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Abstract 

 

The goal of this project was to investigate the ability of polycrystalline zeolite ZSM-5 

aggregates to remove MTBE from water.  Powdered ZSM-5 has shown to adsorb MTBE, but is 

impractical in flow systems due to very high pressure drops.  This report will investigate the 

adsorption of MTBE using granular ZSM-5.  The adsorption of MTBE was measured through 

the use of batch experiments to create an adsorption isotherm, which was used to assist in the 

design of a full-scale treatment system. 
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Background 
 

About MTBE 

 

Fuel oxygenates are chemicals containing oxygen that are added to fuels, specifically 

gasoline, to allow them to burn more efficiently.  Adding oxygen raises the octane level of 

gasoline and helps it burn more completely, which reduces harmful atmospheric pollution 

associated with automobile emissions (U.S. Geological Survey).  MTBE (Methyl tertiary butyl 

ether) has been used in gasoline in the United States at low levels since the late 1970’s to replace 

lead as an octane enhancer. In 1990, Congress passed the Clean Air Act Amendment, which 

mandated the use of oxygenated gasoline.  In order to fulfill these oxygenate requirements, 

MTBE was used in higher concentrations in some gasoline (Environmental Protection Agency, 

Methyl Tertiary Butyl Ether). 

 Federal and state regulators have acknowledged that addition of MTBE to gasoline has 

provided many air quality benefits.  EPA has stated that since the reformulated gasoline (RFG) 

program in 1995, it has resulted in annual reductions of 105,000 tons of smog-producing 

emissions and at least 24,000 tons of toxic air pollutants such as benzene.  According to the EPA, 

this is equivalent to removing 16 million cars from the road (Meissner & Voll).  Despite the 

benefits of MTBE, there are many tradeoffs that are involved.  

 MTBE is a volatile, colorless, and flammable liquid that is highly soluble in water, which 

makes it very difficult to clean up.  The high solubility and persistence of MTBE causes it to 

travel very quickly when released into an aquifer or soil.  MTBE was produced in very large 

quantities, but due to widespread spillage of MTBE-containing gasoline in underground storage 

tanks, regulatory action was passed under the Toxic Substances Control Act on March 20, 2000 
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to significantly reduce or eliminate the use of MTBE.  Contamination of drinking water aquifers 

became a very serious concern; the first major incidence was in the city of Santa Monica 

(Environmental Protection Agency, Methyl Tertiary Butyl Ether).  

Cases of Contamination 

 

 In 1996, two drinking water aquifers in the city of Santa Monica, Charnock and Arcadia, 

were contaminated with MTBE at levels as high as 610 ppb and 86 ppb respectively.  These two 

aquifers represented 50 percent of the city’s drinking water.  In response, the city shut down the 

two aquifers and began purchasing replacement water.  This incident was the first major water 

contamination that brought public attention to the issue of MTBE (Environmental Protection 

Agency, Methyl Tertiary Butyl Ether).  Since 1999, MTBE has been phased out as a gasoline 

additive, because of groundwater contamination (California Enivronmental Protection Agency).  

Recent state laws have been passed banning MTBE in certain states.  California and New York 

combined to account for 40% of MTBE usage in the United States, and both states banned it in 

January, 2004.  In September of 2005, twenty-five states signed legislation to ban MTBE 

(Energy Information Administration). 

 One of the largest cases of MTBE contamination in the United States is in the town of 

Pascoag, Rhode Island.  The Pascoag Water District serves about 5,000 people, and is pumped 

from one 16” well, drawing 350 GPM from bedrock and aquifers (Allen & Boving, 2006).  

Following the detection of the MTBE contamination in 2001, residents were notified not to drink 

the town water and to reduce skin contact.  Despite the warning, residents complained about 

severe headaches, vomiting, wheezing, and blisters.  Since then, the drinking water supply in 

Pascoag has been shut down and the residents have been without their own drinking water 
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source.  Currently, Pascoag is receiving water from a local district at a cost of more than 

$1,000,000 a year.  The town cannot sustain this financial burden, and there has been strong 

political pressure building to reactivate the Pascoag well (Allen & Boving, 2006). 

Current Methods of Removal 

 

 The main risk of MTBE is that it gives water an unpleasant taste at even low 

concentrations, which can easily turn large quantities of groundwater unsuitable for drinking 

(Environmental Protection Agency, Methyl Tertiary Butyl Ether).   The EPA concluded that at 

low levels, there is not enough adequate data to quantify health risks.  However, data supports 

MTBE to be a potential carcinogen at high levels of exposure (Environmental Protection 

Agency, Methyl Tertiary Butyl Ether).  

 The estimated cost of removal of groundwater and soil contamination at the national level 

ranges from $1-3 billion (SIGMA).  There are several current methods of treating MTBE from 

water; however they are all very expensive.   

1. Air Stripping is a process in which contaminated water is passed through a column 

filled with packing material while upward-flowing air removes the chemicals in the 

water.  Generally, the resulting vapors should not be released directly into the air and 

should be treated appropriately.  MTBE does not easily separate from water into the 

vapor phase, which often necessitates high air-to-water ratios (Environmental Protection 

Agency, Methyl Tertiary Butyl Ether).  . 

2. Advanced oxidation uses combinations of ultraviolet light, chemical oxidants, and 

catalysts to transform the contaminants.  Oxidation methods have been proven to oxidize 



 11 

wide ranges of organic chemicals, including MTBE (Environmental Protection Agency, 

Methyl Tertiary Butyl Ether).  

3. Granular activated carbon (GAC) pumps contaminated water through a bed of 

activated carbon to remove organic compounds.  Since MTBE does not adsorb well on 

organics such as carbon, large volumes of the contaminated water must be passed 

repeatedly through several GAC columns in order for the MTBE to be effectively 

removed (Environmental Protection Agency, Methyl Tertiary Butyl Ether).   

  

There are processes and methods that are being tested to treat MTBE and other 

contaminants from water.  One of the methods currently being tested is using zeolites to treat 

MTBE from contaminated water using adsorption into nanoporous adsorbents.  

About Zeolites 
 

Zeolites, or molecular sieves, are micro-porous crystalline structures which mostly 

contain silicon and aluminum (British Zeolite Association, What Are Zeolites?).  Currently, there 

are around 102 known zeolites, 45 of which are naturally occurring. The natural zeolites are 

rarely used for commercial applications, mainly because there are usually contaminant minerals 

within them.  Natural zeolites were made when volcanic rocks and ash layers went through a 

low-grade metamorphism and some others were created by changes in heat and pressure 

(Mineral Gallery, The Zeolite Group). 

The framework of zeolites at the molecular level consists of either a silicon or aluminum 

at the center of four oxygen atoms in tetrahedral coordination.  These small structures then attach 

at the corners and can make many different shapes with different channels within them.  Figure 1 

shows an example of the structure of a zeolite.  
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Figure 1: Structure of Zeolite A Unit Cell 

 

The diameter of the channels determines what will be able to pass through the zeolite 

structures.  Due to this, zeolites are useful in adsorption because they only allow certain sized 

molecules inside (British Zeolite Association, What Are Zeolites?).  

There are numerous ways to synthesize zeolites.  Hydrothermal synthesis of zeolites is 

used in aqueous solutions in closed systems that are typically at high temperatures and high 

pressures (Cejka, Bekkum, & Schuth, 2007). The other process is solvothermal, which is a 

versatile low temperature route.  This allows polar solvents to be used at conditions above their 

boiling temperatures. It also causes the solubility of the reactants to increase, which allows for 

the low temperatures (Chippindale, Darlow, Powell, & Vaquiero, 2004).  Additionally, the effect 

of the solvents depends on viscosity; the higher viscosity of the solvents reduces mass transfer 

and creates larger crystals. This was used on high silica zeolites, therefore resulting in larger 

sizes of crystals produced through this process of zeolite synthesis (Cejka, Bekkum, & Schuth, 

2007). 

Source: www.chemistry.ohio-state.edu 
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Related Works 
 

One of the zeolites found to adsorb MTBE better then activated carbon was silicalite, or 

Al-free ZSM-5 (Erdem-Şenatalar, et al., 2004).  This synthesized zeolite was created by the 

Mobil Oil Company (Chitnisa, Degnan, & Schipper, 2000).  Figure 2 shows a picture of ZSM-5 

structure containing silicon and oxygen atoms, where the red balls represent oxygen and the 

white balls represent silicon (Whittingham).   

 

Figure 2: ZSM-5 Silicalite 

 

ZSM-5 is a high silica, hydrophobic zeolite (Butland, et al., 2008).  Hydrophobic 

signifies that the molecule is non-polar, and therefore is attracted to other non-polar molecules or 

solvents; with this separation of non-polar and polar mixtures can occur (ISCID).  Knowing this, 

the concept of using the ZSM-5 zeolite for the adsorption of MTBE scientifically makes sense. 

Michael Anderson from the University of California conducted a study on the Removal of 

MTBE and Other Organic Contaminants from water by Sorption to high Silica zeolites.  In the 

study, three high silica zeolites, including ZSM-5 and activated carbon, were used in batch 

adsorption tests to determine the overall efficiencies.  The solutions contained 100 g/L of 
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MTBE and 5 mg of zeolite or activated carbon.  The results ultimately showed that the high 

silica zeolites performed better then the activated carbon, which are commonly used for 

adsorption of contaminants.  Additionally, ZSM-5 was not the most efficient media in this study, 

but mordenite was able to reduce the concentration of MTBE from 100 to 4 g/L. The study also 

concluded that the pore structure of ZSM-5 was too small for the MTBE to fit in neatly 

(Anderson, 2000).  Arjan Giaya authored a Ph.D dissertation at Worcester Polytechnic Institute 

and repeated the previous experiments at higher concentrations of MTBE.  The data obtained in 

these experiments contradicted the results of Anderson’s study.  

Ayşe Erdem-Şenatalar, John A. Bergendahl, Arjan Giaya, and Robert W. Thompson 

conducted experiments of Adsorption of Methyl Tertiary Butyl Ether on Hydrophobic Molecular 

Sieves.  This study used the same materials that Anderson used in the previous with the activated 

carbon, ZSM-5, and dealuminated zeolite Y (DAY).  The results of these experiments were that 

at low concentrations the ZSM-5 adsorbed more MTBE than the other media. In high 

concentrations the DAY was the preferred zeolite, but it gave poor results at low concentrations 

while ZSM-5 still gave appealing values at high concentrations. The results of these data 

compared to the results by Anderson in the above work were very different. One of the large 

differences was a waiting period of 24 hours to reach equilibrium while the Giaya experiment 

only used 8 hrs. The Giaya experiment showed that DAY was preferred with higher 

concentrations and that at low concentrations it was very inefficient.  The ZSM-5 was nearly 

equally efficient as activated carbon in adsorbing TCE, but was slightly more effective at 

adsorbing MTBE (Erdem-Şenatalar, et al., 2004).  Figure 22 in Appendix 5 shows the graph of 

aqueous MTBE adsorption isotherm used in this study.  This study showed that ZSM-5 did have 

potential and showed values that would be desirable in the MTBE adsorption process. 
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In a M.S thesis, Tricia Butland used batch and fixed bed experiments to determine the 

best zeolite for Tertiary Butyl Alcohol (TBA) adsorption.   

Table 1: Zeolite Properties and Sources 

Powdered Sample 
SiO2 

Al2O3 

Company 

Name 
Lot # 

Cation 

Form 

Zeolite Beta  150 Zeolyst 1822-75 H+ 

Zeolite Mordenite 90 Zeolyst 1822-60-30 
H+ 

 

Zeolite-Y 

 
80 Zeolyst 78001N00257 H+ 

ZSM-5/Silicalite >1000 
Grace 

Davison 
5-8888-0702 --- 

Granular Sample 
SiO2 

Al2O3 

Company 

Name 
Lot # 

Micropore 

Area 

(m
2
/g) 

Zeolite Beta 35 Engelhard L6598-48-1 266 

Zeolite Mordenite 50 Engelhard 
05001C-

BWC2-06 
304.3 

Molsiv HISIV 1000 

(High silica faujasite) 
< 6.5 UOP 2006003165 247.1 

Molsiv HISIV 3000 

(High silica faujasite) 
< 10 UOP 2002001440 230.5 

Zeolite-Y --- Engelhard 20275-45-1 73.4 

Zeolite-Y --- Engelhard 20275-45-2 58.7 

ZSM-5 280 Zeolyst CBV28014 141.8 

 

Table 1 shows the seven granular zeolite forms that were tested, and HiSiv 3000 and 

ZSM-5 were found to be the most efficient.  For the time trials, the samples were prepared to 

create 1 mg/L samples.  Two sets of ZSM-5 and HiSiv 3000 zeolites (one lower mass of zeolite, 

one higher mass) were baked in an oven at 350
 o
C for 12 hours (in order to clean out the pores).  

The sample vials were then placed in a rotisserie for 48 hours at 15 rpm.  At designated times – 

0, 6, 12, 24, and 48 hours – the vials were removed and centrifuged for separation at 3000 rpm 



 16 

for 10 minutes.  In order to test the equilibrium capacities, the samples were again prepared with 

99% TBA with water in concentrations of 0.1, 1, and 10 mg/L.  These would be used to 

determine the best TBA adsorbents.  For isotherm samples, they were again prepared in 99% 

TBA and water solutions in concentrations between 0-150 mg/L.  The zeolites were baked in an 

oven at 300
o 
C for 12 hours.  A certain mass would be chosen for each zeolite and recorded, then 

added to each vial.  The vials were then placed on a shaker table for 48 hours at 5 rpm and after 

48 hours, were removed and placed in the centrifuge for separation (Butland, et al., 2008). 

For fixed bed experiments, the zeolites were added into a column attached to a pump to 

control the feed flow rate.  The feed would flow through the column, through a flow adapter, 

through the packed bed, and finally the liquid would leave the column into a waste container.  

Samples were taken at the exit of the column at specific time intervals (Butland, et al., 2008).  

Batch experimentation with several different zeolites determined that the contact time 

necessary for complete adsorption is 48 hours which can be seen in Figure 3   

 

Figure 3: Time Trial Data 
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Of the seven zeolites tested ZSM-5 and HiSIV 3000 adsorbed more in the 48-hour period 

than the other zeolites (Butland, et al., 2008).  In the column experiments, each column’s 

equivalent adsorption capacity was determined and showed that adsorption in the columns were 

10 times less than in the batch experiments.  This was thought to be due to the contact time (48 

hours) needed to complete adsorption and a very slow mass transfer process occurring in the 

zeolite pores (Butland, et al., 2008).  These results point out that equilibrium adsorption capacity 

may not administrate the behavior of fixed bed absorbers if mass transfer is limited significantly 

(Butland, et al., 2008). 

Project Goals 

 

From the understanding of the experiments described above, the experiments for this 

report were developed.  The procedure for batch adsorption used in the most recent experiments 

was conducted with the ZSM-5 zeolite. In the previous experiment, a clay binder was added to 

the granular form of the ZSM-5 before it was shaped into pellets.  The clay binders were possibly 

affecting the efficiency of the ZSM-5 adsorbing MTBE because of pore blockage. The granular 

ZSM-5, called polycrystalline zeolite aggregates, were synthesized so that to create ZSM-5 

without the clay binder.   
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Methodology 

 

Analysis of ZSM-5 Sample 

 
In a previous MQP, it was conjectured that Derek Pszybysz made granular ZSM-5 

zeolites, but he did not accurately record x-ray diffraction data on the samples. In a subsequent 

study, Bradford Carleen repeated the experiments and was able to provide more samples as the 

previous set of zeolites was limited in amount.  Because such little information was known about 

these zeolites, analyses were conducted to determine three things: whether the samples created 

were truly ZSM-5, whether the samples had thorough crystalline structures, and whether the 

samples were calcined or uncalcined.  For reference in this report, the ZSM-5 pellets from run 4 

that were made by Derek will be referred to as the “old sample,” while the ZSM-5 pellets that 

were synthesized by Brad will be referred to as the “new sample.” 

 

Powder X-Ray Defraction (XRD) 

 

 The powder x-ray diffraction was used to determine if the samples of pellets were 

actually synthesized correctly. A pellet was taken from run 4 of the day 8 vial from the old 

samples; the pellet was ground to powder using a mortar and pestle. The powder was then placed 

onto a glass slide and placed into the machine.  The computer then gave the analysis. The new 

sample that Brad had made also used this machine, but we did not do the analysis since he 

provided the XRD results. 
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Scanning Electron Microscope (SEM)  

 

The scanning electron microscope was used to take images of the samples to show if the 

crystalline structures were uniform throughout the pellet. To prepare the sample for the SEM the 

sample is first placed on a special stand that is coated with carbon paint so that the sample is 

secure and the vacuum used in the machine will not be able to displace the sample. The sample 

was then coated with a thin layer of gold by a machine called a sputter coater.  This was done to 

help reduce the effects of the electrons so that the image would be clear.  The sample was placed 

in the SEM and the pictures were then taken at different places to show that the crystalline 

structure was uniform.  This was done twice – the first was a sample that was found to already be 

broken from run 4 of the old sample, and the second was a whole pellet from the new sample that 

was broken before being placed into the machine.  This was done to show the difference between 

a sample that could have been broken during synthesis and a sample that was clearly not broken 

during synthesis. 

 

Thermal Gravimetric Analysis (TGA)  

 

The TGA was used to determine if the old sample had been calcined or not.  The machine 

is designed to increase the temperature of the sample and measure the weight loss, because as the 

temperature rises certain components volatilize or burn off.  The sample being analyzed was 

from run 4 of the day 8 of the old samples; this was assumed to be the stage of the synthesis 

where the samples would most likely have been calcined.  To be analyzed in the TGA, the 

sample needed to be in a powder form.  This was done by using a mortar and pestle to grind the 

pellet.  There were also two other samples that were used as controls: sample ZSM-5 powders 

that were calcined and uncalcined.  The tray that the sample was to be placed in was put over a 
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Bunsen burner to burn off any other samples that were used in other experiments.  The sample 

was put into the tray and then placed into the TGA machine.  The TGA was set to be in the range 

of 0-500° C.  During the experiment there was to be a drop off at two significant sections.  The 

first was at 100° C, where water boils off and is removed from the mass, and the second at 

around 250-300° C where the organic template would theoretically burn off.  It was found that 

there was a 15% weight reduction, signifying that the old sample was uncalcined.  Therefore, the 

new sample was used for our batch experiments, because they were calcined by Bradford 

Carleen after the synthesis. 

COD Calibration Curve 

 

 In a previous study, Michelle Slack used ultraviolet & visual spectroscopy for analysis. 

Chemical Oxygen Demand (COD) tests were used to measure the concentrations of MTBE in the 

samples. The COD test is used to indirectly measure the amount of organic compounds in water. 

A strong chemical oxidant is used along with acid and heat to oxidize the organics. It measures 

the amount of oxidant consumed in the breakdown of the organic matter, which indirectly gives 

the amount of MTBE in the sample (Droste, 1996). The procedure for the COD test is in 

Appendix 4.  A calibration curve was created in order to read the concentrations of MTBE; her 

calibration curve is located in Appendix 1.   A standard solution of MTBE and water was made 

for analysis. The objective was to create a calibration curve using our standard solution that 

matched with Slack’s curve.  Four standard solutions were used: 0, 50, 175, and 275 mg/L of 

MTBE in water.  When creating calibration curves, one or two concentrations are not enough 

information, and more than four concentrations will require unnecessary work to obtain the same 
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information that only four concentration points would show.  The calculations for this can be 

seen in Appendix 3.   

The calculated volumes of MTBE were added to a 42 mL vial and then filled with E-pure 

water to dilute the MTBE and achieve the specified stock concentration.  The vials were placed 

in a rotisserie to be mixed for 24 hours.  Afterwards, the vials were removed for COD analysis.   

Time Trials 

 

 The time trials were conducted to determine how long it took samples to reach 

equilibrium, where the zeolite reaches saturation.  The chosen concentration was 275 mg/L of 

MTBE, because it was towards the top of the COD equilibrium curve so that when the samples 

were analyzed the results would appear on the COD equilibrium curve.  The time trials tested the 

overall adsorption of four different samples: powder calcined ZSM-5, powder uncalcined ZSM-

5, an old sample, and a new sample.  The process for preparing the vials was the same as during 

the COD equilibrium curve; however in this experiment zeolites were added to the vials.  The 

weight of each pellet used for this experiment was recorded using a bench scale.  

The time intervals used for this experiment were 0, 6, 12, 24, 48 and 72 hours.  The 

intervals of 12 and 72 hours were only used for the new sample since more detail was desired for 

this sample and the other samples were used for comparative reasons.  To be more efficient with 

the experiments, the zeolite and solutions were combined prior to being put in the rotisserie. The 

samples were placed in the rotisserie in the order of 72, 48, 24, and then 6 hours was the last vial 

to put in the rotisserie.  This was done so that after 72 hours, all the vials were ready for COD 

analysis.   
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To determine the concentration of the amount adsorbed in each sample Equation 1 was 

used. 

 

Equation 1: Amount of MTBE adsorbed 

𝑞𝑒(
𝑚𝑔

𝑔
) =

 𝐶𝑖𝑜 − 𝐶𝑒 ∗ 𝑉

𝑚𝑧𝑒𝑜𝑙𝑖𝑡𝑒
 

 

In Equation 1, Cio is the initial concentration of the sample, Ce is the concentration of the 

sample after adsorption, mzeolite is the mass of the zeolite, and V is the volume of the vial (0.042 

L).  The qe values and time intervals were graphed and are shown in the Results section.  In order 

to determine the weight should be used for the granular samples, old pellets were weighed and 

the average was taken.  The weight used for the granular samples was ≈0.01907g.  Raw data can 

be found in Appendix 2. 

Adsorption Isotherm 

 

 The adsorption isotherm was used to determine over a range of concentrations how much 

the ZSM-5 pellet could adsorb at equilibrium.  The range of concentrations was 25-300 mg/L of 

MTBE in water.  Calculations were done to determine how much stock sample was used for each 

concentration, which can be seen in Appendix 2.  The calculated amount of MTBE was added to 

a 42 mL vial and filled with E-pure water.  A new ZSM-5 pellet was added after being weighed 

and recorded.  A total of 12 samples were placed into the rotisserie to mix for 72 hours.  

Afterwards, the samples were taken out for COD analysis.  Equation 1 was used to determine the 

amount of MTBE that was adsorbed.  The qe values and time intervals were graphed and are 

shown in the Results section. 
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Results & Discussion 
 

Analysis of Samples 

 

Powder X-Ray Defraction 

 

The run 4 old sample was analyzed by powder diffraction in order to determine whether 

or not the sample had been calcined and, what phase the sample was in. The results can be seen 

below in Figure 4. 

 

Figure 4: XRD Results of Old Sample 
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To verify whether the results showed a calcined or uncalcined ZSM-5, a reference was 

used from which can be seen in Appendix 5.  In comparing the results, this test verified that all 

samples from run 4 of the old sample after day 8 were calcined ZSM-5. 

The new sample was also tested using the powder diffraction by Brad Carleen.  The 

results he provided can be seen in Figure 5. 

 

Figure 5: XRD Patterns for Calcined Zeolite 

 

 

Comparing the patterns shown in Figure 5 to the Figure 21 in Appendix 5, a theoretical 

ZSM-5 XRD, showed that the samples had similar graphs and verified that the new sample had 

been calcined.  
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Scanning Electron Microscope (SEM)  

 

 The use of the scanning electron microscope (SEM) was to show if the crystallization of 

the samples made were uniform during synthesis.  Figure 6 shows the old sample that was 

photographed in the SEM.  This piece was broken when it was found so it cannot be proven 

whether it was broken after or during synthesis. 

 

Figure 6: SEM – Full View of Old Sample 

 

 Figure 6 shows that there are a few different surfaces that were viewed.  The surfaces 

labeled A and C were the outer surfaces of the synthesized silicon bead.  The surface B was 

where it appeared to be a broken area of the sphere with rough edges.  Surfaces D and E were 

areas that were part of the broken piece and were located towards the center of the sphere.  

Figure 7 shows a zoomed-in image of what surfaces A and C. 
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Figure 7: SEM – Surfaces A and C 

Figure 7 shows that the surface has no crystallization occurring at the outer surfaces and 

appears to be very smooth.  Figures 8, 9, and 10 show zoomed-in images of surfaces B, D, and E 

of the old sample. 

 

 

          Figure 8: Surface B of Old Sample                          Figure 9: Surface D of Old Sample 
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Figure 10: SEM – Surface E of Old Sample 

 

These images clearly show that there has been crystallization on the sample.   The 

crystals have been exposed to the environment as well as being placed in a vial for a long period 

of time. Therefore, there are a lot of extra matter that appears in the picture that are not crystals 

and may not have been created during the synthesis. A new sample may or may not have this 

extra matter and may have given better images of the crystallization. The scale for the crystals is 

at 40 µm; the crystals appear to have a width of around 5 µm and a length of 25-30 µm. Since it 

was unclear as to whether or not the old sample was broken during synthesis or after synthesis, 

another sample was analyzed using the SEM.  A pellet from the new samples of ZSM-5 was 

taken and cut with a razor blade.  Figure 11 shows a full view of the new sample that was 

photographed in the SEM. 
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Figure 11: Full View of New Sample 

 

Figure 11 shows that the three locations that were photographed.  Surface A is the outer 

surface.  Surfaces B and C are both surfaces that were cut before being placed in the SEM.  

Figure 12 shows the surface of location A. 

 

Figure 12: SEM – Surface A of New Sample 

 

 

Two observations can be made from Figure 12.  First it is clear that the outer surface is 

very smooth.  Second, a crack on the outer surface was noticed.  This could mean that during the 

synthesis, there was a coating on the outer surface of the silicon bead that cracked when the 
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depth of the coating reached its maximum.  Figures 13 and 14 show the surfaces of B and C 

where the pellet was cut. 

 

Figure 13: SEM –Surface B of New Sample 

 

 

Figure 14: SEM – Surface C of New Sample 

 

 Figures 13 and 14 show that there was no crystallization inside a completely spherical 

pellet.  Surface B was a piece that had cracked off when using the razor blade to cut the bead, 

and surface C was the surface after the razor blade thoroughly cut through the pellet. 

 Overall, a few observations can be made from the images that were taken off the old 

sample and the new sample.  The old sample was clearly a piece that was broken during 

synthesis since the new sample that was a complete sphere had no crystallization at all.  One of 

the explanations for this could be that the silicon beads had such smooth surfaces that there was 

nowhere for the crystals to grow.  The images of the new sample showed that the surface had just 
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started to get rough and develop cracks.  If the synthesis was allowed a longer period of time 

then there may have been some crystallization on the surface.  Additionally, the old sample 

showed that a broken piece of zeolite or a piece that was broken during synthesis created a rough 

surface that was perfect for crystallization.  Further research would be required to fully answer 

these questions.  The analysis for this part of the report focused on crystallization, and the 

samples that were used in later experiments for the project focused on whole pellets that did not 

have crystallization on them.  The pellets that were used that were not crystalline might not be as 

efficient as pellets that had crystallization.  This could be researched with more experiments. 

Thermal Gravimetric Analysis (TGA) 

 

Figure 15 shows the results for the TGA testing that were used to determine whether or 

not the samples were calcined or uncalcined. 

 

Figure 15: TGA Results of Old ZSM-5 Pellet 

 



 31 

 

The red line, or the line in the middle at 100ºC, is the sample that was being analyzed, 

which was the run 4 day 8 vial from the old samples. The blue line, or the lowest line at 100ºC, 

was the new sample that was experimented with, and the black line, or the top line at 100ºC, was 

a sample of uncalcined ZSM-5. As Figure 15 shows, the uncalcined ZSM-5 had about a 15% 

weight drop where the organic template had been burned off, verifying that the sample was 

uncalcined.  The old sample showed no weight decrease in the 250-500 ºC temperature range.  

Using these as controls for a calcined and uncalcined sample, it was concluded that the ZSM-5 

sample to be used for the experiments was indeed calcined. 
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Experimental Results 

COD Calibration Curve 

 

In order to interpret the data from our experiments, a calibration curve was used for 

chemical oxygen demand.  Figure 16 shows a calibration curve of various concentrations that 

were used for our calibration curve as well as a curve from Michele Slack’s report. (Slack, 

2004).  

 

Figure 16: COD Calibration Curve with Combined Data Points 

 

 There were three specific concentrations that were tested for this project to verify that 

Slack’s curve was accurate to use for following experiments, which can be seen along with the 

old results in Appendix 1 and 2.  The results show that the data points retrieved in this 

experiment fell on the same line as the Slack’s COD calibration curve.  This concluded that the 

COD calibration curve that was previously made by Michele Slack could be used for analyzing 

the data in the following experiments. 
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Time Trial 

 

 Figure 17 shows the results of the time trials with the four samples of ZSM-5: old 

sample, new sample, uncalcined powder, and calcined powder.  

 

 

Figure 17: Time Trials for ZSM-5 Samples 

 

 

Figure 17 compares the efficiency of the different samples of ZSM-5.  The y-axis shows 

the qe (amount adsorbed in mg/g) from the calculations done with Equation 1.  The uncalcined 

powdered ZSM-5 adsorded significantly less then the other samples. This occured because the 

uncalcined samples had an organic template occupying pore volumne and could not adsorb as 

much MTBE. Additionally, it reached equilibrium between 24-48 hours. The calcined powdered 

ZSM-5 was able to adsorb more then both the ZSM-5 pellets initially, but it had reached 

equlibrium almost instantly. The mass transfer process is quite rapid in powders compared to the 

aggregates. This may or may not be efficient, as that would result in zeolites that would have to 
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be regenerated frequently and a comparison of cost for regeneration would have to be done to 

make conclusions.  The new and old ZSM-5 pellets follow roughly the same trend and reach 

equlibrium between 48-72 hours.  For experiemntal purposes, 72 hours was considered the time 

for saturation.  A table with all of the details to the time trials can be seen in Appendix 2. 

Adsorption Isotherm 

 

Figure 18 shows the equlibrium curve, where a range of concentrations were used with a 

single new ZSM-5 pellet using a 72 hour equilibirum time. 

 

Figure 18: Adsorption Isotherm of MTBE After 72 hours 

 

Figure 18 gives the concentration between 0 and 350 mg/L of MTBE and how much 

MTBE can be adsorbed when the zeolites reach equilibrium. The first six data points had ending 

concentrations so low that they were not on the COD calibration curve that was used.  The 

equation of the line was extended to determine the ending concentrations of MTBE.  The 
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calculations can be seen in Appendix 2 and 3.  The adsorption  isotherm in Figure 18 was 

comparable to prior data done on MTBE adsorption using ZSM-5 in Figure 19.   

 

Figure 19: Ayşe Erdem-Senatalar Adsorption Isotherm 

(Bergendahl, Erdem-Şenatalar, Giaya, & Thompson, 2004) 
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extending the equation of the line in Figure 18 it compares to the lower concentrations seen in 

Figure 19. This shows that at the lower concentrations the ZSM-5 used in this report  did not 

adsorb as much MTBE as the ZSM-5 shown from Ayşe’s data in Figure 19. 

Design of Treatment System 

 

 The contamination scenario at Pascoag, Rhode Island was used as the basis for the design 

aspect of this project.  Although the contamination at Pascoag is currently being treated, the 

plume is so large that much of the water supply is still contaminated.  Current contamination 

levels of MTBE were found to reach a maximum of 15,000 µg/L in the bedrock aquifer (Allen & 

Boving, 2006).   For comparison, the Rhode Island drinking limit for MTBE is 40µg/L.   

 In 2004, the Rhode Island Department of Environmental Management installed a 

treatment system that includes submersible pumps, air strippers, liquid and vapor phase granular 

activated carbon and is designed to handle a flow of 100 gallons per minute (Rhode Island 

Department of Environmental Management, 2005).  This design parameter was used as the 

pumping rate through the system.  A total of three columns were used in series, where two 

columns would be operating and would be offline for regeneration or maintenance.  Figure 19 

shows a piping schematic of this system. 
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Figure 20: Design Schematic 

 

This system was designed so that the effluent from a column would be able to feed into any other 

column in the case that one is offline.  The influent contaminated groundwater is pumped in at a 

rate of 100 gallons per minute with a concentration of 15 ppm.  Using the adsorption isotherm 

developed in the methodology, the adsorbed amount (in mg MTBE per g of zeolite) was found 

using Equation 2, where y is the qe (mg/g adsorbed) and x is the effluent concentration in mg/L. 

Equation 2: Equation from adsorption isotherm 

𝑦 = 1.3376𝑥 + 18.088 

 

Because the adsorption isotherm represents equilibrium, the effluent concentration will equal the 

influent concentration when the column is fully saturated.  Knowing this, the adsorbed amount at 

equilibrium was found to be 38.06 mg/g.   
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The volume of one column was found to be 1200 gallons in order to hold 1000 gallons of 

zeolites.  The volume of zeolites was calculated by using the flow of 100 gallons per minute and 

an empty bed contact time of 10 minutes.  This contact time was used to increase the volume in 

the reactor and maintain a feasible runtime before regeneration was necessary.  A height of 

approximately 14 feet and a diameter of 11 feet were determined using Equation 3.   

 

Equation 3: Equation for Diameter 

𝑫(𝒇𝒕) =  
𝟒 ∗ 𝑽𝒛𝒆𝒐𝒍𝒊𝒕𝒆𝒔(𝒇𝒕𝟑)

𝝅 ∗ 𝒉(𝒇𝒕)
 

     

The bulk density of the zeolites was measured to be 971 kg/m
3
.  Using Equation 4, the volume of 

contaminated water that can be treated before regeneration was found to be 9,340,636 L.   

  

Equation 4: Bed Life Design Equation 

𝑞𝑒(
𝑔

𝑔
) ∗ 𝑉𝑧𝑒𝑜𝑙𝑖𝑡𝑒𝑠 (𝐿) ∗ 𝜌𝑧𝑒𝑜𝑙𝑖𝑡𝑒𝑠 (

𝑘𝑔

𝑚3
) = 𝐶0(

𝑚𝑔

𝐿
) ∗ 𝑉𝑓𝑙𝑢𝑖𝑑 (𝐿) 

 

In Equation 4, qe is the amount adsorbed in units of g/g.  Using the calculated volume of treated 

contaminated water and the flow rate, the time before the column is completely saturated was 

determined to be approximately 17 days.  It would be recommended to hire a worker to measure 

the effluent concentrations of the reactors every 2 days.  When the effluent concentration reaches 

the same level as the influent concentration, the column has reached saturation and is to be 

turned offline for regeneration.  The gate valve will be turned off so that the influent feed will 

bypass this reactor. 
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The entire system has a velocity of 5 feet per second, with a 3 inch pipe.  The total 

amount of piping was estimated to be about 220 feet.  Previous system designs involving 3 

columns in series estimated the usage of about 200 feet of piping (Hart, 2003).  The amount of 

piping would cover influent and effluent feed, and all of the piping that connects the columns as 

shown in the design schematic, Figure 19.  A cost analysis of the system was completed and 

compiled in Table 2.   

Table 2: Cost Analysis of System Design 

Material Cost Quantity Total Cost Brand 

Centrifugal Pump $2,777  1 $2,777  Warren-Rupp 

CPVC Pipe $3.50  220 $770.00    

Gate Valve $268  12 $3,216  Nibco 

3-Way Valve $125  3 $375  Kohler 

*Reaction Column $20,000  3 $60,000  Tigg Corp. 

*Zeolites $4,860  3 $14,580  

 *These prices are estimates 

 
Total: $81,718  

 

 
In order to determine the specifications of the pump, the total head loss of the pump was 

necessary.  The head loss in the column was calculated using Equation 5: 

Equation 5: Head Loss to Pump 

𝐻𝑃 𝑓𝑡 =
𝑃

𝛾
= 115 𝑓𝑡 

Then, the head in the column due to the filtering media (zeolites) was calculated using the 

Kozeny Equation, shown in Equation 6 (Droste, 1996).   

 

Equation 6: Kozeny Equation 

𝑕 =
𝑘𝜇(1 − 𝜀)2

𝑔𝜌𝜀2
 
𝐴

𝑉
 

2

𝑣 
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The porosity of granular activated carbon (0.70) was used because information on the porosity of 

granular ZSM-5 was not available (Clements & Haarhoff, 2006).  The head loss due to the 

zeolites was found to be 1.16 x 10
-4

 feet.  This value can be taken to be essentially zero.  The 

total head loss to the pump was calculated by summing the head loss from the tank and the head 

loss from the zeolites and was used as 115 feet. 

Using Equation 6, the power required for the pump was calculated assuming 75% 

efficiency. 

Equation 6: Power for Pump 

𝑃𝑜𝑤𝑒𝑟 =
𝛾 ∗ 𝑄 ∗ 𝐻𝑃

33,000
∗ 75% = 2.2 𝐻𝑃 

 

With the given design parameters, the Warren-Rupp centrifugal pump was chosen for this 

system. 

Although the amount of piping necessary may fluctuate, the overall price of piping is 

miniscule compared to the cost of other items.  Gate valves were used to so that the feed water 

could bypass columns in regeneration, and 3-way valves were used at 3-way intersections shown 

in the schematic.  Zeolite ZSM-5 was found to sell at approximately $2.3 per pound.  Using the 

measured bulk density of the zeolites, one column would require about 2140 pounds of zeolites.  

This sums to approximately $5,000 of zeolites for one column.  The price range for a 1200 

gallon adsorber was quoted as $10,000 to $20,000 by a representative from TIGG Corporation.  

The higher price was taken for purposes of cost estimating.  This price was multiplied by three 

because the system requires 3 columns in series.  Excluding the cost of labor and maintenance, 

the total cost to install this treatment system was estimated to be roughly $82,000.   
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Design Recommendations and Conclusions 

 

Zeolite ZSM-5 could be an effective method of treating MTBE from water.  The cost is 

relatively low to design a system.  One column would have to be regenerated every 17 days, thus 

it is recommended to check the effluent concentrations every 2 days.  The granular form of 

ZSM-5 would be more effective in a reaction column than the powdered form, as the powder 

zeolite would be impractical.  ZSM-5 could potentially be more efficient and cost-effective than 

granular activated carbon.  Although activated carbon is cheaper by the pound than zeolites, 

when granular activated carbon is regenerated it loses about 5-15% of its carbon mass per cycle 

(U.S. Army Corp of Engineers, 2001).  Therefore, activated carbon can only be used so many 

times before it loses its efficiency.   

In order to more quantitatively compare the effectiveness of ZSM-5 and granular 

activated carbon on MTBE, further research is recommended on these two processes including 

research and cost analysis of regeneration processes.  Further research may show that ZSM-5 is a 

more cost effective method because it does not lose efficiency as much as activated carbon.  It is 

also noted that further research should be done using column experiments.  The tests that were 

used in this report involved batch experiments.  Analysis of adsorption tests using bench-scale 

column reactors may prove useful in comparing the adsorption effectiveness of ZSM-5 and 

granular activated carbon in fixed bed treatment systems. 
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Appendix 
 

Appendix 1: Figures 

 

 

Figure 21: Michelle Slack's COD calibration curve 

(Slack, 2004) 
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Appendix 2: Tables 

 

Table 3: COD All Calibration Curve Data 

MTBE 

concentration 

(mg/L) 

M. Slack 

Absorbance 

New Sample 

Absorbance 

300 0.1845 

 275 

 

0.1622 

250 0.1485 

 200 0.114 

 175 

 

0.0868 

150 0.0935 

 100 0.0725 

 75 0.064 

 50 0.053 0.0643 

37.5 0.0455 

 25 0.03 

  

 

Table 4: Weights of Pellets for Time Trial 

Old Sample Weight(g) 

1 0.0119 

2 0.0308 

3 0.0165 

4 0.0313 

5 0.0106 

6 0.0133 

Average: 0.01907 
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Table 5: Raw Data from Time Trial Calculations 

Time 

(hours) Sample 

Abs. 

(1/cm) 

End Conc. 

(mg/L) 

Weight of 

Zeolite (g) 

Conc. 

Difference 

(mg/L) q(mg/g) 

72 New 0.0649 76 0.0235 199 355.6596 

48 Old 0.0942 138 0.0155 137 371.2258 

48 

Powdered 

Uncalcined 0.1246 203 0.019 72 159.1579 

48 

Powdered 

Calcined 0.0898 129 0.0193 146 317.7202 

48 New 0.1008 152 0.0147 123 351.4286 

24 Old 0.0848 118 0.021 157 314 

24 New 0.0957 141 0.0189 134 297.7778 

24 

Powdered 

Uncalcined 0.1239 202 0.0192 73 159.6875 

24 

Powdered 

Calcined 0.0881 125 0.0192 150 328.125 

12 New 0.0819 112 0.0263 163 260.3042 

6 Old 0.0903 130 0.0314 145 193.949 

6 New 0.0812 111 0.0305 164 225.8361 

6 

Powdered 

Uncalcined 0.1349 225 0.0191 50 109.9476 

6 

Powdered 

Calcined 0.0858 120 0.0195 155 333.8462 
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Table 6: Summary of Calculations for Amounts Used in Solutions for the Adsorption 

Isotherm Samples 

New 

Sample 

Conc. MTBE 

(mg/L) 

From Stock  

(µL) 

Rounded 

(µL) 

Other stocks 

(µL) 

Rounded 

(µL) 

1 300 2518.8 2520 

  2 275 2308.9 2310 

  3 250 2099.0 2100 

  4 225 1889.1 1890 

  5 200 1679.2 1680 

  6 175 1469.3 1470 

  7 150 1259.4 1260 

  8 125 1049.5 1050 

  9 100 

  

42042.04204 42040 

10 75 

  

31531.53153 31530 

11 50 

  

21021.02102 21020 

12 25 

  

10510.51051 10510 

 

 

 

Table 7: Raw Data from Adsorption Isotherm Calculations 

New 

Sample 

Abs. 

(1/cm) 

Start Conc. 

(mg/L) 

End 

Conc. 

(mg/L) 

Weight 

(g) 

Conc. 

Difference 

(mg/L) q (mg/g) 

1 0.0684 300 83 0.0191 217 477.1728 

2 0.0649 275 76 0.0255 199 327.7647 

3 0.0616 250 69 0.0263 181 289.0494 

4 0.0522 225 49 0.0186 176 397.4194 

5 0.0441 200 31 0.0311 169 228.2315 

6 0.043 175 28 0.0245 147 252 

7 0.0365 150 15 0.0197 135 287.8173 

8 0.0316 125 4 0.0226 121 224.8673 

9 0.0578 100 60 0.0241 40 69.7095 

10 0.0282 75 0 0.0234 75 134.6154 

11 0.025 50 0 0.0241 50 87.1369 

12 0.0186 25 0 0.0212 25 49.5283 
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Appendix 3: Calculations for Solutions 

 

For 5000 mg/L of MTBE: 

 

5000 𝑚𝑔

𝐿
∗

1𝑔

1000 𝑚𝑔
∗

1𝑚𝐿

0.74 𝑔
=

6.76𝑚𝐿

𝐿
 

In the solution we put 6.76 mL of 100% MTBE and added E-pure water to an Erlenmeyer 

flask to achieve a total volume of 1 L.  This stock solution was a diluted solution that would be 

used for the experiments. 

Calculations for concentrations of 50,175, and 275 mg/L of MTBE 

 

175 𝑚𝑔

𝐿 𝑀𝑇𝐵𝐸
∗

1𝑔

1000𝑚𝑔
∗

1𝑚𝐿

0.74𝑔
=

0.236 𝑚𝐿

𝐿 𝑀𝑇𝐵𝐸
∗ 0.042 𝐿 = 0.00993𝑚𝐿 

𝑋 = 0.00993𝑚𝐿 ∗
𝐿

6.76𝑚𝐿
 

𝑋 = 0.001469𝐿 = 1469µ𝐿 

Rounded to 1470 µ𝐿 

 

275𝑚𝑔

𝐿 𝑀𝑇𝐵𝐸
∗

1𝑔

1000𝑚𝑔
∗

1𝑚𝐿

0.74𝑔
=

0.372 𝑚𝐿

𝐿 𝑀𝑇𝐵𝐸
∗ 0.042 𝐿 = 0.0156𝑚𝐿 

𝑋 = 0.0156𝑚𝐿 ∗
𝐿

6.76𝑚𝐿
 

𝑋 = 0.002307𝐿 = 2307 µ𝐿 

Rounded to 2310 µ𝐿 
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For solutions of 100 and less, specific calculations need to be done as to make sure there 

was enough MTBE to be traced.  The calculations were for double the amount of MTBE for half 

the volume. 

For 50 ppm in a 42 mL vial, a concentration was 100 ppm in 21mL was used. 

The stock solution was calculated by: 

100𝑚𝑔

𝐿
∗

1𝑔

1000𝑚𝑔
∗

1𝑚𝐿

0.74𝑔
=

0.135𝑚𝐿

𝐿
 

 

100 𝑚𝑔

𝐿 𝑀𝑇𝐵𝐸
∗

1𝑔

1000𝑚𝑔
∗

1𝑚𝐿

0.74𝑔
=

0.135 𝑚𝐿

𝐿 𝑀𝑇𝐵𝐸
∗ 0.021 𝐿 = 0.002838𝑚𝐿 

 

𝑋 = 0.002838𝑚𝐿 ∗
𝐿

0.135𝑚𝐿
 

 

𝑋 = 0.021021𝐿 = 21,021µ𝐿 

 

The amounts obtained were the amounts used that were taken from the stock solution for 

specific concentrations. 
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Appendix 4: Chemical Oxygen Demand Procedure 
 

For the purposes of this report, COD vials of low range (5-150 mg/L) were used. 

 

1. COD heater block was preheated 20 min before use and set at 150˚ C. 

2. Label COD vials accordingly. 

3. 2.5 mL of sample were carefully added down the side of the COD vial. 

4. Cap and invert the vial for mixing. 

5. Place in COD heater block for 2 hours. 

6. Remove vial from heater block and allow cooling to room temperature. 

7. Allow any suspended precipitate to settle. 

8. For Low Range Reagent (5-150 mg/L) 

a. Set spectrophotometer to 600 nm 

b. Zero the absorbance reading with E-pure water 

9. Measure and record the absorbance value for each vial. 
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Appendix 5: Reference Images 

 

 

 

 

 

Figure 22: Theoretical XRD for Calcined ZSM-5 

 


