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Abstract 

St Paul Travelers is an insurance company that performs over 35,000 roof 

inspections per year. The goal of this project was to design and build a robot inspection 

platform in order to limit risk to the human inspector and lower inspection time. The team 

developed an all-wheel drive robot capable of traversing a variety of roof geometries 

while visually recording data. The final deliverable also included an ascender system to 

deliver the robot to the roof.   The robot will serve as a platform for future MQPs to 

further develop sensor systems for roof inspection. 
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Executive Summary 

St. Paul Travelers conducted over 35,000 roof inspections last year, and with 

inspections lasting up to two hours and costing as much as $1500 dollars each, they 

represent a significant expenditure of time and money.  Furthermore, each inspection 

carries a degree of risk for the inspector, be it damaging the roof during the inspection 

process, falling off, or even falling through the roof. 

Robots have long been used to explore and investigate places where it is too 

difficult or dangerous for a person to go.  A roof inspection robot would face a number of 

challenges.  There are many types of roof surfaces, ranging from clay tile, to slate, to 

metal, to composition.  Some roofs are relatively flat, while others have pitches as steep 

as
12

24
.  A robot able to replace a human in roof inspections needs to navigate those 

pitches, and be able to traverse the crests and valleys of the roof.   

Project Task Specifications 

This project’s goals were developed in collaboration with St. Paul Travelers, 

reflecting both their needs and our limited timeframe.  Because of the team’s expertise in 

mechanical engineering, it was determined that the best use of time would be to develop a 

roof-ascending system as well as a remotely-controlled vehicle capable of performing 

visual inspections.  Future projects could be developed to put together a sensing package 

for physical inspections and to further refine our designs.  The formal task specifications 

for the inspection robot and ascender system are described below. 

The robot must be able to traverse a roof, defined as: 

• Maneuverability over composition tile with
12

12
pitch 

• Able to crest rooftop and valley 

• Remote control (untethered) 

The robot must have the following autonomous features: 

• Can sense roof edge to prevent operator from driving over the edge 

• Tilt warnings to prevent operator-induced flip-over 



 iv 

• Manual overrides to allow operability in the event of a false sensor 

warning 

The robot must be able to conduct a visual inspection of the roof: 

• Incorporates a camera with transmittable feed  

• Is able to produce a record of visual inspection 

The robot “prototype” must last through 50 hours of operation 

The robot must be able to get on and off of a roof with a provided ascender 

mechanism; a ten foot (one story) prototype will serve as a proof of concept 

 

Results 

 We met the project specifications through the 

design and fabrication of robot and ascender 

mechanism.  The robot has a unique chassis design that 

allows it to traverse the peaks and valleys of a roof 

while avoiding any skidding that a tank style robot 

would be subject to.  

The robot uses a Vex microcontroller to receive 

directions from the operator. Control algorithms take 

sensor input from the wheels to provide all wheel drive and 

traction control. Additional sensors provide edge detection and a 

camera allows the operator to see the roof from the robots point of 

view. 

 

Figure 1: Robot Driving on Roof 

 

Center of 
Gravity 

 

Figure 2: Robot CAD 

Model 
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The ascender mechanism transports the robot to the top of the roof without putting a 

person in danger. The final ascender design is an 

attachment for a standard extension ladder. The 

robot is placed inside of a carriage which is pulled 

up the ladder by means of a pulley. Once the 

carriage reaches the top it tilts to allow the robot to 

drive on to the roof.  

Conclusions and Recommendations 

Through this Major Qualifying Project we 

have shown that it is possible to build a robot that can operate on a 45° roof with an 

asphalt shingle surface.  We have concluded that it is feasible to use a robot to conduct 

roof inspections and we have further recommendations on how to continue to develop our 

work.  

Conduct Further Research into Friction Materials 

The major design challenges that we faced 

were centered around the frictional coefficient 

between the roof and the wheels. The robot is stable 

and balanced on a 45° slope, but its performance is 

traction limited.  The best material combination we 

found was a EPDM foam over a Scotchbrite substrate, 

but there is not a large margin of safety.  The robot 

occasionally loses traction and skids, but catches 

itself.  We recommend future research into finding 

friction materials to help the robot navigate the roof without risk of slippage. 

Continue to Develop and Optimize the Current Design 

We have met nearly all of the original task specifications but were limited by time 

constraints.  All the systems can be improved and optimized.  Because all the team 

members working on this MQP were mechanical engineers, there is particular room for 

improvement in the electrical and control systems.  The Vex microcontroller used on the 

 

Figure 3: Ascender Carriage Operation  

 

 

Figure 4: Robot Wheel on Roof 
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robot, for example, is a very easy to use system and serves as a proof of concept, but its 

lack of two way wireless data communication makes it a poor choice for a remotely 

operated vehicle.  We recommend that future project teams include an electrical engineer 

and computer scientist to develop the systems on the robot that are outside the expertise 

of a mechanical engineer. 

Develop a New, Roof Specific Sensor Packgage 

 One of the intentions of this project was to test whether a robot could even 

navigate the steep inclines and geometries of a roof.  To fit within the time constraints of 

this project, the robot was only required to conduct a visual inspection.  Having 

concluded that it is feasible for a robot to conduct a roof inspection, the next step is to 

develop a roof specific sensor package.  

 

 Our work can serve as a basis for future projects based on a roof inspection robot. 

We have laid the groundwork for the development of a sensor package, a more advanced 

operator interface, and an improved ascender mechanism through our work with this 

prototype. 
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Introduction 

St. Paul Travelers conducted over 35,000 roof inspections last year, and with 

inspections lasting up to two hours and costing as much as $1500 dollars each, they 

represent a significant expenditure of time and money.  Furthermore, each inspection 

carries a degree of risk for the inspector, be it damaging the roof during the inspection 

process, or falling off or even through the roof. 

Robots have long been used to explore and investigate places where it is too 

difficult or dangerous for a person to go.  A roof inspection robot would face a number of 

challenges.  There are many types of roof surfaces, ranging from clay tile, to slate, to 

metal, to composition.  Some roofs are relatively flat, while others have pitches as steep 

as
12

24
.  A robot able to replace a human in roof inspections needs to navigate those 

pitches, and be able to traverse the crests and valleys of the roof.  The robot needs a 

vision system so the inspector can drive the robot, and sensors to check the roof for non-

visual damage.  On top of that, the robot needs a deployment system to reach roofs which 

may be as high as forty-two feet. 

The goal of this project is to deliver a robotic chassis capable of navigating a composition 

tile roof at a pitch of
12

12
.  The robot will be able to cross both peaks and valleys, and will 

carry a simple camera for navigation and a visual inspection.  The project will include a 

delivery mechanism capable of placing the robot on and off a roof from ground level. 
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1 Background 

 St. Paul Travelers insurance company has presented us with the task of 

developing of a robot for the purpose of inspecting household roofs. This is an operation 

that is normally carried out by a human inspector that must climb to the roof and then 

carry out a visual and physical inspection. The following section contains background 

research on commercially available robots, lifting mechanisms, and sensors. 

1.1 Commercially Available Robots 

The standards for the platform as specified by the sponsor of this project state that 

the robot must: 

• Be maneuverable by someone on the ground 

• Be driven on roofs of various surfaces 

• Be driven on roofs with a pitch of up to 45 degrees 

• Fit into the trunk of a minivan or back of a pickup truck 

We have investigated several different commercially available robots regarding their use 

for roof inspection purposes. Remote-controlled all-terrain platforms meet most of the 

design specifications and flying machines have been ruled out by the sponsor. Of 

particular interest are remote-controlled platforms that have been contracted by the 

military as all-terrain vehicles used in applications where it would be dangerous to send a 

person. The following is a list of potential robots.  

1.1.1 iRobot Packbot 

 The Packbot, shown in Figure 5, is designed for 

portability and survivability, both good qualities for a roof 

inspection robot. It is small enough to fit in the back of almost 

any consumer vehicle and can be lifted by one person. Its low 

center of gravity allows it to traverse slopes of up to 60 degrees 

and its unique articulating tread system allows it to climb stairs and Figure 5 – Packbot Robot 
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other obstacles. The Packbot can also survive a two meter drop; while this is not 

equivalent to a fall from a three-story building, it is an advantage.  The Packbot is 

designed to have a payload. This payload could be optimized for roof inspections with a 

combination of sensors and actuators. iRobot can package the Packbot with a two-meter, 

remote-controlled, extendable arm. Operator interface for the Packbot is based around 

joystick controls and an LCD display of the robot’s vision system, a simple effective way 

to control the robot for an insurance company agent. Packbots are sold for $50k-$115k, 

depending on the payload features supplied by iRobot. This is relatively cost-prohibitive 

to the sponsor. Additional development costs would be incurred for research and 

development of payload sensors and a roof deployment system.  

 

1.1.2 Mesa Robotics, MATILDA 

MATILDA (see Figure 6) is similar to the Packbot in that it can fit in the trunk of 

a car, be carried by one or two people, and is designed for rough use. It is controlled by a 

briefcase operator system similar to Packbot’s.  A 

low center of gravity allows MATILDA to drive on 

slopes of up to 55 degrees and which is suitable for 

the roof pitch requirement. It has a payload bay 

measuring 13.5x16.5 inches which would have to 

house all of the rooftop inspection sensors. 

MATILDA has an approximate cost of $55K, 

making it also too expensive for the sponsor’s 

budget. 

1.2 Lift Mechanisms 

 In the event that there is no convenient level access point to the roof, it will be 

necessary to build or custom modify an existing device to place the robot on and off the 

roof.  In this section, various commercially available roofing, personnel, and lighting lift 

mechanisms are discussed. Each mechanism is considered in terms of cost, 

Figure 6 – MATILDA robot 
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transportability, and effective lift height.  Furthermore, the ease of operation and need for 

modification is also considered. 

  

Figure 7 - Man Portable Figure 8 - Trailer Towable 

Figure 9 - Truck Mounted 
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Portable roofing lifts can be categorized by their means of transport.  There are hand 

portable units, towed trailer units, and truck mounted units.  (See Figure 7, Figure 8, and 

Figure 9, respectively.)  Price and effective height go up as the units get larger.  All the 

lifts are designed as general purpose lifts and a platform with a landing ramp might need 

to be built to carry the robot up. 

 Personnel lifts come in a variety of heights, again, usually varying with price.  

Most units are hand portable and can be carried by one or two people.  They already have 

a wide, flat platform to carry the robot, and would need simple modifications to get the 

robot onto a roof.   

 Lighting lifts come as both hydraulic and hand-powered systems.  Systems 

intended for indoor use are hand portable by one or two people.  Larger outdoor systems 

are truck towable. 

 The sponsor’s need for a compact and portable system is the ultimate limiting 

factor to commercially available lifting devices. Ideally they would like a telescoping 

device that can fit in the back of a car and deliver the robot to the roof. In our background 

research we found no such device. 

1.3 Robot Design 

The sponsor would like to have a complete robotic system capable of lifting 

independent shingles for damage inspection, using sensors for semi-autonomous 

functions, with an ascender system to move the robot to the roof.  However, this is 

outside the scope of our three-man team in the allotted timeframe. Because of the team’s 

expertise in mechanical engineering, it has been determined the best use of time will be to 

develop a roof-ascending system as well as the remotely-controlled vehicle that will do 

the inspections. A future project should be developed to put together a sensing package 

for physical inspections and to further refine our designs. 
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2 Methodology 

2.1 Robot Task Specifications 

In this section we state the task specifications for this project. To determine these 

task specifications we collaborated with our liaison from Travelers and our project 

advisors at WPI. Our goal was to set achievable specifications for our technical abilities 

and timeframe while leaving room for future projects to improve and expand on our 

designs. The resulting task specifications are as follows. 

 

The robot must be able to traverse a roof: 

• Maneuverability over composition tile with
12

12
pitch 

• Able to crest rooftop and valley 

• Remote control (untethered) 

The robot must have the following autonomous features: 

• Can sense roof edge to prevent operator from driving over the edge 

• Tilt warnings to prevent operator-induced flip-over 

• Manual overrides to allow operability in the event of a false sensor warning 

The robot must be able to conduct a visual inspection of the roof: 

• Incorporates a camera with transmittable feed  

• Is able to produce a record of visual inspection 

The robot “prototype” must last through 50 hours of operation 

The robot must be able to get on and off of a roof with a provided ascender mechanism 

• A ten foot (one story) prototype will serve as a proof of concept 
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2.2 Testing Procedure 

 Before the finished robot will be designated as 

capable of doing rooftop inspections it will first have to 

qualify itself in a series of tests developed to determine 

its safety and reliability on simulated roof surfaces. The 

test fixture will be a simulated roof similar to that 

shown in Figure 10. It will consist of a peak and a 

corner valley covered in composition shingles at a pitch 

of 45 degrees. The robot must demonstrate that it is 

stable in all possible orientations and that the 

autonomous failsafe features prevent it from falling off. 

2.3 Preliminary Design with Vex Kit 

 In order to test out concepts for chassis design we used the 

Vex robotics kit, seen in Figure 11 and Figure 12. It uses modular 

components that can be quickly assembled and disassembled to try 

out new ideas. The kit includes a six channel remote control and 

microcontroller. A system like this is very useful for characterizing 

the way different designs will behave on a simulated roof 

environment.  

 Our first prototype, seen in Figure 12, was made using the 

Vex kit.  Due to the Vex kits ability to prototype rapidly several 

designs were tested to see how different joints, wheel bases, and 

centers of gravity would affect the final design.  Since we ended up 

using the Vex kit controller to program our final robot it was 

beneficial that we gained programming experience with this 

controller early on in the project. 

 The initial designs showed that we needed a drive system 

that did not require loss of friction to turn, such as that of a tank 

 

Figure 10 - Peak and Valley Roof 

Figure 11: Vex Robotics kit 

robots 

 

Figure 12: First Prototype 
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steering robot where the wheels must skid.  It was found that when the wheels lose static 

friction it is very difficult to regain control of the robot and keep it from sliding on the 

roof.  Thus we concluded that we would need a larger turning radius and a way for the 

wheels to move perpendicular to that radius 

To work through this problem several joints were tested that articulated on two 

different axes.  The purpose of a joint with two degrees of freedom was so that the robot 

could have four wheels in contact with the roof while cresting any valley or peak.  To do 

this, one axis controlled the turning of the robot “yaw” and the other controlled the 

rotation between the front and the back of the robot or the “roll”.  Roll rotation is used 

when the robot drives over a valley and must operate on two different planes.  The joints 

tested compared the effects of using active or passive rotation in each configuration.  An 

active joint is powered by a servo while a passive joint is not powered. The joint that we 

found to work the best is a configuration where there is active rotation in the turning 

“yaw” axis and passive in the “roll” axis.  This allows the operator to control turning 

while not having to control roll.  Two gearing combinations were experimented with to 

find a controllable rate of turn and it was found that about 30° per second would be 

appropriate.  This joint design seemed to work well during this stage and was 

incorporated into the final design with some modifications discussed in section  2.5.  

 Another design problem solved while prototyping with the vex kit was how to 

crest the roof at the peak.  Designs discussed were similar to that of  iRobot’s Packbot 

(see section  1.1.1) where the joint would have active rotation in a third axis to essentially 

pull the robot over the peak and onto the other size.  This was a benefit because it would 

allow our design to have a lower center of gravity when it returned to a flat surface after 

cresting the peak.  The con of this system was the complexity.  It was thought that by 

either keeping our center of gravity low or creating an active stabilization system we 

could eliminate this problem.   
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A prototype of the active stabilization system can be 

seen in Figure 13.  To use this system the robot used an 

accelerometer to measure the angle of the roof and calculate 

where the counterweight of the robot would be above it to 

keep it stable.  This system, while workable, was excessively 

complicated considering that a properly placed center of 

gravity would eliminate the need for this feature.  

One final consideration that was brought into the next 

design stage was that of wheel base selection.  Since we knew the robot might need to 

crest over a vent and would need enough room to house additional sensor components it 

was found that a wheel base of at least twelve inches would be needed. 

The ideas brought into the next phase of the robot were driving configuration, 

joint selection, concept of active stabilization, and a general concept of the final wheel 

base measurements.     

2.4 Chassis Design 

 The design of the chassis was facilitated by two 

main factors; the shape of the roofs that the robot must 

navigate and the size of the payload. In order to traverse 

the unique peaks and valleys of roofs we decided to use 

an articulated design that uses a powered joint in the 

center of the chassis. The joint allows freedom of 

rotation in the yaw and roll as shown in Figure 15. This 

allows the robot to turn without using skid steering 

techniques and to operate on two unique planes as it 

crosses a 90° corner. The joint will be discussed further in 

section  2.5 as well as the unique control features 

associated with it in section  2.9. In order to cross the peak 

of a roof the underside of the chassis was left open so that 

 

Figure 13: Active stabilization 

 

Figure 14: Roof Robot Final 

Design 

 

Figure 15: Joint Rotation 
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as the wheels cross from one side of the peak to the other there is clearance for the 

chassis to pass. (See Figure 16) 

 The size of the payload was determined by the 

components that were needed for the robot to operate. 

These components included; motors, batteries, 

microcontroller, wireless camera, speed controllers 

and various wires. The components were modeled in 

CAD and placed in various configurations as the 

chassis was designed. The placement of each 

component was chosen to ensure that a proper center 

of gravity (CG) was maintained in all operable 

conditions of the robot. To maintain stability a body’s 

center of gravity must remain over its contact points 

with the ground, in this case the wheelbase of the robot. 

The greater the pitch the robot encounters the smaller 

the effective wheelbase becomes.  The CAD package 

Solidworks allows for the calculation of CG by 

inputting the weights of each assembly item. By 

running a simple software analysis the CG of the 

assembly is calculated and outputted visually on the 

model as well as in XYZ coordinates.  

 

Figure 16: Robot Cresting Peak 

 

Center of 
Gravity 

 

Figure 17: Center of Gravity 

Representation 
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 The initial body design was prototyped using the Vex kit discussed in section  2.3. 

Working from this basic geometry and the CAD models of the components that were 

chosen we positioned each component as low to the 

wheels as practically possible keeping in mind that the 

heavier components such as batteries would have a more 

significant effect on CG placement. Once an acceptable 

configuration was determined we ran a mass properties 

analysis and the CG was displayed in context of the CAD 

model. We further analyzed the results to ensure that in 

all feasible body configurations (i.e. joint angles and 

rotations) the CG was acceptably placed within the wheel 

base. The calculated CG for the robot shows that it is able 

to maintain stability on slopes up to 60°. This is feasible although we were not able to 

find a friction material for the wheels that will provide the necessary coefficient of 

friction to maintain traction on these angles. 

 The CAD model also served as the source of dimensions and geometry of all the 

parts that needed to be made for the robot in the machine shop. A complete assembly and 

bill of materials can be found in Appendix A.  

 The materials used for the chassis side walls were 1/16 inch aluminum panels. 

The panels were cut using Haas CNC Vertical Machining Centers (VMC) and bent on a 

sheet metal break. The panels were first made of Aluminum, alloy 6061 T6. The 6061 

alloy was chosen because of its high strength. Initial attempts to bend these panels 

resulted in cracking and breaking in several areas. After some research we determined 

that 5052 aluminum would be a better alloy for bending due to its greater percent 

elongation (12% for 6061 versus 25% for 50521). The resulting panels turned out much 

better after bending and showed very little stretch. The bottom of the chassis was made 

from 3/16” polycarbonate sheet. Polycarbonate was chosen for its low density and non 

                                                 
1 http://www.matweb.com/search/SpecificMaterial.asp?bassnum=MA6061AT6 

  

Figure 18: CAD Assembly 



 12 

conductive properties. Conductivity was an important 

issue since all the electrical components of the robot 

were to be mounted to this surface.  

 The chassis design translated from CAD to 

physical prototype relatively well. With the aid of the 

CNC milling machines we were able to produce 

consistent and accurate parts. The materials have held 

up well to their application. Further results and suggested modifications to the chassis 

will be detailed in Section  4. 

 

Figure 19: Cracked Panel 



 13 

2.5 Joint 

 The joint that was developed during the prototyping phase of the Vex kit needed 

to be produced on a larger scale and needed to be more reliable for our final design.  The 

Vex kit components only included plastic gears and small servo motors which would not 

withstand the torsion forces required to turn the full size robot.   

If the robot were to ever roll in an odd way there the wheels were not in contact to 

drive it a powered joint would be needed to point the wheels in the desired direction.  We 

selected the power needed in the following way. 

The center of gravity of half of the robot was approximately six inches from 

center. To lift half the weight of the robot (10 lbs) we would need 60inlbs of torque. 

 Our specifications were to find a motor that would allow the joint to turn at about 

six RPM so that we could make a 45 degree pivot in 1.25 seconds and would have 

enough torque to turn the joint in the worst case scenario. 

 

Figure 20: Robot joint forces 



 14 

 We found a small DC motor from McMaster Carr that turned at 12 RPM and had 

a stall torque of 40 in lbs.  We used a one stage reduction though a sprocket and capstan 

to give the joint a speed of six RPM and a torque of 80 in lbs giving us a safety factor of 

1.33. 

 The problem with the Vex kit joint was that there were no limitations to the travel 

of either axis.  The actively controlled “yaw” axis would allow the robot to turn into itself 

unless the operator realized his/her error and the passive “roll” axis had no limitation 

either allowing the robot to have one half upright and the other half inverted.  To correct 

this from happening mechanical and software stops were incorporated into the design.   

To mechanically stop the joint from 

turning too far, a housing was created (Figure 21) 

to allow only 45° of turn to the left and 45° to the 

right.  This angle was chosen as a compromise 

between a tank style zero turning radius which 

requires a complete loss of friction, and driving in 

a straight line for which there is no loss of friction 

because there is no turn.  Testing with the Vex kit 

also showed that the turning radius was small 

enough to navigate tight corners when inspecting a roof. 

The more difficult part of the joint design was limiting the roll.  However, we did 

not want to limit the roll to one angle of rotation for all yaw positions.  The problem was 

that the robot required more roll articulation when driving straight and less when in a full 

45° turn.  If the joint was given more rotational allowance in a 45° turn than necessary, 

we found that the robot would collapse on itself and one section of the robot would 

become inverted.   

To solve this problem we designed a joint similar to that of a skid steer logger.  In 

this design the joint allows for full rotation while driving straight and limits the rotation 

as a linear function down to zero in a full 45 degree turn. 

 

Figure 21: Joint Housing Disassembled 
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To do this a custom joint was fabricated with these specifications in mind and 

sized to fit the proposed chassis design.  It was required that it be strong enough to 

withstand the bending moment forces of a 20 pound robot. 

To manufacture this joint the aforementioned housing was modeled in CAD and 

then built out of two aluminum pieces as seen in Figure 21 and Figure 22.  The angled cut 

was matched to that of a toggle piece seen in Figure 25, 

Figure 23, and Figure 24 This piece was welded onto a 

shaft that holds the bending moment of the chassis and 

is the piece that connectes the two halves.   

 

 

 

 

This piece was then inserted into a vertical shaft seen in 

Figure 26, which allowed for the active turning rotation.   

 

This shaft was integrated into a capstan seen on the top of 

Figure 27 which ran ¼” chain to the drive motor which powers 

the active portion of the joint.      

 

Figure 22: Joint Housing Assembled 

 

Figure 23: Joint front view 3 

 

Figure 24: Joint front view 2 

 

Figure 25: Joint front view 1 

 

Figure 26: Joint vertical 

and horizontal pin 

assembly 
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A full disassembly can be seen in Figure 28. 

 

 

Figure 27: Joint Assembled 

 

Figure 28: Joint Disassembled 
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2.6 Drive Components 

The choice of drive components became the starting point of our design.   Drive motor 

selection ultimately dictated the size of our chassis and also accounts for approximately 

one fourth of the robots weight.   

 Our drive system needed to meet the following specifications: 

• Non back-drivable 

• Driving speed of approximately three feet per second 

• One motor per wheel 

• Drive time of at least one half hour 

To have a non back-driving system we had two options. Design a ratcheting 

system into our driveline to prevent back-drive or use worm gear transmissions which are 

naturally back-drive resistant.  Worm gear drive motors are commercially available 

prepackaged making them very attractive to our application.  

From experience with other robotic projects we thought that a speed of 

approximately three feet per second would be appropriate for driving on the roof.  This 

would allow the robot to scan over 10,000 square feet assuming a field of view of two 

feet. The speed calculation is derived from the output speed of the motor and the 

circumference of the chosen wheel.  The motors we chose for the drive line are Nippon-

Denso window motor that are used in many General Motors vehicles.  These motors were 

chosen because they are readily available and had a low max output speed of 85 RPM 

and a stall torque of 106 inch lbs. Using these motors in conjunction with an 8.2” wheel 

diameter we were able to achieve our desired speed of three feet per second. 

As we moved further into the design of the robot chassis it was discovered that a 

wheel diameter of nine inches would be needed for our robot to crest the peak of the roof, 

giving it a driving speed of 3.33 feet per second.  This was deemed to be a speed which 

the operator should still be able to control.  

 diameter = 9” 
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sec/33.3sec60/85** ftrpmdiameterSpeed == π
 

With a 4.5” arm on each wheel and our estimated 20 pound robot we would be in 

need of 64 inch pounds of torque assuming the robot is climbing a a 45 degree angle 

slope.  Therefore assuming we use half the stall torque because we are moving and we 

are climbing a 45 degree slope we will still have a safety factor of 3.3. 

2.7 Battery Selection 

 This system needed to last at least one half hour at full draw from the drive 

motors to be considered acceptable.  A graph of the current draw of the drive motors can 

be seen below in Figure 29. 
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Figure 29: Torque vs Current Draw 
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The motor draw was calculated for each motor giving equal power while traveling 

up a 45° slope. 

∑

∑
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When driving up a 45 degree slope there will be approximately 32 inlbs of torque 

on the rear two wheels. 

2*)2*1919(. += TorqueCurrent   We multiply by two to account for each wheel 

This is given from the graph in Figure 29. 

2*)232*1919(. +=Current = 16.28 Amps 

(The batteries are rated for a peak draw of 36Amps and a recommended draw of 

12Amps.) 

Therefore to drive at this peak draw for ½ hour we would need a source which 

can supply at least 8.14 Amp hours. 

We used a safety factor of 1.5 and bought three 12 volt batteries supplying 4.2 

Amp hours each totaling 12.6 Amp hours, giving us a total driving time of 45 min at max 

draw.   

2.8 Wheels and Friction Materials 

 Maintaining static friction on a 45° slope requires that the coefficient of friction 

be at least 1. In order to find a suitable material to interface with the roof we had to test 

many different materials on asphalt shingles. To do this friction testing we set up a 

measuring rig using a force gauge, data logging system and multiple weights. Each 

material was fastened to the underside of a block of known mass. This block was then 

fixed to the end of a force gauge using a length of line. A pulley was used to ensure that 

the force was directed in the same direction at all times.  
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 The block was loaded with weights and the force required to move the block was 

determined through a data acquisition system reading the force gauge. The coefficient of 

friction was determined by dividing the mass on the block by the force it took to move 

the block. The test was repeated with weights measuring 5, 10, 15 and 20 Newtons. All 

materials with a coefficient of friction less than one were eliminated. The top four 

materials were selected for further testing.  

 

 

 

 

 

 

 

 

 

 

Figure 30: Friction Test System 
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 The results for the top four of the thirteen tested materials can be seen in the chart 

below, Figure 31. EPDM foam was the clear winner and we decided to proceed in using 

it as the friction material on the robot’s wheels. 

 

The equation relating friction to downward force is expressed as: 
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Figure 31: Static Friction Testing Results 
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This equation implies that there is no relation between friction and surface area. 

However, we observed a phenomenon when using these materials on the roof that shows 

this is not the case on asphalt shingles. Because an asphalt shingle is composed of grit 

adhered to a tarpaper backing, it is natural that with the correct amount of force the grit 

will come off of its backing. We observed this happening as the robot drove on the 

shingles. The theory is that when the normal force per unit area becomes too high the grit 

lets go of the backing, thereby inducing slip between the wheel and the shingle.  There is 

evidence of this in our static friction testing graph which shows that once the applied 

weight becomes too great the frictional coefficient goes down. To counteract this 

problem we decided to try decreasing the pressure per unit area of the wheel on the roof. 

In a pneumatic tire this would be accomplished by letting air out. Since we were not 

using pneumatic tires we experimented with different substrates between the hard rim and 

the friction material of the wheel. The idea is that the substrate will compress increasing 

the contact patch between the friction material and the roof lowering the pressure per unit 

area. The substrates we experimented with included; open cell sponge, Scotchbrite, and 

insulating foam. To test this setup a rig was constructed as pictured in Figure 32. This rig 

was used on the same fixture as described for the initial friction testing.  

  

 

Figure 32: Pressure Rig 



 23 

We found that using a substrate with the selected materials caused the coefficient 

of friction to go up. However, it was inconclusive as to which substrate worked better 

than another. The results of this testing can be found in Figure 33. We decided to use 

Scotchbrite as the substrate because it scored well in the testing but also for its shear 

resistance. Scotchbrite, unlike the rest of the substrates tested resists shear loads while 

maintaining low resistance to compressibility. The ability to resist these shear loads was 

important because when the robot is driving parallel to the peak of the roof there is a high 

axial load on the substrate which, under the right circumstances may fold and cause the 

robot to lose traction.  
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Figure 33: Substrate Testing on EPDM Foam 
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The use of EPDM with a 

Scotchbrite substrate allows the robot to 

maintain static stability on 45° slopes. 

Figure 34 shows how the substrate 

compresses under the load of the robot 

increasing the contact patch of the 

wheel. The robot is also able to drive on 

45° slopes. However if a slip is induced 

it is possible for the robot to lose its 

adherence to the roof and continue to 

slide. To reduce the possibility of induced slip an electronically controlled all wheel drive 

system was developed to control the speeds and power of each wheel.  

2.9 Articulated Chassis Kinematics 

The articulated chassis was designed with the intent of maintaining the wheels in 

rolling contact with the roof surface at all times.  A design choice was made early on to 

have four independent motors powering the wheels, rather than a single motor and a set 

of mechanical differentials.  Therefore, it was necessary to describe the kinematics of the 

articulated chassis so that electronic means of controlling the wheel speed could be 

implemented using a microcontroller later on.  The kinematics for the two major 

navigation motions, driving and steering, are described below.  

The wheel speeds during driving are a function of the angle between the two 

halves of the chassis.  As the robot articulates and drives through a turn, the wheels travel 

along two different radii of curvature.  The inner wheels have a shorter distance to travel 

than the outer wheels and must travel slower to remain in contact.  As the chassis 

straightens, the radius of curvature of the turn approaches infinity, and the inner and outer 

wheels drive closer and closer to the same speed. 

 

Figure 34: Wheel Compression Under Load 
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Figure 35 below shows the relevant geometry, where 

 θ is the measurement of the relative angle between the chassis halves 
 l is half the length of the wheel base 
 w is half the width of the wheel base 
 C is the center of rotation for driving 
 d is the distance from the centerline of the chassis to the center of rotation C 

 Lines d and l make up two sides of a perpendicular triangle, with angle θ/2.  The 

unknown distance d to the center of rotation C can be calculated using the known 

constant l. 

 d = l / tan ( θ/2 ) 

Given a driving velocity V, the velocities Vinner and Vouter can be calculated using the 

equations: 

 Vinner=V * ( d – w ) / d 

 Vouter = V * ( d + w ) / d 

 

Figure 35 - Geometry and Kinematics for Driving 

As the chassis articulates, one pair of wheels moves closer to each other, while the other 

pair moves farther apart.  To keep the wheels in pure rolling, a center of rotation is 

calculated that lies exactly between the wheels.  This location is also a function of the 

relative angle of the two chassis halves. 
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Figure 36 below shows the relevant geometry, where 

 θ, l, w, are the same as above 
 C is the center of rotation for steering 
 r is the distance from the centerline of the chassis to the center of rotation 

 

Lines r and l make up two sides of a perpendicular triangle, with angle θ/2.  Again, the 

unknown distance r to the center of rotation C can be calculated using the known 

constant l. 

 r = tan ( θ / 2) * l 

As before, if given a steering velocity V, the velocities Vinner and Vouter can be calculated 

using the equations below.  The one addition being that the wheels on the opposite halves 

of the chassis spin in the opposite direction and the equation describing their speed is 

simply multiplied by -1. 

 Vinner= V * ( w + r  ) / w 

 Vouter = - V * ( w – r  ) / w 

 

 

 

Figure 36 - Geometry and Kinematics for Steering 
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2.10  Microcontroller Selection 

The Qwerk microcontroller, produced by Charmed Labs, was our first choice for 

use as a robot controller.  Its chief advantage was that it had support for a web cam and a 

wireless internet adapter, so that we could drive the robot over a wireless internet 

connection and get integrated video feedback.  The robot was also very adaptable for 

future upgrades, with a wide range of inputs and outputs including 16 PWM outputs, 4 

motor outputs with integrated current sensing feedback, support for 4 quadrature 

encoders, 16 digital inputs and outputs, and 12 analog inputs with 12 bit resolution.  The 

Qwerk was intended to act as a webserver, and could be accessed over the internet using 

a Java-based client.  An out of the box solution had support for a tank style robot with 

video navigation.   Unfortunately, our lack of java programming ability and the lack 

of documentation and poor support (the Qwerk was just out of beta testing), made it 

impossible for us to modify the client for use with an articulated robot. 

After ruling out the Qwerk, we switched to the Vex microcontroller.  Although the 

Vex did not have video support or the wide range of inputs that the Qwerk did, it had 

enough PWM outputs to drive the motors and enough inputs to gather data from the 

sensors we incorporated into our design.  The Vex also has a well documented, easy to 

use API, which is written in C, a programming language we are familiar with.  It was also 

possible to add video on a wireless home security system, which is completely 

independent of the Vex microcontroller. 
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2.11  Overall Code Architecture 

The overall architecture for the code was fairly simple, as seen below.  A 

continuously running loop cycles through and polls the inputs from the radio controller, 

collects feedback from the sensors, and updates the motors appropriately.   

while (true) 

{ 

 getInput();   //gets joystick positions from the radio controller 

 

 getFeedback();  //gets feedback from 

     //  chassis articulation angle 

     //  wheel encoders 

     //  timers 

     //  IR sensors 

 

calculateOutputs(); //adjusts outputs appropriately based on input and 

//feedback 

 

 driveMotors();   //sends signal to the motors 

} 

2.12  User Interface 

The user interface makes use of the six channel radio controller, supplied with the 

Vex microcontroller.  The first four channels are defined by two joysticks on the front of 

the controller and the remaining two are controlled by buttons on the back. 

In the first iteration, the left joystick was used to pan and tilt the camera and the 

right joystick was used for navigation.  It was impossible to drive and turn at the same 

time and the operator would have to pause, adjust course, and continue driving.  At best, 

it was difficult and at worst it caused violent shaking in the robot as the joystick moved in 

and out of its dead zone. 

The camera was located above the joint at the highest point on the robot.  The 

operator had no sense of proportion and because the camera pan/tilt platform didn’t auto-

center, the operator had no sense of which direction the robot was going. 
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After driving the robot and gaining experience as an operator, we made several 

changes to improve the interface.  First, the forward/reverse navigation axis was changed 

so that the amount of power available would scale depending on the angle of articulation 

of the chassis, i.e.  during a full turn, the maximum joystick position would correspond to 

half-speed along the centerline, so the outer wheels could spin at the correct speed 

without maxing out power.  While driving straight, however, the joystick controlled the 

full range of power. 

Second, the navigation left/right channel was changed so that it controlled the 

angle of the chassis articulation, much like a steering wheel on a car controls the angle of 

the wheels.  This gave the operator a much better sense of where the robot was, as a 

joystick slightly to the left would mean the robot chassis was angled slightly to the left, 

rather than meaning the robot was simply turning more and more left.  Additionally, the 

code was revised making it possible to drive and turn at the same time. 

Third, the camera location was changed to sit on a mast on the back half of the 

robot.  The operator now had a third person view of the robot, and much better sense of 

where it was going.  The operator could use the camera to look down at the robot and see 

if it were stuck, if it were articulated appropriately, or if the wheels were spinning like 

they should. 

Channel Mode Description 

Navigation 

Forward/Reverse 

Linear Proportional 

Velocity Control 

The joystick is linearly correlated with the centerline 

speed of the robot.  During turns, the outer wheel might 

spin twice as fast as the centerline, so maximum power is 

cut in half to avoid clipping. 

Navigation 

Left/Right 

Non Linear 

Velocity Control 

The axis pans the robot through turns at a constant speed 

if the joystick is out of the deadzone. 

Camera Up/Down Non Linear 

Velocity Control 

Tilts the camera. 

Camera Left/Right Non Linear 

Velocity Control 

Pans the camera 

Camera Location N/A Camera is located over the joint at the highest point on 

the robot. 

Figure 37: User Interface Version One 
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Fourth, the camera pan/tilt platform was improved to include an auto-centering 

feature.  In addition, as the robot turned, the camera would turn in that direction as well.  

By keeping a point of interest centered in the field of view, the operator could easily 

drive towards it.  The left/right of the camera control was changed to an adaptive, 

position control system, so if the robot, and therefore the camera, were pointed slightly 

left, pushing the joystick right could still allow you to look all the way to the right.  

Pushing the joystick all the way to the left would allow you to look all the way to the left 

without going to far.  Letting go of the joystick and centering it would cause the camera 

to snap back to its original position 

Finally, a sort of “artificial horizon” in the form of a simple vertical pole was 

added to the robot to aid the operator in navigation.  The pole was placed at the joint, 

directly on the centerline of the robot.  The operator can see the pole in the field of view 

and get a much better sense of which way is straight forward. 

Channel Mode Description 

Navigation 

Forward/Reverse 

Adaptive, Linear 

Proportional 

Velocity Control 

Joystick has linear control over power.  The available 

power scales so that the outer wheels never spin too fast 

during a turn, but the robot can still go full speed while 

driving straight forward. 

Navigation 

Left/Right 

Position Control The axis pans the robot through turns at a constant speed 

if the joystick is out of the deadzone. 

Camera Up/Down Non Linear 

Velocity Control 

Tilts the camera. 

Camera Left/Right Adaptive, 

Proportional 

Control 

Camera looks in the direction the robot is going.  Joystick 

looks left and right, but snaps back to center 

Camera Location N/A Camera is located on a mast on the back of the robot 

Figure 38: User Interface Version 2 
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2.13  Wheel Speed Algorithm 

One of the biggest problems driving the robot was caused by the Victor Speed 

Controllers, which take a low power PWM signal to control the high power current loads 

to the motors.  The Victors have a built in deadband, which cause the motors to freeze 

when they should be moving.  In the worst case scenario, the Victors are not calibrated to 

the same settings and one wheel will spin while the other is stuck, causing a loss of 

traction. 

The original algorithm to calculate wheel speed used the kinematic equations 

described above.  Each wheel speed was calculated relative to the centerline velocity.  

The centerline velocity was calculated from the forward/reverse axis of the controller.  

There were two problems with this algorithm.  The first was the problem with the 

deadband , as described above.  The second was that during a full turn, the outer wheels 

of the robot spin nearly twice as fast as the inner wheels.  To avoid maxing out the 

motors, the top speed corresponding to the full forward and reverse joystick positions was 

simply cut in half.  This limited the robot’s top speed while driving straight forward as 

well. 

The solution to both of these problems was to calculate the wheel speeds relative to 

each other, rather than to the centerline of the robot.  Specifically, the wheel speed of the 

right half of the robot was compared to the left half.  There is a deadband on the joystick, 

and it was set so that if the robot was supposed to be moving, whichever side was slower, 

right or left, would receive a signal to make sure it was out of the Victors’ deadband.  The 

wheel speed for the faster side was then calculated as a ratio of the slow wheel speed.  To 

avoid maxing out the motors, without giving up top speed, the forward/reverse joystick 

channel was scaled as a function of chassis angle, so that while driving straight forward, 

all the motors could run at top speed and during a turn, only the outer wheels could run at 

top speed. 
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2.14  Feedback Algorithm 

The feedback algorithms were implemented in response to traction control 

problems that arose during testing.  The outputs of the wheel speed algorithms were sent 

to directly to the motors as a “power level” signal, meaning that if the wheel was meant 

to go at 20% of its top speed, it received 20% power.  On flat ground, with an equal load 

on all the motors, this worked very well.  Driving up a 45° slope, the robot’s weight shifts 

to the back wheels.  At 20% power, the front wheels would spin in place, while the back 

wheels would be stalled. 

Optical encoders were placed on all the wheels so that control loops could be 

implemented to control the actual speed of the wheels, rather than power levels.  Because 

the Victor speed controllers had a deadband and because the motors had worm gears and 

did not back drive while under load on the roof, it was possible to use simple, single 

channel optical encoders and keep track of the wheel direction in the computer code, 

rather than use quadrature encoders. 

Because of limited resolution of the Vex output signals and the backlash in the 

drive train, programming a control loop that could respond quickly to errors in wheel 

speed without overshooting and creating oscillations was extremely difficult. 

The solution was to use two Proportional inputs simultaneously.  Each wheel’s 

speed was calculated independently and used as part of the feedback loop.  This was good 

enough to work under most driving conditions, but when the robot was starting from a 

dead stop on a 45° slope, the back wheels did not respond quickly enough to avoid 

significant loss of traction in the front wheels.  The second proportional input to the 

control loop was the speed of both wheels on each half of the robot.  If a wheel was 

traveling too slowly and it was traveling slower then its respective wheel on the other half 

of the chassis, it got an extra speed boost. 
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2.15  Sensor Package 

In order to make the robot safer for the operator to use, autonomous edge detection 

and lockout was added.  Four Sharp IR sensors were added, pointing slightly outwards at 

all four corners of the robot.  The IR sensors have a transmitter and receiver and look for 

the reflection of the IR beam.  The sensor is very robust and tolerant to noise because it 

uses a lens and a strip of photocells to triangulate the distance to the target, rather than 

measuring the amount of reflected light. 

In operation, the computer code polls the IR sensors during each loop of the main 

code.  If the sensors return a low enough value, indicating that it is looking into open 

space beyond the edge of the roof, the robot is immediately halted and the operator is 

locked out from the controls.  A manual override button may be pressed for the operator 

to resume control of the robot. 
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2.16  Ascender System 

The ascender was viewed as a system independent of the robot. Initial technical 

specifications for the ascender stated that it must: raise the robot to a three story roof, be 

transportable by one to two people, and fit inside of a car. These specifications changed 

as the design of the ascender progressed. This section will discuss initial design concepts 

and the progression of the design to its current working state. 

 The first step in designing the ascender was to research current means of lifting 

loads to a roof. There are a number of different cranes and elevator 

like devices on the market for such purposes. These devices are used 

primarily by the construction industry for moving materials such as 

shingles to the top of a roof. The commercially available products we 

identified were impractical for delivering a twenty pound robot to the 

desired height of three stories. A typical ladder lift for instance 

consists of individual eight foot sections which must be bolted 

together. The assembled ladder must then be raised to the rooftop. At 

this point the payload is placed on a platform which rides on the 

ladders rails and a motor, gas or electric, is used to drag the platform 

up the ladder. This at first seemed like a perfect solution to lifting the 

robot. In a system like this the ladder must be assembled to full length 

on the ground and then positioned against the side of the building. We 

decided that positioning a system like this was undesirable because of 

the large moments involved in lifting a thirty foot ladder to vertical from horizontal. 

Furthermore the commercially available systems are designed to carry a maximum 

weight of at least 250 pounds which is significantly more than the twenty pounds of the 

robot. 

 

Figure 39: 

Laddervator, 

Power Ladder 
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 We decided against using any form of ladder that must be 

assembled to length on the ground. This meant that the ascender must be 

some form of telescoping mechanism. The most recognizable form of a 

telescoping mechanism is an extension ladder. By nature, a telescope 

device must have profiles that nest within each other. An actuator, 

usually a cable on a pulley, then pulls one profile along the other until 

the device has extended to its full height. We also had to design a 

carriage which would hold the robot as it was brought up telescope. This 

carriage needed to have some form of linear bearing on it to keep it on 

the telescope. The inherent problem with telescoping devices is that they 

do not provide a constant profile for a linear bearing to follow. This 

means that in order to have a carriage follow a telescope device it must 

have loose tolerances or have an adaptable mechanism capable of 

following the profiles of the 

extension.  

 The first device that we 

prototyped was a four stage telescoping extension with 

a spring loaded four-bar linkage used to follow the 

telescope profiles. The design was modeled in CAD 

(Figure 41) and a prototype was fabricated from wood 

and metal to test the concept (Figure 42). Because of 

tolerance issues with the wood the carriage never 

properly mated 

with profiles. 

This was a 

significant problem because as we looked forward 

to a full size prototype we realized that constructing 

the necessary profiles would not be feasible since 

we did not have the manufacturing facilities 

 

Figure 40: 

Telescope 

Diagram 

 

Figure 41: First Ascender Prototype 

CAD Model 

 

Figure 42: First Ascender Prototype 
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necessary nor would it be economical to outsource the design. This concept was a reality 

check that showed us even though something works great in CAD it will not necessarily 

translate to the real world.  

 We contacted Travelers again to go over the technical specifications. 

We found that the inspectors currently use ladders that bolt together from four 

foot sections to a height of sixteen feet and when access to a taller roof is 

needed a twenty-eight foot fiberglass extension ladder is used. When this was 

determined we proposed the idea of using a sled that rides in the existing 

extension ladder to transport the robot to the roof. Our liaisons at Travelers 

expressed that while this was not ideal it would be sufficient. We continued to 

press on looking for a means of creating our own telescoping device. The use 

of a commercially available telescoping pole was explored but when the 

manufacturing company (Geo Data Systems) provided us with the pole’s 

specifications we found the deflection with the weight of the robot to be 

excessive. (A thirty foot fiberglass pole available from Geo Data Systems will 

deflect fourteen feet with a fifteen pound load on the end).2 Because time was 

running out we decided to go back to the design involving a sled on a 

commercially available extension ladder.  

 An extension ladder is essentially a prepackaged two stage telescoping 

platform. We purchased a twenty foot fiberglass extension ladder made by Werner, the 

preferred brand of Travelers. The twenty foot length was selected because moving and 

storing a twenty-eight foot ladder was not practical for us and upon inspection we found 

that all Werner fiberglass ladders have the same profile dimensions, the only thing that 

varies is the length. This meant that we could design a sled system for the twenty foot 

ladder that could then be bolted onto a twenty-eight foot ladder later. The sled was 

modeled in CAD and a prototype built from lexan for testing. The design uses a sled to 

carry the robot to the top of the ladder. The robot sits on a platform enclosed in a lexan 

box preventing the robot from falling out. The platform pivots about the end of the sled. 

                                                 
2 http://www.geodatasys.com/pole3.htm 

 

Figure 43: 

Geo Data 

Systems 

Telescoping 

Pole 
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As the sled approaches the end of the ladder the tilting platform engages with an angled 

profile which guides the tilt of the platform as it rotates at the end of the ladder. The roof 

itself is used as a positive stop.  The angled profile also guides the platform back into its 

original position for lowering the robot back to the ground. The entire assembly is 

operated by a hand operated drum at chest height fixed to the ladder. 

 Once this prototype was made it was apparent that there were 

certain situations where the stability of the sled on the ladder became 

precarious. To remedy this, the addition of an 8020 extruded profile was 

made. The extruded profile is fastened to the upper portion of the 

extension ladder. Linear bearings were secured to the sled which 

interfaces with the 8020 extrusion; this locks the sled to the ladder, 

preventing it from falling off. The sled cannot leave the upper portion of 

the extension ladder or it will come off of the extrusion. Because of this 

the robot must be loaded before the ladder is extended. The process for 

raising the robot to the roof can be seen in Figure 44.  

 To reduce the force required to tilt the platform over the sled a 

two bar linkage was designed. The linkage remains locked by spring 

loaded latches as the sled is pulled up the ladder; once the sled reaches 

the top the latches are depressed allowing the platform to be actuated. 

The platform can actuate to 90°, however, the roof will stop the platform 

at the appropriate angle for the robot to drive off at.  

 The forces involved in raising and actuating the ascender are not 

insignificant. The following is a compilation of free body diagrams and 

force calculations that were carried out to ensure that the ascender would 

be operable as designed. The forces were calculated for what we 

perceived was worse than the worst case scenario, where the ladder is 

setup at 90° to the ground. This situation is not possible and the ladder 

manufacturer only recommends up to a 75° angle. Therefore there is a 

safety factor of 15°. 

 

Figure 44: 

Ascender Flow 

Chart 
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Figure 45: Ascender Schematic Diagram 
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Figure 46: Pulley Free Body Diagram (Not To Scale) 
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 Using the winch that we built the required applied force to raise the robot in its 

carriage is 3.1 lbs.  After the sled reaches the top of the ladder the carriage is actuated 

tilting the robot into a position from which it can be driven onto the roof. The force 

required to actuate the linkage is a function of the angle of tilt of the carriage. The applied 

force at the handle is a maximum of 18.8lbs. Figure 47 plots the force required to actuate 

the carriage linkage at the handle versus the angle of carriage tilt. 
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Figure 47: Carriage Tilt vs Force Applied at Handle 
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Figure 48: Carriage Operation Schematic Diagram 

 

 

Figure 49: Applied Force Free Body Diagram 
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Figure 50: Carriage Tilt vs Applied Force Equations 
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3 Results 

This section describes the robot’s performance as defined by our original task 

specifications. Once we finished our first prototype of the robot we went through several 

design iterations to improve performance. Our results come from testing performed on 

the mock-up roof located in Washburn Shops at WPI. 

3.1 Navigation and Maneuverability 

The robot is capable of traversing a roof, with some limitation on performance.  It 

should be noted that to date, all testing has been conducted indoors on a mockup roof.   

Specification:  Maneuverability over composition tile at a 12/12 pitch 

This specification has been partially met.  The robot is capable of driving up 

12/12 sloped composition tile roofs, but there is a very limited margin of safety.  

Conditions such as loose surface grains or dirty or worn out treads may cause the robot to 

slip.  In testing, the robot would occasionally slide, but would still regain traction.  The 

robot is capable of driving up 35° slopes without slipping. 

Specification: Able to traverse rooftop and valley 

This specification has been met, but with some limitations.  The robot has enough 

ground clearance to clear the rooftop, however, the operator must take the rooftop 

straight on.  The robot is also able to traverse valleys, but if the operator drives at too 

shallow an angle relative to the fold of the valley, a wheel may get caught, inducing a 

tipover.  Driving at a perpendicular angle to the fold avoids any problems while 

traversing it. 

Specification:  Remote Control (Untethered) 

This specification has been fully met.  Again, it should be noted that indoor testing 

has prevented us from testing radio control at ranges likely to be found in outdoor 

conditions. 
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3.2 Autonomous Features 

The robot’s autonomous features respond very quickly.  Limitations of the VEX 

controller make it difficult to send feedback to the operator when an override has 

triggered. 

Specification:  Can sense roof edge to prevent operator error 

This specification has been fully met.  The IR sensors lock the operator out of the 

controls between 12” – 18” from the roof edge and immediately stop the robot.  The IR 

sensors are reliable and have an excellent signal to noise ratio, but have not been tested 

under outdoor lighting conditions. 

Specification:  Tilt warning  

We were not able to meet this specification. We would have integrated 

accelerometer based tilt warnings into the system but because the Vex controller will not 

send information back to the operator we had no way of reading the warnings. One option 

we explored was to have the controller light up an LED on the robot which would be 

visible through the robot’s camera. We deemed this to not be practical since the next 

version of the robot will not use the Vex controller and will be able to send the warning 

to the operator. 

Specification:  Manual overrides to allow operability in the event of a false sensor 

warning 

This specification has been fully met. 

3.3 Visual Inspection 

As a proof of concept, the robot has shown that it is possible to use a camera to 

conduct a visual inspection, but the current prototype does not have enough resolution to 

produce a high quality image. 

Specification:  Robot incorporates a camera with a transmissible feed 

This specification has been fully met. 
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Specification:  Robot is able to produce a record of visual inspection 

This specification has been fully met. 

3.4 Durability 

Without further testing, we do not have enough data to be able to evaluate the robot’s 

durability or lifecycle.  We estimate that the robot has been through 20 hours of operation 

so far, but a 50 hour lifecycle was specified.  During this time, we have noted the 

following issues. 

• The treads are subject to wear and may need to be replaced regularly.  (We are 

unable to specify how often without further testing) 

• Occasionally, wires came loose during operation, which cause unpredictable 

behavior. 

• The joint which holds together the two chassis halves broke with two different 

failure modes.  The first time, a screw which held the pin in the roll axis failed.  

The second time, a lost signal from the potentiometer caused the robot to drive 

against itself, breaking the key stock which holds the pin on the capstan. See 

Section  4 for further recommendations. 

3.5 Ascender Mechanism 

We have built an ascender mechanism that will transport the robot to a height of 

twenty feet. This meets the specification that we originally stated; however, the 

packaging of the ascender is not consistent with the desired state. Travelers would prefer 

that the ascender be small enough to fit in the back of a car and light enough for one 

person to setup. This is not the current case and we ran into trouble with time resources. 

See Section  4 for further recommendations.  

 



 46 

4 Recommendations 

This Major Qualifying Project has significant potential for follow on projects at WPI. 

For this reason this section is geared towards future improvements to the design of the 

robot and ascender by follow on MQP teams. 

 

Redesign the driveline and control system: 

The current driveline and control system is limited by its components.  A redesign 

of the driveline and control system would provide more efficient power consumption, 

better handling, and simpler computer code. 

 

Replace the window motors to improve power consumption and handling: 

The window motors that drive the robot are not optimal because they run 

too fast and have a significant amount of backlash.  The motors are run very close 

to their minimum speed, resulting in poor power efficiency.  The backlash limits 

the response time of the control loop and makes it difficult to avoid control loop 

oscillations. 

 

Replace the current optical encoders with quadrature encoders to simplify code: 

The optical encoders on the robot are non-directional, meaning they can 

only tell the speed of the wheels, but not the velocity.  A quadrature encoder can 

sense both speed and velocity and would greatly reduce the complexity of the 

computer code. 

 

Move the optical encoders closer to the motor in the gear train to improve 

handling: 

The optical encoders are currently mounted near the rims of wheels, 

outside of the chassis, where they are exposed and unprotected.  Furthermore, it is 

very important for the robot to be able to control wheel speed very precisely, 
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especially at low speeds.  If the encoder was mounted on the motor before the 

reduction through the worm gear, it would improve the resolution of the encoder, 

thereby shortening the response time of the control loop and improving handling. 

 

Replace the Vex and Victor Speed Controllers to improve handling and simplify 

code: 

The pulse width modulated (PWM) signal sent to the Victor Speed 

Controllers contains analog information on both direction and duty cycle for the 

signal that is sent to the motors.  To avoid crossover issues with the input signal 

changing from forward to reverse, the Victor has a deadband.  The deadband 

reduces handling performance at slow speeds, and introduces incredible 

complexity to finding workarounds in the computer code. 

All speed controllers will have the same problem with the analog PWM 

signal sent by the Vex.  The only solution is to replace the Vex with another 

microcontroller that can have tighter integration between the processor and the 

speed controller, avoiding the issue altogether. 

 

Replace the Vex microcontroller with something more powerful: 

The original intent of this project was to use the Qwerk microcontroller available 

from Charmed labs to control the robot. After spending several months trying to adapt it 

to our uses we decided it would be more productive to use the Vex microcontroller that 

we had from the early prototype despite its limitations. The Vex, while it is able to 

support all of our signal processing and controls has a major limitation in that it cannot 

log or transmit any data back to the operator. Because the intent of the roof robot is to 

inspect the roof it will be necessary to incorporate a more advanced controller, such as 

the Qwerk, into the next iteration of the roof robot to read and transmit sensor data. 
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Replace the X10 camera with a higher resolution device: 

One of the advantages to the Qwerk controller was its support for transmitting a 

webcam feed to a laptop. Webcams are now capable of providing feeds with video over 

one mega pixel in resolution. When we decided not to use the Qwerk controller we had to 

provide an alternative camera with an independent transmitter. The simplest way to 

provide video feedback was by incorporating an X10 wireless home security camera into 

the design. The X10 is an all inclusive package has a transmitter and battery pack. 

Unfortunately the resolution of this camera is not very clear and a better camera should 

be identified.  

 

Have separate navigation and inspection cameras: 

The camera, at it present location on a mast on the back of the robot, is not suited 

for close up visual inspections.  We recommend keeping a camera there for the purpose 

of navigation, where it is possible to see the robot in the field of view and have a better 

sense of the surroundings, but for the purpose of visual inspection, we recommend having 

a dedicated camera on the front of the robot.  The camera would be in a more ideal 

position to look at the roof and could send back high resolution photos of the target areas. 

 

Replace X10 camera transmitter with a more powerful transmitter: 

The transmission of video from the X10 to the laptop is accomplished through a 

radio channel. The provided antenna for the X10 is a directional antenna. The signal 

becomes fuzzy or non-existent under certain conditions where the transmitter is not 

facing the receiver. The X10 has been modified by other people to use an omni-

directional antenna; however we did not have time to incorporate this into the roof robot. 

We therefore recommend that more suitable transmitter be found, or the camera be 

replaced by a more appropriate one. 
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Add additional autonomous sensors to prevent operator induced flip-over: 

Currently, the robot has no features to prevent the operator from inducing an 

unstable condition where the robot may flip over.  Additional sensors, such as an 

accelerometer, can be used to detect this condition.  Other situations may be induced 

when a wheel gets stuck, causing the robot to pivot about the stuck wheel and flip the 

robot over.  To prevent this condition, we would recommend additional sensors to detect 

whenever a wheel loses contact with the ground. 

 

Re-evaluate battery requirements and alter individual battery packs to function as one: 

The battery packs currently supplying the robot with power run at twelve volts. 

There are three of these battery packs wired in parallel to supply power necessary for our 

specified operating time of one half hour at full power. These battery packs are not wired 

to charge through one cable. The current setup requires that each battery pack be charged 

individually until full. Rewiring the charge terminals would simplify this procedure. 

Additionally the Vex controller runs off of a nine-volt battery. This has its own separate 

battery pack. The X10 camera also runs off of its own 24-volt battery pack.  Through 

some relatively simple circuitry these three systems; drive train, controller and camera 

could be powered off of one battery pack. This would also simplify the procedure to turn 

on the robot which currently requires activating three separate switches to turn on power 

to all the systems.  

 

Improve the durability of the joint components: 

The construction of the joint has two observed failure modes that need to be 

corrected. The first is the welded key-stock bar connecting the rotating shaft A to the 

capstan. Under high torque loads the shaft will break causing the robot to not have the 

ability to turn. Furthermore the bolt holding shaft A to shaft B will also snap. This is due 

to tolerances between joint A and B being too loose. The resulting gap means that all 

forces associated with the weight of the robot may be directed through this .195” bolt. If 

this bolt breaks then the joint falls apart and the robot is left in two pieces. To fix this 
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shaft A and B should be fabricated out of a single piece of stock eliminating the bolt 

completely.  

 

Further research into friction materials for the wheels: 

Although the robot maintains static frictional stability with roof on the specified 

angle of 45°, if slip is induced it does not have a satisfactory margin of safety to arrest 

sliding. Despite our testing of materials we were not able to find anything with better 

frictional coefficients than EPDM foam. To prevent slip we implemented the electronic 

traction control system, this improves traction capabilities, but it is not fool proof. Further 

testing should also be done on weathered shingles and wet shingles to see what the 

frictional properties under these conditions are. One proposed solution would be to 

develop an active friction material that interfaces with the roof surface the same way a 

gecko’s toe is able to hold on to a vertical wall. 

 

Redesign of the ascender system: 

The largest design challenge the ascender presented was how to deliver the robot to 

the roof while staying small and lightweight enough to be easily transportable. Although 

the robot and the ascender were being developed concurrently the design of the robot 

heavily influenced the design of the ascender. The robot’s size and weight made it 

necessary to have a robust ascender mechanism which in turn became large and heavy. If 

the robot had been designed to fit a compact ascender mechanism it is possible it would 

have worked out much more efficiently. The concurrent design of the robot and the 

ascender was a large work order. We think that should one have preceded the other 

entirely the results would have been more acceptable. This way each system would 

receive everyone’s full attention. Future considerations for the ascender should include 

the use of a telescoping device that is only as big as it absolutely needs to be, furthermore 

the size of the robot should not be the ultimate dictator of the ascenders design 

specifications. Through the use of a more customized drive train and electronics the size 

of the robot could easily be reduced making the load on the ascender much less and 
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opening up the possibilities for further innovation. For instance we had to rule out using a 

telescoping pole to place the robot on the roof because it would not support the size of the 

robot. If the robot were one third of it’s current weight (approximately six pounds), it 

would have been possible to use a commercially available telescoping pole as a means of 

placing the robot on the roof.  
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5 Conclusions 

Through this Major Qualifying Project we have shown that it is possible to build a 

robot that can operate on a 45° roof with an asphalt shingle surface. We have met nearly 

all of the original task specifications but were limited by time constraints and 

complications with programming. The prototype that we built has room for improvement 

and we have detailed these areas in our recommendations section of this report. This 

project lays the groundwork for future projects that will go on to improve on our designs 

and develop further sensor packages for the St Paul Travelers insurance company.  
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Appendix A- CAD Drawings 

 

 This appendix is a compilation of CAD drawings relevant to the design of the roof 

robot. All CAD files were made using Solidworks Design Studio. The appropriate 

electronic files are included on the CD attached to the hardcopy of this report. Solidworks 

was used as a design aid in determining the dimensions and geometries of all of the 

components that we machined. Some of the components were made using HAAS CNC 

mills while others were made using manual mills and lathes. Due to the iterative design 

process of this project the CAD model does not completely reflect the ultimate state of 

the robot. For this reason any parts needing to be reproduced should be referenced against 

the physical part on the robot to determine what liberties were taken during the 

machining of the part. 
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Appendix B- Robot Code 

// runRobot.c : implementation file 
#include "API.h"   //this is the API to access all the Vex’s sensors/motors/etc. 
#include "math.h" 
 
//Global Variables 
unsigned char servoNeutral = 127;  

//********************************* 
//variables for Wheel feedback 

float error; 
float correction; 

int target[4]; 
int output[4]; 

int oldCount1[4]; 
int oldCount2[4]; 
int newCount[4];  
int numClicks; 

float expectedClicksPerSec[4]; 
float expectedTimeBetweenClicks; 
unsigned long oldClickTime1[4]; 
unsigned long oldClickTime2[4]; 
unsigned long newClickTime[4]; 
long timeInterval; 
unsigned long stuckWaiting[4];  

long delay[4]; 

float clicksPerSec[4]; 
float clicksPerSec1[4]; 
float clicksPerSec2[4]; 
//********************************* 
//variables for geometry 
float halfLength = 9 ; 
float halfWidth = 9 ; 
//*********************************  
//variables to equate motorspeeds 
float rateOfTurn = .05; 
float P = 50 ; 
float P2 = 30 ; 

//*************************************************************** 
int panTiltDelay = 10 ;  //this is a delay - higher rate is slower pan 
int panTiltDelayCount = 0; 
//*********************************  
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//variabls for Joint feedback 
float potNeutral = 512; 
float potAngle; 
float halfTangent; 
float rightToLeftRatio; 
float slowSide ; 
float fastSide ; 
//********************************* 
//PID "Goal Values"  
float targetAngle; 
char I = 0; 
int D ; 
unsigned char targetAngPWM; 
int targetFL;     //Target speed for the front left motor 
int targetBL; 
int targetFR; 
int targetBR; 
unsigned char targetPan = 127 ;  
unsigned char targetTilt = 127 ; 
//********************************* 
//PID "Feedback Values" 
unsigned int potReading; 
//********************************* 
unsigned char inputFB;      //forward and reverse joystick input  
unsigned char inputLR; 
unsigned char inputPan; 
unsigned char inputTilt; 
float joystickInRadians ; 
unsigned char inputOverRide; 
//********************************* 

  

//********************************* 

void runRobot(void);  
void init(void); 
void getInputs(void); 
void getFeedback(void); 

void updateDisplay(void); 

void updateTargets(void); 
void setTargetsForTurning(void); 
void setTargetsForDriving(void); 
void setTargetsForPanTilt(void);  

void calcSpeed(int i); 
void adjustForError(int i); 

void drivePanTilt(void); 
void driveMotors(void); 
void lockOut(void); 



 88 

 
void runRobot(void) 
{ 
    int i; 

    init(); 

    while ( 1 )  
    { 

        getInputs(); 

        updateTargets(); 

        getFeedback(); 

        target[0] = targetFL;  
        target[1] = targetFR; 
        target[2] = targetBL; 
        target[3] = targetBR;  

        calcSpeed(0); 
        calcSpeed(3); 
        calcSpeed(1); 
        calcSpeed(2); 

        for( i = 2; i <=5 ; i++) 
        { 
            if (GetAnalogInput(i) < 85 && inputOverRide != 255) 
                { 
                lockOut(); 
                PrintToScreen ( "%d\n" , (int)i ) ;  
                PrintToScreen ( "%d\n" , (int)GetAnalogInput(i) ) ;  // this is leftover from debuging 
                Wait(50); 
                } 
        } 

        driveMotors();   
        drivePanTilt();       
    } 

} 
//**************************************************  
//                      initialization sequence 
void init(void) 
{ 
    int i; 

    getFeedback(); 
    targetAngle = potAngle ;   // this prevents the joint from spazzing on startup 
    D = potReading ; 
    panTiltDelayCount = 0; 
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    for( i = 0 ; i <= 3 ; i++)  
    { 
        PresetEncoder(i+1,0); 
        StartEncoder(i+1);     

        PresetTimer(i+1,0); 
        StartTimer(i+1); 
    } 
} 

//************************************************** 
//                    update inputs  
void getInputs(void) 
{ 
    inputLR = GetRxInput ( 0 , 1 ) ; //joystick axis 1 controls Left/Right  
    inputFB = GetRxInput ( 0 , 2 ) ; //joystick axis 4 controls Front/Back  
    inputTilt = GetRxInput ( 0 , 3 );  
    inputPan = GetRxInput ( 0, 4) ; 
    inputOverRide = GetRxInput (0 , 5); 
} 

//************************************************** 
//                    get feedback  
void getFeedback(void) 
{ 

    int countDiff1; 
    int countDiff2; 

    long timeDiff1;  
    long timeDiff2; 

    char i; 

//************** 
//joint feedback 
//************** 
    potReading = GetAnalogInput ( 1 ) ;  
    potAngle = ((float)potReading - potNeutral) /508 ; 
    if((potAngle < .03) && (potAngle > -.03))  //i'm trying to avoid a divide  
        halfTangent = .0001;                  //by zero later on.  .03 radians is about 1.7degrees 
    else 
        halfTangent = tan(potAngle/2); 
/*  
Explanation of the number "508" above: 
I took readings off the pot while I turned the knob.  
It would seems that about pi/2 raidans of rotation corresponds 
to about 400 "bits" on the analog input range.  hence,  
pi/2 radians = 400 bits / 508 
} 
*/ 
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//************** 
//wheel feedback  
//**************     
    for ( i = 0 ; i <= 3 ; i++ ) 
    { 

        newCount[i] = GetEncoder(i+1);   //this section of code prevents the encoder 
        newClickTime[i] = GetTimer(i+1);   //counters from overflowing 

        if (newCount[i] > 32000) 
        { 
            countDiff1 = newCount[i] - oldCount1[i]; 
            countDiff2 = oldCount2[i] - oldCount1[i]; 
   
            oldCount2[i] = 0; 
            oldCount1[i] = countDiff2 ;  
            newCount[i] = countDiff1 + countDiff2; 

            PresetEncoder(i+1,newCount[i]); 
        } 
     
        if (newClickTime[i] > 1000000000)    //this prevents the timers from overflowing 
        { 
            timeDiff1 = newClickTime[i] - oldClickTime1[i]; 
            timeDiff2 = oldClickTime1[i] - oldClickTime2[i];  
         
            oldClickTime2[i] = 0; 
            oldClickTime1[i] = timeDiff2 ; 
            newClickTime[i] = timeDiff1 + timeDiff2;  

            stuckWaiting[i] = newClickTime[i]; 

            PresetTimer(i+1,newClickTime[i]); 
        } 
    } 
} 

void updateDisplay(void)     //this section of code is for debugging 
{ 
    PrintToScreen ( "%d\n " , (int)slowSide) ; 
    PrintToScreen ( "%d\n " , (int)fastSide) ; 
 //   PrintToScreen ( "%d\n " , (int)(potAngle*57.) ) ;  
    PrintToScreen ( "%d\n " , (int)(rightToLeftRatio*1000)) ; 
    PrintToScreen ( "%d\n " , (int)targetFL ) ; 
    PrintToScreen ( "%d\n " , (int)targetFR ) ; 
    PrintToScreen ( "%d\n " , (int)targetBL ) ;  
    PrintToScreen ( "%d\n " , (int)targetBR ) ; 
    PrintToScreen ( "\n" ) ; 
  //  Wait ( 100 ) ;  
} 

//************************************************** 
//             set targets based on input  
void updateTargets(void) 
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{ 
// in this control scheme, the LR joystick position should correspond 
// directly to the position of the joint motor  
  
    joystickInRadians = (float)((servoNeutral - inputLR))/ 175 ;  
   
    rightToLeftRatio = (halfWidth + halfWidth*halfTangent)/(halfWidth - halfWidth*halfTangent); 
  
/* the above is a confusing magic conversion, so  that a full throttle  
   joystick position should correspond to about .785 radians, or a full,  
   45 degree turn*/ 

    setTargetsForTurning(); 

//during development, I found that while driving, with the wheels already spinning, the joint motor could 

// use brute force to turn the robot.  So I set targets for turning, which would normally cause the wheels to 

// spin in opposing directions, but then I override those targets to set the wheels to the normal driving speed. 

 

//a consequence of this is that an explicit signal to stop the robot isn’t clearly written into the code 

//it is buried in an if statement in the setTargetsForTurning() subroutine 

    if ((inputFB - servoNeutral) < -15 || (inputFB - servoNeutral)> 15) 
        setTargetsForDriving(); 

    setTargetsForPanTilt(); 
     
    if (panTiltDelayCount < panTiltDelay)  // I did this to slow the pan tilt down 
        { 
            if ((inputPan - servoNeutral) < -15 || (inputPan - servoNeutral)> 15) //set deadbands 
                 
            if ((inputTilt - servoNeutral) < -15 || (inputTilt - servoNeutral)> 15)  
                 
            panTiltDelayCount++; 
        } 
    else 
        panTiltDelayCount = 0; 

} 
//************************************************** 
//                 set DRIVING TARGETS 
void setTargetsForDriving(void) 
{ 
    //float rightToLeftRatio ; 
    float maxPower = 50. ; 
    float powerScaleToJoystick ;  
    
    if (rightToLeftRatio > 1 || rightToLeftRatio < -1) 
        powerScaleToJoystick = maxPower / rightToLeftRatio ; //dynamically scales the throttle range 
    else 
        powerScaleToJoystick = maxPower * rightToLeftRatio ;    //dynamically scales the throttle range 
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    slowSide = ((float)(inputFB - servoNeutral) / 128) * powerScaleToJoystick ; 

    // the code below should keep it out of the deadband  
    // it assumes that the maxPower setting will keep it from maxing out 
     
    if (slowSide > -15 && slowSide < 0) 
        slowSide = -15 ;  
    if (slowSide >= 0 && slowSide < 15)  
        slowSide = 15 ; 

    if (rightToLeftRatio > 1 || rightToLeftRatio < -1) 
    { 
        fastSide = slowSide * rightToLeftRatio ; 
        targetFR = (int)(slowSide); 
        targetBR = (int)(slowSide);  
        targetFL = (int)(fastSide);  
        targetBL = (int)(fastSide); 
    } 
    else 
    { 
        fastSide = slowSide / rightToLeftRatio ; 
        targetFR = (int)(fastSide); 
        targetBR = (int)(fastSide);  
        targetFL = (int)(slowSide);  
        targetBL = (int)(slowSide); 
    } 

   } 

//************************************************** 
//                 set TURNING targets 
void setTargetsForTurning(void)  
{ 
    targetAngle = joystickInRadians ;  

    if((potAngle - targetAngle) > -.037 && (potAngle - targetAngle) < .037) 
    { 
        I = 0; 
        slowSide = 0; 
    } 
    else 
    {  
        if ( (D - (int)potReading) > -5 && (D - (int)potReading) < 5  
             && (-20 < I < 20) )  
        { 
            if (potAngle < targetAngle) 
                { 
                slowSide = -12; 
                if (I > -12)  
                    I = -12 ;  
                else 
                    I--; 
                } 
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            if (potAngle > targetAngle) 
                { 
                slowSide = 12; 
                if (I < 12)  
                    I = 12 ;  
                else 
                    I++; 
                } 

        } 
    } 

    D = potReading ; 
    targetAngPWM = (unsigned char)(servoNeutral + I); 

    if (rightToLeftRatio > 1 || rightToLeftRatio < -1) 
    { 
        fastSide = slowSide * rightToLeftRatio ; 
        targetFR = (int)(slowSide); 
        targetBR = (int)(-slowSide); 
        targetFL = (int)(-fastSide);  
        targetBL = (int)(fastSide); 
    } 
    else 
    { 
        fastSide = slowSide / rightToLeftRatio ; 
        targetFR = (int)(slowSide); 
        targetBR = (int)(-slowSide); 
        targetFL = (int)(-fastSide);  
        targetBL = (int)(fastSide); 
    } 
} 

//************************************************** 
//                set the PAN/TILT 
void setTargetsForPanTilt(void) 
{ 
    int turnOffset; 
    int scaledPan;  
    float scale; 
     

    if (panTiltDelayCount < panTiltDelay) 
        { 
            if ((inputTilt - servoNeutral < -15) && targetTilt > 1) 
                targetTilt--; 
            if ((inputTilt - servoNeutral > 15) && targetTilt < 255)  
                targetTilt++; 
         
            panTiltDelayCount++; 
        } 
    else 
        panTiltDelayCount = 0; 
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    turnOffset = (servoNeutral - inputLR) / 1.5; 

    if ((inputPan - servoNeutral) > 0)  
        scale = (float)(127 - turnOffset) / 127.; 
    if ((inputPan - servoNeutral) <=0) 
        scale = (float)(turnOffset - (-127))/127; 

    scaledPan = (inputPan - servoNeutral) * scale ; 
    targetPan = (unsigned char)(scaledPan + turnOffset + servoNeutral);  

} 
//************************************************** 
//              calculate Current Speed 

void calcSpeed(int i) 
{ 
    expectedClicksPerSec[i] = (float)(target[i])*.85; 
        if (target[i] < 0)  
            expectedClicksPerSec[i] = -1 * expectedClicksPerSec[i]; 

    expectedTimeBetweenClicks = (1200 / expectedClicksPerSec[i]) ; 

    if (expectedTimeBetweenClicks > 120) 
        expectedTimeBetweenClicks = 120;  
     
    // the above should give you the time between clicks... 
    // there is a little extra leeway to account for rounding error  
    // and stuff like that 

    if(newCount[i] > oldCount1[i]) 
    {  
        timeInterval = newClickTime[i] - oldClickTime2[i] ;    
        numClicks = newCount[i] - oldCount2[i]; 
  
        oldClickTime2[i] = oldClickTime1[i];  
        oldClickTime1[i] = newClickTime[i] ; 

        stuckWaiting[i] = newClickTime[i] ;           //a click has occured,  

        oldCount2[i] = oldCount1[i] ;               //so reset everything 
        oldCount1[i] = newCount[i] ; 

 
        clicksPerSec[i] = 1000 / (float)(timeInterval / numClicks); 

        adjustForError(i);           
    } 

    if ((newClickTime[i] - oldClickTime1[i]) > expectedTimeBetweenClicks) 
    { 
        clicksPerSec[i] = 0; 
    }  
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    if ((newClickTime[i] - stuckWaiting[i]) > expectedTimeBetweenClicks) 
    { 
        stuckWaiting[i] = newClickTime[i]; 
        delay[i] = 2; 
        adjustForError(i); 
    } 
} 

 
//**************************************************  
//               adjust output for error 
void adjustForError(int i) 
{ 
    int Pwheel; 
    int speedBehind; 
    float percentError; 
    char comp;  
     
    delay[i]++ ; 

    if(delay[i] < 2) 
        return; 
    else 
        delay[i] = 0; 

    if( i == 0)   //figures out which wheel is on the same side, (left and right sides) 
        comp = 2; 
    if( i == 1) 
        comp = 3; 
    if( i == 2) 
        comp = 0; 
    if( i == 3) 
        comp = 1; 

    error = clicksPerSec[i] - expectedClicksPerSec[i] ; 
    percentError = error / expectedClicksPerSec[i] ; 
    speedBehind = (int)(clicksPerSec[i] - clicksPerSec[comp]) ; 

    if (percentError > .1) 
        Pwheel = (-percentError * 2) - 1; 
    else if (percentError < -.1) 
        Pwheel = (-percentError * 2) + 1; 
    else 
        Pwheel = 0; 

    if (percentError < -.1 && 
        speedBehind < -12 ) 
        Pwheel = Pwheel + 10; 

    if (target[i] > 0) 
        correction = Pwheel ;  
    else if (target[i] < 0) 
        correction = -Pwheel ; 
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    output[i] = output[i] + correction; 

//************************ 
    //dead zone 
       if (target[i] == 0 ) 
            output[i] = 0 ;  
     
       if (target[i] > 0 && output[i] < 12) 
            output[i] = 12; 
       if (target[i] < 0 && output[i] > -12)  
           output[i] = -12; 

//************************  
//dont max out 
    if (output[i] > 127) 
        output[i] = 127 ; 
    if (output[i] < -127) 
        output[i] = -127; 

} 

void driveMotors(void) 
{ 
  
    SetPWM ( 1 , (unsigned char)(output[0] + servoNeutral )) ;  
    SetPWM ( 2 , (unsigned char)(output[1] + servoNeutral )) ;  
    SetPWM ( 3 , (unsigned char)(output[2] + servoNeutral )) ;  
    SetPWM ( 4 , (unsigned char)(output[3] + servoNeutral )) ;  
    SetPWM ( 5 , targetAngPWM ) ;  
} 

void drivePanTilt(void) 
{ 
    SetPWM ( 6 , targetTilt ) ;  
    SetPWM ( 7 , targetPan ) ; 
}  

void lockOut(void) 
{ 

        output[0] = 0; 
        output[1] = 0; 
        output[2] = 0; 
        output[3] = 0; 
        targetAngPWM = 127; 
} 
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Appendix C- Weight Breakdown 

 

 

Bill of Materials 
Item Quantity Weight (lbs) Total (lbs) 

Wheel Assembly 4 1.3 5.2 

Window Drive Motors 4 1.2 4.8 

Batteries 3 1.3 3.9 

Misc Wires and Hardware 1 2.9 2.9 

Bottom Panel 2 0.7 1.4 

Side Panel 4 0.33 1.32 

Victor Speed Controllers 5 0.25 1.25 

Joint Drive Motor 1 1 1 

X10 Wireless Camera 1 1 1 

Vex Power Pack 1 0.71 0.71 

Bracket 2 0.23 0.46 

Vex Controller 1 0.28 0.28 

Pan Tilt Assembly 1 0.25 0.25 

Camera Mast 1 0.24 0.24 

Joint Inner Housing 1 0.24 0.24 

Joint Vertical Shaft 1 0.22 0.22 

Joint Outer Housing 1 0.16 0.16 

Joint Side Block 1 0.14 0.14 

Joint Block 2 0.07 0.14 

Joint Capstan 1 0.07 0.07 

Joint Toggle 1 0.06 0.06 

Joint Bottom Block 1 0.05 0.05 

Joint Bottom Block 1 0.05 0.05 

Joint Spacer 1 0.05 0.05 

Joint Top Plate 1 0.01 0.01 

  Total 25.9 

Table 1: Weight Breakdown 
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Appendix D- Bill of Materials 

 

 

Bill of Materials 
Item Quantity Cost Total 

Vex Controller 1 $300.00 $300.00 

Window Drive Motors 4 $41.75 $167.00 

Victor Speed Controllers 5 $116.00 $580.00 

Pan Tilt Assembly 1 $65.00 $65.00 

Joint Drive Motor 1 $42.00 $42.00 

Wheel Material 1 $13.00 $13.00 

X10 Wireless Camera 1 $100.00 $100.00 

Aluminum 1 $100.00 $100.00 

Lexan 1 $100.00 $100.00 

Misc Wires and Hardware 1 $100.00 $100.00 

Batteries 3 $60.00 $180.00 

Laptop 1 $400.00 $400.00 

Ladder 1 $230.00 $230.00 

8020 Rail 1 $50.00 $50.00 

8020 Bearings 2 $30.00 $60.00 

  Total $2,487.00 

Table 2:  Total Cost 


