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Abstract

It is a standard practice in small area estimation (SAE) to use a model-based ap-

proach to borrow information from neighboring areas or from areas with similar

characteristics. However, survey data tend to have gaps, ties and outliers, and

parametric models may be problematic because statistical inference is sensitive to

parametric assumptions. We propose nonparametric hierarchical Bayesian models

for multi-stage finite population sampling to robustify the inference and allow for

heterogeneity, outliers, skewness, etc. Bayesian predictive inference for SAE is stud-

ied by embedding a parametric model in a nonparametric model. The Dirichlet

process (DP) has attractive properties such as clustering that permits borrowing

information. We exemplify by considering in detail two-stage and three-stage hier-

archical Bayesian models with DPs at various stages. The computational difficulties

of the predictive inference when the population size is much larger than the sample

size can be overcome by the stick-breaking algorithm and approximate methods.

Moreover, the model comparison is conducted by computing log pseudo marginal

likelihood and Bayes factors. We illustrate the methodology using body mass index

(BMI) data from the National Health and Nutrition Examination Survey and sim-

ulated data. We conclude that a nonparametric model should be used unless there

is a strong belief in the specific parametric form of a model.
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Chapter 1

Introduction

There are many methods in current statistical literature for making inferences

based on samples selected from a finite population. The most widely used approach

is design-based inference which is nonparametric but requires large sample sizes.

Model-based inference for survey sampling population has been proposed as an

alternative to the design-based theory. The survey data structured hierarchically is

quite common. For example, students are in classes, classes are in schools, schools

are in counties and counties are in states. Hierarchical models are often applicable

to modeling data from complex surveys such as cluster or multistage sampling,

because usually such sample designs are used when the population has a hierarchical

structure.

In many surveys, we want to estimate quantities not only for the population as

a whole, but also for subpopulations (e.g., to estimate the average income for every

county in the United States in order to allocate funds for needed areas). Once a

hierarchical model is specified, inferences can be drawn from available data for the

population quantities at any level. From a Bayesian perspective, these estimators

which can be regarded as posterior means often have better properties than area-
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specific direct estimators. This makes hierarchical Bayesian models useful in the

problem of small area estimation (SAE). That is, the sample size for a given area or

domain maybe too small to provide reliable estimates and it may be needed to bor-

row information from neighboring areas, or from areas with similar characteristics.

Hierarchical Bayesian methods studied in the literature have been mostly para-

metric, based on specified parametric likelihoods with conjugate or non-conjugate

parametric priors. The normal likelihood is the most popular choice; see Scott and

Smith (1969), Malec and Sedransk (1985), Battese, Harter and Fuller (1988) and

Nandram, Toto and Choi (2011).

The use of models raises the question of the robustness of the inference to possible

model misspecification. Particularly, survey data tend to have gaps, ties and outliers.

There are extensive research to relax the assumption of normality. One way to do

this is to use heavy-tailed distributions e.g. t distribution rather than a normal

distribution to account for outliers (e.g., Lange, Little and Talyor 1989), and skew

normal distribution for heavy-skewed data (e.g., Azzalini 2013). Alternatively, the

use of a mixture of normal distributions takes into account the presence of subgroups

or multimodal data (e.g., Verbeke and Lesaffre 1996).

However, we often know very little about the specific parametric forms of the

distributions, and it is also difficult to validate the parametric assumptions. The

parametric Bayesian models based on distributional assumptions may be problem-

atic because inferences are sensitive to such assumptions. It may be more appealing

to use a nonparametric Bayesian approach.

In this dissertation, we discuss the statistical modeling associated with the anal-

ysis of multilevel survey data. Our intention is to propose nonparametric Bayesian

alternatives using the Dirichlet process (DP) to robustify the inference by embed-

ding parametric models in nonparametric models, to avoid critical dependence on
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parametric assumptions and to allow for heterogeneity, outliers, skewness, etc. The

DP has gained a lot of attention recently. It has nice properties such as clustering

and borrowing information which is attractive to SAE. In practice, a model for SAE

generally includes covariates to further borrow information. However, it is a rea-

sonable start to explore robust extensions of hierarchical Bayesian models without

covariates.

In Section 1.1 we briefly review the DP, the Dirichlet process mixture (DPM)

model and other applications of the DP. In Section 1.2 we discuss the methodology

for model comparisons. In Section 1.3 we discuss body mass index (BMI) data that

we use for illustration.

1.1 Literature Review

1.1.1 Dirichlet Process

In this section we provide a brief overview of the DP starting with a discussion

of the basic definition and then some properties. The existence of the DP was

established by Ferguson (1973). It is a distribution over distributions, that is, each

draw from a DP itself is a distribution (i.e., we are working on functional spaces).

Let (Θ,B) be a measurable space, with G0 a baseline measure on the space.

Let α be a positive real number. A Dirichlet process, DP(α,G0), is defined as the

distribution of a random probability measure G over (Θ,B) such that, for any finite

measurable partition of the measurable space Θ, {Ai}ni=1,

{G(A1), . . . , G(An)} ∼ Dirichlet {αG0(A1), . . . , αG0(An)} .

We write G ∼ DP(α,G0), if G is a random probability measure with a dis-
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tribution given by the DP and α is called the concentration parameter. We have

E[G(A)] = G0(A), that is the mean of the DP is the baseline distribution G0 and

Var[G(A)] = G0(A)[1 − G0(A)]/(α + 1). The larger α is, the smaller the variance,

that is the DP concentrates more of its mass around the baseline distribution. Here

G0 and α are both parameters and they play intuitive roles in the definition of the

DP.

Let G ∼ DP(α,G0) and θ1, . . . , θn be a sequence of independent draws from G.

The posterior distribution, G|θ1, . . . , θn, is

DP

(
α + n,

α

α + n
G0 +

1

α + n

n∑
i=1

δθi

)
,

where δθi is the cdf of a point mass at θi.

Now considering the predictive distribution for θn+1 conditioned on θ1, . . . , θn

with G integrated out, we have

θn+1|θ1, . . . , θn ∼
α

α + n
G0 +

1

α + n

n∑
i=1

δθi .

The sequence of predictive distributions for θ1, θ2, . . . is called the Polya urn scheme

(Blackwell and MacQueen 1973).

A standard interpretation of this scheme is as follows. Each value in Θ is a

unique color and draws from G are balls with the drawn value being the color of

the ball. We have an urn containing previous seen balls. We start with no balls in

the urn. We randomly draw a color from G0, paint a ball with that color and drop

it into the urn. For the (n + 1)st ball, we will either randomly draw a new color

with probability α
α+n

, paint a ball with that color and drop it into the urn, or with

probability n
α+n

, randomly draw a ball from the urn, paint a new ball with the same

color and drop both balls back to the urn. We observe that with positive probability

4



draws from G can take the same value regardless of the smoothness of G0. That is,

G is a discrete distribution with probability one.

The discreteness property of draws from a DP also implies a clustering property.

Since the values of draws are repeated, let θ∗1, . . . , θ
∗
m be the distinct values among

θ1, . . . , θn and ns be the number of θ∗s , s = 1, . . . ,m. The predictive distribution can

be equivalently written as:

θn+1|θ1, . . . , θn ∼
α

α + n
G0 +

1

α + n

m∑
s=1

nsδθ∗s .

Notice that the value θ∗s will be repeated by θn+1 with probability proportional to

ns. The larger ns is the higher the probability that it will grow.

Due to a different metaphor, the Polya urn scheme is closely related to a distri-

bution on partitions known as the Chinese restaurant process (Aldous 1985). We

have a Chinese restaurant with an infinite number of tables, each of which can seat

an infinite number of customers. The first customer enters the restaurant and sits

at the first table. The second one enters and decides to either sit with the first

customer or at a new table. In general, the (n + 1)st customer either joins an al-

ready occupied table s with probability proportional to the number ns of customers

already sitting there, or sits a new table with probability proportional to α. We can

imagine the tables as clusters and customers sitting at the same table belong to the

same cluster. Notice that α controls the number of clusters, with larger α implying

a larger number of clusters.

Sethuraman (1994) provided an elegant equivalent constructive definition of the

DP called the stick-breaking construction, which is G =
∑∞

s=1 πsδθ∗s where

π1 = β1, πs = βs

s−1∏
j=1

(1− βj), βs
iid∼ Beta(1, α), θ∗s

iid∼ G0.

5



The construction of π
˜

= {π1, π2, π3, . . . } can be understood as follows. Starting

with a stick of length 1, we break it at β1 assigning π1 to be the length of stick

we just broke off. Now continually break the remaining part of the stick to obtain

π2, π3 and so forth. In Figure 1.1, we show one possible draw from G, where

G ∼ DP [10, N(0, 1)]. Despite of the continuousness of the baseline distribution,

samples from DP are discrete distribution with probability one. For computational

purposes we use this form of the DP repeatedly.

1.1.2 Dirichlet Process Mixture

In many applications, the almost sure discreteness of the DP measure may be

inappropriate. As we noted, the most popular application of the DP is in clustering

data using mixture models. We model a set of observations {y1, . . . , yn} using a set

of latent parameters {θ1, . . . , θn} as,

yi|θi
ind∼ h(θi), i = 1, . . . , n, (1.1)

θi|G ∼ G,

G ∼ DP(α,G0).

This model is referred to as a Dirichlet process mixture (DPM) model. Each θi is a

latent parameter modeling yi, while G is the unknown distribution over parameters

modeled using a DP. It can be seen as a Dirichlet process mixture of h(yi; θi), where

yi’s with the same value of θi belong to the same cluster. The DPM model removes

the constraint from discrete measures. The corresponding parametric baseline model

6



with G0 replacing the random probability measure G is,

yi|θi
ind∼ h(θi), i = 1, . . . , n,

θi ∼ G0.

There are many Markov chain Monte Carlo (MCMC) methods that can be used

to fit the DPM model. Escobar and West (1995) proposed a simple (not necessar-

ily efficient) algorithm by integrating out the random distribution function in the

model. Neal (2000) constructed efficient algorithms to fit nonconjugate DPM mod-

els. Another idea is to leave the infinite dimensional distribution in the model and

find ways of sampling a sufficient but finite number of variables at each iteration.

There are two classes of such methods: retrospective samplers (Papaspiliopoulos

and Roberts 2008) and slice samplers (Ishwaran and James 2001, Walker 2007).

The slice-efficient sampler is easier to use, as opposed to the complexity of the set

up of the retrospective sampling steps, while both samplers are approximately the

same in terms of efficiency and performance.

Kalli, Griffin and Walker (2011) suggested slice-efficient samplers, an improved

slice sampling scheme which we use in our work, and it is based on the stick-breaking

construction without truncation error. We briefly describe the basis of the algorithm

here. We know that G =
∑∞

s=1 πsδθ∗s where

π1 = β1, πs = βs

s−1∏
j=1

(1− βj), βs
iid∼ Beta(1, α), θ∗s

iid∼ G0.

7



Given the form of G, we can write

f(yi|G) =

∫
h(yi; θi)dG(θi)

=

∫
h(yi; θi)

[
∞∑
s=1

πsδθ∗s (θi)

]
dθi

=
∞∑
s=1

πs

∫
h(yi; θi)δθ∗s (θi)dθi

=
∞∑
s=1

πsh(yi; θ
∗
s).

def
= f(yi|π, θ∗)

The idea is to introduce latent variables {u1, u2, . . . , un} allowing us to sample

finite number of variables at each iteration. So the joint density of (yi, ui) conditional

on π, θ∗ is given by

f(yi, ui|π, θ∗) =
∞∑
s=1

1(ui < πs)h(yi; θ
∗
s).

One can introduce further latent variables {d1, d2, . . . , dn} which indicate the com-

ponents of the mixture from which observations are to be taken to give the joint

density

f(yi, ui, di|π, θ∗) = 1(ui < πdi)h(yi; θ
∗
di

).

Updating {u1, u2, . . . , un} can lead to the simulation of more π’s. This problem can

be addressed by a more general approach to slice sampling.

A general class of slice sampler can be defined by writing

f(yi, ui, di|π, θ∗) = 1(ui < ξdi)πdi/ξdih(yi; θ
∗
di

),

8



where ξ1, ξ2, . . . is any positive sequence. Typically, the sequence will be determin-

istic decreasing sequence. In our computation, we use ξs = (1 − κ)κs−1 where the

tuning constant κ is between 0 and 1. Let K = maxni=1(Ki), where Ki is the largest

integer t such that ξt > ui. The joint posterior distribution is proportional to

K∏
s=1

Beta(βs; 1, α)g0(θ∗s)
n∏
i=1

1(ui < ξdi)πdi/ξdih(yi; θ
∗
di

).

The variables {(θ∗s , βs), s = 1, 2, . . . , K; (di, ui), i = 1, . . . , n} need to be sampled at

each iteration. The Gibbs sampler is as follows.

1. π(ui| . . . ) ∝ 1(0 < ui < ξdi).

2. π(θ∗s | . . . ) ∝ g0(θ∗s)
∏
{i|di=s} h(yi; θ

∗
s).

3. π(βs| . . . ) ∝ Beta(as, bs), where

as = 1 +
∑n

i=1 1(di = s) and bs = α +
∑n

i=1 1(di > s).

4. P (di = r| . . . ) ∝ 1(r : ξr > ui)πr/ξrh(yi; θ
∗
r), r = 1, . . . , K.

In the next section, we discuss applications of the DP for survey data.

1.1.3 Applications of the Dirichlet Process for Survey Data

The DP and Bayesian nonparametric statistics in general is an active area of re-

search. The DP can be applied to different types of problems that involve clustering

and borrowing information which is very attractive to SAE.

An early work using the DP for survey data can be traced back to the work

of Binder (1982), an extension of Ericson (1969). Ericson (1969) introduced the

Bayesian approach via an exchangeable prior using superpopulation models in sur-

vey sampling. Using a multinomial distribution, Ericson (1969) assumed that the

superpopulation distribution is discrete and he used a Dirichlet prior distribution

as a convenient approximation. The multinomial-Dirichlet model, which we also
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call it Bayesian bootstrap, assumes that among the n observed values, y1, . . . , yn,

there are 1 ≤ k ≤ n distinct values y∗1, . . . , y
∗
k and y∗i occurs mi ≥ 1 times, in the

observed data and
∑k

i=1 mi = n. The model assumes that the only values that can

occur in the population are the y∗i , an obvious weakness. The Dirichlet prior, with

all parameters set to 0, is the Haldane prior which models the proportions of the y∗i

values in the population. This was an original idea of Ericson (1969) although he did

not use the Haldane prior which is improper. Instead he used a small positive value

for the parameters of the Dirichlet distribution to accommodate a slightly higher

degree of smoothness. But with mi ≥ 1, i = 1, . . . , k, the posterior density of the

proportions of values in the population is proper. Posterior inference is available for

the number of nonsampled values, Mi −mi, i = 1, . . . , k, in the population, where

Mi is the number (assumed known) of y∗i values in the population.

One drawback of this approach is that the discrete values of the superpopulation

distribution are assumed to be a subset of some known countable set. Motivated by

Ericson (1969), Binder (1982) extended the method of Ericson (1969) to allow the

discrete values to take any real value by using the one-level Dirichlet process (DP)

model which is

y1, . . . , yN | G
iid∼ G and G | {α,Hψ

˜

(y), ψ
˜
} ∼ DP{α,Hψ

˜

(y)}, (1.2)

where α is the concentration parameter and Hψ
˜

(y), the baseline distribution which

is generally assumed to be absolutely continuous. Besides simple random sampling,

Binder (1982) also studied stratified random sampling and obtained asymptotic

(large sample) results corresponding to standard design-based procedures.

The main reason for using the one-level DP model is to accommodate the gaps

and ties in the data. It is easy to show that Cor(yi, yj) = 1/(1 + α), i 6= j. This
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correlation is useful because when there are gaps or ties in the data, it is reason-

able to believe that the data are correlated. The exchangeability and the gaps and

ties in the responses appear contradictory. However, this is not true because we

are not restricted to independent and identically distributed responses from a com-

mon parametric distribution but rather from a random distribution which follows

a DP. When the random distribution is integrated out, the responses become equi-

correlated. Moreover, under the DP the responses are discrete with probability one,

thereby making the DP a natural clustering algorithm. Even when a simple random

sample is taken from a population, there may be hidden structures in the data that

the DP can accommodate because it is essentially nonparametric.

Nandram and Yin (2016a, b) reported some results for simple random sampling

when the one-level DP model is used. We discuss them briefly here, more details

are given in Chapter 2.

Nandram and Yin (2016a) discussed the sensitivity of inference about the finite

population mean with respect to different baseline distributions (other than the

normal) and a possible solution using a leave-one-out kernel for the DP and a mixture

distribution for the DPM.

Nandram and Yin (2016b) gave a closed-form nonparametric Bayesian prediction

interval estimate for the finite population mean of a large population, since under the

one-level DP model, when the population size is much larger than the sample size,

the computational task becomes expensive. An approximate Bayesian procedure

which is very close to the exact intervals is provided by using the exchangeability

property of the DP together with normality.

Within the Bayesian nonparametric paradigm, there is another choice. The
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attractive DPM model is

yi | µi
ind∼ f(yi | µi, τ), i = 1, . . . , N,

µi | G
iid∼ G and G | H ∼ DP(α,H),

where the parameters of H are assumed known. It is worth noting that in the DPM

model the parametric distribution, f(y | µi, τ), has to be specified. Besides, in prac-

tice, inference is likely to be sensitive to the specification of f(y | µi, τ) and model

diagnostics will be needed. Nevertheless, the whole idea is that the discreteness

(Ferguson 1973) of G in the DP is removed by using the DPM model (Ferguson

1983, Lo 1984). This is advantageous for many applications (e.g., estimation of a

density function), but with a simple random sample, the DPM model appears to

be inappropriate that it may need to specify H at least partially. For simple ran-

dom sample the data may have gaps and ties, and it seems more appropriate to

use the one-level DP model, which is more nonparametric than the DPM model.

Generally, a normal baseline is used, but clearly other distributions can be used.

A disadvantage of the DP prior is that if G ∼ DP(α,H), then with probability

one, G is a discrete distribution. However, for the finite populations this is not a

serious restriction since all survey data are inherently discrete due to limitations of

measuring instruments, etc.

In SAE, having only a small sample in a given area, we borrow strength from

related areas or domains to produce estimates with adequate precision and increase

the effective sample size. The DP definitely provides a promising solution to this

type of problem. However, owing to DP’s complexity it has received very little

attention in the survey methodology community.

Currently, most of the existing models using the DP in the survey sampling
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are simple applications of the DPM model. Nandram and Choi (2004) proposed

a nonparametric Bayesian analysis of a proportion for a small area under nonig-

norable nonresponse, an application of the DPM model. The use of the DP prior

gains more flexibility and robustness to departures from the assumption of a para-

metric distribution. Malec and Müller (2008) provided an application of the DPM

model in the context of logistic regression, a semi-parametric model to describe

the geographic diversity of the U.S. population, where Dirichlet process mixtures of

multivariate normals for county-specific random effects are assumed. Chaudhuri and

Ghosh (2011) considered the use of empirical likelihood method, together with a DP

prior, in SAE instead of full parametric likelihood as another way of robustifying

the inference. When combined with appropriate proper priors, it defines a semi-

parametric Bayesian approach, which can handle continuous and discrete outcomes

in area and unit level models, without specifying the distribution of the outcomes

as in the classical Bayesian approach.

Next, we discuss models that provide the hierarchical structure using the DP

and borrow strength in some ways with applications in other fields of statistics.

1.1.4 Other Applications of the Dirichlet Process

One example is, Müller, Quintana and Rosner (2004) who considered an exten-

sion of the DPM model to produce a combined inference over related nonparametric

Bayes models. The hierarchical extension formalizes borrowing of strength across

different but related studies, e.g. combining inference from related pharmacological

studies. Their model allows linking the submodels at an intermediate level.

Another example is an application in the machine learning. Teh, Jordan, Beal

and Blei (2006) proposed a hierarchical model, specifically one in which the base

measure for the child DP is itself distributed according to a DP which allows sharing
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mixture components between different groups with the application in document

modeling, a nonparametric extension of the latent Dirichlet allocation model (Blei

et al. 2003). This hierarchical model is also borrowing information, but the groups

or clusters are latent and have overlaps, which is different from what is normally

observed in survey sampling.

Dunson (2009) focused on the problem of choosing a prior for an unknown ran-

dom effects distribution within a Bayesian hierarchical model. He obtains a sparse

representation by allowing a combination of global and local borrowing of informa-

tion which can be applied in the analysis of longitudinal and functional data.

Although various hierarchical Bayesian models using the DP are proposed, they

are not specially designed for the problems we typically considered in the survey

sampling, e.g. multi-stage sample surveys or SAE, and they cannot be applied

directly. We propose nonparametric and semiparametric models to provide different

degrees of robustness and to accommodate the hierarchical structure in multi-stage

sampling. In the next section, we discuss the general methodology we used to

conduct model comparison.

1.2 Model Comparison

Here we review some model comparison approaches including Bayes factor (ratio

of marginal likelihoods), log pseudo marginal likelihood (LPML), delete-one cross

validation (CV) and deviance information criterion (DIC).

For the Bayes factors, we have to use proper priors. Basu and Chib (2003)

presented a method for comparing semiparametric Bayesian models, constructed

under the DPM framework which is based on the basic marginal likelihood identities

(Chib 1995). But this is a very complicated method. Nandram and Kim (2002)
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proposed an easier approach to compute the marginal likelihood. We use their

calculation to evaluate our models. We give the general approach here and discuss

the details for each model in Chapter 3 and 4. Let y
˜

denote the observations and Ω

denote the parameters. We can write the marginal likelihood as,

M(y
˜
) =

∫
f(y

˜
|Ω)π(Ω)dΩ

=

∫ {
f(y

˜
|Ω)π(Ω)/πa(Ω|y

˜
)
}
πa(Ω|y

˜
)dΩ∫ {

π(Ω)/πa(Ω|y
˜
)
}
πa(Ω|y

˜
)dΩ

,

where f(y
˜
|Ω) is the likelihood function, π(Ω) is the prior distribution and

πa(Ω|y
˜
) is a reasonable approximation to the posterior distribution π(Ω|y

˜
). It

should be easy to draw samples from πa(Ω|y
˜
). Assuming samples {Ω(h), h =

1, . . . ,M} drawn from πa(Ω|y
˜
), then M̂(y

˜
) =

∑M
h=1W

(h)f(y
˜
|Ω(h)), where W (h) ={

π(Ω(h))/πa(Ω
(h)|y

˜
)
}/{∑M

h=1[π(Ω(h))/πa(Ω
(h)|y

˜
)]
}

. Note that integrating out pa-

rameters in the model as much as possible leads to improved estimations. See Lo

(1984) and Kuo (1986). Possible accurate Monte Carlo methods, e.g. thermody-

namic integration (Lartilliot and Philippe 2006), can be used but they are much

more complicated and need relatively much longer computing time. For the normal

baseline model, since this is a parametric model it is easy to write down f(y
˜
|Ω),

π(Ω) and πa(Ω|y
˜
). For the models having DPs, we need to use the Polya urn scheme

by integrating out DPs to obtain the specific forms of f(y
˜
|Ω), π(Ω) and πa(Ω|y

˜
).

The conditional predictive ordinate (CPO) proposed by Geisser (1980) is a statis-

tic that can detect observations that were fitted poorly by a given parametric model.

If having observations y
˜
, it is defined as the predictive density of observation i given
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all the other observations, that is

CPOi = f(yi|y(i)) =
f(y

˜
)

f(y(i))

=

(∫
1

f(yi|y(i),Ω)
f(Ω|y

˜
)dΩ

)−1

,

where y(i) is the data y
˜

without ith observation. A Monte Carlo approximation of

the CPOi is given by ĈPOi =
{

1
M

∑M
h=1

1
f(yi|y(i),Ω(h))

}−1

, where {Ω(h), h = 1, . . . ,M}

are samples from the posterior distribution f(Ω|y). If observations are conditionally

independent, ĈPOi =
{

1
M

∑M
h=1

1
f(yi|Ω(h))

}−1

. The CPO statistics can be used to

detect outliers. Ntzoufras (2009) established that inverse CPO values larger than

40 can be considered as possible outliers and higher than 70 as extreme values. A

summary statistic of the CPOi is the log pseudo marginal likelihood (LPML) which

is given by

LPML =
∑
i

log(ĈPOi).

Larger values of LMPL indicate better fit. Note that the value of LPML is very

similar to the log of marginal likelihood under the same model.

The deviance information criterion (DIC) (Spiegelhalter et al. 2002) is another

Bayesian measure of goodness-of-fit,

DIC = 2

{
1

M

M∑
h=1

D(y
˜
,Ω(h))

}
−D(y

˜
, Ω̂),

where Ω̂ is a point estimate for Ω such as the mean of the posterior simulations,

Ω(h) are posterior simulations and D(y,Ω) = −2logf(y|Ω). DIC has been suggested

as a criterion of model fit when the goal is to pick a model with best out-of-sample

predictive power. A smaller value of DIC indicates a better fit.

The delete-one cross validation (CV) divergence measure, defined in Wang et al.
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(2012), is

CV =
1

#{yi}
∑
i

|yi − E(yi|y(i))|,

E(yi|y(i)) = EΩ|y(i)E(yi|y(i),Ω)

=

∫
E(yi|y(i),Ω)f(Ω|y(i))dΩ

≈
M∑
h=1

E(yi|y(i),Ω
(h))V

(h)
i ,

where V
(h)
i ∝ 1/f(yi|y(i),Ω

(h)). DIC and CV provide reasonable assessments of

model fit while considering the model complexity.

The Bayes factor provides some evidence about the fit of the embedded paramet-

ric model. Unfortunately, it might suffer some flaws when comparing a parametric

model with an infinite dimensional nonparametric model using DPs. Carota (2006)

considered the inconsistency problems arising when using the Bayes factor under

certain conditions. The difficulties arise when the parametric model is nested in the

nonparametric alternative if there are no ties in the data. In this case, the Bayes

factor depends on the data only through the sample size (Carota and Parmigiani

1996) and as the number of distinct observations get larger, the Bayes factor in-

creasingly favors the parametric model in the presence of very extreme departures

even if the parametric model is incorrect. Other methods have similar problems be-

cause they are based on the likelihood function directly or indirectly. We may need

a cross-validation method to compare the models or to perform simulation study.

However, they are all computational intensive and time-consuming procedures.
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1.3 Applications

1.3.1 Body Mass Index (BMI) Data

For illustrative purpose, we discuss the third National Health and Nutrition

Examination Survey (NHANES III), a survey conducted during the period October

1988 through September 1994. Due to confidentiality reasons, the final data set for

this study uses only the 35 largest counties with a population at least 500,000.

One of the variables in this survey is body mass index (BMI) and the demo-

graphic variables are age, race and sex. We study BMI data for adults who are

older than 20 years since the observed nonresponse rate for children and adolescents

are high. So nonresponse is not an important issue and we do not address it here.

Our goal is to predict the mean, 85th and 95th percentiles of BMI for the finite

population of adults, post-stratified by county for each sub-domain formed by age,

race and sex. Many sub-domains by county are very small or some have no sample.

Higher than what is considered as a healthy weight for a given height is described

as overweight or obese. Obesity-related conditions include heart disease, stroke, type

2 diabetes and certain types of cancer, some of the leading causes of preventable

death. BMI is a person’s weight in kilograms divided by the square of height in

meters and used as a screening tool for overweight or obesity. A high BMI can be

an indicator of high body fatness. If your BMI is less than 18.5 kgm−2, it falls within

the underweight range. If your BMI is 18.5 kgm−2 to 24.9 kgm−2, it falls within the

normal or healthy weight range. If your BMI is 25.0 kgm−2 to 29.9 kgm−2, it falls

within the overweight range. If your BMI is 30.0 kgm−2 or higher, it falls within the

obese range. A child’s weight status is determined using an age- and sex-specific

percentile for BMI rather than BMI categories used for adults. Overweight is defined

as a BMI at or above the 85th percentile and below the 95th percentile for children
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and teens of the same age and sex. Obesity is defined as a BMI at or above the 95th

percentile for children and teens of the same age and sex.

As we mentioned in previous sections, survey data tend to have ties and gaps.

BMI data set is an example because in practice, BMI is rounded to one decimal place

which creates many ties. We present the dot plots for all thirty-five areas (see Figure

1.2). The observations are more concentrated and having ties within the range

around 25. It is also clear that the data are clustered and present gaps. Especially

outside the normal weight range, the data become sparse and present bigger gaps.

The box plots (see Figure 1.3) suggest that the distributions are right skewed with

outliers in the right tail. Since the predictive inference for the overweight and obese

population is very important, the heavy tail of the distribution can not be ignored.

Thus we can not automatically use the standard normal assumptions. More robust

hierarchical models are desired.

1.4 Plan of the Dissertation

This dissertation has four additional chapters. In Chapter 2, we discuss the

one-level DP model for simple random sampling which is used to avoid assump-

tions regarding the shape of the finite population distribution. Posterior propriety,

predictive inference and sensitivity are discussed. In Chapter 3, we propose two-

level Bayesian models using the DP in each level for more complex designs. Model

comparison and predictive inference are conducted. The results for BMI data and

simulated data are presented. In Chapter 4, we extend two-level models to three-

level models. Finally, in Chapter 5 we summarize our results, present concluding

remarks, and discuss future research work.
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Figure 1.1: Plot of one possible draw from G, where G ∼ DP [10, N(0, 1)]
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Figure 1.2: Dot plots of body mass index (BMI) for thirty-five counties
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Figure 1.3: Box plots of body mass index (BMI) for thirty-five counties
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Chapter 2

One-level Dirichlet Process

Models

In Chapter 2, we summarize the methodology and results discussed in Nandram

and Yin (2016a, b). We assume that a simple random sample is drawn from a finite

population and the population values follow a random distribution which is drawn

from the DP. The sampled values are observed and the nonsampled values are to

be predicted using the one-level Dirichlet process (DP) model. In Section 2.1, we

discuss the inference of the one-level DP model. In Section 2.2, we prove that the

posterior distribution is proper under the one-level DP model. In Section 2.3, we

discuss the prediction for the finite population when the DP is used for the sampling

process including exact and approximate methods. In Section 2.4, we explore the

sensitivity to the normal baseline and provide a possible solution.

We have a simple random sample of size n from a population of size N . We as-

sume that the sampled values are y1, . . . , yn and nonsampled values are yn+1, . . . , yN .

Let y
˜

= (y
˜
s, y

˜
ns), where y

˜
s = {yi, i = 1, . . . , n} is the vector of observed values

and y
˜
ns = {yi, i = n + 1, . . . , N} vector of unobserved values. Inference is re-
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quired for the finite population mean, Ȳ =
∑N

i=1 yi/N , and data y1, . . . , yn are

available. Note that Ȳ =
∑N

i=1 yi/N = fȳs + (1 − f)ȳns, where f = n/N is the

sampling fraction, ȳs =
∑n

i=1 yi/n, the sample mean, and ȳns =
∑N

i=n+1 yi/(N − n),

the nonsample mean which is to be predicted. The sample variance denotes as

s2 =
∑n

i=1(yi − ȳs)
2/(n − 1). Thus, we need random samples from the posterior

density of y
˜
ns given y

˜
s.

2.1 Basic Methodology

We use the one-level DP model for the population values to construct a 95%

nonparametric Bayesian prediction interval for a finite population mean. For the

one-level DP model we assume that

y1, . . . , yN | G
iid∼ G and G | {α,Hψ

˜

(y), ψ
˜
} ∼ DP{α,Hψ

˜

(y)}, (2.1)

where Hψ
˜

(y) is the smooth baseline cdf and the pdf is hψ
˜

(y). The parameters α

and ψ
˜

are unknown and a priori we assume that they are independent with prior

distributions, π(ψ
˜

) and π(α). We will use a ‘Cauchy’ type prior for α, sometimes

called a shrinkage prior, of the form α, p(α) = 1/(α + 1)2, α > 0 (a f density with

two degrees of freedom in both the numerator and denominator). It is slightly more

convenient to use p(α) = 1/(α + 1)2, α > 0 rather than the half Cauchy density

p(α) = 2/π(α2 + 1), α > 0 (Polson and Scott 2012). We will specify appropriate

noninformative prior for ψ
˜

, denoted by π(ψ
˜

). Under the assumption of independence

of α and ψ
˜

, we have

π(α, ψ
˜

) ∝ 1

(α + 1)2
π(ψ

˜
), α > 0 (2.2)
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with appropriate support for ψ
˜

depending on the baseline. We call (2.1) and (2.2) the

one-level Dirichlet process (DP) model. And the corresponding nested parametric

baseline model is

y1, . . . , yN | ψ
˜

iid∼ Hψ
˜

(y), (2.3)

with prior π(ψ
˜

).

Integrating out G (Blackwell and MacQueen 1973), we have y1 ∼ hψ
˜

(y1) and for

i = 2, . . . , n,

yi|y1, . . . , yi−1 ∼
i− 1

α + i− 1

{∑i−1
j=1 δyj(yi)

i− 1

}
+

α

α + i− 1
hψ

˜

(yi).

So the joint posterior density π(α, ψ
˜
| y

˜
s) under the one-level DP model is propor-

tional to

hψ
˜

(y1)

[
n∏
i=2

{
i− 1

α + i− 1

{∑i−1
j=1 δyj(yi)

i− 1

}
+

α

α + i− 1
hψ

˜

(yi)

}]
π(ψ

˜
)π(α). (2.4)

Let k, 1 ≤ k ≤ n, denote the number of distinct values among y1, . . . , yn. Anto-

niak (1974) showed that p(k | α) = sn(k)αkΓ(α)/Γ(α + n), α > 0, where sn(k), the

absolute values of the Stirling numbers of the first kind (Abramowitz and Stegun

1965), are independent of ψ
˜

. Then, the joint posterior density of ψ
˜

comes from the

baseline model conditional on only the distinct values. Letting y∗1, . . . , y
∗
k denote the

k distinct sample values (k ≥ 2) and y
˜

∗ = {y∗1, . . . , y∗k}, we have

y∗1, . . . , y
∗
k | k, ψ

˜

iid∼ hψ
˜

(y)
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with the prior in π(ψ
˜

). Thus the joint posterior density is

π(α, ψ
˜
| k, y

˜

∗) = π(α | k)π(ψ
˜
| y

˜

∗), (2.5)

where π(α | k) ∝ p(k | α)× π(α), α > 0, and π(ψ
˜
| y

˜

∗) ∝ {
∏k

i=1 hψ
˜

(y∗i )}π(ψ
˜

).

Typically, it is straight forward to draw ψ
˜

. However, it is not really trivial to

draw α without using a special kind of prior; see Nandram and Choi (2004) for a

discussion of the gamma prior which was introduced earlier by Escobar and West

(1995). We present two improved methods to draw α from its posterior density,

π(α | k) ∝ αkΓ(α)

Γ(α + n)(α + 1)2
, α > 0. (2.6)

The first method would be transforming α according to ρ = 1/(α+1) (correlation

in the DP) and simplifying (2.6) we get

π(ρ | k) ∝ (1− ρ)k−1ρn−k∏n−1
j=1{1− ρ+ ρj}

, 0 ≤ ρ ≤ 1. (2.7)

Note that lim
ρ→0

π(ρ | k) = 0 = lim
ρ→1

π(ρ | k), and π(ρ | k) is well defined and differen-

tiable everywhere in the closed interval [0, 1]. Because the posterior density of ρ is

not in a simple form, we use a one-dimensional grid method to draw samples from

it, thereby avoiding MCMC methods (e.g., Metropolis sampler). The unit interval

is simply divided into 100 sub-intervals of equal width, and the joint posterior den-

sity is approximated by a discrete distribution with probabilities proportional to the

heights of the continuous distribution at the mid-points of these sub-intervals. Now,

it is easy to draw a sample from this univariate discrete distribution of π(ρ | k). It is

efficient to remove sub-intervals with small probabilities (smaller than 10−6); we call

the others probable sub-intervals. To draw a single deviate, we first draw one of the

26



probable sub-intervals. After we have obtained this sub-interval, a uniform random

variable is drawn within this sub-interval. This is a standard jittering procedure

which provides different deviates with probability one.

However, this method tends to give larger value of α. We use another transfor-

mation of α. Letting α = eψ, the posterior density for ψ is

π(ψ | k) ∝ ekψ

(1 + eψ)2
∏n−1

j=1 (j + eψ)
,−∞ < ψ <∞.

We note that π(ψ | k) is logconcave (i.e., strongly unimodal with a unique mode),

and describe an iterative procedure for finding the posterior mode of ψ and α.

Taking the first derivative of π(ψ | k) and setting it equal zero, we get the fixed

point solution

ψ = ln

{
k∑n−1

j=1 (j + eψ)−1 + 2(1 + eψ)−1

}
.

Thus, starting at ψ = 0 after a few iterations we get the posterior mode ψ̂ and

therefore the posterior mode α̂ = eψ̂. This is similar to a procedure described in Liu

(1996) which we have discovered independently. Then taking the second derivative

of π(ψ | k) to approximate the variance of ψ, that is

V̂ar(ψ) ≈ − 1

π(ψ | k)′′
=

1

eψ
[∑n−1

j=1
j

(eψ+j)2
+ 2

(eψ+1)2

] .
Use the grid method on the range of ψ̂ ± 10 V̂ar(ψ) to obtain posterior samples.

Since π(ψ | k) is logconcave, probabilities outside this range can be ignored.

Here, for convenience we present the details of the normal baseline distribution.

We take Hψ
˜

(y) to be

Hψ
˜

(y) =

∫ y

−∞

1√
2πσ2

e−
1

2σ2
(t−µ)2dt,−∞ < y <∞,
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the cdf of the normal random variable with mean µ and variance σ2 (i.e., ψ
˜

= (µ, σ2))

and π(µ, σ2) ∝ 1/σ2,−∞ < µ <∞, σ2 > 0. It is easy to draw ψ
˜

from the posterior

density. Letting ȳ∗ =
∑k

i=1 y
∗
i /k and s2

∗ =
∑k

i=1(y∗i − ȳ∗)
2/(k − 1), we have µ |

σ2, k, ȳ∗, s
2
∗ ∼ Normal(ȳ∗, σ

2/k) and σ−2 | s2
∗, k ∼ Gamma{(k − 1)/2, (k − 1)s2

∗/2}.

That is,
√
k(µ− ȳ∗)/s∗ | ȳ∗, s2

∗, k ∼ tk−1. Thus, the posterior distribution of (µ, σ2)

is proper and it is trivial to draw µ and σ2.

2.2 Propriety of the Posterior Distributions

Theorem 2.2.1 is a statement about propriety of the joint posterior density under

the one-level DP model. This is useful because if the posterior density is improper,

inference about the finite population mean will be defective (i.e., the coverage of the

prediction interval will be unknown). Thus, Theorem 2.2.1 adds credibility to the

Bayesian procedure. Theorem 2.2.1 may be known, but it is difficult to retrieve.

Theorem 2.2.1 If the posterior density under the baseline model is proper, the

posterior density under the one-level Dirichlet process model is proper.

Proof: Without loss of generality, we assume that the k distinct values come first.

Then using the form of the joint posterior density in (2.4) and noting that (i −

1)/(α + i− 1) ≤ 1, i = 1, . . . , n, and
∑i−1

j=1 δyj(yi)/(i− 1) ≤ 1, i = 2, . . . , n, we have

π(ψ
˜

)

(α + 1)2

[
k∏
i=1

hψ
˜

(yi)

]{
n∏

i=k+1

[
1

α + i− 1

i−1∑
j=1

δyj(yi) +
α

α + i− 1
hψ

˜

(yi)

]}

≤
π(ψ

˜
)

(α + 1)2

[
n∏
i=1

hψ
˜

(yi)

]
.
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It is convenient to use
n∏
i=1

hψ
˜

(yi) in the inequality. Therefore, we only need to show

that ∫ ∫ ∞
0

π(ψ
˜

)

(α + 1)2

n∏
i=1

hψ
˜

(yi)dαdψ
˜
<∞. (2.8)

Integrating out α (any proper prior will do), we now only need to show that

∫
π(ψ

˜
)

n∏
i=1

hψ
˜

(yi)dψ
˜
<∞. (2.9)

This is simply the condition needed for propriety of the posterior density under the

baseline model.

2.3 Prediction for the Finite Population

Nandram and Yin (2016b) discussed the predictive inference under the one-level

DP model. Given a sample from a finite population, we provided a nonparametric

Bayesian prediction interval for a finite population mean when a standard normal

assumption may be tenuous. The predictions for the two-level and multi-level DP

model discussed in Chapter 3 and 4 follow in a similar manner. We showed how to

compute the exact prediction interval and useful approximations to the prediction

interval. We compared the exact interval and the approximate interval with three

standard intervals, design-based interval under simple random sampling, an empir-

ical Bayes interval and a moment-based interval which uses the mean and variance

under the DP. However, these latter three intervals do not fully utilize the posterior

distribution of the finite population mean under the DP. Using several numerical

examples and a simulation study we showed that the approximate Bayesian interval

is a good competitor to the exact Bayesian interval for different combinations of

sample sizes and population sizes.
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First, we review a well-known prediction interval. Under simple random sampling

a 95% prediction interval for Ȳ is

ȳs ± z2.5

√
1− f
n

s, (2.10)

where z2.5 is the 2.5th percentile point of the standard normal density. We call this

interval the design based interval (DBI) and the design based method (DBM), and

it is pertinent to start with it.

Note that if we assume the Bayesian model

y1, . . . , yN | µ, σ2 iid∼ Normal(µ, σ2), π(µ, σ2) ∝ 1/σ2,−∞ < µ <∞, σ2 > 0,

the Bayesian prediction interval is

ȳs ± tn−1,2.5

√
1− f
n

s,

where tn−1,2.5 is the 2.5th percentile of the Student’s t density on n − 1 degrees of

freedom. This is true because the prior predictive distribution of Ȳ is normal with

mean fȳs+(1−f)µ and variance (1−f)σ
2

N
, µ | σ2, ȳs ∼ N(ȳs, σ

2/n) and (n−1)s2/σ2 |

s2 ∼ χ2
n−1. For large n the prediction interval in (2.10) is an approximate (normality)

95% Bayesian prediction interval. However, it is well-known that this latter interval

is not robust to non-normality especially when the sample size is small.

In order to obtain the exact prediction interval, we show how to obtain samples

from the joint posterior density of y
˜
ns, α, ψ

˜
given y

˜
s. We have

p(y
˜
ns, α, ψ

˜
| y

˜
s) = p(y

˜
ns | α, ψ

˜
, y
˜
s)π(α, ψ

˜
| y

˜
s).
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Once samples are taken from π(α, ψ
˜
| y

˜
s), using the composition rule, samples are

obtained from p(y
˜
ns | α, ψ

˜
, y
˜
s).

Thus, we get 10,000 values of Ȳ ; order these values and pick the 95% prediction

interval to be (ȳ(250), ȳ(9750)), where the values are arranged in increasing order. We

call this interval the full (exact) Bayesian interval (FBI) and the method the full

Bayesian method (FBM). Clearly, this procedure can be used for inference about

quantiles. For each draw of the entire population compute the required quantile

(e.g., median, Q) and then a 95% credible interval is (Q(250), Q(9750)).

In theory it is easy to draw y
˜
ns. To each of the 10,000 iterates, simply fill in the

values yn+1, . . . , yN (data augmentation). Using the generalized Polya urn scheme,

for j = 1, . . . , N − n, we have

yn+j | {α, ψ
˜
, y1, . . . , y(n+j−1)} ∼

α

α + n+ j − 1
H +

∑n+j−1
s=1 δys(yn+j)

α + n+ j − 1
. (2.11)

It is now easy to draw the nonsampled values one by one using (2.11).

However, when the population size is much larger than the sample size, the

computation becomes prohibitive. Thus, we obtain an approximate interval which

is virtually the same as the FBI for large populations. This is obtained using the

central limit theorem for exchangeable random variables. As competitors we also

consider other approximations such as those based on the posterior mean and vari-

ance of the finite population mean together with the assumption of normality. We

develop several approximate calculations to overcome this difficulty.

Approximate Bayesian Prediction Interval

Let

λ = n(α +N)/N(α + n) and φ = 1/(α + n+ 1),
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where 0 ≤ λ ≤ 1 is a shrinkage parameter and φ is the posterior correlation. Mo-

mentarily, let E′(Ȳ ) = E(Ȳ | µ, σ2, α, y
˜
s) and Var′(Ȳ ) = Var(Ȳ | µ, σ2, α, y

˜
s).

Theorem 2.3.1 Assuming that the one-level Dirichlet process model holds,

E ′(Ȳ ) = λȳs + (1− λ)µ,

Var′(Ȳ ) = λ

[
(n− 1)φ(1− f)

s2

n
+ (1− λ)

{
φ(ȳs − µ)2 + (1− φ)

σ2

n

}]
.

Therefore, it is easy to describe the approximate Bayesian interval (ABI). As

yn+1, . . . , yN | y
˜
s are exchangeable, using Theorem 2.3.1,

Ȳ | µ, σ2, α, y
˜
s ∼ Normal{E(Ȳ | µ, σ2, α, y

˜
s),Var(Ȳ | µ, σ2, α, y

˜
s)}, (2.12)

asymptotically (as n and N go to infinity with n < N). In our case this is a very

reasonable approximation for finite population sampling because N is generally large

enough. With this normal approximation, we can proceed in the same manner as

we did for the FBM; the difference is that we do not have to draw the nonsampled

values. We call this method the approximate Bayesian method (ABM).

This is an enormous saving over the FBI because as we will see this approxi-

mation is very good for large population sizes where there are large computational

savings. However, if quantiles are needed, the ABI must be abandoned and the

exact method must be used.

Empirical Bayes and Exact Moment Prediction Intervals

Like the design based prediction intervals, we construct two additional approxi-

mate prediction intervals which are based on the DP. The first method is empirical

Bayes and the second obtains the exact mean and variance via numerical integration
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(not a sampling based method).

First, we describe the empirical Bayes method. We will substitute posterior

modes of µ, σ2 and α into (2.12). The posterior modes of µ and σ2 are in closed

forms and they are respectively µ̂ = ȳ∗ and σ̂2 = (k− 1)s2
∗/(k+ 1), k > 1. However,

the posterior mode of α is a bit more involved. We study two procedures for finding

the posterior mode of α, one is the iterative procedure as we discussed in Section

2.1 by taking transformation of α = eψ and the other uses stochastic optimization.

The stochastic optimization to get the posterior mode is easy to perform. We

have already shown how to get 10,000 iterates from the posterior density of ρ in

(2.7). Note that π(ρ | k) is unimodal but not logconcave because it is the density

of log(ρ) which is logconcave. Simply compute the π(ρ | k) at each of the iterates.

Then, take the value ρ̂ where π(ρ | k) takes the largest value. So α̂ = ρ̂/(1− ρ̂) is the

posterior mode. Both the iterative procedure and the stochastic optimization give

essentially the same posterior mode. We will call this interval the empirical Bayes

interval (EBI) and the method to construct it the empirical Bayes method (EBM).

Second, we describe the integration to obtain the exact moments (mean and

variance). In Theorem 2.3.2 we obtain almost the complete forms of the moments.

Theorem 2.3.2 Assuming that the one-level Dirichlet process model holds and k ≥

4,

E(Ȳ | y
˜
s, k) = E(λ | k)ȳs + {1− E(λ | k)}ȳ∗ and V ar(Ȳ | y

˜
s, k) = V1 + V2,

V1 = (n− 1)(1− f)
s2

n
E(λφ | k)

+{(ȳs − ȳ∗)2 +
(k − 2)s2

∗
k(k − 3)

}E{λ(1− λ)φ | k}+
(k − 1)s2

∗
(k − 3)n

E{λ(1− λ)(1− φ) | k},

V2 = (ȳs − ȳ∗)2Var(λ | k) +
(k − 2)s2

∗
k(k − 3)

E{(1− λ)2 | k},
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where expectations are taken over the posterior density of α.

Proof: We integrate Ω = (µ, σ2, α) out of the moments, stated in Theorem 2.3.1,

using the conditional mean and variance formulas. That is,

E(Ȳ | y
˜
s) = E{E(Ȳ | y

˜
s,Ω)}, (2.13)

Var(Ȳ | y
˜
s) = V1 + V2, V1 = E{Var(Ȳ | y

˜
s,Ω)}, V2 = Var{E(Ȳ | y

˜
s,Ω)}, (2.14)

where E(Ȳ | y
˜
s,Ω) and Var(Ȳ | y

˜
s,Ω) are given by Theorem 2.3.1. We need to

determine V1 and V2. It is worth noting that α and (µ, σ2) are independent a

posteriori with (k − 1)s2
∗/σ

2 | y
˜
∗, k ∼ χ2

k−1 and
√
k(µ − ȳ∗)/s

2
∗ | y

˜
∗, k ∼ tk−1, a

Student’s t density. Then, Var(µ | y
˜
s, k) = (k−2)s2∗

k(k−3)
and E(σ2 | y

˜
s, k) = (k−1)s2∗

k−3
, k ≥ 4.

For (2.13), using the independence of µ and α,

E(Ȳ | y
˜
s) = E{λȳs + (1− λ)µ | y

˜
s} = E(λ | k)ȳs + {1− E(λ | k)}ȳ∗, (2.15)

where λ = n(α + N)/N(α + n) as in Theorem 2.3.1. Next, we find V1 and V2 in

(2.14).

First, we find V1 in (2.14). It is easy to show that

V1 = (n−1)(1−f)
s2

n
E(λφ | y

˜
∗, k)+E{λ(1−λ)φ(µ− ȳs)2 +λ(1−λ)(1−φ)

σ2

n
| y

˜
s, k},

where φ = 1/(α+n+1) as in Theorem 2.3.1. Now because α and µ are independent,

E{λ(1− λ)φ(µ− ȳs)2 | y
˜
s, k} = {(ȳs − ȳ∗)2 + Var(µ | y

˜
s, k)}E{λ(1− λ)φ | y

˜
s, k}.
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Because E(σ2 | y
˜
∗) = (k−1)s2∗

k−3
and Var(µ | y

˜
s, k) = (k−2)s2∗

k(k−3)
, k ≥ 4, we have

V1 = (n− 1)(1− f)
s2

n
E(λφ | k)

+{(ȳs− ȳ∗)2 +
(k − 2)s2

∗
k(k − 3)

}E{λ(1−λ)φ | k}+ (k − 1)s2
∗

(k − 3)n
E{λ(1−λ)(1−φ) | k}. (2.16)

Second, we find V2 in (2.14). We use the standard formula for variance,

V2 = E[{E(Ȳ | y
˜
s,Ω)− E(Ȳ | y

˜
s)}2]

where E(Ȳ | y
˜
s) is given by (2.15). It is easy to show that

E(Ȳ | y
˜
s,Ω)− E(Ȳ | y

˜
s) = (ȳ − ȳ∗){λ− E(λ | y

˜
∗, k)}+ (µ− ȳ∗)(1− λ).

Then, completing the squares and using the independence of µ and α again, we have

V2 = (ȳs − ȳ∗)2Var(λ | k) +
(k − 2)s2

∗
k(k − 3)

E{(1− λ)2 | k}. (2.17)

Finally, the integration over α can be obtained either by numerical or Monte

Carlo techniques. We use the latter with the 10,000 draws we already made from

the posterior density of α, described in (2.6), which we write fully as

π(α | k) =
αk−1{

∏n−1
j=1 (j + α)}−1(1 + α)−2∫∞

0
αk−1{

∏n−1
j=1 (j + α)}−1(1 + α)−2dα

, α > 0.
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Letting g(α) be any integrable function of α,

E{g(α) | k} =

∫∞
0
g(α)αk−1{

∏n−1
j=1 (j + α)}−1(1 + α)−2dα∫∞

0
αk−1{

∏n−1
j=1 (j + α)}−1(1 + α)−2dα

.

Then, a good Monte Carlo estimate of E{g(α) | k} is

Ê{g(α) | k} =
10000∑
h=1

whg(αh),

where wh ∝ αk−1
h {

∏n−1
j=1 (j + αh)}−1(1 + αh)

−2, h = 1, . . . , 10000, and αh
iid∼ π(α | k).

We apply this method to each of the required integrals. The computation of the

expectations took only a few seconds. We will call this interval the exact moment

interval (EMI) and the method to construct it the exact moment method (EMM).

Example and Simulation Studies

To compare our five intervals/methods, we discuss fourteen examples and a

simulation study. We are particularly interested in the comparison between the

approximate Bayesian method (ABI/ABM) and the full (exact) Bayesian method

(FBI/FBM) but we also make comparisons with the other intervals/methods: design

based (DBI/DBM), empirical Bayes (EBI/EBM) and exact moment (EMI/EMM).

In the fourteen examples the population sizes vary considerably. The first thir-

teen examples are on the third National Health and Nutrition Examination Survey

(NHANES III). These are the data on BMI where we assume that equivalent sim-

ple random samples are taken from thirteen states. This example data is about

females older than 45 years which is different from the examples in Chapter 3 and

4. The population sizes for the obesity study are around one million and the sample

sizes are considerably smaller making the prediction problem challenging in terms
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of time. The fourteenth dataset is taken from Aitkin (2010) on income which he

used to discuss finite population sampling. This is a much smaller population which

creates little difficulty in terms of time for the FBM.

We show three tables here. In Table 2.1 we present a comparison of four meth-

ods (DBM, EBM, EMM and ABM) by examples. We have used the posterior mean

(PM) and posterior standard deviation (PSD) of the finite population mean. As ex-

pected, PSD is directly related to the sample size n, i.e. smaller sample size larger

PSD. However, our main purpose here is to compare PM and PSD across differ-

ent methods. There are some differences among the four methods. Sometimes the

differences are large. In Table 2.2 we have first assessed normality of the posterior

distribution of Ȳ using the Kolmogorov-Smirnov test (KST). In Table 2.3 we have

compared the time (hours) it takes to do the computation on our Linux Computa-

tional Node with 2.70GHz and 8 CPU Cores. For further discussion of the results,

see Nandram and Yin (2016b).

For population sizes of 1, 000 the time to run EBM is not significant. However,

the time to run population sizes of 1, 000, 000 is intolerable, and therefore, an approx-

imation such as the one we have developed is useful. More importantly the posterior

distributions of the finite population mean under ABM and FBM are approximate

normal distributions and posterior inferences are similar. So it is reasonable to use

ABI for large populations and the FBI for small populations.

We have used several numerical examples and a simulation study with simple

random samples drawn from the Parzen-Rosenblatt kernel density estimator. We

have one recommendation. The FBM should be used when prediction is to be done

for small to moderate populations (size less than 500) and the ABM should be used

for much larger populations.
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Prediction inference based on the stick-breaking algorithm

The exact method must be used if quantile estimation is needed, but the compu-

tational time can be prohibitive for large populations. We develop an approximate

calculation using the stick-breaking structure to overcome this difficulty. Instead

of integrating out G, the posterior distribution of G is still a DP with a different

concentration parameter and baseline distribution. Let us denote G|y1, . . . , yn as

G∗. That is

yn+1, . . . , yN | G∗
iid∼ G∗ and G∗ ∼ DP

{
α + n,

α

α + n
Hψ

˜

(y) +

∑n
j=1 δyj
α + n

}
. (2.18)

We can draw the non-sampled values y
˜
ns from G∗ which has the following stick-

breaking structure (Sethuraman 1994),

G∗ =
∞∑
s=1

ωsδφs , ω1 = υ1, ωs = υs

s−1∏
t=1

(1− υt),

υs
iid∼ Beta(1, α + n), φs

iid∼ α

α + n
Hψ

˜

(y) +

∑n
j=1 δyj
α + n

.

Then set E(ωs) < ε, where ε is a very small number, and draw non-sampled values

y
˜
ns from G∗ that is G|y1, . . . , yn.

We have many alternative methods to perform the prediction when the popula-

tion size is too large (Yin and Nandram, working paper).

2.4 Sensitivity to the Normal Baseline

It is well known that the one-level DP model and DPM model are sensitive to the

specifications of the baseline distribution. Generally, in many applications a normal

distribution is used for the baseline distribution. Therefore, Nandram and Yin
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(2016a) showed the extent of the sensitivity of inference about the finite population

mean with respect to six distributions (normal, lognormal, gamma, inverse Gaussian,

a two-component normal mixture and a skewed normal).

We specify various density functions for ψ
˜

. We also show how to draw samples

from the posterior density of ψ
˜

. Specifically, we consider the normal, lognormal,

gamma, inverse Gaussian, two-component mixture and skewed normal distributions.

We state conditions for the posterior density to be proper under the baseline model.

Following Theorem 2.2.1, the posterior density under the corresponding one-level

DP model is proper under the same conditions. To avoid the asterisk notation,

we will let y1, . . . , yk denote the distinct values. Results for the normal, lognormal,

gamma, inverse Gaussian, two-component mixture and skewed normal are given in

Table 2.4.

Example and Simulation Studies

We have compared the one-level DP model using these baselines with the Polya

posterior (fully nonparametric) and the Bayesian bootstrap (sampling with a Hal-

dane prior). We used two examples, one on income data and the other on BMI

data, to compare the performance of these three procedures. These examples show

some differences among the six baseline distributions, the Polya posterior and the

Bayesian bootstrap, indicating that the normal baseline model cannot be used au-

tomatically. In addition, we consider a simulation study to assess this issue further.

Here we present the example on BMI data which is on the NHANES III. These are

the data on BMI for females older than forty-five years where we assume that an

equivalent simple random sample is taken from a US state. The sample size is 45

with 20 distinct values and the population size is 190, 472, making the prediction

problem challenging in terms of time. In both cases, histograms (omitted) of the
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sampled values are right skewed.

We consider inference for the finite population mean in Table 2.5 for BMI data.

We have plotted the posterior densities of the finite population mean in Figure 2.1

for BMI data.

It is clear that inference about the finite population can be different from the

normal baseline when other appropriate baselines are used. In particular, if a base-

line, other than the normal is used, inference about the finite population mean can

change. Although not reported here, it is also true that inference about a population

quantile (e.g., median) will vary with these baselines. This depends on the sample

size and the population size as well.

Leave-one-out Kernel Baseline for the one-level DP model

Nandram and Yin (2016a) presented a solution to the sensitivity problem faced

by the one-level DP model. Clearly, a solution has to be based on a nonparametric

distribution. As we noted, the Monte Carlo method of McAuliffe, Blei and Jordan

(2006) is difficult to used for the one-level DP model. So we use the leave-one-out

kernel density estimator.

Hardle (1991) described the leave-one-out kernel density estimator; a Bayesian

version (again not fully within the Bayesian paradigm) is available (e.g., Brewer

2000; Hu, Poskitt and Zhang 2012). To avoid the asterisk notation, we will let

y1, . . . , yk denote the distinct values. With a single parameter ψ for the window

width, we assume that y1, . . . , yk | ψ are independent with

f(yi | ψ) =
1

k − 1

k∑
j=1,j 6=i

1

ψ
φ

(
yi − yj
ψ

)
,−∞ < yi <∞,
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where φ(·) is the standard normal density function (e.g., Silverman 1986). We take

π(ψ) =
1

(1 + ψ)2
, ψ ≥ 0.

So, the posterior density of ψ is

π(ψ | y
˜
k) ∝

1

(1 + ψ)2

k∏
i=1

1

k − 1

k∑
j=1,j 6=i

1

ψ
φ

(
yi − yj
ψ

)
, ψ ≥ 0.

Therefore, the data are used many times and again this procedure is a bit problem-

atic for Bayesian inference because ψ is not really a parameter of the one-level DP

model. Otherwise, there is not much that one can do.

In the spirit of our computations, it is easy to use a grid method to draw samples

of ψ. For prediction of a future y value we use

f(y | ψ) =
1

k

k∑
i=1

1

ψ
φ

(
y − yi
ψ

)
,−∞ < y <∞,

where a random value, say t, in (1, . . . , k), is drawn and y ∼ Normal(yt, ψ
2); see

Section 2.3 for prediction from the one-level DP model.

In Chapter 2, we have proposed a nonparametric Bayesian model for the simple

random sampling. We generalize the one-level DP model to complex surveys where a

hierarchical model is needed in Chapters 3 and 4. We do not consider the sensitivity

issue further although this is still important. Our main goal is to develop hierarchical

DP models for multi-stage sample surveys.
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Table 2.1: Comparison of posterior mean (PM) and posterior standard deviation
(PSD) of the finite population mean for fourteen examples by methods

DBM EBM EMM ABM

n;N PM PSD PM PSD PM PSD PM PSD

25; 608491 25.880 1.205 26.254 1.046 25.879 1.158 25.807 1.307
556; 4453263 28.045 0.272 28.185 0.276 28.046 0.271 28.131 0.275
162; 2704478 28.086 0.490 28.160 0.495 28.088 0.487 28.250 0.508
86; 1985501 28.860 0.676 29.113 0.657 28.862 0.668 29.038 0.701
47; 1086648 26.213 0.844 26.493 0.799 26.216 0.826 26.522 0.904
80; 1562869 28.150 0.642 28.297 0.632 28.152 0.634 28.339 0.676
59; 947239 27.458 0.669 27.558 0.667 27.460 0.659 27.628 0.725

322; 3310865 28.009 0.339 28.086 0.342 28.010 0.338 28.079 0.343
83; 1949322 27.229 0.687 27.451 0.663 27.230 0.678 27.382 0.708
129; 2358615 26.690 0.534 26.803 0.534 26.692 0.530 26.871 0.552
45; 190472 28.444 1.131 30.324 1.089 28.447 1.106 28.703 1.259

240; 2524603 28.521 0.361 28.574 0.364 28.522 0.360 28.602 0.369
64; 776246 27.031 0.683 27.619 0.663 27.035 0.672 27.247 0.711

48; 648 67.075 3.471 70.775 2.458 67.076 3.385 67.845 3.518

NOTE: PM is the posterior mean; PSD is the posterior standard deviation. The first thirteen
examples are from NHANES III and the fourteenth one is a data set on income (Aitkin 2010).
DBM is the design-based method, EBM is the empirical Bayes method, EMM is the exact
moment method and ABM is the approximate Bayesian method.
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Table 2.2: Comparison of the approximate Bayesian method (ABM) and the full
(exact) Bayesian method (FBM) for posterior inference of the finite population mean
for fourteen examples

ABM FBM

n;N† PM PSD 95% CI Pval PM PSD 95% CI Pval

25; 0.6 25.807 1.307 (23.317, 28.484) .158 25.794 1.319 (23.233, 28.226) .881
556; 4.5 28.131 0.275 (27.588, 28.658) .982 28.155 0.279 (27.587, 28.665) .996
162; 2.7 28.250 0.508 (27.296, 29.296) .604 28.259 0.522 (27.239, 29.207) .429
86; 2.0 29.038 0.701 (27.670, 30.392) .731 29.056 0.708 (27.817, 30.472) .450
47; 1.1 26.522 0.904 (24.792, 28.349) .725 26.578 0.928 (24.842, 28.427) .280
80; 1.6 28.339 0.676 (27.020, 29.676) .512 28.358 0.713 (26.987, 29.714) .491
59; 0.9 27.628 0.725 (26.302, 29.125) .984 27.640 0.742 (26.231, 29.098) .689
322; 3.3 28.079 0.343 (27.416, 28.753) .930 28.070 0.361 (27.401, 28.820) .818
83; 1.9 27.382 0.708 (25.967, 28.748) .985 27.377 0.688 (26.014, 28.657) .632
129; 2.4 26.871 0.552 (25.799, 27.962) .956 26.873 0.561 (25.877, 27.967) .903
45; 0.2 28.703 1.259 (26.198, 31.136) .316 28.656 1.214 (26.087, 30.985) .720
240; 2.5 28.602 0.369 (27.875, 29.323) .984 28.606 0.372 (27.866, 29.294) .660
64; 0.8 27.247 0.711 (25.827, 28.634) .543 27.227 0.688 (25.930, 28.535) .464
40; 644 67.845 3.518 (61.051, 74.903) .410 67.868 3.558 (61.173, 75.169) .763

NOTE: PM is the posterior mean; PSD is the posterior standard deviation; CI is the credible
interval; Pval refers to the Kolmogorov test for normality. † Except for the last example N must
be multiplied by 106; see the note to Table 2.1 for the exact population sizes. The procedure uses
10,000 draws from the approximate posterior density. The BMI data set has a single US state for
females older than 45 years from NHANES III and the last example is on the income data
(Aitkin 2010).
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Table 2.3: Comparison of the times (hours) for the approximate Bayesian method
(ABM) and the full (exact) Bayesian method (FBM) to perform the computations
for the finite population mean by example

n;N FBM

25; 608491 6.055
556; 4453263 44.311
162; 2704478 26.910
86; 1985501 19.756
47; 1086648 10.812
80; 1562869 15.551
59; 947239 9.425

322; 3310865 32.944
83; 1949322 19.396
129; 2358615 23.469
45; 190472 1.895

240; 2524603 25.120
64; 776246 7.724

48; 648 0.006

NOTE: The total time it took to compute all 14 examples just 8.8 seconds using
the approximate Bayesian method (ABM). The computations to obtain the
samples from the joint posterior density of µ, σ2, α is common to both methods.
The first thirteen examples are from NHANES III and the fourteenth one is a data
set on income (Aitkin 2010).
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Table 2.4: Summaries of different baseline distributions of the one-level Dirichlet
process model

Normal

Model y1, . . . , yk | k, µ, σ2 iid∼ Normal(µ, σ2); p(µ, σ2) ∝ 1/σ2,−∞ < µ <∞, σ2 > 0.
Posterior µ | σ2, k, ȳk, s

2
k ∼ Normal(ȳk, σ

2/k); σ−2 | s2
k, k ∼ Gamma{(k − 1)/2, (k − 1)s2

k/2}.
Remarks

√
k(µ− ȳk)/sk | ȳk, s2

k, k ∼ tk−1, k > 1 for propriety.
Lognormal

Model z1, . . . , zk | k, µ, σ2 iid∼ Normal(µ, σ2); p(µ, σ2) ∝ 1/σ2,−∞ < µ < ∞, σ2 > 0.
(Define zi = ln(yi), yi > 0, i = 1, . . . , k.)

Posterior µ | σ2, k, z̄k, s
2
k ∼ Normal(z̄k, σ

2/k); σ−2 | s2
k, k ∼ Gamma{(k − 1)/2, (k − 1)s2

k/2}.
Remarks The moments of the nonsampled yi may not exist.

Gamma

Model y1, . . . , yk | k, µ, η
iid∼ Gamma(η, µ−1η); p(µ, η) ∝ 1

µ(1+η)2 , µ > 0, η > 0.

Posterior µ | η, y
˜
k ∼ Inverse-Gamma(kη, kηa); π(η | y

˜
k) ∝ 1

µ(1+η)2

(
ηη

µΓ(η)

)k
gk(η−1)

(
1
kηa

)kη
.

Remarks By transforming η to τ = 1/(1 + η), π(τ | y
˜
k) is proper if 0 < τ < 1.

Inverse Gaussian

Model y1, . . . , yk | µ, λ
iid∼ IGauss(µ, λ), where f(y | µ, λ) =

√
λ

2πy3 exp{−λ(y−µ)2

2µ2y }, y > 0;

p(µ, η) ∝ 1
µ(1+η)2 , µ > 0, η > 0.

Posterior µ | η, y
˜
k ∼ Inverse-Gamma(kη, kηa); π(η | y

˜
k) ∝ 1

µ(1+η)2

(
ηη

µΓ(η)

)k
gk(η−1)

(
1
kηa

)kη
.

Remarks Computation is similar to the gamma baseline.
Two-component Mixture

Model yi | zi = r
ind∼ Normal(µr, σ

2); zi
iid∼ Bernoulli(π), i = 1, . . . , k, where 1 ≤

∑k
i=1 zi ≤

k − 1; π ∼ Uniform(0, 1);π(µ0, µ1) ∝ 1,−∞ < µ0 < µ1 < ∞; independently
π(σ2) ∝ 1/σ2, σ2 > 0.

Posterior π(z
˜
, π, µ0, µ1, σ

2 | y
˜
k) ∝ 1

σ2π
∑k
i=1 zi(1− π)

∑k
i=1(1−zi)

∏k
i=1

(
1
σφ{

yi−µ0

σ }
)1−zi ×(

1
σφ{

yi−µ1

σ }
)zi

, where φ(·) is the standard normal density function.
Remarks π(z

˜
, π, µ0, µ1, σ

2 | y
˜
k) is proper if k ≥ 3. Use the Gibbs sampler to fit the model.

Skewed Normal

Model yi | µ, σ2, γ
iid∼ SN(µ, σ2, γ), i = 1, . . . , k,−∞ < yi < ∞, where f(y |µ, σ2, γ)=

2
σφ(y−µσ )Φ{ γ√

1−γ2
(y−µσ )}, φ(·) is pdf of N(0, 1), Φ(·) is the cdf of N(0, 1);

π(µ, σ2, γ) ∝ 1/σ2,−∞ < µ <∞, σ2 > 0, | γ |< 1.

Posterior π(γ | µ, σ2, y
˜
k) ∝

∏k
i=1 Φ{ γ√

1−γ2
(yi−µσ )}; π(µ, σ2 | y

˜
k) ∝

A(µ, σ) 1
σ2

∏k
i=1

2
σφ(yi−µσ ), where A(µ, σ) =

∫ 1

−1

∏k
i=1 Φ{ γ√

1−γ2
(yi−µσ )}dγ.

Remarks π(µ, σ2, γ | y
˜
k) is proper if k > 1.
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Table 2.5: Posterior inference of the finite population mean for body mass index
(BMI) data using the Polya posterior, the Bayesian bootstrap and six baseline dis-
tributions

Baseline PM PSD NSE 95% CI

PP 28.473 1.126 0.041 (26.365, 30.679)
BB 28.381 1.092 0.034 (26.505, 30.535)
NO 28.740 1.257 0.037 (26.575, 31.446)
LN 28.748 1.210 0.034 (26.485, 31.115)
GA 28.812 1.244 0.043 (26.680, 31.470)
IG 28.318 1.314 0.030 (26.065, 30.786)
MI 29.823 1.436 0.063 (27.311, 32.810)
SN 28.806 1.169 0.041 (26.756, 31.316)

NOTE: PM is the posterior mean; PSD is the posterior standard deviation; NSE is
the numerical standard error; CI is the credible interval. Each procedure uses
1,000 draws from the posterior density. The Polya posterior (PP) takes α = 0 in
the simple Dirichlet process and the Bayesian bootstrap (BB) uses Haldane prior
for multinomial sampling. The BMI data are positively skewed. The BMI data set
has a single US state for females older than 45 years, N = 190, 472 and n = 45.

46



0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

24 27 30 33 36

Baseline: PP BB NO LN
GA IG MI SN

Figure 2.1: Plots of the posterior density of the finite population mean by baseline
model for body mass index (BMI) data
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Chapter 3

Two-level Dirichlet Process

Models

In Chapter 3, we assume that data are obtained from a two-stage sample sur-

vey, for example, a two-stage cluster sampling, stratified or post-stratified sampling

which is often seen in SAE problems. The sampled values are observed and the non-

sampled values are to be predicted using the two-level models. To gain robustness,

these models start with a simple idea that uses a random distribution drawn from

the DP in the model instead of some parametric distributions. Especially for the

area means, it is hard to know the correct parametric distribution. Assuming a spe-

cific parametric form is typically motivated by technical convenience rather than by

genuine prior beliefs. One drawback of the Scott-Smith model is the over-shrinkage,

the mean of certain area maybe pooled too much toward the overall mean. Using

the DP for the area mean allows borrowing information moderately within some of

the areas instead of all. Moreover since there are gaps and ties in the survey data,

it is reasonable to introduce a correlation among area means. Thus, it is important

to use a nonparametric procedure. Although presented in a survey sampling frame-
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work, the proposed approach can be adapted to general random and mixed effect

models.

In Section 3.1, we discuss the methodology and inferences of two-level DP models.

In Section 3.2, we discuss the propriety of the posterior distributions. In Section

3.3, we discuss the prediction for the finite population when the DP is used for the

sampling process. In Section 3.4, for model comparison, we discuss the computation

of Bayes Factors. In Section 3.5, we discuss the results of the application to BMI

data and simulated data.

3.1 Two-level Dirichlet Process Models

We assume that there are ` areas, and within the ith area there are Ni (known)

individuals. A sample of size ni is available from the ith area, and the remaining

Ni − ni values are unknown. Inference is required for the finite population mean

and quantile of each area.

Let yij denote the value for the jth unit within the ith area, i = 1, . . . , `, j =

1, . . . , Ni. We assume that yij, i = 1, . . . , `, j = 1, . . . , ni, are observed, and inference

is required for Ȳi =
∑Ni

j=1 yij/Ni, i = 1, . . . , `, the finite population mean of the ith

area, also the finite population quantile. Let n =
∑`

i=1 ni be the total sample size

and N =
∑`

i=1Ni be the total population size. Note that under simple random

sampling, a design-based (direct) estimator of Ȳi is ȳi =
∑ni

j=1 yij/ni, i = 1, . . . , `;

and we let s2
i =

∑ni
j=1(yij− ȳi)2/(ni−1), i = 1, . . . , `. The estimation of the standard

deviation of the design-based (direct) estimator is
√

(1− fi)s2
i /ni, where fi = ni/Ni

is the sampling fraction for each area.
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For continuous data yij, i = 1, . . . , `, j = 1, . . . , Ni, one can assume that

yij|νi
ind∼ N

(
θ + νi, σ

2
)
, (3.1)

νi
ind∼ N

(
0, δ2

)
,

where priors are chosen for θ, δ2 and σ2 to form a full Bayesian model. This is the

simplest hierarchical Bayesian model (Scott and Smith 1969) without covariates,

called the Scott-Smith model, where θ is an overall mean and the ν
˜

= {νi, i =

1, . . . , `} are area effects. Letting µ
˜

= {µi, i = 1, . . . , `} where µi = θ + νi, we can

write the Scott-Smith model equivalently to a two-level normal model,

yij|µi
ind∼ N

(
µi, σ

2
)
, i = 1, . . . , `, j = 1, . . . , Ni, (3.2)

µi
ind∼ N

(
θ, δ2

)
.

Our two-level normal model (baseline parametric model) is then

yij|µi
ind∼ N

(
µi, σ

2
)
, i = 1, . . . , `, j = 1, . . . , Ni, (3.3)

µi
ind∼ N

(
θ,

ρ

1− ρ
σ2

)
, (3.4)

π(θ, σ2, ρ) =
1

π(1 + θ2)

1

(1 + σ2)2
, −∞ < θ <∞, σ2 > 0, 0 ≤ ρ ≤ 1.

Here we consider a reparameterization of the Scott-Smith model (3.2) together with

proper non-informative priors that allow computation of marginal likelihood and

Bayes factors. We replace δ2 by ρ
(1−ρ)

σ2 to gain some analytical and computational

simplicity. Note that ρ = δ2/(δ2 + σ2) is a common intra-class correlation. See

Nandram, Toto and Choi (2011), Molina, Nandram and Rao (2014).

Let y
˜

= (y
˜
s, y

˜
ns), where y

˜
s = {yij, i = 1, . . . , `, j = 1, . . . , ni} is the vector
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of observed values and y
˜
ns = {yij, i = 1, . . . , `, j = ni + 1, . . . , Ni} vector of un-

observed values. Let λi = ni
ni+(1−ρ)/ρ

, i = 1, . . . , `, ỹ =
∑`

i=1 λiȳi/
∑`

i=1 λi, and

A1 = 1−ρ
ρ

∑`
i=1 λi(ỹ − ȳi)2 +

∑`
i=1(ni − 1)s2

i .

Using Bayes’ theorem, the joint posterior density of µ
˜
, θ, σ2, ρ is

π(µ
˜
, θ, σ2, ρ|y

˜
s) ∝

(
1

σ2

)(n+`)/2(
1− ρ
ρ

)`/2
exp

{
− 1

2σ2

{∑̀
i=1

{
(ni − 1)s2

i

+

(
ni +

1− ρ
ρ

)
(µi − [λiȳi + (1− λi)θ])2

+ λi

(
1− ρ
ρ

)
(ȳi − θ)2

}}}
× 1

(1 + σ2)2
× 1

π(1 + θ2)
. (3.5)

We use a simple method called the simple important resampling (SIR) algorithm

to draw from the posterior distribution π(µ
˜
, θ, σ2, ρ|y

˜
s) (3.5). That is to take a

simulated sample of draws from a proposal density πa(µ
˜
, θ, σ2, ρ|y

˜
s), then use these

draws to produce a sample from π(µ
˜
, θ, σ2, ρ|y

˜
s). The proposal model needs to be a

rough approximation to the joint posterior density (3.5) and easy to draw samples

from. We use the same likelihoods (3.3) and (3.4) in the two-level normal model

together with an improper prior π(θ, σ2, ρ) ∝ 1
σ2 ,−∞ < θ < ∞, 0 ≤ σ2 < ∞, 0 ≤

ρ ≤ 1 as the proposal model, that is,

πa(µ
˜
, θ, σ2, ρ|y

˜
s) ∝ πa(µ

˜
|θ, σ2, ρ, y

˜
s)πa(θ|σ2, ρ, y

˜
s)πa(σ

2|ρ, y
˜
s)πa(ρ|y

˜
s) (3.6)

∝
∏̀
i=1

N

[
µi;λiȳi + (1− λi)θ, (1− λi)

ρ

1− ρ
σ2

]

× N

(
θ; ỹ,

σ2ρ∑`
i=1 λi(1− ρ)

)
× IG

[
σ2; (n− 1)/2, A1/2

]
× Γ[(n− 1)/2]

(A1/2)(n−1)/2

∏̀
i=1

(1− λi)1/2

[
ρ∑`

i=1 λi(1− ρ)

]1/2

.

We draw a sample from the approximate joint posterior density (3.6) by first drawing
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a sample from πa(ρ|y
˜
s) using the grid method.

Let us consider a nonparametric hierarchical Bayesian extension of the paramet-

ric baseline model,

yij|Gi
ind∼ Gi, i = 1, . . . , `, j = 1, . . . , Ni, (3.7)

Gi|µi
ind∼ DP{αi, G0(µi)},

µi|H
iid∼ H,

H ∼ DP{γ,H0(·)},

where G0(·) and H0(·) can be any parametric distributions. In particular, we con-

sider G0 = N(µi, σ
2) and H0 = N(θ, δ2), where δ2 = ρ

1−ρσ
2 in (3.7) to be consistent

with the two-level normal model. A full Bayesian model can be obtained by adding

prior distributions. For example, we can use proper non-informative priors,

π(αi) =
1

(αi + 1)2
, αi > 0, i = 1, . . . , `, (3.8)

π(γ) =
1

(γ + 1)2
, γ > 0, (3.9)

π(θ, σ2, ρ) =
1

π(1 + θ2)

1

(1 + σ2)2
,

−∞ < θ <∞, 0 ≤ σ2 <∞, 0 ≤ ρ ≤ 1, (3.10)

with independence. We call (3.7), (3.8), (3.9) and (3.10) together the two-level

Dirichlet process (DPDP) model. Note that the concentration parameters αi and γ

are not included in the two-level normal model.

The inference of the DPDP model can be easily performed. The idea is similar

to the one-level DP model in Chapter 2. We denote (µ
˜
, γ, θ, σ2, ρ) as ψ

˜
and α

˜
=

{α1, . . . , α`}. The posterior density of αi are independent with other parameters

ψ
˜

in the model which conditioning on only the distinct values. Let ki denote the
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number of distinct values for each area in the observed data, k
˜

= {ki, i = 1, . . . , `}

be the vector of ki, y
∗
i1, . . . , y

∗
iki

be the ki distinct sample values for each i and

y
˜

∗ = {y∗i1, . . . , y∗iki , i = 1, . . . , `} be the vector of yij. Thus the joint posterior density

is

π(α
˜
, ψ
˜
| k

˜
, y
˜

∗) =

[∏̀
i=1

π(αi | ki)

]
π(ψ

˜
| y

˜

∗), (3.11)

where π(αi|ki) ∝ π(ki | αi)π(αi). For each i, we can draw posterior samples of αi in

the manner similar to the one-level DP model. For the other parameters ψ
˜

, we have

y∗i1, . . . , y
∗
iki
| ki, µi, σ2 ind∼ Normal(µi, σ

2), i = 1, . . . , `,

µi|H
iid∼ H,

H ∼ DP{γ,N(θ, δ2)},

with the prior in π(γ, θ, σ2, ρ). We know that H can be expressed as H =
∑∞

s=1 psδµ∗s

where

p1 = v1, ps = vs

s−1∏
j=1

(1− vj), vs
iid∼ Beta(1, γ), µ∗s

iid∼ N(θ, δ2).

Note that this is a DPM model. So the slice sampler (Kalli, Griffin and Walker

2011) algorithm can be used easily to obtain posterior samples of µ
˜

and γ. We need

to add a few steps in the Gibbs sampler to draw hyper-parameters θ, σ2, ρ. For this

specific prior, an accept-reject algorithm is used for the π(σ2, θ, ρ| . . . ) within the

Gibbs sampler update.

The algorithm is

Step 1: For each i (i = 1, . . . , `), draw αi from π(αi|ki) ∝ αki Γ(αi)
Γ(αi+ni)

1
(αi+1)2

.

Step 2: Draw ψ
˜

. Let K = maxni=1(Ki), where Ki is the largest integer t such that

ξt > ui. The Gibbs sampler is as follows.
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1. π(ui| . . . ) ∝ 1(0 < ui < ξdi).

2. π(µ∗s| . . . ) ∝ N(µ∗s; θ, δ
2)
∏
{i|di=s}

∏ki
j=1N(y∗ij;µ

∗
s, σ

2).

3. π(vs| . . . ) ∝ Beta(as, bs), where

as = 1 +
∑`

i=1 1(di = s) and bs = γ +
∑`

i=1 1(di > s).

4. π(γ| . . . ) ∝ γk0 Γ(γ)
Γ(γ+`)

1
(γ+1)2

, where k0 is the number of distinct d1, . . . , d`.

5. P (di = t| . . . ) ∝ 1(t : ξt > ui)pt/ξt
∏ki

j=1N(y∗ij;µ
∗
t , σ

2), t = 1, . . . , K.

6. π(σ2, θ, ρ| . . . ) ∝
∏`

i=1

∏ki
j=1 N(y∗ij;µ

∗
di
, σ2)×

∏K
s=1N(µ∗s; θ, δ

2)× 1
π(1+θ2)

1
(1+σ2)2

.

When we have strong beliefs that our sampling population or the area means are

from normal distributions, we may choose to use the normal likelihood instead of a

random distribution drawn from the DP. Thus we can have three additional models

which are easy to fit. Using normal distributions in both levels gives us the normal

model. Using the normal distribution in the first level and the DP as prior,

yij|µi
ind∼ N

(
µi, σ

2
)
, i = 1, . . . , `, j = 1, . . . , Ni, (3.12)

µi|H
iid∼ H,

H ∼ DP{γ,N(θ, δ2)},

together with (3.9) and (3.10) gives us the DPM model which is easy to fit.

Using DPs in the first level and the normal distribution as prior gives us,

yij|Gi
ind∼ Gi, i = 1, . . . , `, j = 1, . . . , Ni, (3.13)

Gi|µi
ind∼ DP{αi, N

(
µi, σ

2
)
},

µi
iid∼ N(θ, δ2).

We call (3.13), (3.8) and (3.10) the DP normal (DPnormal) model. The algorithm

for the DPnormal model is
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Step 1 : For each i ( i = 1, . . . , `), draw αi from π(αi|ki) ∝ αki Γ(αi)
Γ(αi+ni)

1
(αi+1)2

.

Step 2: Draw ψ
˜

from the following parametric model which is easy to fit,

y∗ij|µi
ind∼ N

(
µi, σ

2
)
, i = 1, . . . , `, j = 1, . . . , ki, (3.14)

µi
iid∼ N

(
θ,

ρ

1− ρ
σ2

)
,

π(θ, σ2, ρ) =
1

π(1 + θ2)

1

(1 + σ2)2
,−∞ < θ <∞, 0 ≤ σ2 <∞, 0 ≤ ρ ≤ 1.

3.2 Propriety of the Posterior Distributions

Lemma 3.2.1 The joint posterior density π(µ
˜
, θ, σ2, ρ|y

˜
s) (3.5) under the two-level

normal model is proper if ` ≥ 2.

Proof: Since σ2

(1+σ2)2
× 1

π(1+θ2)
< 1, we have π(µ

˜
, θ, σ2, ρ|y

˜
s) < πa(µ

˜
, θ, σ2, ρ|y

˜
s)

which is shown proper in Nandram, Toto and Choi (2011).

We restate the Lemma 2 in Lo (1984) in our notation in order to prove the

propriety of the posterior distributions. Let m be a positive integer and gi, i =

1, . . . , ` positive functions. Let P be a partition of 1, . . . , ` and N(P ) be the number

of cells in the partition. Thus, P = {Ci, i = 1, . . . , N(P }, where Ci is the ith

cell of the partition. Let ei be the number of elements in Ci. Note that Ci and

ei, i = 1, . . . , N(P ) depend on P .

Lemma 3.2.2

∫
R`

∏̀
i=1

gi(µi)dG0(µ1)
∏̀
i=2

d

{
αG0(µi) +

∑i−1
j=1 δµj(µi)

α + i− 1

}
=

[∏̀
i=1

1

α + i− 1

]∑
P

φ(P )

55



where

φ(P ) =

N(P )∏
i=1

{
(ei − 1)!

∫
R

[∏
c∈Ci

gc(µ)

]
αg0(µ)dµ

}
.

Theorem 3.2.3 If the posterior density under the normal baseline model is proper,

the posterior density under the DPM model is proper.

Proof: Let
∏ni

j=1N(yij|µi, σ2) = gi(µi;σ
2) for i = 1, . . . , ` and e = max`i=1{(ei−1)!}.

We have

∫ ∏̀
i=1

gi(µi;σ
2)N(µ1; θ, δ2)dµ1 ×

∏̀
i=2

(
γ

γ + i− 1
N(µi; θ, δ

2)

+
1

γ + i− 1

i−1∑
s=1

δµs(µi)

)
dµi ×

1

(γ + 1)2
× π(θ, σ, ρ)dθdσdρdγ

=

∫ [∏̀
i=1

1

γ + i− 1

]∑
P

N(P )∏
i=1

{
(ei − 1)!

∫
R

∏
c∈Ci

[γgc(µ;σ2)]N(µ; θ, σ2)dµ

}

× 1

(γ + 1)2
× π(θ, σ, ρ)dθdσdρdγ

< e
∑
P

∫ N(P )∏
i=1

{∫
R

[∏
c∈Ci

gc(µ;σ2)

]
N(µ; θ, σ2)dµ

}
π(θ, σ, ρ)dθdσdρ <∞.

The integral within the summation is finite because it is the marginal distribution of

regrouped data for one particular partition under the baseline model which is proper.

Theorem 3.2.4 If the posterior density under the normal baseline model is proper,

the posterior density under the DPDP model is proper.
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Proof: We need to show that

∫ ∏̀
i=1

{
N(yi1;µ1, σ

2)

ni∏
j=2

[
αi

αi + j − 1
N(yij;µi, σ

2) +
1

αi + j − 1

j−1∑
s=1

δyis(yij)

]}

× N(µ1; θ, δ2)dµ1

∏̀
i=2

[
γ

γ + i− 1
N(µi; θ, δ

2) +
1

γ + i− 1

i−1∑
s=1

δµs(µi)

]
dµi

×

[∏̀
i=1

1

(αi + 1)2

]
1

(γ + 1)2
× π(θ, σ, ρ)dα

˜
dθdσdρdγ <∞.

Following the same arguments in Theorem 2.2.1, we now only need to show that

∫ ∏̀
i=1

ni∏
j=1

N(yij|µi, σ2)×N(µ1; θ, δ2)dµ1

×
∏̀
i=2

(
γ

γ + i− 1
N(µi; θ, δ

2) +
1

γ + i− 1

i−1∑
s=1

δµs(µi)

)
dµi

×

[∏̀
i=1

1

(αi + 1)2

]
1

(γ + 1)2
× π(θ, σ, ρ)dα

˜
dθdσdρdγ <∞,

which is shown in Theorem 3.2.3.

Theorem 3.2.5 If the posterior density under the normal baseline model is proper,

the posterior density under the DPnormal model is proper.

Proof: Following similar arguments it is clear that DPnormal model is also proper.

3.3 Prediction for the Finite Population

We have a simple random sample of size ni from a finite population of size

Ni, i = 1, . . . , `. Let yi1, . . . , yini denote the sampled values. We want to predict

yini+1, . . . , yiNi , the nonsampled values, and obtain the predictive distribution and

prediction intervals for the finite population mean Ȳi for each area. The sampling
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process is as,

yij|Gi
ind∼ Gi, i = 1, . . . , `, j = 1, . . . , Ni,

Gi|µi
ind∼ DP{αi, G0(µi)}.

As we discuss in Chapter 2, the predictive inference for the two-level DP model

follows the same way in the one-level DP model for each i, since all areas are

independent. Also it is essentially the same methodology for the three-level models

discussed in Chapter 4.

3.4 Bayes Factor

Let Ω = (µ
˜
, θ, σ2, ρ, γ, α

˜
) and Ω′ = (θ, σ2, ρ, γ, α

˜
). As in the methodology dis-

cussed for Bayes factors in Chapter 1, we can write the marginal likelihood as,

M(y
˜
s) =

∫
f(y

˜
s|Ω)π(Ω)dΩ

=

∫ {
f(y

˜
s|Ω)π(Ω)

πa(Ω|y
˜
s)

}
πa(Ω|y

˜
s)dΩ

/∫ {
π(Ω)

πa(Ω|y
˜
s)

}
πa(Ω|y

˜
s)dΩ.

In this section, the formula we need for each model is given. It is easy to write down

the likelihood function of a parametric distribution. For the DP, we need to use the

Polya urn scheme by integrating out this random measure to obtain a closed-form

for f(y
˜
s|Ω), π(Ω) and πa(Ω|y

˜
s). Thus, we discuss in detail for the DPDP model and

summarize the equations for other models in Table 3.1.

For each i, integrating out G, it is easy to write the likelihood function
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fDPDP(y
˜
s|Ω) and prior πDPDP(Ω), where

fDPDP(y
˜
s|Ω) =

∏̀
i=1

{
N(yi1;µ1, σ

2)

ni∏
j=2

(
αi

αi + j − 1
N(yij;µi, σ

2)

+
1

αi + j − 1

j−1∑
s=1

δyis(yij)

)}
,

and

πDPDP(Ω) = π(µ
˜
|θ, ρ, σ2, γ)π(θ, ρ, σ2)

[∏̀
i=1

π(αi)

]
π(γ)

= N(µ1; θ, δ2)
∏̀
i=2

[
γ

γ + i− 1
N(µi; θ, δ

2) +
1

γ + i− 1

i−1∑
s=1

δµs(µi)

]

×

[∏̀
i=1

1

(αi + 1)2

]
1

(γ + 1)2

1

π(1 + θ2)

1

(1 + σ2)2
.

It is a little bit involved for πDPDP
a (Ω|y

˜
s), since µ1, . . . , µ` are correlated. We

use π(µi|µi−1, . . . , µ1) as an approximate of π(µi). Thus the approximate posterior

πDPDP
a (Ω|y

˜
s) is equal to

[∏̀
i=2

π(µi|µi−1, . . . , µ1,Ω
′, y

˜
s)

]
π(µ1|Ω′, y

˜
s)πa(θ, σ

2, ρ|y
˜
s)πa(γ|k)

∏̀
i=1

πa(αi|ki),

where

π(µ1|Ω′, y
˜
s) = N

(
µ1;λ1ȳ1 + (1− λ1)θ, (1− λ1)

ρσ2

(1− ρ)

)
,
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and for i = 2, . . . , `, πa(µi|µi−1, . . . , µ1,Ω
′, y

˜
s)

=
1

i− 1 + γ

i−1∑
s=1

{(
1

2πσ2

)ni/2
exp

{
− 1

2σ2

[
ni(ȳi − µs)2

+ (ni − 1)s2
i

]}
δµs(µi)

}
+

γ

i− 1 + γ

(
1

2πσ2

)ni/2
× (1− λi)1/2exp

{
− 1

2σ2

[
(1− λi)ni(ȳi − θ)2 + (ni − 1)s2

i

]}
× N

(
µi;λiȳi + (1− λi)θ, (1− λi)

ρσ2

(1− ρ)

)
.

For the concentration parameter γ, taking the transformation ργ = 1/(γ + 1),

we can compute aγ and bγ, the MLEs of parameters in the Beta distribution by using

posterior samples of γ. We have πa(γ|k) = γ(bγ−1)/[(γ + 1)(aγ+bγ)B(aγ, bγ)], where

B(a, b) = Γ(a)Γ(b)/Γ(a+b). For αi, we proceed in the similar way by transformation

ραi = 1/(αi + 1) for each i. And πa(θ, σ
2, ρ|y

˜
s) is the same as in the baseline model.

Table 3.1 gives the equations for the computation of Bayes factors for normal

model, DPM model and DPnormal model.

3.5 Empirical Studies

3.5.1 Application to Body Mass Index (BMI) Data

We first fit the two-level models by collapsing the sub-domains formed by age,

race and sex to obtain the population mean for each county. The 85th and 95th

percentiles are also important and the methodology is essentially the same. We

perform the predictive inference of the population mean, 85th and 95th percentiles

for each area using the two-level DP models. We also use a Bayesian bootstrap,

which is discussed in Chapter 1, without borrowing across counties as a comparison.
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Note that for the county level, all sample sizes are over 100. But we have a SAE

problem when it comes to the sub-domains. We have compared the DPDP model to

the normal model, the DPM model, the DPnormal model and Bayesian bootstrap.

For the DPM and DPDP model, we run 10000 MCMC iterations, burn in 5000

and thin every 5th to obtain 1000 converged posterior samples. Table 3.2 gives

the p-values of the Geweke test and the effective sample sizes for the parameters

σ2, θ, δ2 and γ for the DPM and DPDP model. The p-values are all large so

we do not reject the null hypothesis test which is that the Markov chain is in the

stationary distribution. And effective sample sizes are not too far away from 1000.

These numerical summaries, trace plots, and autocorrelation plots indicate that the

MCMC chains converge.

Tables 3.3, 3.4 and 3.5 give the summary statistics, posterior mean (PM) and

posterior standard deviation (PSD), of the finite population mean, 85th and 95th

percentiles for each county of BMI data under the two-level DP models (normal,

DPM, DPnormal and DPDP models) and Bayesian bootstrap respectively. These

tables show that roughly similar results obtained from the two-level DP models.

As expected, in terms of efficiency, all four models beat the Bayesian bootstrap.

For the finite population mean, Table 3.3 shows that roughly half of the counties

with smaller PSD under the DPDP model than the normal model. And PMs under

the DPDP model are closer to the PMs under the Bayesian bootstrap which is

considered as an unbiased estimator. Meanwhile, PMs under the normal model are

pooled toward to the overall mean. It is well known that when the area mean is far

way from the overall mean, the normal model has the risk of over-shrinkage. We

examine several plots to further compare results of BMI data.

The predictive inference of the finite population mean, 85th and 95th percentile

for each county by four different models (normal, DPM, DPnormal and DPDP mod-
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els) are compared respectively. Figures 3.1, 3.2 and 3.3 plot posterior means with

credible bands versus direct estimates for BMI data. In Figure 3.1, the posterior

means are very similar under the normal, DPM and DPnormal models. They are

pooled toward the overall means. The posterior means under the DPDP model are

closer to the direct estimators (less pooling) meanwhile with similar credible bands

comparing to other models. Some evidence of the advantage of the nonparametric

alternative, DPDP model, when predicting population means are presented. With-

out the restrictive parametric assumptions, the DPDP model tends to provide less

biased estimation with similar variation comparing to the other candidate models.

The predictive inferences of the population percentile are similar under the normal

and DPM model. However, the predictive inference of the population percentile is

not so good under the DPDP and DPnormal model. We suspect that it may be due

to the discreteness of the DP when it is used as sampling process.

Figures 3.4, 3.5, and 3.6 are plots of the posterior density of the finite popula-

tion mean, 85th and 95th percentiles for the four models (normal, DPM, DPnormal,

DPDP models) and Bayesian bootstrap for the first eight counties of BMI data. We

show these density plots as examples to further confirm our observations. In Figure

3.4, for the population mean, most parts of the density under the normal, DPM

and DPnormal models are similar and the DPnormal model have slightly smaller

variation. The results from the DPDP model are close to the unbiased estimation

under the Bayesian bootstrap with smaller variation. However, the DPDP model

does not always have the smallest variation, since in general one expects a more

flexible model will have larger variability. Figures 3.5 and 3.6 show that the esti-

mated density of the population 85th and 95th percentiles under the DPnormal and

DPDP model are not smooth and the estimated density of the population 85th and

95th percentiles under the normal and DPM model are similar. Other counties have
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similar phenomenon which is not shown here.

Several comparison measurements are also computed. Table 3.6 gives the log of

the marginal likelihood (LML) with Monte Carlo errors, log pseudo marginal like-

lihood (LPML), delete-one cross validation (CV) divergence measure, deviance in-

formation criterion (DIC) and percentages of conditional predictive ordinate (CPO)

less than .025 (PCPO < .025) and .014 (PCPO < .014) of each two-level model for

BMI data. CV of four models are comparable. And the differences among the

percentages of CPO less than .025 and .014 in these models are very small. These

comparison measurements suggest choosing parametric baseline model. However, as

we discussed in Chapter 1, when the parametric model is nested in the nonparamet-

ric alternative, the Bayes factor may be misleading. Intuitively any likelihood-based

diagnostic will be misleading because we are comparing infinite dimensional distri-

butions.

Since BMI data suffers right skewness with outliers in the right tails, ties and

gaps, the estimations given by parametric models may be incorrect. Thus based on

a belief that the parametric model is too restrictive, we prefer the analysis based on

the nonparametric DPDP model.

3.5.2 Simulation

We conduct a simple simulation study. We have simulated three data sets to fit

the normal model (that is, the Scott-Smith model), the DPM model, the DP normal

(DPnormal) model and the two-level DP (DPDP) model respectively. We simulated

data from the normal model, the DPM model with γ = 0.5 and the DPDP model

with α = 0.3 and γ = 0.5.

Figures 3.7, 3.8 and 3.9 show the comparison of posterior means with credible

bands and true population means for the simulated normal, DPM and DPDP data
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under four different models (normal, DPM, DPnormal and DPDP models). We can

see that the results are similar, all close to the true population mean. Table 3.7

gives Log of the marginal likelihood with Monte Carlo errors, Log pseudo marginal

likelihood (LPML) and delete-one cross validation (CV) divergence measure of each

model for each simulated data set.

The simulation examples show some evidence that the nonparametric method

performs well for the predictive inference of the population mean. We may want

to conduct more extensive simulation study on repeated simulated data. However,

this process is time consuming because parallel computing in R is needed and is not

well developed.
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Table 3.1: The equations for the computation of Bayes factors for normal model,
DPM model and DPnormal model

Normal Model

f(y
˜
s|Ω)

(
1

2πσ2

)n/2∏`
i=1(1− λi)1/2exp

{
− 1

2σ2

[∑`
i=1

(
λi

(
1−ρ
ρ

)
(ȳi − θ)2 + (ni − 1)s2

i

)]}
.

π(Ω) 1
π(1+θ2)

1
(1+σ2)2 .

πa(Ω|y
˜
s) N(θ; ỹ, ρσ2

(1−ρ)
∑`
i=1 λi

)IG
{
σ2; (n− 1)/2,

[∑`
i=1

(
λi

(
1−ρ
ρ

)
(ȳi − ỹ)2 + (ni − 1)s2

i

)]
/2
}

×Beta(ρ; a, b).

Remarks: We can integrate out µ
˜
. ỹ =

∑`
i=1 λiȳi/

∑`
i=1 λi and parameters a and b are the

MLEs by using posterior samples of ρ to fit a beta distribution.

DPM Model

f(y
˜
s|Ω)

(
1

2πσ2

)n/2
exp

{
− 1

2σ2

∑`
i=1

{
ni(ȳi − µi)2 + (ni − 1)s2

i

}}
.

π(Ω) N(µ1; θ, δ2)
∏`
i=2

(
γ

γ+i−1N(µi; θ, δ
2) + 1

γ+i−1

∑i−1
s=1 δµs(µi)

)
1

(γ+1)2
1

π(1+θ2)
1

(1+σ2)2 .

πa(Ω|y
˜
s)

[∏`
i=2 π(µi|µi−1, . . . , µ1,Ω

′, y
˜
s)

]
π(µ1|Ω′, y

˜
s)πa(θ, σ2, ρ|y

˜
s)πa(γ|k).

Remarks: The computation of πa(Ω|y
˜
s) proceeds in the same manner as in the DPDP model

excluding α
˜

.

DPnormal Model

f(y
˜
s|Ω) fDPDP(y

˜
s|Ω).

π(Ω)
∏`
i=1N(µi; θ, δ

2)
∏`
i=1

1
(αi+1)2

1
π(1+θ2)

1
(1+σ2)2 .

πa(Ω|y
˜
s) π(µ

˜
|θ, ρ, σ2, y

˜
s)πa(θ|σ2, ρ, y

˜
s)πa(σ2|ρ, y

˜
s)πa(ρ|y

˜
s)
∏`
i=1 πa(αi|ki), where

π(µ
˜
|θ, ρ, σ2, y

˜
s) =

∏`
i=1N [µi;λiȳi + (1− λi)θ, (1− λi)ρσ2/(1− ρ)].

Remarks: πa(θ|σ2, ρ, y
˜
s), πa(σ2|ρ, y

˜
s) and πa(ρ|y

˜
s) are same as normal model with y

˜

∗ replacing
y
˜
s and πa(αi|ki) same as DPDP model.
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Table 3.2: Summary of Markov chain Monte Carlo (MCMC) diagnostics: the p-
values of the Geweke test and the effective sample sizes for the parameters σ2, θ, δ2

and γ for the DPM and DPDP model

p-values for the Geweke test

Model σ2 θ δ2 γ
DPM 0.4831612 0.4140493 0.4592166 0.6196973
DPDP 0.5221358 0.6755549 0.7519071 0.1104736

effective sample sizes

Model σ2 θ δ2 γ
DPM 1000 1000 697.8087 1084.5006
DPDP 1000 938.2965 626.9378 732.3416
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Table 3.3: Comparison of posterior mean (PM) and posterior standard deviation
(PSD) of the finite population mean for each county of body mass index (BMI)
data by four models (normal, DPM, DPnormal and DPDP models) and Bayesian
bootstrap

Bootstrap Normal DPM DPDP DPnormal
PM PSD PM PSD PM PSD PM PSD PM PSD

1 26.93 0.36 26.93 0.32 26.93 0.36 26.92 0.32 26.92 0.33
2 27.48 0.54 27.24 0.37 27.25 0.36 27.38 0.42 27.24 0.42
3 26.28 0.44 26.51 0.35 26.47 0.38 26.35 0.36 26.55 0.36
4 26.00 0.37 26.34 0.36 26.30 0.36 26.14 0.33 26.35 0.32
5 25.67 0.41 26.18 0.41 26.17 0.40 25.87 0.37 26.16 0.36
6 28.40 0.43 27.85 0.40 27.78 0.40 28.13 0.36 27.84 0.35
7 27.08 0.34 27.03 0.31 27.03 0.35 27.04 0.32 27.02 0.32
8 26.88 0.47 26.88 0.33 26.90 0.39 26.88 0.38 26.93 0.35
9 27.83 0.39 27.46 0.36 27.46 0.36 27.68 0.34 27.49 0.34

10 27.65 0.45 27.39 0.36 27.39 0.34 27.53 0.35 27.33 0.33
11 27.26 0.26 27.18 0.23 27.20 0.24 27.24 0.23 27.19 0.24
12 25.72 0.34 26.15 0.37 26.14 0.34 25.87 0.32 26.11 0.32
13 26.67 0.39 26.75 0.32 26.74 0.39 26.71 0.34 26.80 0.33
14 27.28 0.17 27.23 0.17 27.25 0.18 27.28 0.17 27.25 0.17
15 27.33 0.50 27.15 0.39 27.17 0.39 27.23 0.39 27.10 0.35
16 27.31 0.40 27.17 0.33 27.17 0.34 27.22 0.33 27.15 0.32
17 26.08 0.38 26.39 0.34 26.36 0.37 26.20 0.35 26.41 0.33
18 26.71 0.37 26.79 0.32 26.77 0.41 26.75 0.36 26.81 0.33
19 26.19 0.41 26.46 0.34 26.44 0.37 26.30 0.34 26.51 0.32
20 26.81 0.44 26.86 0.34 26.88 0.38 26.86 0.38 26.89 0.35
21 26.90 0.43 26.90 0.34 26.92 0.39 26.91 0.35 26.91 0.34
22 27.28 0.36 27.12 0.33 27.15 0.33 27.23 0.32 27.15 0.32
23 25.87 0.41 26.27 0.37 26.23 0.37 26.03 0.35 26.31 0.35
24 27.12 0.42 27.04 0.34 27.07 0.37 27.09 0.36 27.05 0.35
25 26.75 0.44 26.80 0.34 26.82 0.37 26.79 0.38 26.83 0.37
26 26.58 0.47 26.74 0.37 26.71 0.42 26.65 0.42 26.77 0.35
27 26.77 0.36 26.82 0.29 26.83 0.35 26.78 0.32 26.83 0.30
28 27.52 0.49 27.28 0.34 27.30 0.35 27.42 0.36 27.25 0.37
29 26.59 0.43 26.75 0.38 26.76 0.43 26.68 0.40 26.79 0.39
30 25.91 0.40 26.32 0.37 26.27 0.38 26.10 0.34 26.35 0.34
31 27.82 0.33 27.52 0.34 27.48 0.34 27.71 0.30 27.52 0.30
32 27.64 0.41 27.37 0.32 27.37 0.33 27.52 0.33 27.38 0.34
33 26.35 0.32 26.53 0.32 26.53 0.37 26.44 0.32 26.58 0.31
34 27.39 0.30 27.22 0.28 27.26 0.29 27.35 0.27 27.27 0.27
35 26.80 0.38 26.84 0.30 26.85 0.36 26.83 0.33 26.87 0.31
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Table 3.4: Comparison of posterior mean (PM) and posterior standard deviation
(PSD) of the finite population 85th percentile for each county of body mass index
(BMI) data by four models (normal, DPM, DPnormal and DPDP models) and
Bayesian bootstrap

Bootstrap Normal DPM DPDP DPnormal
PM PSD PM PSD PM PSD PM PSD PM PSD

1 32.14 0.50 32.48 0.35 32.50 0.39 32.27 0.46 32.46 0.47
2 34.76 1.24 32.93 0.45 32.95 0.43 33.77 0.83 34.08 0.82
3 30.76 0.78 32.05 0.39 32.00 0.44 31.34 0.62 31.94 0.63
4 31.57 1.07 31.97 0.43 31.93 0.42 31.84 0.72 32.48 0.61
5 30.51 0.90 31.75 0.47 31.75 0.45 31.11 0.70 31.87 0.72
6 33.82 1.22 33.42 0.44 33.35 0.44 33.51 0.64 33.55 0.67
7 31.59 0.85 32.58 0.36 32.58 0.39 32.07 0.69 32.45 0.72
8 32.25 0.67 32.46 0.36 32.48 0.42 32.32 0.48 32.70 0.53
9 32.81 1.18 33.03 0.41 33.01 0.42 32.99 0.74 33.15 0.75

10 34.01 0.74 33.07 0.39 33.08 0.36 33.53 0.47 33.73 0.48
11 32.75 0.54 32.78 0.26 32.79 0.27 32.76 0.45 32.90 0.49
12 30.26 0.80 31.67 0.42 31.67 0.38 30.92 0.53 31.45 0.53
13 31.91 0.88 32.34 0.36 32.32 0.43 32.15 0.56 32.64 0.57
14 32.37 0.38 32.80 0.19 32.82 0.20 32.46 0.37 32.50 0.37
15 33.39 0.50 32.84 0.40 32.85 0.41 33.10 0.47 33.39 0.42
16 32.21 0.75 32.72 0.37 32.71 0.40 32.41 0.56 32.73 0.62
17 30.88 0.83 31.95 0.40 31.91 0.42 31.41 0.65 32.07 0.72
18 31.18 0.80 32.29 0.39 32.28 0.49 31.68 0.70 32.21 0.85
19 32.03 0.97 32.09 0.38 32.08 0.42 32.05 0.64 32.77 0.56
20 32.71 0.96 32.50 0.39 32.52 0.42 32.63 0.66 33.08 0.61
21 33.08 0.98 32.57 0.40 32.58 0.44 32.87 0.62 33.28 0.56
22 32.06 0.72 32.65 0.36 32.68 0.37 32.34 0.54 32.57 0.57
23 31.18 0.77 31.85 0.42 31.81 0.42 31.47 0.56 32.19 0.70
24 32.66 0.66 32.64 0.37 32.68 0.40 32.67 0.52 32.96 0.52
25 31.63 0.98 32.37 0.39 32.39 0.42 32.05 0.74 32.47 0.73
26 32.02 0.96 32.34 0.40 32.30 0.45 32.22 0.61 32.77 0.57
27 31.56 0.44 32.34 0.31 32.36 0.39 31.85 0.44 32.16 0.50
28 33.51 1.51 32.87 0.39 32.89 0.40 33.00 0.70 33.33 0.80
29 31.53 0.97 32.30 0.45 32.31 0.49 31.99 0.79 32.57 0.80
30 30.62 0.94 31.89 0.43 31.83 0.45 31.37 0.67 32.13 0.71
31 32.36 0.57 33.02 0.38 32.99 0.38 32.62 0.49 32.72 0.49
32 33.24 0.89 32.96 0.37 32.96 0.37 33.05 0.57 33.31 0.62
33 30.54 0.51 32.03 0.37 32.01 0.42 31.20 0.53 31.61 0.57
34 32.48 0.49 32.78 0.31 32.82 0.31 32.59 0.44 32.71 0.45
35 31.78 1.04 32.40 0.35 32.41 0.42 32.09 0.65 32.54 0.75
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Table 3.5: Comparison of posterior mean (PM) and posterior standard deviation
(PSD) of the finite population 95th percentile for each county of body mass index
(BMI) data by four models (normal, DPM, DPnormal and DPDP models) and
Bayesian bootstrap

Bootstrap Normal DPM DPDP DPnormal
PM PSD PM PSD PM PSD PM PSD PM PSD

1 35.52 1.27 35.79 0.42 35.81 0.45 35.63 0.83 36.21 0.88
2 40.88 2.32 36.45 0.46 36.47 0.45 38.38 1.48 38.83 1.54
3 34.90 2.58 35.36 0.47 35.32 0.51 34.83 1.18 36.16 1.43
4 35.59 1.12 35.31 0.45 35.27 0.45 35.47 0.73 36.26 0.85
5 35.82 1.61 35.19 0.51 35.19 0.50 35.57 1.03 36.53 0.92
6 39.32 1.58 37.00 0.44 36.94 0.44 38.25 0.73 38.45 0.74
7 35.93 1.12 35.95 0.40 35.94 0.44 35.93 0.81 36.50 0.69
8 37.32 1.49 35.90 0.43 35.92 0.48 36.57 0.92 37.26 0.86
9 38.76 1.54 36.55 0.45 36.53 0.46 37.72 0.83 38.02 0.84

10 39.82 1.64 36.48 0.41 36.48 0.41 37.83 1.13 38.32 1.14
11 37.49 0.94 36.19 0.28 36.21 0.29 37.15 0.72 37.36 0.71
12 35.84 1.50 35.17 0.47 35.18 0.44 35.64 0.86 36.46 0.89
13 36.13 1.20 35.68 0.40 35.66 0.45 35.88 0.81 36.65 0.93
14 36.90 0.80 36.16 0.22 36.19 0.23 36.85 0.70 36.96 0.69
15 36.04 1.47 36.00 0.48 36.03 0.49 35.98 0.71 36.64 0.89
16 36.44 1.40 36.08 0.41 36.08 0.44 36.20 0.84 36.79 0.93
17 34.70 0.99 35.27 0.44 35.23 0.45 34.95 0.77 35.77 0.83
18 35.57 0.81 35.68 0.38 35.65 0.46 35.58 0.58 36.16 0.78
19 34.88 0.88 35.31 0.40 35.30 0.44 35.04 0.62 35.85 0.78
20 37.08 1.89 35.82 0.42 35.84 0.46 36.34 1.04 37.11 1.14
21 35.75 1.03 35.75 0.44 35.77 0.47 35.69 0.66 36.30 0.84
22 35.56 1.08 35.94 0.43 35.98 0.42 35.65 0.81 36.12 0.89
23 36.46 1.46 35.29 0.45 35.24 0.46 35.83 0.98 36.84 0.92
24 37.80 2.17 36.02 0.44 36.06 0.45 36.65 1.17 37.40 1.33
25 37.29 2.60 35.76 0.43 35.77 0.46 36.37 1.39 37.23 1.47
26 36.18 1.92 35.67 0.52 35.62 0.55 35.80 1.11 36.90 1.10
27 36.09 1.30 35.75 0.38 35.77 0.44 35.92 0.82 36.51 0.78
28 40.33 1.37 36.50 0.44 36.53 0.46 38.46 1.03 38.84 0.96
29 35.71 1.10 35.66 0.52 35.67 0.52 35.76 0.88 36.43 0.78
30 34.57 1.11 35.20 0.48 35.15 0.49 34.88 0.80 35.87 0.83
31 35.43 1.06 36.28 0.39 36.26 0.39 35.77 0.62 36.01 0.68
32 39.12 1.40 36.43 0.41 36.43 0.40 37.75 1.03 38.24 1.00
33 34.10 0.83 35.31 0.42 35.30 0.46 34.63 0.63 35.32 0.88
34 35.98 1.02 36.09 0.36 36.12 0.36 35.98 0.79 36.36 0.85
35 37.83 1.13 35.92 0.38 35.92 0.44 37.03 0.89 37.57 0.92
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Table 3.6: Log of the marginal likelihood (LML) with Monte Carlo errors , Log
pseudo marginal likelihood (LPML), delete-one cross validation (CV) divergence
measure, deviance information criterion (DIC) and percentages of conditional pre-
dictive ordinate (CPO) less than .025 (PCPO<.025) and .014 (PCPO<.014) of each
two-level model for body mass index (BMI) data

BMI data (two-level models)

LML LPML PCPO<.025 PCPO<.014 CV DIC

Normal −9288.920.01 -9292.26 0.0265 0.0197 0.7652 18583.2
DPM −9292.760.08 -9445.15 0.0273 0.0200 0.7655 18588.3
DPnormal −32177.713.40 -16110.97 0.0601 0.0288 0.7719 26686.5
DPDP −32348.294.01 -16136.36 0.0743 0.0397 0.7721 26686.0

Table 3.7: Log of the marginal likelihood with Monte Carlo errors, Log pseudo
marginal likelihood (LPML) and delete-one cross validation (CV) divergence mea-
sure of each model for each simulated data set. (DPM data: γ = 0.5; DPDP data:
α = 0.3, γ = 0.5)

(a) Log of the marginal likelihood

Normal model DPM model DPnormal model DPDP model

Normal data -7136.083 -7135.931 -7141.158 -7180.218
(8.973 ×10−7) (0.1800) (0.0010) (40.3708)

DPM data -7161.715 -7151.729 -7162.483 -7246.303
(2.376 ×10−5) (0.3162) (0.0008) (73.5941)

DPDP data -3805.430 -3811.510 -2840.229 -2838.449
(0.0280) (0.0358) (0.0008) (0.2113)

(b) LPML

Normal model DPM model DPnormal model DPDP model

Normal data -7146.061 -7176.803 -7149.160 -7179.017
DPM data -7171.468 -7155.752 -7174.504 -7157.872
DPDP data -3821.925 -3886.685 -2683.769 -2683.673

(c) CV

Normal model DPM model DPnormal model DPDP model

Normal data 0.4334 0.4350 0.4335 0.4351
DPM data 0.4339 0.4332 0.4340 0.4332
DPDP data 0.1703 0.1767 0.1703 0.1703
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Figure 3.1: Comparison for body mass index (BMI) data (posterior means with
credible bands versus direct estimates): the predictive inference of the finite popu-
lation mean for each county under four different models (normal, DPM, DPnormal
and DPDP models)
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Figure 3.2: Comparison for body mass index (BMI) data (posterior means with
credible bands versus direct estimates): the predictive inference of the finite pop-
ulation 85th percentile for each county under four different models (normal, DPM,
DPnormal and DPDP models)
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Figure 3.3: Comparison for body mass index (BMI) data (posterior means with
credible bands versus direct estimates): the predictive inference of the finite pop-
ulation 95th percentile for each county under four different models (normal, DPM,
DPnormal and DPDP models)
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Figure 3.4: Plots of the posterior density of the finite population mean by four
models (normal, DPM, DPnormal, DPDP models) and Bayesian bootstrap for the
first eight counties of body mass index (BMI) data
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Figure 3.5: Plots of the posterior density of the finite population 85th percentile by
four models (normal, DPM, DPnormal, DPDP models) and Bayesian bootstrap for
the first eight counties of body mass index (BMI) data
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Figure 3.6: Plots of the posterior density of the finite population 95th percentile by
four models (normal, DPM, DPnormal, DPDP models) and Bayesian bootstrap for
the first eight counties of body mass index (BMI) data
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Figure 3.7: Comparison for the simulated normal data (posterior means with credi-
ble bands versus true population means): the predictive inference of the finite pop-
ulation mean for each county under four different models (normal, DPM, DPnormal
and DPDP models).
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Figure 3.8: Comparison for the simulated DPM data (posterior means with credible
bands versus true population means): the predictive inference of the finite popula-
tion mean for each county under four different models (normal, DPM, DPnormal
and DPDP models).
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Figure 3.9: Comparison for the simulated DPDP data (posterior means with credible
bands versus true population means): the predictive inference of the finite popula-
tion mean for each county under four different models (normal, DPM, DPnormal
and DPDP models).
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Chapter 4

Three-level Dirichlet Process

Models

In this chapter, we generalize the two-level Dirichlet process models to three

levels, e.g. state-county-individual in a multi-stage finite population sampling. We

assume that there are ` areas, within the ith area there are Ni sub-domains, and

within the jth sub-domain there are Mij (known) individuals. For sampling, ni

second-stage units are selected from the Ni units available, and mij third-stage

units (elements) are sampled from the Mij elements available. Inference is required

for the finite population quantities of each area.

Let yijk denote the value for the kth unit within the jth sub-domain and ith area,

i = 1, . . . , `, j = 1, . . . , Ni, k = 1, . . . ,Mij. We assume that yijk, i = 1, . . . , `, j =

1, . . . , ni, k = 1, . . . ,mij are observed. Let y
˜

= (y
˜
s, y

˜
ns), where y

˜
s = {yijk, i =

1, . . . , `, j = 1, . . . , ni, k = 1, . . . ,mij} is the vector of observed values and y
˜
ns =

{yijk, i = 1, . . . , `, j = ni + 1, . . . , Ni, k = mij + 1, . . . ,Mij} vector of unobserved

values. Inferences are required for Ȳi =
∑Ni

j=1

∑Mij

k=1 yijk/
∑Ni

j=1Mij, i = 1, . . . , `, the

finite population mean of the ith area and the 85th and 95th population quantiles
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for each area. For i = 1, . . . , `, j = 1, . . . , ni, we let ȳij =
∑mij

k=1 yijk/mij, s
2
ij =∑mij

k=1(yijk − ȳij)2/(mij − 1) and m0 =
∑`

i=1

∑ni
j=1mij.

The three-level Dirichlet process model (DPDPDP) is given by

yijk|Gij
ind∼ Gij, i = 1, . . . , `, j = 1, . . . , Ni, k = 1, . . . ,Mij, (4.1)

Gij|µij
ind∼ DP{αij, G0(µij)},

µij|Hi
ind∼ Hi,

Hi|θi
ind∼ DP{γi, H0(θi)},

θi|F
iid∼ F,

F ∼ DP{γ0, F0(·)}.

Here G0(·), H0(·) and F0(·) are parametric distributions. In particular, we consider

G0 = N(µij, σ
2), H0 = N(θi, δ

2
1) and F0 = N(θ0, δ

2
2), where δ2

1 = ρ1
1−ρ1σ

2 and

δ2
2 = ρ2

1−ρ2σ
2. A full Bayesian model can be obtained by adding prior distributions.

Similar to two-level models, we can use proper non-informative priors,

π(αij) =
1

(αij + 1)2
, αij > 0, i = 1, . . . , `, j = 1, . . . , Ni, (4.2)

π(γi) =
1

(γi + 1)2
, γi > 0, (4.3)

π(γ0) =
1

(γ0 + 1)2
, γ0 > 0, (4.4)

π(θ0, σ
2, ρ1, ρ2) =

1

π(1 + θ2
0)

1

(1 + σ2)2
, (4.5)

−∞ < θ0 <∞, 0 ≤ σ2 <∞, 0 ≤ ρ1 ≤ 1, 0 ≤ ρ2 ≤ 1,

with independence.

The corresponding embedded three-level parametric baseline model is,
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yijk|µij
ind∼ N(µij, σ

2), i = 1, . . . , `, j = 1, . . . , Ni, k = 1, . . . ,Mij, (4.6)

µij|θi
ind∼ N(θi, δ

2
1),

θi
iid∼ N(θ0, δ

2
2).

We note that Malec and Sedransk (1985) first proposed this type of model, an

extension of the Scott-Smith model (3.1), initially used to model continuous data

from three-stage cluster sampling. We call this parametric baseline (4.6) together

with (4.5) the NNN model.

Similar to the two-level DP models, if we choose not to use DPs in all levels,

we have seven additional models, which are NNN, NNDP, NDPN, NDPDP, DPNN,

DPNDP, DPDPN. Here, we use letter N if the normal baseline distribution is chosen

in that level, and DP for the random distribution drawn from DP.

4.1 Inference

Here, we start with the parametric baseline model. Letting µ
˜

= {µij, i =

1, . . . , `, j = 1, . . . , ni} and θ
˜

= {θi, i = 1, . . . , `}, the joint posterior density is

π (µ
˜
, θ
˜
, θ0, σ

2, ρ1, ρ2|y
˜
s) (4.7)

∝
(

1

σ2

)m0/2

exp

{
− 1

2σ2

∑̀
i=1

ni∑
j=1

[
mij(ȳij − µij)2 + (mij − 1)s2

ij

]}

×
(

1

δ2
1

)∑`
i=1 ni/2

exp

{
− 1

2δ2
1

∑̀
i=1

ni∑
j=1

(µij − θi)2

}

×
(

1

δ2
2

)`/2
exp

{
− 1

2δ2
2

∑̀
i=1

(θi − θ0)2

}
× 1

π(1 + θ2
0)

1

(1 + σ2)2
.

82



Like the two-level hierarchical models, we use the SIR algorithm to draw from the

posterior distribution (4.7). The proposal model is (4.6) together with an improper

prior π(θ0, σ
2, ρ1, ρ2) ∝ 1

σ2 ,−∞ < θ0 < ∞, 0 ≤ σ2 < ∞, 0 ≤ ρ1 ≤ 1, 0 ≤ ρ2 ≤ 1.

Using the multiplication rule, we have

πa(µ
˜
, θ
˜
, θ0, σ

2, ρ1, ρ2|y
˜
s) ∝ πa(µ

˜
|θ
˜
, θ0, σ

2, ρ1, ρ2, y
˜
s)πa(θ

˜
|, θ0, σ

2, ρ1, ρ2, y
˜
s) (4.8)

× πa(θ0|σ2, ρ1, ρ2, y
˜
s)πa(σ

2|ρ1, ρ2, y
˜
s)πa(ρ1, ρ2|y

˜
s)

∝ N

(
µij;λij ȳij + (1− λij)θi, (1− λij)

ρ1

1− ρ1

σ2

)
× N

(
θi;λiỹi + (1− λi)θ0, (1− λi)

ρ2

1− ρ2

σ2

)
× N

(
θ0; ỹ,

σ2ρ2∑
i λi(1− ρ2)

)
IG

[
σ2;

m0 − 1

2
, A2/2

]
× Γ[(m0 − 1)/2]

(A2/2)(m0−1)/2

∏̀
i=1

ni∏
j=1

(1− λij)1/2

×
∏̀
i=1

(1− λi)1/2

[
ρ2∑`

i=1 λi(1− ρ2)

]1/2

,

where λij = mij/(mij + 1−ρ1
ρ1

), ỹi =
∑ni

j=1 λij ȳij/
∑ni

j=1 λij, ỹ =
∑`

i=1 λiỹi/
∑`

i=1 λi

and A2 = 1−ρ2
ρ2

∑`
i=1 λi(ỹ − ỹi)2 + 1−ρ1

ρ1

∑`
i=1

∑ni
j=1 λij(ỹi − ȳij)2 +

∑`
i=1

∑ni
j=1(mij −

1)s2
ij. We draw samples from the approximate joint posterior density (4.8) by first

drawing samples from πa(ρ1, ρ2|y
˜
s).
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Let us consider the NDPDP model,

yijk|µij
ind∼ N(µij, σ

2), i = 1, . . . , `, j = 1, . . . , Ni, k = 1, . . . ,Mij, (4.9)

µij|Hi
ind∼ Hi,

Hi|θi
ind∼ DP{γi, N(θi, δ

2
1)},

θi|F
iid∼ F,

F ∼ DP{γ0, N(θ0, δ
2
2)},

together with priors (4.3) (4.4) and (4.5). We develop an algorithm that is an

extension of the slice sampler (Kalli, Griffin and Walker 2011) to obtain samples

from the joint posterior density. The idea here is linking parameters of different

levels. We use the slice sampler repeatedly to obtain samples from the conditional

posterior distributions in the Gibbs sampling. We know that

Hi =
∞∑
s=1

ωisδµ∗is , ωi1 = υi1, ωis = υis

s−1∏
m=1

(1− υim),

υis
iid∼ Beta(1, γi), µ∗is

iid∼ N(θi, δ
2
1),

and

F =
∞∑
t=1

ω0tδθ∗t , ω01 = υ01, ω0t = υ0t

t−1∏
m=1

(1− υ0m),

υ0t
iid∼ Beta(1, γ0), θ∗t

iid∼ N(θ0, δ
2
2).

The Gibbs sampler proceeds as follows.
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1. For each i, update {µ∗is, s = 1, . . . } and γi as if the model is

yijk|µij
ind∼ N(µij, σ

2), i = 1, . . . , `, j = 1, . . . , ni, k = 1, . . . ,mij,

µij|Hi
ind∼ Hi,

Hi|θi
ind∼ DP{γi, N(θi, δ

2
1)},

which can be fit as a DPM model.

2. Update {θ∗t , t = 1, . . . } and γ0 as if the model is

µ∗is|θi
ind∼ N(θi, δ

2
1), i = 1, . . . , `, s = 1, . . .

θi|F
iid∼ F,

F ∼ DP{γ0, N(θ0, δ
2
2)}.

Again this can be considered as a DPM model.

3. Update other hyper-parameters {θ0, σ
2, ρ1, ρ2}. We have

π(θ0, σ
2, ρ1, ρ2| . . . ) ∝

∏
i

∏
j

∏
k

N(yijk;µij, σ
2)×

∏
i

∏
s

N(µ∗is; θi, δ
2
1)

×
∏
t

N(θ∗t ; θ0, δ
2
2)× π(σ2, θ0, ρ1, ρ2).

Next, let us consider the NNDP model,

yijk|µij
ind∼ N(µij, σ

2), i = 1, . . . , `, j = 1, . . . , Ni, k = 1, . . . ,Mij, (4.10)

µij|θi
ind∼ N(θi, δ

2
1), (4.11)

θi|F
iid∼ F, (4.12)

F ∼ DP{γ0, N(θ0, δ
2
2)}, (4.13)

85



together with priors (4.4) and (4.5).

By integrating out µij, we have

f(y
˜
|θ
˜
) ∝

(
1

σ2

)(m0+`)/2(
1− ρ2

ρ2

)`/2 ∏̀
i=1

ni∏
j=1

(1− λij)1/2 (4.14)

× exp

{
− 1

2σ2

{∑̀
i=1

ni∑
j=1

[
(mij − 1)s2

ij + λij
1− ρ1

ρ1

(θi − ȳij)2

]}}
.

Here, (4.14), (4.12) and (4.13) now form a DPM model, that is (4.14) as a likelihood

function with parameter θ
˜

which has a DP prior. Moreover, for i = 1, . . . , `, j =

1, . . . , ni,

µij|θi, θ0, σ
2, ρ1, y

˜
s ∼ N

[
λij ȳij + (1− λij)θi, (1− λij)

1− ρ1

ρ1

σ2

]
.

Next, we consider the NDPN model,

yijk|µij
ind∼ N(µij, σ

2), i = 1, . . . , `, j = 1, . . . , Ni, k = 1, . . . ,Mij, (4.15)

µij|Hi
ind∼ Hi,

Hi|θi
ind∼ DP{γi, N(θi, δ

2
1)},

θi
iid∼ N(θ0, δ

2
2),

together with priors (4.3) and (4.5). The Gibbs sampler proceeds as follows.

1. For each i, update {µ∗is, s = 1, . . . } and γi as if the model is

yijk|µij
ind∼ N(µij, σ

2), i = 1, . . . , `, j = 1, . . . , ni, k = 1, . . . ,mij,

µij|Hi
ind∼ Hi,

Hi|θi
ind∼ DP{γi, N(θi, δ

2
1)},
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which can be fit as a DPM model.

2. Update {θi, i = 1, . . . , `} and other hyper-parameters {θ0, σ
2, ρ1, ρ2} as if the

model is

µ∗is|θi
ind∼ N(θi, δ

2
1), i = 1, . . . , `, s = 1, . . .

θi
iid∼ N(θ0, δ

2
2),

π(θ0, σ
2, ρ1, ρ2) =

1

π(1 + θ2
0)

1

(1 + σ2)2
,

which is easy to fit as a two-level normal model.

At last, when the DP is used for the sampling process, the idea is similar to

the two-level DP models. Inference of DPDPDP, DPNDP, DPDPN and DPNN

model can be obtained easily. For example, the DPDPDP model can be reduced to

NDPDP model with additional sampling of αij. The algorithm is as follows.

Step 1 : For each i, j, draw αij from the posterior distribution π(αij|kij), where kij

denotes the number of distinct values among observations for fixed i and j.

Step 2: Draw other parameters from the NDPDP model with distinct values as

data.

4.2 Propriety of the Posterior Distributions

Lemma 4.2.1 The joint posterior density π(µ
˜
, θ
˜
, θ0, σ

2, ρ1, ρ2|y
˜
s) (4.7) under the

NNN model is proper if ` ≥ 2 and ni ≥ 2 at least for one i.

Proof: Similar to the two-level normal model, we only need to show that the joint

posterior density πa(µ
˜
, θ
˜
, θ0, σ

2, ρ1, ρ2|y
˜
s) (4.8) under the proposal model is proper.
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That is to show

∫ ∫
πa(ρ1, ρ2|y

˜
s)dρ1dρ2

=

∫ ∫
Γ[(m0 − 1)/2]

(A2/2)(m0−1)/2

∏̀
i=1

ni∏
j=1

(1− λij)1/2

×
∏̀
i=1

(1− λi)1/2

[
ρ2∑`

i=1 λi(1− ρ2)

]1/2

dρ1dρ2 <∞.

It is clear that πa(ρ1, ρ2|y
˜
s) is well defined because of A2 6= 0 if ` ≥ 2 and ni ≥ 2 at

least for one i. Thus,
∫ ∫

πa(ρ1, ρ2|y
˜
s)dρ1dρ2 <∞ since 0 ≤ ρ1 ≤ 1, 0 ≤ ρ2 ≤ 1.

Theorem 4.2.2 If the posterior density under the NNN baseline model is proper,

the posterior density under all other three-level DP models are all proper.

Proof: We prove for the NDPDP model, others are similar. Letting µ
˜
i = {µij, j =

1, . . . , ni} for i = 1, . . . , `, Ω′ = {θ0, σ
2, ρ1, ρ2, γ0} and γ

˜
= {γ1, . . . , γ`}, we have

f(y
˜
s) =

∫
f(y

˜
s|Ω)π(Ω)dΩ

=

∫ [∏̀
i=1

ni∏
j=1

mij∏
k=1

N(yijk|µij, σ2)

][∏̀
i=1

π(µ
˜
i)dµ

˜
i

]
π(θ

˜
)dθ

˜
π(γ

˜
)dγ

˜
π(Ω′)dΩ′,

where

π(µ
˜
i) = N(µi1; θi, δ

2
1)

ni∏
j=2

[
γi

γi + j − 1
N(µij; θi, δ

2
1) +

1

γi + j − 1

j−1∑
s=1

δµis(µij)

]
,

π(θ
˜
) = N(θ1; θ0, δ

2
2)
∏̀
i=2

[
γ0

γ0 + i− 1
N(θi; θ0, δ

2
2) +

1

γ0 + i− 1

i−1∑
s=1

δθs(θi)

]
,

π(Ω′) =
1

(γ0 + 1)2

1

π(1 + θ2
0)

1

(1 + σ2)2
,

π(γ
˜
) =

[∏̀
i=1

1

(γi + 1)2

]
.
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It is convenient to write

f(y
˜
s) ≤

∫ ∏̀
i=1

{
ni∏
j=1

[
N(µij; θi, δ

2
1)

mij∏
k=1

N(yijk|µij, σ2)

]}
dµ

˜
i

× N(θ1; θ0, δ
2
2)
∏̀
i=2

[
γ0

γ0 + i− 1
N(θi; θ0, δ

2
2) +

1

γ0 + i− 1

i−1∑
s=1

δθs(θi)

]
dθ
˜

× 1

(γ0 + 1)2

1

π(1 + θ2
0)

1

(1 + σ2)2
dΩ′.

Now this is the marginal distribution under the NNDP model. It is easy to show

the NNDP model is proper since it is a DPM model with the µ
˜

integrated out.

4.3 Bayes Factor

Here we give the key formula needed for the computation of Bayes factors under

the NNN, NDPDP and NNDP model. Others are similar.

For the NNN model, it is easy to integrate out µ
˜

and θ
˜
. We have the marginal

likelihood function for the NNN model as

M(y
˜
s) =

∫
f(y

˜
s|θ0, σ

2, ρ1, ρ2)× π(θ0, σ
2, ρ1, ρ2)dθ0dσ

2dρ1dρ2 (4.16)

=

∫ (
1

2πσ2

)m0/2( 1

2πδ2
1

)∑`
i=1 ni/2 ∏̀

i=1

ni∏
j=1

[
2π(1− λij)

ρ1

1− ρ1

σ2

]1/2

× exp

{
− 1

2σ2

[
1− ρ2

ρ2

∑̀
i=1

λi(ỹi − θ0)2 +
1− ρ1

ρ1

∑̀
i=1

ni∑
j=1

λij(ỹi − ȳij)2

+
∑̀
i=1

ni∑
j=1

(mij − 1)s2
ij

]}(
1

2πδ2

)`/2 ∏̀
i=1

[
2π(1− λi)

ρ2

1− ρ2

σ2

]1/2

× 1

π(1 + θ2
0)

1

(1 + σ2)2
dθ0dσ

2dρ1dρ2.

The rest of the computation follows.
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For the NDPDP model, the most tricky part is to obtain the approximate poste-

rior density for θi. Other parts are very similar to the two-level DP models. Letting

σ2
ij = δ2

1 + σ2/mij, the idea is to use the following model,

ȳij
ind∼ N

(
θi, σ

2
ij

)
, i = 1, . . . , `, j = 1, . . . , ni, (4.17)

θi|H0
iid∼ H0,

H0 ∼ DP{γ0, N(θ0, δ
2
2)},

as an approximation of π(θ
˜
|Ω′, y

˜
s) = π(θ1|Ω′, y

˜
s)
∏`

i=2 π(θi|θi−1, . . . , θ1,Ω
′, y

˜
s). Ap-

plying the idea to the DPM model, we have

πa(θi|Ω′, y
˜
s) =

1

i− 1 + γ0

i−1∑
s=1

[
ni∏
j=1

(
1

2πσ2
ij

)1/2

exp

{
−(ȳij − θs)2

2σ2
ij

}]
δθs(θi)

+
γ0

i− 1 + γ0

(
1

2πσ2
ij

)ni/2 [
(1− λ̃i)ρ2σ

2/(1− ρ2)
]1/2

× exp

{
−1

2

[
ni∑
j=1

λ̃ij(˜̃yi − ȳij)2 +
λ̃ij(1− ρ2)

ρ2σ2
(˜̃yi − θ0)2

]}

× N

[
θi; λ̃i ˜̃yi + (1− λ̃i)θ0, (1− λ̃i)

ρ2

(1− ρ2)
σ2

]
, i = 2, . . . , `,

and

πa(θ1|Ω′, y
˜
s) = N

[
θ1; λ̃1

˜̃y1 + (1− λ̃1)θ0, (1− λ̃1)
ρ2

(1− ρ2)
σ2

]
,

where λ̃ij = 1/σ2
ij, ˜̃yi =

∑ni
j=1 λ̃ij ȳij/

∑ni
j=1 λ̃ij, λ̃i =

∑ni
j=1 λ̃ij/(

∑ni
j=1 λ̃ij + 1/δ2

2).

For the NNDP model, integrating out µij, the likelihood function is

f(y
˜
s|θ

˜
,Ω′) =

(
1

2πσ2

)m0/2 ∏̀
i=1

ni∏
j=1

(1− λij)1/2

× exp

{
− 1

2σ2

[∑̀
i=1

ni∑
j=1

[
(mij − 1)s2

ij + λij
1− ρ1

ρ1

(θi − ȳij)2

]]}
.
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The prior is

π(Ω′) = N(θ1; θ0, δ
2
2)
∏̀
i=2

(
γ0

γ0 + i− 1
N(θi; θ0, δ

2
2) +

1

γ0 + i− 1

i−1∑
s=1

δθs(θi)

)
× 1

(γ0 + 1)2

1

π(1 + θ2
0)

1

(1 + σ2)2
.

Here πa(θi|Ω′, y
˜
s) is same as the approximate posterior distribution in the NDPDP

model.

4.4 Empirical Studies

The three-level models are desirable since BMI data are post-stratified to three-

level. The sub-domains are formed by age, race and sex. We fit the three-level

DP models (NDPDP, NNDP, NDPN, NNN, DPDPDP, DPNDP, DPDPN, DPNN

model) to obtain the finite population mean, 85th and 95th percentile for each county

of BMI data. We have conducted model comparisons under the three-level DP

models.

For the three-level models, it is harder to converge than the two-level models,

so longer runs are needed. For the NNDP, NDPN model, we run 35000 MCMC

iterations, burn in 25,000 and thin every 10th to obtain 1000 converged posterior

samples. For the NDPDP model, we run 75000 iterations, burn in 70000 and thin

every 5th to obtain 1000 posterior samples. For the DPNDP model, we run 55000

iterations, burn in 45000 and thin every 10th to obtain 1000 posterior samples. For

the DPDPN model, we run 45000 iterations, burn in 35000 and thin every 10th to

obtain 1000 posterior samples. For the DPDPDP model, we run 90000 iterations,

burn in 80000 and thin every 10th to obtain 1000 posterior samples. Table 4.1 gives

the p-values of the Geweke test and the effective sample sizes for the parameters σ2,
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θ0, δ2
1, δ2

2 and γ0 under each model. The p-values are not significant and effective

sample sizes are not too far from 1000. These numerical summaries, trace plots, and

autocorrelation plots indicate that the MCMC chains converge.

Tables 4.2, 4.3 and 4.4 give the summary statistics, posterior mean (PM) and

posterior standard deviation (PSD), of the finite population mean, 85th and 95th per-

centile for each county of BMI data under the three-level DP models (NNN, NNDP,

NDPN, NDPDP, DPNN, DPNDP, DPDPN, DPDPDP models) and Bayesian boot-

strap respectively. These tables show that roughly similar results are obtained from

the eight models. We examine several plots to further compare the results of BMI

data.

The predictive inference of the finite population mean, 85th and 95th percentile

for each county by eight different models (NNN, NNDP, NDPN, NDPDP, DPNN,

DPNDP, DPDPN, DPDPDP models) are compared respectively. Figures 4.1, 4.2

and 4.3 plot posterior means with credible bands versus direct estimates for BMI

data. In Figure 4.1, we compare the difference between the predictive inference of

the finite population means under models and the direct estimates. The posterior

means under the NNN and DPNN models are shrank toward to the overall mean.

The posterior means under the other models are closer to the direct estimates with

less pooling. Similar to the two-level DP models, the predictive inference of the

population percentile is not so good under the DPNN, DPNDP, DPDPN and DPDP

model (see Figures 4.2 and 4.3).

We present the density estimations of the population mean, 85th and 95th per-

centile for the first eight counties as an example (see Figures 4.4, 4.5 and 4.6). Since

the existence of the third stage, the NNN has reduced the bias comparing to the

two-level normal model. The estimated densities under the eight three-level models

are similar. The density under the DPNN model is very close to the NNN model
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with slightly smaller variation. Consistent with the observations from Figure 4.1,

results from the nonparametric alternative tend to have bigger variation however

less bias.

The log of the marginal likelihood (LML) with Monte Carlo errors, log pseudo

marginal likelihood (LPML) and percentages of conditional predictive ordinate

(CPO) less than .025 (PCPO < .025) and .014 (PCPO < .014) for BMI data under

the NNN, NNDP, NDPN, NDPDP model are given in Table 4.5. These measure-

ments may be inconsistent when the three-level parametric models embedded in the

nonparametric models.

In conclusion, it may be not obvious to say which model is better. For quantile

estimation, it does not seem reasonable to use a DP for the sampling process, but

this may be fine for the finite population mean. BMI data are certainly not nor-

mally distributed. Typically a log transformation is used, but this is also uncertain

of the form of distribution after transformation. In addition, another problem of

the log transformation is that when transforming back to the original scale, the

expectation dose not exist. Of course, there will be some loss in efficiency under

an nonparametric model. But the nonparametric alternatives seem to be the right

direction.
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Table 4.1: Summary of Markov chain Monte Carlo (MCMC) diagnostics: the p-
values of the Geweke test and the effective sample sizes for the parameters σ2, θ0,
δ2

1, δ2
2 and γ0 for the NNDP, NDPDP, DPNDP, DPDPN, and DPDPDP model

p-values for the Geweke test

Model σ2 θ0 δ2
1 δ2

2 γ0

NNDP 0.9496993 0.3050090 0.3878581 0.5864042 0.8140230
NDPDP 0.8337016 0.3316585 0.4926789 0.0824082 0.8636205
DPNDP 0.9799888 0.7478633 0.6661014 0.7090474 0.2504232
DPDPN 0.2989892 0.2899847 0.2523066 0.8983445 NA

DPDPDP 0.8799581 0.3183782 0.9755728 0.3202928 0.3073552

effective sample sizes

Model σ2 θ0 δ2
1 δ2

2 γ0

NNDP 1000 1000 1000 870.4086 680.3195
NDPDP 1000 757.5346 700.8814 1000 658.7319
DPNDP 1000 907.0290 1000 1000 818.0584
DPDPN 1000 1000 808.5789 879.5892 NA

DPDPDP 1000 1000 1000 1051.920 1009.381
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BMI data (three-level models)

LML LPML PCPO<.025 PCPO<.014

NNN −8964.996 −9230.771 0.0257 0.0192
NNDP −10964.55 -9307.957 0.0274 0.0196
NDPN −9189.928 -9325.564 0.0266 0.0193
NDPDP −9248.959 -9284.62 0.0271 0.0193

Table 4.5: Log of the marginal likelihood (LML) with Monte Carlo errors, Log
pseudo marginal likelihood (LPML) and percentages of conditional predictive ordi-
nate (CPO) less than .025 (PCPO<.025) and .014 (PCPO<.014) for body mass index
(BMI) data under the NNN, NNDP, NDPN, NDPDP model
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Figure 4.1: Comparison for body mass index (BMI) data (posterior means with cred-
ible bands versus direct estimates): the predictive inference of the finite population
mean for each county under eight three-level DP models
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Figure 4.2: Comparison for body mass index (BMI) data (posterior mean with cred-
ible bands versus direct estimates): the predictive inference of the finite population
85th percentile for each county under eight three-level DP models
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Figure 4.3: Comparison for body mass index (BMI) data (posterior mean with cred-
ible bands versus direct estimates): the predictive inference of the finite population
95th percentile for each county under eight three-level DP models
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Figure 4.4: Plots of the posterior density of the finite population mean by eight
three-level DP models for the first eight counties of body mass index (BMI) data
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Figure 4.5: Plots of the posterior density of the finite population 85th percentile by
eight three-level DP models for the first eight counties of body mass index (BMI)
data
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Figure 4.6: Plots of the posterior density of the finite population 95th percentile by
eight three-level DP models for the first eight counties of body mass index (BMI)
data
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Chapter 5

Concluding Remarks and Future

Work

If the parametric distribution assumption does not hold, the model is misspec-

ified and the inference may be invalid. The Bayesian nonparametric methods are

motivated by the desire to avoid overly restrictive assumptions. We have proposed

several nonparametric models for multi-stage survey data using DPs. We extend

the two-level DP models to three-level DP models and also can naturally extend to

multi-stage (more than three stages) sampling. The predictive inference and com-

parison are conducted. The results of an illustrated example and a small stimulation

study are given. In Chapter 5, we compare the results of BMI data under two- and

three-level models, summarize our findings and discuss some future problems.

5.1 Comparison of Two- and Three-level Models

It is possible that the fitted model has two-stage hierarchical structure while

the data may come from a model with three-stage structure. We compare the two-
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and three-level models for BMI data. We select the best candidates in models using

DPs, the DPDP and DPNDP models, then compare them to the parametric baseline

models, the normal and NNN models. We plot the results under these four models

along with results under Bayesian bootstrap.

In Figure 5.1, the predictions of the population means under the normal model

are mostly biased. The posterior means under the NNN model are slightly closer to

the direct estimates due to the introduction of the additional hierarchical structure.

However, the parametric model assumptions may be incorrect resulting in misleading

conclusions. The two-level nonparametric alternative, the DPDP model, results in

large reductions of bias together with similar or even smaller variation for some areas

comparing to the baseline models. The best three-level nonparametric candidate

results in further reduction of bias, however with increasing of variation.

Figure 5.2 gives the plots of the estimated posterior density of the finite popula-

tion means by the normal, DPDP, NNN, DPNDP models and Bayesian bootstrap

for the first eight counties as examples. The same observations as in Figure 5.1

can be obtained that the DPNDP model gives almost unbiased estimations however

with the sacrifice of variations. The DPDP model has the smallest variation for

most of the areas with small bias. Maybe the three-level structure is redundant for

this data set, and the two-level model using DPs is sufficient.

In general, we need diagnostic techniques when the fitted model includes some

hierarchical structure, but the data are from a model with additional, unknown hier-

archical structure (Yan and Sedransk 2007; Yan and Sedransk 2010). It is important

to detect unknown hierarchical structure and check model assumptions under para-

metric models. It seems promising that the use of DPs in the models can reduce

the bias with manageable penalty in terms of variation. Antonelli, Trippa and Ha-

neuse (2016) pointed out similar findings when the DP prior is used in modeling the
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random effect distribution in a logistic generalized linear mixed model for repeated

measures binary data. Thus, the robust nonparametric models are recommended

especially where there is little knowledge of the distribution or hierarchical structure

of the data.

5.2 Future Work

We describe nonparametric alternatives with the normal baseline parametric

model assumed. Other parametric baseline distributions instead of normal distribu-

tion are possible. For example, for size data, a gamma distribution as the baseline

distribution may be desired. For the two-level DP model, one may write

yij|Gi
ind∼ Gi, i = 1, . . . , `, j = 1, . . . , Ni, (5.1)

Gi|µi
ind∼ DP{αi,Gamma(a, a/µi)},

µi|H
iid∼ H,

H ∼ DP{γ,G0},

where µi is the mean of the gamma random variable.

It is important to study sensitivity to posterior inference, not only in the prior

specifications, but also in the baseline model. As pointed out by Nandram and Yin

(2016a) and others, posterior inference in the DP is sensitive to the specification

of the baseline model. A more robust specification is needed; it is obvious that

using a DP for the baseline distribution is not sensible. There is sensitivity to the

prior specifications as well. Also recently Bayesian models have been called “brittle”

especially for problems with infinite number of parameters (Owhadi et al. 2015).

As we mentioned in previous chapters, we have some difficulties in inference of
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the population quantiles and computation of Bayes factors, when a sample from a

DP. One possible explanation of this fact is that the DP generates discrete distribu-

tions with probability one. This phenomenon can arise, more generally, in different

contexts, e.g. using the DP in goodness of fit testing (Carota and Parmiginani 1996).

Petrone and Raftery (1997) pointed out that the discreteness of the DP can have

a large effect on inferences (posterior distributions and Bayes factors), when the

data are partially exchangeable with an unknown partition. One possible solution

is by introducing the nugget effect (Gelfand et al. 2005). Another alternative is to

use Polya trees (e.g., Lavine 1992), a generalization of the DP. This needs further

investigations.

For future work, we may also include the covariates in the model. Battese,

Harter and Fuller (1988) extended the Scott-Smith model (3.1) to include covariates,

assuming

yij|νi
ind∼ N

(
x′
ijβ + νi, σ

2
)
, i = 1, . . . , `, j = 1, . . . , Ni, (5.2)

νi
iid∼ N

(
0, δ2

)
,

where β is a p-vector of fixed effects, νi is the random effect. The DPM model with

covariates can be easily written as

yij | β, νi, σ2 ind∼ N(x′
ijβ + νi, σ

2), i = 1, . . . , `, j = 1, . . . , Ni, (5.3)

νi|G
iid∼ G (5.4)

G ∼ DP

[
α,N

(
0,

ρ

1− ρ
σ2

)]
(5.5)

π(β
˜
, σ2, ρ) ∝ 1/σ2, β ∈ Rp, σ2 > 0, 0 < ρ < 1, (5.6)

where ρ is the intracluster correlation. The two-level nonparametric alternative with
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covariates can be

yij − x′
ij

(0)
β(0)|Gi

ind∼ Gi, i = 1, . . . , `, j = 1, . . . , Ni, (5.7)

Gi|β0i
ind∼ DP

{
αi, N(β0i;σ

2)
}
,

β0i|H
iid∼ H,

H ∼ DP
{
γ,N(θ, δ2)

}
,

where x′
ij

(0) and β(0) denote x′
ij and β with the intercepts excluded respectively.

In many complex surveys, there are also survey weights. We may include them

as covariates in the model, however, if the survey weights for the nonsampled values

are unknown, it is not obvious how to perform predictive inference under the model.

One solution may be to use the surrogate sampling (Nandram 2007).

There are also other possible datasets to explore. For example, Behavioral

Risk Factor Surveillance System (BRFSS) is the world’s largest, on-going telephone

health survey system, tracking health conditions and risk behaviors among adults

in all 50 states and selected territories. In the Trends in International Mathematics

and Science Study (TIMSS), one can consider mathematics or science test scores

along with other covariates. We have worked on the public-used TIMSS data, how-

ever, it is really masked data drawn from normal distributions. The results under

the nonparametric model are very similar to the results under the normal models.

One may proceed to the restricted data for further investigations.
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Figure 5.1: Comparison for body mass index (BMI) data (posterior means with
credible bands versus direct estimates): the predictive inference of the finite popu-
lation mean for each county under the normal, DPDP, NNN, DPNDP models and
Bayesian bootstrap
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Figure 5.2: Plots of the posterior density of the finite population mean by the
normal, DPDP, NNN, DPNDP models and Bayesian bootstrap for the first eight
counties of body mass index (BMI) data
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