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ABSTRACT 

 

 
It was previously established that MdmX, negative regulator or tumor suppressor p53, 

promotes genome stability and suppresses proliferation and tumorigenesis in a p53-independent 

manner. The purpose of this project was to determine whether protein Mdm2, another p53 

regulator previously shown to interact with MdmX, is required for the p53-independent role of 

MdmX in genome stabilization and suppression of cell transformation in vitro.  Triple knock-out 

(TKO) cells derived from the tumors of mice lacking p53, Mdm2, and MdmX were transfected 

with an MdmX expression plasmid. Compared to control cells, TKO cells ectopically expressing 

MdmX show decreased cell proliferation, a longer cell cycle, increased chromosome numbers 

and bipolar mitotic spindles, and decreased foci formation. Thus, MdmX, even in the absence of 

Mdm2, plays a role in genome stability and proliferation. This is crucial to consider in regards to 

potential cancer treatments aimed to suppress Mdm2 and/or MdmX in order to reactivate p53.  
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1.0 BACKGROUND 
 

1.1 Protein p53 

 

  p53 is a well-known and intensely studied protein in cancer biology, as it functions as a 

tumor suppressor. The p53 gene is the most commonly mutated gene in human cancers. In fact, 

50 percent of all human cancers contain an alteration in the p53 gene. Alternatively, cancers may 

also result from a mutation or deregulation of proteins that directly or indirectly interact with 

p53. In addition to the importance of p53 as a tumor suppressor, an increasing number of new 

roles for p53 have recently been reported, including the ability to regulate metabolism, fecundity, 

and various aspects of differentiation and development (Vousden and Prives, 2009).  

 Activity of p53 in normal cells is low. However, when the cell experiences DNA damage, 

p53 becomes active, initiating the expression of genes involved in DNA damage, cell cycle arrest 

or apoptosis (programmed cell death) (reviewed in Okorokov et al., 2006). p53 has a role in 

many non-stress situations as well, including the regulation of glycolysis and autophagy, cell 

survival, regulation of oxidative stress, cellular senescence and angiogenesis (Vousden and Lane, 

2007).  

p53 primarily functions as a transcription factor. It is activated by various stress signals 

including DNA damage, oncogene activation, telomere erosion, nutrient deprivation and 

hypoxia. p53 regulates the expression of an array of different genes that then mediate the p53 

response (Figure 1).  
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Figure 1: Overview of p53 Activation and Response. p53 is activated 

by many different situations, both stress and non-stress, and triggers 

pathways which result in various cellular responses (Vousden and Lane, 

2007). 

 
 

Upon DNA damage, protein kinases ATM and Chk2 phosphorylate p53, preventing its 

binding to Mdm2 (a negative regulator that promotes p53 degradation), thus increasing the 

cellular levels of p53 protein.  ATM and Chk2 participate in a phosphorylation cascade which 

induces cell cycle arrest at the G2 checkpoint. p53 prolongs the cell cycle arrest process by 

activating transcription of the gene coding for p21
Cip1

, a cyclin-dependent kinase inhibitor. This 

CKI binds to the Cdk-cyclin complex and inhibits the G1/S and G2/S transitions. Irreparably 

damaged cells have a high p53 activity, which activates proteins responsible for apoptosis (Voet 

et al., 2008). 

p53 may be activated by aberrant growth signals which cause the inappropriate activation 

of transcription factors. For example, Myc activates the transcription of the gene coding for 

p14
ARF

. This protein binds and inhibits a negative regulator of p53, Mdm2.  Therefore, p53 is 

stabilized, which triggers p53-dependent cell cycle arrest programs and apoptosis (Voet et al., 

2008). 
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Similarly, DNA-damaging chemotherapeutics, protein kinase inhibitors, and UV-

radiation can activate the protein kinase ATR, which phosphorylates p53 and reduces its affinity 

for Mdm2, resulting in cell cycle arrest and apoptosis (Voet et al., 2008).  

p53 also possesses transcriptionally-independent activities through direct interaction with 

other proteins. For example, p53 interacts with members of the BCL2 family of proteins (BAX) 

to elicit apoptosis (Vousden and Lane, 2007). 

The outcome of p53 activation, among other factors, depends on the extent of damage, 

and the duration of stress (Figure 2) (Vousden and Prives, 2009). 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Tumor Suppressing Response of p53.  The p53 response 

involves the regulation of several target genes that mediate cell survival, 

proliferation, and death (Vousden and Prives, 2009). 

 
 

1.2 Mdm2 and MdmX – Negative Regulators of p53 

 

 During normal development, the inhibitory effect of p53 on cell growth must be held in 

check. Therefore, several molecules exist that act as negative regulators or “controllers” of p53. 

These include ubiquitin ligases that control p53 stability, kinases and acetylases that affect post-



 10 

translational modification of the molecule, and transcriptional co-activators that modulate the 

transcriptional activity of p53 (Vousden and Lane, 2007). Most prominent negative regulators of 

p53 are the Mdm2 and MdmX proteins. Deletion of either Mdm2 or MdmX results in embryonic 

lethality, a result that is rescued by co-deletion of p53 (reviewed in Wade et al., 2010).   

 Mdm2 functions as an E3 ligase, and specifically ubiquinates p53, marking it for 

proteolytic degradation by the proteosome. In normal cells, p53 is regulated by a feedback loop 

where increased levels of p53 result in higher levels of Mdm2, which negatively regulates p53. 

Both Mdm2 and MdmX bind to the N-terminal activation domain of p53, promoting 

modifications that inhibit p53 transactivation function. Although structurally similar to Mdm2 

(Figure 3), the MdmX protein does not have a pronounced E3 ligase ability or effect on p53 

stability (Wade et al., 2010). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3: The Structure of Human Mdm2 and MdmX. (Wade et al., 2010). 

 
 

Mdm2 can form homo-oligomers, or it can hetero-oligomerize with MdmX, but MdmX 

alone is monomeric (Tanimura et al., 1999). Mdm2/MdmX heterodimer formation (Figure 4), is 

mediated by the C-terminal RING domain of both (Linke et al., 2008).  
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Figure 4: Diagram of Mdm2/MdmX Heterodimer. (Linke et al., 2008) 

  

Studies suggest that the Mdm2/MdmX hetero-oligomer is a more effective ligase for p53 

in vitro than Mdm2 alone (Linares et al., 2003), leading to the conclusion that MdmX contributes 

to p53 control by stabilizing the levels of Mdm2 (Linke et al., 2008). Following DNA damage, 

Mdm2 oligomers are phosphorylated and destabilized, leading to increased p53 levels. Mdm2 

then degrades itself and MdmX, removing Mdm2-Mdm2 and Mdm2-MdmX oligomers, resulting 

in maximum p53 accumulation. When DNA damage signaling ceases, kinase inhibition and 

phosphate activation remove the phosphorylated Mdm2 and MdmX which leads to their 

stabilization. The oligomers then continue to reduce p53 levels (Wade et al., 2010). 

 

1.3 p53-Independent Roles of MdmX 

 
 As a negative regulator of p53, over-expression of MdmX is potentially oncogenic, but 

surprisingly, MdmX was also found to have p53-independent roles in suppressing tumorigenesis 

and transformation (Matijasevic et al., 2008a). Mouse tumor cells double-null for p53 and 

MdmX show faster proliferation, increased genome stability, and an increased rate of 
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spontaneous tumorigenesis compared to p53-null cells/animals with intact MdmX (Matijasevic et 

al., 2008a). 

 While early passage p53-null and MdmX/p53-null cells show similar growth rates, the 

serial passaging of primary cells reveals an increase in growth rate of the MdmX/p53-null cells. 

Double-null cells are able to grow when plated at low densities and form much larger colonies 

than p53-null cells. A transformation assay shows that double-null cells form foci when allowed 

to grow to saturation density while p53-null cells do not (Matijasevic et al., 2008a). 

 MdmX not only suppresses cell proliferation, but helps maintain genome stability. 

Fluorescence Activated Cell Sorting (FACS) analysis comparing p53-null and double-null cells 

shows that the latter undergo a large reduction in ploidy. Double-null cells also undergo a 

reduction in chromosome number. Spindle formation in p53-null cells is mostly bipolar, with 

equal segregation of chromosomes, while double-null cell population shows an increased rate of 

multipolar spindles. Reintroduction of MdmX into double-null cells increases chromosome 

clustering and reduces multipolar spindle formation (Matijasevic et al., 2008b). 

 Mapping of the MdmX protein domain(s) responsible for the observed p53-independent 

functions using MdmX deletion mutants, is currently in progress in the Jones lab. 

Inhibition of the interaction of p53 with its negative regulators has been proposed as a 

potential cancer treatment. Yet the fact that MdmX also plays a role in the suppression of 

tumorigenesis and proliferation, and maintaining chromosome stability, shows that further 

knowledge is needed regarding the p53-independent MdmX roles to be sure the MdmX-

inhibiting treatments will not hinder the important characteristics of MdmX function 

(Matijasevic et al., unpublished). 
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1.4 Project Purpose 

 

 Proteins MdmX and Mdm2 have been shown to interact within the cell, and most 

previous studies have focused on the role of this interaction in the negative regulation of p53 

function and stability to increase tumorigenesis. Several p53-independent functions have also 

been described for MdmX, including MdmX-mediated decrease in tumorigenesis (Matijasevic et 

al., 2008a). It remains to be determined whether Mdm2 has a role in some of the p53-

independent MdmX functions described.  This project seeks to begin an investigation of whether 

MdmX retains its tumor-suppressing characteristics in an Mdm2/p53-independent manner. The 

goal of this project is to investigate in vitro the Mdm2 requirement for the p53-independent  

MdmX role in suppression of transformation and in genome stability.  
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2.0 EXPERIMENTAL DESIGN 
 

 

Tumor cells cultured from chest epithelium of Mdm2/MdmX/p53 triple knockout (TKO) 

mice will be stably transfected with an MdmX expression plasmid and co-transfected with a 

plasmid containing a puromycin-resistance gene. “Mock” control cells will be transfected with a 

plasmid containing the puromycin-resistance gene.  Transfectants will be selected on puromycin, 

then examined for MdmX expression by qPCR, and subjected to functional analysis, including 

cell proliferation, foci formation, cell cycle length, chromosome number, and spindle formation 

of each cell line. The phenotype of MdmX-transfected TKO cells will be compared to the 

previously obtained results with MdmX-transfected MdmX/p53-double knockouts (DKO) cells 

in order to determine the Mdm2 requirement for MdmX-mediated effects.  
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3.0 MATERIALS AND METHODS 
 

3.1 Cells 

 All experiments were performed with epithelial tumor cells isolated from mice deleted 

for p53, Mdm2, and MdmX (TKO, triple knockout). Cells were grown on DMEM media 

supplemented with 10% FBS and 10% antibiotic as attached culture. 

 

3.2 Plasmid Purification, Digestion, and Linearization 

Plasmid DNA was isolated and purified using a Qiagen Maxiprep kit from 300 µL of 

bacterial culture. Plasmid identity was confirmed by digestion with restriction enzymes PVU, 

Xho and HindIII (Figure 5). According to the plasmid map, the double digest for the MdmX 

expression plasmids would be expected to produce bands at approximately 1.6 kb and 5 kb, 

which was confirmed by the digest gel.  

 

 

 



 

 

Figure 5:  Digestion of MdmX Expression Plasmids.  Plasmid 

DNA was digested with PVU and HindIII, then electrophoresed 

on an agarose gel.  Positive clones containing the MdmX cDNA 

show bands at 1.6 kb and 5 kb. 

 

 

3.3 TKO Transfections 

 

 Cells were plated in a 6-well format and grown to 70% confluency in media with no 

antibiotics. The DNA to be transfected (MDMX expression construct and/or puromycin 

expression construct pBABE-Puro at a 6:1 molar ratio; or GFP) was diluted in 50 uL of DMEM 

without serum, and mixed. An appropriate amount of Lipofectamine-2000 (Invitrogen) was 

diluted in DMEM and incubated for 5 minutes at room temperature. The DNA and 

Lipofectamine were mixed and allowed to incubate at room temperature for 20 minutes. 100 uL 

of the mixture was added to each well and rocked gently. Cells were incubated at 37ºC. The 

media was changed 6 hours later. The cells were re-plated 24 hours after transfection, and 

selected for puromycin resistance.  
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3.4 qRT-PCR 

 

 RNA Extraction 

 Cells were grown in a 6-well plate format and collected with 0.5 mL of Trizol. Then 0.2 

mL of CHCl3 was added, and the cells were incubated for 3 minutes at room temperature, then 

shook vigorously for 15 seconds. The tubes were centrifuged for 15 minutes at 12,000 X g at 4ºC 

and the clear supernatant was transferred to a fresh tube. The tubes were combined with 0.5 mL 

of isopropanol, incubated for 10 minutes at room temperature, then centrifuged for 10 minutes at 

12,000 X g at 4ºC. The supernatant was removed, and 1.0 mL of 75% ethanol in 

diethylpyrocarbonate (DEPC) water was added to the pellet and inverted several times. The tubes 

were centrifuged for 5 minutes at 7.5 X g at 4ºC, the ethanol was removed, and the pellet was 

dried for 5 minutes. 50 uL of DEPC water was added to the pellets which were then left on ice 

for 30 minutes. The RNA was then quantified by spectrophotometry.  

 

cDNA synthesis 

The following mixture was prepared for each RNA sample: 5 ug RNA, 5 uL random 

hexamers (50 ng/uL), 1 uL 10 mM dNTP mix, and DEPC water to bring the volume to 10 uL. 

The samples were placed in a Themocycler for incubation for 5 minutes at 65ºC, then cooled for 

one minute. The following mixture was prepared (enough for each sample): 2 uL 10X RT buffer, 

4 uL 25 mM MgCl2, 2 uL 0.1 M DTT, and 1 uL RNaseOUT Recombinant Ribonuclease 

Inhibitor. 9 uL of this mixture was added to each sample, mixed, and incubated for 2 minutes at 

25ºC. 1 uL (50 units) of SuperScript II RT was added to each tube. The tubes were placed in a 

Thermocycler and incubated at 25ºC for 10 minutes, 42ºC for 50 minutes, 70ºC for 15 minutes, 
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then chilled. 1 uL of RNase H was added to each tube and then incubated for 20 minutes at 37ºC. 

All reagents were from Invitrogen. 

 

qRT-PCR 

The master mix for PCR tubes was prepared for each well: 12.1 uL GoTag gPCR Master 

Mix (Promega), 10.5 uL H2O, 0.2 uL forward primer, and 0.2 uL reverse primer.  23 uL of the 

master mix was added to each well in the PCR plate. 2 uL of each cDNA sample was added to 

each well containing the master mix. The PCR tubes were capped and placed into the PCR 

machine. 

 

3.5 Functional Analysis 

 

Transfected cells were assayed for the effects of MdmX expression on cell proliferation, 

foci formation, cell cycle length, chromosome number, and spindle formation as follows: 

 

Proliferation Assay 

 Cells were plated at .01X10
6
 cells per well in a six-well plate format. Each well was fed 

every three days with fresh media. Each day, two wells per sample were harvested with recorded 

volumes of trypsin and media, then were counted in triplicate. The number of cells per plate was 

calculated for each well per day.  

 

Chromosome Spreads 

 Cells were grown to 1 X 10
6
 in 150cm2 dishes. Pre-warmed media was added with 

colcemid solution (10 ug Gibco 15210-040) at a concentration of 0.02 ug/mL. The cells were 
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incubated at 37ºC for 90 minutes. The cells were harvested with trypsin, counted and 

centrifuged. The media and PBS used to harvest the cells were centrifuged to keep dislodged 

cells and added to the harvested cells. 10 mL of 37ºC hypotonic solution (0.075 M KCl) was 

added to the cells, which were then incubated at 37ºC for 18 minutes. A few drops of fixative 

(3:1 methanol : acetic acid) was added.  Cells were collected by centrifugation, mixed with 1 mL 

of fixative added drop by drop while agitating and incubated on ice for 30 minutes. The cells 

were centrifuged at 500 RPM for 5 minutes and 1 mL of fixative was added. To prepare mitotic 

spreads, about 20 uL of the fixed swollen cells was dropped onto a glass microscope slide run 

quickly through a flame and placed on a 60ºC warmer. The cell density of the slides was checked 

and the last step repeated to determine the appropriate final volume of fixative. The slides were 

stained with DAPI (1 ug/mL) in PBS (200 uL DAPI/100 mL PBS) for 30-60 seconds, and then 

rinsed with PBS. Several drops of Permount solution were added to the slides along with a cover 

slip. After one hour the slides were examined with a 40x oil immersion microscope.  

 

Mitotic Spreads 

 Cells were grown in 6-well plates on top of coverslips. Coverslips were removed with 

cells from media, dipped briefly in pre-warmed 37°C PBS, and fixed in -20°C pre-cooled 

methanol for 5 minutes. Cells were removed and placed in room temperature PBS for 5 minutes. 

The PBS was removed, and PBS with 3% BSA and 0.5% Tween 20 was added at room 

temperature for one hour. The primary antibody (Sigma mouse monoclonal anti-alpha tubulin 

and Sigma rabbit polyclonal anti-gamma tubulin) were diluted 1:4000 in PBS, 3% BSA, 0.5% 

Tween 20. Coverslips were removed and placed cell-side down on 100 uL drop of primary 

antibody, and then incubated overnight at 4°C. The coverslips were washed 3 times with PBS, 
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1% BSA, 0.5% Tween 20. The secondary antibodies (molecular probes goat anti-mouse ALEXA 

488 and molecular probes goat anti-rabbit ALEXA594) were diluted 1:1000 in PBS, 3% BSA, 

0.5% Tween 20. Coverslips were placed cell-side down on 100 uL drop of secondary antibody 

and incubated for 1 hour at 37 °C. The coverslips were washed 3 times with PBS, 1% BSA, 

0.5% Tween 20 and incubated on a 100 uL drop of Hoescht 33258 solution (made 10 ug/mL in 

PBS) for 5-15 minutes, and then washed for 10 minutes in PBS. The coverslips were placed cell-

side down on 7 uL mounting media (50:50 PBS:Glycerol) on a slide and sealed with clear nail 

polish. The slides were examined with a 100x oil immersion microscope. 

 

Soft Agar Assay (Foci Formation) 

 A bottom layer of 1% agar in 1xDMEM/FBS was solidified in 60mm plates. Cells were 

grown, harvested and counted. Then 13,000 cells were added to the 45dC soft agar (0.5% final) 

in DMEM/FBS and poured on the top of the bottom layer. The plates were placed into the 37°C 

incubator. Once the upper layer was solid, 0.75 ml of 1xDMEM, 10% FBS were added to all 

plates. The cells were fed with 1mL of 1xDMEM, 10% FBS twice per week. Cells were fixed 

with methanol and stained with crystal violet to evaluate foci formation. 
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4.0 RESULTS 

 
The purpose of this project is to determine whether protein Mdm2, previously shown to 

interact with MdmX, is required for the p53-independent promotion of genome stability and 

suppression of cell transformation by MdmX.  Triple knockout cells were derived from tumors 

of mice lacking three proteins: p53, Mdm2, and MdmX.  MdmX was then ectopically expressed 

in these cells by transformation with an MdmX expression plasmid.  Transfectants were screened 

by RT-PCR for the expression of MdmX. The cells were then assayed for various transformation 

phenotypes, including cell proliferation, cell cycle length, chromosome number, spindle 

formation, and foci formation. The results of these functional assays were compared to those of 

cells transfected with a mock plasmid.  

 

4.1 Transfection Efficiency and Cell Viability 

 

To test the transfection efficiency and possible cytotoxicity of the transfection reagent, 

cells were transiently transfected (without selection) with an expression plasmid encoding Green 

Fluorescent Protein (GFP) and a plasmid encoding MdmX, using two different transfection 

reagents (X-treme GENE Roche and Lipofectamine 2000, Invitrogen). Human Embryonic 

Kidney (HEK) cells were used as a positive control. Transfection efficiency was determined as a 

ratio of GFP-positive cells to total cells from the fractions of 6-well plate images (Figure 6 and 

Table 1). Cell survival was determined by counting total cell number of harvested cells in the 

control and transfected wells. The data showed that the cells with the lower transfection rate had 

a higher survival, while cells with higher transfection rate showed a lower survival, suggesting 
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that the MdmX over-expression can affect cell survival and that cells cannot tolerate high levels 

of MdmX.  

  

 
 

Figure 6:  Transfection Efficiency and Cell Survival.   Two different 

transfection reagents (R or L) were used to co-transfect cells with MdmX 

and GFP plasmids.  The percent of GPF-positive cells and the percent 

surviving cells are shown. 

 

Table 1: Transfection Reagent Toxicity 

Reagent Conc. 
(µL/well) 

Transfection Reagent + 
MdmX 

Transfection Reagent 
Only 

  30 hours 25 hours 44 hours 
  GFP-pos. survival survival % survival % 

No TR    100 100 
Roche 10 7.5% 72% 87 83 

Roche 15   83 58 

Lipo 10 20% 32% 100 83 

Lipo 15   93 83 

 
 The results show that mouse tumor cells transfected at lower efficiency than HEK cells 

and that Lipofectamine is more efficient and a less toxic tranfection reagent under the 

experimental conditions. 
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4.2 RT-PCR 

 

An expression plasmid containing the MdmX cDNA and/or puromycin resistance was 

stably transfected into TKO tumor cells using Lipofectamine. The transfected cells were selected 

for puromycin resistance. Positive transfectants were screened for levels of MdmX mRNA using 

qRT-PCR (Figure 7).  Cells transfected with the plasmid encoding MdmX showed much higher 

levels of MdmX than parental TKO cells or cells transfected with the control plasmid.   

 

 
  

  
Figure 7:  qRT-PCR of MdmX mRNA Levels in TKO Transfectants.  

Cells transfected with the plasmid encoding MdmX showed much 

higher levels of MdmX than parental TKO cells or cells transfected 

with the control plasmid.   
 

4.3 Effect of MdmX on Cell Proliferation  

 

A cell proliferation assay was performed on TKO cells transfected with mock plasmid or 

with full length MdmX (Figure 8). When plated at an initial low density, both cell lines seemed 

to behave similarly, but at higher densities over a 7-day period, the proliferation rate of cells 
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transfected with MdmX was significantly slower than the mock control, suggesting that MdmX 

plays a role in suppressing cell proliferation in an Mdm2-independent manner, and that the 

plating density affects the cell growth. 

  

 
 
 

Figure 8:  Effects of MdmX Expression on Cell Proliferation.   Cells 

derived from tumors of mice deficient for p53, Mdm2, and MdmX (triple 

knockouts, TKO) were transfected with plasmid not encoding MdmX 

(mock) or encoding MdmX (FL). 

 

 

4.4 Effect of MdmX on Cell Cycle Length

 

In collaboration with Sluder’s lab at UMMS, TKO cells transfected with MdmX and 

control cells were subjected to time lapse videomicroscopy to determine the cell cycle length at 

the single cell level. The cell cycle length was calculated as the time from anaphase of one cell to 

the anaphase of the daughter cell (Figure 9). The data showed that cells ectopically expressing 

MdmX have a significantly longer cell cycle length compared to cells without MdmX.   The 
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cycle lengths of 12.94 and 14.2 might not seem like a large difference, but an unpaired t test 

proves that the difference in time is extremely statistically significant. This increase in cell cycle 

length likely explains the slower proliferation of the cells ectopically expressing MdmX, and 

again confirms that MdmX plays a role in suppressing cell proliferation in an Mdm2-

independent manner. 

 

 
 

Figure 9:  Effects of MdmX Expression on Cell Cycle Length.   

Tumor cells derived from mice deficient for p53, Mdm2, and MdmX 

were transfected with plasmid not encoding MdmX (mock) or encoding 

MdmX (FL), and their cell cycle length measured by time lapse video 

microscopy. 

 

4.5 Effect of MdmX on Chromosome Number 

 

Chromosome spreads were prepared for mock and MdmX transfected cell clones, stained 

with DAPI, and observed under a fluorescent microscope (Figure 10).  Chromosome number in 

at least sixty cells per cell line were determined. The results are expressed as the percent of cells 

with a larger than triploid genome (more than 60 chromosomes). Cells transfected with an 
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MdmX plasmid have almost twice as many cells with a larger than triploid genome, suggesting 

that the MdmX suppression of chromosome loss is not Mdm2-dependent. 
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Figure 10:  Effects of MdmX Expression on Chromosome Number.   

Chromosome spreads were prepared from TKO cells ectopically 

expressing MdmX and for control cells. Cells that lack MdmX show a 

decreased chromosome number (top picture: chromosome <60; bottom 

picture: chromosomes >60). 

 

4.6 Effect of MdmX on Mitotic Spindles 

 

MdmX was previously found to have a p53-independent role in maintaining genome 

stability, partly in terms of promoting bipolar spindle formation during mitosis in p53-deficient 

cells. To determine the requirement for Mdm2 in spindle polarity in MdmX-transfected TKO 

cells, mock and clones were stained with alpha-tubulin for microtubules, gamma-tubulin for 

centrosomes, and DAPI for DNA, and were observed under a fluorescent microscope (Figure 

11).  The upper panel shows examples of the various shapes of spindles that were observed.  

Normal spindle shape is bipolar with two centrosomes (left column), however normal cells can 

also contain some spindles with amplified centrosomes that were still bipolar (third column). 

Some had amplified centrosomes and were multipolar (second column).  Another broad category 

included asymmetrical spindles that were elongated and were often seen in pairs or tandems.   



 28 

The spindles observed were separated into one of three categories: bipolar, multipolar, or 

asymmetric. When comparing cells that will presumably divide correctly to those that will not, 

both biopolar spindles and spindles with amplified centrosomes that are still bipolar were placed 

together. This category was then compared to both obviously multipolar spindles and spindles 

that were considered multipolar and/or asymmetric (grouped as “irregular”). This is because it is 

unknown for sure whether the asymmetric spindles will divide incorrectly. The middle panels 

show the number of multipolar or “irregular” spindles for mock and MdmX clones calculated as 

a percent of all spindles observed. Cells ectopically expressing MdmX showed a decreased 

number of abnormal spindles. This suggests that MdmX plays a role in promoting bipolar 

spindle formation even in the absence of Mdm2. 
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          Figure 11:  Effects of MdmX Expression on Irregular Spindle Formation.   

                      Cells were stained with alpha-tubulin for microtubules, gamma-tubulin for  

                      centrosomes, and DAPI for DNA, and were observed under a fluorescent microscope.  

                      Cells ectopically expressing MdmX show a reduction in irregular spindles.  

 
 
 

4.8 Effect of MdmX on Cell Transformation in vitro (Soft Agar Analysis) 

 

A soft agar assay determines the ability of cells for anchorage-independent growth, 

manifested as foci formation in soft agar.  A soft agar assay was conducted using the mock and 

MdmX transfected TKO cell clones. MdmX expressing clones showed a great reduction in both 
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size and number of foci compared to the parental or mock transfected cells in two separate 

experiments (Figure 12). This shows that similar to DKO cells, MdmX suppresses foci 

formation in TKO cells, suggesting that Mdm2 is not required for MdmX to suppress cell 

transformation in vitro. 

  

 

 
 

Figure 12:  Effects of MdmX Expression on Foci Formation (Soft 

Agar Assay).   Cells derived from triple knockout p53, Mdm2, and 

MdmX-deficient mice were transfected with a control plasmid or 

encoding MdmX and their foci formation was assayed in soft agar. Cells 

ectopically expressing MdmX show a lower rate of foci formation (red 

and blue indicate two different experiments). 



 31 

5.0 DISCUSSION 
 

5.1 Conclusions 

 

The purpose of this project was to determine whether protein Mdm2, previously shown to 

interact with MdmX, is required for the p53-independent promotion of genome stability and 

suppression of cell transformation by MdmX.  TKO cells were derived from tumors of mice 

lacking p53, Mdm2, and MdmX.  MdmX was then ectopically expressed in these cells by 

transformation with an MdmX expression plasmid. MdmX expression was confirmed by qRT-

PCR. 

 The cells were assayed for various transformation phenotypes. Cells ectopically 

expressing MdmX that were plated at a known low number over seven days showed slower 

growth when compared to control cells. This difference in growth rates is confirmed by the 

analysis of cell cycle length by video microscopy, showing that cell expressing MdmX have a 

significantly longer cell cycle when compared to control cells.  Similar to p53-null cells, 

p53/Mdm2-null cells maintained an increased chromosome number. Cells expressing MdmX had 

a higher occurrence of bipolar spindle formation, while mock cells frequently produced  

multipolar or asymmetric spindles. Finally, cells ectopically expressing MdmX showed lower 

foci formation in soft agar than did control cells. 

These data strongly parallel data obtained through similar studies. These were done with 

double-knockout cells that were p53/MdmX-null. Serial passage of primary cells revealed an 

increase in growth rate of the MdmX/p53-null cells when compared to p53-null cells. Double-

null were able to form foci when allowed to grow to saturation density while p53-null cells do 

not (Matijasevic et al., 2008a).  Double-null cells also underwent a reduction in chromosome 

number. Spindle formation in p53-null cells was mostly bipolar, with equal segregation of 
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chromosomes, while the double-null cell population shows an increased rate of multipolar 

spindles. Reintroduction of MdmX into double-null cells increased chromosome clustering and 

reduced multipolar spindle formation (Matijasevic et al., 2008b). 

 The conclusions of the DKO and TKO experiments regarding the role of MdmX strongly 

parallel each other. Despite the fact that MdmX and Mdm2 often form heterodimers, the role of 

MmdX in genome stability and cell transformation seems to remain unaltered whether in the 

presence or absence of Mdm2. This provides strong evidence that MdmX retains its important 

role in promoting genome stability and suppressing cell transformation in the absence of both 

p53 and Mdm2 in vitro.  

 

5.2 Experimental Setbacks 

The Jones’ lab had also begun mapping of the MdmX protein domain(s) responsible for 

the observed p53-independent functions using MdmX deletion mutants. So far, the results 

suggest that the role of MdmX in suppressing proliferation is separated from its role in genome 

stability, with the RING domain regulating proliferation, and the RanBP Zn-finger domain 

regulating genome stability.  The original goal of this MQP project was not only to examine the 

effect of MdmX on TKO cells, but also to examine whether the RING and RAN domain retain 

their respective roles in an Mdm2-null background. Deletion constructs were transfected into 

TKO cells and tested alongside the full length MdmX transfectants. However, no solid 

conclusions could be drawn from any of the assays using the deletion constructs. Whether this 

was due to an unsuccessful transfection or inconsistency of assay preparation is unknown.  
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FACS analysis was also performed on the full length MdmX transfectants as well as 

deletion construct transfections. Despite multiple attempts with different transfections, all cell 

lines appeared to have identical ploidy. The reason for this is again unknown. 

It was attempted in earnest to achieve the detection of MdmX through Western Blots 

using an antibody to probe for MdmX, yet none were successful. HEK cells, as a positive 

control, showed high transfection efficiency and high levels of MdmX expression through qPCR, 

and was also able to be detected through Western Blot. Yet with MdmX-transfected TKO cells, 

despite having confirmed levels of MdmX through qPCR, even endogenous levels of MdmX 

could not be detected. Despite different antibodies and conditions, the detection of MdmX was 

on a whole unsuccessful. 

  

5.3 Future Experiments 

 These experiments have only begun the long process of fully understanding the 

relationship between p53, Mdm2 and MdmX in tumor suppression. In the continuation of this 

reasearch, it would be beneficial to attempt further transfections with the deletion mutants in an 

attempt to achieve the expected results from functional analysis. Here one can discover whether 

the roles of the MdmX domains behave similarly in the absence of Mdm2, or whether Mdm2 

might actually be required for their respective effects on the cell.  

 Most importantly, these conclusions are strong when it comes to in vitro conditions, but 

there are many factors that can affect the interactions studied here when they are introduced into 

a living organism. These in vivo studies should be done using mice as test subjects as a 

continuation of the previous DKO experiments (as described in Matijasevic et al., 2008b). Only 
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in vivo studies will confirm the relationship of MdmX and Mmd2 that was concluded by this 

project.  

 

5.4 Medical Importance 

Due to the fact that it is a negative regulator of p53, the suppression of MdmX and Mdm2 

has been proposed as a potential cancer therapy in several ways; first, by reducing the cellular 

levels of MdmX; second, by developing small molecules that relieve the MdmX-dependent 

inhibition of p53, which would restore p53 function; and third, by using existing Mdm2 

antagonists with agents that sensitize cells to p53-dependent apoptosis (Wade et al., 2009).  

Yet it has also been previously shown that MdmX plays a role in the suppression of 

tumorigenesis and genome stability, suggesting that further knowledge is needed regarding the 

p53-independent MdmX roles to be sure the MdmX-inhibiting treatments will not hinder the 

important characteristics of MdmX function (Matijasevic et al., unpublished). This project 

provides even more insight into the relationship between p53, Mdm2, and MdmX, so that the 

effects of the removal of either Mdm2 or MdmX can be taken into consideration when 

contemplating these potential cancer therapies.  
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