee network was integrated with the

Wi-Fi network via the Wi-Fi-ZigBee Switching Algorithm. The Wi-Fi ZigBee Switching Algorithm

consisted of an algorithm, written in java, that monitors the bandwidth capacity of both protocols and

switches data transfer between the two. If the bandwidth reaches full capacity the algorithm turns Wi-Fi

on, and data is sent and received via Wi-Fi. If the bandwidth capacity is empty, such as when the network

is idle and no data transfer is taking place, the algorithm turns ZigBee on and Wi-Fi off, and any data that

needs to be transferred is sent/received via ZigBee. The last block of the project was the power

5

management section. This section worked in parallel with the other two. While the ZigBee and Wi-Fi

were switching on and off and transmitting and receiving, the power management system was monitoring

the power and energy efficiency of the multi-protocol network. These measurements were then compared

to measurements taken from a control experiment. The control experiment was a typical Wi-Fi only

network running the same tasks. Figure 1 is the result of the power efficiency evaluation of the tested

wireless networks.

An individual mobile device with a radio is not constantly transmitting. For example, a cell phone is,

most of the time, resting in the pocket of the owner. The cell phone only turns its radio on to check for

incoming data or to send data. To calculate how much power is consumed by the radio of the mobile

device for a period of time when it is running, it is necessary to know what percentage of that time the

radio spends transmitting. Figure 1 is a plot of the percentage, of a period of time, in which the radio of

an Asus Eee PC is transmitting data versus the average power consumed during the entire period of time.

The different radios tested were Wi-Fi (in Continuously Active Mode), Wi-Fi (in Power Saving Mode),

and WiZ (Wi-Fi CAM combined with ZigBee), and are shown in the legend of Figure 1.

Figure 1: Power usage as a function of "time on" percentage. Plot of the percentage of time a mobile device spends

transferring while on vs. the average power consumed during that setting. If a device is on and transferring for less than

70% of the time it remains on, then this graph claims that WiZ will save more energy than CAM or PSM. The device used

to acquire this data was an Asus Eee PC. The Asus used a Linksys WUSB54G wireless interface adapter for Wi-Fi, and a

XBee Series 2 OEM RF Module for ZigBee.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 10 20 30 40 50 60 70 80 90 100

A
v

e
ra

g
e

 P
o

w
e

r
C

o
n

su
m

p
ti

o
n

 (
W

)

Percentage of "Time On" Duration Spent Transferring (%)

Wi-Fi (CAM)

Wi-Fi (PSM)

WiZ

6

The result of this project is a multi-protocol wireless network, called WiZ, that uses ZigBee and Wi-

Fi (CAM), in cooperation with a software algorithm that cognitively monitors the bandwidths of the two

protocols in order to switch between the protocols based on which of the two protocols will result in the

greatest power savings, while maintaining equivalent throughput. WiZ’s transmissions consume 28%

more power than that of the conventional wireless protocol Wi-Fi (PSM), however, the idle state of WiZ

is vastly superior. By using ZigBee as its idle radio state, WiZ consumes 28% of the power consumed by

Wi-Fi (PSM), while idle. By using ZigBee as its idle radio state and Wi-Fi (CAM) as its active state WiZ

is able to have the equivalent data rate/bandwidth of Wi-Fi and be more energy efficient. The plot in

Figure 1 shows that if a radio is turned on all day, and spends less than 70% of its time transmitting data,

the WiZ network will result in power savings.

There are some future directions for this project that the team considered. One possible piece of work

for the future would be to use this energy efficient multi-protocol network for other communications

applications such as VoIP, web browsing, or any other communications task. This project was limited by

time and resources, if more time had been provided it would have been ideal to move forward from raw

data transfer to other applications such as those just mentioned. Another possibility would be to add

another wireless protocol such as UWB or Bluetooth. Doing this would expand the adaptability of the

network and perhaps result in a greater energy saving.

7

Table of Contents

Abstract ... 2

Acknowledgements ... 3

Executive Summary .. 4

Table of Contents .. 7

List of Figures ... 9

List of Tables .. 11

Chapter 1: Introduction ... 12

1.1 Motivation .. 12

1.2 Making Wireless Communications “Green” .. 13

1.3 Current State-of-the-Art.. 15

1.4 Proposed Design and Contributions ... 17

1.5 Report Organization ... 18

Chapter 2: Adaptive Wireless Transceivers .. 20

2.1 Cognitive Radio .. 20

2.2 Commercial Wireless Standards ... 22

Wi-Fi Background .. 22

IEEE 802.15.4: ZigBee .. 26

Comparison and Selection of Protocols ... 31

2.3 Mobile Device Power Management ... 32

2.4 Green Communications .. 37

2.5 Summary ... 38

Chapter 3: Proposed Design and Project Logistics ... 40

3.1 Main Goal ... 40

3.2 Project Objectives ... 44

3.3 Project Management and Tasks .. 44

3.4 Design Decisions .. 47

Design Decision Methodology ... 47

3.5 Design Summary .. 51

Chapter 4: Implemetation ... 52

4.1 Setup and Installation of Equipment... 52

4.2 Software Radio Controller .. 56

4.3 Power Measurement System... 61

8

Communications’ Current Draw and Power Consumption Measurement Techniques 62

The Total Computer System Power Consumption Measurement Techniques 63

Energy Efficiency and Performance (J/MB) Measurement Techniques .. 65

4.4 Implementation Summary .. 66

Chapter 5: Results ... 67

5.2 Procedure .. 68

5.3 Testing .. 71

Wi-Fi Only Network in Continuously Active Mode (CAM) ... 72

Wi-Fi Only Network in Power Saving Mode (PSM) ... 73

ZigBee Only Network .. 75

Wi-Fi-ZigBee Power Saving Network, WiZ (Uses CAM for Wi-Fi) .. 76

5.4 Overall Results ... 80

Test Cases ... 80

Evaluation of the Energy Consumption and Efficiency of the Wireless Networks 84

Conclusion of the Results ... 88

Summary .. 90

Chapter 6: Conclusions and Future Work ... 91

Bibliography ... 93

Appendix A: .. 98

FileBytes.java ... 98

FileInfo.java .. 98

GeneralGUI.java ... 100

SmartPowerAP.java .. 112

SmartPowerUser.java ... 119

XBeeInfo.java ... 129

XBeeInterface.java ... 130

usbcontrol_OFF.sh ... 135

usbcontrol_ON.sh ... 136

Browsing Simulation Script .. 136

9

List of Figures

Figure 1: Power usage as a function of "time on" percentage. ... 5

Figure 2: Average current drawn for a given task... 14

Figure 3: Average 3G Cell Phone Current Draw. ... 15

Figure 4: Multiple Bluetooth-enabled CoolSpots inside of a traditional .. 17

Figure 5: Basic cognitive radio cycle. ... 20

Figure 6: Global Wi-Fi Deployment.. ... 22

Figure 7: General Wireless Receiver Transmitter pairing [26] ... 24

Figure 8: ZigBee Star Network [32]. .. 29

Figure 9: ZigBee Tree Network Topology [32]. ... 30

Figure 10: ZigBee Mesh Network Topology [32]. ... 31

Figure 11: Typical power consumption of a Toshiba 410 CDT Mobile Computer [36]. 33

Figure 12: Laptop power breakdown. ... 34

Figure 13: Comparison of the power consumed by Bluetooth, UWB, ZigBee, and Wi-Fi protocols 37

Figure 14: Comparison of the normalized energy consumption for each protocol [38]. 37

Figure 15: Simplified Dual Node Network, utilizing a single access point and mobile user. 42

Figure 16: Flow-Chart of cognitive radio logic to gain the best power performance. 43

Figure 17: Breakdown of project among the team. ... 45

Figure 18: Planned Gantt Chart. ... 46

Figure 19: Actual Gantt Chart. .. 47

Figure 20: Wi-Fi USB connectivity scripts testing. .. 54

Figure 21: Test bench setup with Eee PC to monitor latency and power usage. .. 55

Figure 22: Voltage of Linksys WUSB54GC dongle being hard-blocked and unhard-blocked. 56

Figure 23: Bandwidth Monitor Flowchart. ... 60

Figure 24: Energy Measurement Design .. 61

Figure 25: Standard Type “A” USB pinning diagram (Wikipedia.org). ... 62

Figure 26: Technique for measuring the power consumption (W). .. 64

Figure 27: Asus Eee PC 701 Asus Eee PC 2G Laptop Batteries (http://www.laptopbatteryinc.co.uk/). ... 65

Figure 28: Energy Measurement Setup. .. 67

Figure 29: Recorded network activity during the www.wikipedia.org test case. 71

Figure 30: Recorded network activity during the internet browsing session.. .. 77

Figure 31: Recorded power consumption of WiZ.. .. 78

Figure 32: Power consumption of WiZ, ZigBee, and Wi-Fi(CAM) during the simulation 79

10

Figure 33: The power consumption of the WiZ network during the browsing simulation test. 79

Figure 34: Energy consumption of wireless test cases.. 84

Figure 35: Energy Efficiency of Wireless Networks during the file transfer-1 test case. 85

Figure 36: Energy efficiency of wireless networks with equal data rates. .. 86

Figure 37: Energy efficiency of the wireless networks during the file transfer-2 test case. 86

Figure 38: This is the chart for the www.wikipedia.org test case. .. 87

Figure 39: Power Usage as a Function of "Time On" Percentage. ... 89

11

List of Tables

Table 1: Wi-Fi Protocols. Taken from [25]. ... 23

Table 2: Wi-Fi Sleep Modes. .. 25

Table 3: Wireless radio comparison table. .. 32

Table 4: Radio states of operation. .. 35

Table 5: Current draw from ZigBee radios ... 35

Table 6: Typical Current Draw Values of Wi-Fi [35], [10], [6], [37], [38] .. 36

Table 7: Typical Power Consumption of Wi-Fi Radios ... 36

Table 8: Wi-Fi pros and cons table.. ... 48

Table 9: Bluetooth vs. ZigBee vs. Wi-Fi Comparison Table. Data acquired from [36]. 49

Table 10: Sample Test Template for wireless network testing. .. 69

Table 11: Measured Website Sizes. .. 71

Table 12: Wi-Fi CAM Current (A), Power (W), and J/MB observed values. .. 72

Table 13: Measured Summary Statistics of Wi-Fi (CAM). .. 73

Table 14: (PSM) Current (A) and Power (W) observed values. ... 73

Table 15: The average observed data rates for the Wi-Fi CAM and PSM networks. 74

Table 16: ZigBee Power and Current Usage. ... 75

Table 17: Average data rates obtained from the ZigBee network... 75

Table 18: WiZ measured values.. 76

Table 19: Summary table of the measured parameters for each network configuration. 80

Table 20: Table of test cases created to analyze each wireless network. .. 82

Table 21: A strengths and weaknesses chart of the networks.. ... 88

12

Chapter 1: Introduction

1.1 Motivation

The communications industry has seen an exponential increase in both technology and sales [2].

As a result of this ever-increasing number of mobile devices, global power consumed by these wireless

communications systems has also grown significantly. According to the IEEE ICC 2009 Panel on Green

Communications "currently 3% of the world-wide energy is consumed by the ICT (Information &

Communications Technology) infrastructure that causes about 2% of the world-wide CO2 emissions,

which is comparable to the world-wide CO2 emissions by airplanes or one quarter of the world-wide CO2

emissions by cars" [1]. This rising need for mobility coupled with increasing demand for bandwidth,

from such applications as video and music streaming, cause great stress for these wireless networks [3].

As a result, this equates to a massive amount of energy being consumed by the mobile devices themselves

and the network providers transmitting data to and from the users. To keep up with such demand,

transmission power needs to be increased to reach the large number of users. All of this data being

transmitted from satellites, cellular towers, wireless routers, and other wireless radio devices consumes a

substantial amount of power. Network providers need to find a way to meet the increasing demand for

bandwidth by its mobile users while keeping the network’s power consumption at a minimum. On the

other hand, battery technology fails to meet the increase of power demanding applications such as video

streaming and mobile videogames as a result mobile users are finding the battery life of their devices

decreasing sharply [4].

Today, there has been a focus on keeping the earth “green” and avoiding excess use of resources

that cause harm to the environment. In order to effectively reduce the carbon footprint created by the

wireless industry it is important to look for low power solutions. One option is to employ a cognitive

radio with the goal of reducing power consumption. A cognitive radio is defined as “a computer-

intensive technology to balance a user’s communications and computing goals against those of a variety

of networks with which that user could operate” [5]. A cognitive device would be able to select the

lowest power intensive wireless protocol while still maintaining an acceptable quality of service for the

desired task.

One cognitive approach for power saving is already built in to many existing wireless

technologies. This is in the form of power saving modes (PSM) of certain protocols [6]. These generally

work by allowing the hardware to “sleep” or enter a low-power states for short intervals of time. This

increases battery life without greatly effecting performance. The approach examined by this project is to

intelligently use existing wireless radio protocols in cooperation with one another to reduce the power

consumed by the wireless network interface of a mobile device.

13

1.2 Making Wireless Communications “Green”

The main focus in the wireless communications industry has been on developing protocols with

higher data throughput, wireless ubiquity, and transmission range. However, this project concerns itself

with the power efficiency of wireless devices. The wireless protocols used in popular consumer devices

prioritize speed and range over power efficiency. For example, Wi-Fi cards are able to transmit with a

relatively high data rate, but consume a substantial amount of power when active. To conserve power,

Wi-Fi cards implement different states of operation. The Power Saving Mode of Wi-Fi goes into deeper

effort to conserve power by switching between active and sleep state many times per second during

transmission [6].

By building upon this concept of switching between states of operation this project proposes

switching between entirely different wireless protocols to save energy. This goal is reached by using a

much lower power consuming wireless protocol for applications that require little bandwidth. The IEEE

802.15.4 standard, which focuses on low power consumption and low data rate, was completed in May

2003. Typical applications of the protocol include industrial control, embedded sensing, home and

building automation, medical data collection, smoke and intruder warning [7].

Although IEEE 802.15.4 is very low power, it has not been used for any popular consumer

mobile devices such as laptops or cell phone. Consumers demand data rates capable of small applications

like email access to bandwidth demanding applications such as streaming media content, so in turn higher

data rate protocols such as Wi-Fi and 3G meet most of the market’s needs. However, it has not been the

focus of the wireless sector to develop a device that, based on bandwidth needs, intelligently switches

between multiple networking protocols to take advantage of the most power efficient protocol suited for

the current bandwidth need.

14

Figure 2: Average current drawn for a given task. The note to the right of the 500 mA area states “Source Values

measured using an industrial power monitor at 5 kHz sampling rate, and taking average power with lowest standard

deviation.” From [8].

This project lays the foundation down for an effective way to reduce the energy usage of radio

devices, through the use of multiple wireless protocols that cooperate in a manner that results in a smaller

amount of energy consumption than current commercial wireless radio networks. Even though this

project has been implemented in laptop computers, if the same wireless network were to be moved over to

other mobile device platforms the battery life of those mobile radios could be extended, and the carbon

footprint of battery intensive protocols could be significantly reduced. For example smartphones would

benefit greatly from this project. A smartphone is a mobile phone that provides more advanced

computing, internet access, and wireless connectivity capabilities, both short (Bluetooth) and cellular

network connectivity [9]. The iPhone and Blackberry are examples of smartphones. At any given time a

smartphone could have a GSM radio, 3G radio, Wi-Fi radio and Bluetooth radio all on and listening for

data. Even though they are not actively transmitting or receiving, they still consume considerable power

and reduce the battery life of the device a significant amount. For the average 3G cell phone, with the

15

device in “airplane mode,” with no radios on, the phone draws about 2mA of power. With the 3G radio

turned on and idling, the device draws about 5mA [8]. Just by having a radio on and idle, it cuts the

battery life in half. With just the Wi-Fi radio on and idling, the device draws about 12mA of power. A

graph of this is displayed in Figure 3. Therefore, having multiple radios on and idling at the same time

draws significant power and drastically shortens the battery life of the device. The project team’s green

approach to a multi-protocol wireless communications network intends to solve this problem by

employing a software algorithm that monitors the bandwidth of a wireless network, reacting to increases

and decreases in network activity. This algorithm controls a wireless network consisting of Wi-Fi and

ZigBee that uses the low power, low bandwidth protocol IEEE 802.15.4 (ZigBee) to listen for incoming

bandwidth requests and low data transmissions, and switches to Wi-Fi when the network activity

increases beyond a specific threshold.

Figure 3: Average 3G Cell Phone Current Draw: *Airplane mode is an option on some smart phones that turns off all the

radios. “On and idling” refers to when the 3G cell phone is turned on and the radios are connected to an AP but no data

transfer is taking place. The difference between “airplane mode” and “on and idling” is that “airplane mode” has no

radios on and “on and idling” has its radios turned on. The additional current drawn is the result of the radios being on.

From [8].

1.3 Current State-of-the-Art

With the advent of smartphones, laptops, netbooks, and portable tablet computers, saving power

to extend battery life is a hot topic of research. In terms of reducing wireless communications power

consumption, there are two areas of current research. One area of research is utilizing multiple wireless

protocols to achieve the lowest possible power consumption while still maintaining an acceptable

0

1

2

3

4

5

6

Airplane Mode* On and Idling

C
u

rr
e

n
t

D
ra

w
 (

m
A

)

Device State of Operation

16

bandwidth for the current tasks. Several research projects have been conducted proposing and or

implementing these multiprotocol systems.

CoolSpots is a project similar to this one that incorporates a multi-protocol wireless network that

switches between two wireless protocols in order to save power [10]. The Bluetooth radio acts as the idle

and default wireless protocol. When a threshold is passed, that Bluetooth is incapable of handling, the

system turns on the Wi-Fi radio. CoolSpots is almost identical to the network proposed in this project

except that CoolSpots uses Wi-Fi in conjunction with Bluetooth, instead of ZigBee. The advantage to

using Bluetooth is that it has a higher bandwidth than ZigBee, but a much shorter transmission range and

slightly higher transmission power consumption. Bluetooth was developed to replace standard wired

connections. For this reason Bluetooth has a very short transmission range making much less effective

than ZigBee for large wireless networks. The short range of Bluetooth restricts CoolSpots to personal

area networks (PAN).

CoolSpots experimented with a number of switching policies to see which resulted in the best

power savings. The policies used a number of measurement techniques, such as the measured received

signal strength indicator (RSSI), transmit power, and link quality, to indirectly determine available

bandwidth capacity. These measurements were taken to determine the best time to switch between

wireless protocols, however none of them proved successful due to the underlying metrics not sufficiently

correlating to the actual bandwidth capacity. The importance of the bandwidth capacity is that if the

bandwidth of the Bluetooth is full then the system needs to switch to a higher bandwidth protocol, such as

Wi-Fi. The same concept applies if the bandwidth of Wi-Fi is nearly empty, or no network activity is

taking place, then the system needs to turn off Wi-Fi and turn on Bluetooth.

17

Figure 4: Multiple Bluetooth-enabled CoolSpots, inside of a traditional Wi-Fi Hotspot, allow mobile devices to connect

other devices through the backbone network. CoolSpots are connected to the backbone network either directly (wired) or

through the Wi-Fi___33 network (wireless). Taken from [10].

In [11] a switch agent for a multi-protocol wireless network that uses Wi-Fi and ZigBee to save

energy is proposed. The primary concept is identical to this project except that the switch agent was

never implemented and it focused much more on the software aspect of the system. A Switch Agent for

Wireless Sensor Nodes with Dual Interfaces: Implementation and Evaluation also never developed a

working prototype; it only produced results based on computer simulations. The main contributions of

the switch agent was creating a system that is capable of activating high power radios when only

necessary, reducing power through enhancements to the schemes for maintaining routing cache, and

developing simulations that prove that such a network reduces energy consumption by a significant

amount. The result of the simulations stated that the energy consumed in the network using the

developed interface switch framework is a fraction of that consumed in a network of the IEEE 802.11

nodes and is comparable to that of nodes using only IEEE 802.15.4 radios [11].

1.4 Proposed Design and Contributions

This project aims to create an energy efficient wireless network, through the implementation two

wireless protocols. The two protocols chosen optimize the power efficiency of the communications

system by using a low data rate, low power consumption protocol (ZigBee) for minimal network activity

and a high power, high data rate protocol (Wi-Fi) for heavy network traffic. The two wireless protocols

provide power efficiency without sacrificing performance relative to a single protocol network, such as

Wi-Fi. These protocols are controlled through a cognitive algorithm that monitors the bandwidth of a

wireless network, reacting to increases and decreases in network activity, deciding when to turn either

protocol on or off. The algorithm monitors the bandwidth of the active radios. When the wireless

Backbone

Network

Wi-Fi

HotSpot

Mobile

Device

CoolSpots

18

network requires a fast data rate the algorithm switches Wi-Fi on, and when little to no data rate is needed

the algorithm switches Wi-Fi off and ZigBee takes control.

This project overcomes the short comings in the current state-of-the-art by the following

approaches:

1. Developing a greener wireless standard that performs data transfer as well as Wi-Fi.

2. This project intelligently monitors the bandwidth of multiple radios and reacts to changes in

the bandwidth.

3. This project switches between two different wireless standards. The first standard is used to

set up the second connection and Zigbee is used to set up wifi, so wifi is set up quicker.

4. This project is environmentally aware. It makes decisions and switches automatically based

on environment, bandwidth needs, battery level, etc

This system will prove the advantages of employing a multi-protocol network to reach a

specialized goal. The network design will be realized with common off-the-shelf parts. Through the use

of two protocols a network can become more versatile. In this case, allowing for significant power

savings without sacrificing quality of performance.

1.5 Report Organization

This report is broken into six distinct chapters. Chapter 1: Introduction, introduces the purpose of

the report, starting by providing the motivation for the development of this project. Aside from

motivation the introduction discusses other state-of-the-art technology currently in the market today.

Next, the proposed design and contributions are explained. Chapter 2: Adaptive Wireless Transceivers is

the next section and provides background information for the topics involved in the development of this

project. This chapter covers 2.1 Cognitive Radio, 2.2 Commercial Wireless Standards considered for use

in the creation of the WiZ network, a study on 2.3 Mobile Device Power Management, and 2.4 Green

Communications. The paper then proceeds to Chapter 3: Proposed Design and Project Logistics to

document the methodology used to produce the final cognitive ZigBee and Wi-Fi network. The first step

in creating the network was to achieve communication between the two ZigBee nodes. This was

followed by the development of a local interface between the Wi-Fi and ZigBee. The third step in the

process was to successfully transfer data between the two computers using the combined ZigBee-Wi-Fi

network. After this, the next step was to configure the network so that Wi-Fi would only activate when

the need for a larger bandwidth was required for sending and receiving data, this is the cognitive

switching algorithm. Finally, the last step of the methodology was to monitor and measure the current,

power, and energy consumption of the system in order verify that it resulted in an energy saving.

19

After the design, the report transitions to Chapter 4: Implemetation, this describes the process

followed to develop the WiZ network. The WiZ network is broken into three sections; 4.1 Setup and

Installation of Equipment, 4.2 Software Radio Controller, 4.3 Power Measurement System. These

sections were developed in three separate partitions and combined upon the completion of each partition.

The first section is the 4.1 Setup and Installation of Equipment, which provides a step-by-step guide for

the implementation process and construction of the Wi-Fi portion of the WiZ radio network. The second

section is the 4.2 Software Radio Controller. This consists of the file transfer software created to act as

the method of transferring data for this project since ZigBee has no pre-existing firmware to transfer data.

It then proceeds with the implementation of the program that performs the cognitive aspect of the WiZ

radio network, which switches the Wi-Fi and ZigBee radios on and off depending on the network activity

of the WiZ system. The third and final section of the implementation is the 4.3 Power Measurement

System portion. This section provides information for reproducing the methods used to monitor the

power consumption of the wireless networks considered in this project. The networks evaluated are Wi-

Fi (CAM), Wi-Fi (PSM), ZigBee, and the WiZ wireless networks. The next chapter of the report, Chapter

5: Results, analyzes the experimental results and also provides detailed documentation of how each

experiment was performed. The experimental results are compared to the power usage of a standard Wi-

Fi networks and a conclusion regarding the effectiveness of the Wi-Fi-ZigBee (WiZ) network is

formulated. The last chapter of the report, Chapter 6: Conclusions and Future Work, discusses possible

future work related to this project.

20

Chapter 2: Adaptive Wireless Transceivers

 Before designing a multiprotocol green energy communications system, several areas had to be

researched to gain an understanding of the underlying technologies and the state-of-the-art research.

Cognitive radios and software defined radios were studied to gain an understanding of how radios can

intelligently adapt to the environment. The current state-of-the-art in cognitive green communication

systems were investigated next. Then, several mainstream commercial wireless standards were surveyed

to decide which ones to implement.

2.1 Cognitive Radio

The concept of the cognitive radio (CR) was first conceived in 1998 by Joseph Mitola III and

Gerald Maguire Jr. The plan was to develop a radio with the ability to sense the different frequency bands

available, determine which spectrum band would be best suited for the intended application, and do this

all seamlessly without any input from the user. Mitola defined cognitive radio as “a computer-intensive

technology to balance a user’s communications and computing goals against those of a variety of

networks with which that user could operate” [5]. In other words, a cognitive radio is able to observe,

learn, and react to changes incurred by users in order to more effectively achieve its goal.

Figure 5: Basic cognitive radio cycle. The radio environment is the radio waves in the air. The radio antenna receives

signals in the air, the signals are then analyzed by the cognitive intelligence and a response is formulated by this

intelligence. Possible parameters that may be changed are the transmission power and spectrum band frequency.

Adapted from [12].

Radio-environment

Analysis (Cognitive)

Radio Environment

(Outside World)

Transmit-power

control, and spectrum

managmenent

Spectrum availability

Traffic statistics

Transmitted

Signal

Transmitter Receiver

RF

Stimuli

21

However, today cognitive radio encompasses many different technologies which enable radios to

perform several roles such as automated radio resource optimization and dynamic spectrum access.

Dynamic spectrum access, or spectrum sensing, has been studied to alleviate the spectrum scarcity

problem in the United States [13]. However, since this project focuses on power efficiency the concept of

automated radio resource optimization will be explored in greater detail. In general, cognitive radios are

capable of adapting to the available transmission parameters in order to achieve a specific performance

goal by combining several adaptation techniques to form a decision making engine with several

dimensions of transmission control [12] [13] [14] [15] [16]. There are many parameters that can be taken

into account to reconfigure and improve the power performance of radios. The most common parameters

that cognitive radios reconfigure are spectrum frequency and transmission power. Radio resource

optimization intelligently adapts to the environment through the monitoring of these parameters and

changes their operation according to some goal driven algorithm [14]. In theory this ability results in

significant improvements in the performance of the system. Some possible parameters radio resource

optimization addresses are transmit power, modulation, system throughput, and bit error rate (BER) [14].

Examples of radio resource optimization exist in present-day technology, the IEEE 802.11 wireless

standard employs adaptive modulation to monitor the signal-to-noise ratio (SNR) of the communications

signal and adjusts the power and modulation in a manner that results in the best possible throughput [14].

By definition cognitive radios are aware of their environment and react to them accordingly. A

great amount research has been put into cognitive radio, the major difference between each research topic

is the cognitive method employed that makes the decisions. Most of these cognitive decision making

techniques are algorithms of varying complexities, ranging from simple algorithms that have preset

reactions for specific situations, to complex cognitive infrastructures similar to Artificial Intelligence (AI)

[10] [11] [12] [15] [17]. Some development has been conducted that aims to create a radio that has the

ability to learn. This method is generally called machine learning. Machine learning uses math based

algorithms that enable radios to remember lessons learned in the past and act quickly in the future [15].

One such approach to implement machine learning is through Genetic Algorithms [17]. Genetic

Algorithms define a radio by a chromosome, the genes of the chromosome represent the parameters in a

radio that can be adjusted, and by modifying the chromosome genes, the genetic algorithm can optimize

the radio to meet the current user’s needs. The algorithm is meant to mimic the behavior of DNA, and as

such the program “evolves”, or learns. A selection mechanism determines whether or not a chromosome

will survive from generation to generation. This selection is based on an evaluation function that

determines the fitness of the chromosome. Specifically, the Wireless System Genetic Algorithm (WSGA)

[17] is a method to utilize cross-layer optimization and also a method of adaptive waveform control. In

the WSGA, radio behavior is represented by traits encapsulated in the genes of a chromosome. Other

22

radio parameters are also included as possible genes in the chromosome for evolution and growth

purposes.

2.2 Commercial Wireless Standards

 In order to maximize energy efficiency and power savings, several common commercial wireless

standards were considered for possible implementation in the project. Commercial wireless standards

were chosen because they are easy to acquire, inexpensive, and substantial documentation is available.

The goal of this research project was to not to come up with a new, energy efficient wireless standard, but

rather to modify current commercial wireless protocols in a way to achieve greater power savings.

Wi-Fi Background

The most widely implemented and unlicensed form of radio communication is Wireless Fidelity,

or more commonly known as Wi-Fi [18]. This is the protocol classified under the overarching IEEE

802.11 standard similar to the ETSI European standards for broadband radio access networks that include

such protocols as HiperLAN and HiperLAN 2 [19]. Since IEEE 802.11’s ratification in 1997 it has

become the most developed wireless technology in the world [20]. The Wi-Fi IEEE standard includes

several revisions, including 802.11a, 802.11b, 802.11g, and 802.11n. As of 2010 the number of wireless

devices using the standard has been growing at rate of 2.2 million per month [21]. Figure 6 below

displays the global hotspots alone for Wi-Fi access, reaching across most of the developed world.

Figure 6: Global Wi-Fi Deployment. Blue dots indicate Wi-Fi access points and cell towers. Taken from [22].

Wi-Fi was born out of the deregulation of certain radio-frequencies which occurred on May 9,

1985 for unlicensed spread spectrum use. This ruling stipulated the use of unlicensed radio in the 902-

928, 2400-2483.5 and 5725-5850 MHz bands on a noninterference basis to other authorized users of these

23

bands. The opening of this band paved the way for a large amount of radio technologies which evolved

into the IEEE 802.11 standard today. These bands at 900MHz, 2.4GHz and 5.8GHz, were initially

allocated to equipment that used radio-frequency energy for purposes other than communications, such as

microwave ovens. However, the Federal Communcations Comission (FCC) made these bands available

for communications purposes as well, with regulations put in place that made sure that there would be no

interfere between other bands and among the same bands themselves. The FCC did this by using spread

spectrum, which spreads a radio signal out over a wide range of frequencies, in contrast to the usual

approach of single carrier transmission, making the signal less susceptible to interference [23]. However,

Wi-Fi only was able grab hold because of the creation of an industry-wide standard. Initially, vendors of

wireless equipment for local-area networks, such as Proxim and Symbol, developed their own kinds of

proprietary equipment that operated in the unlicensed bands. As a result, equipment from one vendor

could not talk to equipment from another. Inspired by the success of Ethernet, a wireline-networking

standard, several vendors realised that a common wireless standard should be realized. Consumers would

be more likely to adopt the technology if they were not locked in to a particular vendor's product.

Therefore, in 1988 Victor Hayes, along with Bruce Tuch of Bell Labs, approached the Institute of

Electrical and Electronics Engineers (IEEE), where a committee called IEEE 802.3 had defined the

Ethernet standard. A new committee called IEEE 802.11 was constructed to develop a similar standard

for Wireless networks. In 1997, the committee agreed on a basic specification, this specification allowed

for a data-transfer rate of two megabits per second, using either of two spreadspectrum technologies,

frequency hopping or direct-sequence transmission.

 As Wi-Fi developed it grew into several subprotocols within the IEEE 802.11 standard. The most

prominent modes include IEEE 802.11 a, b, g, and n. Currently, Wi-Fi has a maximum data rate of 54

Mb/s for 802.11g and 150 Mb/s for IEEE 802.11n, and a typical range of 100 meters (inside) and 300

meters (outside) [24]. Additional details can be seen on the published versions of Wi-Fi in Table 1.

Table 1: Wi-Fi Protocols. Taken from [25].

IEEE 802.11

Protocol

Release Freq.

(GHz)

Bandwidth

(MHz)

Data rate per stream

(Mbit/s)

–

a

b

g

n

Jun-97

Sep-99

Sep-99

Jun-03

Oct-09

2.4

5

3.7

2.4

2.4

2.4/5

20

20

20

20

20

40

1, 2

6, 9, 12, 18, 24, 36, 48, 54

5.5, 11

6, 9, 12, 18, 24, 36, 48, 54

7.2, 14.4, 21.7, 28.9, 43.3, 57.8,

65, 72.2

15, 30, 45, 60, 90, 120, 135, 150

24

The instances of Wi-Fi shown in Table 1all share a common transmitter and receiver design,

varying slightly depending on modulation scheme, throughput, and several other factors. Generally, most

digital wireless communication systems follow this generalized design represented in the figure below

because of its simiplity and robustness. The overall goal of this system is to send data efficiently and

with as little error as possible. In order to prepare data for wireless transmission the communication

system data must first passthrough several functional blocks. This begins with some degree of sources

encoding, which removes redundencies with the source data itself. Then this data undergoes channel

encoding which introduces control redundancies to help minimize errors when passing data through the

channel. Next, the signal is modulated with a carrier frequency up to RF. Finally, the signal reaches the

analog domain from the analog to digital converter and is projected as electromagnetic radioation through

the RF frontend and into the channel to the receiver. This same process happens in reverse at the

receiver. This is a very generalized explaination of a digital communication system, when in reality

additional complex system are needed to compensate for non-idealities such as channel distortion and

carrier frequency offset.

Figure 7: General Wireless Receiver Transmitter pairing [26]

Along with the functional blocks seen above Wi-Fi has five different eneryconsumption states

that effect the operation of these functions. Each states operates the device for different purposes and as a

result in different power draws. In current Wi-Fi interface cards, these energy states are dynamically

adjusted to help save power, primarily when the card is in a rather idle state [27]. The five different states

of operation are:

25

 Active Receive: The radio is listening and deciphering packets from surrounding nodes.

 Transmit: The radio is broadcasting data.

 Sleep: Certain radio functionality is turned off to save power. There are two different levels

of sleep. One is the deepest sleep mode, which turns off the oscillator and voltage regulator.

The other is light sleep mode, which keeps these components energized [27].

 Idle/Listening: The radio is waiting for an event from the user or surrounding network. This

is usually to maintain association with access point.

 Off: The radio is fully powered off.

Each of these energy states have consequences that impact the overall radio’s energy

consumption and as a result effect the overall energy consumption of a mobile wireless device. When the

radio is active transmitting it is using the most power, but it also does use a considerable amount of power

just in an idle or sleep state. These sleep states must wake up in predetermined intervals to examine the

surrounding spectrum for available packets. The best possible scenario would allow the card to be

completely off, using no power, until it actually needs to transmit or receive. This would completely

eliminate the need for sleep states. However, since the card cannot inherently know when it needs to be

used current MAC protocols put the radio in sleep mode while there is no data to send or receive, in order

to minimize energy consumption. Wi-Fi relies on a static low power mode, which involves an energy and

delay tradeoff. The deepest sleep mode provides the lowest current draw of all low power modes.

However, it also involves the highest energy cost and the longest latency for switching the radio back to

active mode. In contrast, the lightest sleep mode provides a transition to active mode that is quick and

energy inexpensive, but this mode has a higher current draw. Sleep mode switching is generally

determined by the amount of traffic during a given period of time. The more traffic the less often the card

will be put into deep sleep mode [27]. These sleep modes are generally hardware dependent, meaning

that they can differ from card to card.

Table 2: Wi-Fi Sleep Modes.

Mode: Purpose:

Sleep

Deep Sleep

Short latency, least power advantage

Long latency, best power advantage, most hardware element

powered off

On the higher networking level when multiple nodes exist, several network configurations can

exist with the Wi-Fi standard. These configurations are ad-hoc and infrastructure networks. Ad-hoc

networks are point to point networks, which are primarily used in decentralized networks. They have the

distinct advantage of node independence, meaning that in general one node cannot disable the entire

26

network, but can affect it significantly depending on location. Infrastructure networks on the other hand

contain a certain router or access point in which all traffic passes through. Interactions among nodes

generally follow the same process with minor variations. First of all, nodes in some manner or interaction

must associate themselves with the network, which is generally done with a beaconing system. After,

association authentication must be provided at some level and then a link synchronizes with the network.

All of these processes happen at the lower layers of the OSI model and are generally considered

independent from the computer and end-user, beyond what network to associate yourself with [28]. For

example, when a connection to your home wireless access point is made, most of the connection and

synchronization work is solely done by the networking card, with no help from the user or operating

system.

Control of most aspects of a wireless interface are completely autonomous and completely

tranparent the user. To the user most of the hardware control has been abstracted for the sake of

simplicity. Due to the complexity of the wireless interface, this control would be rather overwhelming to

the user. Therefore, this simplified perception is extremely powerful because it allows user applications

to focus on higher layers without worrying about how the lower layers will react. The most import aspect

of this domain is its independence from hardware. For example, this means that any system that contains

this internet protocol can communicate with that system [28].

Another example of this abstraction is point to point data transmissions among computers

network through a communication flow method known as sockets. The term sockets is used as a name

for an application programming interface for the TCP/IP protocol stack, usually provided by the operating

system. This means that these sockets are completely managed or mapped by the operating system.

Sockets constitute of a mechanism for delivering incoming data packets to the appropriate

application process or thread, based on a combination of local and remote internet protocol

addresses and port numbers. Therefore, these sockets allow systems to synchronize processes on remote

systems and communicate in a fully duplexed manner. This entire functionality is abstracted from the

hardware. The socket is primarily a concept used in the Transport Layer of the OSI. Networking

equipment such as routers and switches do not require implementations of the Transport Layer, as they

operate on the Link Layer level or at the Internet Layer. This method of using sockets is used as the

foundations of most file transfers in computer systems today.

IEEE 802.15.4: ZigBee

 ZigBee is a low power, low bandwidth wireless radio standard targeted towards applications

requiring low data rate and extremely low power consumption and is designed to have low cost and very

simple setup and integration [29]. ZigBee devices typically have a range of around 100 meters, and a

27

single ZigBee network can contain up to 65,536 devices. Usually, ZigBee is used for commercial devices

such as automated lights or appliances in houses. This project examines ZigBee for its low power usage

capabilities.

One of the strengths of the ZigBee protocol is its low power consumption for wireless

communications. The average transmit power of a ZigBee radio ranges from 0.001mW to 0.003mW. On

an alkaline cell battery, an average ZigBee radio will be able to remain powered for two years, assuming

routine data transfer [29]. It accomplishes such low energy usage by minimizing the amount of time the

radio is on. Bluetooth and Wi-Fi radios spend more time awake and, therefore, drawing more power. On

the other hand, the ZigBee protocol minimizes the amount of time the radio needs to be on, reducing

power as much as possible. The proportion of time the radio is active to the time radio is asleep is defined

as the radio’s duty cycle. ZigBee is optimized for very low duty-cycle operations. For some applications

the duty-cycle can drop below 0.1% for maximum power conservation. The biggest drawback of ZigBee

is its low data rate. Other wireless communications technologies, such as Bluetooth or Wi-Fi, prioritize

higher data rates at the cost of higher energy costs. ZigBee, meanwhile, purposefully keeps its data rate

low. It has a maximum theoretical throughput of 250 kilobits per second, as opposed to 1 megabit per

second for Bluetooth and 600 megabits per second for Wi-Fi IEEE 802.11n. By keeping the data rate

low, ZigBee radios consume only a fraction of the power that Bluetooth or Wi-Fi radios consume.

Another unique ability of ZigBee devices is that they are optimized to quickly and efficiently join

networks as well as change to and from sleep modes. A typical ZigBee end device takes on average 30

milliseconds to join a network, and 15 milliseconds to and from active and sleep mode [30]. For

comparison, Bluetooth devices on average take 20 seconds to join a network 3 seconds to change to and

from sleep modes. For an operation of joining a network, transferring a small amount of data, and then

going into sleep mode, a Bluetooth device will require about one hundred times the amount of energy to

complete this operation [29].

ZigBee is capable of multiple network profiles. To effectively use ZigBee it is necessary to

understand these profiles and they strengths and weaknesses. ZigBee network profiles are capable of both

beacon and non-beacon enabled networks. In non-beacon networks, ZigBee routers constantly have their

receivers active and listening. The radio on the end device can remain off until it needs to transmit data.

When a data transmission is required, the radio wakes up, sends its transmission, receives an

acknowledgement, and then returns to sleep. The advantage of this is that no power is used until

transmissions are required. However, the disadvantage is that the router needs to remain constantly on

and that the end device cannot receive messages. In beacon-enabled networks, routers transmit

periodically transmit beacons to confirm their network status to other nodes in the network. Since

28

beacons are transmitted at a specified time interval, devices may sleep in between beacons to lower their

duty cycle.

To understand how the ZigBee networks work three types of logical devices must be explained;

coordinators, routers, and end devices. Every network must have a coordinator; coordinators create the

network by selecting a personal area network identifier (PAN ID) and a channel. In secure networks, the

coordinator also contains the trust center and a repository for network keys. Any device trying to join the

network needs to be authenticated by the trust center. Routers can relay messages to other nodes,

including the coordinator, other routers, and end devices. They can be used to extend the network

coverage to areas outside of the coordinator’s range. Routers also add redundancy to the network so that

in the event that one router gets disconnected, powered off, overwhelmed with traffic, another router

within range can take over. Finally, devices looking to join the network do not need to connect directly to

the coordinator; instead they can connect to the router closest to it. End devices can only talk to one other

device, its parent device. They cannot route data to other nodes. In terms of physical hardware, there are

two physical ZigBee device types; a full function device (FFD), and a reduced function device (RFD).

Full function devices are capable of being coordinators and routers and reduced function devices are

limited to being just end devices. Reduced function devices have a reduced stack size, which translates to

them requiring less memory and therefore being cheaper to produce [31].

There are three types of networks that the ZigBee protocol supports as well. The first is a star

network. It consists of a coordinator and multiple end devices connected to the coordinator, and is the

simplest network to form in that it does not need any routers. All messages pass through the coordinator

and then to their destination. An example of a star network is shown below in Figure 8.

29

Figure 8: ZigBee Star Network [32].

The second type of network ZigBee can form is a tree network. A tree network consists of a

coordinator as the top node with a branch and leaf structure below it. Routers are connected to the

coordinator and to one or more end devices. Messages travel up the tree as far as necessary, and then

back down it to reach their destination. An example of a tree network is shown below in Figure 9.

30

Figure 9: ZigBee Tree Network Topology [32].

The third type of network ZigBee can form is a mesh network. A mesh network consists of a

coordinator, routers, and end devices interconnected to each other. There are multiple pathways to reach

each node. Connections are updated and optimized dynamically through routing algorithms. An example

of a mesh network is shown below in Figure 10.

31

Figure 10: ZigBee Mesh Network Topology [32].

Common applications of ZigBee include industrial control, embedded sensing, home and building

automation, medical data collection, and smoke and intruder warning. It is not typically included in

mobile consumer communication devices such as cellular phones, laptops, or headsets since it has a very

low data rate and does not currently integrate with IP technologies [7]. However, the ZigBee Alliance has

formed an “Internet Solutions Initiative” to investigate ways of integrating IP networking into ZigBee.

The group aims to “make it easier for developers and system integrators to deploy ZigBee and to add

additional features and functions, including IPv6 support” and will allow continued growth of smart grid

applications [33], [34]. This research is supported by many leading electronics manufacturers, including

Texas Instruments.

Comparison and Selection of Protocols

After surveying the available commercial wireless standards, it was determined that they are all

suitable candidates for a multiprotocol green energy communications system. They all have their own

strengths and weaknesses. Of them, ZigBee uses the least power but has the lowest data rate. Wi-Fi uses

the most power, but also has the highest data rate. Bluetooth was also considered however, since

integrating Wi-Fi with Bluetooth to lower communications power has already been proven by other

projects such as CoolSpots, it was decided that this implementation would just integrate Wi-Fi and

ZigBee. Furthermore, ZigBee has many advantages over Bluetooth, such as a longer range and a ZigBee

32

network can also contain 65,536 devices, as opposed to the 8 devices in a Bluetooth network. Table 3

summarizes these results. A final implementation of a multiprotocol green energy communications

system could incorporate all three protocols. However, this project is just a proof-of-concept with

limiting time constraints.

Table 3: Wireless radio comparison table. The table lists the factors deemed important to the project. Scalability was

considered due to the desire of wireless ubiquity. Data taken from [6] [10] [35] [36] [37].

Wireless
Protocol

Data Rate Range
Scalability (Max number

of cell nodes)
Power (W)

ZigBee 250 Kbits/s 100 m >65000 0.085

IEEE 802.11a 54 Mbits/s
100 m Inside,
300m Outside

8 1.3

IEEE 802.11b 11 Mb/s
100 m Inside,
300m Outside

8 1.3

IEE 802.11g 54 Mb/s
100 m Inside,
300m Outside

8 1.3

IEEE 802.11n 150 Mb/s
100 m Inside,
300m Outside

8 1.3

2.3 Mobile Device Power Management

The purpose of power management is to avoid excess consumption of power in electrical devices.

This practice has recently taken the spotlight due to the boom of interest in environmental dilemmas such

as global warming. Power management for computers is an attractive feature for reasons other than

environmental impact as well. A power-conscience PC will see benefits such as longer battery life, less

heat, and lower power consumptions resulting in lower costs. Heat is one of the biggest problems

machines experience, it can often result in component failure and a reduction in overall system

performance. Decreasing the heat generated by a device also lessens the need for extraneous cooling

systems, such as additional heat sinks, fans, and liquid cooling.

However, in the realm of mobile wireless radio devices the most appealing aspect of power

management for low power consumption is longer battery life. According to a study conducted on a

Toshiba 410 CDT mobile computer the typical power consumption of a computer is that 36% of the

power is consumed by the display, 21% by the CPU and memory, 18% by the wireless interface, and 18%

by the hard drive [36].

33

Figure 11: Toshiba 410 CDT mobile computer. Typical power consumption of a Toshiba 410 CDT Mobile Computer [36].

In mobile devices such as smart phones the power break down is slightly different. Figure 12

displays a pie chart of the power consumption break down for a typical mobile device Wi-Fi and

Bluetooth enabled. In mobile devices the power consumption of Wi-Fi overshadows that of the other

components. In particular the CPU of a mobile device uses much less power. Consequently by enabling

Wi-Fi to sleep more often by implementing a default ZigBee communications network that handles the

less bandwidth intensive processes it is possible to significantly increase battery life and conserve energy.

Display
39%

CPU and
Memory

23%

Wireless
Interface

19%

Hard Drive
19%

34

Figure 12: Laptop power breakdown. Power breakdown for a connected mobile device in idle mode. The wireless

interfaces consume approximately 70% of the total power. Since the device is idle, the LCD and backlight are turned off –

consuming zero power. Other includes power regulation and other smaller subsystems (such as LEDs) [10].

To combat the rate of energy consumption wireless technology experts have developed

techniques to reduce this consumption. Wireless radios typically have three states of operation; transmit,

receive, and idle. Standby, idle state, and sleep mode are known as low power modes. During all these

states the radio is in an extremely low power mode, almost off, but turns on after a predetermined interval

of time to receive a beacon from the access point (AP). The beacon will tell the radio whether it has

incoming data. If it does have data then it will switch to receive mode. Once it receives the data the radio

switches back to sleep mode. Likewise when the radio needs to transmit data it switches to transmit

mode, once the data is sent the radio returns to idle mode. Often receive and transmit modes are lumped

together in a mode called active transfer mode.

Wi-Fi
63%

CPU
4%

SDRAM
7%

Bluetooth
6%

Other
20%

35

Table 4: Radio states of operation.

State of Operation Description Energy Consumption Rate

Transmit Sends data out of the radio. Highest consuming power state.

Receive Receives incoming transmissions. High power consumption rate, but

slightly lower than transmit.

Idle Transmits and receives no data but

turns on receive state periodically to

receive beacons.

Lowest power consumption.

As mentioned earlier in sleep mode the radio is on standby, only receiving and transmitting in

intervals. Many times the radio will turn on during sleep mode only to find that it has no data addressed

to it. This process uses energy which is undesirable for longer battery life. To solve this issue this project

proposes to use ZigBee during the sleep mode and also when the network’s bandwidth is experiencing

minimal capacity. The Proxim RangeLAN2 2.4 GHz 1.6 Mbps PCMCIA (Wi-Fi) card consumes 1500

mW in transmit, 750 mW in receive, and 10 mW in sleep mode and power consumption for Lucent’s 15

dBm 2.4 GHz 2 Mbps Wavelan PCMCIA card is 1820 mW in transmit mode, 1800 mW in receive mode,

and 180 mW in standby mode [36]. Current draw from ZigBee radios tells us that the average transmit

current draw for a ZigBee radio is 15.8 mA, if Wi-Fi has a current draw of about 300 mA according to

Table 5 that’s 5% of the transmit power of Wi-Fi. ZigBee’s transmit power is even lower than the sleep

mode power consumption values of Wi-Fi. This project proposes to take advantage of this aspect of

ZigBee [38].

Table 5: Current draw from ZigBee radios

ZigBee Radio Model Transmit (mA) Receive (mA)

mica2 15 9

mica2dot 15 9

micaz 17.4 18.8

AVERAGE 15.8 12.26666667

36

Table 6: Typical Current Draw Values of Wi-Fi [36], [10], [6], [39], [35]

Wi-Fi Card Low-Power Idle (mA) Transmit (mA) Receive (mA)

CX53111 N/A 219 215

Prism I 50 488 287

Prism II 43 325 215

ORiNOCO PC Gold 161 280 190

Cisco AIR-PCM350 216 375 260

Linksys WUSB54GC
1
 267 369 304

Experimental Values obtained from this project.
1

Figure 13 shows the power consumption of each protocol during transmit and receiving. From

Figure 13 we can see that ZigBee is the better protocol in terms of power consumption. Most notable is

that Wi-Fi consumes roughly seven times the power of ZigBee during both modes of operation.

However, Wi-Fi has certain advantages that are important to consider. One advantage of Wi-Fi is the

energy consumption, with units of Joules/Megabyte. This measurement illustrates how many Joules of

energy are used to transfer a single Megabyte of data. If the user wishes to download an extremely large

file, or perhaps stream video it would take a long time to do so with ZigBee, meaning that ZigBee would

need to stay in active transfer mode for a great amount of time eventually consuming significant amounts

of energy. While if the user used Wi-Fi for the same application it would download much quicker and

therefore the radio would be active for a much shorter period of time and in turn use less energy. The

ideal solution for this problem would be to develop an algorithm that would be able to sense when an

application needed the high capacity and speed of Wi-Fi and switch between that and ZigBee when

appropriate.

Table 7: Typical Power Consumption of Wi-Fi Radios

Wi-Fi Card Idle (mW) Transmit (mW) Receive (mW)

Cisco PCM-350 390 1600 N/A

Netgear MA701 264 990 N/A

Linksys WCF12 256 890 N/A

CX53111
1
 N/A 723 710

Linksys WUSB54GC
2
 1308 1775 1470

802.11b Wavelan 1319 1675 1425

Experimental Values obtained from this project.
1

37

Figure 13: Comparison of the power consumed by the

transmit (TX) and receive (RX) states for Bluetooth, Ultra-

wideband, ZigBee, and Wi-Fi protocols [38].

Figure 14: Comparison of the normalized energy

consumption for each protocol [38].

2.4 Green Communications

There are two areas of current research into reducing wireless communications power

consumption. One area of research is utilizing multiple wireless protocols to achieve the lowest possible

power consumption while still maintaining an acceptable bandwidth for the current tasks. The other area

of research is intelligently powering off the wireless radios of the device based on user demand and

history. Programs monitor user behavior to determine at what times the radio is not likely to be used, and

therefore power it down. Several of these approaches are outlined and analyzed below.

CoolSpots, a research project by researchers from Intel and UC San Diego, aimed to reduce

power consumption by intelligently switching between Wi-Fi and Bluetooth wireless protocols. When

available, Bluetooth became the default transmission mode. A program on the user’s computer monitors

the network usage. Intelligent algorithms with weighted parameters were put into place to decide when to

switch from Bluetooth to Wi-Fi, and vice-versa. The results of the project were very encouraging –

devices running CoolSpots had over a 50% reduction in energy consumption of the wireless subsystem

[10]. This research was valuable because it utilized actual measured results from physical testing. This

project proved it was physically possible to reduce power by using a multi-protocol system.

Unfortunately the protocols used greatly hindered the mobility of the mobile user. Since Bluetooth itself

is a “cable replacement” protocol, it has a very limited range when compared to Wi-Fi.

A similar project, “A Switch Agent for Wireless Sensor Nodes with Dual Interfaces:

Implementation and Evaluation”, explored the advantages of a dual-protocol network. This study only

utilized simulations instead of a full physical implementation. There results indicated that, the end-to-end

0

100

200

300

400

500

600

700

800
P

o
w

e
r

C
o

n
su

m
p

ti
o

n
 (

m
W

)

TX

RX

0

50

100

150

200

250

300

350

N
o

rm
a

li
ze

d
 E

n
e

rg
y

C

o
n

su
m

p
ti

o
n

 (
m

J/
M

b
)

TX

RX

38

delay and throughput achieved by the proposed interface switch agent was comparable to those achieved

in a network of sensor nodes equipped only with IEEE 802.11 radios. Secondly, that energy consumed in

the network using their interface switch agent was a fraction of that consumed in a network of the IEEE

802.11 sensor nodes and is comparable to that of sensors using only IEEE 802.15.4 radios [11]. This

project is important because it proves that by using a multi-protocol system, significant gains can be

achieved without sacrificing performance. This single handedly proves the feasibility of the team’s

concept for a multi-protocol system. The only downside to this project was the implementation. It was

purely simulation based, relying on mathematical models rather than actual measurements. This is the

major division between the team’s approach, and the approach outlined in this paper.

Another area of research in wireless communications power reduction deals primarily with the

application layer. In particular a paper called Managing Battery Lifetime with Energy-Aware Adaptation

proposes a program called PowerScope, that monitors the energy consumption of a computer and pin

points what process is the top cause of power consumption. Using this program they were able to modify

Linux to yield battery lifetimes of user specified duration. They found that they were able to extend the

life of the battery by as much as 30% [40].

Another program, called JuiceDefender, runs on Android smartphones. It increases battery life

by turning off many features of the device, such as the Wi-Fi radio, 3G radio, display, and GPS depending

on user customizable parameters. Parameters include time of day, time the device has been inactive,

location, and battery life remaining. The Wi-Fi or 3G radios can be scheduled to turn on routinely to

check for updates. Users can select from different pre-configured profiles, or create their own.

Depending on the device used and how aggressive the settings are, battery life can increase anywhere

from 25% to sometimes as much as 400% [41]. The most significant knowledge gained from this

research was the software management system utilized. It outlined an approach to maximize battery life

puely through software by eliminating unimportant processes and functions. However, this report was

lacking guidance for power management of communication devices, primarily the Wi-Fi interface, and

how to reduce its power consumption.

2.5 Summary

This chapter provides a background for the topics relating to the project. Section 2.1 Cognitive

Radio discusses cognitive radios for their abilities to analyze and react to the wireless environment

surrounding them. Both the software and hardware means of monitoring transmission parameters of

radios were researched in this section. Section 2.2 Commercial Wireless Standards covers the multiple

commercial wireless standards were considered for use in this project. In order to determine which

protocols best suited the goal of the project team research into Wi-Fi, Bluetooth, and ZigBee was

39

necessary. Understanding energy management is also essential to develop a “green” network. As such, a

thorough understanding of the power consumption of modern mobile devices was needed, as seen in

section 2.3 Mobile Device Power Management. Finally, in section 2.4 Green Communications were

studied to develop an understanding of the current work being put into reducing energy in the

communications industry.

40

Chapter 3: Proposed Design and Project Logistics

This section discusses the main goal and objectives of the project. It goes into detail about the

general design for the proposed wireless network management system and the hardware and software

used to implement it.

3.1 Main Goal

Wi-Fi radios consume a significant amount of energy listening to beacons sent from access points

as well as remaining in an inactive standby mode. Currently, almost all wireless protocols include a low

power state in their standards, Wi-Fi has its own low power mode called Power Saving Mode (PSM). In

this mode the wireless network interface card goes into longer sleep cycles. Every few milliseconds the

card needs to wake up and look for beacons being sent by the access point. The beacons contain

information that tells the computer whether or not it has any incoming data. When the wireless card isn’t

checking beacons it’s in a sleep state. In the sleep state the radio uses as little energy as possible while

still staying powered on. PSM also reduces transmission energies by going into a sleep phase for an

extremely short period of time during transmissions. The time it is asleep during the transmission is

extremely short, on the scale of milliseconds, however it does result in noticeable power savings. In low

power mode the time between checking for beacons (the sleep state) is extended and in effect reduces

power consumption. The problem with Wi-Fi is that even in sleep state it consumes a relatively large

amount of power when compared to other protocols such as Bluetooth or ZigBee. Even when ZigBee and

Bluetooth are in active transfer mode they consume less power than Wi-Fi in its sleep state. However,

this is at the tradeoff of lower bandwidth and transmission range experienced by Bluetooth and ZigBee.

The goal of this project was to develop a wireless network that combines the energy efficiency of

the ZigBee protocol IEEE 802.15.4 and the speed and high bandwidth of the Wi-Fi protocol IEEE 802.11

in order to improve upon the energy efficiency of current Wi-Fi only networks. The ZigBee radios would

be used for low bandwidth applications, for which Wi-Fi would be in a power save or low traffic state.

Then when additional bandwidth is needed the Wi-Fi connection would be initiated. Such a network

would be ideal for any wireless device that relies on battery power. The benefits of this network would be

extended battery life as well as a decreased impact on the environment through the conservation of

electrical energy.

 This design has many technical challenges to overcome. These challenges range from

implementing basic communication features of the two protocols, to the overall data and power

management system. These technical challenges include:

41

 Standardization of data transfer methods into each protocol: Currently, there exists no

program that can interface between the ZigBee and Wi-Fi networks. So the project team

needed to construct and program this interface themselves.

 Implementing power control of Wi-Fi hardware: In standard OS’s the Wi-Fi hardware is

controlled by the network manager that is imbedded in the OS. For this project the team

needed to develop a technique to turn off the OS’s network manager and allow a different

network manager, developed by the team, to take control.

 Implementing protocol/radio switching control: A program is needed to interface between

the two radios and also to control the switching aspect of them.

 Implementing ZigBee, relatively unused protocol with little software and documentation

available for developing a data transfer network: ZigBee is a relatively new technology,

and at the time that this project was being developed no prebuilt software was available to

control any sort of data transfer between two ZigBee nodes. So the team programmed their

own software to allow data transfer.

 Testing, monitoring, and measuring the power efficiency of the proposed network: In

order to evaluate and monitor the wireless network and devices the team needed to develop a

method to measure and observe the electrical consumption of the devices.

42

Figure 15: Simplified Dual Node Network, utilizing a single access point and mobile user.

The diagram above outlines the basic physical system the team is to develop. The concept will utilize

only two nodes, minimizing the complexity of the network. Since this project’s purpose is to demonstrate

the power advantages of a multiprotocol network a larger network will not be constructed. This

complexity can be expanded in future designs if necessary. As seen above the nodes to be constructed are

an access point and mobiles user. As seen each node is equip will both a ZigBee and Wi-Fi radios, but

will use these radio differently upon role in the network. For example, since the access point, in theory,

will be constantly connected to multiple users with both protocols, it will maintain both interface at all

times unlike the user nodes.

43

Figure 16: Flow-Chart of cognitive radio logic to gain the best power performance.

Above is a flowchart of the internal intelligence of the mobile user. This flow chart illustrates the

heart of the mobile user’s cognitive process. It controls which interface will be used to transfer data and

when switching will occur between these interfaces. The cognitive process implemented utilizes both the

amount of data in the queue and the current bandwidthbeing used by the two wireless radios of the mobile

user. The system decides when to switch between the two protocols based on precalculated thresholds.

These thresholds were constructed using the transmission power usage and the bandwidth capabilities of

each protocol. When the threshold of ZigBee is exceeded the system switches to Wi-Fi, and when the

lower bound threshold of Wi-Fi is passed, meaning that Wi-Fi is not using enough of its bandwidth to

warrant the high power consumption, the system switches Wi-Fi off and ZigBee takes control. The

overall concept of this system is that Wi-Fi is used for data transfer because of its speed and ZigBee is

used as the idle state of operation due to its extremely low power consumption.

44

3.2 Project Objectives

The main objective of the proposed design is to reduce the energy consumption of the

communications system through the use of multiple wireless protocols controlled by cognitive methods.

To achieve this objective the system must meet several objectives:

 The system needs to have an algorithm to determine which protocol (ZigBee or Wi-Fi) is

the most efficient for the task or situation.

 The system needs to seamlessly transition between the two protocols.

 The system needs to be able to transmit and receive data between two computers using

the two protocols.

 The system, when implemented, should not have a significant negative impact on the data

rate and performance of the system when compared to a Wi-Fi only network.

 The system is required to be more energy efficient than the Wi-Fi only network.

These objectives will be completed through the development of individual subsystems and then be

combined to create a single fluid system. The subsystems consist of the ZigBee Communication

Subsystem, the Wi-Fi and ZigBee Algorithm Subsystem, and the Power Management Subsystem. These

subsystems are explained in section 3.4 Design Decisions. When completed this system will enhance the

battery efficiency of the mobile system for which it is installed upon, while at the same time not hindering

the performance of the system compared with current Wi-Fi only solutions.

3.3 Project Management and Tasks

To complete the project on time the team divided the work into three sections and split up the

sections among the members. The project was broken up into three section for implementation; section

4.1 Setup and Installation of Equipment, 4.2 Software Radio Controller, and 4.3 Power Measurement

System. The project was broken up in this manner so that each member could specialize in one of the

three main areas of study of the project.

45

Figure 17: Breakdown of project among the team.

The team required a ZigBee communication system that was able to transmit and receive files, as

such it was necessary for one member to acquire extensive knowledge strictly regarding ZigBee. The

algorithm for switching dealt with interfacing between the two protocols in one program; this required

one member to acquire extensive knowledge into the API’s of both Wi-Fi and ZigBee. The final member

was responsible for understanding the power modes and how to monitor these modes of the Wi-Fi, and

ZigBee, card in an intelligent way to determine the efficiency of the overall design. Wi-Fi networks are

already developed and used all over the world, and as such there was no need to focus any member on

setting up a Wi-Fi network in the same manner as ZigBee. As seen from the diagram above these three

main tasks are broken down into several subtasks. The lines in Figure 17 indicate tasks that are

dependent on the completion of other tasks. These interdependences are the first steps in the overall

system unification, which forced the team early on to work on components together. The natural

progression, as seen above, was the construction of these smaller blocks in green and purple, then a

system level conjunction of the red blocks, and finally an overall system construction in the blue block.

These system level combinations proved to be the most difficult and the most time intensive to

troubleshoot.

46

The project team also created a Gantt chart. The Gantt chart displays each task that needed to be

completed and the time allotted to complete the said task. The planned Gantt chart for this project is

displayed below in Figure 18.

Figure 18: Planned Gantt Chart.

However, in reality things don’t always go as they plan and as a result Figure 19 shows the Gantt

chart for the actual progress through each task.

47

Figure 19: Actual Gantt Chart.

3.4 Design Decisions

Design Decision Methodology

The overall goal for this project was to create a wireless network that used multiple protocols to

reduce energy consumption in mobile devices. The plan would require that both the access point node

and the mobile device would have both protocols. If the user of the mobile device needed to run an

application that required a large bandwidth, such as video streaming, the device would switch to Wi-Fi.

When the user didn’t required high bandwidth, such as when sending texts or being idle, the mobile

device would switch to ZigBee to conserve power. The two major benefits of this idea are a reduced

carbon footprint on the environment and longer battery life, while not hindering performance.

48

To create an energy efficient system the network needed two protocols that had complementary

attributes. To determine which protocols to use the team compared the aspects of four protocols; Wi-Fi,

ZigBee, Bluetooth, and 3G. 3G was immediately thrown out due to its complexity, scope, and lack of

readily available development hardware and software. This left Wi-Fi as the only high bandwidth means

of data transfer. This left Wi-Fi as the only high data rate and high bandwidth means of data transfer.

Wi-Fi is also highly ubiquitous and many software methods exist for its protocol employment, making it

one of the easier protocols to implement. So the team chose Wi-Fi as the first protocol. The team next

moved towards selecting a second protocol which would complement Wi-Fi. To determine what protocol

would complement Wi-Fi the team constructed Table 8, to evaluate its strengths and weaknesses.

Table 8: Wi-Fi pros and cons table. To find a suitable protocol to complement Wi-Fi it was necessary to evaluate the

strengths and weaknesses of Wi-Fi first. Overall Wi-Fi is a quality wireless network. To improve Wi-Fi the team decided

that the weakness of Wi-Fi was its high power consumption. Leading them to search for a low power protocol. Data

taken from [38].

Wi-Fi (IEEE 802.11 a/b/g): Pros and Cons

Pros Cons

Max Signal Rate of 54

Mb/s

Nominal TX Power

of 32-100mW

Range of 100 m inside,

300 m outside

Channel Bandwidth 22

MHz

The table claims that the main con of Wi-Fi is its costly power consumption. To compensate for

this the team looked at two lower powered protocols; Bluetooth and ZigBee. In Table 9 several aspects of

these protocols are compared. The bandwidth and signal rate of Bluetooth is much higher than that of

ZigBee; however the limited range of Bluetooth compared to Wi-Fi would force the group to construct

several Bluetooth nodes to compensate for the it’s limited range. ZigBee on the other hand has a nominal

range that is very close to that of Wi-Fi. With ZigBee the group could simply install ZigBee radios into

Wi-Fi nodes, creating a one to one Wi-Fi to ZigBee node ratio. By constructing fewer nodes the group

would decrease cost and complexity of the overall network. Therefore, the project team chose ZigBee for

its low power consumption and superior range capabilities. The only downside being the limited

documentation that exists for ZigBee, compared with that of Bluetooth.

49

Table 9: Bluetooth vs. ZigBee vs. Wi-Fi Comparison Table. Data acquired from [38].

With the necessary protocols chosen the team moved forward to create an actual wireless network

that used these two protocols, Wi-Fi and ZigBee. For simplicity the network would be simplified to a two

node system, which included an access point and one satellite mobile node. The access point and mobile

device would be constructed with both protocols. On the access point both wireless radios would be

constantly running, while the user would be running initially on ZigBee by default. At first ZigBee would

only listen for packets and act as the standby mode for the mobile user. If the user wanted to stream video

or any other bandwidth intensive task the mobile device would switch to Wi-Fi. After getting this

working correctly the team would then begin to utilize ZigBee for minor transfer tasks such as text

messaging. To switch between the two protocols the team would need to implement some sort of

cognitive switching alogrithm. Before deciding how to implement this switching algorithm the team

moved towards selecting a platform for the two chosen protocols.

The first platform the team considered was a cellular device, specifically the Android cell phone.

Androids were readily available and have detailed documentation in there development. Unfortunately

the team decided that developing this technology on a prebuilt cellular device would prove too difficult

due to the restraints places on such devices. It would almost be impossible to add secondary hardware

radios to the device. So the team decided to develop the project on laptop PCs for a more flexible

development platform. This development would primarily take place in Linux due to its level of

hardware control.

With the hardware selected the team reevaulated the goal of the project and considered what was

possible with this hardware in a nine week period of time. After much deliberation, the group chose to

simplify the project further. Instead of switching between protocols depending on the application’s

bandwidth requirements, the group instead would use ZigBee for low power mode and for sending Wi-Fi

authentication and handshake information. Energy would be conserved primarily by eliminating

nonessential Wi-Fi transmissions including handshakes and other link layer information. The team

suspected that sending handshake information would be the most difficult step in the process due to the

 Wi-Fi (IEEE 802.11 a/b/g) Bluetooth (IEEE 802.15.1) ZigBee (IEEE 802.15.4)

Max Signal Rate 54 Mb/s 1 Mb/s 250 Kb/s

Nominal Range 100 m (inside), 300 m

(outside)

10 m 10-100m

Channel

Bandwidth

22 MHz 1 MHz 0.3/0.6 MHz; 2 MHz

Nominal TX Power 32 - 100mW 1-10 mW 1-0.003mW

50

complexity of the Wi-Fi standard. However after much research and hardware evaluations, sending

authentication data for Wi-Fi through ZigBee proved to be both very difficult and very ineffective for

conserving energy. The idea was dropped for two reasons:

1) The layers that makeup the Wi-Fi protocol are incredibly complex, and primarily the lower

layers which are responsible for network association are inaccessible with the hardware

available to the project team. Just to get access to those Wi-Fi layers the team would need to

reverse engineer the networking cards. This would take much more time and expertise than

the group could spare.

2) ZigBee and Wi-Fi use different levels of abstraction from the operating system and in order

to make them work together we needed an even plane, and working at the MAC and PHY

layers doesn’t allow this freedom.

Another problem observed through experimentation was that the energy savings saved from using

ZigBee for the authentication processes would be very small. This is due to the narrow periods for which

authentications takes place in Wi-Fi networks. To produce a greater power savings and simplify the

project the team decided on a new project concept. The new concept still involved a wireless network

that used two protocols, ZigBee and Wi-Fi, and the utilization of the same hardware. The access point

will be a laptop with both Wi-Fi and ZigBee radios. The access point will emit both protocols

continuously. The mobile user, a laptop, will also be able to receive and transmit both protocols. The

network will only be used to send data files between the two nodes. The team chose to only send files to

keep the project simple, the project still intends to prove that using ZigBee for low bandwidth and data

rate intensive tasks is more energy efficient than Wi-Fi Power Saving Mode (PSM). The files will be

different sizes and will be sent at different data rates. In standby mode the laptop will use ZigBee to

receive beacons from the ZigBee access point. In this standby mode the Wi-Fi will be off, only turning

on when ZigBee could not handle a high bandwidth demand.

When the user sends a file the file will be sent through ZigBee automatically. However, there

will be an algorithm that monitors the bandwidth and data rate of the radio channels. This algorithm will

be responsible for switching between Wi-Fi and ZigBee. While the user sends a file the algorithm is

making sure the bandwidth is not overcrowded. To determine when it is appropriate to power on Wi-Fi

and use it for data transfer, the team would develop an intelligent algorithm to make this decision. The

algorithm would monitor bandwidth and data rate of the combined interface. This algorithm would have

precalculated thresholds based on the power characteristics of the physical device, and the network

throughputs of the devices. Once the interface was selected a software interface was contructed to

communicate between the different radios. Instead of physically monitoring data transmitted the team

devised a queuing system. The queue would be a first in first out list and depending on its size and rate of

51

growth would determine which protocol its output would be transmitted from. For example, if the queue

reached a certain level or was growing as a relatively fast rate the algorithm would initialize Wi-Fi and

switch the queue’s output to use Wi-Fi. The system would also have to be smart enough to not switch to

an interface that was unavailable.

To prove that the network created in this project is more power efficient a number of tests will be

done and compared to the control. The control will be Wi-Fi (PSM) running the same processes but

without ZigBee. The project will monitor the voltage drop across a resistor that will be placed in series

with the USB power line attached to the Wi-Fi USB adapter and another to the ZigBee USB adapter,

displayed in Figure 24. With the voltage it is possible to calculate the current, and with the current it is

possible to calculate the power, measured in Watts. This will measure the communications power but not

the total power of the system. To measure the total power the team will use PowerTOP. PowerTOP is a

Linux program that monitors the total system power consumption, as well as individual component power

usage. The project team will also measure the Joules/Mbit. Watts allow the group to examine the rate at

which energy is consumed and how much is consumed overall during the specific process. However,

Joules/Mbit will allow the group to observe how much energy the computer uses per bit of data with the

proposed multi-protocol network. Both of these values are important for evaluating the proposed

network.

3.5 Design Summary

The design approach implemented has gone through many changes and revisions. These

revisions were necessary to create a multi-protocol wireless network that was both energy efficent and

without compromised performance. The final design consists of two netbooks running Linux and

software to control their specialized dual communication interfaces, this design is both stable and easily

configurable.

52

Chapter 4: Implemetation

This section discusses the specifics of the execution of the project. First, it describes the setup of

the equipment, including laptops, drivers and operating systems. Then, it details the algorithm and code

development process of the software controlled radio. Finally, it explains the setup and utilization of the

power measurement equipment.

4.1 Setup and Installation of Equipment

The first step was to decide which hardware platform to use as a testbed for the software

controlled radio. While the future goal of this project would be to implement the SCR on all mobile

devices, a single platform was deemed sufficient for this proof-of-concept implementation. Laptop

computers were used because of their portability over desktop computers. Asus EEE netbook PCs were

chosen because they were readily available to the team in the lab. The next step was to decide which

operating system to install on the laptops. The Ubuntu Linux operating system was selected over

Microsoft Windows and OSX because they offer more hardware and software control to the user.

Afterwards, the team had to do decide on radios to use. The first question was whether to use

internal or external radios. External radios were chosen because they allowed the communications power

to be measured directly and independently of the total system power. To measure the power consumption

and efficiency of internal network cards, the team would have to physically open the laptop and connect

digital multimeter to it. However, external USB network adapters allow much easier access to the power

pins, making power measurements much easier. The ZigBee radio used was the XBee Pro USB radio.

The Wi-Fi adapter used in this experiment was the Linksys Cisco WUSB54GC 802.11 b/g. These unit

was chosen because of their availability. The team was given these Wi-Fi and ZigBee adapters upon the

start of the project.

Now that the radios were chosen, the next step was to determine how to control them to optimize

power. Since Wi-Fi was going to be turned on an off as needed, the team needed a way to reduce its

power usage when it was not being used. This control was implemented through the Unix commands

“iwconfig” and “ifconfig”. Additional control was also implemented by softblocking the radio to

eliminate its power usage on a closer hardware level. The Wi-Fi interface would first be softblocked and

then hardblocked. This was accomplished by “rfkill” switch packages. Softblock is a method used to

simply disable a radio network interface. “Softblocking an interface” is blocking the use of that interface

through software. Hardblocking, however, physically powers down or disconnects a device. This is

usually done with a button or by physically ejecting a device. Another way to hardblock a device is to

power down its root power supply, which can be done through software, primarily on USB devices.

Normally hardblocking can cause a device to disassociated from the host, meaning it must be

53

reassociated. This can cause considerable delay. Fortunately, since the team was able to accomplish

hardblocking through software, they were able to overcome this obstacle.

The team was able to control the power modes of the root USB hub for which this device was

connected to. With this new ability to control the Wi-Fi card came a number of concerns for the team.

They included latency issues associated with hard-blocking because the card must re-associate with the

operating system once it has been hard-blocked. The second issue was the uncertainty of the power

saving gained or lost from this approach. The team was unsure of the actual power savings gained by

physically turning off the USB root hub verses just soft-blocking or powering down the radio. To answer

these questions the team conducted a series of tests.

The first test was to measure the latency of power up and re-association when powering down the

USB Wi-Fi dongle fully. The tests used a constantly pinging sources to confirm when disconnection and

when re-association occurred. The pings are sent in one second intervals from the node to and external

server, and can be seen in the right half of the screen shot below. On the left is the output of the teams

script which performed several operations. It basically would disconnect from the network, power down

the Wi-Fi card, wait 1 second, power the card back up, then finally re-associate to the managed network.

As can be seen from the screenshot it took roughly 5 seconds to complete the test. This test was repeated

several times with times ranging from 3 seconds to 5 seconds to complete. The reason this ranged was

because of the associated that needed to be done by the DHCP server within the router itself. Additional

tests were done using an statically maintained internet procotol addresses instead of dynamic ones. As

long as the system connected within its lease period, which commonly last 24 hours, the card could

associate instantly. In future versions static internet protocol addresses could be managed through the

ZigBee interface to predetermine tables before connections. This would guarantee instant connections

with Wi-Fi. In this project the team decide to focus primilary on dynamic internet protocol address

because it is generally more common in the market place. Overall, these results were extremely

acceptable to the team, and the powering aspect appeared almost transparent from cycling the card

without dropping from full power.

54

Figure 20: Wi-Fi USB connectivity scripts testing. The terminal window on the left shows the Wi-Fi power down and

power up scripts running. The terminal on the right shows when packets can reach the internet and when they cannot.

The second test the team conduct utilized the same script as the previous test, but with an

extended waiting window between powering up and powering down. The purpose of this test was to

determine the difference between the card’s power usage when being hard-blocked and being unhard-

blocked. To perform this test the used a Hewlet Packard 34401A Multi-meter connected to Matlab for

data acquisition. Matlab would take measurements every 0.5 seconds of the voltage leading into the

Linksys WUSB54GC dongle through a predefined resistance of 500mΩ. Below is a picture of the teams

test bench setup using the Eee PC 4G to control the networking card, running Ubuntu 10.04 LTS.

55

Figure 21: Test bench setup with Eee PC to monitor latency and power usage. The Netbook is running the

communications system and controlling the radios. The USB cable is spliced open and connected to the resistor. The

DMM, which is also connected to the resistor, measures and records the voltage drop across the resistor.

The team’s data can be seen in the chart below, which is a representation of the voltage change

over a period of twenty seconds. From the chart you can obviously see the power dip and sustained low

voltage for a period of three seconds then a sharp rise. This very noticeable voltage drop was extremely

attractive to the team. By powering off the networking card’s root USB hub, they were able to drop the

power consumption to roughly 2% of full power. Even in low power mode (PSM) the card will operate at

60% full power when idle. Therefore this drop in power to 2% provided the team a large power savings.

56

Figure 22: Voltage of Linksys WUSB54GC dongle being hard-blocked and unhard-blocked.

4.2 Software Radio Controller

The software controlled radio (SCR) handles all communications and data transfers. It monitors

the amount of bandwidth used by the device and uses an algorithm to determine whether to use ZigBee or

Wi-Fi to transmit data. The first step in developing the SCR was to develop this algorithm. This was

done by considering the power consumption and data rate of both protocols. ZigBee is roughly 250Kbps

and Wi-Fi is 54Mbps, but Wi-Fi can operate in a range of bandwidths. Therefore, as the bandwidth

grows above a certain threshold it would be power efficient to switch from ZigBee to Wi-Fi. In other

words, the team needed to determine at what bandwidth Wi-Fi becomes more efficient than ZigBee.

Based on the above equation the bandwidth at which Wi-Fi becomes more efficient is

1.955Mbit/sec. With this calculated thresholds the team then moved the values to the device, were they

were tuned even more. When moved to the actual hardware, significant transmission speed losses were

seen. This occurred because of the increase overhead of the system, and level of controlled needed for the

prototype. This was designed purely for proof of concept, with future work this speed could be regained.

Since the bandwidth threshold where Wi-Fi becomes more efficient than ZigBee is relatively low, it was

decided to simply consider the size of the queue when determining which protocol to use. All data to be

transmitted and received was represented within a single queue. If the queue data size ever became larger

than a certain size, then Wi-Fi would switch on. Once Wi-Fi is on and transmitting, it stays on until the

queue is empty, since most of the inefficiency in this system is due to Wi-Fi initialization. It will remain

on until the queue has been empty for a certain period of time, then turn off.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 5 10 15 20

V
o

lt
a

g
e

 (
V

)

Seconds

57

Now that the theoretical background behind the SCR was determined, the next step in developing

the SCR was to select a programming language. Many languages were considered, including C++ and

C#, but Java was ultimately decided upon for multiple reasons. The Java standard libraries include

support for networking with TCP/IP sockets, creating graphical user interfaces, and multithreading – all

features which would greatly aid in the programming of the SCR. Additionally, an open-source API for

the XBee ZigBee radio was found written in Java. Lastly, Java is designed to be able to run on any

platform that can run a Java Virtual Machine, including all major desktop operating systems (Windows,

Macintosh, and Linux) as well as portable mobile operating systems such as Google Android.

Now that the programming language for the SCR were selected, the actual method of

implementing and testing the system had to be decided upon. As mentioned before, the Wi-Fi protocol

has support for networking through TCP/IP sockets whereas ZigBee does not. Since most networking

applications on a personal computer are designed to use sockets, ZigBee could not be used with existing

programs without modifying the source code of the program or operating system. Since this would take a

long period of time to implement, it was decided that rather than monitor network traffic of typical user

activities, such as viewing web pages, voice-over-IP calls, streaming videos, and video conferences, these

activities could be simulated by creating a program to send and receive customizable amounts of data. In

other words, a file transfer program would be created to send and receive file data through both Wi-Fi and

ZigBee.

The first functionality built into the software controller were methods to interface with the XBee

radio. Xbee-api, an open source Java application programming interface (API) was obtained to facilitate

working with the XBee radio. It provides a wrapper to handle the low level functionality of common

radio tasks, such as building and sending packets, waiting for acknowledgments, and listening for

incoming packets. Xbee-api was used as a starting point to build the rest of the ZigBee radio software. A

custom class was then created on top of the Xbee-api containing methods to perform the necessary tasks

required of the radio.

Before sending and receiving file data from one laptop to another, certain information has to be

sent between the two computers. Since, in this implementation, ZigBee would always remain on, it was

decided to send all control information for the network through the ZigBee protocol. Since the control

information of the network is sent over ZigBee, a common format for the data had to be created to ensure

received packets were handled correctly. Five different types of ZigBee packets were identified. To

differentiate them from each other, the first byte of each type of packet is given a unique number, or

“status byte”. The five different types of packets, along with their corresponding status byte, are listed

below:

58

0 (Wi-Fi Request): Sent from a user to the access point when the user requests Wi-Fi bandwidth.

It does not contain any data payload, since no other information is necessary in the request.

1 (Wi-Fi Info): Sent from the access point back to the user in response to a Wi-Fi request. It

contains all the information necessary to connect to the Wi-Fi network (the ESSID, mode,

and access point MAC address).

2 (Wi-Fi Stop): Sent from the user to the access point informing the access point that the Wi-Fi

connection is closing.

3 (File Transfer Request): Sent either from a user to the access point or vice versa. It contains

the file name and size in bytes of the file to be sent.

4 (File Data): Sent either from a user to the access point or vice versa. It contains bytes of the file

being sent, with a maximum of 70 bytes per packet.

With the control information defined, the subsequeny step was to determine how to transfer data

wirelessly. Java standard libraries include support for sockets to facilitate the transfer of data through any

internet protocol (IP) based connection, such as Wi-Fi. To set up a connection between two computers,

one computer first creates a socket on a specific port number and listens for connections. The client then

opens that socket. Once the connection has been established, data transfer can take place. The computer

sending the file reads the file into an input stream wrapper and sends that to the socket connection. The

receiving computer receives this output stream and then sends that information into a file object to be

saved on the hard drive.

Unlike Wi-Fi, ZigBee does not yet support the TCP/IP stack, meaning socket connections could

not be used. However, ZigBee packets can be configured with up to seventy-two bytes. Therefore, rather

than sending files through socket connections, it is still possible to send file data in ZigBee packets. Files

were read seventy bytes at a time and stored in a ZigBee “File Data” packet. The packet is then sent to

the receiver. The receiver has a packet listener, which runs in its own thread and waits until a ZigBee

packet is received. When a packet is finally received, it strips out the status byte (a leading “4”) and

stores the rest of the data in a file object. A variable, amountByteWritten, is then incremented by

the amount of bytes that were just written. If the amount of bytes written is equal to the total size of the

file, then the file is saved and closed. If an acknowledgement is not received by the sender before the

default timeout, the packet is resent to ensure data integrity. This continues until the entire file is sent.

Since the software controller could decides to switch between from ZigBee to Wi-Fi at any time,

the ability to switch transmission protocols in the middle of a file transfer is imperative. The system was

developed in a way that the transmission protocol is independent from the main program. In other words,

the main program calls the sendFile(file) method, which internally handles sending the file

through the currently selected transmission protocol.

59

Now that methods for sending and receiving files were completed, the next step was to develop

the data queue that contains the stack of files to be transmitted and the algorithm that determines when to

switch protocols. There are two objects that comprise the data queue. The first, queueFiles, contains

information about all the files to be transferred. It stores the name of the file, the size in bytes, and

whether the file is to be transmitted or received. The second, queueBytes, stores the sum of all the

bytes left to be transferred for all the files in the queue. As files are being transferred, queueBytes is

decremented in accordance with how many bytes have been sent. For every new file transfer request, a

new FileInfo object is added to queueFiles and queueBytes is incremented by the size of the

new file.

The bandwidth monitor contains all the logic that determines whether the mobile device should

transmit using ZigBee or Wi-Fi. It runs in its own separate thread so it can constantly monitor the queue

of files and the bandwidth consumption. Once started, the bandwidth monitor thread sleeps for 100

milliseconds, then runs its check of the data queue, executes its functions, and then loops back up to the

beginning to sleep for another 100 milliseconds. The thread sleeps in order to not waste CPU cycles

checking the data queue constantly. 100 milliseconds was chosen because it still checks the data queue

often but does not overwhelm the CPU. The first check the monitor performs is to determine whether or

not Wi-Fi is enabled. If it is not, it then checks to see if Wi-Fi is turning on and being initialized. If it is,

then it loops to the top. If not, it checks to see if the data queue is greather than the Wi-Fi turn-on

threshold. If the queue size is greater than the threshold, then there is too much data for ZigBee to send

efficiently. A Wi-Fi request packet is sent to the access point and Wi-Fi will be turned on to empty the

queue. If the queue size is not greater than the threshold, then the monitor loops back to the start.

If Wi-Fi is enabled, then the monitor checks whether or not the data queue is empty. If it is not

empty, then there is still data for Wi-Fi to send. The queue empty time counter (Wi-Fi Queue Empty

Counter) is reset to zero and the monitor loops back to start. If the data queue is empty, then the queue

empty time counter is incremented. The thread then checks to see if the queue empty time counter is

equal to its max threshold. If it is not, then the data queue has not been empty for too long a period of

time and Wi-Fi should remain on in case there is network activity. If the counter is equal to its threshold,

then the queue has been empty for a long period of time and Wi-Fi should be turned off to save power. In

this case, a Wi-Fi stop packet is sent to the access point, Wi-Fi is turned off, and the queue empty time

counter is reset to zero before the monitor loops back up to the start. A flowchart of the bandwidth

monitor is shown below in Figure 23.

60

Figure 23: Bandwidth Monitor Flowchart.

61

4.3 Power Measurement System

In order to evaluate the software controlled radio system created in this project it was necessary to

develop a method to measure and analyze the system’s power consumption. The purpose of the power

evaluation system was to measure and record the communications power consumption.

The hardware for the power evaluation system was to be integrated within the existing hardware

of the computer system to monitor and measure the power and energy of the radio devices and the total

system. For the first step the team decided to implement the system on a less complex level for trial and

experimental purposes. The idea was to measure the power consumption and energy efficiency of a USB

Wi-Fi adapter. Once the experiment was tested and concluded to be an accurate and verifiable method for

measuring power consumption and energy efficiency it was documented and repeated for the ZigBee

network interface and finally repeated for the combined Wi-Fi and ZigBee network. To accomplish this

first step the team constructed the setup shown in Figure 24: .

Figure 24: Energy Measurement Design. To measure the power being consumed by the wireless radios (Wi-Fi and

ZigBee) a resistor is placed in series between the wireless USB adapter and the computer. By measuring the voltage

difference across this resistor it is possible to calculate the power consumed by the wireless radio. The DAQ Multimeter is

used to measure and record the voltage differences across the resistor as the radios run.

Many approaches were taken to measure the current, power, and energy consumed by the energy

efficient mobile radio device discussed in this paper. This section goes over the processes taken to

measure the communications’ current, power, and energy consumed. It also explains the technique used

to measure the total computer system power consumption and the technique use to calculate energy

efficiency.

62

Communications’ Current Draw and Power Consumption Measurement Techniques

Two techniques were considered to measure the current draw (mA) and power consumption

(mW) of the network cards and the ZigBee-Wi-Fi network. Both techniques considered involved

inserting an object in series with the power supply line (VCC) of a USB cord. Standard type A USB ports

consist of four pins; VCC (+5 V), D- (Data -), D+ (Data +), and GND (Ground), as shown in Figure 25.

To avoid damaging the USB cords of the network devices a USB extender was chosen to be cut in half.

Figure 25: Standard Type “A” USB pinning diagram (Wikipedia.org).

The first method considered was to solder a resistor in series with the power supply line (VCC) of

a USB extender. The voltage across the resistor is measured by a DMM and using Equation 1it is

possible to calculate the Current (mA) draw of the USB device. Then using Equation 2 the power (mW)

can be calculated.

Equation 1: Ohm's Law

Equation 2: The Power Equation

The second method considered was to place an ammeter in series with the power supply line

(VCC) of the USB cord. This method would directly measure the current, avoiding the use of Equation

1: Ohm's Law. However, ideally ammeters have a resistance of zero, but in reality this is not the case.

When the ammeter was connected in series with the USB power supply its resistance was too much and

produced a much larger voltage drop than intended. This caused the USB powered device to perform

63

poorly and not at its optimum performance levels, resulting in lower bit rates for the Wi-Fi adapter. For

this reason the first method was chosen. By inserting a resistor the team could control exactly how much

resistance was placed in series with the power supply and avoid the use of subpar lab equipment. A 500

mΩ resistor was used.

The Total Computer System Power Consumption Measurement Techniques

The techniques mentioned above to measure power and energy were concerned with the

communications’ energy consumed by the wireless radio cards in their various states. However, the

additional algorithm used to switch between protocols presented in this project incurs a penalty to the

overall power of the system due to the extra computations performed by the CPU. This project’s purpose

is to create an energy efficient radio that saves battery power. This means that the energy consumed by

the algorithm must not be so great that it reduces battery life comparatively. To prove that this project’s

battery life is improved the team needed to not only measure the communications’ energy, but also the

total system’s energy and compare this to a mobile PC without the multi-protocol radio.

 Several approaches were considered to measure the computer/mobile user’s total power and

energy consumption. The most direct method would be to insert a resistor between the battery and the

computer, as shown in Figure 26, similar to the method used to determine the energy consumption of the

USB wireless network devices.

64

Figure 26: Technique for measuring the voltage difference across a resistor for calculating power consumption (W).

However, the battery of a laptop is much more difficult to connect a resistor in series with than a

USB cord, as shown in Figure 27. One obstacle is the high current that is generated by the laptop battery.

A carbon resistor, like the one pictured in Figure 24, can take up to 5W of power before it fails. An Acer

Aspire 5520-5142 consumes about 20W when Idle. To measure the power consumption of the entire

laptop a wirewound resistor or a heat sink would be required. Furthermore, the resistor could not be

simply attached to the laptop battery. Figure 27 contains a picture of an Asus Eee PC battery. The

contacts for the battery would need to be rigged in a unique and creative manner in order to place a

resistor between it and the laptop. Due to this difficulty other methods were looked into.

65

Figure 27: Asus Eee PC 701 Asus Eee PC 2G Laptop Batteries (http://www.laptopbatteryinc.co.uk/).

 To avoid these complications the project team looked into software means of measuring the

power and energy consumption of a laptop. Eventually the group found that the Linux program dstats

would be best suited for this purpose. Dstats is a versatile tool for generating system resource statistics.

Dstats performs multiple actions that lend themselves well to scientific documentation and this project.

Dstats records the exact time and date of the measurement taken. It can take measurements in increments

of down to 1 second. It measures the power consumed (W) and also the percentage of the battery capacity

remaining as well as the milliampere-hour (mAh) remaining. Another attractive attribute of dstats is its

ability to write the recorded data to a .CSV file, which can be imported to OpenOffice Spreadsheet or

Microsoft Excel. Using this tool the team was able to graph the battery life and power consumption of a

mobile device/laptop.

Energy Efficiency and Performance (J/MB) Measurement Techniques

Energy efficiency is measured in Joules per Megabyte (J/MB). This measurement reflects that a

more efficient system should consume the least amount of joules to transmit each byte. This value cannot

be measured directly, so to calculate this value the group used data acquired from the other techniques.

When performing the performance measurements tests the duration of the test, the average voltage

difference across the resistor, and the total bytes transmitted or received were recorded during

experiments. Using the calculated power (Watts), the duration of the test (seconds), and the total amount

bytes transmitted and/or received it is possible to calculate the energy efficiency of the system, in Joules

per Megabyte. The equations used for the calculation are shown below.

If,

http://www.laptopbatteryinc.co.uk/

66

Then,

Then the energy per megabyte is calculated by the equation…

This value is calculated for both the total system and the communications system.

4.4 Implementation Summary

 This chapter provides the detailed description of the implementation of this project. It documents

the hardware and software decisions and problems experienced during this project’s development. The

project was split into three sections. The wireless network ultimately created consists of a ZigBee radio

and the program written to control the communication features of said radio, a Wi-Fi radio that transmits

files through the same program as ZigBee. Another program was developed to control the switching

aspect between these two radios. Finally, a power measurement system was constructed to measure and

record the power consumption of both these radios to prove the efficiency of the overall wireless network.

The next chapter, Chapter 5: Results, discusses the results of the network implemented.

67

Chapter 5: Results

In the previous chapter the team discussed the methods used to develop the sections of the

project. In order to determine if the multi-protocol Wi-Fi ZigBee network would in fact save energy the

team needed to analyze it in pracice. The methods by which the team decided to measure the different

criteria such as the current draw, power consumption, and energy consumption were described in detail in

the prior section. In this chapter the results obtained from each of the different networks (Wi-Fi Only

(CAM), Wi-Fi Only (PSM), ZigBee Only, and Wi-Fi and ZigBee combined (WiZ)) are discussed. The

general test bed used to obtain these results is shown in Figure 28.

Figure 28: Energy Measurement Setup: The object labeled “resistor” is the breadboard that holds the resistors that form

the 500 mΩ resistance in series with the Vcc of the USB cord that was cut. The power-supply-in (Vcc) was the only wire

that was modified. Alligator clips connected the power-supply-in (Vcc) with the breadboard resistor setup then connected

back to the power-supply-in, resulting in the series resistance of 500 mΩ. The Digital multimeter was used to record the

voltage across the resistors. This multimeter was connected to a computer with MATLAB via a RS232 serial port. The

Ubuntu Netbook was used as the mobile user in the experiment. The USB wireless network interface adapter used in the

experiment is connected to the end of the USB cable.

68

The Wi-Fi network adapter is shown in this picture however for other experiments such as the

ZigBee configuration the Wi-Fi adapter would be replaced. The network interface device is ultimately

connected to the Asus Eee PC. Not included in Figure 28 is the computer configured to be the AP. This

computer was also an Eee PC. The role of the AP computer, in this network, was to be the recipient

during transmitting and the donor during receiving.

5.2 Procedure

Table 10: Sample Test Template for wireless network testing was created to provide the tester

with a documented procedure to perform each test. Five different states of radio operation were

considered in the test: Receiving, Transmission, Idle and Associated, Off, and a Webpage Simulation test.

Four different wireless networks were tested: Wi-Fi Only (CAM), Wi-Fi Only (PSM), ZigBee, and the

combined ZigBee Wi-Fi (CAM) network named WiZ.

69

Table 10: Sample Test Template for wireless network testing.

Sample Test Template

Conduct these tests on the <Network Name>:

 Step Description

1 Measure the average amount of energy, current, and power consumed by the

wireless interface to download (Receive) files from the AP. Download the

following files twenty times each and record the voltage difference, total bytes,

and duration:

a. 100 KB

b. 1 MB

c. 10 MB

d. 100 MB

2 Measure the average amount of energy, current, and power consumed by the

wireless interface to upload (Transmit) files from the AP. Send the following

files twenty times each and record the voltage difference, total bytes, and

duration:

a. 100 KB

b. 1 MB

c. 10 MB

d. 100 MB

3 Measure the average amount of energy, current, and power consumed by the

wireless interface when Idle and Associated with the AP. Send and download

no files and record the voltage difference, total bytes, and duration.

4 Measure the average amount of energy, current, and power consumed by the

wireless interface when Off. Put the radio in a software controlled shut down

and record the voltage difference, total bytes, and duration.

5 Measure the average amount of energy, current, and power consumed by the

wireless interface during the www.wikipedia.org test case (Intermittent data

download). Record the voltage difference, total bytes, and duration.

70

In the first step, testing the receiving operating mode, the same four files (100KB, 1MB, 10MB,

and 100MB) were now received. The AP was responsible for sending the files to the mobile computer.

The mobile computer referred to was the item labeled “Ubuntu Netbook” in Figure 28.

In the second step, testing the transmission operating mode, four different files of different sizes

were sent to the AP. The sizes chosen were 100KB, 1MB, 10MB, and 100MB. Each file was sent four to

twenty times depending on the size of the file. Smaller files were sent more times and larger files were

sent fewer times. Since larger files took longer to send it was easier to obtain many data points and so

fewer files needed to be sent.

In the third step, testing idle and associated, the radio was associated with the AP but no

noticeable data transfer was taking place. During this test no files are transferred. However, in typical

networks beacons are sent out from the AP that contain important information for the user such as

whether or not the user has an incoming transmission. As such, in idle mode the user experiences

negligible network activity. In Adhoc networks beacons checking to see if the user is connected to the

AP do not occur since there is technically no AP. In an Adhoc network both the computers are peers and

merely transfer data between one another when necessary.

In the fourth step, testing the off state, the radio was put in a software controlled off. This was

done through bash scripts that would echo instructions to the root USB hub of the Wi-Fi dongle. This

would turn off the power to specific devices connected to the hub. Essentially through the use of these

commands it was possible to achieve zero power consumption from the network interface.

The purpose of the fifth test was to monitor the radio during a typical internet webpage download.

This is accomplished by running the browsing simulation script in Appendix A. The script was designed

to simulate network activity that would be present during a typical webpage download. The data to create

the script was obtained through various sources. The first source used was IMIX [42]. IMIX contains

statistics about network activity such as common sizes of packets sent through the internet to create the

various web pages, videos, and pictures that reside within the internet. IMIX is specifically used to

simulate network activity for experimental purposes. To create the webpage simulation packets of these

sizes were sent through our network. The team also recorded the network activity present upon visiting a

website using bwm-ng to monitor and record the bytes going in and out of the network card as the website

was accessed. Figure 29 contains the recorded network activity.

71

Figure 29: Recorded network activity during the www.wikipedia.org test case. The spike is the user accessing

www.wikipedia.org.

The area under the curve is the total amount of data sent in order to produce the Wikipedia

homepage. Calculating the area under each curve results in Table 11 below:

Table 11: Measured Website Sizes.

Website Size (Kilobytes)

www.wikipedia.org 242.94

According to a study done at Binghamton University New York the average size of a web page is

130 Kilobytes [43]. With this information a script was written that simulated visiting a common internet

website. The size of 130 KB was chosen to simulate, but due to network overhead the actual observed

amount of data transferred is slightly higher. Using the average size of a web page and IMIX a script was

created to simulate the network activity. This script would send files of common packet sizes, obtained

from IMIX. The sum of the files was intended to accumulate to 130 KB. The script can be viewed in

Browsing Simulation Script.

5.3 Testing

With the procedures outlined and documented the team was ready to begin the testing of each

network. Four networks are tested in this report; Wi-Fi (CAM), Wi-Fi (PSM), ZigBee, and WiZ. Each of

these networks underwent the outlined procedures and the results and observed of each were recorded. In

section 5.4 Overall Results the results of all the networks are compared.

72

Wi-Fi Only Network in Continuously Active Mode (CAM)

The first network that was tested was the Wi-Fi only network in CAM mode. CAM stands for

continuously active mode; this mode is being replaced by the newer, more power efficient Power Saving

Mode (PSM). However, it provided a basic baseline network to serve as a benchmark to compare values

to. The setup for this test is identical to the setup described in Figure 28. In order to create a Wi-Fi only

CAM network two factors need to be addressed. The first factor is the wireless network card’s

capabilities. The network card can be CAM or PSM ready, any Wi-Fi network card can operate in CAM.

The second factor is that if the Access Point (AP) is not able to handle PSM then the wireless card will

perform in CAM mode regardless if it is PSM ready or not. So, to create a CAM network an Adhoc

network was set up. An Adhoc network was chosen because they cannot facilitate PSM. The results

from the Wi-Fi CAM network tests are displayed below.

Table 12: Wi-Fi CAM Current (A), Power (W), and J/MB observed values.

Wi-Fi (CAM)

 Current (A) Power (W) J/MB

Tx

Rx

Idle

Average

Std Dev

Average

Std Dev

Average

Std Dev

0.30026

0.00101

0.28776

0.00088

0.26139

0.00447

1.45407

0.00566

1.40273

0.00605

1.27956

0.01416

1.79367

0.21334

1.91553

0.23249

MB ≈ 0

MB ≈ 0

One purpose of this table is to verify that the values obtained in the experiment were consistent

with typical values observed in other experiments and specification sheets. The other purpose is that the

values here were also used to develop graphs, plots, equations, and other means of displaying the data.

73

Table 13: Measured Summary Statistics of Wi-Fi (CAM). The data transferred includes Rx and Tx as measured through

the network interface and includes protocol overhead.

Wi-Fi (CAM) Summary Statistics

Test Cases Time over

Wi-Fi (s)

Data

Transferred

(MB)

Data

Pattern

Data Rate

(Mbits/s)

Total Energy

Consumed (J)

Energy

Efficiency J/MB

File Transfer-1

File Transfer-2

www.wikipedia.org

Idle

14.8

110

120

20

11

104

.1435

0

Bulk Data

Bulk Data

Intermittent

None

5.4

7.3

6.6

0

21.520

159.948

153.883

25.642

2.152

1.599

1070.357

N/A

These results will serve as a benchmark to compare other measured values to from the other

network interface configurations. The test cases represent different scenarios that could be encountered in

a network. These cases will serve to illustrate and compare the strengths and weaknesses of each network

configuration discussed in this report.

Wi-Fi Only Network in Power Saving Mode (PSM)

For this network the mobile computer needed to be setup to operate in PSM. To operate in PSM

a network interface device and the AP must be able to support this function. A personal computer cannot

perform this which is why Adhoc was not used for this test. In this experiment the project team used the

existing wireless network at the University of Limerick as the wireless network connection through which

the files would be transferred. Aside from this modification the test bed and tests remained the same.

The results from the Wi-Fi Only (PSM) network tests are displayed below.

Table 14: (PSM) Current (A) and Power (W) observed values.

Wi-Fi (PSM)

 Current (A) Power (W) J/MB

Tx

Rx

Idle

Average

Std Dev

Average

Std Dev

Average

Std Dev

0.29175

0.01222

0.28106

0.02060

0.26209

0.01137

1.41549

0.05774

1.36567

0.09803

1.27604

0.05425

6.12511

2.59267

3.34356

0.44481

MB ≈ 0

MB ≈ 0

74

In terms of power usage the PSM network exhibits lower power consumption (Watts) which

would imply that it is also more energy efficient. However, the energy efficiency (J/MB) of PSM is much

worse than the energy efficiency of CAM. The reason for this is that the network used to transmit data

for PSM was the campus Wi-Fi network. As a result of this the data rates experienced during testing the

PSM network are much lower. Table 15 displays the differences in data rates experienced by both

networks.

Table 15: The average observed data rates for the Wi-Fi CAM and PSM networks.

Average Observed Data Rate (Mbits/sec)

Network Average Std. Dev.

Wi-Fi (CAM)

Wi-Fi (PSM)

6.599781453

2.550100056

0.763531169

1.267728853

This could be due to multiple factors such as a weaker signal due to the distance between the

mobile user and the wireless access point, or there could have been significant traffic while the test was

taking place. It is also important to note that the standard deviation of the PSM network is high which

means that the bit rate was not consistent throughout the tests. Because of these uncontrollable data rates

the team decided to use the data rate acquired from the CAM network for the PSM network. The reason

the team chose to use the CAM data rate for PSM is due to the effect the data rate has on the energy

efficiency. If a 100MB file is transferred on the PSM network it will take longer than it would on the

CAM network, since the CAM network has a higher data rate. So even though, in reality, PSM is more

energy efficient (thus the name Power Saving Mode) the longer time spent transferring data will always

results in a higher amount of energy consumed (Joules), even though the PSM network exhibits lower

power usage (Watts).

So, the problem is that the lower data rate results in a longer transfer time and more joules

consumed. This means that because of the less than ideal data rate of the uncontrollable campus network

the PSM network will never be more energy efficient than the isolated CAM network. However, the poor

data rate of the campus network is not intertwined with the project presented in this paper. The team

witnessed reliable transfer power (Watts) values. These values are independent from the data rate and

still provide a solid foundation for the energy efficiency properties of the PSM network. Ideally Wi-Fi

PSM and CAM should have the same data rates so this is what is assumed in this project.

75

ZigBee Only Network

To prepare the test bed for the ZigBee networks tests the only modification needed is to replace

the Wi-Fi wireless network adapter with a ZigBee wireless network adapter. After performing the test

Table 16 was produced.

Table 16: ZigBee Power and Current Usage.

ZigBee

 Current (A) Power (W)

Tx

Rx

Average

Std Dev

Average

Std Dev

0.07300

0.00070

0.07260

0.00078

0.36500

0.00120

0.36000

0.00390

No idle power was measured because ZigBee does not have an idle state. The energy efficiency

(J/MB) was measured, however the ZigBee network developed in this project performed data transfer so

poorly that the energy efficiency was absurdly high and the deviation between different file sizes energy

efficiency was in the 100’s. To describe how poor the data transfer was Table 17 was constructed.

Table 17: Average data rates obtained from the ZigBee network.

Average Observed Data Rate (Mbits/sec)

Network Average Std Dev

ZigBee 0.003906 0.00016

This value equates to 4 kilobits/s. Even though the ideal data rate is published to be 250 Kbits/s

the actual value is inherently much lower as seen with the Wi-Fi as well. There are several possible

causes for this dilemma such as the substantial network overhead due to the amount of bulky software

needed to create the ZigBee network. Since ZigBee is not a mainstream wireless network there was little

development put into the product before it was put on the shelves, unlike Wi-Fi. As a result the team

needed to program the entire ZigBee interface and file transfer system. Fortunately ZigBee has other uses

than data transfer.

The plan for ZigBee was that it would handle small data transfer then when its bandwidth became

overwhelmed Wi-Fi would turn on and handle the heavy traffics. However, with the abhorrent data rate

observed in the tests any data transfer through ZigBee was impractical. The solution to this was to use

ZigBee as a sensor to communicate with the AP. When the AP needed to send files ZigBee would

76

attempt to send the file and quickly reach its max bandwidth, in which case Wi-Fi would turn on. And so

ZigBee lost its role as a method for low data transfer and instead became a sensor that would switch Wi-

Fi on when an incoming or outgoing transmission was needed.

Wi-Fi-ZigBee Power Saving Network, WiZ (Uses CAM for Wi-Fi)

To set up the test bench for this network both the Wi-Fi and ZigBee network adapters were

plugged into the mobile user and the AP. 500mΩ resistors were placed between each network adapter

and their respective power supply. An Adhoc network was and thus the WiZ uses Wi-Fi (CAM) for its

Wi-Fi portion of functionality. The tests were then carried out in the same fashion as previously

explained. The measured parameters of the network are displayed in Table 18.

Table 18: WiZ measured values. WiZ is a combination of two wireless networks: Wi-Fi (CAM) and ZigBee.

WiZ: Wi-Fi (CAM) in combination with ZigBee

 Current (A) Power (W) J/MB

Tx Average 0.36061 1.76171 2.2726

 Std Dev 0.00413 0.55 0.33472

Rx Average 0.359 1.754 2.15636

 Std Dev 0.0027 0.014 0.02857

Idle Average 0.0726 0.36 N/A

 Std Dev 0.00078 0.0039 N/A

The WiZ network experiences slightly higher power usage than the Wi-Fi only networks due to

the addition of the ZigBee running all the time. This causes the WiZ network to consume more energy

(Joules) when transferring data. The strength of this network is its idle state. WiZ’s idle state is

constituted of only ZigBee, because in this idle state the Wi-Fi is completely turned off. By this logic this

network is beneficial to wireless network users that remain in idle state most of the time the device is

running. For most personal wireless devices this is typically the case.

WiZ Browsing Simulation

A typical internet browsing simulation was created in order to test the functionality of the WiZ

network. This was done similarly to the webpage simulation. Data packets of sizes acquired from IMIX

were transferred to simulate the network activity during the recorded internet browsing session. A script

was written that would send these packets in a fashion that mimics the network activity of the session.

The script is located in Appendix A. The browsing session was based off an actual browsing simulation

performed by the project team. The actual network activity of this session was recorded and is displayed

in Figure 30.

77

Figure 30: Recorded network activity during the internet browsing session. The notes indicate what each spike is a result

from. The first spike is when the user accessed Wikipedia.org.

The power of each wireless component of WiZ was measured while the simulation was run and Figure 31

was produced. Figure 31 consists of the ZigBee and Wi-Fi (CAM) networks that cooperate to form the

WiZ network. The idle value of the Wi-Fi (CAM) is zero due to the software introduced by WiZ. When

the radio is idle it turns off Wi-Fi completely.

YouTube video

78

Figure 31: Recorded power consumption of the ZigBee and Wi-Fi (CAM) wireless devices that compose WiZ. Recorded

during the browsing simulation test.

Since WiZ is not a single network device its power could be measured directly. So, to measure

its power consumption the team added the values of the two wireless networks to produce the graph of the

power consumption of WiZ, Figure 33. Figure 32 shows the two network components, ZigBee and Wi-Fi

(CAM), alongside the WiZ, it is by adding these two components that WiZ is formed. The idle of CAM

seems to be zero but that is only due to WiZ. In the WiZ network Wi-Fi (CAM) is turned completely off

while the network is idle. ZigBee remains at the same power level the whole duration and so it becomes

the idle state of WiZ and it is also present during the transfer state. Since it is present during the transfer

state the WiZ transfer power is equal to the Wi-Fi (CAM) transfer power plus the ZigBee power.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 100 200 300 400 500

P
o

w
er

 C
o

n
su

m
p

ti
o

n
 (

W
)

Time (s)

ZigBee

Wi-Fi (CAM)

www.wikipedia.org www.google.com news.google.com www.youtube.com youtube video

79

Figure 32: Power consumption of WiZ (yellow), ZigBee (green), and Wi-Fi(CAM) (blue) during the browsing simulation

test. The WiZ values are equal to the CAM values added with the ZigBee values.

Figure 33: The power consumption of the WiZ network during the browsing simulation test. Its idle power is equal to

that of ZigBee and its active transfer power is equal to the ZigBee power plus the Wi-Fi transfer power. It is this addition

of the ZigBee power during transfer that causes WiZ to consume more power than the traditional CAM and PSM

networks.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 100 200 300 400 500

P
o
w

er
 C

o
n

su
m

p
ti

o
n

 (
W

)

Time (s)

WiZ

ZigBee

Wi-Fi (CAM)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 100 200 300 400 500

P
o
w

er
 C

o
n

su
m

p
ti

o
n

 (
W

)

Time (s)

WiZ

80

5.4 Overall Results

The goal of this project was to create an energy efficient wireless network using multiple wireless

protocols to save energy on mobile platforms. To effectively compare each wireless network

configuration each network had its parameters measured and a set of cases were developed to compare the

networks in different scenarios encountered in common wireless networks. The parameters measured

were transmit power, transmit current, receive power, receive current, idle power, and idle current. Table

19 provides a summary of these measured parameters.

Table 19: Summary table of the measured parameters for each network configuration.

Compiled Experimental Data

 Tx

Current

(A)

Tx

Power

(W)

Rx

Current

(A)

Rx

Power

(W)

Idle

Current

(A)

Idle

Power

(W)

Wi-Fi (PSM)

Average

St Dev

0.2918

0.0122

1.4155

0.0577

0.2811

0.0206

1.3657

0.098

0.2621

0.0114

1.276

0.0542

Wi-Fi (CAM)

Average

St Dev

0.3003

0.001

1.4541

0.0057

0.2878

0.0009

1.4027

0.006

0.2614

0.0045

1.2796

0.0142

ZigBee

Average

St Dev

0.0829

0.0008

0.388

0.004

0.0726

0.0008

0.365

0.0039

0.0726

0.0008

0.36

0.0039

WiZ

Average

St Dev

0.3606

0.0041

1.7616

0.55

0.359

0.0027

1.754

0.014

0.0726

0.0008

0.36

0.0039

Test Cases

Multiple test cases were developed in order to evaluate the networks as well. The cases were

determined analyzing common several scenarios that wireless networks encounter on a daily basis. The

test cases consisted of two file transfers; one file transfer of 10MB and the other a 100MB file. These

tests serve to simulate bulk data transfer. This could be seen as downloading a file from a website, such

as a picture, document, or sort of large data transfer. Since downloading is much more common for

personal wireless users these files were downloaded, not uploaded. The time over Wi-Fi was the average

time it took for the network to download a file of that size

The next test case was called www.wikipedia.org. This case simulates accessing a website. To

simulate this the test accesses Wikipedia.org by downloading .1435 Megabytes of data then idles for

remaining time. The reason for the idle time is that in many cases, such as going to Wikipedia, the user

pauses to read the website upon loading. It also introduces downloading and idling into a single test case

81

to demonstrate the effect of entering more than one mode of operation during a period of time. This case

is labeled intermittent because data transfer in this test case in not constant such as in the previous two

test cases; file transfer 1 and 2. The final test case is Idle. This case tests the idling of each network.

Since wireless radios spend most of their time in the idle state it is important to observe the differences in

this state among the networks. The results of these test cases are shown in Table 20 below.

82

Table 20: Table of test cases created to analyze each wireless network.

Test Cases Time Over

Protocol

Data

Transmitted

(MB)

Data

Pattern

Max Data

Rate (Mbits/s)

Wi-Fi (CAM)

14.8

110

120

20

10

100

0.1435

0

Bulk Data

Bulk Data

Intermittent

None

5.40541

7.27273

6.6

0

File Transfer 1

File Transfer 2

wikipedia.org

Idle

Wi-Fi (PSM)

12.12

121.21

120

20

10

100

0.1435

0

Bulk Data

Bulk Data

Intermittent

None

6.60066

6.60012

6.6

0

File Transfer 1

File Transfer 2

wikipedia.org

Idle

ZigBee

20480

204800

293.888

20

10

100

0.1435

0

Bulk Data

Bulk Data

Intermittent

None

0.00391

0.00391

0.00391

0

File Transfer 1

File Transfer 2

wikipedia.org

Idle

WiZ (Wi-Fi (CAM) Combined

with ZigBee)

11.667

120

120

20

10

100

0.1435

0

Bulk Data

Bulk Data

Intermittent

None

6.85714

6.6664

6.6

0.36

File Transfer 1

File Transfer 2

wikipedia.org

Idle

Test Cases Average Tx Power

Usage (W)

Total Energy

Consumed (J)

Energy

Efficency

(J/MB)

Wi-Fi (CAM)

1.45407

1.45407

1.45407

1.28211

21.52027

159.94797

153.88321

25.64222

2.15203

1.59948

1070.23065

N/A

File Transfer 1

File Transfer 2

wikipedia.org

Idle

Wi-Fi (PSM)

1.41549

1.41549

1.41549

1.27604

17.15575

171.57164

153.14872

25.52074

1.71557

1.71572

1067.23846

N/A

File Transfer 1

File Transfer 2

wikipedia.org

Idle

83

ZigBee

0.388

0.388

0.388

0.36

7475.2

74752

107.26912

7.2

747.52

747.52

747.52

N/A

File Transfer 1

File Transfer 2

wikipedia.org

Idle

WiZ (Wi-Fi (CAM)

Combined with ZigBee)

1.81907

1.81907

1.81907

0.36

21.22251

218.2887

43.45379

7.2

2.12225

2.18289

302.81387

N/A

File Transfer 1

File Transfer 2

wikipedia.org

Idle

84

Evaluation of the Energy Consumption and Efficiency of the Wireless Networks

Energy efficiency measures how many joules are spent to transmit a megabyte of data. This

metric illustrates how effective a system is at using its energy. The efficiency is also directly related to

the amount of Joules spent during each case. The advantage of the energy efficiency metric (J/MB) is

that it is independent from the variables of each test such as the duration and megabytes transferred. The

following graphs display the energy efficiency and consumption experienced during each of the test cases

mentioned above.

Figure 34: Energy consumption of wireless test cases. Since ZigBee is not meant for large file transfers such as 10-100MB

its energy consumed was literally off the charts, so a green arrow was inserted to illustrate this. The value in the green

bars is the amount of joules consumed by ZigBee in that test case.

Energy is equal to the power multiplied by time. The energy consumed by a wireless radio

increases as its transfer time increases and time increases as data rate decreases. So the biggest influence

on the energy is the data rate and the power usage. The first two test cases, File Transfer-1 and File

Transfer-2, illustrate this property in the figure above. Wi-Fi (CAM), Wi-Fi (PSM), and WiZ all

consume relatively similar amounts of energy. This is because their data rates, or bandwidths, are almost

identical. The primary factor in their difference is energy consumption is their power consumption (W).

Since WiZ consists of both Wi-Fi (CAM) and ZigBee running while transferring data it consumes the

0

50

100

150

200

File Transfer-1 File Transfer-2 www.wikipedia.org Idle (20 sec)

E
n

er
g

y
 C

o
n

su
m

p
ti

o
n

 (
J

)

Test Cases

Wi-Fi (PSM)

Wi-Fi (CAM)

ZigBee

WiZ

7
4
7
5
.2

7
4
7
5
2

85

most power in this mode of operation; making it the least appealing candidate for pure bulk data transfer,

besides ZigBee. In spite of this, since the average data rate of WiZ was higher for 10MB files the energy

efficiency of WiZ performed better than that of CAM in this case. This is how the data rate affects the

energy consumption of the wireless networks. If we assumed them to experience the same data rates then

CAM would achieve a more efficient energy consumption rate in any bulk data transfer. Figure 36 is the

same graph as Figure 35 except that the data rates of each network, except ZigBee, are all equal. In this

graph we can see how the high transmission power of WiZ causes it to be less efficient than the other Wi-

Fi networks. ZigBee fairs the worst for bulk data transfer reaching energy consumption values literally

off the chart. In the case of Figure 37 the data rate of Wi-Fi (CAM) is much higher than in the previous

file transfer. As a result CAM’s energy efficiency has dropped (become more efficient).

Figure 35: Energy Efficiency of Wireless Networks during the file transfer-1 test case. The number in the green ZigBee

bar is the energy efficiency of the ZigBee network. The chart for the energy efficiency is very similar to the chart for

energy consumption due to the similarity in test parameters, such as the time, megabytes transferred, and data rate.

0

1

2

3

4

5

6

7

8

File Transfer-1E
n

er
g

y
 E

ff
ic

ie
n

cy
 (

J
/M

B
y

te
)

Test Case

Wi-Fi (PSM)

Wi-Fi (CAM)

ZigBee

WiZ

747.52

86

Figure 36: Energy efficiency of wireless networks with equal data rates. The data rates WiZ, Wi-Fi (CAM), and Wi-Fi

(PSM) are all equal to 6.6Mbits/s in this graph to make the data rate appear constant so that the effect of transmission

power can be more easily seen. ZigBee remains the same as the previous graph.

Figure 37: Energy efficiency of the wireless networks during the file transfer-2 test case.

0

1

2

3

4

5

6

7

8

File Transfer-1

E
n

er
g

y
 E

ff
ic

ie
n

cy
 (

J
/M

B
y

te
)

Test Case

Wi-Fi (PSM)

Wi-Fi (CAM)

ZigBee

WiZ

747.52

0

1

2

3

4

5

6

7

8

File Transfer-2E
n

er
g

y
 E

ff
ic

ie
n

cy
 (

J
/M

B
y

te
)

Test Case

Wi-Fi (PSM)

Wi-Fi (CAM)

ZigBee

WiZ

747.52

87

 The www.wikipedia.org test case consists of a small transfer of bulk data, then the rest of the time

is spent idling. This is the type of scenario where WiZ excels. When the user travels to

www.wikipedia.org they receive a small amount of data, in the WiZ network the Wi-Fi (CAM) is

activated at this point and quickly downloads the data required to produce the webpage. When the

downloading is done WiZ returns to idle, turns off Wi-Fi (CAM), and runs ZigBee alone. When the

network is idle ZigBee consumes the least amount of energy, and so WiZ consumes the same. So, even

though WiZ has a slightly higher power usage than PSM or CAM its idle power consumption is a fraction

of PSM or CAM.

 According to this chart ZigBee does quite well in terms of energy consumption, however, it takes

ZigBee 204800 seconds (56.9 hours!) to download that small amount of data to produce the webpage.

This does not possibly meet any Quality of Service requirements and is thus not a viable method to

download a webpage.

Figure 38: This is the chart for the www.wikipedia.org test case.

The energy efficiency is much higher, though less efficient, in Figure 38. Since the test

transmitted so few megabytes much more joules were used while the system was idle and because it was

idle for an extended period of time both the WiZ and ZigBee performed well. Wi-Fi (CAM and PSM)

performs poorly in idle and thus consumed much more energy than the other networks. WiZ and ZigBee

have the same idle properties. WiZ takes advantage of ZigBee’s excellent idling capabilities allowing it

0

200

400

600

800

1000

1200

www.wikipedia.org

E
n

er
g

y
 E

ff
ic

ie
n

cy
 (

J
/M

B
y

te
)

Test Case

Wi-Fi (PSM)

Wi-Fi (CAM)

ZigBee

WiZ

88

to achieve considerably lower power and energy consumption in idle than either Wi-Fi (CAM) or Wi-Fi

(PSM). The idle test case does not have a energy efficiency chart because little to no data is transferred

while in the idle state. Only the Wi-Fi (PSM) network would receive any network traffic in idle from the

beacons sent by the AP. Table 21 summarizes these test cases below with a chart of the strengths and

weaknesses of each network.

Table 21: A strengths and weaknesses chart of the networks. Strong represents that the network performs the task the

best of the four networks, and is a viable means of executing the task. Moderate represents that the network performs the

task fairly well compared to the other networks. It’s neither a strength nor a weakness, and other networks may be better

for suited for such a task. Weak means that the network performs the task poorly and the network should not be used for

such a situation.

Network Bulk Data Transfer Intermittent Data Transfer Idle

Wi-Fi (CAM)

Wi-Fi (PSM)

ZigBee

WiZ

Strong

Strong

Weak

Moderate

Weak

Weak

Weak

Strong

Weak

Weak

Strong

Strong

Conclusion of the Results

 WiZ is a multiprotocol wireless network that uses Wi-Fi (CAM) and ZigBee in cooperation to

reduce the energy consumption of mobile wireless devices. Although WiZ’s transmitting parameters

consume more power than that of conventional wireless protocols such as Wi-Fi (CAM) and Wi-Fi

(PSM), the idle state of WiZ is vastly superior. By using ZigBee as its idle radio state and Wi-Fi (CAM)

as its active state WiZ is able to have the equivalent data rate/bandwidth of conventional protocols and be

more energy efficient. The plot in Figure 39 illustrates this the most effectively.

89

Figure 39: Power Usage as a Function of "Time On" Percentage. Plot of the percentage of time a mobile device spends

transferring while on vs the average power consumed during that setting. If a device is on and transferring for less than

70% of the time it remains on then this graph claims that WiZ will save more energy than CAM or PSM.

This plot was created by an equation developed from the measured parameters of the four

network protocols discussed in this report. The X value is the percent of time the network spends

transferring data, and 100-X is the remaining time and in this remaining time the radio is idle. The Y

value is the average power consumption for the situation described by the X-axis. For example at the X

value of 30 the network is transmitting for 30% of time it is running, and it is idle for the remaining time,

70% of the time duration. To describe it in a more tangible manner let’s say the radio begins in its “off”

state. The radio is then turned “on” and immediately begins to transmit for 30 seconds. After the 30

seconds the radio changes its state to “idle” and stops transmitting. It continues transmitting for 70

seconds then the radio is turned “off”. The Y value corresponding to the x value of 30 is .79 W for WiZ,

1.32 W for PSM, and 1.33 W for CAM. These values are the average power usages for that specific

situation (30% Tx, 70% Idle).

The actual value of the time duration is irrelevant. What is important is the ratio between idling

and transmitting. The use of a ratio is employed so that the plot can be applied to various wireless

situations to determine how each wireless network will perform. For example, if a laptop is left on all day

and the wireless remains idle until the owner turns it off at the end of day this plot claims that if the user

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 10 20 30 40 50 60 70 80 90 100

A
v

e
ra

g
e

 P
o

w
e

r
C

o
n

su
m

p
ti

o
n

 (
W

)

Percentage of "Time On" Duration Spent Transferring (%)

Wi-Fi (CAM)

Wi-Fi (PSM)

WiZ

90

is using the WiZ network the average power consumption of the laptop’s wireless radio will be .36 W

throughout the day. If a the time between when the laptop is turned on in the morning and the time it is

shut off at the end of the day is for example 15 hours, it possible to calculate that the wireless radio has

consumed 324 Joules of energy that day. This calculation is shown below in Equation 3.

Equation 3:

Overall this plot states that if a wireless radio is transferring data for less than 70% of a duration

of time the WiZ network will be more energy efficient and consume less energy (Joules) than Wi-Fi

(CAM) or Wi-Fi (PSM). Since mobile wireless devices are idle most of the time the WiZ has the

potential to save considerable amounts of energy.

Summary

With such focus in our world today being on mobility, greater efficencies in communications of

these mobile device must be realized. For this project was a stepping stone in a new direction in

efficencies of wireless technologies. The fact alone that off the shelf parts were used with such

substantial results only cements the expectation for rapid growth of such a concept. Combined with the

ubiqity of wireless devices and the evergrowing market place, multiprotocol systems show tremenous

promise for the future. The applications for multiprotocol systems are far ranging. From large scale

communication networks, to house hold appliances and networks. The greatest advantage is the

simplicity and omnipotence of such a concept. The concept of this multiprotocol approach was proven by

the achieved goals of this project.

The implementation described in this report has successfully achieved the following goals:

 Multi-protocol Network: The system was able to utilize dual radio protocols to transmit data

synchronously

 Power Effency: The system was able to considerably reduce the communications power

consummed compared with a single protocol network

 Performance Transparency: The multiprotocol network performed equalily or greater than the a

single protocol network as interms of throughput

 Standard Equipment: This project only utlized off the shelf part in both nodes of the network

By demonstrating the practical feasibility of this network, a foundation is being established for

research and exploration into multiprotocol systems. As standards like WiMax and ZigBee become more

common, the practicality for these types of multi-protocol networks will grow. As this project was

91

completed with common equipment, it is only a matter of time before networks like the one described in

this report are implemented. The technology already exists in the market place, it only needs to be

recognized and combined.

Chapter 6: Conclusions and Future Work

The goal of this project was to develop a multi-protocol wireless network, that combines the

energy efficiency of the ZigBee protocol IEEE 802.15.4 and the speed and high bandwidth of the Wi-Fi

protocol IEEE 802.11 in order to improve the energy efficiency of current Wi-Fi only networks. The

network also possesses cognitive radio attritubes that analyze and react to the surrounding radio

environment. From the results of this project, it is clear that if ZigBee were to be used in place of Wi-Fi

in idle mode, significant power savings will be seen. However, this implementation is far from being a

completely functional multiprotocol “green” energy communication system for commercial use. Listed

below are some improvements that could be made to this system in order to make it a product ready to by

sold.

The first, and biggest, improvement to this system is integrating it with operating systems.

Without integrating the software that controls WiZ into operating systems, programs would have to be

modified to be able to take advantage of the multi-protocol network. By integrating the software of WiZ

with operating systems, application programmers would not need to modify their programs at all. The

network also lacks the ability to communicate with commercial software. In this project files are

transferred using a programming software called Eclipse. However, no work has been done to stream

video or make use of any other transfer of media aside from single files. Extensive work would need to

be conducted to integrate the wireless network presented in this project with standard commericial

software such as internet browsers, email software, and other computer programs that require internet

access.

Another improvement to this system would be adding other wireless protocols. Bluetooth is an

obvious choice, since it is currently installed in many laptops and cellular phones. Bluetooth could

perform data transfer faster than ZigBee, and Bluetooth would also consume less power than Wi-Fi.

Bluetooth could be the wireless radio used for data rates between Wi-Fi and ZigBee. Also, many research

projects have proven that using a multiprotocol Wi-Fi and Bluetooth network can make wireless

communications more energy efficient. Another protocol to consider is IMT-2000 (commonly known as

“3G”). 3G is currently installed on many cellular phones and smartphones, as well as some laptops.

Using 3G would greatly extend the wireless ubiquity of the network. The concept for this project was

developed assuming that a mobile device would be the platform used. Moving the WiZ system to a

92

mobile device, such as a smart phone, would be a possible subject for future work. However, due to

difficulties explained earlier in this report the project team had to abandon the mobile phone platform. By

applying WiZ to a mobile phone the battery life could be greatly increased. An important consideration

about 3G is that it is often not free to use. Most 3G customers have data plans and must either pay per

megabit or pay based on a tiered data usage structure. Adding any extra wireless protocol will increase

the versatility of the wireless device. The WiZ network developed in this project uses Wi-Fi (CAM) in

conjunction with ZigBee. Currently, almost all modern Wi-Fi devices use Wi-Fi (PSM). A possible

addition to the WiZ network would be to use Wi-Fi (PSM) with ZigBee. Wi-Fi (PSM) is more power

efficient (thus the name Power Saving Mode) and would most certainly result in some power savings. By

adding more protocols the cognitive engine will have the freedom to choose the best radio for the given

circumstance.

One of the most appealing aspects of the ZigBee protocol is that it supports mesh networking.

Mesh networking offers several advantages including a wider range, faster and more efficient routing of

messages, and a more flexible network. A mesh network can also potentially withstand the unexpected

disappearance of a router by using other nearby nodes to route traffic. Such a network could be

implemented in future work to create a more robust network. Support for mesh networking was partially

implemented in the program, but abandoned due to time constraints and because creating a routing

network was not the focus of the project. The software controller was programmed with some support for

mesh networks. It contains a network table with the name, 16-bit address, and 64-bit address of each

XBee in the current network. At any point during the execution of the program, the XBee could send out

a Node Discovery packet. Any radio that receives this packet sends back a reply containing its name, 16-

bit, and 64-bit address. Therefore, any radio can update its network table with all of the radios within its

range by sending out a Node Discovery packet, listening for the replies, and then adding any node’s reply

it gets to the network table.

Employing more common cognitive abilities is another option for future work. Learning from

previous user behavior is one method employed in cognitive radios. Instead of just enabling and

disabling Wi-Fi based on the size of the data queue, the system could also monitor parameters such as

time of day, battery life, the location of the device, and what applications are being used. It would create

different application profiles to ensure the necessary bandwidth for each application. For example, the

system could learn that the user of the mobile device rarely turns on the radios at night time. With the

ability to learn from the user the system could turn off the radios during the night to reduce battery usage,

among other possibilities.

93

Bibliography

[1] (2008, September) 1st Internation Workshop on Green Wireless 2008 (W-GREEN). [Online].

http://www.cwc.oulu.fi/workshops/W-Green2008.pdf

[2] (1, January) Cellular-News. [Online]. http://www.cellular-news.com/story/36315.php?s=h

[3] Ian Mansfield. (2010, September) Cellular-News. [Online]. http://www.cellular-

news.com/story/45599.php

[4] David Lagesse. (2009, April) US News: Money. [Online].

http://money.usnews.com/money/blogs/daves-download/2009/04/09/batteries-cant-keep-up-with-

smartphones

[5] Joseph Mitola III and Gerald Q. Macguire, Jr., "Cognitive Radio: Making Software Radios More

Peronsal," IEEE Personal Communications, pp. 13-18, August 1999.

[6] G. Anastasi, M. Conti, E. Gregori, and A. Passarella, "802.11 Power-Saving Mode for Mobile

Computing in Wi-Fi hotspots: Limitations, Enhancements, and Open Issues," Dept. of Information

Engineering, University of Pisa, Pisa, Italy, 2005.

[7] Daintree Networks, "What’s so good about mesh networks?," Mountain View, 2007.

[8] Jeff Sharkey, "Coding For Life - Battery Life, That Is," in Google IO, San Francisco, 2009, pp. 1-

24.

[9] Liviu Iftode, Cristian Borcea, Nishkam Ravi, Porlin Kang, and Peng Zhou, "Smart Phone: An

Embedded System for Universal Interactions," in 10th IEEE International Workshop on Future

Trends of Distributed Computing Systems, Piscataway, NJ, 2004.

[10] Trevor Pering, Yuvraj Agarwal, Rajesh Gupta, and Roy Want, "CoolSpots: Reducing the Power

Consumption of Wireless Mobile Devices with Multiple Radio Interfaces," Intel Research, UC San

Diego, 2006.

[11] Tao Zheng and Sridhar Radhakrishnan, "A Switch Agent for Wireless Sensor Nodes with Dual

Interfaces: Implementation and Evaluation," School of Computer Science, University of Oklahoma

& Oklahoma State University, Norman & Stillwater, Oklahoma, USA, November 10, 2009.

[12] Simon Haykin, "Cogntive Radio: Brain-Empowered Wireless Communications," IEEE Journal on

Selected Areas in Communications, vol. 23, no. 2, pp. 201-220, February 2005.

[13] Ian F. Akyildiz, Won-Yeol Lee, Mehmet C. Vuran, and Shantidev Mohanty. (2008, April) A

Survey on Spectrum Management in Cognitive Radio Networks.

[14] Timothy R. Newman, "Multiple Objective Fitness Functions for Cognitive Radio Adaptation,"

http://www.cwc.oulu.fi/workshops/W-Green2008.pdf
http://www.cellular-news.com/story/36315.php?s=h
http://www.cellular-news.com/story/45599.php
http://www.cellular-news.com/story/45599.php
http://money.usnews.com/money/blogs/daves-download/2009/04/09/batteries-cant-keep-up-with-smartphones
http://money.usnews.com/money/blogs/daves-download/2009/04/09/batteries-cant-keep-up-with-smartphones

94

University of Kansas, PhD Thesis 2008.

[15] Charles Clancy, Erich Stuntebeck, Joe Hecker, and Tim O'Shea, "Applications of Machine

Learning to Cognitive Radio Networks," IEEE Wireless Communications, pp. 47-52, August 2007.

[16] Joseph Mitola and Gerald MaGuire. (1999) IEEE. [Online].

http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=00788210

[17] Thomas W. Rondeau, Bin Le, Christian Rieser, and Charles W. Bostian, "Cognitive Radios with

Genetic Algorithms: Intelligent Control of Software Defined Radios," in SDR 04 Techincal

Conference and Product Exposition, 2004, p. 6.

[18] Mark Norton. (2005, November) Spectrum and Its Influence on 3G and Wi-Fi Architectures.

Document.

[19] (2011) ETSI World Class Standards. [Online].

http://portal.etsi.org/portal/server.pt/community/BRAN/299

[20] Helping Define 802.11n and other Wireless LAN Standards. [Online].

http://www.intel.com/standards/case/case_802_11.htm

[21] Ryan Kim. (2011) GigaOM. [Online]. http://gigaom.com/2010/12/30/wi-fi-hotspots-only-going-to-

get-hotter/

[22] (2011) Skyhook, Inc. [Online]. http://www.skyhookwireless.com/howitworks/coverage.php

[23] The Economist Print Edition, "A Brief History of Wi-Fi," 2004.

[24] Wi-Fi Alliance. (2009, September) Wi-Fi Alliance. [Online]. http://www.wi-

fi.org/register.php?file=wp_Wi-Fi_CERTIFIED_n_Industry.pdf

[25] Stephen McCann and Alex Ashley. (2011, February) Official IEEE 802.11 working group project

timelines. [Online]. http://grouper.ieee.org/groups/802/11/Reports/802.11_Timelines.htm

[26] Alexander Wyglinksi. (2011, January) Wireless Innovation Laboratory. [Online].

http://www.wireless.wpi.edu/courses/ece4305c11/lectures/ece4305_L02.pdf

[27] Raja Jurdak, Antonio G. Ruzzelliz, and G.M.P. O’Harez. (2009, September) Texas Instruments.

[Online]. http://focus.ti.com/docs/prod/folders/print/cc2420.html

[28] Prof. Godred Fairhurst. (2008, November) University of Aberdeen. [Online].

http://www.erg.abdn.ac.uk/users/gorry/course/road-map.html

[29] Patrick Kinney, "ZigBee Technology: Wireless Control that Simply Works," Lake Zurich, 2003.

[30] Gary Legg. (2004) EETimes. [Online]. http://www.eetimes.com/design/communications-

design/4017853/ZigBee-Wireless-Technology-for-Low-Power-Sensor-Networks

http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=00788210
http://portal.etsi.org/portal/server.pt/community/BRAN/299
http://www.intel.com/standards/case/case_802_11.htm
http://gigaom.com/2010/12/30/wi-fi-hotspots-only-going-to-get-hotter/
http://gigaom.com/2010/12/30/wi-fi-hotspots-only-going-to-get-hotter/
http://www.skyhookwireless.com/howitworks/coverage.php
http://www.wi-fi.org/register.php?file=wp_Wi-Fi_CERTIFIED_n_Industry.pdf
http://www.wi-fi.org/register.php?file=wp_Wi-Fi_CERTIFIED_n_Industry.pdf
http://grouper.ieee.org/groups/802/11/Reports/802.11_Timelines.htm
http://www.wireless.wpi.edu/courses/ece4305c11/lectures/ece4305_L02.pdf
http://focus.ti.com/docs/prod/folders/print/cc2420.html
http://www.erg.abdn.ac.uk/users/gorry/course/road-map.html
http://www.eetimes.com/design/communications-design/4017853/ZigBee-Wireless-Technology-for-Low-Power-Sensor-Networks
http://www.eetimes.com/design/communications-design/4017853/ZigBee-Wireless-Technology-for-Low-Power-Sensor-Networks

95

[31] William C. Craig. (2006, January) InTech. [Online].

http://www.isa.org/InTechTemplate.cfm?Section=Control_Fundamentals1&template=/ContentMan

agement/ContentDisplay.cfm&ContentID=51164

[32] Digi. (2010, July) Waspmote ZigBee Networking Guide.

[33] Jack Shandle. (2008, February) EETimes. [Online]. http://www.eetimes.com/electronics-

news/4182200/ZigBee-Alliance-charters-new-group-to-explore-Internet-solutions

[34] Texas Instruments. (2009, April) Texas Instruments. [Online].

http://focus.ti.com/pr/docs/preldetail.tsp?sectionId=594&prelId=sc09054

[35] Christine E. Jones, Krishna M. Sivalingam, Prathima Agrawal, and Jyh Cheng Chen. (2001) A

Survey of Energy Efficient Network Protocols forWireless.

[36] Jin-Shyan Lee, Yu-Wei Su, and Chung-Chou Shen, "A Comparative Study of Wireless Protocols:

Bluetooth, UWB, ZigBee, and Wi-Fi," in The 33rd Annual Conference of the IEEE Industrial

Electronics Society (IECON), Taipei, Taiwan, 2007, pp. 46-51.

[37] Paolo Baronti et al., "Wireless senor networks: A survey on the state of the art and the 802.15.4 and

ZigBee standards," Computer Communications, vol. 30, no. 7, pp. 1655-1695, May 2007.

[38] Erina Ferro and Francesco Potorti, "Bluetooth and Wi-Fi wireless protocols: a survey and a

comparison," Wireless Communications, IEEE, vol. 12, no. 1, pp. 12-16, February 2005.

[39] Jason Flinn and M. Satyanarayan, "Managing Battery Lifetime with Energy-Aware Adaptation,"

ACM Transactions on Computer Systems, vol. 22, no. 2, May 2004.

[40] Late Droid. (2011) http://latedroid.com/juicedefender.

[41] Spirent Communications, Test Methodology Journal: IMIX (Internet Mix) Journal, March 2006.

[42] R. Levering and M. Cutler, "The Portrait of a Common HTML Web Page," Binghamton University

SUNY, 2006.

[43] Digi International, Inc. (2007, June) XBee Series 2 OEM RF Modules Product Manual.

[44] Honggang Zhang. (2009, January) Zhejiang University. [Online].

http://sites.google.com/site/honggangzhanglabs/Home/green-communications--green-networking-

and-green-spectrum

[45] Michael Ghizzoni, Mathew Kelley, and Conor Rochford, "Cognitive Radio Using Radio Resource

Management," Worcester, Major Qualifying Project 2009.

[46] Fernando Company Serra, Javier González López, David Baqués Ibañez, and Javier López Rubio,

"Design and Implementation of a Cognitive Node for Heterogeneous Wireless Ad-Hoc Network,"

http://www.isa.org/InTechTemplate.cfm?Section=Control_Fundamentals1&template=/ContentManagement/ContentDisplay.cfm&ContentID=51164
http://www.isa.org/InTechTemplate.cfm?Section=Control_Fundamentals1&template=/ContentManagement/ContentDisplay.cfm&ContentID=51164
http://www.eetimes.com/electronics-news/4182200/ZigBee-Alliance-charters-new-group-to-explore-Internet-solutions
http://www.eetimes.com/electronics-news/4182200/ZigBee-Alliance-charters-new-group-to-explore-Internet-solutions
http://focus.ti.com/pr/docs/preldetail.tsp?sectionId=594&prelId=sc09054
http://sites.google.com/site/honggangzhanglabs/Home/green-communications--green-networking-and-green-spectrum
http://sites.google.com/site/honggangzhanglabs/Home/green-communications--green-networking-and-green-spectrum

96

Limerick, Bachelor of Engineering Thesis 2010.

[47] Gadi Shor, "How Bluetooth, UWB, and 802.11 stack up on power consumption," EE Times

Design, p. 4, April 2008.

[48] Daniel Indiviglio. (2009, December) The Atlantic. [Online].

http://www.theatlantic.com/business/archive/2009/12/at-t-to-discourage-mobile-data-usage/31538/

[49] Raymond J. Lackey and Donald W. Upmal, "Speakeasy: The Military Software Radio," IEEE

Communications Magazine, pp. 56-61, May 1995.

[50] Walter HW Tuttlebee, "Advances in Software Defined Radio," Ann. Telecommun., pp. 314-337,

2002.

[51] Matthew N. O. Sadiku and Cajetan M. Akujuobi. (2004, October/November) Software Defined

Radio: A Brief Overview.

[52] J Mitola, "The Software Radio," IEEE National Telesystems Conference, 1992.

[53] Federal Communications Commission, "Authorization of Spread Spectrum Systems Under Parts 15

and 90 of the FCC Rules," 1985.

[54] Sudhir B Pendse, US4707829, 1987.

[55] (2000, May) Intersil. [Online]. http://www.qsl.net/n9zia/pdf/AN9820.pdf

[56] Louis Litwin. (2001) IEEE Potentials. [Online].

http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=00969594

[57] John Hoadley. (2005, September) Building future networks with MIMO and OFDM. [Online].

http://connectedplanetonline.com/wireless/technology/mimo_ofdm_091905/

[58] IEEE Computer Society. (2007, June) Part 11: Wireless LAN Medium Access Control (MAC) and

Physical Layer (PHY) Specifications.

[59] R. Venkatesha Prasad, Przemyslaw Pawelczak, H. Steven Berger, and James A. Hoffmeyer,

"Cognitive Functionality in Next Generation Wireless Networks: Standardization Efforts," IEEE

Communications Magazine, pp. 72-78, April 2008.

[60] Jose Gutierrez et al., "IEEE 802.15.4: A Developing Standard for Low-Power Low-Cost Wireless

Personal Area Networks," IEEE Network, vol. 15, no. 5, pp. 12-19, 2001.

[61] (2010, October) UnbeatableSale.ocom. [Online].

http://site.unbeatablesale.com/img055/dhwusb100.jpg

[62] IEEE. (2002) IEEExplore. [Online]. http://ieeexplore.ieee.org/servlet/opac?punumber=7932

[63] Hoovers. Hoovers. [Online]. http://www.hoovers.com/business-information/--pageid__13751--

http://www.theatlantic.com/business/archive/2009/12/at-t-to-discourage-mobile-data-usage/31538/
http://www.qsl.net/n9zia/pdf/AN9820.pdf
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=00969594
http://connectedplanetonline.com/wireless/technology/mimo_ofdm_091905/
http://site.unbeatablesale.com/img055/dhwusb100.jpg
http://ieeexplore.ieee.org/servlet/opac?punumber=7932
http://www.hoovers.com/business-information/--pageid__13751--/global-hoov-index.xhtml

97

/global-hoov-index.xhtml

[64] Patrice Oehen. ZigBee: An Overview of the Upcoming Standard.

[65] Tao Zheng and Sridhar Radhakrishnan. (2009, November) A Switch Agent for Wireless Sensor

Nodes with Dual Interfaces: Implementation and Evaluation.

[66] (2004, June) Marcus Spectrum Solutions LLC. [Online]. http://www.marcus-

spectrum.com/documents/economist.pdf

[67] Stephen McCann and Alex Ashley. (2011) OFFICIAL IEEE 802.11 WORKING GROUP

PROJECT TIMELINES - 2011-02-02. [Online].

http://grouper.ieee.org/groups/802/11/Reports/802.11_Timelines.htm

http://www.hoovers.com/business-information/--pageid__13751--/global-hoov-index.xhtml
http://www.marcus-spectrum.com/documents/economist.pdf
http://www.marcus-spectrum.com/documents/economist.pdf
http://grouper.ieee.org/groups/802/11/Reports/802.11_Timelines.htm

98

Appendix A:

FileBytes.java

package lpcn.xbee;

import java.io.Serializable;

public class FileBytes implements Serializable

{

 public byte[] bytes;

 public FileBytes()

 {

 }

 public FileBytes(long byteSize)

 {

 this.bytes = new byte[(int)byteSize];

 }

 public FileBytes(byte[] bytes)

 {

 this.bytes = bytes;

 }

 public int[] getBytesAsIntArray()

 {

 int[] ints = new int[bytes.length];

 int i = 0;

 for(int oneInt : bytes)

 {

 ints[i] = oneInt;

 i++;

 }

 return ints;

 }

}

FileInfo.java

package lpcn.xbee;

import com.rapplogic.xbee.api.XBeeAddress16;

import com.rapplogic.xbee.api.XBeeAddress64;

public class FileInfo {

 String fileName;

 long fileSize;

99

 long bytesTouched;

 boolean toSend;

 public FileInfo(String fileName, long fileSize, boolean toSend)

 {

 this.fileName = fileName;

 this.fileSize = fileSize;

 this.bytesTouched = 0;

 this.toSend = toSend;

 }

 public FileInfo(String fileName, long fileSize, long bytesTouched, boolean toSend)

 {

 this.fileName = fileName;

 this.fileSize = fileSize;

 this.bytesTouched = bytesTouched;

 this.toSend = toSend;

 }

 public String getFileName() {

 return fileName;

 }

 public void setFileName(String fileName) {

 this.fileName = fileName;

 }

 public long getFileSize() {

 return fileSize;

 }

 public void setFileSize(long fileSize) {

 this.fileSize = fileSize;

 }

 public long getbytesTouched() {

 return bytesTouched;

 }

 public void setbytesTouched(long bytesTouched) {

 this.bytesTouched = bytesTouched;

 }

 public boolean isToSend() {

 return toSend;

 }

 public void setToSend(boolean toSend) {

 this.toSend = toSend;

 }

}

100

GeneralGUI.java

package lpcn.xbee;

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

import java.io.BufferedInputStream;

import java.io.BufferedOutputStream;

import java.io.DataInputStream;

import java.io.File;

import java.io.FileInputStream;

import java.io.FileNotFoundException;

import java.io.FileOutputStream;

import java.io.IOException;

import java.io.ObjectInputStream;

import java.io.ObjectOutputStream;

import java.net.Socket;

import java.net.SocketException;

import java.util.ArrayList;

import java.util.Date;

import java.util.concurrent.LinkedBlockingQueue;

import javax.swing.JButton;

import javax.swing.JFrame;

import javax.swing.JLabel;

import javax.swing.JPanel;

import javax.swing.JTextArea;

import javax.swing.JTextField;

import com.rapplogic.xbee.api.PacketListener;

import com.rapplogic.xbee.api.XBeeException;

import com.rapplogic.xbee.api.zigbee.ZNetTxStatusResponse;

public class GeneralGUI extends JFrame implements ActionListener

{

 /* CONSTANTS */

 final String FILEPATH = "/home/pdesantis/Documents/testing/"; // Holds the default download

directory for this program

 /* THREADS */

 QueueManager tQueueManager = new QueueManager();

 WiFiDataListener tWiFiDataListener = new WiFiDataListener();

 /* CLASS VARIABLES */

 public XBeeInterface xbee;

 public PacketListener packetListener;

 Socket clientSocket;

 ObjectOutputStream clientObjectOutputStream;

101

 ObjectInputStream clientObjectInputStream;

 public volatile boolean connectedWiFi;

 public volatile boolean transmissionInProgress;

 long scriptStartTime = 0;

 int port = 13267;

 volatile LinkedBlockingQueue<int[]> queueDataReceived = new LinkedBlockingQueue<int[]>();

 volatile LinkedBlockingQueue<FileInfo> queueFiles = new LinkedBlockingQueue<FileInfo>();

 public long queueBytes;

 public File file;

 volatile boolean fileTransferComplete;

 public FileInputStream fileInStream;

 public BufferedInputStream buffInStream;

 public FileOutputStream fileOutStream;

 public BufferedOutputStream buffOutStream;

 /* GUI VARIABLES */

 JPanel pane;

 JTextField devicePort = new JTextField("/dev/ttyUSB0", 15);

 JLabel devicePortLabel = new JLabel("Enter Device Port:");

 JButton startButton = new JButton("Enable SmartPower");

 JButton sendPacketButton = new JButton("Send Packet");

 JButton sendFileButton = new JButton("Send a File");

 JTextField fileLocation = new JTextField(FILEPATH + "file1", 40);

 JLabel fileLocationLabel = new JLabel("Enter File Path:");

 boolean readyToSend;

 boolean selfReadyToReceive;

 boolean friendReadyToReceive;

 JTextArea outputBox = new JTextArea();;

 /* GUI METHODS */

 public GeneralGUI()

 {

 //FILEPATH = "/home/pdesantis/Documents/testing/";

 connectedWiFi = false;

 transmissionInProgress = false;

 readyToSend = true;

 selfReadyToReceive = false;

 friendReadyToReceive = false;

 setSize(600, 600);

 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

102

 /*

 MessageConsole mc = new MessageConsole(outputBox);

 mc.redirectOut(null, System.out);

 mc.setMessageLines(25);

 */

 startButton.addActionListener(this);

 sendPacketButton.addActionListener(this);

 sendFileButton.addActionListener(this);

 pane = new JPanel();

 pane.add(devicePortLabel);

 pane.add(devicePort);

 pane.add(startButton);

 pane.add(sendPacketButton);

 pane.add(sendFileButton);

 pane.add(outputBox);

 pane.add(fileLocation);

 pane.add(fileLocationLabel);

 }

 // This is basically an "abstract class" here

 // It gets redefined in our subclasses

 public void actionPerformed(ActionEvent event)

 {

 }

 /* CLASS METHODS */

 public void openXBeeInterface(String XBeePort, int XBeeBaud)

 {

 XBeePort = "/dev/ttyUSB0";

 XBeeBaud = 9600;

 clientSocket = new Socket();

 try

 {

 if(xbee == null)

 {

 xbee = new XBeeInterface(XBeePort, XBeeBaud);

 }

 else

 {

 //xbee.xbee.close();

 //xbee.xbee.open(XBeePort, XBeeBaud);

 }

 tQueueManager.start(); // Start the Queue Manager Thread

 }

 catch (XBeeException e)

 {

103

 }

 }

 /* UTILITY FUNCTIONS */

 public int[] removeFirstArrayElement(int[] arr)

 {

 int[] new_arr;

 new_arr = new int[arr.length - 1];

 for(int i = 1; i < arr.length; i++)

 {

 new_arr[i - 1] = arr[i];

 }

 return new_arr;

 }

 public String removeFirstChar(String str)

 {

 String new_str = str.substring(1);

 return new_str;

 }

 /* END UTILITY FUNCTIONS */

 /* SEND/RECEIVE FUNCTIONS */

 public void sendFileTransferRequest(FileInfo fileInfo)

 {

 try {

 Thread.sleep(100);

 } catch (InterruptedException e) {

 e.printStackTrace();

 }

 String fileName;

 char[] fileSizeChar;

 // TODO add file selection box thingy

 fileName = fileInfo.getFileName(); // Read the name of the file

 long fileSize = fileInfo.getFileSize(); // Read the size of the file in bytes

 fileSizeChar = Long.toString(fileSize).toCharArray(); // Convert the file size (long) to a string

 // CREATE THE ZIGBEE PACKET

 // Create the payload integer array with the array size of 2 (for the status byte and separator), the

length of the file name, and the length of the file size

 // TODO add a check to see if the payload is still less than the max payload size

 int[] payload = new int[2 + fileName.length() + fileSizeChar.length];

 // Set the status byte to 3

 payload[0] = '3';

 // Break apart the fileName string into chars and add them to the payload

 int i = 1;

104

 for(char oneChar : fileName.toCharArray())

 {

 payload[i++] = oneChar;

 }

 payload[i++] = ','; // Add a comma to separate the file name from the file size

 // Break apart the fileSizeChar array and add it to the payload

 for(char oneChar : fileSizeChar)

 {

 payload[i++] = oneChar;

 }

 //System.out.println("Sending file transfer request for file: " + fileName);

 readyToSend = false;

 // Send the packet, check whether it was delivered successfully or not, and if not, repeat sending

it until it succeeds

 while(xbee.XBeeSendPacket(payload) != ZNetTxStatusResponse.DeliveryStatus.SUCCESS);

 //xbee.XBeeSendPacket(payload);

 //xbee.XBeeSendPacket(payload); // Send the packet and wait for an ACK

 readyToSend = true;

 //System.out.println("File transfer request ACK received for file: " + fileName);

 //System.out.println("Adding file to queue to be sent: " + fileName);

 // Add this file to the queue of files to be sent

 queueFiles.add(fileInfo);

 queueBytes = queueBytes + fileInfo.getFileSize();

 }

 public void sendFile(FileInfo fileInfo)

 {

 transmissionInProgress = true;

 ArrayList<Integer> payloadTemp;

 int currentAmtBytesRead;

 int oneByte;

 long start;

 long end;

 int packetCounter = 0;

 boolean firstLoopZigBee = true;

 boolean firstLoopWiFi = true;

 try

 {

 FileInputStream fileInStream = new FileInputStream(FILEPATH +

fileInfo.getFileName());

 BufferedInputStream buffInStream = new BufferedInputStream(fileInStream);

 //System.out.println("Waiting for friend to be ready to receive");

 int spacer = 0;

105

 //System.out.println("");

 while(!friendReadyToReceive)

 {

 /*

 System.out.print(".");

 spacer++;

 if(spacer == 100)

 {

 spacer = 0;

 System.out.println("");

 }

 */

 // sleep, so as not to kill CPU cycles

 // is this even necessary?

 try

 {

 //System.out.print(".");

 Thread.sleep(10);

 }

 catch (InterruptedException e)

 {

 e.printStackTrace();

 }

 }

 //System.out.println("");

 //System.out.println("Friend is ready to receive!");

 /*

 if(fileInfo.getbytesTouched() == fileInfo.getFileSize())

 {

 }

 */

 start = System.currentTimeMillis();

 System.out.println("Sending started " + (start - scriptStartTime) + " milliseconds after the

start of the script");

 while(fileInfo.getbytesTouched() != fileInfo.getFileSize())

 {

 //System.out.println("trying to send? readyToSend is: " + readyToSend);

 currentAmtBytesRead = 0; // reset the current amount of bytes read for this loop

to 0

 if(connectedWiFi) // Wi-Fi

 {

 if(firstLoopWiFi)

 {

 System.out.println("Sending the file through Wi-Fi: " +

fileInfo.getFileName());

 firstLoopWiFi = false;

 }

 long bytesLeft = fileInfo.getFileSize() - fileInfo.getbytesTouched();

106

 FileBytes fileBytes = new FileBytes(bytesLeft);

 buffInStream.read(fileBytes.bytes);

 clientObjectOutputStream.writeObject(fileBytes);

 clientObjectOutputStream.flush();

 clientObjectOutputStream.reset();

 fileInfo.setbytesTouched(fileInfo.getbytesTouched() + fileBytes.bytes.length);

 currentAmtBytesRead = fileBytes.bytes.length;

 }

 else // ZigBee

 {

 if(readyToSend)

 {

 if(firstLoopZigBee)

 {

 System.out.println("Sending the file through ZigBee: " +

fileInfo.getFileName());

 firstLoopZigBee = false;

 }

 payloadTemp = new ArrayList<Integer>(); // Reset the temporary payload

list

 payloadTemp.add(new Integer(52)); // Set the first (status) byte to

52 (the decimal code for '4'), the number for FILE DATA

 while(currentAmtBytesRead < 70) // Read (up to) 70 bytes from

the file

 {

 oneByte = buffInStream.read();

 if(oneByte == -1) // If there are no more bytes left in the file (there

were less than 70 bytes left to read)

 {

 break; // Done reading, break out of this loop!

 }

 else

 {

 payloadTemp.add(new Integer(oneByte)); // Add these bytes to

the temporary payload array

 currentAmtBytesRead++; // Increment the amount of

bytes read

 }

 }

 // Convert the arraylist to an integer array

 int[] payload = new int[payloadTemp.size()];

 for(int i = 0; i < payload.length; i++)

 {

 payload[i]=((Integer)payloadTemp.get(i)).intValue();

 }

107

 //System.out.println("Sending packet with " + currentAmtBytesRead + "

bytes of data");

 System.out.print(".");

 packetCounter++;

 if(packetCounter == 49)

 {

 packetCounter = 0;

 System.out.println("");

 }

 fileInfo.setbytesTouched(fileInfo.getbytesTouched() +

currentAmtBytesRead);

 // Send the packet, check whether it was delivered successfully or not, and

if not, repeat sending it until it succeeds

 //while(xbee.XBeeSendPacket(payload) !=

ZNetTxStatusResponse.DeliveryStatus.SUCCESS);

 xbee.XBeeSendPacket(payload);

 }

 else

 {

 try

 {

 Thread.sleep(10);

 }

 catch (InterruptedException e)

 {

 e.printStackTrace();

 }

 }

 }

 queueBytes = queueBytes - currentAmtBytesRead; // Decrease queueBytes by

the amount of bytes just sent

 }

 friendReadyToReceive = false;

 //System.out.println("Sent file: " + fileInfo.fileName + " , bytes: " +

fileBytes.bytes.length);

 end = System.currentTimeMillis();

 //System.out.println("");

 long bandwidth = 0;

 if((end-start) != 0)

 bandwidth = ((fileInfo.getFileSize() / (end-start)) * 1000);

 System.out.println("Sent file. File: " + fileInfo.getFileName() + " , Size: " +

fileInfo.getFileSize() + " bytes, time: " + (end-start) + " milliseconds, bandwidth: " + bandwidth + "

bytes/second");

 System.out.println("Sending completed " + (end - scriptStartTime) + " milliseconds after

the start of the script" + " (" + new Date().toString() + ")");

 System.out.println("queueBytes = " + queueBytes);

 System.out.println("");

 buffInStream.close(); // Close the buffered input stream

108

 fileInStream.close(); // Close the file input stream

 }

 catch (FileNotFoundException e)

 {

 e.printStackTrace();

 }

 catch (IOException e)

 {

 e.printStackTrace();

 }

 }

 public void receiveFile(FileInfo file)

 {

 int[] bytesToWrite;

 int bytesWritten = 0;

 long start;

 long end;

 int packetCounter = 0;

 try

 {

 fileOutStream = new FileOutputStream(FILEPATH + file.getFileName()); // set up the

Output Streams

 buffOutStream = new BufferedOutputStream(fileOutStream);

 System.out.println("Receiving file. File: " + file.getFileName());

 //System.out.println("Output Streams set up");

 start = System.currentTimeMillis();

 System.out.println("Receiving started " + (start - scriptStartTime) + " milliseconds after

the start of the script");

 //System.out.println("Sending ready to receive packet!");

 selfReadyToReceive = true;

 int[] payload = new int[] { '5' };

 while(xbee.XBeeSendPacket(payload) !=

ZNetTxStatusResponse.DeliveryStatus.SUCCESS); // Send the packet, check whether it was delivered

successfully or not, and if not, repeat sending it until it succeeds

 while(file.getFileSize() - file.getbytesTouched() > 0) // While the file has not been

completely received

 {

 bytesToWrite = queueDataReceived.take(); // Wait until data has been received,

then take it off the queue...

 //System.out.println("Took data off the data received queue: " +

bytesToWrite.length);

 for(int oneByte : bytesToWrite)

 {

 buffOutStream.write(oneByte); // ...and write it to the output stream

 //System.out.println("Writing one byte: " + oneByte);

109

 }

 //System.out.println("Wrote " + bytesToWrite.length + " bytes");

 //System.out.print(".");

 /*

 packetCounter++;

 if(packetCounter == 50)

 {

 packetCounter = 0;

 //System.out.println("");

 }

 */

 file.setbytesTouched(file.getbytesTouched() + bytesToWrite.length); // Update the

amount of bytes written

 bytesWritten = bytesWritten + bytesToWrite.length;

 queueBytes = queueBytes - bytesToWrite.length; // Subtract the number of bytes

written from the queue size

 }

 end = System.currentTimeMillis();

 //System.out.println("");

 long bandwidth = 0;

 if((end-start) != 0)

 bandwidth = ((file.getFileSize() / (end-start)) * 1000);

 System.out.println("File received. File: " + file.getFileName() + " , Size: " +

file.getFileSize() + " bytes, time: " + (end-start) + " milliseconds, bandwidth: " + bandwidth + "

bytes/second");

 System.out.println("Sending completed " + (end - scriptStartTime) + " milliseconds after

the start of the script" + " (" + new Date().toString() + ")");

 System.out.println("queueBytes = " + queueBytes);

 System.out.println("");

 selfReadyToReceive = false;

 buffOutStream.flush();

 buffOutStream.close();

 fileOutStream.close();

 }

 catch (FileNotFoundException e)

 {

 e.printStackTrace();

 }

 catch (IOException e)

 {

 e.printStackTrace();

 }

 catch (InterruptedException e)

 {

 e.printStackTrace();

 }

 }

 /* END SEND/RECEIVE FUNCTIONS */

 /* THREAD CLASSES */

110

 // Takes files off the queue and sends them to the appropriate handler function

 class QueueManager implements Runnable

 {

 private volatile Thread threadQueueManager;

 FileInfo currentFile;

 void stop()

 {

 threadQueueManager = null;

 }

 void start()

 {

 threadQueueManager = new Thread(this);

 threadQueueManager.start();

 }

 public void run()

 {

 Thread thisThread = Thread.currentThread();

 //System.out.println("Started the queue manager thread");

 while(threadQueueManager == thisThread)

 {

 try

 {

 //System.out.println("Waiting to take a file off the queue");

 currentFile = queueFiles.take();

 if(currentFile.isToSend())

 {

 //System.out.println("File taken off the queue to be sent: " +

currentFile.getFileName());

 sendFile(currentFile); // wait until file is sent

 //System.out.println("File sent!");

 }

 else

 {

 //System.out.println("File taken off the queue to be received: " +

currentFile.getFileName());

 receiveFile(currentFile); // wait until file is received

 //System.out.println("File received!");

 }

 }

 catch (InterruptedException e)

 {

 e.printStackTrace();

 }

 }

 }

 }

 // Takes packet from received from socket and adds it to the data queue

111

 class WiFiDataListener implements Runnable

 {

 private volatile Thread threadWiFiDataListener;

 void stop()

 {

 threadWiFiDataListener = null;

 }

 void start()

 {

 threadWiFiDataListener = new Thread(this);

 threadWiFiDataListener.start();

 }

 public void run()

 {

 Thread thisThread = Thread.currentThread();

 try

 {

 while(threadWiFiDataListener == thisThread)

 {

 if(connectedWiFi)

 {

 try

 {

 //if(clientObjectInputStream.available() > 0)

 //{

 //DataInputStream testy;

 //testy.

 FileBytes fileBytes = (FileBytes)

clientObjectInputStream.readObject();

 //System.out.println("WiFi Listener received: " + inByte);

 queueDataReceived.add(fileBytes.getBytesAsIntArray());

 //}

 /*

 else

 {

 try

 {

 Thread.sleep(10);

 }

 catch (InterruptedException e)

 {

 }

 }

 */

 }

 catch (ClassNotFoundException e)

 {

 e.printStackTrace();

112

 }

 catch(SocketException e)

 {

 //e.printStackTrace(); }

 }

 }

 }

 catch (IOException e)

 {

 e.printStackTrace();

 }

 }

 }

}

SmartPowerAP.java

package lpcn.xbee;

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

import java.io.File;

import java.io.IOException;

import java.io.ObjectInputStream;

import java.io.ObjectOutputStream;

import java.net.ServerSocket;

import javax.swing.JButton;

import org.apache.log4j.Logger;

import org.apache.log4j.PropertyConfigurator;

import com.rapplogic.xbee.api.ApiId;

import com.rapplogic.xbee.api.PacketListener;

import com.rapplogic.xbee.api.XBeeAddress64;

import com.rapplogic.xbee.api.XBeeResponse;

import com.rapplogic.xbee.api.zigbee.ZNetRxResponse;

import com.rapplogic.xbee.api.zigbee.ZNetTxStatusResponse;

import com.rapplogic.xbee.util.ByteUtils;

public class SmartPowerAP

{

 public final static Logger log = Logger.getLogger(SmartPowerAP.class);

 /**

 * @param args

 */

 public static void main(String[] arguments)

 {

 PropertyConfigurator.configure("log4j.properties");

113

 APGUI bf = new APGUI();

 }

}

class APGUI extends GeneralGUI implements ActionListener

{

 // CLASS VARIABLES

 ServerSocket serverSocket;

 // THREADS

 AddFilesToQueue tAddFilesToQueue = new AddFilesToQueue();

 WiFiConnectionListener tWiFiConnectionListener = new WiFiConnectionListener();

 SendWiFiInfo tSendWiFiInfo = new SendWiFiInfo();

 // GUI VARIABLES

 JButton runAddFileScriptButton = new JButton("Run Add Files Script");

 // Constructor

 public APGUI()

 {

 setTitle("AP in the Hizzouce");

 runAddFileScriptButton.addActionListener(this);

 pane.add(runAddFileScriptButton);

 add(pane);

 setVisible(true);

 try

 {

 serverSocket = new ServerSocket(port);

 }

 catch (IOException e)

 {

 e.printStackTrace();

 }

 packetListener = new PacketListener()

 {

 public void processResponse(XBeeResponse response)

 {

 //System.out.println("Received packet: " + response);

 if (response.getApiId() == ApiId.ZNET_RX_RESPONSE)

 {

 int[] payload; // Stores the payload of the received packet

 ZNetRxResponse ZNetResponse = new ZNetRxResponse(); // Stores the

ZNetRxResonse type of the received packet

 ZNetResponse = (ZNetRxResponse) response; // Cast received packet to the

correct type (ZNetRxResonse)

114

 payload = ZNetResponse.getData(); // Store the data from the

packet into the payload array

 switch(payload[0]) // Look at the status byte (first byte) of the payload

 {

 case '0': // WIFI_REQUEST : Requests a Wi-Fi access point to connect to

 System.out.println("Wi-Fi request received");

 tWiFiConnectionListener.start();

 tSendWiFiInfo.start();

 break;

 case '1': // WIFI_INFO : Contains Wi-Fi access point information

 // not needed on the access point

 break;

 case '2': // WIFI_STOP : Informs Wi-Fi AP that the connection is closing

 try

 {

 //clientObjectOutputStream.close();

 connectedWiFi = false;

 tWiFiDataListener.stop();

 clientSocket.close();

 }

 catch (IOException e)

 {

 e.printStackTrace();

 }

 break;

 case '3': // FILE_TRANSFER_REQUEST : Contains file information

 String fileInfoString = removeFirstChar(ByteUtils.toString(payload)); //

Strip the status (first) byte from the payload

 String[] fileInfo = fileInfoString.split(","); // Split the data into

separate strings for file name and size

 String fileName = fileInfo[0]; // Store the file

name

 long fileSize = Long.parseLong(fileInfo[1]); // Convert the file size

string into a long and store it

 //System.out.println("File Transfer Request received: " + fileName + " of

size " + fileSize + " bytes");

 queueFiles.add(new FileInfo(fileName, fileSize, false)); // Add the file

to the write queue

 queueBytes = queueBytes + fileSize;

 //receiveFileTransferRequest(fileName, fileSize); // Handle the file

transfer request

 break;

 case '4': // FILE_DATA : Contains 70 bytes of file data

 int[] dataInt = removeFirstArrayElement(payload); // Strip the status

(first) byte from the payload

115

 queueDataReceived.add(dataInt); // Add the byte array to the received

data queue

 break;

 case '5': // INCOMING_FRIEND_TO_RECEIVE : Contains file information

 friendReadyToReceive = true;

 //System.out.println("received a ready to receive packet from friend");

 break;

 default:

 //System.out.println("Received random ass packet: " + response);

 //System.out.println("Packet length is this shit: " +

ZNetResponse.getLength());

 //System.out.println("Payload length is fuckin: " +

ZNetResponse.getData().length);

 break;

 }

 }

 }

 };

 }

 // Event handler

 public void actionPerformed(ActionEvent event)

 {

 Object source = event.getSource();

 if(source == startButton)

 {

 openXBeeInterface(devicePort.getText(), 9600);

 xbee.setDestinationAddress64(new XBeeAddress64(0, 0x13, 0xa2, 0, 0x40, 0x30, 0xc1,

0x3e));

 while(!xbee.xbee.isConnected())

 {

 // Do nothing until the xbee has been connected to

 }

 xbee.xbee.addPacketListener(packetListener);

 }

 else if(source == sendPacketButton)

 {

 sendWiFiInfo();

 //int[] payload = new int[] { '6' };

 }

 else if(source == sendFileButton)

 {

 File fileToSend = new File(fileLocation.getText()); // Look up the file on the hard

drive

 FileInfo fileInfo = new FileInfo(fileToSend.getName(), fileToSend.length(), true); //

Create a FileInfo object

 sendFileTransferRequest(fileInfo); // Send a file transfer request

116

 }

 else if(source == runAddFileScriptButton)

 {

 scriptStartTime = System.currentTimeMillis();

 tAddFilesToQueue.start();

 }

 }

 public void sendWiFiInfo()

 {

 int[] payload = new int[] { '1', 'u', 'l', 'w', 'i', 'r', 'e', 'l', 'e', 's', 's', ',', 'M', 'a', 'n', 'a', 'g', 'e', 'd', ',', 'A',

'n', 'y' };

 System.out.println("Sending packet: " + xbee.XBeeSendPacket(payload));

 }

 // THREADS

 // Waits for a connection on the socket, and then sets the WiFi connection status to true

 class WiFiConnectionListener implements Runnable

 {

 private volatile Thread threadWiFiConnectionListener;

 void start()

 {

 threadWiFiConnectionListener = new Thread(this);

 threadWiFiConnectionListener.start();

 }

 public void run()

 {

 try

 {

 clientSocket = serverSocket.accept(); // Wait for the client to connect on the socket

 connectedWiFi = true; // Let the program know WiFi is

connected

 clientObjectOutputStream = new

ObjectOutputStream(clientSocket.getOutputStream());

 clientObjectInputStream = new ObjectInputStream(clientSocket.getInputStream());

 tWiFiDataListener.start(); // Start the WiFi data listener

 threadWiFiConnectionListener = null; // Kill this thread?

 }

 catch (IOException e)

 {

 e.printStackTrace();

 }

 }

 }

 class SendWiFiInfo implements Runnable

 {

 private volatile Thread threadSendWiFiInfo;

117

 public void stop()

 {

 threadSendWiFiInfo = null;

 }

 public void start()

 {

 threadSendWiFiInfo = new Thread(this);

 threadSendWiFiInfo.start();

 }

 public void run()

 {

 int[] payload = new int[] { '1', 'u', 'l', 'w', 'i', 'r', 'e', 'l', 'e', 's', 's', ',', 'M', 'a', 'n', 'a', 'g', 'e', 'd',

',', 'A', 'n', 'y' };

 System.out.println("sending connection info packet");

 while(xbee.XBeeSendPacket(payload) !=

ZNetTxStatusResponse.DeliveryStatus.SUCCESS);

 //System.out.println("Sending packet: " + xbee.XBeeSendPacket(payload));

 }

 }

 class AddFilesToQueue implements Runnable

 {

 private volatile Thread threadAddFilesToQueue;

 long ass;

 long file1;

 long file2;

 long file3;

 long file4;

 long file5;

 long file6;

 long file7;

 long file8;

 long file9;

 public void stop()

 {

 threadAddFilesToQueue = null;

 }

 public void start()

 {

 File asstemp = new File(FILEPATH + "ass.jpg");

 File file1temp = new File(FILEPATH + "ap1");

 File file2temp = new File(FILEPATH + "ap2");

 File file3temp = new File(FILEPATH + "ap3");

 /*

118

 File file1temp = new File(FILEPATH + "file1");

 File file2temp = new File(FILEPATH + "file2");

 File file3temp = new File(FILEPATH + "file3");

 */

 File file4temp = new File(FILEPATH + "file4");

 File file5temp = new File(FILEPATH + "file5");

 File file6temp = new File(FILEPATH + "file6");

 File file7temp = new File(FILEPATH + "file7");

 File file8temp = new File(FILEPATH + "file8");

 File file9temp = new File(FILEPATH + "file9");

 ass = asstemp.length();

 file1 = file1temp.length();

 file2 = file2temp.length();

 file3 = file3temp.length();

 file4 = file4temp.length();

 file5 = file5temp.length();

 file6 = file6temp.length();

 file7 = file7temp.length();

 file8 = file8temp.length();

 file9 = file9temp.length();

 threadAddFilesToQueue = new Thread(this);

 threadAddFilesToQueue.start();

 }

 public void run()

 {

 try

 {

 System.out.println("Starting add file thread");

 Thread.sleep(5000);

 sendFileTransferRequest(new FileInfo("ap1", file1, true));

 sendFileTransferRequest(new FileInfo("ap2", file2, true));

 sendFileTransferRequest(new FileInfo("ap3", file3, true));

 Thread.sleep(4000);

 sendFileTransferRequest(new FileInfo("ap3", file3, true));

 sendFileTransferRequest(new FileInfo("ap3", file3, true));

 sendFileTransferRequest(new FileInfo("ap3", file3, true));

 sendFileTransferRequest(new FileInfo("ap3", file3, true));

 sendFileTransferRequest(new FileInfo("ap3", file3, true));

 }

 catch (InterruptedException e)

 {

 // TODO Auto-generated catch block

 e.printStackTrace();

 }

 }

 }

}

119

SmartPowerUser.java

package lpcn.xbee;

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

import java.io.File;

import java.io.IOException;

import java.io.ObjectInputStream;

import java.io.ObjectOutputStream;

import java.net.Socket;

import java.util.Date;

import javax.swing.JButton;

import org.apache.log4j.Logger;

import org.apache.log4j.PropertyConfigurator;

import com.rapplogic.xbee.api.ApiId;

import com.rapplogic.xbee.api.PacketListener;

import com.rapplogic.xbee.api.XBeeAddress64;

import com.rapplogic.xbee.api.XBeeResponse;

import com.rapplogic.xbee.api.zigbee.ZNetRxResponse;

import com.rapplogic.xbee.api.zigbee.ZNetTxStatusResponse;

import com.rapplogic.xbee.util.ByteUtils;

public class SmartPowerUser

{

 public final static Logger log = Logger.getLogger(SmartPowerUser.class);

 /**

 * @param args

 */

 public static void main(String[] arguments)

 {

 PropertyConfigurator.configure("log4j.properties");

 UserGUI bf = new UserGUI();

 }

}

class UserGUI extends GeneralGUI implements ActionListener

{

 // CLASS VARIABLES

 String ip = "10.100.147.98";

 boolean connectingWiFi = false;

 boolean firstFileEver = true;

 // THREADS

 AddFilesToQueue tAddFilesToQueue = new AddFilesToQueue();

120

 SwitchingAlgorithm tSwitchingAlgorithm = new SwitchingAlgorithm();

 ShitPackets tShitPackets = new ShitPackets();

 // THREAD VARIABLES

 long counter_WiFi_QueueEmpty;

 long max_WiFi_QueueEmpty;

 long zigbeeQueueThreshold;

 boolean shittingPackets = false;

 // GUI Variables

 JButton requestBandwidthButton;

 JButton shitPacketsButton;

 boolean shitPackets;

 long amountPacketsShit;

 public Thread shitPacketsThread;

 JButton turnOffWiFiButton;

 JButton turnOnWiFiButton;

 JButton runAddFileScriptButton = new JButton("Run Add Files Script");

 // Constructor

 public UserGUI()

 {

 setTitle("Paty's Disco Jungl");

 requestBandwidthButton = new JButton("Request Bandwidth");

 shitPacketsButton = new JButton("Repeatedly Send Packets");

 turnOffWiFiButton = new JButton("turn off wifi");

 turnOnWiFiButton = new JButton("turn on wifi");

 requestBandwidthButton.addActionListener(this);

 shitPacketsButton.addActionListener(this);

 turnOffWiFiButton.addActionListener(this);

 turnOnWiFiButton.addActionListener(this);

 runAddFileScriptButton.addActionListener(this);

 pane.add(requestBandwidthButton);

 pane.add(shitPacketsButton);

 pane.add(turnOffWiFiButton);

 pane.add(turnOnWiFiButton);

 pane.add(runAddFileScriptButton);

 add(pane);

 setVisible(true);

 amountPacketsShit = 0;

 packetListener = new PacketListener()

 {

 public void processResponse(XBeeResponse response)

 {

 //System.out.println("Received packet: " + response);

 if (response.getApiId() == ApiId.ZNET_RX_RESPONSE)

121

 {

 int[] payload; // Stores the payload of the received packet

 ZNetRxResponse ZNetResponse = new ZNetRxResponse(); // Stores the

ZNetRxResonse type of the received packet

 ZNetResponse = (ZNetRxResponse) response; // Cast received packet to the

correct type (ZNetRxResonse)

 payload = ZNetResponse.getData(); // Store the data from the

packet into the payload array

 switch(payload[0]) // Look at the status byte (first byte) of the payload

 {

 case '0': // WIFI_REQUEST : Requests a Wi-Fi access point to connect to

 // not needed on the user node

 break;

 case '1': // WIFI_INFO : Contains Wi-Fi access point information

 System.out.println("received connection info packet");

 String apInfoString = removeFirstChar(ByteUtils.toString(payload)); //

Strip the status (first) byte from the payload

 String[] apInfo = apInfoString.split(","); // Split the data into separate

strings for file name and size

 String essid = apInfo[0]; // Store the essid

 String mode = apInfo[1]; // Store the mode

 String ap = apInfo[2]; // Store the ap

 connectWiFi(essid, mode, ap); // Connect to the WiFi network

 break;

 case '2': // WIFI_STOP : Informs Wi-Fi AP that the connection is closing

 // not needed on the user node

 break;

 case '3': // FILE_TRANSFER_REQUEST : Contains file information

 String fileInfoString = removeFirstChar(ByteUtils.toString(payload)); //

Strip the status (first) byte from the payload

 String[] fileInfo = fileInfoString.split(","); // Split the data into

separate strings for file name and size

 String fileName = fileInfo[0]; // Store the file

name

 long fileSize = Long.parseLong(fileInfo[1]); // Convert the file size

string into a long and store it

 //System.out.println("Received file transfer request. Adding to queue: " +

fileName);

 queueFiles.add(new FileInfo(fileName, fileSize, false));

 queueBytes = queueBytes + fileSize;

 //receiveFileTransferRequest(fileName, fileSize); // Handle the file

transfer request

 if(firstFileEver)

 {

 firstFileEver = false;

 scriptStartTime = System.currentTimeMillis();

122

 System.out.println("Starting test simulation at time: " +

scriptStartTime + " (" + new Date().toString() + ")");

 }

 break;

 case '4': // FILE_DATA : Contains 70 bytes of file data

 int[] dataInt = removeFirstArrayElement(payload); // Strip the status

(first) byte from the payload

 queueDataReceived.add(dataInt); // Add the byte array to the received

data queue

 break;

 case '5': // INCOMING_FRIEND_TO_RECEIVE : Contains file information

 friendReadyToReceive = true;

 break;

 default:

 //System.out.println("Ignoring unexpected response: " + response);

 break;

 }

 }

 }

 };

 }

 // Event handler

 public void actionPerformed(ActionEvent event)

 {

 Object source = event.getSource();

 if(source == startButton)

 {

 //System.out.println("Opening xbee interface");

 openXBeeInterface(devicePort.getText(), 9600);

 //System.out.println("Xbee interface opened");

 xbee.setDestinationAddress64(new XBeeAddress64(0, 0x13, 0xa2, 0, 0x40, 0x30, 0xc1,

0x47));

 while(!xbee.xbee.isConnected())

 {

 // Do nothing until the xbee has been connected to

 }

 xbee.xbee.addPacketListener(packetListener);

 //System.out.println("Added a packet listener");

 stopNetworkManager();

 tWiFiDataListener.stop();

 turnOffWiFi();

 tSwitchingAlgorithm.start();

 }

 else if(source == sendPacketButton)

 {

 //ZNetTxStatusResponse response;

 //ZNetTxStatusResponse response;

123

 //int[] payload = new int[] { 'P', 'a', 't' };

 //response = (ZNetTxStatusResponse) xbee.XBeeSendPacket(payload);

 //System.out.println("Packet sent. Delivery status is: " + response.getDeliveryStatus());

 }

 else if(source == sendFileButton)

 {

 File fileToSend = new File(fileLocation.getText()); // Look up the file on the hard

drive

 FileInfo fileInfo = new FileInfo(fileToSend.getName(), fileToSend.length(), true); //

Create a FileInfo object

 sendFileTransferRequest(fileInfo); // Send a file transfer request

 }

 else if(source == requestBandwidthButton)

 {

 int[] payload = new int[] { '0' };

 readyToSend = false;

 xbee.XBeeSendPacket(payload);

 }

 else if(source == shitPacketsButton)

 {

 if(shittingPackets)

 {

 tShitPackets.stop();

 shittingPackets = false;

 }

 else

 {

 tShitPackets.start();

 shittingPackets = true;

 }

 /*

 shitPackets = true;

 if(shitPacketsThread == null)

 {

 shitPacketsThread.start();

 }

 else

 shitPackets = false;

 */

 }

 else if(source == turnOffWiFiButton)

 {

 turnOffWiFi();

 }

 else if(source == turnOnWiFiButton)

 {

 connectWiFi("ulwireless", "Managed", "any");

 }

 else if(source == runAddFileScriptButton)

 {

 scriptStartTime = System.currentTimeMillis();

124

 tAddFilesToQueue.start();

 }

 }

 // Turn off the network manager

 public void stopNetworkManager()

 {

 try

 {

 Runtime rt = Runtime.getRuntime();

 Process proc = rt.exec("sudo service network-manager stop");

 int exitVal = proc.waitFor();

 //System.out.println("Attempting to stop network manager: " + exitVal);

 }

 catch (Throwable t)

 {

 t.printStackTrace();

 }

 }

 // Shut down the Wi-Fi card

 public void turnOffWiFi()

 {

 try

 {

 connectedWiFi = false; // Let the rest of the program know that Wi-Fi is NOT connected

 //System.out.println("Is the socket connected? " + clientSocket.isConnected());

 if(clientSocket.isConnected()) // If the socket is connected to anything

 {

 //clientObjectInputStream.close();

 clientSocket.close(); // Close the socket

 //System.out.println("Closed the socket");

 }

 Runtime rt = Runtime.getRuntime();

 //Process proc = rt.exec("sudo ifconfig wlan0 down"); // Shut down the Wi-Fi card

 Process proc = rt.exec("sudo sh /home/pdesantis/Documents/workspace/xbee-

api/src/lpcn/xbee/usbcontrol_OFF.sh");

 int exitVal = proc.waitFor(); // Wait until it has been brought down

 }

 catch (Throwable t)

 {

 t.printStackTrace();

 }

 }

 // Turn on the Wi-Fi card, wait until it associates, then open up a socket to the access point

 public void connectWiFi(String essid, String mode, String ap)

 {

 try

125

 {

 Runtime rt = Runtime.getRuntime();

 //Process proc = rt.exec("/home/pdesantis/Documents/workspace/xbee-

api/src/lpcn/xbee/wireless.sh " + essid + " " + mode + " " + ap);

 Process proc = rt.exec("sudo sh /home/pdesantis/Documents/workspace/xbee-

api/src/lpcn/xbee/usbcontrol_ON.sh " + essid + " " + mode + " " + ap);

 int exitVal = proc.waitFor(); // Wait until Wi-Fi has been brought up

 if(exitVal == 0)

 {

 System.out.println("Attempting to connect to wifi: SUCCESS!");

 System.out.println("Attempting to open socket...");

 clientSocket = new Socket(ip, port); // Connect to the access point

 clientObjectOutputStream = new

ObjectOutputStream(clientSocket.getOutputStream());

 clientObjectInputStream = new ObjectInputStream(clientSocket.getInputStream());

 tWiFiDataListener.start(); // Start the WiFi data listener

 System.out.println("Socket connection is " + clientSocket.isConnected());

 connectedWiFi = true; // Let the rest of the program know that Wi-Fi is

connected

 connectingWiFi = false; // TODO comment this

 readyToSend = true; // Let the rest of the program know that it is

okay to send data again

 }

 else

 {

 //System.out.println("attempting to connect to wifi: FAILURE!");

 }

 }

 catch (IOException e)

 {

 e.printStackTrace();

 }

 catch (InterruptedException e)

 {

 e.printStackTrace();

 }

 }

 class AddFilesToQueue implements Runnable

 {

 private volatile Thread threadAddFilesToQueue;

 long ass;

 long file1;

 long file2;

 long file3;

 long file4;

 long file5;

 long file6;

 long file7;

 long file8;

126

 long file9;

 public void stop()

 {

 threadAddFilesToQueue = null;

 }

 public void start()

 {

 File file1temp = new File(FILEPATH + "user1");

 File file2temp = new File(FILEPATH + "user2");

 File file3temp = new File(FILEPATH + "user3");

 File asstemp = new File(FILEPATH + "ass.jpg");

 /*

 File file1temp = new File(FILEPATH + "file1");

 File file2temp = new File(FILEPATH + "file2");

 File file3temp = new File(FILEPATH + "file3");

 */

 File file4temp = new File(FILEPATH + "file4");

 File file5temp = new File(FILEPATH + "file5");

 File file6temp = new File(FILEPATH + "file6");

 File file7temp = new File(FILEPATH + "file7");

 File file8temp = new File(FILEPATH + "file8");

 File file9temp = new File(FILEPATH + "file9");

 ass = asstemp.length();

 file1 = file1temp.length();

 file2 = file2temp.length();

 file3 = file3temp.length();

 file4 = file4temp.length();

 file5 = file5temp.length();

 file6 = file6temp.length();

 file7 = file7temp.length();

 file8 = file8temp.length();

 file9 = file9temp.length();

 threadAddFilesToQueue = new Thread(this);

 threadAddFilesToQueue.start();

 }

 public void run()

 {

 try

 {

 System.out.println("Starting add file thread");

 Thread.sleep(3000);

 sendFileTransferRequest(new FileInfo("user1", file1, true));

 Thread.sleep(3000);

 sendFileTransferRequest(new FileInfo("user2", file2, true));

127

 sendFileTransferRequest(new FileInfo("user3", file3, true));

 }

 catch (InterruptedException e)

 {

 e.printStackTrace();

 }

 }

 }

 class ShitPackets implements Runnable

 {

 private volatile Thread threadShitPackets;

 long start;

 long end;

 int packetsSent;

 public void stop()

 {

 threadShitPackets = null;

 }

 public void start()

 {

 threadShitPackets = new Thread(this);

 threadShitPackets.start();

 }

 public void run()

 {

 Thread thisThread = Thread.currentThread();

 int[] payload = new int[] { '4', 0, 5,

5,

5, 5, 5, 5, 5 };

 System.out.println("size of payload is :" + payload.length);

 packetsSent = 0;

 start = System.currentTimeMillis();

 while(threadShitPackets == thisThread)

 {

 xbee.XBeeSendAsynchronousPacket(payload);

 packetsSent++;

 }

 end = System.currentTimeMillis();

 System.out.println("STOP STOP STOP Amoiunt of packets sent: " + packetsSent + " ,

total time: " + (end-start) + " milliseconds");

 }

 }

 // Takes packet from received from socket and adds it to the data queue

 //

 class SwitchingAlgorithm implements Runnable

 {

128

 private volatile Thread threadSwitchingAlgorithm;

 void stop()

 {

 threadSwitchingAlgorithm = null;

 }

 void start()

 {

 threadSwitchingAlgorithm = new Thread(this);

 threadSwitchingAlgorithm.start();

 }

 public void run()

 {

 Thread thisThread = Thread.currentThread();

 System.out.println("HEY PAT HEY PAT HEY PAT switching algorithm started");

 int[] payload;

 counter_WiFi_QueueEmpty = 0;

 // move these to a radio button event listener thing

 max_WiFi_QueueEmpty = 100;

 zigbeeQueueThreshold = 6*1024;

 while(threadSwitchingAlgorithm == thisThread)

 {

 if(connectedWiFi) // WIFI is on

 {

 // Reset ZigBee counters

 // Check to see if the queue is empty

 if(queueBytes == 0)

 {

 counter_WiFi_QueueEmpty++;

 }

 else

 {

 counter_WiFi_QueueEmpty = 0;

 }

 if(counter_WiFi_QueueEmpty == max_WiFi_QueueEmpty)

 {

 System.out.println("Queue has been empty for long time. Turning off Wi-

Fi");

 // Inform the AP that Wi-Fi is shutting off by sending a 'WIFI_STOP'

packet

 // Send the packet, check whether it was delivered successfully or not, and

if not, repeat sending it until it succeeds

 payload = new int[] { '2' };

129

 while(xbee.XBeeSendPacket(payload) !=

ZNetTxStatusResponse.DeliveryStatus.SUCCESS);

 // Turn off Wi-Fi

 turnOffWiFi();

 // Reset the WiFi counters

 counter_WiFi_QueueEmpty = 0;

 }

 }

 else // ZIGBEE is on

 {

 if(!connectingWiFi)

 {

 // Reset Wi-Fi counters

 counter_WiFi_QueueEmpty = 0;

 if(queueBytes >= zigbeeQueueThreshold)

 {

 connectingWiFi = true;

 System.out.println("Data Queue is too big. Switching to Wi-Fi");

 // Request Wi-Fi

 payload = new int[] { '0' };

 readyToSend = false;

 xbee.XBeeSendPacket(payload);

 }

 }

 }

 try

 {

 Thread.sleep(100); // Sleep for 0.1 seconds

 }

 catch (InterruptedException e)

 {

 e.printStackTrace();

 }

 }

 }

 }

}

XBeeInfo.java

package lpcn.xbee;

import com.rapplogic.xbee.api.XBeeAddress16;

import com.rapplogic.xbee.api.XBeeAddress64;

public class XBeeInfo

130

{

 XBeeAddress16 address16;

 XBeeAddress64 address64;

 String name;

 public XBeeInfo(String name, XBeeAddress16 address16, XBeeAddress64 address64)

 {

 this.name = name;

 this.address16 = address16;

 this.address64 = address64;

 }

 XBeeAddress16 getAddress16()

 {

 return this.address16;

 }

 XBeeAddress64 getAddress64()

 {

 return this.address64;

 }

 String getName()

 {

 return this.name;

 }

 void setAddress16(XBeeAddress16 address16)

 {

 this.address16 = address16;

 }

 void setAddress64(XBeeAddress64 address64)

 {

 this.address64 = address64;

 }

 void setName(String name)

 {

 this.name = name;

 }

}

XBeeInterface.java

package lpcn.xbee;

import java.util.ArrayList;

import org.apache.log4j.Logger;

131

import com.rapplogic.xbee.api.ApiId;

import com.rapplogic.xbee.api.AtCommand;

import com.rapplogic.xbee.api.AtCommandResponse;

import com.rapplogic.xbee.api.PacketListener;

import com.rapplogic.xbee.api.XBee;

import com.rapplogic.xbee.api.XBeeAddress16;

import com.rapplogic.xbee.api.XBeeAddress64;

import com.rapplogic.xbee.api.XBeeException;

import com.rapplogic.xbee.api.XBeeResponse;

import com.rapplogic.xbee.api.XBeeTimeoutException;

import com.rapplogic.xbee.api.zigbee.AssociationStatus;

import com.rapplogic.xbee.api.zigbee.NodeDiscover;

import com.rapplogic.xbee.api.zigbee.ZNetRxResponse;

import com.rapplogic.xbee.api.zigbee.ZNetTxRequest;

import com.rapplogic.xbee.api.zigbee.ZNetTxStatusResponse;

public class XBeeInterface

{

 /* CLASS VARIABLES */

 public XBee xbee;

 public XBeeAddress16 destinationAddress16;

 public XBeeAddress64 destinationAddress64;

 public boolean readyToSend;

 public ZNetTxRequest request;

 public ZNetTxStatusResponse response;

 public ArrayList<XBeeInfo> networkTable;

 public final static Logger log = Logger.getLogger(XBeeInterface.class);

 /* CLASS METHODS */

 public XBeeInterface(String XBeePort, int XBeeBaud) throws XBeeException

 {

 networkTable = new ArrayList<XBeeInfo>();

 xbee = new XBee();

 //try

 //{

 xbee.open(XBeePort, XBeeBaud);

 // wait 1/2 second to allow association with network

 //Thread.sleep(500);

 //xbee.sendAtCommand(new AtCommand("RE"));

 //nodeDiscovery();

 //}

 /*catch (InterruptedException e)

 {

 e.printStackTrace();

 }

 finally

 {

132

 }*/

 setDestinationAddress64(new XBeeAddress64(0, 0x13, 0xa2, 0, 0x40, 0x30, 0xc1, 0x47));

 request = new ZNetTxRequest(new XBeeAddress64(0, 0x13, 0xa2, 0, 0x40, 0x30, 0xc1, 0x47),

new int[] { 0x00 });

 request.setFrameId(xbee.getNextFrameId());

 setReadyToSend(true);

 }

 public int[] XBeeReceivePacket()

 {

 ZNetRxResponse response = new ZNetRxResponse();

 try

 {

 response = (ZNetRxResponse) xbee.getResponse();

 }

 catch (XBeeException e)

 {

 e.printStackTrace();

 }

 return response.getData();

 }

 public ZNetTxStatusResponse.DeliveryStatus XBeeSendPacket(int[] payload)

 {

 // Set the destination address and the payload of the packet

 request.setDestAddr64(getDestinationAddress64());

 request.setPayload(payload);

 try

 {

 // Send the packet

 response = (ZNetTxStatusResponse) xbee.sendSynchronous(request, 10*1000);

 /*

 System.out.println("---");

 System.out.println("request is: " + request);

 System.out.println("---");

 System.out.println("response is :" + response);

 */

 // Update frame ID for next request

 request.setFrameId(xbee.getNextFrameId());

 // If the packet was successfully delivered

 if (response.getDeliveryStatus() == ZNetTxStatusResponse.DeliveryStatus.SUCCESS)

 {

 setReadyToSend(true);

 // Check to see if the 16-bit address has changed from the stored value. If it has

changed, then update it. This allows for faster routing

 if (response.getRemoteAddress16().equals(XBeeAddress16.ZNET_BROADCAST))

133

 {

 request.setDestAddr16(response.getRemoteAddress16());

 }

 }

 else

 {

 return ZNetTxStatusResponse.DeliveryStatus.NETWORK_ACK_FAILURE;

 }

 }

 catch (XBeeTimeoutException e)

 {

//response.setDeliveryStatus(ZNetTxStatusResponse.DeliveryStatus.NETWORK_ACK_FAILURE);

 //ZNetTxStatusResponse.DeliveryStatus failed =

 //NETWORK_ACK_FAILURE;

 //System.out.println("Request timed out");

 System.out.println("Failure! Packet failed to send!");

 System.out.println("The request is:");

 System.out.println(request);

 System.out.println("");

 System.out.println("The response is:");

 System.out.println(response);

 //return response;

 return ZNetTxStatusResponse.DeliveryStatus.NETWORK_ACK_FAILURE;

 }

 catch (XBeeException e)

 {

 return ZNetTxStatusResponse.DeliveryStatus.NETWORK_ACK_FAILURE;

 }

 return response.getDeliveryStatus();

 }

 public void XBeeSendAsynchronousPacket(int[] payload)

 {

 // Set the destination address and the payload of the packet

 request.setDestAddr64(getDestinationAddress64());

 request.setPayload(payload);

 try

 {

 // Send the packet

 xbee.sendAsynchronous(request);

 // Update frame ID for next request

 request.setFrameId(xbee.getNextFrameId());

 }

 catch (XBeeException e)

 {

 }

 }

134

 public void nodeDiscovery() throws XBeeException, InterruptedException {

 try

 {

 // Clear the network table

 networkTable.clear();

 // the default Node discovery timeout is 6 seconds

 long nodeDiscoveryTimeout = 6000;

 // Add a packet listener to listen for a response

 PacketListener packetListenerND = new PacketListener()

 {

 public void processResponse(XBeeResponse response)

 {

 if (response.getApiId() == ApiId.AT_RESPONSE)

 {

 NodeDiscover nd = NodeDiscover.parse((AtCommandResponse)response);

 System.out.println("Node discover response is: " + nd);

 XBeeInfo responder = new XBeeInfo(nd.getNodeIdentifier(),

nd.getNodeAddress16(), nd.getNodeAddress64());

 // If the responding node is not in the list, add it

 if(!networkTable.contains(responder))

 {

 networkTable.add(responder);

 }

 }

 }

 };

 xbee.addPacketListener(packetListenerND);

 System.out.println("Sending node discover command");

 // Send the Node Discovery command

 xbee.sendAsynchronous(new AtCommand("ND"));

 // wait for nodeDiscoveryTimeout milliseconds

 Thread.sleep(nodeDiscoveryTimeout);

 xbee.removePacketListener(packetListenerND);

 System.out.println("Time is up! You should have heard back from all nodes by now. If

not make sure all nodes are associated and/or try increasing the node timeout (NT)");

 }

 finally

 {

 }

 }

 public void associationStatus() throws XBeeException {

 // get association status - success indicates it is associated to another XBee

 AtCommandResponse response = (AtCommandResponse) xbee.sendAtCommand(new

AtCommand("AI"));

135

 System.out.println("Association Status is " + AssociationStatus.get(response));

 }

 /* GETTERS AND SETTERS */

 public void setDestinationAddress16(XBeeAddress16 destinationAddress16) {

 this.destinationAddress16 = destinationAddress16;

 }

 public XBeeAddress16 getDestinationAddress16() {

 return destinationAddress16;

 }

 public void setDestinationAddress64(XBeeAddress64 destinationAddress64) {

 this.destinationAddress64 = destinationAddress64;

 }

 public XBeeAddress64 getDestinationAddress64() {

 return destinationAddress64;

 }

 public void setReadyToSend(boolean readyToSend) {

 this.readyToSend = readyToSend;

 }

 public boolean isReadyToSend() {

 return readyToSend;

 }

 public void setRequest(ZNetTxRequest request) {

 this.request = request;

 }

 public ZNetTxRequest getRequest() {

 return request;

 }

}

usbcontrol_OFF.sh

cd /sys/bus/usb/devices/2-0:1.0/power/

sudo ifconfig wlan1 down

sudo ifconfig wlan0 down

sudo rfkill block 1

sudo dhclient -r wlan1

#sleep 1;

sudo dhclient -r wlan1

#sleep 1;

sudo echo suspend > level

echo POWER DOWN

136

usbcontrol_ON.sh

#!/bin/bash

echo $1 $2 $3 ' -> echo $essid $mode $ap'

echo ESSID: $1

echo MODE: $2

echo AP: $3

cd /sys/bus/usb/devices/2-0:1.0/power/

echo on > level

#echo SLEEP 10 Seconds

#sleep 10;

#ifconfig wlan1 down

#dhclient -r wlan1

rfkill unblock 1

#ifconfig wlan1 up

#sleep 2;

#ifconfig wlan1 down

iwconfig wlan1 essid $1

iwconfig wlan1 mode $2

ifconfig wlan1 up

#echo Sleeping 3 Seconds

#sleep 3;

dhclient wlan1

echo POWER UP AND CONNECTED TO $1

Browsing Simulation Script

// …

// IMPORTANT NOTE: This file is truncated because it spans over 60 pages

// …

//CasBrowsingSimScript

//Mimic my casual browsing

//Browses through wikipedia, then watches a 1 minute youtube video.

//This script only adds files, or simulates downloading/receiving, the server

//AP should run this

//Follows BrowsingNatural.ods

//File sizes and names:

//file1 40 bytes

//file2 132 bytes

//file3 341 bytes

//file4 552 bytes

//file5 576 bytes

//file6 777 bytes

//file7 1500 bytes

//file8 808 bytes

137

//file9 1450 bytes

//Start

class AddFilesToQueue implements Runnable

{

 private volatile Thread threadAddFilesToQueue;

 long file1;

 long file2;

 long file3;

 long file4;

 long file5;

 long file6;

 long file7;

 long file8;

 long file9;

 public void stop()

 {

 threadAddFilesToQueue = null;

 }

 public void start()

 {

 File file1temp = new File(FILEPATH + "file1");

 File file2temp = new File(FILEPATH + "file2");

 File file3temp = new File(FILEPATH + "file3");

 File file4temp = new File(FILEPATH + "file4");

 File file5temp = new File(FILEPATH + "file5");

 File file6temp = new File(FILEPATH + "file6");

 File file7temp = new File(FILEPATH + "file7");

 File file8temp = new File(FILEPATH + "file8");

 File file9temp = new File(FILEPATH + "file9");

 file1 = file1temp.length();

 file2 = file2temp.length();

 file3 = file3temp.length();

 file4 = file4temp.length();

 file5 = file5temp.length();

 file6 = file6temp.length();

 file7 = file7temp.length();

 file8 = file8temp.length();

 file9 = file9temp.length();

 threadAddFilesToQueue = new Thread(this);

 threadAddFilesToQueue.start();

 }

 public void run()

 {

 try

138

 {

 sendFileTransferRequest(new FileInfo("file1", file1, true));

 System.out.println("Starting add file thread");

 Thread.sleep(3000); //wait 3 sec

 sendFileTransferRequest(new FileInfo("file1", file1, true)); //queue

the 40 byte file

 Thread.sleep(3000); //wait 3 sec

 sendFileTransferRequest(new FileInfo("file1", file1, true));

 //intending to send 140 kB total, sent 40 bytes Spike 1

 sendFileTransferRequest(new FileInfo("file2", file2, true)); //132

 sendFileTransferRequest(new FileInfo("file3", file3, true)); //341

 sendFileTransferRequest(new FileInfo("file7", file7, true)); //1500

 sendFileTransferRequest(new FileInfo("file7", file7, true)); //1500

 sendFileTransferRequest(new FileInfo("file7", file7, true)); //1500

 sendFileTransferRequest(new FileInfo("file7", file7, true)); //1500

 sendFileTransferRequest(new FileInfo("file6", file6, true)); //777

 sendFileTransferRequest(new FileInfo("file6", file6, true)); //777

 sendFileTransferRequest(new FileInfo("file7", file7, true)); //1500

 sendFileTransferRequest(new FileInfo("file5", file5, true)); //576

 sendFileTransferRequest(new FileInfo("file4", file4, true)); //552

 sendFileTransferRequest(new FileInfo("file6", file6, true)); //777

 sendFileTransferRequest(new FileInfo("file1", file1, true)); //40

 sendFileTransferRequest(new FileInfo("file3", file3, true)); //341

 sendFileTransferRequest(new FileInfo("file2", file2, true)); //132

 sendFileTransferRequest(new FileInfo("file4", file4, true)); //552

 sendFileTransferRequest(new FileInfo("file1", file1, true)); //40

 sendFileTransferRequest(new FileInfo("file2", file2, true)); //132

 sendFileTransferRequest(new FileInfo("file3", file3, true)); //341

 sendFileTransferRequest(new FileInfo("file7", file7, true)); //1500

 sendFileTransferRequest(new FileInfo("file7", file7, true)); //1500

 sendFileTransferRequest(new FileInfo("file7", file7, true)); //1500

 sendFileTransferRequest(new FileInfo("file7", file7, true)); //1500

 sendFileTransferRequest(new FileInfo("file6", file6, true)); //777

// …

// NOTE: This file is truncated because it spans over 60 pages

// …

 //sent 17840 bytes in 20 packets

 Thread.sleep(1000); //wait 1s

 //send 30059 bytes in 40 packets

 sendFileTransferRequest(new FileInfo("file8", file8, true)); //808

 sendFileTransferRequest(new FileInfo("file9", file9, true)); //1450

 sendFileTransferRequest(new FileInfo("file6", file6, true)); //576

 sendFileTransferRequest(new FileInfo("file8", file8, true)); //808

 sendFileTransferRequest(new FileInfo("file8", file8, true)); //808

 sendFileTransferRequest(new FileInfo("file5", file5, true)); //552

 sendFileTransferRequest(new FileInfo("file8", file8, true)); //808

 sendFileTransferRequest(new FileInfo("file9", file9, true)); //1450

 sendFileTransferRequest(new FileInfo("file6", file6, true)); //576

 sendFileTransferRequest(new FileInfo("file8", file8, true)); //808

 sendFileTransferRequest(new FileInfo("file8", file8, true)); //808

 sendFileTransferRequest(new FileInfo("file5", file5, true)); //552

139

 sendFileTransferRequest(new FileInfo("file8", file8, true)); //808

 sendFileTransferRequest(new FileInfo("file9", file9, true)); //1450

 sendFileTransferRequest(new FileInfo("file6", file6, true)); //576

 sendFileTransferRequest(new FileInfo("file8", file8, true)); //808

 sendFileTransferRequest(new FileInfo("file8", file8, true)); //808

 sendFileTransferRequest(new FileInfo("file5", file5, true)); //552

 sendFileTransferRequest(new FileInfo("file8", file8, true)); //808

 sendFileTransferRequest(new FileInfo("file9", file9, true)); //1450

 sendFileTransferRequest(new FileInfo("file6", file6, true)); //576

 sendFileTransferRequest(new FileInfo("file8", file8, true)); //808

 sendFileTransferRequest(new FileInfo("file8", file8, true)); //808

 sendFileTransferRequest(new FileInfo("file5", file5, true)); //552

 sendFileTransferRequest(new FileInfo("file8", file8, true)); //808

 sendFileTransferRequest(new FileInfo("file9", file9, true)); //1450

 sendFileTransferRequest(new FileInfo("file6", file6, true)); //576

 sendFileTransferRequest(new FileInfo("file8", file8, true)); //808

 sendFileTransferRequest(new FileInfo("file8", file8, true)); //808

 sendFileTransferRequest(new FileInfo("file5", file5, true)); //552

 sendFileTransferRequest(new FileInfo("file8", file8, true)); //808

 sendFileTransferRequest(new FileInfo("file9", file9, true)); //1450

 sendFileTransferRequest(new FileInfo("file6", file6, true)); //576

 sendFileTransferRequest(new FileInfo("file8", file8, true)); //808

 sendFileTransferRequest(new FileInfo("file8", file8, true)); //808

 sendFileTransferRequest(new FileInfo("file5", file5, true)); //552

 }

 }

}

