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1. Abstract

According to the United States Environmental Protection Agency, pollinators are
responsible for assisting 90% of all flowering plant reproduction. However, the effects of climate
change and human development have caused their habitats to decline in recent decades.
Technology such as robotic bees could be used to supplement pollination efforts, but they require
a mobile pollination base station. To address this, we designed a quadcopter with an
underactuated grasping mechanism, custom flight software, and a depth-based vision model to
identify and perch on tree branches. Our approach allows for autonomous mobile pollination in
hard-to-reach locations, ensuring that natural pollinator populations have the ability to rebound.
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1. Introduction

According to the USDA, one out of every four bites of food we eat is the responsibility of
honeybees. However, honeybee populations are vulnerable to diseases such as Colony Collapse
Disorder (CCD), which causes worker bees to abandon the hive. CCD is responsible for 30% of
all honeybee colonies lost between January and April of 2023 (USDA, NASS, ASB, 2023). We
currently do not know the cause of this disease.

The ecosystems that have lost their most productive pollinators now face an uncertain
future. Pollinators are responsible for 80% of all flowering plant reproduction, and without them
these environments will collapse (Randall, 2022). One possible way to address this situation is to
introduce artificial pollination methods to these ecosystems. This allows for the plant life to
continue reproducing while we can investigate more potential causes and treatments for CCD.

To successfully implement these artificial pollination methods, a base station is required
to recharge or reorient from. In the outside world there are very few naturally flat surfaces for
base stations to be attached or built. Perching or being able to sit on other natural surfaces is
beneficial as they require no modification of the environment to complete their objective. Ideally,
these systems require as little human interaction as possible. To this end, an autonomous system
capable of performing these tasks is preferred.

The goal of this Major Qualifying Project (MQP) was to develop an autonomous
quadcopter that could identify and attach itself to a tree branch. In order to complete this goal,
the project was split into four objectives. First, we assembled a quadcopter capable of flight.
Second, we created a grasping mechanism that was capable of attaching the drone to a tree
branch. Third, we created a computer vision model that could identify a branch and calculate its
position relative to the drone. Fourth, we proposed a pipeline to support autonomous missions.
By completing these objectives and combining the results into a drone, we created a
proof-of-concept for a mobile base station that can be further modified to suit different artificial
pollination needs.



2. Background

2.1 Unmanned Aerial Vehicles (UAV) Selection

There are many types of Unmanned Aerial Vehicles (UAV) such as fixed wings,
helicopters, and gliders each with unique benefits and drawbacks. For this project a quadcopter
was chosen as they are capable of vertical take off, hovering mid air, and have a relatively low

cost to manufacture. Some drawbacks however include that they have a relatively low payload
and battery life (Mohsan et al., 2023).

2.1.1 Frame Configurations

QUAD H
QUAD +

Figure 1: The base layout of the main quadcopter configurations.

Quadcopters have three main frame configurations: H-frame, X-frame, and plus-frame
(see Figure 1). Each of these frames have four motors however they are positioned in slightly
different ways. For the H-frame each of the arms are connected to the frame perpendicularly as
seen in Figure 2. Mounting to the end of the frame allows for an increased payload and mounting
capacity at the cost of increased weight and an asymmetric roll and pitch axis (Oscar Liang,
2023a; Tattu Gens, 2017). For the plus-frame which has the arms placed so that one of the
motors 1s directly in the forward position. This is so that the side motor is spinning in turbulence
free air. However, a forward facing camera gets blocked by the front motor. The X-frame is one
of the most popular quadcopter frames as the roll and pitch axis are symmetric and is highly
weight efficient (OscarLiang, 2023a; Tattu Gens, 2017). The X-frame motor layout is similar to
the plus frame but each arm is rotated to a 45° angle which allows for a forward facing camera.
The downside however is that there is limited space for the battery, flight controller, and other
electronics (Tattu Gens, 2017; Unmanned Tech, 2018). These three frame types have been
expanded upon to create quadcopters with all types of attributes. For example, a HX-frame
combines the long chassis of the H frame with the motor layout of the X-frame as seen in Figure
2. This type of quadcopter is still a H-frame in terms of payload capacity however there is a more



symmetrical control scheme in the roll and pitch axis.

H Frame HX Frame

Figure 2: A comparison of H-frames vs HX-frames (Unmanned Tech, 2018)

2.1.2 Quadcopter Performance Metrics

One of the major performance metrics when creating a quadcopter is the thrust to weight
ratio (Drone Edger, n.d; Walter, 2024). This ratio is calculated by taking the expected output of
each motor/propeller combination and adding them together to get the total thrust. Then this
thrust is divided by the total mass of the quadcopter. This ratio is then used to characterize the
sensitivity of the quadcopter. Generally the lower the thrust to weight ratio the less control the
operator will have with the benefit of smooth flight. In general quadcopters that are looking for a
smooth stable flight are aiming for around 2-4:1 thrust to weight ratio where stunt and racing
drones are aiming for closer to 10:1 (Drone Edger, n.d.; Walter, 2024).

2.1.3 Motor and Propeller Configurations

Quadcopter motors have two main attributes: the motor velocity constant (KV) and shaft
diameter. These two attributes allow for thrust calculations and integration with the propeller.
The KV is calculated by measuring the velocity of the motor when there is no load when one volt
is applied. This rating then correlated with the pitch and diameter of a propeller to calculate the
thrust (Vector Technics, 2023). The shaft size for both the propeller and the motor is important as
they need to be able to fit together.

Propellers have three important metrics: diameter, pitch, and blade count. These metrics
determine the thrust that the propellers are able to provide per revolution (Oscar Liang, 2023b).
The diameter of the propeller is generally bounded by the distance between motors and the type
of propellers that need to be used. Overall the larger the propeller the more thrust that is output at
the expense of a higher torque needed from the motor. The pitch or the angle of attack is the ratio



of vertical distance to horizontal distance. This generally means as the pitch increases more
thrust per rotation occurs giving the motor more control at the expense of requiring more energy
to rotate. Similarly, the number of blades on a propeller increases the amount of thrust per
rotation at the cost of an increased torque requirement for the motor. Overall, it is important to
maximize the thrust that is achieved per rotation but it needs to be balanced with the required
thrust-to-weight ratio, and energy requirements (OscarLiang, 2023b).

2.2 Grasping Mechanism

For the drone to successfully perch on branches, a lightweight, yet easy to actuate
mechanism must be implemented. On a drone there are essentially two possibilities for the
location of a manipulator: on top, or hanging underneath the drone. Grasping mechanisms that
are located on the top of the robot allow for the robot to hang rather than perch atop a branch,
similar to the skew gripper proposed by Molina and Hirai (2017b). Having the grasping
mechanism on top of the robot introduces concerns about hitting the target branch with the
propellers, a disastrous, and potentially fatal event for the drone. Depending on how large the
mechanism is, it also introduces concerns of the center of gravity of the entire drone, and
potential disturbances to the flight characteristics of the drone. If the mechanism is a manipulator
with multiple joints, care must also be taken to prevent the manipulator from interfering with the
propellers. The benefit presented by a hanging drone is that it has little chance of becoming an
inverted pendulum problem.

A secondary approach is to put the grasping mechanism underneath the drone body,
leaving it safely out of range of the propellers. This position allows for easier takeoff procedures,
as hanging underneath the branch requires the drone to reach flight capability while falling,
while takeoff from on top of the branch resembles the typical procedure of taking off from the
ground.
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Figure 3: The tendons and other anatomical features of a pigeon that allow it to perch on
branches even while asleep (Encyclopadia Britannica, n.d.)



Many of the existing perching mechanisms are inspired by the biomechanics of perching
songbirds (Chi et al., 2014; Doyle et al., 2013; Nadan et al., 2019; Roderick et al., 2021). These
birds can sleep perched on a branch by entirely passive means through the tendons in their legs,
see Figure 3. These designs make use of tendon-actuation and compliant materials, to keep the
mechanism lightweight and adaptable to irregular shapes, such as tree branches. These
bio-inspired designs rely on the weight of the drone itself to maintain the drone’s grasp on the
branch, eliminating the need for servos or other heavy actuators. These passive designs are ideal
for drones that are intended to spend a long time on location, performing surveillance, or waiting
for other tasks to be completed as they spend little to no power to maintain their position,
whether on a manmade or natural surface or perch.

2.3 Object Detection

Common computer vision models make use of object detection in some form. We
decided that the methods explained in this section would provide the most benefit to us as we
explored the detection of tree branches.

2.3.1 YOLO: The Industry Standard

You Only Look Once, or YOLO, is a relatively new approach to object detection
(Redmon et al., 2016). By using regression in a single neural network, the model is able to be
optimized for performance. This allows YOLO to process images at an incredibly fast rate. The
model itself does have a few limitations that affect our project. Since YOLO draws a bounding
box around objects, it is very inefficient when detecting elongated objects that do not appear
exactly perpendicular to an image, such as tree branches. The loss function of the model would
treat this inefficiency as a large error, causing problems during training.

2.3.2 Line-Based Deep Learning Method for Tree Branch Detection from Digital Images

Silva et al. (2022) introduces a unique method of identifying tree branches in an image.
The proposed model attempts to estimate the orientation and grasping position of a tree branch
through the use of a Convolutional Neural Network (CNN). First, the model predicts the straight
line that best represents the location branch itself. Second, the model estimates the direction and
position of the line using a Hough transform. Finally, the model finds a specific “grip point”
defined as the point on the line with the highest probability of being on the branch. With
application to our project, this model also contains a few limitations. First, the model can only be
applied with the assumption that a tree branch is already in an image. Second, the model has
significant computational cost associated with its use.

This paper also introduces a complete dataset of 1868 branch images. These images were
collected by cropping images of trees found through a search engine. The resulting images were
rotated by three angles to create the final dataset. Each image also corresponds to a label in a csv
file that was also given with the dataset.



2.3.3 Contour Plots

An alternative approach to object detection makes use of generating the contour plot of
an image. With this approach, it is very simple to obtain the size and shape of objects in an image
allowing the use of additional computation to retrieve image data without excessive processing
time. To create a contour plot, the image must pass through some edge detection algorithm.

A Computational Approach to Edge Detection by John Canny (1986) describes an
algorithm commonly known as “Canny Edge Detection”. This algorithm is commonly used in
Object Detection models to draw an outline around all objects in an image. Canny explains that
the optimal use of the detector is on Gaussian-smoothed images. This means that the ideal
pipeline for generating a contour plot of an image will follow three steps:

1. Gaussian Blur
2. Canny Edge Detection
3. Contour Plot Generation

After generating a contour plot, the properties of any object can be calculated using
image moments. In mathematics, the moments of a function provide measurements related to the
shape of the function's graph. By setting the function’s shape to a contour the equation to find a
specific moment in a 2D image follows:

D

We can compute the 0-th order moment M,,, or the area, as well as both first order
moments M,, and M, discretely over a finite set of pixels I using the equations below.
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To compute the centroid of a contour {z, 17}, we take the corresponding first-order

moment, then divide by the area so that T = Mio/Moo and ¥ = Mo1/Moo. To convert this
centroid to an exact pixel, we just need to round the result to the nearest integer.
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2.4 In-Flight Communications

2.4.1 System Overview
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Figure 4: A standard autopilot configuration (Yang et al., 2016)

To support safe flight, it is imperative that all components onboard a drone are able to
communicate without error or latency. At minimum, a drone must utilize a real-time operating
system known as an autopilot that takes in sensor inputs such as gyroscope and compass, passes
them through a filter to estimate proper signals for each motor, and outputs these signals
continuously (Chao et al., 2010). According to Yang et al. (2016), autopilots are often installed
on a dedicated board known as a flight controller that is fully integrated with the sensors
necessary for flight. The combination of a dedicated board with an operating system that
responds in real time allows for optimal control over a drone, since other computational
processes do not interrupt continuous motor signals.

2.4.2 Common Autopilot Software

To allow for continuous communication to a drone’s motors, autopilot software platforms
—many of which are open-source — are installed on a drone’s flight controller. Ebeid et al. (2018)
compares nine such Open Source Software autopilot platforms that support autonomous flight
and telemetry data as of February 2018. Yang et al. (2016) additionally references PX4 as a
potential platform. Of these ten, four remain in common use as of 2024 — Ardupilot, Betaflight,
INAV, and PX4:



e Ardupilot has the capacity to run under both 32-bit ARM machines and Linux, enabling
testing on a variety of machines. Ardupilot also has ground control software written for
Windows, Mac OS X, and Linux to enable mission planning, calibration, and vehicle
setup.

e Betaflight focuses on high performance and cutting-edge features, with optimized code
that officially supports 17 flight controller boards.

e INAV focuses on user comfort, with navigation features such as “follow me” commands,
ground control software on Windows, Linux, i0OS, and Android, and support for 25 flight
controller boards.

e PX4, the main software supporting flight for Pixhawk brand flight controllers, is designed
for “high-end research, amateur and industry needs” and can be customized to the needs
of each user due to its open-source design.

As each autopilot platform contains similar features, of principal concern is that the
chosen platform is compatible with the chosen flight controller board. Open source software is
also preferable as it enables greater portability between flight controllers and enables researchers
to validate and build upon existing work (Ebeid et al., 2018).

2.4.3 Sensor Requirements

Autopilots depend on input from sensors to guide the signals they send to a drone’s
motors. Common sensors — many of which are built into the flight controller itself — include
IMUs to approximate linear acceleration and angular velocity, GPS to approximate position, and
pressure sensors to approximate altitude (Ahmad et al., 2013; Yang et al., 2016). Additionally,
Hell et al. (2017) cites radio controllers as necessary to ensure “safe and trouble-free radio
communication between the drone and its pilot” that allow “the operator to see and control all of
the drone’s telemetry data and auxiliary sensor data in real time.” Thus, ensuring an autopilot is
provided with proper sensor data and the ability to communicate that data back to its pilot is
paramount to permitting safe flight.

2.4.4 Permitting Autonomous Flight

In full autonomous flight, however, radio communication is not always possible — the
drone must be able to process telemetry data and make flight decisions in the absence of user
input. Decisions about flight directions require a drone to understand location — either relative to
the objects around it or through knowledge of its global position. In this fashion, a combination
of GPS navigation, devices known as rangefinders, and onboard cameras are used to provide
sufficient input to either a flight controller’s predefined mission or another onboard computer’s
directions.



2.4.4.1 Autonomous Flight Through GPS
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Figure 5: GPS-enabled autonomous flight is imprecise in reaching specific locations (Kan
etal., 2018)

Kan et al. (2018) explored autonomous flight through the use of a GPS connected to a
Raspberry Pi serving as the onboard computer of a drone. They observed that GPS guided flight
followed directions as indicated, but did not display precision in reaching its goal positions.

Additionally, GPS autonomous flight is only feasible in outdoor conditions, as precise
location can vary as much as 60 meters indoors due to “signal attenuation” and “multipath
phenomena” where not many satellites are in view and those that are visible suffer from many
echos before reaching a GPS receiver (Kjergaard et al., 2010).

2.4.4.2 Autonomous Flight Through Rangefinder and LIDAR Measurement Unit

Sanjukumar et al. (2022) combined a HC-SR04 rangefinder with a LIDAR-Lite v3
optical measurement unit to determine objects surrounding a drone without an explicit need for
global position. They found that under indoor conditions, this combination permitted successful



object avoidance at a range up to 5 meters, allowing for autonomous missions where a drone
followed a preprogrammed autonomous path while avoiding any objects in the way. As these
sensors have the ability to detect objects, they have the potential to be used alongside other
sensors to identify types of objects at a given distance as well.

2.4.4.3 Autonomous Flight Through Depth Camera

Kawabata et al. (2018) studies the use of an Intel RealSense ZR300 depth camera
onboard an autonomous drone to identify damaged infrastructure in Japan in the absence of GPS
data. This camera, which can provide both RGB and depth output, generates a local map of its
surroundings using the SLAM algorithm and sends this data to a Stick PC companion computer.
From there, the companion computer sends position updates to the drone’s flight controller via
the MAVLink protocol. In this fashion, the drone can navigate autonomously by identifying
objects in its way and commanding its motors to navigate around them.

2.4.5 Incorporating Vision

For a vision drone to detect objects, it must follow flight instructions from an attached
flight controller, which in turn receives input from either manually operated radio controls or an
onboard computer based on images from an attached camera.

FPS: 5.40

Figure 6: Flight controller, Raspberry Pi, and camera for object detection in simulated
flight (Szolga, 2021).

Szolga (2021) proposed such a drone using a Mamba F405 MK2 flight controller, a
Raspberry Pi 4 onboard computer, and a Pi Camera Module V2. By mounting this drone to a
shaking platform on a motorcycle, Szolga was able to faithfully replicate flight conditions and
take photos with the Pi Camera at approximately 5.4 frames per second. Each photo was
processed through a Python-based Single Shot Detection algorithm on the Raspberry Pi that
overlaid objects in each image with one of 1000 predefined classes (Szolga, 2021). This project
shows that a drone with an attached Raspberry Pi and camera is able to detect and classify
objects under flight conditions.
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Figure 7: As camera frames per second increases, real-time processing performance
decreases significantly (Khoi et al., 2021)

Object detection on Raspberry Pi drones comes with one principal challenge: ensuring
sufficient processing capacity to classify images in real-time. Under changing conditions,
real-time classification is crucial to accurate decision making. Khoi et al. (2021) defines
real-time as “the ability to process all images that the camera obtains in a shorter or equal
amount of time that the camera needs to capture the images.” Therefore, each image from a

camera capturing at 10 frames per second must be processed in 0.1 seconds or less in order to be
considered real-time. Using a video feed from a drone equipped with a Raspberry Pi 3B+, Khoi

et al. observed that approximately 14 seconds were required to process 1 second of video, and
concluded that 0.71 frames per second would be the maximum permissible input to ensure
real-time classification on a Raspberry Pi 3B+. To alleviate this bottleneck, this paper suggests
the use of a graphics processor such as a NVIDIA Jetson Nano as well as improved image
detection algorithms (Khoi et al., 2021). Although real-time image classification is possible on
Raspberry Pi, great care must be taken to ensure framerates are not higher than what can be
processed by onboard computing equipment.

2.4.6 Flight Communication Protocols

To ensure all components can communicate, valid protocols must be chosen at every

a

interaction within the drone. These protocols can be broken down into three main interactions —

flight computer to flight controller, intra-flight-controller, and flight controller to motors.

11



2.4.6.1 Flight Computer to Flight Controller

A flight computer, such as a Raspberry Pi, must be able to not only take in signals from
peripheral components such as GPS units, but also communicate with the flight controller
onboard the drone (Kan et al., 2018). On a physical level, communication between these
components often exists via wifi connectivity, a USB connection, or a serial port (Brand et al.,
2018; Kan et al., 2018; Alkadhim, 2019). On a software level, the MAVLink protocol is the
industry-standard communication method to send information back and forth between a ground
control station such as a flight computer and the drone’s flight controller (Atoev et al., 2017).

Since MAVLink messages are low-level and often difficult to interpret, many libraries
exist to allow for more user-friendly interaction with MAVLink’s drone movement capabilities.
One such library is mavutil, which is built on top of the Pymavlink Python library and is
optimized specifically to communicate with the Ardupilot autopilot (Gustafsson et al., 2023).

2.4.6.2 Intra-Flight-Controller

Within a flight controller, UART serial pads may be used to solder any peripheral
components that are not already built-in. Additional components may be connected via IBUS,
SBUS, and I2C connections. Depending on the choice of autopilot software, such connections
may need to be configured before they are recognized by a flight controller (Piitsep et al., 2021).

2.4.6.3 Flight Controller to Motors

Once a flight controller has evaluated proper headings at a given moment based on input
from a flight computer or other onboard sensors, it sends a PWM signal via an ESC (electronic
speed controller) that converts this signal into a pulse each motor can understand (Hadi et al.,
2014). In essence, this changes how long each motor should stay on or off to adjust the speed at
which it spins. Changing the PWM value sent to each motor will therefore allow for a drone to
move in varying directions.

2.4.7 Simulation and Evaluation Options

(a) AirSim (b) Gazebo

Figure 8: The AirSim and Gazebo flight simulation software (Ebeid et al., 2018).
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Figure 9: The Mission Planner flight simulation software (Kumar et al., 2019).

Although modeling exact flight physics is not always possible, proper simulation before
flight is vital to ensuring a quadcopter behaves in a relatively expected manner when given a set
of commands. Ebeid et al. (2018) studies six possible simulation platforms, of which three are in
common use as of 2024 — AirSim, Gazebo, and JMAVSim. Additionally, the Ardupilot autopilot
team maintains their own SITL (software-in-the-loop) simulation tool to observe flight behavior
within their Mission Planner tool:

e AirSim is a platform released by Microsoft in 2017. Based on Unreal Engine 4, AirSim
contains support for MAVLink as well as integration with Ardupilot.

e Gazebo is an open-source robotics simulator that additionally has support for simulating
quadcopter flight via MAVLink and Ardupilot.

e jMAVSim is a Java-based physics simulator developed by the PX4 autopilot team with
support for MAVLink but no support for Ardupilot.

e Mission Planner SITL is built into Mission Planner, the industry-standard base station for
drones equipped with the Ardupilot autopilot. Through this tool, users can observe a
drone’s altitude and headings both in actual flight and when sent simulated commands via
the MAVLink protocol (Kumar et al., 2019).

13



3. Design

3.1 Drone Hardware

In order for the drone to successfully fly and complete its mission multiple goals need to
be met. The first parameter is that the drone is able to fly with precise inputs for 5 minutes. For
this to happen the drone must be constructed so that there is a 2:1 thrust-to-weight ratio so that
our Raspberry Pi can easily control the drone. The next goal is that the center of mass of the
drone is directly underneath the flight computer. The last goal is that there is a minimum flight
time of 5 minutes in order for a significant amount of testing to happen in one session.

3.1.1 COTS vs Custom

One of the first design choices that we needed to make was whether we were going to
buy a premade drone or make a custom drone. We ended up choosing a custom drone due to
budgetary restraints and the necessity to have custom mounting points for our grasping
mechanism. See Appendix A for more details on why we chose a custom drone.

3.1.2 Coordinate System

Pitch Axis
Roll axis

Figure 10: The roll, pitch, and yaw axis of the quadcopter.

In order to standardize the coordinate frame of the quadcopter it was decided the camera
is the front of the drone and from its orientation positive is moving in the forward direction. This
can be seen in Figure 10.
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3.1.2 Camera Mount

We selected the Intel RealSense L515 Depth Camera as it is more capable for the mission
(see section 3.3.1). However, as this change happened after the drone frame was bought the
frame and motor selection were not able to be changed.

Figure 11: The adjustable camera mount.

In order to mount the Intel RealSense camera two main considerations needed to be
addressed: the orientation and the safety of the camera. The orientation of the camera is
important as the field of view (FOV) of the camera is limited to 70° horizontally and 55°
vertically (Intel, n.d). This led to us rotating the camera 90° as we decided having a larger FOV
in the vertical direction was beneficial, especially since the drone needed to land on a tree
branch. Then to protect the camera from damage the mount extended past the sides of the camera
(see Figure 11). Then to test the best possible angle the camera was mounted to an adjustable
mounting point that allowed the camera to swing anywhere from +20° to -20° off the horizontal.
This allows us to test the optimal angle for our quadcopter without having to remake the mount
every time.
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3.1.3 Quadcopter Frame

Figure 12: A top down view of the Nazgul XL 10 V6 10-inch Frame Kit found on IFlight (IFight,
n.d).

For the frame, there were a few major constraints, the size of the camera and the center of
mass for the quadcopter, the material, and availability. In order for the quadcopter to be able to
detect tree branches the camera needed to be in front of the quadcopter and have an unobstructed
view of the horizon. This design constraint along with the more compact design led us to choose
the X-frame over the H-frame and square-frame designs. The next step was to determine the size
of both the propellers and the frame itself. The quadcopter needed to support a Raspberry Pi 4B,
flight controller, camera, battery, radio receiver, and grasping mechanism. Due to the camera
needing at least 160 mm on the edge of the quadcopter and 10 in propellers a 30 cm frame was
chosen as the camera was able to comfortably fit inside the motors. The frame we bought to
accommodate these is a Nazgul XL10 V6 10-inch Frame Kit. This frame is made out of carbon
fiber as it is incredibly strong and light.
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3.1.4 Motors and Propeller Selection
Table 1: Mass Breakdown of the Quadcopter

Name Number of Object |Mass (g) |[Total Mass (g)
Frame 1 219.9 219.9
Motor 4 141.77 567.08
Raspberry Pi 4B 1 49.6 49.6
MAMBA Flight Controller 1 29.4 294
Intel RealSense L515

Camera 1 94.6 94.6
Camera Mount 1 31.55 31.55
RC Controller 1 20 20
Barometer 1 5 5
Raspberry P1 Mount 1 10.78 10.78
Sensor Mount 1 12.31 12.31
Battery 1 585.2 585.2
Bottom Plate Il 219.51 219.51
Grasping Mechanism 2 112 224
Payload 1 500 500
Total Mass 2568.93

Once the frame and electronics were chosen an initial mass could be calculated. This
involved massing every item as we received or created them. The final mass estimate ended up
being roughly 2.5kg and the breakdown can be seen in Table 1. Notably, this mass estimate does
include a 0.5kg payload that can be increased or decreased based on the needs of the mission. In
other words, this estimate gives the minimum thrust requirements for the quadcopter. The total
thrust can be calculated by using a thrust-to-weight ratio of 2:1, giving a total thrust required of
4.6kg. This is then divided among the four motors giving a thrust requirement of 1.15kg per
motor propeller combination. Due to the large volume of combinations we decided to use a 10in
propeller primarily as it is what our frame was rated for. We then looked for motors when
combined with a 10in propeller would produce the necessary thrust at ~25% of their max so
there would be no risk of burning out the motor. This led us to choose the SunnySky x2814
1000kv motor that produces a max thrust of 2230g with a 10in, 5” pitch propeller
(SunnySkyUSA, SunnySky X2814 Brushless Motors). This leads to a max thrust to weight ratio
of 5:1 with no payload and max throttle. This ratio can be decreased to 4:1 with the 0.5kg of
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payload specified. This payload can be increased to 1.5kg to achieve a thrust to weight ratio of
~2:1. This increase of payload would come at the cost of the flight time of the drone (calcauted
in section 3.1.7).

3.1.5 Bottom Plate

———

Figure 13: A side view of the final baseplate.

Throughout the duration of the project the baseplate went through three major revisions.
The baseplate is used to hold the battery and mount the gripping mechanism to the quadcopter.
To achieve this 51x3mm standoffs were screwed into heat set inserts embedded in the bottom
plate. The gripping mechanism was then attached to the vertical holes below as seen in Figure
13. It was quickly realized that the two grasping mechanism modules were mounted too close to
each other and the drone would easily tip over onto its side. This was removed by increasing the
distance from 50 to 150mm as seen in the transition between Figure 14 (a) to (b). Another design
change made during the redesign was to move the mounting standoffs closer to the front of the
drone. This was due to the center of mass being slightly towards the front of the drone. These
two changes allowed for the quadcopter to both stand on flat ground and a tree branch. The next
challenge the baseplate faced was that when the quadcopter quickly impacted the ground the
baseplate split right up the middle leaving the quadcopter unflyable. To address this the rib
pattern seen in Figure 13(b) was changed to a square box as seen in Figure 14(c). This adds a
significant amount of reinforcement while not impacting where the gripping mechanism is
attached.
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Front of Drone

(a) (b) (c)

Figure 14: The versions of the base plate over the course of the project. (a) is the first iteration,
(b) is the second iteration that has a crack down the middle, (c) is the final iteration.

3.1.6 Sensors and Communication

s

Figure 15: The non-integrated sensors on the quadcopter. In the top left there is a GT-U7 GPS
module, middle left is a Flywoo BQNANO V1 barometer/compass, and on the bottom right is a
FS-1A6B RC receiver.

While preparing for the quadcopters first flight we noticed the flight controller required
more sensors than initially planned for. Primarily the flight controller was expecting to have a
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barometer and a remote control receiver, both of which were not included on the board. To
accommodate these new electronics we had to remove the secondary Raspberry Pi battery and
add a sensor mount (see Figure 15). This allowed for the new barometer to have access to the
open air and the RC receiver to be mounted in optimal conditions. This board also has space for
a GT-U7 GPS module that was not used due to testing limitations.

3.1.7 Power Requirements

Table 2: Power Requirement Breakdown

Name Voltage Required (V) |Amperage (A)
PS4 Camera 3.5 0.5
Raspberry Pi4B |5 3
Motor 14.8 80
Flight Controller |5 3
Total A 86.5
Total mA 86500

According to the last section, the motors require ~14V input voltage. The standard way to
produce this is to use a 4 cell Lipo battery which has a voltage of 14.8V. Then to achieve a flight
time of 5 minutes we created a table with all the expected current draw in table 2. Using the
expected current draw (83500 mA) we then use the equation capacity = milliamps x hours. Using
this we found the ideal capacity of 7000mAh. The best battery in terms of weight and capacity
ended up being a four-cell 7200mAh LiPo battery due to its high energy concentration.

3.1.8 Power Distribution

Figure 16: The Raspberry Pi 4B power cord. This contains a 30V to 5V converter connected to a
xt60 to JST connector.
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Our flight computer, a Raspberry Pi 4B, requires 5V and a continuous 3A of power in
order to run at full capacity. The main battery voltage is 14.8V as per the motor and flight
controller specifications. Initially, we were planning on adding a separate power supply as it
would extend the flight time and not require any modifications of premade parts. However, we
found that we needed space for other sensors such as a barometer and a RC receiver. This led us
to replace the separate battery with a 30V step-down converter. This then posed the problem of
how it would be connected to the main battery as it has a XT60 connector. To do this adaptation
we bought a JST to XT60 adapter that would give power to the Pi in parallel. This connection is
shown in Figure 16. This change allowed for a decrease in cost, an increase in space, and a
decrease in complexity.

3.2 Grasping Mechanism

To successfully perch on a tree branch, the drone’s grasping mechanism needs to be able
to successfully interact with irregular surfaces while maintaining its enclosed grasp. To this end,
both bio-inspired and inorganic designs were considered from the Walker et al. work focused on
cephalopod-inspired arms, to the Roderick et al. work inspired by peregrine falcons, to inorganic
designs such as Molina and Hirai’s skew-gripper. Avian-inspired designs were of particular
interest, as birds can easily achieve the intended behavior of the drone, ie., being able to perch in
a branch with little to no actuation.

The major design constraints given by this problem is keeping the grasping mechanism
lightweight, as it will be attached to a drone, and the design should require little to no power to
maintain its perch to maximize battery life for other functions of the drone.

The initial design for the grasping mechanism is based on the Nadan et al. work,
including a four-bar linkage that houses the tendon system, and dual-material talons. The
four-bar linkage and the talon segments are made from 3D-printed PLA filament, and the
compliant rail attached to the talon segments are printed from 3D-printed 95A TPU filament
shown in Figure 17. In this initial prototype the compliant rails and the talon segments were
joined together with a flexible cyanoacrylate adhesive. In this iteration the talons had little
durability, being able to withstand approximately 10 actuations before the compliant rails split.
The construction of the compliant talons was not appropriate as it wasn’t durable enough for
application, and the compliant rails were too soft to extend the talons when not under tension
from the tendons.
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Figure 17: Initial prototype grasping mechanism talons made up of separate pieces of PLA and
TPU compliant rails glued together with flexible adhesive.

3.2.1 Talon Material Selection

From the initial design it became evident that the talons needed to be stiffer, and the
four-bar mechanism needed to be reduced in size to be in proportion to the drone body. The
following iterations experimented with materials.

The first combination of materials were dual-material 3D prints made up of PLA for the
talon segments and 95A TPU for the compliant ribbon. This combination of materials did not
adhere to each other, and the print ultimately failed because of the material incompatibility. The
second iteration of these prints was made up of 75D TPU for the talon segments, and 95A for the
compliant ribbon. This combination initially seemed promising, however we ran out of the 75D
TPU, and it was too expensive to purchase for this project. The final material decision for the
talons was to print them out of a single material with 95A TPU. It meant the talons were
compliant enough to create a fully enclosed grasp, while being stiff enough to return to the initial
position of the talon once the tendons are no longer in tension.

3.2.2 Talon Design

With this material selected, we began iterating on the geometry of the talons. The original
design was very avian-inspired, particularly drawing from the Nadan et al. work. This talon
featured a clawed tip, and a rear facing talon to provide more stability on perching surfaces as
seen in Figure 18. The vertical difference between tendon pass-through points in the segments
was intended to provide larger bending moments when the talon was made up of a compliant
spine and less compliant segments, however this design required too much force to fully collapse
the talons. In the next iterations the vertical difference was removed from the pass-through points
for the tendons.
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Figure 18: Several iterations of the compliant talon design. Bottom talon is inspired by the Nadan
et al. work. Middle and top talons were inspired by the Doyle et al. work.

The next talon iteration was inspired more from Doyle et al.’s work and was less
avian-inspired and more inorganic in appearance. The clawed tip has been removed, and the
segments of the talon are the same height. The functional difference introduced in this design
was the difference in thickness between the segments of the talon. This was introduced so the
talon would begin to collapse at the segment closest to the ankle of the gripper, as seen in Figure
19, allowing for better grasp of irregularly shaped objects.

Figure 19: A four-step sequence of a singular talon collapsing.

To improve upon this design, in the next iteration the overall length of the talon was
reduced in order to decrease the displacement required between the four-bar joints to fully
collapse the talons while grasping. The other geometry of the talon remained the same, shown in
the upper talons in Figure 18.

These newer talon iterations collapsed better than the more avian-inspired talons,
however they provided less stability on flatter surfaces, leading to the reintroduction of the
rear-facing talons from the original talon design inspired by Nadan et al.’s work. This increased
the drone’s ability to stand on uneven surfaces that did not require an enclosed grasp such as dirt
or grassy surfaces.
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3.2.3 Four-Bar Linkage Design

The four-bar linkage is responsible for housing the tendon system the grasping
mechanism relies on to collapse the talons. It needs to be able to bear the weight of the drone as
well as the tension force present from the tendons, while being lightweight. To this end, the
four-bar mechanism was 3D-printed with PLA.

In the initial prototype of the mechanism, the overall size of the four-bar mechanism was
much too large for the drone frame we purchased, and needed to be downsized in the subsequent
iterations, but it proved the tendon system could collapse a compliant foot. This iteration was not
intended to be put on the drone as it features no attachment points for the drone body.

The next iteration of the four-bar mechanism saw an overall decrease in size to make it
appropriate to fit on the underside of the drone. From the center of the joint to the next on one
link the four-bar mechanism is 75mm. In this iteration the tendons proved difficult to keep in
place to ensure that they would not catch on the four-bar, the talons, or any other part of the
drone body. This was solved by printing keepers (see Figure 20) that replaced the spacers in the
four-bar linkage. These new keepers acted as spacers for the four-bar linkage, to allow the links
to be spaced apart, and also included an enclosed space on the outer diameter of the spacer that
could act as a keeper for the tendons. This prevented misalignment on the four-bar linkage as
well as keeping the tendons from getting caught in other mechanisms.

9

Figure 20: This is a section view of the keeper, shown at the midplane. The channel present on
the outer diameter is for the tendon.

The next improvement upon the four-bar linkage was to introduce a hard stop to prevent
overextension of the leg while in flight (see Figure 21). If the legs were allowed to extend
beyond the vertical the four-bar linkage can get stuck in the extreme opposite of its collapsed
position preventing any landing attempts. The hard stop introduced on the linkage prevents this
behavior and ensures a safer landing sequence for the drone. It also keeps the legs in a more
consistent position while the drone is in flight.
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Figure 21: The left image shows the leg being overextended, in a position where the force
applied by the drone’s weight would not collapse the linkage. The right image shows the leg’s
fullest extension with the addition of the hard stops in the linkage.

3.2.4 Tendons

The tendons in the grasping mechanism are made up of monofilament fishing line. The
ends are rigidly attached to the end of the talon on either side of the grasping mechanism.
Assembly proved difficult as maintaining consistency between the two leg assemblies was
difficult due to the tendons being tied to the end of the talons. This means some trial and error
was performed to get the legs even with each other.

When the tendons were installed in the drone we pursued several options of where the
tendon should be taut. We attempted stringing the tendons with the legs fully extended, however
that proved to require too much force to collapse the talons. Stringing the tendons with the legs
with the ankle and knee joints horizontally aligned, meant the four-bar linkage could not create
enough displacement between the joints to collapse the talons fully. The final design was strung
to be in-between these two positions to reduce the amount of force required to collapse the
talons, while ensuring the displacement between the joints was large enough the talons could
create a fully enclosed grasp.

3.2.5 Final Design

The final design of the grasping mechanism featured 95A TPU talons based off of the
Doyle et al. work, with a PLA four-bar linkage. Fully extended it is 21cm tall, fully collapsed it
is 14.4cm tall. The talons are 18.5cm long.. The tendons are made up of monofilament fishing
line, strung as shown in Figure 22. The grasping mechanism is bolted onto the underside of the
drone’s body, underneath the battery.
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Figure 23: The final grasping mechanism, attached to the drone body. The left image shows a
side view of the system, the right image shows the front view of the grasping mechanisms and
lower drone body.

3.3 Vision Model

To ensure that the drone stays autonomous during flight, we needed to use a computer
vision model. For a complete autonomous pipeline, the model must be able to search for a tree,
find and evaluate the branches on that tree, choose a branch that is suitable for the drone to land
on, and finally direct the drone to fly and land on the branch. Due to the nature of the project, we
decided to reduce the scope of the vision model to two key components: branch identification
and branch detection. We define branch identification as a process that determines if an image
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contains a branch. Branch detection would then assume that an image already contains a branch,
and compute its location relative to the drone.

3.3.1 Camera Choice

This type of computer vision model requires the use of a specific type of camera that is
able to return both a color image and depth data. We considered the use of two different cameras
due to our limited budget.

The PS4 Camera uses two lenses to deliver stereo depth for motion tracking. This output
is received as one large image of three appended images as shown in Figure 24. The camera
performs very poorly outdoors, as it was intended to be used in an indoor environment while
playing games that required motion tracking or VR technology. We were able to address this by
attaching sunglasses to the lenses of the camera, however this caused a distorted effect on the
resulting image. The biggest issue that this camera caused was the lack of support for ARM
architecture. Due to this problem, we decided to choose a different camera that was compatible
with the Raspberry Pi.

' .'A‘ : ®

Figure 24: PS4 camera output.

The Intel RealSense L515 Depth Camera featured LIDAR depth technology as well as
BGR color output. The camera is able to return accurate depth measurements of objects at
distances of up to 9 meters while indoors. This camera is also not rated for outdoor use, in some
cases not returning any depth measurements of objects whose distances are less than 2 meters.
This camera was compatible with the Raspberry Pi, however it required additional effort
compared to most USB cameras.

We decided to use the RealSense Depth Camera due to its compatibility with the
Raspberry Pi. Since the camera was unusable in an outdoor setting, our testing of any
autonomous code took place indoors. While using this camera, we decided to place it on the
drone rotated by 90°. This ensures that the camera is able to gather more data vertically than
horizontally, allowing the drone to see the branch during the landing process.
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3.3.2 Branch Identification Methods

In order to correctly identify that an image contains a branch, we decided to apply various
machine learning models. Each model was trained using different datasets described in this
section, with the results of each model described in section 4.3.

YOLO, as described in section 2.3.1, is the industry standard object detection method for
use in robotics. In order to train a YOLO model, we created a custom dataset of 239 images
gathered using the PS4 camera. Each image was annotated by hand, creating a polygon around
each branch.

We also considered using standard binary classification models such as Logistic
Regression, Naive Bayes, SVM, k-Nearest Neighbors, and Random Forest. Each model was
trained using a mixed dataset that included images of various objects from CIFAR 100 as well as
resized images of branches from the paper in the previous section. All images from CIFAR 100
were labeled with a 0, and all resized images of branches were labeled with a 1. The data was
shuffled and trained using 10-fold Cross Validation. Performance of each model was determined
by its average precision.

3.3.3 Branch Detection

The branch detection model assumes that the main object in an image is already a branch.
We define the main object of an image to be the largest foreground object within a certain
distance to the camera. The distance chosen for all tests was 3 meters, as further distances risk
the loss of data due to pixelation.

The raw depth data given by the camera displays the distance in meters of each individual
pixel of an image. The data is filtered such that any pixel with a distance larger than 3 meters is
set to a value of 0 meters, removing any noise from distant objects. The raw depth data is then
cropped from 1024x768 to 960x540 in order to fit the resolution of the color data, and converted
to a grayscale image with closer objects appearing as lighter values. The model then blurs the
resulting image using a 10x10 kernel and returns an image as seen in Figure 25.
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Figure 25: Raw depth data as grayscale.

After modification to the depth data, the model filters the color image by the resulting
depth data. Any pixel in the grayscale image with a value of black will remain as black. Pixels
that appear closer in the depth image will retain their color, while pixels that are further will
appear darker.

Figure 26: “Mixed” depth and color.

After generating the “mixed” image, Canny Edge Detection is applied and a contour plot
is generated. The model then bounds each contour with a minimum area rotated rectangle. The
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contour that corresponds to the rotated rectangle of largest area will be chosen as the main object
in the image. This contour will always be a branch if the initial assumption is correct.

Figure 27: Contours drawn on image.

Once a contour of the branch is found, several operations can be used to extract the
necessary data for autonomous decision making. By applying contour moments (see section
2.3.3), the centroid of the contour can be found giving an exact location of a singular pixel on the
branch. The model uses the raw depth data to return the distance to the centroid as well as
compute the necessary angle direction by using the FOV of the camera. The camera has an FOV
of 70° x 55°, but due to cropping the estimated FOV is about 65.63° x 38.67°. Both angles are
calculated using equations derived from the ratio of the FOV to the number of pixels in the
image.

vAngle = (65.63°/960px) * cY
hAngle (38.67° / 540px) * cX — (38.67°/2)

Note that the centroid’s x and y pixel values are defined as ¢cX and cY respectively. The
vertical angle from the horizontal can be computed directly assuming that the camera is facing
down at an angle of 24.37° from the horizontal. The horizontal angle needs to be shifted,
allowing any centroid in the left half of the image to return a negative angle while centroids in
the right half of the image return positive angles. After the direction, vertical angle, and
horizontal angle are computed, they are then returned to the main loop of the program for use in
directing the drone.
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3.4 In-Flight Communications

If Not Above Branch,
State Machine Wait for Next Image
Camera Takes Image Vision Model Detects Commands Roll,

and Passes Dat? to Branch Contour g Throttle, and Pitch RC
Raspberry Pi Input to Approach If Above Branch,
Branch Lower Throttle to
Land

Figure 28: Overview of autonomous flight pipeline.

In order to facilitate internal communication, we designed a system such that all
components talk to a central computer which decides the proper action to take at every moment.
We chose a Raspberry Pi 4B to serve as the central computer, mounted along the back-center
beam of the drone frame. To form an autonomous pipeline, every two seconds we take an image
using an Intel RealSense L515 depth camera mounted to the front of the drone. These data are
fed to the Raspberry Pi, which identifies a branch contour using an algorithm described in
Section 3.3 and provides the proper distance and heading to reach that branch’s centroid. The
Raspberry Pi then determines the necessary roll, throttle, and pitch to reach this branch and sends
a MAVLink packet to a Mamba F405 MK2 v2 flight controller, which signals the drone motors
to follow the specified heading. If the drone is already above a branch, we lower the throttle to
attempt landing; if it is not, we wait until the next image is delivered. We additionally simulate
these conditions to ensure safe flight.

To determine whether successful in-flight communications were achieved, we establish
three main goals:
1. All components communicate without protocol or version failures.
2. Autonomous pipeline successfully takes an image, receives it from the vision pipeline,
and calculates proper angles and directions from that image.
3. Autonomous flight model provides safe inputs with proper force and direction to
simulated and actual drone.

3.4.1 Raspberry Pi as a Flight Computer

The Raspberry Pi 4B serves as the central computer onboard the drone, processing
incoming data from the Intel RealSense camera and sending outgoing data to the Mamba flight
controller. The Raspberry Pi 4B was the most powerful Raspberry Pi board available at time of
design, and has the necessary USB and GPIO connections to ensure stable power and
communication. As Pi systems use ARM-style architecture, we selected Raspbian Buster to serve
as the operating system.
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3.4.1.1 Incoming and Outgoing Connections
14.8V LiPo Battery Raspberry Pi 4B Intel RealSense
L515 Depth Camera
USB 3.2 A-C
Cable

14.8V Power
Compass and
Barometer
u VCC,

1 Ground,

: o TX/IRX Header F

Mamba Flight
Controller

Figure 29: Overview of in-flight component interactions.
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e 5V, 3A power is supplied from the drone battery via a 5V step-down to GPIO pins #2
(5V) and #6 (ground).

A 32GB microSD card is mounted to allow persistent data.

A USB 3.2 port connects to the Intel RealSense camera via a USB A-C connector.

A USB 2.0 port connects to the Mamba flight controller via a USB A-C connector.

The Pi’s internal network card connects to WPI-Wireless wifi.

In testing, two USB ports are used to connect to a keyboard and mouse.

In testing, an expansion bus is added to permit HDMI connection to an external display.

3.4.1.2 Raspbian Buster Operating System

Raspbian Buster is the industry-standard OS for Raspberry Pi systems, but trial-and-error
is necessary to ensure all components can properly communicate. Since the Raspberry Pi uses
the ARM instruction set, we needed to compile many packages from source to ensure they would
work with specific technologies and software dependencies. Additionally, not every package was
version compatible, so it was necessary to find old-enough versions of packages that would still
work with new-enough technologies.

The main limitation was the Intel RealSense camera, which relies on Intel’s librealsense

library and pyrealsense2 bindings. Intel’s librealsense in turn relies on Google’s protobuf
serialization library and the OpenGL graphics library. Although Intel recommends Ubuntu Linux
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for development, we found that version incompatibilities were too great to overcome — certain
packages were not available on newer builds of Ubuntu, and certain packages were no longer
available (or were never available) on older builds. Pivoting to Raspbian, Raspberry Pi’s default
OS, allowed us the greatest flexibility for the Pi’s architecture.

Newer versions of Raspbian encountered the same difficulties as Ubuntu Linux — many
packages were unavailable or had significant incompatibilities. Since Intel no longer develops
librealsense with the L515 camera in mind, we decided to install an older version of Raspbian
OS that would have been widely available when the L515 was released in 2019. We immediately
encountered a bootloader block on the Raspberry Pi 4B which did not allow OS systems older
than September 2020 to be installed, as that was when our specific Raspberry Pi was
manufactured. Ultimately, we decided to install the December 2020 64-bit build of Raspbian
Buster to allow the greatest flexibility with all packages. This decision allowed us to experiment
with pre-installed Python version 3.7, which we found to be compatible with librealsense and
older versions of protobuf and OpenGL.

3.4.2 Intel RealSense L515 as a Depth Camera

The Intel RealSense L515 depth camera’s purpose is to capture color and depth image
data. From color data, we can visualize an image and verify the chosen contour is indeed a tree
branch. From depth data, we can determine the distance and angle to the centroid of the chosen
branch contour. The RealSense camera can capture color data as quickly as 60 times per second
and depth data as quickly as 30 times per second. As the data is fed to a Raspberry Pi with
limited computational power, accepting data too fast can result in a bottleneck where data is not
processed quickly enough to provide accurate headings to the drone. To ensure flight safety, we
artificially limit depth and image data to one frame every two seconds.

3.4.2.1 Requesting and Obtaining Image

We request an image from the RealSense camera via Intel’s pyrealsense2 API, which
relies on a pipeline stream of images. To balance image quality with speed, we request color
images at 1280x720 resolution and 6 frames per second, and depth images at 1024x768
resolution and 30 frames per second. These represent medium-quality images at the lowest
framerate available. Despite these settings, we further artificially limit framerate by only
selecting images from the pipeline every 2 seconds — even though the camera provides more
images than necessary, the Pi does not access them and therefore does not become bottlenecked.

For indoor flight, we additionally set two hyperparameters — color camera exposure to
1250 microseconds and visual preset mode to short range. In this fashion, we allow indoor
images to be bright enough to be analyzed and prompt the camera’s LIDAR depth sensor to
focus especially on objects nearby.
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Figure 30: Distance, “throttle,” and “roll” angles from our drone to a centroid.

Every two seconds, we take the most recent image frame from the pipeline and store
color and depth data as numpy arrays. We scale down the depth array by a scaling factor of
0.00025, a parameter specific to the RealSense L5135, to ensure output units are in meters. These
arrays are then passed to the vision model, which delivers the distance to the centroid of the
branch in the image as well as the “throttle” and “roll” angles that represent the up/down angle
and left/right angle respectively from our drone to that centroid.

The image in Figure 30 is a visualization of this process with color and depth images
overlaid, and a green line drawn to visualize the contour detected by the vision model. In
practice, computations are done on the arrays themselves and no images are saved to the
Raspberry Pi to avoid computational expense. We detect a distance of 1.3 meters from our drone
to the centroid, represented by the hypotenuse of the triangle. This hypotenuse is angled
downwards at 36.7° from horizontal, indicating our drone is above the branch in the image. This
can be verified since the branch appears in the lower half of the taken image. Additionally, our
drone is offset -9.3° from the centroid, indicating we need to roll left 9.3°. Using trigonometry,
we can calculate other ratios as follows:

Distance Forward = sin(throttleangle) * distance = sin(36.7°) * 1.3 = 0.8m
Distance Down = cos(throttleangle) * distance = cos(36.7°) * 1.3 1.0m
Distance Left = sin(|rollangle|) * distance = sin(| — 9.3°]) * 1.3 = 0.2m
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These distances indicate we will need to travel forward (using pitch) a distance 0.8m,
travel down (using throttle) a distance 1.0m, and travel left (using roll) a distance 0.2m to reach
the centroid of the branch.

3.4.3 Mamba F405 MK2 v2 as a Flight Controller

While the Raspberry Pi serves as the central computer, the Mamba F405 MK2 v2 flight
controller serves as the hardware component necessary for sending proper signals to each ESC
and onwards to each motor. We selected Ardupilot to serve as the autopilot on the flight
controller in order to accept messages in the MAVLink protocol from the Raspberry Pi and pass
along signals each ESC could understand.

3.4.3.1 Selecting a Flight Controller

A

Figure 31: Mamba F405 MK2 v2 (Mamba F405 MK?2 Flight Controller, n.d.).

We chose the Mamba F405 MK2 v2 flight controller for its affordable cost, surplus
UART connections, USB-C UART accessibility, and compatibility with a 4-in-1 ESC platform
that would be compatible with our chosen motors. Additionally, the Mamba was
well-documented within the Ardupilot autopilot community.
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3.4.3.2 Selecting Flight Controller Autopilot
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Figure 32: Flashing Arducopter to flight controller with STM32CubeProgrammer.

Of the flight controller autopilots available, we selected Ardupilot for its wide adoption
within the drone flying community, its well-documented simulation and flight parameterization
options, and its support of the inputs necessary for autonomous flight.

This design choice required that we flash our flight controller with the Ardupilot
bootloader, as the Mamba F405 comes preinstalled with Betaflight. As seen within Figure 32, we
installed STM32CubeProgrammer, a tool documented by the Ardupilot community for this
purpose, and flashed Arducopter 4.4.2 onto the Mamba. Arducopter is the edition of Ardupilot
specific to quadcopters such as our drone, and version 4.4.2 was the latest version at the time of
our install in October 2023.

3.4.3.3 Input to Flight Controller

Figure 33: Flywoo NANO v1.0 compass/barometer (Flywoo BONANO V1.0 Model W/ Compass
& Baro,n.d.).
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In flight, Ardupilot relies on sensor input to stabilize the drone. Although the Mamba
F405 contains an internal ICM42688P IMU, it does not contain a built-in compass nor
barometer. These inputs allow Ardupilot to approximate local direction and elevation, so to
maximize stabilization we purchased the Flywoo BQNANO v1.0 Compass/Barometer chip and
mounted it along the front of the drone, connected via I2C. We then calibrated the chip and all
other sensors using Ardupilot Mission Planner’s built-in setup tools to ensure safe, stable flight.

Figure 34: Flysky FS-16X radio transmitter (F'S-i6X | Flysky, n.d.).

While moving towards eventual autonomous flight, we began testing using a radio
controller that allowed us to provide roll, pitch, throttle, and yaw directly as PWM values from
1000 (minimum) to 2000 (maximum). We selected the Flysky FS-16X as our radio transmitter,
paired with a FS-iA6B radio receiver, for its affordable cost and compatibility with the Mamba
F405 when connected via IBUS. We modified the wiring in the radio transmitter to allow switch
#10 (in the top right of the transmitter) to act instead on channel #6 so it could be received by our
6-channel receiver, and configured Ardupilot to interpret it as an “arm-disarm” killswitch that we
could pull to immediately halt our drone’s propellers in an unsafe situation.
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3.4.3.4 Output from Flight Controller
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Figure 35: PWM values for roll, pitch, throttle, and yaw from a successful teleoperated flight.

Ardupilot’s Mission Planner ground station provides invaluable data feedback that we use
to ensure our drone is safe to fly. These include preflight checks of radio connection, battery
voltage, and proper sensor inputs — refusing to allow our drone to arm if any conditions are off
from expected. We view this output on our local computers either via USB-C connection to the
flight controller or through a network connection mirrored from the Raspberry Pi. Ardupilot also
saves data logs to the flight controller, which provide us with PWM values for roll, pitch,
throttle, and yaw input from the radio controller achieved during teleoperated flight. Graphed on
Figure 35 above, we can observe which inputs resulted in which behavior, and mimic those same
values to display the same behavior during autonomous flight.

3.4.4 Model for Autonomous Flight

Compared to teleoperated flight, autonomous flight incurs several limitations. As we fly
indoors, we do not have access to GPS global position data. Additionally, although we do have a
RealSense L515 depth camera, it is not compatible with Ardupilot and thus does not provide
local position offsets to the flight controller itself. In this fashion, we are not able to utilize
Ardupilot’s built-in movement commands since Ardupilot itself is unable to ascertain its location
or the objects immediately surrounding it.

In light of these constraints, with distances and angles to a branch’s centroid and PWM
values for roll, pitch, throttle, and yaw that correspond to values observed during teleoperated
flight, we still have all of the components necessary to permit autonomous flight.

3.4.4.1 State Machine for Autonomous Flight

An autonomous drone begins by establishing connection from the Raspberry Pi to
Ardupilot via “/dev/tty ACMO0,” a connection string unique to the Raspberry Pi over the mavutil
Python library. We then wait for Ardupilot to acknowledge our connection with a “heartbeat”
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packet, and proceed with startup. To ensure flight stability, we establish a state machine with four
states, starting in preflight:

PREFLIGHT - a drone is waiting to be armed or has been disarmed

TAKEOFF — a drone is arming itself and revving throttle to hover

SEARCHING — a drone is taking images and adjusting PWM values to locate a branch
LANDING - a drone is landing by bringing throttle to minimum then disarming

In the takeoff phase, our model sends the ARM MAVLink command via mavutil, waits
for Ardupilot to acknowledge our request, then initiates takeoff by progressively revving throttle
higher in increments of 100 PWM every second until HOVER_THROTTLE, a constant specific
to the physics of each drone, is reached. We take 1500 PWM to be our default
HOVER THROTTLE, as it is the median of our 1000 PWM minimum and 2000 PWM
maximum.

self.drone.mav.rc_channels override send(self.drone.target system,
self.drone.target component,
self.roll,
self.pitch,

self.throttle,
self.yaw,
e, @, 9, 0, 9, 0, @, 0, 8, @, 0, 0, 9, 0)

Figure 36: Sending a “flight pulse” via RC_OVERRIDE in the searching phase.

In the searching phase, after taking an image with the pipeline introduced in Section
3.4.2.1, we use the calculated distance forward, down, and left to change pitch, throttle, and roll
respectively by the RC_OVERRIDE MAVLink packet, keeping mind of the
HOVER THROTTLE value of 1500 PWM and scaling up or down from 1500 by (10 * (distance
in meters)), where 10 is a scalar dependent on observed behavior of a particular drone. This
mimics the same radio controller (RC) input we provide in teleoperated flight, so by observing
how large particular teleoperated inputs are required to move our drone a fixed amount, we
determine the proper scalar for each input to duplicate observed behavior. We additionally
introduce a constant maximum change (10 PWM), so that no one outlier image causes our drone
to fly in an unsafe manner. These “flight pulses” are sent every two seconds after the vision
model has processed an image. If we are within a certain constant horizontal distance from the
centroid of a branch, we will attempt landing by lowering throttle. If not, we wait until the next
image to move further.

In the landing phase, our model progressively lowers throttle by increments of 100 PWM
every second until the minimum throttle PWM of 1000 is reached. We then initiate disarming
through the DISARM MAVLink command, and return to the preflight phase.
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3.4.4.2 Simulating Autonomous Flight
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Figure 37: A simulated drone on the ground in Mission Planner SITL.

Before flying our drone autonomously, we needed to ensure it would fly safely by
moving in the direction and angles we expect when provided with certain RC_OVERRIDE
packets. To evaluate safe flight, we simulated our drone under Ardupilot’s Mission Planner SITL
physics engine. We chose this engine since it is within the same software as we use to fly our
actual drone and contains the same data output. Although this simulation does not model the
physics of landing on a branch, it allows us to test takeoff, flight behavior, and landing. Each
PWM value sent to the simulated drone is a scaled value from the one that would be sent to the
actual drone, as the simulated drone operates under ideal conditions without the weight or size
constraints of our drone design and grasping mechanism.

Since Mission Planner SITL is not designed for Microsoft Windows, the simulation
operates under a pipeline from Windows Subsystem for Linux (WSL):

1. On Windows, start an XWindows instance to allow data to be transferred to
Windows from WSL

2. In WSL, run a simulated vehicle as indicated in Ardupilot’s SITL documentation

3. On Windows, open Mission Planner and connect via TCP to the simulated drone

4. Access Mission Planner’s MAVLink Mirror feature and open a UDP Client on
port 14540

5. Run the drone state machine with connection string “udp:localhost:14540”
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4. Results
4.1 Base Drone

4.1.1 Drone Hardware

In terms of our set thrust to weight goal of 2:1 we ended up overshooting with a ratio of
8:1. The center of mass ended up being within tolerance as seen in Figure 38. During testing
battery life was estimated to be 10 minutes. This extended our initial goal of 5 minutes by
roughly double.

In order for the quadcopter to be stable in flight and also stable on the ground the center
of mass generally needs to lay underneath the flight controller and is as centered as possible in
the roll and pitch axis. This was achieved in the roll axis as seen in Figure 38a while the pitch
axis is tilted slightly towards the camera side of the quadcopter as seen in Figure 38b.

(a)

Figure 38: Center of mass of the quadcopter in a front view and a side view.

4.1.2 Drone Flight

Overall the drone was able to achieve multiple stable flights via teleoperation. One of
these flight’s input parameters is shown in Figure 35 the quadcopter’s throttle is slowly increased
from 1000 PWM to our take off speed of 1483 PWM. Once the quadcopter is airborne the pitch
and roll are then tweaked in order to keep the drone stable while attempting to land on a tree
branch which were manually adjusted by the operator using a remote controller.

4.2 Grasping Mechanism
The grasping mechanism is able to support the drone on flat and natural surfaces, even
returning to standing equilibrium from pitch of -8.5° to 8° from horizontal. It is capable of fully
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grasping objects with diameters between 31 and 60mm. The grasping mechanism as a whole
weighs 224¢g, making it 12.4% of the drone’s entire weight. The drone is capable of maintaining
a stable perch on a branch as shown in Figure 39, without power.

Figure 39: The quadcopter perched on a branch without power.

4.3 Vision Model

Due to the limitations of both models described in section 3.3.2, we decided to use the
binary classification model for branch identification. Training each individual model with
10-fold cross validation our results show average accuracy, precision, recall, and f1-score for
each model.

Table 3 - Binary Classification Model Average Scores:

Model Accuracy Precision Recall F1
Logistic 0.891 0.674 0.315 0.429
Regression

Naive Bayes 0.785 0.350 0.761 0.480
SVM 0.890 0.684 0.288 0.406
kNN @ k=2 0.967 0.852 0.906 0.878
Random Forest |0.979 0.984 0.853 0.913

We found that the Random Forest Classifier performed the best on the training data provided
with a precision of 98.4%. While testing with additional data, the model was unable to identify
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any new images as branches. The model severely overfit to the data provided during training and
was unable to accept any images taken from the RealSense camera.

Although branch identification did not succeed, the branch detection algorithm was able
to accurately detect the location of a branch, assuming it was the main object in the image. We
tested the model in real time in a “walking simulation” where we physically walked the drone
towards a tree branch to simulate the model’s use in flight. When the branch was the main object
in the image, the model correctly identified the contour associated with the branch. It then
correctly returned the distance to the branch, as well as the angle to the centroid of the contour.

Figure 40: The vision model correctly detecting the branch in 3 consecutive images

4.4 Communication and Autonomous Simulation
In the design of our in-flight communications, we established the following three metrics
on which to evaluate our results:
1. All components communicate without protocol or version failures.
2. Autonomous pipeline successfully takes an image, receives it from the vision pipeline,
and calculates proper angles and directions from that image
3. Autonomous flight model provides safe inputs with proper force and direction to
simulated and actual drone.
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4.4.1 Success of Communication Protocols

The quadcopter contains components with precise interactions specific to particular
versions of Python. Through the following table, we establish which protocols we experimentally
determined were compatible with one another when communicating between the Raspberry Pi
and the RealSense vision camera:

Table 4 — Raspberry Pi and Depth Camera Communication Iterations:

Operating System | Python Version [ pyrealsense2 | L51S officially [ Successful
version supported? Communication
Ubuntu Desktop Python 3.10 2.54.1, from Not tested by No — unable to
22.04.4 LTS source using | Intel, but compile due to
Ubuntu recognized dependency
walkthrough incompatibilities
Raspberry P1 OS Python 3.11 2.54.1, from | Not tested by No — unable to
Bookworm source using | Intel, but compile due to
(October 2023) Raspberry Pi | recognized dependency
walkthrough incompatibilities
Raspbian Buster Python 3.7.3 N/A N/A No — unable to
(September 2019) pass bootloader
Raspberry Pi OS Python 3.7.3 2.54.1, from | Not tested by Yes — when built
Buster (December source using | Intel, but from source and
2020) Raspberry Pi | recognized with precompiled
walkthrough wheels

Thus, with a system old enough to support Python 3.7 while new enough to interpret
Intel’s RealSense camera library, we establish successful communication without protocol or

version failures between the Raspberry Pi and the camera.

Additional communication was successfully achieved via Arducopter 4.4.2 and

configuration of Arducopter to permit [2C compass and barometer input and IBUS radio

controller input.
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4.4.2 Success of Autonomous Pipeline

We evaluate the success of our autonomous pipeline by successfully taking an image,
receiving it from the vision pipeline, and calculating proper angles and directions from that
image frame.

Getting a frame...

Throttle Angle: 36.708984375;

Roll Angle: -9.309444444444445;
Horizontal distance: ©.8062165155758499;
Vertical distance: 1.0812685444984425;
Hypotenuse distance: 1.3487500640621874

Figure 41: Our autonomous pipeline takes an image, receives it from the vision pipeline, and
calculates proper angles and directions.

Table S — Calculation of Angles and Directions After Image Frame

Image Throttle Roll Angle | Hypotenuse | Horizontal Vertical
Number | Angle (deg) | (deg) Distance (m) | Distance (m) | Distance (m)
Image 1 | 25.839 17.187 1.859 0.810 1.673
Image2 | 36.709 -9.309 1.349 0.806 1.081

Image 3 | 35.137 -1.289 1.254 0.722 1.026

Image 4 | 34.453 -8.880 0.970 0.550 0.800

Image 5 | 3.281 -2.005 1.216 0.070 1.214

From the vision model’s provided throttle angle (up/down), roll angle (left/right), and
hypotenuse distance (distance from drone to branch centroid), we calculate the horizontal
distance a branch is in front of the drone as well as the vertical distance a branch is below the
drone. Based on the “walking test” conducted in Section 4.3, we collect these angles and a
hypotenuse distance for five image frames and calculate horizontal and vertical distances based
on these ratios. Visual representations of Images 2, 3, and 4 can be seen in Figure 40 above.
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Thus, we can be sure the autonomous pipeline successfully calculates proper angles and
directions from a provided image.

4.4.3 Progression of Autonomous Flight Model

We evaluate the success of our autonomous flight model by ensuring it provides safe
inputs with proper force and direction to both the simulated and actual drone. Since we had not
fully fine-tuned our drone for teleoperated flight by project submission in April 2024, we denote
autonomous flight on the drone as a future expansion and instead focus on evaluating the success
of simulated flight.

Altitude (m) GroundSpeed (m/s)

8.03 0.05

Dist to WP (m) Yaw (deg)

0.00 24348

Vertical Speed (m/s) DistToMAV

-0.70
Figure 42: Simulated flight within Mission Planner SITL.

The simulated flight in Figure 42 denotes a mission providing the same throttle as
observed by our drone in teleoperated flight (1500 PWM), but more narrow roll and pitch
(1450-1550 simulated PWM compared to 1400-1600 teleoperated PWM). This mission
simulates the drone taking off until it reaches hover throttle, then “finding a branch” through
taking five sequential simulated images that provide a simulated shrinking distance and angle in
front of its initial hover throttle location, to the left and down from the drone’s hover position.
We observe an altitude of 8.03 meters at “image four” where the drone rolls a slight angle left at
ground speed 0.05m/s and throttles downwards at vertical speed -0.70m/s.

These data show that the same observed RC input to our quadcopter in teleoperated flight
results in a drastically increased range of movement — the simulated drone gains and changes
altitude at a much greater rate than the actual drone, which would reach approximately 2.0m in
altitude at the same hover throttle. We narrow the PWM range for roll and pitch, but observe that
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the drone moves significantly further left than would be expected from the same PWM on our
actual drone. In this fashion, we observe that the direction commanded by the autonomous
pipeline is properly displayed by the simulated drone moving left and down, but the force
provided results in much greater changes than the actual drone displays on teleoperated flight
with those inputs.

Table 6 — Calculation of Roll, Pitch, Throttle, and Yaw From Distances and Angles Based
on Walking Simulation

Image Roll Pitch Throttle Yaw
Number | (PWM) (PWM) (PWM) (PWM)
HOVER | 1500 1500 1500 1500
Image 1 1510 1516 1490 1500
Image 2 1496 1516 1490 1500
Image 3 1500 1510 1490 1500
Image 4 | 1498 1510 1490 1500
Image 5 1500 1501 1490 1500

In practice, we observe autonomous PWM ranges through the walking simulation from
Section 4.3, with observed image frame angles and distances as in Table 5. Visual representations
of Images 2, 3, and 4 can be seen in Figure 40 above. Relative to safe hover values of 1500
PWM, we simulate the PWMs necessary to have our drone fly downwards as throttle is
decreased to 1490. We also mimic our drone flying right, then addressing an overcorrection by
moving slightly left, relative to the initial throttle roll before stabilizing at 1500. We finally
observe pitch increasing sharply to move forward, then decreasing to near 1500 as horizontal
distance to a branch decreases.
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5. Conclusions

While each individual subsystem functioned independently, we were unable to fully
integrate them into a drone capable of autonomous flight to grasp a tree branch. The drone is able
to fly under indoor conditions, but experiences side-to-side motion that makes controlled flight
challenging. Further fine-tuning is necessary to ensure stable teleoperated flight before
progressing to the autonomous model. The grasping mechanism is able to perch on a tree branch
when provided with an additional downward force. The weight of the drone alone is unable to
fully collapse the legs of the grasping mechanism, but during the landing sequence the drone’s
propellers could be activated to provide additional downward force. The branch identification
model is unable to identify tree branches due to the limitations of each of the proposed models.
On the other hand, the branch detection model is successful in identifying the location of a
branch and returning its relative distance and direction. The autonomous model is able to
simulate flight in the expected directions, but this flight does not mimic the physics of our drone
and requires greatly scaled inputs to simulate the same behavior observed in teleoperated flight.

5.1 Future Work

To improve upon each subsystem, in future iterations of this project we recommend that
researchers consider the following:

1. Drone Hardware: Utilize alternative sensor inputs such as outdoor-rated depth cameras
and GPS components for use in outdoor flight.

2. Grasping Mechanism: Explore adding a locking mechanism to the legs to ensure a more
robust grasp.

3. Branch Identification: Investigate developing a model that is capable of classifying
branches either by using alternative approaches or by reducing the effects of the
limitations on previous approaches.

4. Branch Detection: Utilize contours to calculate the ideal landing spot on a branch.

5. Autonomous Pipeline: Integrate newly released computers such as the Raspberry Pi 5
that can allow for more efficient computation without a self-imposed two second camera
delay.
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Appendix A: A Comparison Between Premade and Custom Drones
for Environmental Robotics

Environmental robots is the use of robotic systems to help, protect, improve, and survey
various dangerous or hard-to-reach environments. These environments could potentially be
hazardous to humans due to potential pollutants, disrupt the natural ecosystem, or the risk while
traveling to these locations is high. These hard-to-reach or potentially dangerous places could
provide vital information on how to reduce our emissions, counteract current global climate, or
observe an endangered species and it is critical we find a cost effective way to access these
locations. Hopefully the findings below can progress this goal. This research can also be used to
evaluate both healthy and unhealthy ecosystems to determine what flora and fauna are present,
endangered, or even absent. This type of surveying can help researchers get a more accurate state

of a given environment.

Currently, not one robot fits all solutions which means for each task a different type of
robot will be better suited for a task. For example, a quadcopter has great maneuverability and is
able to fly allowing for superb aerial surveillance. However, these quadcopters do not have the
longest battery life or the largest payload meaning large sensors or studies that require a long
period to pass would not necessarily be a strong suit. On the flip side, a stationary robot that
collects and sorts out trash and plastics is able to be as large as it needs to be and does not
necessarily depend on battery power allowing it to run for as long as needed. The downside of
this solution is that it takes a significant number of resources to construct and or move these

types of robots.

Just like how the type of robot shapes what the project can do, the way these robots are
developed and sold can have serious implications on the research and development process. The
main choices are commercial off-the-shelf (COTS) and custom designs. When deciding which

type of project is needed, the main criteria that researchers must consider are:
Scope: does the project need a specific hardware or software requirement?

Customizability vs Scalability: How much modification does a robot need in order to complete

the mission and how easily can the solution be sold/used by the masses
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Development time: what is the time frame of a project?
Cost: how much money or manpower can be spent on development vs research

Technical knowledge requirement: How skilled does the operator/customer need to be in order
to pilot the robot?

Use case 1: Environmental Mapping

Figure 43: DJI Mavic 2 Pro (DJI, n.d.)

Mining is one of the most important yet environmentally destructive industries on earth.
This is due to the nature of needing to dig into the ground and extract resources at high volumes.
This is especially true in Ghana where up to 40% of the country's economy comes directly from

mining, more specifically gold mining (Ayree, 2000).

Artisanal gold mining is small-scale gold mining. There are a variety of methods used
however they all have some common practices. These methods primarily differ with the initial
extraction of material. Once the (mainly) gold chunks are extracted they are combined with
mercury inorder to form a gold mercury amalgamate (Donkor et al., 2006). This removes any
undesired material and increases the size of the gold pieces. Once all of the gold mercury
amalgamate is sorted out the mercury is buried away. This leaves the miners with pure gold
which is the basis of their income. During this process however the miners are exposed to
mercury as most of the time there is a degree of handling the mercury gold amalgamate. The
potentially more damaging exposure happens when the mercury is boiled away as it can get

inhaled and it can spread through the environment. Once a mining site is closed the equipment
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and materials are generally cleaned up and stored for the next mining operation. This includes as
much of the mercury as the miners can manage, however the mercury that gets mixed with the
soil and water of the mining processes is left as environmental contaminants (Donkor et al.,
2006). This mercury contamination is generally near rivers and other bodies of water as that is
where the majority of gold is found. This process leads to a severely contaminated environment
and water supply for humans, animals, and plants. The sad reality is that the miners know they
are poisoning themselves and those around them, however, they need the income in order to

survive (Hilson et al.,2014).

Due to safer mining practices not being financially feasible on the scale of these artisans,
a quicker and more efficient remediation effort could be put into place so that the miners can still
work while limiting the mercury contamination the environment is exposed to. One way to do
this would be to use a drone to map mine sites, identify where highly contaminated soil is, and
help direct remediation efforts. This can be combined with the local knowledge of the land in
order to minimize the exposure and time required to remediate. In order for the drone to be most
effective it must be able to autonomously map these mining sites and identify where areas of

contamination are.

Use Case 2: Environmental Supplements

Figure 44: The BranchBot quadcopter
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According to the United States Department of Agriculture bees are responsible for
pollinating around 130 types of plants sold in grocery stores and help generate 15 billion dollars
each year (United States Department of Agriculture, 2017). Even though pollinators are
incredibly valuable their populations have been decreasing at an alarming rate. This is partially
due to climate change, habitat loss, and a variety of diseases (for more information see the
Introduction, section 1). The main objective of this project is to use robotics to help supplement
declining bee populations so that the ecosystem does not collapse while they are recovering. In
order to do this as unobtrusively as possible a custom quadcopter was created in order to perch
on tree branches and hold a beehive. While this is the main purpose of the quadcopter, it can also

be used as a mobile environmental station that can perch in trees.
Scope: does the project need a specific hardware or software requirement?

In general, it is easier to create and distribute a software system than it is a hardware
system due to the physical manufacturing that is required. However if the hardware does have
the physical capacity to complete the mission the software will not be able to change it. When
deciding whether or not to use a premade drone for an application this needs to be taken into
account. The next step is to determine what software is needed to complete the mission. During
this step, software should be checked to see if they are compatible with each other as this could
cause issues down the line. Both case studies experience both similar and drastically different
errors in order to get the quadcopters off the ground. For example, for both projects outdated
versions of Python and firmware needed to be used in order to integrate with the oldest hardware
devices. In the Ghana project’s case, the DJI Mavic Pro 2’s firmware was no longer actively
supported by DJI which meant that older versions of supporting software had to be used like
Android Studio and OpenCV. In the case of BranchBot the Intel RealSense L515 camera
recently lost some support from Intel which caused the version of Python run on the Raspberry
P1i to be slightly outdated. The difference however is that the Mavic Pro 2, experienced no major
hardware issues during testing. The primary reason for this is the robust design of the quadcopter
and the failsafe in the code that made it this safe. For BranchBot due to the custom build and
code on our flight controller, there were significant issues with the integration of software and

hardware. This caused the quadcopter to break on multiple occasions that cost the team money
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and time. Primarily we found out partway through the project that the quadcopter needed

additional sensors (a barometer and RC receiver).

These types of issues can be dealt with by anyone with enough time, however, those with
a software background generally can debug and streamline software problems more easily than
mechanically focused people. The inverse is true as well, that hardware-focused people would be
able to identify and correct hardware issues significantly easier than a software-oriented person
would be able to. This means that if developing a custom drone it would be highly beneficial to
have a diverse team with both software and mechanical members on it or generally well-rounded
people. On the flip side, if using a COTS solution it would be recommended that the team is

primarily composed of software-oriented individuals.

Customizability vs Scalability: How much modification does a robot need in order to complete

the mission and how easily can the solution be sold/used by the masses.

Scalability is the ability to repeatedly manufacture the same product over and over again.
For this to work the product has to be relatively standard with possible small changes the user
can request. The main benefit of having a very scalable product is that the customer knows
exactly what they're going to get and they know it will be decent for the use case they have in
mind (Sinsky, et al., 2021). This can be seen with the DJI Mavic Pro 2 that was used in the
Ghana gold mining project as the quadcopter was an excellent system for flying around and
taking pictures however the minimum shutter speed of the camera being 2 seconds made the
system not 100% ideal for the mission at hand. On the same note, the DJI drone was incredibly
robust and hard to break under normal conditions. This is due in part to the robust engineering
and collision avoidance built into the quadcopter. There are also part replacements for this
quadcopter online that should theoretically work two if part of the frame is damaged. The
drawback to this method however is that if there are customizations that the user would like to
make it may be more difficult to do so, even if it is within the use case of the drone, for example,
rapid photo taking. This could be seen in the Ghana project when the camera would only take a
photo every two seconds and there was not much that could be done about it. Along with a

convoluted way of accessing and saving the image led to a slowdown in both development and
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execution of the end product. Another benefit of standard designs is that the time between
ordering and receiving the product is minimal as the drone design is already made and it either

just needs to be manufactured, or it is already made.

The main draw of a custom solution is that it can be used to solve highly unique problems
or challenges where a premade drone or part could not work without extensive modification
(Sinsky, et al., 2021). A custom drone allows the creators to optimize their drone to supplement
the features that are critical while ignoring other features that may be conventionally important.
For example, with BranchBot the goal of the project was to identify tree branches and then land
on said tree branches. No pre-made drone that we could find had either the capacity to add to the
design to create the grasping mechanism or have a grasping mechanism already attached. This
led to the creation of a custom drone as it allowed us to easily modify the design of a standard

quadcopter to add mounting points for the gripping mechanism.

Eventually, both drones would ideally be mass-producible and usable across a country
due to the nature of their work. However, the difference is that using a pre-made drone for the
Ghana project would allow those who already have a compatible system to use the software
created for the Mavic Pro 2 to be able to download the app and then use it on their system
alleviating the initial cost of buying one of these systems. For branch bot, the customers would
have to buy the entire system however it would be able to complete the very niche problem it

was set out to solve.

Development time: what is the time frame of a project?

In general, it would be recommended that the shorter the time frame the more COTS
components that are used. This is because research and development of both hardware and
software takes a significant amount of time and effort. This can be seen through the creation of
our custom quadcopter for branch bot. From the time that we decided to create a custom drum to
the time that we were first able to fly it took roughly 14 weeks. After these 14 weeks, some
issues still had to be sorted out on the hardware’s end. For the pre-bought DJI Mavic Pro 2, it

only took five weeks or so for the custom application to be able to have the drone take off. This
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time frame was not represented in the amount of time that the programs had as the Ghana project
had a significantly loser time frame starting at the beginning of the summer and going to roughly
the end of the calendar year where branch bot had exactly one school year to complete the
project. In an ideal world these time frames would be swapped as custom projects tend to take
more time and are more prone to canonical failure leading to significant delays. This was seen in
BranchBot during the development of our quadcopter when we were soldering on a Bluetooth
controller; this controller was to be used as a secondary communication system to ensure
constant communication. During this process, however, the wires were connected improperly
causing our flight controller to burn out and break. This led to us needing to spend an additional
$70 to replace the parts and spend additional time waiting and redoing a significant amount of
work to get the flight controller back to where it was both with hardware and software. This sort
of failure never occurred in the Ghana project, however, if something did break it would have
caused significantly more delays as the Mavic’s parts are not as readily available as the custom

parts and are significantly more expensive.

Cost (money and man hours): How much money can be spent on development vs research?

In general, buying a premade quadcopter incurs a heavy upfront cost with minimal
costs over time while custom drone cost is distributed over a greater period. This is partially due
to continual upgrades, needing to replace parts or a change in scope. There's always the
possibility as well that unforeseen circumstances come up and new sensors are needed to achieve
the original mission. One example of this in the branch bot project was the addition of a
barometer. Initially, we thought that the flight controller did not need a built in altitude sensor to
perform its mission. This is primarily due to there being a camera that could theoretically
determine the height off the ground using computer vision. However, this was not the case and
we ended up having to buy a separate component and integrate it with the flight controller. This
ended up costing our team roughly $10 and three to four days’ worth of time. This type of issue
would not necessarily come up with a pre-bought product however there is a premium in the
upfront cost. The DJI Mavic Pro 2 was released in stores in 2016 and has been discontinued. The

initial cost of the drone was $1500 which incorporates the material cost, the research cost and the
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package cost of a solid cohesive unit that is reliable (DJI, 2018). Compare this with BranchBot

which costs roughly the same amount of money to research and develop and would cost roughly

$900 to replicate as is currently (see cost breakdown in Table 5). This $900 would be spent for a

less generically good quadcopter however it has the solution to a very specific problem that

needs to be addressed. This cost increase is primarily due to the increase in research and the

iterations of failed designs and the corresponding cost to each of those iterations. Although these

costs are not necessarily reflected in the final cost of the quadcopter there is a total cost that it is

reflected in and it costs roughly the same as the DI and Mavic Pro 2

Table 7: Cost breakdown of BranchBot

Ttem Amount Cost per Item  [Cost

SD card 1 $15.00 $15.00
PS4 camera adapter |2 $12.00 $24.00
FeeTech FB90

Servo 1 $9.00 $9.00
Calipers 1 $24.00 $24.00
Frame 1 $140.00 $140.00
Motors 4 $30.00 $120.00
Flight controller 1 $89.00 $89.00
Propellers 2 $4.50 $9.00
Main battery 1 $117.00 $117.00
Raspberry Pi battery |1 $25.00 $25.00
USB 3.1 1 $7.00 $7.00
12 gauge wire 1 $4.25 $4.25
3D printing (arm) |50 $1.00 $50.00
Raspberry pi battery |1 $18.00 $18.00
3d printing (Quad) |58 $1.00 $58.00
Bluetooth adapter |2 $10.00 $20.00
Mcaster-carr 1 $65.00 $65.00
Fc v2 1 $70 $70.00
XT60 to JST 1 $9.00 $9.00
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adapter

Converter Step

Down 1 $12.00 $12.00
12 gauge wire 1 $5.00 $5.00
GPS Module 1 $20.00 $20.00
Remote controller |1 $50.00 $50.00
Barometer 1 $10.00 $10.00
lipo battery charger |1 $7.00 $7.00
More propellers 3 $7.20 $21.60
Replacement

propellers 1 $15.00 $15.00
Replacement

propellers 1 $15.00 $15.00
USB3.11.5f1t 1 $8.00 $8.00
Mcmaster 1 $43.00 $43.00
Propellers 2 $12.00 $24.00
Raspberry Pi 4B 1 $75.00 $75.00
Intel Realsense

L515 1 $589.00 $589.00
Total $1574.25

Technical knowledge requirement: How skilled does the operator/customer need to be in order
to pilot the robot?

In the end, what matters is the end-user experience. For the Ghana drone, the end user
will likely be a worker at a goldmine who does not necessarily have any technical background to
tinker with or modify the drone with. This leads to the end application and drone being very
user-friendly and straightforward to use. This is so this drone operator can easily navigate and
receive all the results that they need. For BranchBot, which is more in the prototype stage, the
end-user has a significantly higher technical background as they should already know basic

mechanical and software concepts and have applied them in other areas of study. This means that

61



the quadcopter can be left in a state that needs more fine-tuning and tinkering in order to run. In
the end, the branch prop should end up in a similar situation as the Ghana project application

however it is significantly earlier in the design cycle of it.

Results

Through my analysis, both projects made the correct choice. This is because the
Ghana-based mission only required a quadcopter with a good camera and the ability for steady,
smooth flight. A premade video quadcopter allows for this. I would recommend switching to a
different premade quadcopter that has more built-in computer vision accessibility. This is
primarily because, during the development process of the app, there were significant hurdles to
automating this quadcopter that were never quite overcome such as the two seconds between
photoshops and the time it takes to download photos to use for computer vision. With the correct
premade drone this is doable. For BranchBot no premade drones that either land on tree branches
already or are modifiable to be able to do so within our price range. This meant that we had to
create a custom drone with the materials we had at hand. When starting with a new
environmental robotics project I'd recommend searching for a pre-made drone within your price
range and seeing if that can suit your needs. If so and you have the budget I would recommend
using it because more time can be spent ironing out the mission. If one does not easily exist or
the software versions are incompatible with what software you want to implement on the
quadcopter I would recommend creating your quadcopter or at least starting from a kit. A kit
allows for some degree of standardization and framework to allow for a jump start in the
development process. It will allow you then to switch out your flight controller or add customer

electronics where needed to complete the mission.
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