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Abstract 

 

The growing number of antibiotic resistant strains of bacteria is a serious issue that must be 

addressed. New antibiotics need to be found to prevent a global epidemic. Soil bacteria 

isolates from the Microbes to Molecules (BB2905) course were identified and their products 

were purified and analyzed. We developed an identification pipeline for antibiotic discovery 

to proceed from the BB2905 course. The process for creating the pipeline resulted in the 

optimization of 16s ribosomal subunit PCR protocols. This allowed for the identification of 

samples 15-6 and 14-29 to be of the Streptomyces and Brevibacillus genus, respectively. The 

pipeline was then utilized to extract and analyze of antibiotic extracts from samples 15-6 and 

14-29. The antibacterial products of 15-6 and 14-29 were isolated and purified into fractions 

using HPLC. The final characterization of said samples was not accomplished due to the 

characterization methods, nuclear magnetic resonance (NMR) and mass spectroscopy, 

requiring larger sample masses than what were feasibly obtained. Future experimentation 

should focus on further optimization of growth techniques for the isolated species and 

chemical analysis methods to further characterize the antibiotic compounds.  
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1. Background 

1.1 The Problem 

 The growing number of antibiotic resistant strains of bacteria is a serious issue that 

must be addressed. Diseases that were once easily treatable are now becoming harder to treat 

making them more dangerous. According to the Centers for Disease Control and Prevention 

(CDC) at least two million people become infected with antibiotic resistant strains of bacteria 

in the United States every year (CDC, 2016). This is because the current arsenal of effective 

antibiotics used for treating bacterial infections is shrinking due to bacterial resistance. 

Biologists need to find new antibiotics to combat this threat and prevent a global epidemic. In 

response to the looming crisis, crowdsourcing efforts such as the Small World Initiative are 

attempting to help combat the threat of antibiotic resistant bacteria.  

The Small World Initiative is a project started at Yale University in 2012 that aims to 

discover new, potentially useful, antibiotics from soil microbes by crowdsourcing the 

discovery process. The Initiative is currently made up of 150 institutions across the world, 

including Worcester Polytechnic Institute (WPI) (Small World Initiative, 2015). The 

institutions involved in the Small World Initiative contribute to the effort by having students 

collect soil samples, grow microbes from the soil sample, and screen these microbes for 

antibiotic production. The data obtained from this, such as the location from which the sample 

was taken and the probable species or genus of the “antibiotic” producing bacteria, is 

uploaded into the Small World Initiative’s database on their website (Small World Initiative, 

2015).  

WPI is currently a part of this initiative with the course Microbes to Molecules 

(BB2905). This course has students collect their own soil sample and attempt to isolate 

antibiotic producing bacteria. However, further analysis of these bacteria and their potential 

antibiotic products is still required. This analysis includes detailed characterization of the 

bacteria, finding the best conditions to grow the bacteria, and characterizing the antibiotic 

compounds produced by the bacteria. The goal of this project is to complete this work and 

develop more optimum procedures for future Microbes and Molecules courses and future 

projects working with soil bacteria and antibiotic isolation. 
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1.2 Antibiotics 

Antibiotics are compounds that are able to kill or stop the growth of bacteria. 

Alexander Fleming discovered the first antibiotic, Penicillin, in 1928 (ACS and RSC, 1999). 

Antibiotics continued to be discovered frequently until the early 1980s, when economic 

pressure within the pharmaceutical community shifted the focus of research towards on other 

drugs (Spellberg and Gilbert, 2014). This shift in the pharmaceutical industry resulted in a 

diminished pipeline of new antibiotics into the clinical setting.  

Currently, researchers are uncertain of the exact function of antibiotics in nature, but 

there are two competing theories. The first is that antibiotics are used as a defensive 

mechanism by organisms against other microbes within the same ecosystem. The other, is that 

antibiotics may actually be bacterial signaling molecules (Clardy et al, 2009;Yim et al, 2007). 

Soil bacteria represent the largest source of already discovered antibiotic compounds 

(Handelsman et al, 1998). Despite this, soil microbes remain largely uncharacterized. It is 

estimated that there are 10
3
 to 10

7
 in any given soil sample (Fierer et al, 2007). However, it is 

only possible to cultivate a fraction of these bacteria, using standard culturing techniques 

(Delong and Pace, 2001). The continued exploration of the largely unexplored soil 

environment could yield a multitude of novel medicinal compounds.    

A recent publication illustrating the continued potential of novel antibiotic discovery 

from soil was the discovery of teixobactin by Ling et.al at Northeastern University in 2015. 

This process involved using a device called an iChip to isolate and grow soil microbes in 

native conditions (Ling et al., 2015). The device involves a plastic matrix filled with solid 

media with semipermeable membranes on either side. The device is then inserted into a 

sample of the native soil that the bacteria came from (Ling et al., 2015). Using the iChip, the 

group at Northeastern University was able to isolate an antibiotic producing organism called 

Eleftheria terrae which produced the novel antibiotic teixobactin. This story demonstrates the 

continued importance of the relatively unexplored soil ecosystem for finding novel medicinal 

compounds. For more information on Teixobactin see section 1.3.9 below.  

1.3 Antibiotic Classes 

Antibiotics can be broken down into many structural classes. Each class has its own 

unique chemical properties that distinguishes it from other classes. We have included 
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information on the most common classes below. 

1.3.1 Beta Lactams 

Beta lactams are the oldest discovered class of antibiotics, the most famous of which is 

Penicillin, shown in Figure 1. Beta Lactams are broad-spectrum antibiotics effective against 

mostly gram negative bacteria and some gram positive bacteria (Tomasz, 1976). They act by 

inhibiting cell wall biosynthesis and are mainly bactericidal (Tomasz, 1976). Beta lactam 

antibiotics can be further categorized into penicillins and cephalosporins. The main similarity 

between members of this class of antibiotics is the beta lactam ring, seen circled in Figure 1 

below. 

 

 

  

Figure 1: Penicillin G, Pubchem CID: 5904 (National Center for Biotechnology 

Information, N.D.) 

 

Beta lactams, excluding the potential for the development of antibiotic resistant 

bacteria, have few known side effects. The only major side effect reported was gastrointestinal 

distress, yeast infection, and diarrhea. These side effects have also been reported when the 

Beta Lactam drugs were combined with beta lactamase inhibitor drugs (Holten and Onusko, 

2000). 

1.3.2 Aminoglycosides 

 Aminoglycosides were the first class of antibiotics to be discovered from soil bacteria. 

The first to be discovered and the most famous example of this class is Streptomycin shown in 

Figure 2, an antibiotic isolated from the soil actinobacteria Streptomyces griseus. 
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Aminoglycosides are antibiotics that act on the 16s ribosomal subunit and inhibit normal 

protein synthesis (Hermann, 2007). While aminoglycosides are technically bacteriostatic, cells 

exposed to aminoglycosides will eventually be killed due to a buildup of truncated proteins 

caused by the aminoglycoside binding to the ribosome which makes aminoglycosides appear 

bactericidal (Hermann, 2007). They inhibit mostly gram negative bacteria, but also inhibit 

some gram positive bacteria. Aminoglycosides are highly polar molecules (Mingeot-Leclercq 

et al., 1999). 

 

 Figure 2: Streptomycin, Pubchem CID: 19649 (National Center for 

Biotechnology Information, N.D.) 

Aminoglycosides have also been observed to have numerous detrimental side effects when 

used in a part of a high-dose anti-bacterial treatment. Symptoms such as kidney damage, 

chronic kidney disease, hearing loss, balance impairment, and lung tissue damage have been 

observed. These symptoms have been linked to the development of cystic fibrosis in the 

patience. This antibiotic has also been shown to cause different types of cellular toxicity 

caused by uptake of large doses of aminoglycosides, leading to cell death (Prayle et al., 2010).  

1.3.3 Glycopeptides 

Glycopeptides are a class of antibiotics that act on the cell wall by inhibiting 

peptidoglycan biosynthesis. Glycopeptides are generally bactericidal and effective almost 

exclusively against gram positive bacteria as gram negative bacteria’s outer membrane does 

not allow molecules as large as the glycopeptides to pass through (Malabarba et al., 1997). A 
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notable example of a glycopeptide antibiotic is Vancomycin, shown in Figure 3. The basic 

structure of glycopeptides is a cyclic non-ribosomal peptide with sugars attached on the 

periphery of the cycle (National Center for Biotechnology Information, N.D.) (See Figure 3). 

 

 

Figure 3: Vancomycin Pubchem CID: 14969 (National Center for Biotechnology 

Information, N.D.) 

 Glycopeptide antibiotics have side effects similar to aminoglycosides. Intravenous 

administration of glycopeptides have been observed to cause histamine based effects such as 

hypertensions and in a rare case, cardiac arrest. Other symptoms include renal damage, skin 

rashes, and inner ear damage caused by ototoxicity. The cause of these effects and tissue 

toxicities have been linked to impurities found when the antibiotic is isolated. Modern 

methods of isolating glycopeptides have increased the purities of samples and reduced the 

severity of many of the side effects (Finch and Eliopoulus, 2005). 

1.3.4 Tetracyclines 

Tetracyclines are another class of antibiotic that commonly used in modern medicine. 

Tetracyclines are formed from a linear fusion of a tetracyclic nucleus, shown in Figure 4, with 

different groups attached (Chopra and Roberts, 2001). This class of antibiotics has been 

shown to function as a bacteriostatic compound that is effective against Gram positive, Gram 

negative, and preventative against certain parasites. In bacteria, tetracyclines function by 
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targeting and inhibiting protein synthesis. The antibiotic does this by binding to the 30S 

subunit of the ribosome and preventing the tRNAs from binding. The antibiotic binding to this 

subunit prevents amino acid associated tRNAs from binding to the ribosome (Chopra and 

Roberts, 2001).  

 

Figure 4: Tetracycline, Pubchem CID: 54675776 (National Center for Biotechnology 

Information, N.D.) 

 

Many of the properties regarding tetracycline class antibiotics have become well 

established. Tetracyclines have been recorded having pH’s ranging from 3-7 and generally 

have a pKa value of 3.3 at 25℃. This class of antibiotics is polar due to the different side 

groups branching off the tetracyclic nucleus. This polarity favors the polar environment in 

cells that it functions in (Tetracycline, 2016). Another trait of tetracyclines is the class’ ability 

to fluoresce under UV light when absorbed into bone. 

 Long term usage of tetracycline based drugs has also been shown to cause a variety of 

mild and severe side effects. Short term usage of tetracycline has been shown to cause skin 

sensitivity to sunlight, diarrhea, and upset stomach. However, tetracycline can also cause skin 

rash, difficulty breathing, vomiting, and muscle weakness. These effects have been observed 

when taking higher doses of tetracyclines for prolonged periods of time (Citron et al., 1968).  
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1.3.5 Macrolides  

Macrolides are a large class of antibiotics produced by bacteria and fungi alike. 

Macrolides are generally made from a lactonic ring of 12 to 22 carbon atoms with different 

side groups, shown in Figure 5. Generally, macrolides have been shown to be effective against 

Gram positive strains of bacteria, but have also been shown to function against Gram negative 

bacteria (Hof, 1994). Macrolides function as bacteriostatic antibiotics, though bactericidal 

activity has been observed in in vitro experiments (Pankey and Sabath, 2004). These 

antibiotics function by targeting the 50S unit of the ribosome. By targeting this part of the 

ribosome, macrolides inhibit protein synthesis. 

 

Figure 5: Erythromycin, Pubchem CID: 12560 (National Center for Biotechnology 

Information, N.D.) 

The properties of macrolide class antibiotics have been determined due to their general 

structure. Macrolides are polar, due to the numerous polar side groups on the main carbon ring 

structure. These antibiotics have their highest activity at pHs of 7.8 to 8 (Macrolides, 2016) 

Similarly to other classes of antibiotics, macrolides have been observed to cause 

adverse effects on patients. The milder observed side effects are abdominal pain, diarrhea, and 

nausea. However, macrolides have been shown to cause, on rare occasions, pancreatitis, acute 

hepatitis, and reversible ototoxicity (Cunha, 2001). 
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1.3.6 Lipopeptides  

 Lipopeptides are a class of antibiotics they are made of a cyclic peptide and a long 

hydrocarbon tail. Lipopeptides act by making the plasma membrane permeable to ions, which 

causes cell lysis (Yu et al., 2015;Steenbergen et al., 2005). They are generally bactericidal 

(Yu et al., 2015;Steenbergen et al., 2005). Daptomycin is almost exclusively effective against 

gram positive bacteria, while the polymyxins are mostly effective against gram negative 

bacteria (Yu et al., 2015;Steenbergen et al., 2005). Daptomycin and the polymyxins were 

listed in the same class as they are structurally similar in that they are made from both lipid 

and peptide components and mechanistically similar, in that they both depolarize the 

membrane and cause cell lysis. Despite their similarities however, they are effective against 

very different bacteria in that polymyxins are effective against a narrow spectrum of gram 

negative bacteria and daptomycin is effective against most gram positive bacteria (Yu et al., 

2015;Steenbergen et al., 2005).  

 

  

 

Figure 6: Polymyxin B, Pubchem CID: 49800004 (National Center for Biotechnology 

Information, N.D.) 

The majority of lipopeptide based drugs have been shown to cause few mild unwanted 

effects on patients. Those that have been observed to cause adverse effects have only occurred 

in 2% of patients in pre-clinical trials. The known side effects of lipopeptide drugs are nausea, 
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constipation, headache, rash, and skin reactions at injection site (Steenbergen et al., 2005). 

Daptomycin is another example of a lipopeptide antibiotic. Daptomycin is a natural 

product of the soil bacterium Streptomyces roseosporus. This drug is used for treatments of 

complicated skin infections by gram-positive bacteria. High dosage of this drug can cause 

effects on skeletal muscle, including myalgia and myositis (Eisenstein et al., 2010) . The 

bacteria was discovered by scientists at Eli Lilly from a soil sample from Mount Ararat in 

Turkey during the late 1980s, and later developed by Cubist Pharmaceuticals (Eisenstein et 

al., 2010). The structure of daptomycin is shown in Figure 7.  

 

 

Figure 7: Daptomycin, Pubchem CID: 16129629 (National Center for Biotechnology 

Information, N.D.) 

1.3.7 Chloramphenicols 

Chloramphenicols are one of the more simplistic antibiotics in regards to its structure 

the 2,2-dichloro-N-[(1R,2R)-1,3-dihydroxy-1-(4-nitrophenyl)propan-2-yl]acetamide shown in 

Figure 8, differs from most antibiotics due to the two chloride atoms (National Center for 

Biotechnology Information, N.D.). The only other antibiotic to have chloride atoms is 

vancomycin. Chloramphenicol has been shown to target both Gram positive and Gram 

negative bacteria. Generally, chloramphenicol acts as a bacteriostatic antibiotic. However, it 

has shown bactericidal activity against certain strains of bacteria similarly to macrolides, 



14 

chloramphenicol works by binding to the 50S subunit of the ribosome, inhibiting protein 

synthesis (Pankey and Sabath, 2004). 

 

Figure 8: Chloramphenicol, Pubchem CID: 5959 (National Center for Biotechnology 

Information, N.D.) 

 The commonly shared and simplistic structure of chloramphenicol made identifying its 

chemical properties easier. Like other antibiotics, chloramphenicol has a polar charge 

allowing it to function properly within the cell’s inner environment. Additionally, 

chloramphenicol has shown to have a neutral pH utilizing litmus tests (National Center for 

Biotechnology Information, N.D.). 

 Chloramphenicol based therapy for bacterial infection has been known to cause similar 

side effects to other antibiotic treatments. These adverse effects include nausea, vomiting, 

headache, and diarrhea. However, chloramphenicol drugs have also been known to cause rash, 

muscle weakness, swelling, stomach cramps, and bloody stool (U.S. National Library of 

Medicine: Chloramphenicol, 2016). 

1.3.8 Ansamycins 

 Ansamycins are class of antibiotics that are characterized by a handle (ansa in latin) 

like structure that loops around a central ring structure (Wehrli, 1977). Most ansamycins 

(Rifamycins, streptovaricins, and tolypomycins) inhibit prokaryotic DNA-dependent RNA 

synthesis (Wehri, 1977). They are effective against mycobacteria, a large percentage of gram 
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positive bacteria, and some gram negative bacteria (Floss and Yu, 2005). They act on bacteria 

in a bacteriostatic way. Rifamycin is a naturally occurring example of this class (See Figure 

9). 

 

Figure 9: Rifamycin SV, Pubchem CID: 6324616 (National Center for Biotechnology 

Information, N.D.) 

 Ansamycins based drugs have been observed to have few known negative side effects. 

These adverse effects include rash, blisters, loss of coordination, and other common side 

effects shared among most antibiotics such as nausea and diahrrea (U.S. National Library of 

Medicine: Rifampin, 2016). 

1.3.9 Teixobactin 

Teixobactin acts by inhibiting cell wall synthesis by binding to a precursor of 

peptidoglycan (Lipid II) and a precursor of teichoic acid, both of which are necessary to 

construct the cell wall (Ling et al., 2015). Teixobactin does not belong to an already 

established class of antibiotics and instead is the first member of a new class of antibiotics that 

bind to the Lipid II peptidoglycan precursor (Ling et al., 2015). A structure of teixobactin is 

shown in Figure 10 below.  
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Figure 10: Teixobactin, Pubchem CID: 86341926 (National Center for Biotechnology 

Information, N.D.) 

1.4 Project Outline 

The focus of this project was on two main topics: Soil bacteria and the antibiotics they 

produce. For the soil bacteria, optimum methods for the culturing, maintenance, and analysis 

of isolated samples were investigated. These protocols were established concurrently with the 

antibiotic based research. This research focused on determining which isolated soil bacteria 

produce antimicrobial molecules as secondary metabolites. The conditions for them to 

produce their secondary metabolites (potential antibiotics) from these selected samples were 

established. Then, techniques for properly isolating these metabolites were determined. Once 

isolated the characterization of these metabolites was attempted using different analytical 

techniques where possible to determine if it belongs to a known class of antibiotics. All 

techniques and protocols can then be used by the Microbes and Molecules course to further 

this type of research. The project is outlined visually in Figure 11. 
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Figure 11: Project Overview Flowchart 

2. Methods 

2.1 Screening Microbes to Molecules Freezer Isolates for Antibiotic Activity 

All isolates from previously run Microbes to Molecules courses (2014, 2015, and 

2016) were streaked from freezer stocks onto Luria-Bertini (LB) agar and allowed to incubate 

at room temperature for 72 hours. For a complete list of isolates see Appendix I.  

 The isolates were screened for antibiotic production using a top agar method which 

was adapted from the top agar method present in the Small World Initiative research protocols 

document (Hernandez et al., 2015). The isolates were transferred from the freezer stocks to 

the LB plates using a sterilized inoculation loop. The isolates were plated clockwise in 

numbered order (See Appendix I for full list of isolates plated and their corresponding ID 

numbers) in a circular pattern around the plate. Each year of isolates were plated on separate 

plates in order to minimize the risk of confusion. A 3 mL liquid culture was made for E. coli 

(ATCC 11795) and B. Subtilis and allowed to incubate at 37 degrees Celsius for 24 hours. The 
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top agar itself was made of 50% agar LB. 1 mL of the liquid culture of each species were 

added to separate 4 ml aliquots of the top agar. Each aliquot was poured onto a single plate of 

small world samples. Antibiotic activity of the isolates was indicated by zones of inhibition of 

the species tested against. Figure 12 represents an example of a zone of inhibition for the top 

agar method. .  

 

Figure 12: Example of a Zone of Inhibition  

2.2 Determining the Identity of the Isolates 

 Before continuing work with the isolates in liquid culture, the identity of the isolates 

was determined. The identities of the bacterial isolates were determined through both PCR, 

metabolic assays, and Gram staining.  

2.2.1 Metabolic Assays 

In order to help characterize the bacterial isolates, a variety of metabolic assays were 

performed. These assays include the indole assay (Appendix II), the glucose fermentation 

assay (Power and Johnson, 2009), the lactose fermentation assay (Power and Johnson, 2009), 

the MacConkey agar assay (Hernandez et al., 2015), and the amylase assay (Buckholt, 2014).   

 In both the glucose and lactose fermentation assays, a yellow colored result means 

ferments with acid, while bubbles indicated gas production due to fermentation of the 

carbohydrate (Power and Johnson, 2009).  

2.2.2 PCR 

PCR was utilized to better identify the provided soil bacteria samples. Two different 

sets of primers were used for the 16s ribosomal subunit amplification (27F and 1492R, 8F and 
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1391R, ordered from Integrated DNA technologies). The mix used for all PCR samples was 

10 uL Deionized water, 1.3 uL of 10 uM of the first primer, 1.3 uL of 10 uM of the second 

primer, and 12.5 uL of 12.5 uM of New England Biolabs 2x Q5 Master Mix. This procedure 

was later redone using OneTaq 2x PCR Mix. The PCR protocols differed only in annealing 

temperature due the different primers. The general protocol was 95 degrees C for 2 minutes, 

then 30 cycles of 95 for 30 seconds, 49 degrees (54 degrees for the 8F and 1391R primer 

combination) for 45 seconds, 72 degrees for two minutes, followed by 72 degrees for 10 

minutes, and finally held at 10 degrees.  

An additional set of primers and protocols were used in an attempt to identify several 

Bacillus genus microbe samples. These primers (UP-1 and UP-2r) and sequencing primers 

(UP-1S and UP-2Sr) were designed to target bacterial gyrase genes. Gyrase genes were 

known to be used by bacteria to power its flagella. The PCR utilized 12.5 uL of Q5 2x Master 

Mix, 1.3 uL of 1 uM UP-1 primer, 1.3 uL of 1uM UP-2r primer, and 10 uL Deionized water. 

The PCR protocol used was 30 cycles of 94 degrees C for 1 minute, 60 degrees C for 1 

minute, and 72 degrees C for 2 minutes. The PCR products were then held at 10 degrees C 

until they were removed from the PCR machine (Yamamoto and Harayama, 1995). 

 

Primer Sequences: 

16s ribosomal subunit 

27F:5’-AGAGTTTGATCMTGGCTCAG-3’ 

1492r:5′-GGTTACCTTGTTACGACTT-3’ 

8F:5’-AGAGTTTGATCCTGGCTCAG-3’ 

1391r:5’-GACGGGCGGTGTGTRCA-3’ 

gyrB 

UP-1:5’-

GAAGTCATCATGACCGTTCTGCA(TC)GC(TCAG)GG(TCAG)AA(AG)TT(TC)GA-3’ 

UP-1S:5’-GAAGTCATCATGACCGTTCTGCA-3’ 

UP-2r:5’-

AGCAGGGTACGGATGTGCGAGCC(AG)TC(TCAG)AC(AG)TC(TCAG)GC(AG)TC(TC

AG)GTCAT-3’ 

UP-2Sr:5’-AGCAGGGTACGGATGTGCGAGCC-3’ 
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2.2.2.2 Gradient PCR 

A gradient PCR was performed to optimize the PCR protocols for future experiments. 

OneTaq Master Mix was used instead of Q5, but the rest of the mix was kept the same. PCR 

for the outside primers (1442R and 27F) was performed using a gradient of annealing 

temperatures from 44 to 54 degrees Celsius, placing samples at 44 degrees (5 degrees cooler), 

48 degrees (normal annealing temperature), and at 54 degrees (5 degrees warmer). Standard 

PCR cycle times and temperatures were kept the same. The gradient PCR for the inside 

primers (8F and 1391R) using annealing temperatures from 44 to 54 degrees Celsius, placing 

samples at 44 (10 degrees cooler), 48 (5 degrees cooler), and 54 degrees Celsius (normal 

annealing temperature).  

2.2.3 Gram Staining 

 Gram staining was used as a supplementary identification method to distinguish 

between Gram positive and Gram negative organisms. The specific protocol used was from 

the Small World Initiative manual (Hernandez et al., 2015).  

2.2.4 Gel Electrophoresis 

 Gel electrophoresis of the PCR products was run at 90 volts to check for the correctly 

sized DNA fragment. The gel was created using 60 mL of 10% agarose gel in 1x TAE buffer 

and the DNA was stained using SYBR green. When using the 2x Q5 Master Mix, 0.5 uL of 

10x SYBR was mixed with 5ul of the sample and 0.5 uL of loading dye. The protocol for 

using OneTaq was just to add 1uL of SYBR to the sample, as OneTaq contained its own 

loading dye. When it was determined that the correct product was made, the samples were 

sent off to Eton Biosciences for sequencing. The sequencing was run twice for each sample 

using the same primers used for PCR. When the sequences were returned from Eton 

Biosciences, they were inputted into the NCBI nucleotide BLAST search (Altschul et al., 

1990) with the 16s bacterial ribosomal option selected. The likely genus and species of the 

isolates was determined using the max score and the identification percent. This method 

however does not identify the isolates with complete certainty, and is only accurate to the 

genus level. The genus was determined due to all visible BLAST results sharing the same 

genus.  
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2.3 Extraction of Secondary Metabolites 

Organic extractions using both ethyl acetate and methanol were performed on solid 

media cultures (grown on LB agar) of the isolates that had been frozen by placing them in the 

-80
o
C freezer for 24 hours (Hernandez et al., 2015). Liquid nitrogen was also used to freeze 

samples by placing their conical tube in the liquid until frozen. Before freezing, the solid 

media cultures were removed from the petri dishes and placed in a 50 mL conical centrifuge 

tube. After the freezing period 12 mL of ethyl acetate and 8 mL of water or 20 mL of 

methanol were added depending on which solvent was used. The tubes were then allowed to 

gently rock at 25
o
C for 24 hours. After 24 hours the tubes were centrifuged at 2056.32 RCF 

for 15 minutes. The solvent phase was then pipetted off the top of the tube and deposited into 

a glass scintillation vial. It should be noted that the methanol extractions did not have a phase 

separation and therefore all liquid was pipetted off into a 50 mL tube and then centrifuged 

again. The liquid was then pipetted into a glass scintillation vial. The vials were then allowed 

to dry down completely by passing air over them in the fume hood and then they were 

suspended in 1 mL of the original solvent. The extracts were tested by applying 10 uL of 

extract on 6 mm diameter paper disks, made by using a paper hole puncher on Whatman 1mm 

filter paper, letting them dry, and overlaying these disks on plates of test species such as E. 

coli (ATCC 11795) and B. subtilis and allowing incubation for 24 hours. Zones of inhibition 

indicated a positive result for an active antibiotic extract.  

Organic extractions were also performed on liquid cultures of isolates 15-6 and 14-29. 

30 mL of liquid culture was grown at 25
o
 C for 5 days for both isolates. Ethyl acetate was 

used to extract the 15-6 isolate and methanol was used to extract the 14-29 isolate. Fifty 

percent of the volume of the liquid culture of solvent was added to the top of the liquid 

cultures in 50 mL conical tubes. The tubes were then allowed to shake at 25
o
 C for 24 hours. 

The rest of the liquid culture extraction method matches the solid media extraction procedure 

described in Hernandez et al., 2015. These extracts were tested the same way as the solid 

media extracts. For the methanol extracts further filtering was required after centrifugation. A 

0.2 micron test tube filter was utilizes to remove any remaining solid particles from the 

extracts. 



22 

2.3.2 Alternate Media Extractions 

 The 15-6 sample was grown and extracted from a variety of media types to determine 

if other media types could produce antibacterial product more efficiently. The agar media 

tested were LB, Potato Dextrose Agar (PDA), Trypticase Soy Agar (TSA), Reasoner’s 2a 

Agar (R2A), and Todd Hewitt Agar (THA) media. Samples from the 15-6 freezer stock were 

plated on each plate and left to grow at room temperature. After three days the plates were 

examined and growth documented. The plates were then left to grow for an additional two 

days (totaling five days of growth at room temperature), before they were extracted. All plates 

were extracted using the ethyl acetate extraction technique described in Section 2.3. All 

resulting extracts were analyzed with a zone of inhibition test and then were further analyzed 

and purified using techniques described in Section 2.4 to determine concentrations relative to 

each other.  

2.4 Chemical Analysis of Extracts 

 High pressure liquid chromatography (HPLC) was used as both an analytical 

technique and as a separation technique for both the 15-6 and 14-29 extracts using a 100 uL 

injection volume of the samples. The HPLC machine used was an Agilent 1100 series. The 

column used was the Zorbax RX-C18 (4.6 x 25 mm column, 5 μL, 300 Å) and the solvents 

used were 0.1% Formic acid in H2O (Solvent A) and 0.1% Formic acid in Acetonitrile. Table 

1 shows the elution profile used for this HPLC. The particular HPLC method used was taken 

from Wobbe (2015). 

Table 1: HPLC Elution profile used (Wobbe, 2015) 

Time (minutes) % Solvent A % Solvent B 

0 92 8 

4.25 92 8 

29.25 20 80 

37.55 20 80 

37.56 10 90 

45.85 10 90 

45.86 92 8 

54.15 92 8 
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Fractions were taken manually at five minute intervals for the HPLC runs. Starting at time 

zero the elution was collected from the column into a 15 mL conical tube, every five minutes 

the 15 mL tube was replaced being sure to keep and label all tubes in order of collection. The 

extracts of the 15-6 and the 14-29 isolates were run as well as the solvents present in the 

extracts (ethyl acetate and methanol respectively).  

 Initial attempts to dry the fractions down was done by passing nitrogen over the top of 

the liquid. This method however was too inefficient and lyophilization was chosen as an 

alternative. 

 Lyophilization was used to dry down both sets of the HPLC fractions. The lyophilizer 

used was a Savant Novalyphe-NL500. Each 5 mL fraction was transferred into either a large 

glass test tube or a 50 mL conical tube. The fractions were then frozen into shells using liquid 

nitrogen and placed into glass lyophilization canisters. A vacuum was pulled and the fractions 

were allowed to lyophilize for 24 hours or until no frozen solvent was visible. The test 

tubes/50 mL conical tubes were then thoroughly rinsed with the solvent used in the original 

extraction (ethyl acetate or methanol) and this solution was transferred to 15 mL conical tubes 

and dried down by passing air over them. The fractions were then resuspended in 100 μL of 

the respective solvent. 100 μL of solvent was used as this is the volume of the original extract 

that was injected into the HPLC column.  

In order to test the fractions, 10 uL of each fraction was spotted onto small filter paper 

disks in the same procedure as described above for the extract testing, and allowed to dry. 

Control fractions of just the extraction solvent (ethyl acetate or methanol) collected in the 

same way as the extract fractions were also spotted onto the filter paper disks in the same 

manner. The disks were then placed on an inoculated E. coli (ATCC 11795) or B. subtilis LB 

plate, all fractions were tested against both species. The plates were then allowed to incubate 

at 37
o
C for 24 hours. Zones of inhibition indicated fractions that contain the antibiotic 

compound.  

2.4.2 HPLC of Antibiotic Standards 

Antibiotic standards were run through the same HPLC method as above in order to 

determine similarities between the extractions and known antibiotics. The antibiotic standards 



24 

run included a penicillin/streptomycin mix (10,000 ug/uL), carbenicillin (50 mg/mL), 

ampicillin (10 mg/mL), tetracycline (15 mg/mL), gentamicin (10 mg/mL), cycloheximide (25 

ug/uL), and amphotericin B (10 mg/mL).  

3. Results 

 The purpose of these experiments was the optimization of different laboratory methods 

used in the Small World soil bacteria project as well as the identification of isolated 

antibacterial compounds from these soil bacteria. These methods were designed to identify 

bacterial strains isolated from soil samples that showed antibacterial activity, extract bacterial 

products from these samples, and characterize these products to determine their identity.  

3.1 Initial Antibiotic Production Screening 

Soil bacteria samples from the 2014, 2015, and 2016 Microbes to Molecules (BB 

2905) laboratory course were taken from their freezer stocks and plated on LB agar to 

determine which were still viable.  

  

 

Figure 13: Microbes to Molecules isolates plated by year of class (Isolates in photo were 

grown for 48 hours)  



25 

 After 48 hours, colonies of various sizes and colors were observed from each sample 

shown in Figure 13. It was also observed that certain strains grew larger colonies than others, 

but this information was not relevant as they had not been tested for antibacterial activity. 

These results showed that the cryo-storage method used by the class worked and that all of the 

samples were viable for further testing. Any potential antibacterial activity of the samples was 

tested using a top agar assay. A colony of each sample was grown on two separate LB agar 

plates. The two plates allowed for each soil bacteria sample to be tested for antibacterial 

activity against gram positive (B.subtilis) and gram negative (E. coli) bacteria. After the top 

agar mixed with its respective bacteria culture was added to the plates, they were left to grow 

as described above. 

 

Figure 14: E.coli (Left) and B. subtilis (Right) top agar screening plates. Note that 14-29 

is mislabeled in this figure as 14-39.  

The plates, after incubation, showed varying levels of antibacterial activity in Figure 

14. Antibacterial activity was observed on both the E. coli and B. subtilis plates. In some 

instances, the zone of inhibition was much bigger than others, such as the zone created by one 

of the colonies in the first row of column A of the E. coli plate. Some samples were also 

observed to only inhibit the growth of one type of bacteria, such as the 15-19 sample that only 

created a zone of inhibition on the E.coli plate. Soil bacteria samples that showed to have 

antibacterial activity were selected for further analysis. Specifically, samples that showed 

strong inhibited of both gram positive and gram negative bacteria were selected for further 
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screening. The results of the antibiotic production screening for all isolates tested are 

summarized in Table 2 below. 

Table 2: Antibiotic Production Screening Summary 

 

3.2 Organic Extraction of Isolate Cultures 

 Selected isolates were then grown on their own LB agar plates, transferred into 50 mL 

conical tubes, and then frozen using either liquid nitrogen or the -80 
o
C freezer. These growth 

plates were then used to extract any bacterial products using the ethyl acetate extraction 

method. The extraction samples were then applied to paper circles and placed on LB agar 

plates that were previously inoculated with liquid media of E.coli and B.subtilis.  



27 

 

Figure 15: Bacterial extracts extracted with ethyl acetate from solid media tested on E. 

coli and B. subtilis 

Out of all of the samples collected from the ethyl acetate extraction, only the 2015-6 

(dubbed 15-6) samples showed to still have a product that had antibacterial characteristics, 

shown in Figure 15’s frames A (against E. coli) and B (against B. subtilis). The remaining 

samples and the control (which was a filter disk with only ethyl acetate added) showed no 

zones of inhibition.  

 The bacterial isolates whose extracts did not produce zones on either test species were 

used again to see if any antibacterial products would be extracted out of them using methanol. 

It was noted that during this extraction, many of the samples did not separate well and many 

contained large amounts of solid particulate. This solid particulate was filtered from samples 

before other analytical techniques were performed.  
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Figure 16: Bacterial extracts extracted in methanol from solid media tested against E. 

coli and B. subtilis 

The samples were tested using the same technique used for the ethyl acetate 

extractions. Observed in Figure 16, only sample 2014-29 (dubbed 14-29) was observed to 

produce zones of inhibition on the plates. The remaining samples and the control (made by 

placing a paper circle on the agar that only had methanol added to it) failed to produce any 

zones of inhibition. 

3.3 General PCR Results 

Colony PCR was utilized to help identify the soil bacteria. Primers for the 16s subunit 

of the ribosome were selected to produce DNA samples to be sequenced. Using the normal 

PCR protocol for the 16s subunit showed poor results for most samples. Using a gradient of 

annealing temperatures, it was determined that the PCR produced more quality product at 44 

C when using the 27F and 1492R primers.  

The gyrase gene targeted PCR was then conducted on samples identified as being in 

the Bacillus genus. The attempted PCR did not produce sufficient amounts of DNA. Due to 

limited time and repeated insufficient results from the gyrase PCR, attempts to sequence the 

Bacillus samples were not pursued further.  

3.4 Isolate 15-6 

 The 15-6 isolate produced an antibiotic compound that could be extracted using the 

ethyl acetate extraction technique. 15-6 grew slowly on LB agar at room temperature, taking 

at least 72 hours before colonies are visible. It was able however able to readily produce the 
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antibiotic compound on LB agar. 15-6 also grew slowly in LB liquid media taking at least 72 

hours before the media becomes cloudy or clumps of colonies are apparent. On LB agar the 

colonies are very small, circular, and have a hard and waxy texture, making them difficult to 

pick up when inoculating other media. After 96 hours a yellow-brown precipitate could be 

seen excreting from the colonies on the plate.  

 

Figure 17: Gram stain of isolate 15-6 at 400x magnification 

 

When 15-6 was gram stained it appeared gram positive and filamentous (seen in Figure 17). 

3.4.1 15-6 Metabolic Assays 

 The results of four metabolic assays for the 15-6 isolate were recorded in Figure 18. 

These assays in clockwise order are glucose fermentation, lactose fermentation, amylase 

assay, and the MacConkey agar assay.  
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Figure 18: 15-6 isolate metabolic assay results 

The physical results shown in Figure 18 are summarized in Table 3 below. 

Table 3: 15-6 metabolic assay summary of results 

 

The 15-6 isolate appears to be unable to ferment glucose as no acid or gas was formed 

in the glucose metabolism assay. In the lactose metabolism assay gas was present, but the 

media did not turn yellow indicating that no acid was fermented from the carbohydrate.  

15-6 did not grow on the starch plate; therefore the presence of amylase could not be 

determined. The 15-6 isolate also did not grow on MacConkey agar. This result is expected as 

15-6 appears to be gram positive and MacConkey agar is designed to select against gram 

positive bacteria. 
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3.4.2 15-6 PCR results 

According to the 16s ribosomal nucleotide BLAST search alignment (Altschul et al., 

1990) 15-6 is likely a Streptomyces species. The exact species cannot be determined with the 

sequences that were obtained. The likely species include Streptomyces costaricanus, 

Streptomyces murinus, Streptomyces phaeogriseichromatogenes, and Streptomyces 

misionensis. Figure 19 summarizes the BLAST 16s ribosomal subunit sequence alignment 

results for isolate 15-6. The 16s ribosomal nucleotide alignments for the top three matched 

species are shown in Figures 20-22. 

 

Figure 19: 15-6 16s ribosomal subunit sequence alignment results (sequenced with 27F 

primer) 
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Figure 20: 15-6 and Streptomyces costaricanus (strain NBRC 100773) 16s ribosomal 

subunit partial sequence alignment  
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Figure 21: 15-6 and Streptomyces murinus (strain NBRC 12799) 16s ribosomal subunit 

partial sequence alignment  
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Figure 22: 15-6 and Streptomyces phaeogriseichromatogenes (strain NRRL 2834) 16s 

ribosomal subunit partial sequence alignment  

 The BLAST results, shown in Figure 19, indicated that the sequences generated from 

the 16s PCR was equally probable to belong to numerous bacteria strains. This was 

demonstrated in Figures 20-22 when the DNA sequences of the top three BLAST matches 

were aligned with the DNA generated from PCR. Each DNA sequence from BLAST results 

showed equally high levels of similarity with the 15-6 16s Ribosomal subunit DNA. 
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3.4.3 15-6 Growth and antibiotic production on various solid media  

Over the course of the project, the growth of 15-6 was noted to be very slow, requiring 

three days to grow to concentrations with defined colonies. Different agar media types were 

then used to determine if 15-6 grew more efficiently on other media besides LB. The agar 

media tested were LB, Potato Dextrose Agar (PDA), Trypticase Soy Agar (TSA), Reasoner’s 

2a Agar (R2A), and Todd Hewitt Agar (THA) media. The plates were left to grow for five 

days and the resulting bacterial growth was documented.  

 

Figure 23: 15-6 growth on LB (A), PDA (B), TSA (C), R2A (D), and THA (E) 

 The plates, Figure 23, showed that the 15-6 sample grew at different rates for each 

media. The PDA and THA media showed the largest concentration of colonies. TSA media 

showed the lowest, with R2A and LB media showing about the same concentrations of 

colonies. Every plate had its bacterial product extracted using ethyl acetate extraction.  

The extracts were then used on a zone of inhibition tests against E.coli and B.subtilis. 

The goal of this test was to determine if any of the extracted samples produced a more 

concentrated sample. The theory being, more concentrated samples would show larger zones 

of inhibition on the plates. 
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Figure 24: Testing of 15-6 extracts extracted from LB, PDA, TSA, R2A, and THA media 

against B. subtilis (A) and E. coli (B) 

 After letting the E.coli and B.subtilis grow on the treated plates for 24 hours, the plates 

shown in Figure 24 were obtained. Each of the extracts showed to produce clear zones of 

inhibition on the B.subtilis plate and very faint zones of inhibition on the E.coli plate. Along 

with the control showing no zones of inhibition, as it served as a negative control, the R2A 

and PDA extracts were observed to have slightly larger zones of inhibition. The THA, LB, 

and TSA extracts were observed to have smaller zones of inhibition.  

3.4.3.2 Various Solid Media 15-6 Extract HPLC Results   

 Further analysis of the extracts along with the purification of the extracts was 

conducted using an HPLC column. Previously grown 15-6 extract, grown on LB media, was 

used to determine elution times. Elution times and protocols from this experiment, shown in 

section 3.6, were used to design the HPLC graphs shown in Figures 25-29. Each extract was 

run through the HPLC for 30 minutes and the fraction from the 25-30 minute time period was 

collected.  
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Figure 25: HPLC chromatogram of 15-6 grown on TSA extracted in ethyl acetate  

 

Figure 26: HPLC chromatogram of 15-6 grown on THA extracted in ethyl acetate  
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Figure 27: HPLC chromatogram of 15-6 grown on R2A extracted in ethyl acetate  

 

Figure 28: HPLC chromatogram of 15-6 grown on PDA extracted in ethyl acetate  
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Figure 29: HPLC chromatogram of 15-6 grown on LB extracted in ethyl acetate  

 The generated HPLC chromatograms from the 15-6 samples grown on various media 

showed unique results for each media type. Previous testing indicated that the 15-6 

antibacterial compound eluted at the 25-30 minute fraction, indicated on each graph (Data 

recorded in Section 3.6). TSA, THA and LB media, shown in Figures 25, 26, and 29 showed 

the smallest peaks at the 25-30 minute time interval. The 15-6 extract grown from R2A media 

showed the second highest peaks of solution at the designated time interval, shown in Figure 

27. The PDA media sample was observed to have the highest peak of at the designated time 

interval, shown in Figure 28. Despite these results, LB media was used for the rest of the 

laboratory experiments. This was due to limited supply of alternate media types as well as 

time.  

3.5 Isolate 14-29 

The 14-29 isolate grows relatively fast at room temperature on LB agar with colonies 

appearing within 24 hours. 72 hours is however necessary for a full lawn of growth to appear. 

Colonies appear soft, irregularly shaped, and cream colored.  
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Figure 30: Gram stain of isolate 14-29 at 400x magnification 

When Gram stained the bacteria appear to be gram positive rods (Figure 30).  

3.5.1 14-29 Metabolic assays 

 The results of four metabolic assays for the 14-29 isolate were recorded in Figure 31. 

These assays in clockwise order are glucose fermentation, lactose fermentation, amylase 

assay, and the MacConkey agar assay.  

 

Figure 31: 14-29 isolate metabolic assay results 

The physical results shown in Figure 31 are summarized in Table 4 below. 
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Table 4: 14-29 metabolic assay summary of results 

 

The 14-29 isolate appears to be able to ferment glucose as the media turned yellow, 

indicating the presence of an acid, and gas was formed. In the lactose fermentation test, gas 

was formed but the media did not turn yellow, indicating no acid was present.  

14-29 appears to be amylase positive (Figure 31). On the MacConkey agar plate in 

Figure 19 14-29 is mislabeled as 14-39. 14-29 did not grow on MacConkey agar. This result is 

expected as 14-29 appears to be gram positive and MacConkey agar is designed to select 

against gram positive bacteria. 

3.5.2 14-29 PCR results 

According to the 16s ribosomal nucleotide BLAST alignment (Altschul et al., 1990), 

14-29 is likely a Brevibacillus species. The exact species cannot be determined with the 

sequences that were obtained. The most likely species include Brevibacillus laterosporus, 

Brevibacillus inocatus, or Brevibacillus fomnosus. A summary of the top sequence alignment 

results can be seen in Figure 32. The nucleotide alignments for the top five matches are 

shown in Figures 33-37.  
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Figure 32: 14-29 16s ribosomal subunit sequence alignment results (sequenced with 

1492R primer) 
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Figure 33:14-29 and Brevibacillus laterosporus (strain DSM 25) 16s ribosomal subunit 

partial sequence alignment 
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Figure 34:14-29 and Brevibacillus laterosporus (strain IAM 12465) 16s ribosomal subunit 

partial sequence alignment 
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Figure 35:14-29 and Brevibacillus laterosporus (strain NBRC 15654) 16s ribosomal 

subunit partial sequence alignment 
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Figure 36:14-29 and Brevibacillus invocatus (strain LMG 18962) 16s ribosomal subunit 

partial sequence alignment 
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Figure 37: 14-29 and Brevibacillus invocatus (strain NCIMB 13772) 16s ribosomal 

subunit partial sequence alignment 

The BLAST results, shown in Figure 32, indicated that the sequences generated from 

the 16s PCR was equally probable to belong to numerous bacterial species or strains. This was 

demonstrated in Figures 33-37 when the DNA sequences of the top three BLAST matches 

were aligned with the DNA generated from PCR. Each DNA sequence from BLAST results 

showed relatively equal levels of similarity with the 14-29 16s Ribosomal subunit DNA. 

3.6 LB Media Extracts HPLC Results of Samples 15-6, 14-29, and Solvents 

 The extraction samples were then run through an HPLC column to help purify the 

antibacterial product out of the extracts as well as gather chemical data on the extractions. 

Additionally, HPLC was used for ethyl acetate and methanol by themselves to create standard 

chromatograms to compare with the chromatograms of the extracts. The ethyl acetate standard 

is Figure 38 and the methanol standard is Figure 41. 
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 After samples 15-6 and 14-29 were filtered through the HPLC column, the solution 

that ran through the column was collected in five minute fractions. These fractions were dried 

down and resuspended in 100 μL of the original solvent used for the extraction of that 

particular isolate (ethyl acetate for 15-6 and methanol for 14-29). Fractions were collected 

from the ethyl acetate and methanol standards and were tested alongside the extract fractions 

as a control. Each fraction was then applied to paper tested using the same inhibition zone 

assay as before. This assay is shown in Figure 40 for 15-6 and Figure 43 for 14-29.  

  

Figure 38: HPLC chromatogram of ethyl acetate 

The ethyl acetate chromatogram (Figure 38) is characterized by a peak at approximately 

seven minutes and two peaks at 42 minutes and 43-50 minutes respectively. These peaks are 

also present in the 15-6 chromatogram seen in Figure 39. 
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Figure 39: HPLC chromatogram of the 15-6 extract in ethyl acetate 

The HPLC result of the 15-6 sample showed three distinct peaks (seen in Figure 39).  

 

Figure 40: 15-6 extract fraction testing against B. subtilis (Panel A) and E. coli (Panel B)  

 The fractions collected from the 15-6 sample, shown in Figure 40 appear to have 

zones of inhibition at fraction 6 for the gram positive B. subtilis plate (A). There was also a 

small zone of inhibition from fraction 12 on the B. subtilis plate. There was a faint zone 

present on the E. coli plate (B) for fraction 6 as well. This zone from fraction six corresponds 

to a peak on the 15-6 chromatogram outlined with an orange bracket.  
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Figure 41: HPLC chromatogram of methanol 

The HPLC chromatogram (Figure 41) of methanol defining feature is one large peak from 

approximately 41 minutes to 49 minutes. This feature is shared in the 14-29 chromatogram 

(Figure 42). 
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Figure 42: HPLC chromatogram of the 14-29 extract in methanol 

 The chromatogram generated when the 14-29 extract was run through HPLC resulted 

in numerous peaks. Most notably were three distinct peaks in the 15-20, 20-25, and 25-30 

minute time intervals. It was noticed however, that these three peaks vanished when exposed 

to 330 nm wavelengths of light. Despite this, all fractions were tested using zone of inhibition 

tests to determine with fractions contained compounds with antibacterial activity. 
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Figure 43: 14-29 extract fraction testing against B. subtilis (Panel A) and E. coli (Panel 

B)  

 The zone of inhibition tests run for the fractions collected from the HPLC purification 

of the 14-29 sample showed several zones of inhibition. Shown in Figure 43, fractions 4, 5, 

and 6 (collected from time intervals 15-20 minutes, 20-25 minutes, and 25-30 minutes 

respectively), created small zones of inhibition on the B.subtilis plate, Figure 43A, and 

minimal inhibition on the E.coli plate, Figure 43B. It was noted that in these fractions, peaks 

of activity were noted in the chromatogram at the same time intervals, indicated in Figure 42.  

3.6.2 Antibiotic Standards HPLC Results  

 Antibiotic standards were run through the HPLC column using the same protocols 

used for the extract samples (15-6 and 14-29) and their solvents. The antibiotic stock 

standards were used in order to find similarities in the chromatograms between the standards 

and the selected samples.  

 

 

Figure 44: HPLC chromatogram of penicillin and streptomycin 

The HPLC chromatogram (Figure 44) of penicillin and streptomycin is characterized by a 

sharp narrow peak at approximately 12 minutes on the 246 nm and 285 nm wavelength 

chromatograms, a sharp narrow peak at approximately 16 minutes on the 330 nm wavelength 

chromatogram, and a large broad peak from approximately 40 minutes to 50 minutes.  
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Figure 45: HPLC chromatogram of tetracycline 

The HPLC chromatogram (Figure 45) of tetracycline is characterized by a mass of four peaks 

from approximately 2-11 minutes and a peak from 40 minutes to 50 minutes. This fifth peak 

however did not appear on the third wavelength (330 nm). 

 
Figure 46: HPLC chromatogram of cycloheximide 

The HPLC chromatogram (Figure 46) of cycloheximide is characterized by a cluster of peaks 

ranging from approximately 15-24 minutes. A large peak is also present from approximately 
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40-49 minutes on the 246 nm and 285 nm wavelength chromatograms.  

 

Figure 47: HPLC chromatogram of carbenicillin 

The HPLC chromatogram (Figure 47) of carbenicillin is characterized by one sharp peak at 

approximately three minutes and three sharp peaks from approximately 15-22 minutes. A 

large peak is also present from approximately 41-49 minutes on the 246 nm and 285 nm 

wavelength chromatograms.  

 

Figure 48: HPLC chromatogram of kanamycin 

The HPLC chromatogram (Figure 48) of kanamycin is characterized by a small broad peak 
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from approximately 10-13 minutes on the 330 nm chromatogram and a large broad peak from 

40-50 minutes.  

 

Figure 49: HPLC chromatogram of gentamicin 

The HPLC chromatogram (Figure 49) of gentamicin is characterized by two sharp peaks at 2 

minutes and 3.5 minutes respectively as well as a large broad peak from 40-50 minutes.  

 

Figure 50: HPLC chromatogram of ampicillin 

The HPLC chromatogram (Figure 50) of ampicillin is characterized by several small peaks 

ranging from approximately 15-24 minutes and a large broad peak from approximately 40-50 
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minutes.  

 

Figure 51: HPLC chromatogram of Amphotericin B 

The HPLC chromatogram (Figure 51) of amphotericin B is characterized by a peak at 3 

minutes and a dense cluster of peaks ranging from 10 minutes to 40 minutes. This standard 

like all the others tested shares the peak from 40-50 minutes. This can be assumed to be the 

solvent they are suspended in as this consistent with the methanol chromatogram in Figure 41.  

4. Discussion 

The rising threat of antibiotic resistant bacteria is a problem that science must address. 

Many new strains of what were once easily treated diseases have emerged and threaten the 

world with catastrophic epidemics. The current arsenal of effective antibiotics available to 

combat such pathogens has started to dwindle to stronger antibiotics that have negative 

consequences for the patient when used to treat the bacterial pathogen. However, groups such 

as the Small World Initiative have formed to help. Worcester Polytechnic Institute has begun 

their own contributions for the initiative in the form of the Microbes and Molecules BB2905 

laboratory course. The goal of this project was to take the preexisting methods and identified 

producers from past BB2905 classes to create an optimized pipeline system for the 

identification of soil microbial isolates, selection of microbial isolates that produce 

antibacterial products, isolate said products, and characterize them. The hope of this pipeline 

was to allow students to identify new sources of antibiotics and new classes of antibacterial 
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products that could be used to combat antibiotic resistant bacteria.  

The first step of the pipeline was to test which of the microbe samples from previous 

years of the BB2905 Lab course were still viable after cryopreservation and which of those 

produced antibacterial compounds. All samples were successfully grown on the LB media, 

shown in Figure 13, confirming that all samples were still viable and that the cryopreservation 

protocols of the BB2905 course worked as intended. All samples were then tested using a top 

agar assay against E.coli and B.subtilis bacteria. E.coli and B.subtilis were selected as they 

were well established lab cultures of gram negative (E.coli) and gram positive (B.subtilis) 

bacteria. Other bacteria types were used to determine which bacteria standards should be used, 

such as S.epidermis, E.aerogenes, A.baylyi, and K.pneumonia. However, the other bacteria 

were harder to grow and showed inconsistent results for basic testing. E.coli and B.subtilis 

strains, conversely, showed more consistent results, and were then used for the other 

experiments in this project. If the BB2905 microbes produced an antibiotic product effective 

against E.coli or B.subtilis, a visible zone of inhibition would have been observed. After they 

were incubated, numerous samples, shown in Figure 14, created zones of inhibition on the 

E.coli and B.subtilis top agar assay plates. With a variety of samples to choose from, samples 

that showed to have antibacterial activity against both E.coli and B.subtilis were selected for 

further testing.  

The selected samples were then identified, as many groups in the BB2905 course did 

not have success sequence identifying their samples. This was mostly due to the inconsistent 

success of attempts to PCR amplify the 16s ribosomal subunit of microbial DNA. Most often, 

the PCR did yield sufficient amounts of DNA or long enough strands of useable for 

sequencing. The protocols for the 16s PCR were altered and tested to determine which kinds 

of changes yielded enough DNA to be sequenced without becoming too inaccurate. This was 

done through gradient PCR and using a new PCR mix (OneTaq, instead of Q5 High Fidelity 

Master Mix). The gradient PCR indicated that using the provided 16s primers (27F and 

1492R) with an annealing temperature of 44℃, five degrees below its original annealing 

temperature, produced better results. The new protocol yielded more DNA product that was 

sufficient in length to be properly sequenced. Additionally, repeat tests of this protocol 

produced consistent sequencing results, indicating that the DNA was not too random to 

potentially misidentify a sample (a prominent concern due to the very low annealing 
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temperature). However, the resulting DNA sequences were only able to identify the genus of 

each sample, showing multiple species to have similar probability of being the sequenced 

sample. The most notable example of this was with samples identified to be in the Bacillus 

genus. These samples were highly similar and individual species could not be distinguished 

on the basis of the 16S ribosomal sequences alone.   

PCR protocols and primers that targeted the gyrase gene were tested on the Bacillus 

samples as an attempt to identify them further. Unfortunately, most of the samples failed to 

produce any PCR product and those that did, when sequenced, produced sequences that were 

identified as being from either completely different genera of bacteria or from different genes 

all together. Due to the many potentially pathogenic species within the Bacillus genus that 

were among those identified by sequencing, samples identified as such were not selected for 

further testing. Further testing of the PCR protocol for the gyrase gene was not pursued due to 

time constraints. Just as the PCR protocol for the 16s subunit was optimized for use on soil 

bacteria, the PCR protocol for the gyrase gene should be tested and optimized by future 

projects. Additionally, alternate gene targets for PCR should be researched and tested to help 

increase the identification accuracy of collected soil microbes. The samples that were selected 

were 15-6 (identified to be in the Streptomyces genus) and 14-29 (identified to be in the 

Brevibacillus genus). The level of accuracy obtained from these tests was sufficient for the 

purposes of this project as no notable pathogenic strains were shown to be the likely identity 

of these samples.  

Alternate non-PCR methods for identifying soil microbe samples were also tested. 

Focusing on the metabolism of the organisms, different growth media was used to determine 

if the organisms could metabolize different sugar sources. Other tests focused on the cellular 

structure of the microbes such as the presence of a cell wall. Using readily available media, 

the different tests did yield information regarding each sample. The problem with this data is 

that, in order to use it, it would need to be compared to previously compiled information on 

specific bacteria. This is a much more time consuming method and it can run into the same 

problem as the 16s target sequencing. Many organisms share similar metabolic and cellular 

processes and for any certainty, sequencing would be needed for any confirmation. As an 

educational tool, having students conduct these tests would be useful. That being said, the 

primary method for identifying the soil samples should be sequencing techniques. 
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Additionally, experimenting with which types of media the microbes grow on more efficiently 

should be conducted. This project only tested the 15-6 sample using multiple agar media (LB, 

R2A, PDA, THA, and TSA) due to limited resources and time. When tested, potato dextrose 

agar was shown to be a much more viable media to grow the sample on than the previously 

used LB agar.  

The problem with growing soil microbes on agar is that optimum growing conditions 

have to be determined for each sample. Even then, the optimum conditions may take a 

considerable amount of time. The solid cultures for the 15-6 samples took at least five days to 

grow and produce significant levels of antibacterial product. The 14-29 sample took less time 

to grow, but did not produce as concentrated antibacterial product. When 15-6 was identified, 

the creation of liquid cultures in LB media was attempted. However, the cultures needed to be 

thoroughly aerated to grow significant amounts of cells and this was difficult with the 

available materials. Additionally, 15-6 was observed to clump together at the bottom of the 

tubes, given its filamentous cellular structure. These samples, just like the agar media cultures, 

required up to a week to grow sufficiently and had to be grown at room temperature. The 

challenge with growing soil microbes to produce desired antibacterial products is a balance 

between stress and growth. Certain media may provide the bacteria with the required nutrients 

to replicate to higher colony counts or concentrations, but might not stress them enough or 

give them the right conditions to produce their product. Growing the cultures on low nutrient 

media may stress the organism, but the media may lack the required materials for the bacteria 

to make its product. Co-culturing the bacteria with another established strain of bacteria (such 

as E.coli) may help produce the product. However the presence of the other bacteria may 

make extracting the antibacterial product harder as it may produce its own molecules that 

could be similar to or block the desired product. Further experimentation into growing 

protocols for more efficient antibacterial molecule production should be investigated. Such 

experiments could entail, testing selected samples on a wider variety of rich and low nutrient 

media as well as different temperatures. This data would allow for much more efficient 

sample growth protocols and should be thoroughly documented to aid future experimentation 

on selected soil bacterial samples. 

The grown 15-6 and 14-29 LB cultures were then extracted using different extraction 

techniques to separate out any bacterial products from the cells and media. Two extraction 
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protocols were used: ethyl acetate extraction and methanol extraction. The ethyl acetate 

extraction technique yielded clean and positive results for the 15-6 sample. Additionally the 

bacterial products suspended in ethyl acetate were much easier to dry down for resuspension 

in set volumes, due to the volatile nature of ethyl acetate. The other extraction technique 

utilized methanol for its suspension solvent. It was primarily used for sample 14-29 because 

the sample was observed to only be successfully extracted using the methanol extraction 

protocol. However, the methanol extracts contained significant amounts of particulate. These 

samples had to be filtered using 0.2 micron filters before they could be analyzed using HPLC 

to prevent them from clogging up the column. The results of the extraction protocols showed 

that the success of the extraction depended on the target product. Ethyl acetate extraction 

yielded a cleaner product, but not all molecules were soluble in it. Methanol, comparatively, 

was able to extract out a wider variety of products than ethyl acetate. More products being 

soluble in methanol resulted in messier samples that required additional filtering and testing to 

ensure the antibacterial product was still present. Even though the two samples were 

successfully extracted using ethyl acetate and methanol techniques, there is no guarantee that 

all antibacterial products created by soil microbes will be. Because of this, other extraction 

techniques such as dichloromethane based extraction or solid phase extraction methods should 

be investigated. These new techniques could help extract different antibacterial samples and 

could potentially show what types of chemicals unknown antibacterial products are soluble in. 

This data could then be used to help analyze the chemical makeup, such as presence of 

chlorine or amine groups, of the unknown antibiotic compounds.  

The extracts from samples 15-6 and 14-29 were then analyzed and purified using a 

C18 HPLC column. Using a solvent gradient of water with 0.1% formic acid and acetonitrile 

with 0.1% formic acid, the samples were separated into twelve equal factions over the course 

of one hour.  Each of these fractions was then tested to determine at what time point the 

antibacterial product passed through the column. This information was then matched to the 

graphs created by the HPLC machine. The 15-6 sample was observed to elute through the 

column into fraction six, at the 25-30 minute time period, due to the clear zone of inhibition 

when tested against B.subtilis and E.coli. This was matched to the single peak recorded by the 

HPLC machine within the 25-30 minute time period. The 14-29 sample showed a more 

complicated result. When the fractions were tested using a zone of inhibition test, fractions 
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four, five, and six showed signs of containing antibacterial products. When the HPLC graph 

was analyzed, three peaks were observed within the three adjacent time periods collected in 

fractions four, five, and six. This indicated that the 14-29 sample may have produced three 

separate antibacterial products. In order to help analyze these HPLC results, known antibiotics 

(shown in Figures 44-51) were run through the HPLC column to create a standard for 

comparison. When compared, neither samples 15-6 or 14-29 matched up enough with the 

created standards to allow for a confident identification. The fact that neither sample matched 

with any standards could have been several factors. The first was that the antibiotics used for 

the creation of the standards were stocks taken from what was available in the laboratory. 

Normally, companies specifically make antibiotic standards for use in HPLC and these 

standards may run differently than the stocks used for these experiments. The next factor is 

that only nine antibiotics were used to create the standards. These nine did not cover every 

class and type of antibiotic available to modern medicine. More types of antibiotics, including 

standards specifically for the protocol used for the HPLC column, should be used to create 

standard HPLC graphs. These standards would allow for the potential identification of a wider 

variety of antibiotics. In future experiments when these standards are created, samples 14-29 

and 15-9 should be compared again. If neither sample matches with any known antibiotic 

standard, it could indicate that the samples may be a new type of antibiotic.  

The characterization of the antibacterial samples utilizing more chemical techniques 

was then investigated for the 15-6 sample. The 15-6 sample was selected due it only having a 

single fraction that showed strong antibacterial activity. The most efficient method of 

compound identification was a combination of nuclear magnetic resonance spectroscopy 

(NMR) and mass spectroscopy.  The purified products of 15-6, unfortunately, were not tested 

using this method. The limiting factor that prevented the use of the combination of NMR and 

mass spectroscopy was that it required 25 mg of sample and only 0.04 mg of 15-6 was 

obtained. This was due to the lack efficient methods for the mass production of antibacterial 

product from the 15-6 sample. Liquid cultures of 15-6 took too long to create and were 

observed to not produce significant concentrations of antibacterial products compared to the 

solid media cultures. More optimal growing protocols for each soil microbe sample should be 

established to allow for larger quantities of antibacterial product to be isolated. Additionally, 

tests for more efficient growing conditions that produce more concentrated samples of 
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antibiotic product should be conducted. A wider variety of rich and minimal media cultures as 

well as differential and selective media should be used to grow the bacterial cultures. Once 

grown, any products should be extracted and analyzed to determine concentration. Other 

alternate techniques such as attempting co-cultures of antibiotic producing bacteria against 

E.coli or B.subtilis could also be analyzed. The bacterial culture used for the co-culture should 

be tested to determine if it makes any antibacterial products beforehand, to prevent any 

potential false positives. 

 Other potential identification methods should be investigated that allow for accurate 

identification of complex molecules that require smaller samples. Future experiments should 

consider investigating the use of tests such as UV and IR spectroscopy would be useful for 

gathering additional data on the properties of isolated antibiotic samples (especially if they are 

observed to produce fluorescence). Other tests such as paper chromatography could also be 

useful for analytical purposes. Paper chromatography is not as specific as HPLC, NMR, or 

mass spectroscopy when it comes to analyzing the chemical makeup of a compound. 

However, paper chromatography may be useful in an undergraduate laboratory course setting. 

The test is more simplistic to use and can be compared to standards created from well 

documented antibiotics. This kind of test should be used by BB2905 and the results 

documented to provide a jumping off point for further analysis.  

Each step of the antibacterial identification pipeline was then summarized to key 

protocol changes for use by the BB2905 laboratory course. The later steps of the pipeline 

were noted to potentially be too time consuming and complicated for a seven week 

undergraduate laboratory class to thoroughly complete. Common antibiotics are known to be 

highly variable in terms of chemical structure and mechanistic class. An undergraduate 

biology laboratory course would most likely be able to reach the purification of antibacterial 

products into HPLC separated fractions. From here the creation of a connected chemistry or 

biochemistry based laboratory course that focuses on characterizing and identifying unknown 

antibacterial fractions from the biology class would be very advantageous. This course could 

perform numerous experiments to test the chemical properties of the isolated samples. Even if 

the second laboratory course is unsuccessful in fully identifying the unknown antibiotic, the 

data gathered would still be valuable for the groups such as the Small World Initiative.   

The purpose of this project was the creation of an antibiotics identification pipeline. 
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Utilizing techniques and antibacterial compound producing bacteria samples from the 

BB2905 course, each step of the proposed pipeline was created and optimized. This pipeline 

was designed to identify soil bacteria, detect if the identified bacteria produced any 

antibacterial compounds, extract these antibacterial compounds, purify the extracts, and 

characterize them. The protocols improved in this process allowed for the identification of 

bacterial samples 15-6 and 14-29 to be in the Streptomyces and Brevibacillus genuses 

respectively. This also allowed in the optimization of the 16s subunit PCR protocols, enabling 

a higher sequencing success rate for future laboratory courses. 15-6 and 14-29 were also 

confirmed to produce antibacterial compounds effective against E.coli and B.subtilis cultures. 

The created pipeline was also able to extract 15-6 products using acetyl acetate extraction and 

14-29 products using methanol extraction. These samples were then successfully purified 

using an HPLC column to create isolated fractions of antibacterial products. Unfortunately, 

the characterization of the purified fractions was not accomplished. NMR and mass 

spectroscopy were to be used to characterize the fractions, but not enough product was 

available for such testing. Future project groups and BB2905 courses should expand upon the 

techniques tested by this project. A crucial component that should be investigated further is 

the methods for producing larger quantities of antibacterial product from selected soil 

microbes. Alternate characterization tests should also be investigated, such as UV 

spectroscopy, to try to characterize purified samples while requiring less material to work 

with. Other more basic chemical tests such as pH, polarity, and the separation of potential 

products using paper chromatography should also be investigated. These tests might not be as 

data rich as NMR or mass spectroscopy, but could be more practically implemented into 

undergraduate biology, biochemistry, and chemistry laboratory courses. Additional input from 

biochemistry and chemistry departments should be obtained to potentially create a new course 

to tackle the challenge of identifying the many purified antibiotic samples that will be created 

utilizing the pipeline created by this project.     
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Appendix I: Microbes to Molecules Freezer Stock Isolates 

 

 

Year ID number Student initials Writing on tube 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2014 

14-1 DA DA & RH 

14-2 ARB Baker 

14-3 HMB col.1/col.3 HB 5/5/14 

14-4 CAB CB Col 1/2 

14-5 AHB AB IS 1/2 

14-6 PDB SW6 Iso9 ; Iso20; 

A,B,C 

14-8 REC N/A 

14-10 KMD KMD 5/5/14 

14-11 RMG Rebecca German #18 

SW11 

14-12 RSG Rhiannon Goddard 

SW12 

14-13 CHH CH 23, CH 8 

14-14 WJH WH RM SW14 SW23 

14-15 RDH 
N/A 

14-16 JLH EP JH SW26 SW16 

14-17 
AK AK SA 

14-18 
CBK N/A 

14-19 

GK 

G.K. 11 SW19A; G.K. 

24 SW19B 
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14-20 
SNL SL1; SL2 

14-21 

CLL 

SW21A 5/5/14 CL, 

SW21B 5/5/14 

14-22 
KEL KL CT 5/5/14 

14-23 
RAM WH RM SW14 SW23 

14-24 
DMM DM 

14-25 
BNS 

N/A 

14-26 
EJP 

EP JH SW26 SW16 

14-29 ER SW29A-D CR+ER 

 

 

 

 

 

 

 

 

 

 

 

2015 

15-1 
LG 

N/A 

15-2 
LG 

N/A 

15-3 
JD/GS 

N/A 

15-4 
JD/GS 

N/A 

15-5 
KK 

N/A 

15-6 
KK 

N/A 

15-7 
VS 

N/A 

15-8 
VS 

N/A 

15-11 EB N/A 

15-14 KK N/A 

15-18 
BH 

N/A 

15-19 
BH 

N/A 
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15-20 
BH 

N/A 

15-21 
BH 

N/A 

15-24 
SE 

N/A 

15-25 
SE 

N/A 

15-26 
KC 

N/A 

15-27 
KC 

N/A 

15-28 
CB/EP 

N/A 

15-32 SW/CM N/A 

15-36 
AP 

N/A 

15-37 
AP 

N/A 

15-38 
LG 

N/A 

15-39 
LG 

N/A 

15-43 SL N/A 

15-44 SL N/A 

15-56 NF N/A 

 

 

 

 

 

 

 

 

 

2016 

16-1 
NB 

N/A 

16-2 
JB 

N/A 

16-3 
JB 

N/A 

16-4 
MH 

N/A 

16-5 
AM 

N/A 
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16-6 
NS 

N/A 

16-7 
DC 

N/A 

16-8 
DC 

N/A 

16-10 
MH 

N/A 

16-11 
TN 

N/A 

16-12 
HM 

N/A 

16-13 
LM 

N/A 

16-14 
LM 

N/A 

16-15 
AW 

N/A 

16-16 
HN 

N/A 

16-17 
AH-M 

N/A 

16-18 
AH-M 

N/A 

16-19 
HM 

N/A 

16-20 - N/A 

16-21 
AS 

N/A 

16-22 
AS 

N/A 

16-23 
HN 

N/A 
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Appendix II: Indole Assay Procedure 

 

Goal:  

To determine if tryptophanase is present in the bacterial isolate culture to give insight into the 

metabolism of the isolate.  

 

Materials: 

● Test tubes 

● Tryptone broth 

● Bacterial isolates 

● Kovac’s reagent  

 

Methods: 

 

The culture was grown in tubes containing tryptone broth (a broth high in tryptophan) at room 

temperature for four days. After the incubation period a drop of Kovac’s reagent was added to 

the culture tube and the tube was observed for a color change. A negative test will result in a 

orange ring at the top of the liquid and a positive test will result in a purple ring at the top of 

the liquid.  


