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Abstract

In this MQP, a mathematical model is created for two viruses’ effects on the human immune sys-
tem. These viruses are Human Immunodeficiency Virus (HIV) and Epstein-Barr Virus (EBV).
First, two systems of ordinary differential equations were analyzed using information from pa-
pers written by Nowak and May (HIV), and Huynh and Adler (EBV), respectively. Then,
MATLAB was used to solve each of the systems and find steady states and eigenvalues of the
Jacobian evaluated at the steady states for the EBV model. The EBV model, a system of ten
equations, was scaled and a series of steps were taken to reduce the model to a system of three
equations. This system was solved numerically using MATLAB and shown to be consistent
with the original model by Huynh and Adler.
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Executive Summary

The first part of this project concerns Human-Immunodeficiency Virus (HIV) and its antigenic
variation. A model developed by Nowak and May is examined, which is a system of 2n+1
ordinary differential equations. The variable n represents the number of mutations of the viral
organism. The system was solved using MATLAB, and the solutions were plotted. Three
different cases were examined, for when the parameter values satisfy certain inequalities. The
three cases represent an acute illness, a chronic illness, and a typical illness, where the virus
goes through an initial infection, lies dormant for several years, then reemerges.

The second part examines Epstein-Barr Virus (EBV). A model developed by Huynh and Adler
is examined, which is a system of ten ordinary differential equations. In a similar fashion to
the HIV model, the EBV model is solved using MATLAB. Information about Epstein-Barr
virus infection is inferred from the mathematical model. The model is then scaled and explicit
solutions are obtained for some of the equations in the system, using a steady state assumption
for two of the equations. This reduces the system of ten equations to a system of three, which
must be solved numerically.
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Chapter 1

Introduction

The viral organism is one which has had a profound effect on the human population of the world
as a whole. Diverse antigenic variation is one of a virus’ most offensive tactics, and consequently
one of the reasons such viruses are so elusive to the human immune system. Viruses can cause
some devastating and deadly diseases and infections. One in particular, HIV, has been sweeping
across the world over the past 30-40 years. Another, Epstein-Barr virus, has had a profound,
but somewhat more unknown effect on the world’s population.

HIV first gained attention when a group of gay men in California died of a fungal infection,
followed by a group that were diagnosed with Kaposi’s sarcoma, which was usually only seen
in elderly men (Ranga, 2009). Many other unusual cases like this in the gay community in
California led to an investigation, where HIV was discovered as being the etiological source of
a syndrome that is now called AIDS (Dorota, 2008).

Today, AIDS is classified as a pandemic, a syndrome that affects people across the world.
However, of the 34 million people reportedly carrying the disease, 24 million live in Sub-Saharan
Africa. It is estimated that 40 percent of 15 year olds living in this region will die of AIDS.
However, an increasing number of countries in Africa (Zambia, Tanzania, Kenya, etc.) are
now reporting stabilization of the virus (Schwartlander et al., 2000). As of 2008, there were
an estimated 1.1 million people living with AIDS in the United States, 20 percent of which
undiagnosed, and an estimated 617,025 people died that year from the infection (CDC, 2011).
The US Center for Disease Control estimates that there are 50,000 people newly infected with
the virus each year. Overall, though, there is no region of the world unaffected by HIV.

There are approximately 38.6 million humans living with HIV worldwide, with 25 million that
have already died. Although the virus originally seemed to only infect young homosexual men,
it became clear that was not the case. More recently, heterosexual transmission has become
more common and accounts for about 85 percent of all HIV infections. Outside of Sub-Saharan
Africa, about a third of all transmissions of the virus are due to use of dirty needles for injection
drugs, especially in Eastern Europe and Southeast Asia (Simon et al., 2006). Needle exchange
programs (NEP’s) are being implemented to help prevent this method of transmission. In
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the United States, NEP’s have decreased HIV infection from needle exchanges by 33 percent
(Vlahov, 1998).

Currently neither HIV nor AIDS can be cured, and there is no vaccine for HIV (CDC, 2011). A
lot of research being conducted that will work toward finding a vaccine or cure. Medications are
available that will slow down the progression or reduce the transmission of the virus, allowing
those infected to live a better quality of life for a longer period of time (CDC, 2011).

There have been many mathematical models which have contributed to the scientific commu-
nity’s understanding of HIV. For review of HIV models, see the paper ‘Mathematical and Statis-
tical Studies of the Epidemiology of HIV’ by R. M. Anderson. Major areas that have emerged
from mathematical research from HIV over the years include: transmission demographics of
the virus in particular at-risk groups (for example, San Francisco gay population); short-term
prediction of temporal trends that cause AIDS; the different ways disease and infection progress
with infected patients; and how HIV has affected developing countries demographically (Ander-
son, 1989).

Mathematical models have also revealed many things previously unknown about HIV and AIDS.
One revolutionary finding is that although AIDS is a disease that occurs for a time period of
about 10 years, it is made up of several ‘sub-processes’, some of which can take hours or days,
and others which can take weeks or months (Perelson & Nelson, 1999). In addition, the
minimum duration of the HIV-1 life cycle on average is 1.2 days, while the average time for
HIV-1 to mutate and generate a new form of the virus is 2.6 days (Perelson et al., 1996).

Epstein-Barr virus was first discovered by Michael Anthony Epstein and Yvonne Barr in 1964
with tissue taken from a lymphoma. The virus causes a very wide spectrum of diseases, depend-
ing on the age range of the person infected. The rate of infection is higher in developing countries
than developed countries. Over 90 percent of the human population worldwide is infected, with
most developing the disease during early childhood. This is usually an asymptomatic case, but
may be the cause of common childhood problems. During adolescence, the virus causes infec-
tious mononucleosis (mono) 35-50 percent of the time. Infectious mononucleosis is considered
the virus’s prototype disease (NCID, 2006).

Epstein-Barr Virus also has been connected with other human malignancies, such as Hodgkin
Disease, Burkitt Lymphoma, and Nasopharyngeal Carcinoma. In addition, it appears to affect
a variety of other tumors, such as Carcinoma of the salivary glands (Callan, 2004). Phar-
macological and immunotherapeutic approaches are being developed to treat EBV-associated
tumors. In one study, 23 out of 31 adults with chronic illness and fatigue had persisting EB
virus infection (Straus et al., 1985). Considering what mathematical modeling has done for
progress on understanding HIV, further studies and mathematical modeling on Epstein-Barr
Virus may also lead to further insight on the virus and the conditions it causes.

This first part of this MQP attempts to model the natural interplay between viral antigenic
variation and the human immune response in an effort to better determine when, during the
infection, HIV-I will progress to AIDS. The second half will present a method for simplification
of a model for Epstein-Barr virus and its interactions with the human immune system.
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Chapter 2

Antigenic Variation of HIV Model

The model implemented in MATLAB in this portion of the project shows the effects of HIV on
the cellular level. It was created from a previously established mathematical model with some
adjustments made in an effort to more realistically model HIV’s interactions with the immune
system. First we will go over the necessary biological background on HIV in order to better
understand the model.

2.1 Background

HIV (Human Immunodeficiency Virus) is a virus that causes worldwide devastation. The reasons
that HIV causes so much damage stem from its biological functions and how it interacts with
the human immune system. Its host cells are CD4+ T-cells, which are part of the immune
system component that signals to the rest of the immune system that infection is present.
Unfortunately, this means that a full HIV infection means the downfall of the immune system,
making the infected person susceptible to other, usually harmless, infections. This state of an
ineffective immune system is called AIDS: Acquired Immune Deficiency Syndrome. Often the
first sign of an HIV infection is this last stage, when the individual contracts an illness that
does not usually present itself in healthy individuals.

When HIV is first contracted, the individual may have a short period of fever where the body
is fighting off the infection, followed by a long asymptomatic stage, which often lasts several
years. HIV presents itself as AIDS in the final stages of infection. There can therefore be three
different types of infection. The first of these goes through all stages of infection, from the short
initial fever stage, through the asymptomatic stage, and ending in the final immune system
deficiency stage, this is referred to as a typical infection. The second situation is one where,
after the short initial infection, the body keep is able to the virus from reemerging, thereby
staying in a chronic, asymptomatic stage. Subsequently, this is called a chronic infection. The
final situation in one in which the body does not survive the first initial infection stage, and
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this is referred to as an acute infection. (Nowak et al., 1990).

The first case (an initial infection, followed by the asymptomatic phase, ending in AIDS) is
the one that usually presents itself. One theory on how this operates is the theory of antigenic
variation. The immune system takes time to create new antibodies through a trial and error
process to fit specific protein structures on the antigen that it targets, so as each new strain
is produced a new antibody is produced. Often, an antibody targets a protein that is not
changed through all or some of the mutations, that this antibody can target multiple strains
of the virus. However, if the virus is creating enough mutations quick enough, it can outrun
the immune system’s ability to counteract the new strains. This, combined with the death of
CD4+ T-cells can explain why HIV is so virulent (Nowak et al., 1990). But what makes HIV
go through enough mutations to act in this way, when other viruses do not?

HIV is a classified as a retrovirus, which are enveloped RNA viruses. These viruses use an
enzyme called reverse transcriptase to turn their RNA into DNA, which is then integrated into
the host’s DNA to go through transcription and translation along with the host DNA. Because
of this extra step of reverse transcription, there is a higher incidence of mutation in the viral
lifecycle than with the usual central dogma of DNA → RNA →Proteins. As HIV replicates,
the chance that a mutation will produce a new strain increases, as much as one base pair per
genome every time reverse transcription is executed. This creates more chance for mutations
than a virus that follows the central dogma, and thus allows HIV to outrun the immune system
(Nowak et al., 1990).

2.2 Nowak’s Mathematical Model

The mathematical model used originates from a paper by M. A. Nowak, R. M. May, and R.
M. Anderson written in 1990 entitled ‘The Evolutionary Dynamics of HIV-1 Quasispecies and
the Development of Immunodeficiency Disease’ (Nowak & May, 2000). The model outlined in
this source and in chapter 12 of Nowak’s book, Virus Dynamics: Mathematical Principles of
Immunology and Virology is described below.

There are five main assumptions that are used in the model:

1. The virus kills CD4+ T-helper cells

2. The virus mutates to evade the immune system and the immune system in turn creates
new antibodies against the virus

3. The CD4+ T-helper cells direct the attack against the virus

4. Each mutant strain can kill any CD4+ T-helper cell

5. Immune responses can be characterized by responses to specific strains and response to
all strains
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HIV and two elements of the immune system are represented in this model: specific antibodies
and non-specific antibodies. The populations of HIV are split into different strains that are
represented in the body, with new strains being created through mutation. Each strain has
a specific antibody that works against it. The non-specific antibodies target all strains of
HIV. We therefore have a system of 2n + 1 equations, where n is the number of strains of
HIV. Although HIV does not specifically target antibodies, it does target the cells that tell the
immune system that the antibodies are needed, and so a large HIV population will affect the
numbers of antibodies. Each strain of HIV and each antibody is assumed to have the same
growth and decay rates. The resulting system is as follows:

v̇i = vi(r − pxi − qz)
ẋi = cvi − bxi − uvxi
ż = kv − bz − uvz i = 1...n

(2.1)

vi represents the population of each viral strain, xi is the population of each specific antibody
strain, z is the population of the non-specific antibodies, and v and x are the total populations
of virus and specific antibodies, respectively. The number of viral strains is n. The parameter
r represents the average replication rate of the virus, and the parameters p and q represent the
neutralizing of the virus by specific and non-specific antibodies, respectively. The parameters
c and k represent the rates at which the specific and non-specific antibodies are created in
response to the presence of virus, and b is the decay rate of the immune responses at an absence
of virus. The final parameter, u, denotes how well the virus can lessen immune responses by
destroying CD4+ T-helper cells.

The antigenic variation model shows the mutations the virus undergoes. At certain intervals, the
number of viral strains increases, thereby increasing the number of types of specific antibodies.
The probability of a new viable strain can be determined by P ∗ dt, where P is the rate of
mutation and dt is the time elapsed since the previous mutation.

From this system, we can formulate an equation that describes the rate at which the entire virus
population changes.

v̇ =
v

b+ uv
(rb+ ruv − pcD − qkv) (2.2)

where D =
n∑
i=1

v2
i

v2
(2.3)

It is important to note here that D represents the Simpson index and 1
n
≤ D ≤ 1. In the case of

this model, D represents the inverse population of the virus. By the Cauchy-Schwarz inequality,
it may be stated that

v2 =

(
n∑
i=1

vi

)2

≤
n∑
i=1

v2
i

n∑
i=1

12 ≤ n
n∑
i=1

v2
i , (2.4)

Therefore,
1

n
≤
∑n
i=1 v

2
i

v2
= D .
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To see that D is less than 1, we note that since vi ≥ 0, we have

n∑
i=1

v2
i ≤

(
n∑
i=1

vi

)2

so that D ≤ 1. We assume that the second and third equations in (2.1) operate in a faster
time-scale and have reached equilibrium sooner than the virus. Using those two equations to
solve for xi and z in terms of vi and the substituting the results into the first equation, we have

v̇i = vi

(
r − p

(
cvi

b+ uv

)
− q

(
kv

b+ uv

))

=
vi

b+ uv
(rb+ ruv − pcvi − qkv)

=
v2

b+ uv

(
rbvi
v2

+
ruvi
v
− pcv2

i

v2
− qkvi

v

)

Taking the sum from i = 1...n:

v̇ =
v2

b+ uv

(
rb

v
+ ru− pc

n∑
i

v2
i

v2
− qk

)
(2.5)

(2.6)

=
v

b+ uv
(rb+ ruv − pcvD − qkv) (2.7)

Setting the derivative to zero in the last equation and solving, the optimal value v∗ is obtained.

v∗ =
rb

kq + cpD − ru
(2.8)

Thus, increasing the genetic diversity (decreasing D), will result in higher virus level v∗.

This model lends itself to three cases, depending on the parameters provided. In the first case,
the virus levels immediately rise to a high state and stay there:

ru > kq + cp (2.9)

This represents death after an acute infection in the organism (Figure 3.1). In the second case,
the virus population increases then falls to low levels:

kq > ru (2.10)

This case describes a chronic infection in which the virus is not having an effect on the organism
(Figure 3.2). This last case illustrates the viral population increasing, decreasing, and finally
increasing once more:

kq + cp > ru > kq (2.11)

This case represents a typical, chronic infection of HIV. It goes unnoticed for some time and
later increases, resulting in disease and eventual death (Figure 3.3).
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Figure 2.1: Death after acute infection with HIV, Condition (2.9)

Figure 2.2: Asymptomatic chronic infection, Condition (2.10)

Figure 2.3: Typical progression of HIV, Condition (2.11)
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Chapter 3

EBV Model

Biological systems are very complex and not well understood. This makes models of biological
systems very complex. Although the complexity of the model may make results more realistic, it
also does make these models very difficult to analyze. There must therefore be a balance between
making biological systems realistic and making them possible to analyze mathematically so
results and insight can be obtained.

Epstein-Barr virus is a virus that affects several systems in the body, therefore yielding complex
models. The one focused on in this chapter on is a system of 10 differential equations, proposed
by Giao Huynh and Frederick Adler in the paper ‘Alternating Host Cell Tropism Shapes the
Persistence, Evolution, and Coexistence of Epstein-Barr Virus Infections in Human’ (Huynh &
Adler, 2011).

In this chapter, we will be making modifications to this model with the goal of simplifying the
model to one which can be used for mathematical analysis while still yielding biologically realistic
numerical results. This chapter is organized as follows: section 3.1 explains the biological
background necessary to understand this model, section 3.2 describes the model presented by
Huynh and Adler (2011), and section 3.3 describes the steps used to simplify and solve Huynh
and Adler’s model .

3.1 Background

Epstein-Barr virus is a double-stranded DNA virus, in the Gamma Herpes family (Callan,
2004). Its genome comprises approximately 172,000 base pairs. There are two distinct types of
the virus, appropriately termed EBV-1 and EBV-2, which share between 70-85 percent sequence
homology. It is usually transmitted through oral contact with saliva, although in rare cases it
can be transmitted through blood transfusion.

The virus works usually by infecting B lymphocytes through the binding of the major viral
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envelope glycoprotein gp350 to the CD21 receptor on the surface of B-cell antibodies. Although
it can infect other cell types (commonly epithelial cells), this is much less efficient, and occurs
through separate, poorly defined pathways. The virus can permanently change B cells into
permanent, latently infect lymphoblastoid cell lines (lcl’s), which creates an in vitro system
that has proved invaluable in studying the virus, although it is incomplete. To contrast, the
virus infecting epithelial cells in vitro does not activate its full growth transformation (Kutok,
2006).

In the case of infectious mononucleosis, the virus’s prototype disease, it works first by infecting
epithelial cells in the pharynx (which will cause pharyngitis) and will later infect the B cells. The
immune system will respond with its cytotoxic (CD8+) T cells against infected B-lymphocytes
resulting in enlarged lymphocytes. Another virus, the Murine Gamma Herpes virus 68, can
cause a condition comparable to infectious mononucleosis (Kutok, 2006).

Lab animals have also been used as models to study Epstein-Barr Virus. In a study of transgenic
mice, three lineages were infected with the latent membrane protein 1 (LMP1) of EB virus. B-
cell Lymphoma was detected in all three lineages, with the incidence increasing significantly
with the age of the mouse (Kulwichit et al., 1998).

In latently infected cells, the virus is known to possess at least 14 distinct microRNA’s (miRNA’s).
These are used by EB virus, among other viruses, to prevent infected cells and other cells from
mounting appropriate antiviral responses. Seven of these 14 miRNA’s have been conserved
across over 13 million years of divergent evolution (Cai et al., 2006).

3.2 Huynh and Adler’s Model

The model described by Huynh and Adler (2011) is displayed in System (3.1). The model
describes interactions between four main classes of cells: B cells, epithelial cells, T cells, and
free virus. One of the goals of this model is to show an observed behavior of Epstein-Barr virus.
This behavior involves a conformational change in the free virus as it is released from different
types of cells, thus affecting the infectivity of the free virus. When a B-cell lyses and releases
free virus, those viruses can more easily infect epithelial cells, and vice versa. Thus, two of
the equations below represent these two different behaviors of virus, VB and VE. There are
four equations representing different types of B cells, the first being naive B cells (B1), and the
following three being different stages of infected B cells (B2, B3, and B4). There is an equation
for naive epithelial cells (E1), and one for infected epithelial cells (E2). The final two equations
are for two types of T cells (T2 and T4), each of which target different types of infected cells.
A table describing the parameters used in the model and their approximate values are given
in Table (A.1) in Appendix A. Following System (3.1), we explain how each equation in the
system is derived.
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Ḃ1 = d1(B0 −B1)− µEbVEB1 − µBbVBB1

Ḃ2 = ρ(µEbVEB1 + µBbVBB1)− (d2 + c)B2 − k2B2T2

Ḃ3 = cB2 + rB3 − rsB3

Ḃ4 = rB3 − d4B4 − k4B4T4

Ė1 = de(E0 − E1)− µBeVBE1 − µEeVEE1

Ė4 = µBeVBE1 + µEeVEE1 − (de + γ)E4 − k4E4T4

V̇B = nd4B4 − dvVB
V̇E = nγE4 − dvVE
Ṫ2 = φ2T1ω(B2) + θ2T2ω(B2)− δT2

Ṫ4 = φ4T1[ω(B4 + E4)] + θ4T4[ω(B4 + E4)]− δT4

(3.1)

• In System (3.1), B1 are the naive B cells and E1 are the naive epithelial cells.

– These cells begin with an initial population, B0 and E0, with turnover rates of d1

and de, respectively.

– Each of the naive cells, B1 and E1, are infected by virus at rates of µEb, µBb, µEe,
and µBe and become infected B cells and epithelial cells, B2 and E2, respectively.
We employ the following notation. The first subletter in the infection rate stands for
the type of virus that is infecting, the second stands for the type of cell that is being
infected.

• In System (3.1), B2 are the latently infected B cells, B3 are the latently infected memory
B cells, and B4 are the lytically infected B cells.

– The newly infected B cells become latently infected, and are represented by B2, which
have a proliferation rate of ρ, a natural death rate of d2, become latently infected
memory B cells, B3, at a rate of c, and are killed by latently infected cell targeting
T cells, T2, at a rate of k2.

– The levels of latently infected memory B cells, B3, are regulated at a rate of rs and
have a division rate of r, where, on average, one enters the lytic stage, B4, and one
stays latent.

– Lytically infected B cells, B4, come about at a rate of r, lyse and release virus at a
rate of d4, and are killed off by lytically infected cell targeting T cells, T4, at a rate
of k4.

• The infected epithelial cells, E4, die at a natural death rate of de, due to lysis at a rate of
γ, and by lytically infected cell targeting T cells, T4, at a rate of k4.

• For the Virus equations, VB are the virus that come from B cells bursting and VE are the
virus that come from epithelial cells bursting.

16



– The virus that are released by B4 are represented by VB and are released at a rate
of nd4, where n is the viral burst size, and die at a natural death rate of dv.

– The virus that are released by the lytically infected epithelial cells, E4, are represented
by VE and are released at a rate of nγ, where, again, n is the viral burst size, and
also die at a natural death rate of dv.

• For the T cell equations, T2 are the T cells that target latently infected cells, B2, and T4

are the T cells that target lytically infected cells, B4 and E4.

– The T cells have a native population, T1, which is regulated and become targeting
cells as needed (in this case either targeting latently infected cells, T2, or lytically
infected cells, T4). They do this at a rate of φ2 and φ4, respectively.

– The function ω is a saturating function which is defined below in Equation (3.2),
where K is the number of targeted cells when activation is at half maximum. Since
T2 targets the latently infected cells, B2, this equation uses ω(B2), and similarly, T4

targets lytically infected cells, B4 and E4, and includes ω(B4 + E4).

– Each T cell has a proliferation rate of θ2, θ4, respectively, and each have the same
natural death rate δ.

ω(Bj) =
Bj

K +Bj

(3.2)

In order to compare this original model to our adjusted simplified models, steady state values,
eigenvalues of the Jacobian evaluated at the steady-states, and graphs for solution this system
were obtained using MATLAB. The graphs were obtained using the built-in MATLAB function,
‘ode23s’, which is used to solve stiff systems of ordinary differential equations. The time units
are shown in minutes, starting at 0 minutes and ending at 5× 105 minutes, or 0 to around 350
days. To solve for the steady states of the system, we used all zeros for initial conditions, except
for the virus, which had 500 free virus for VB and 11000 free virus for VE as initial conditions.
To find the steady-states, ‘fsolve’, another built-in MATLAB function used to solve systems of
linear and nonlinear equations and systems of equations, was used on System (3.1). For initial
guesses, the end values from ‘ode23s’ were used. The function fsolve also provided the Jacobian
of System (3.1), and the eigenvalues of the Jacobian were found using the MATLAB function
‘eig’. These eigenvalues gave information on the stability of the steady-states. The results are
given in Table 3.1 and Figure 3.1.

To summarize the results of Huynh and Adler’s model, first note that the real parts of each
eigenvalue of the Jacobian are negative, meaning this set of steady-states is stable. The graphs
of both naive cells, B cells (B1) and epithelial cells (E1) in Figure 3.1a, first oscillate a bit and
then level off to a steady state. The latent (B2), memory (B3), and lytic B cells (B4) in Figure
3.1b all achieve a sharp peak and then reach a steady state. The infected epithelial cells (E4)
in Figure 3.1c behave similarly, as does the free virus in Figure 3.1d. The T cells (T2 and T4) in
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Cell Type Steady-States Eigenvalues
Naive B Cells 2.1939× 105 −5.7912× 10−3

Latently Infected B Cells 8.7086× 103 −5.0687× 10−3 + 1.6685× 10−4i
Latently Infected Memory B Cells 1.0492× 105 −5.0687× 10−3 − 1.6684× 10−4i
Lytically Infected B Cells 1.7363× 103 −5.1556× 10−4 + 2.3384× 10−4i
Naive Epithelial Cells 1.7117× 105 −5.1556× 10−4 − 2.3384× 10−4i
Infected Epithelial Cells 9.3903× 102 −1.8597× 10−4 + 2.5185× 10−5i
Free Virus from B Cells 8.6817× 105 −1.8597× 10−4 − 2.5185× 10−5i
Free Virus from Epithelial Cells 3.3805× 105 −2.6590× 10−5 + 2.4421× 10−5i
T Cells for Latently Infected Cells 1.2312× 105 −2.6590× 10−5 − 2.4421× 10−5i
T Cells for Lytically Infected Cells 6.2947× 104 −6.9733× 10−6

Table 3.1: Steady-states for System (3.1) and the eigenvalues of the Jacobian Matrix evalued
at the steady-states

Figure 3.1e, conversely, are graphs which slowly increase and reach a steady state at a slower
rate. The steady states in Table 3.1 achieved in the method described above are all biologically
meaningful. If the initial guesses used in the ”fsolve” function are all set equal to zero, the model
achieves negative steady-states, which have no real biological meaning, therefore all zeroes must
not be a steady state for the model. In addition, various other initial guesses were attempted,
but many of them also produced negative steady-states, as well as positive eigenvalues for the
Jacobian, which would suggest an unstable set of steady-states. Therefore, the steady-states
found have a small domain of attraction.

Biologically, this model behaves much like the biological system it is modeled after. When the
virus (VB and VE) in Figure 3.1d initially infects the body, it has a short period of drastic
increase. It is infecting cells without being stopped by the immune system, yielding many
infected cells (B2, B3, B4, and E4), as seen in Figures 3.1b and 3.1c. Therefore, there is a
period where there are much fewer naive cells (B1 and E1) than initially, which can be viewed
in Figure 3.1a. The body then begins to fight back with the immune system through the T
cells (T2 and T4) in Figure 3.1e. The T cells (T2 and T4) take some time to specialize to the
cells infected with the virus, and slowly increase in the presence of infected cells. The T cells
(T2 and T4) begin to target the latently infected cells (B2) and lytically infected cells (B4 and
E4) and kill them off. The infected cells (B2, B3, B4, and E4) and virus (VB and VE) then go
through a period of decrease, until each population reaches an equilibrium. This is the way the
model operates, and this is also the way the virus operates in the body.

Epstein-Barr virus sets itself apart from other viruses in that it causes a chronic asymptomatic
infection following the illness caused by its initial infection. This model successfully captures
that. There are no biologically meaningful steady-states that satisfy System (3.1) other than
that in Table 3.1. In this set of steady-states, there is an equilibrium of all types of naive cells,
virus, infected cells, and T cells, implying a chronic infection. There is no set of steady-states
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that captures the elimination of virus or that of the body succumbing to the virus. In this way,
the model by Huynh and Adler successfully captures the mechanisms of the biological system.
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(a) Naive Cells

(b) Infected B Cells (c) Infected Epithelial Cells

(d) Free Virus (e) T Cells

Figure 3.1: Graphs of the solutions of System (3.1), grouped by cell type and behavior.

20



3.3 A Simplified Model

A seris of steps were taken to reduce System (3.1) to a system with fewer equations. System
(3.1) is first scaled to give results in the range of 0-10. A steady state assumption is then
made for two of the species. This made several of the remaining equations in System (3.1)
have explicit solutions. These equations are solved analytically and the remaining equations are
solved numerically.

3.3.1 Scaling the Model

The first step taken in simplifying System (3.1) was to scale the model. In doing this, we make
each species around the same order of magnitude, making the orders of magnitude of each
term’s coefficient easier to analyze. In order to do this, we divided each of the first three B
cell equations (B1, B2, and B3) by 10−1B0, the naive epithelial cell equation (E1) by 10−1E0,
each of the T cell equations (T2 and T4) by 10−1T1, the latent cells (B4 and E4) by 10−2B0 and
10−2E0, respectively, and the two virus equations (VB and VE) by 103n and 102n, respectively.
This scales each species down by at least 103, the result being that each species has solutions
in the range of (1, 10), with the exception being the lytic cells (B4 and E4), which are in the
range of (0, 1). The resulting system is below in System (3.3).

Ḃ1 = d1(10−B1)− µEb102nVEB1 − µBb103nVBB1

Ḃ2 = ρ(µEb102nVEB1 + µBb103nVBB1)− (d2 + c)B2 − k2B2(10−1T1)T2

Ḃ3 = cB2 + rB3 − rsB3

Ḃ4 = r10B3 − d4B4 − k4B4(10−1T1)T4

Ė1 = de(10− E1)− µBe103nVBE1 − µEe102nVEE1

Ė4 = µBe103nVB(10)E1 + µEe102nVE(10)E1 − (de + γ)E4 − k4E4(10−1T1)T4

V̇B = 10−5d4B0B4 − dvVB
V̇E = 10−4γE0E4 − dvVE
Ṫ2 = φ210ω[(B010−1)B2] + θ2T2ω[(B010−1)B2]− δT2

Ṫ4 = φ410ω[(B010−2)B4 + (E010−2)E4] + θ4T4ω[(B010−2)B4 + (E010−2)E4]− δT4

(3.3)

At this point, the orders of magnitude of the coefficient of each term can be compared without
too much thought about the orders of magnitude of the individual species. Table 3.2 is showing,
for each equation, each term and the order of magnitude of its coefficient. If an equation is shown
to have coefficients with very small orders of magnitude when compared to other equations, the
rate of that species can be assumed to be zero, and the species can be represented by its steady
state value.

Looking at the graphs in Figure 3.1, we can see that each of the lytic cells (B4 and E4) reach
their steady state values relatively quickly when compared with the other species. We can
therefore make a steady state assumption and assume constant values for each of the lytic cells.
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Equation Term Coefficient Order of Magnitude

Ḃ1 d1(10−B1) 1.6667× 10−4

Ḃ1 µEb102nVEB1 3.3× 10−5

Ḃ1 µBb103nVBB1 3.3× 10−6

Ḃ2 ρµEb102nVEB1 6.6× 10−5

Ḃ2 ρµBb103nVBB1 6.6× 10−6

Ḃ2 (d2 + c) 1.1× 10−3

Ḃ2 k2B2(10−1T1)T2 1.1× 10−3

Ḃ3 cB2 10−3

Ḃ3 rB3 8.3× 10−5

Ḃ3 rsB3 1.66× 10−4

Ḃ4 r10B3 8.3× 10−4

Ḃ4 d4B4 2.3148× 10−4

Ḃ4 k4B4(10−1T1)T4 2.3× 10−3

Ė1 de(10− E1) 1.6667× 10−4

Ė1 µBe103nVBE1 3× 10−5

Ė1 µEe102nVEE1 6× 10−7

Ė4 µBe103nVB(10)E1 3× 10−4

Ė4 µEe102nVE(10)E1 6× 10−6

Ė4 (de + γ)E4 3.3333× 10−4

Ė4 k4E4(10−1T1)T4 2.3× 10−3

V̇B 10−5d4B0B4 8.5648× 10−4

V̇B dvVE 4.6296× 10−4

V̇E 10−4γE0E4 3.3× 10−3

V̇E dvVE 4.6296× 10−4

Ṫ2 φ210ω((B010−1)B2) 1.9500× 10−4

Ṫ2 θ2T2ω((B010−1)B2) 3.25× 10−5

Ṫ2 δT2 6.4103× 10−6

Ṫ4 φ410[ω((B010−2)B4 + (E010−2)E4)] 4.48× 10−4

Ṫ4 θ4T4[ω((B010−2)B4 + (E010−2)E4)] 3.25× 10−5

Ṫ4 δT4 6.4103× 10−6

Table 3.2: This table describes the orders of magnitude of the coefficients of all the terms in
System (3.3). The first column gives the equation that the term occurs in, the second describes
the entire term, including variables and coefficients, and the final column gives the order of
magnitude of the coefficients of the term.
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3.3.2 Solving System (3.3)

Now that B4 and E4 are assumed constant, this makes both viral equations first-order and
linear, and an explicit solution can now be found for VB and VE, as well as T4:

VB(t) = c1e
−dvt +

CB
dv

VE(t) = c2e
−dvt +

CE
dv

T4(t) = c3e
(θ4H−δ)t +

10φ4H

−θ4H + δ

(3.4)

where:

c1 = 1.3455− CB
dv

c2 = 4.0001− CE
dv

H =
10−2(B0B4 + E0E4)

K + 10−2(B0B4 + E0E4)

c3 = 2.5828 +
10φ4H

θ4H − δ
CB = 10−5d4B0B4

CE = 10−4γE0E4

(3.5)

Since VB and VE both have an explicit solution, they can now be substituted into the equations
for B1 and E1. Therefore, B1 and E1 can now be solved using the integrating factor method.
Substituting in the solutions above gives:

Ė1 = 10de + E1(α1 + β1e
−dvt)

Ḃ1 = 10d1 +B1(α2 + β2e
−dvt)

(3.6)

where:

α1 = −10de − 103nµBe
CB
dv
− 102nµEe

CE
dv

β1 = −103nµBec1 − 102nµEec2

α2 = −10d1 − 102nµEb
CE
dv
− 103nµBb

CB
dv

β2 = −102nµEbc2 − 103nµBbc1

(3.7)

23



In both cases, the integrating factor µ is given by µ1,2 = exp(−
∫ t

0 α1,2 + β1,2e
−d4sds). The re-

sulting solutions are:

E1(t) = exp(−Γ1(t))[E1(0)eΓ1(0) + de10
∫ t

0
eΓ1(s)ds]

B1(t) = exp(−Γ2(t))[B1(0)eΓ2(0) + d110
∫ t

0
eΓ2(s)ds]

(3.8)

where:

Γ1(t) = −α1t+
β1

dv
e−dvt

Γ2(t) = −α2t+
β2

dv
e−dvt

(3.9)

Ḃ2 = ρ(µEb102n(c1e
−dvt +

CB
dv

)B1 + µBb103n(c2e
−dvt +

CE
dv

)B1)

−(d2 + c)B2 − k2B2(10−1T1)T2

Ḃ3 = cB2 + rB3 − rsB3

Ṫ2 = φ210ω[(B010−1)B2] + θ2T2ω[(B010−1)B2]− δT2

(3.10)

The integrals in both solutions above cannot be solved explicitly, and so they were solved numer-
ically using the MATLAB function ‘quadgk’, which uses adaptive Gauss-Kronrod quadrature
to numerically solve integrals.

The next step in solving System (3.1) would be to solve B2 and T2 together. However, these
equations cannot be solved explicitly. Therefore, the last three equations, B2, B3, and T2, were
solved numerically. The graphs of the numeric solution are displayed in Figure 3.2. Each graph
produced shows the solution beginning at a later time point. This time point is approximately
where B4 and B4 reach their steady state, at approximately 7.5 × 104 minutes. As with the
graphs of the original model solutions, the final time point is around 350 days.

The graphs of the solutions (see Figure 3.2) of the final three equations represent good approx-
imations of System (3.1). Therefore, the system of ten equations was successfully reduced to
a system of three. This smaller system can be used to represent the larger in analysis that
one may want to conduct. However, one cannot do phase plane analysis on this system, as the
system includes equations with variable coefficients.
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(a) Latently Infected B Cells (b) T Cells for Latent Cells

(c) Latently Infected Memory B Cells

Figure 3.2: Graphs of the numerical solutions of the remaining species, B2, B3, and T2. These
graphs begin at a later time point than those in Figure 3.1, at approximately 7.5×104 minutes.
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Chapter 4

Conclusion

In Chapter 2 we investigated an antigenic variation model of Human Immunodeficiency Virus
and used MATLAB to produce results similar to those of Nowak’s findings. We saw what
conditions on the parameters cause the three different real-world cases. The first of these cases
is that of an acute infection. In this case, the patient has the initial infection with HIV which
causes fever symptoms, and the patient does not survive. The second case was that of chronic
infection, where the patient has the initial infection with HIV, goes into the fever stage, then
the virus is fought off by the immune system enough to allow the patient to be asymptomatic,
and the virus then persists at this very low level. In the third case, the patient goes through
these two stages of fever and an asymptomatic period, but the patient then begins to get sick
again from other infections. In this stage of typical infection, the immune system is rendered
nearly useless and the patient is very susceptible to infection, which eventually kills the patient.
The prevalent theory behind how this works is antigenic variation, where the virus undergoes
mutation to evade the adaptive immune system. Since a model using the theory of antigenic
variation fits the behavior of the infection, we can conclude that this theory is supported.

In Chapter 3, we discussed Epstein-Barr Virus and described a model that includes two classes
of cells that it infects: B cells and Epithelial cells. Because EBV infects various classes of
cells, biological models can become very complex and building on the models or making further
analysis would be very difficult.

We first scaled the model to make all the species the same or a similar order of magnitude.
This made the model easier to analyze. After the model was scaled, it was then assumed that
two equations in the model would equal zero, and therefore their solution would be constant.
Therefore, the solutions to five more equations could be found, which allowed them to be
examined in an analytical manner. For three of these equations, an exact working solution was
found in terms of parameter values and standard mathematical functions. For the other two,
part of the solution was a unsolvable integral with a double exponential. The integration was
then done numerically to obtain a solution. After the said equations solutions’ had been found,
this reduced the original model to a system of three differential equations, which were then
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solved numerically.

A potential weakness of the models of Epstein-Barr Virus in this paper is mass-action kinetics.
Since all of the systems of differential equations in this project use mass-action kinetics, they may
be inaccurate, since the accuracy of mass-action kinetics is still an open problem in mathematical
academia.

There are several open-ended questions about Epstein-Barr Virus, some of which include various
cancers of B cells and Epithelial cells that EBV infection seems to have a correlation with. There
is a model for Nasopharengyl Carcinoma (NPC) proposed by Giao Huynh (Huynh, 2010), which
involves latently infected epithelial cells. It would be interesting to see how these latent and
cancerous epithelial cells would play into the dynamics of the system that we discuss in Chapter
3. Using one of the simplified models that we propose, viewing the interactions between the
cancerous cells, free virus, B cells, and immune system would be much more possible and less
complex than if one were to use the original model, System (3.1).

Using the model with the cancerous latently infected epithelial cells, one could also investigate
how various treatments would affect the dynamics of the entire system, and compare this to a
typical EBV infection. For example, one treatment for NPC involves the induction of the lytic
cycle in the latently infected NPC cells (Jurgens et al., 2006). In the tumor, large amounts of
cells are latently infected with EBV. During a treatment as previously mentioned, these would
enter the lytic cycle and burst, releasing larger amounts of virus at a time than a normal amount
of infected epithelial cells would release. This could have a measureable effect on the infection
of B cells. Building a model around this situation may be useful to investigate the repercussions
of this type of treatment or possibly give some insight on how treatment should be approached.
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Appendix A

Parameter Table for Section 3.2

Parameter Approximate Value Biological Meaning
d1 1.6667× 10−4 Turnover Rate of Naive B-Cells
µEb 3.3× 10−10 B Cell infection rate per epithelial cell virus
µBb 3.3× 10−12 B Cell infection rate per B cell virus
ρ 2 Proliferation of B cells
d2 8.6806× 10−5 Death rate of latently infected B cells
c 10−3 Rate of latently infected B cells going into memory stage (B3)
k2 3.8× 10−8 Rate of latently infected B cells killed by activated T cell
r 8.3× 10−5 Rate of reactivation of lytic infection from latent infection
s 2 Regulation factor for memory B cells
d4 2.3148× 10−4 Death rate of lytically infected cell due to lysis
k4 7.6× 10−8 Rate of lytically infected B cells killed by activated T cells
de 1.6667× 10−4 Turn-over rate of epithelial cells
µBe 3× 10−11 Epethelial cell infection rate per epithelial cell virus
µEe 1.5× 10−11 Epethelial cell infection rate per epithelial cell virus
γ 1.6667× 10−4 Death rate of infected epithelial cells due to cell lysis
n 104 Viral burst size
dv 4.6296× 106−4 Death rate of virus
φ2 1.95× 10−5 Rate of CTL activation against lytic infection
φ4 4.48× 10−5 Rate of CTL activation against lytic infection
θ2 3.25× 10−5 Rate of effector CTL proliferation against latent infection
θ4 3.25× 10−5 Rate of effector CTL proliferation against lytic infection
K 105 Number of infected cells when T cell activation is at half maximum
δ 1.7857× 10−5 Death rate of T cells
B0 3.7× 105 Initial population of naive B cells
E0 2× 105 Initial population of naive epithelial cells
T1 3× 105 Naive population of T cells

Table A.1: Original Model Parameter Values
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Appendix B

MATLAB Code

B.1 Code for Chapter 2

%HIV Antigenic Variation Model

function [t,y]=graphmodel(Y)

%This function graphs an antigenic variation model for HIV by running the

%ode solver ode45 until a mutation is made, when the number of virus

%strains is increased, and therefore number of specific antibodies

%increased.

close all; clc;

global r

global p

global q

global c

global b

global u

global k

global n

global y0

global P

global dt

global tstart

global T

%Values for global variables, parameters as defined in Virus Dynamics, c12

if Y==1 %Parameters for Chronic Infection Case
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r=2.3;

p=2;

q=2.4;

c=1;

k=1;

u=1;

b=.01;

’Chronic Infection’

elseif Y==2 %Parameters for Typical Infection Case

r=2.5;

p=2;

q=2.4;

c=1;

k=1;

u=1;

b=.01;

’Typical Infection’

elseif Y==3 %Parameters for Acute Infection Case

r=2.5;

p=1.5;

q=1.3;

c=.85;

k=.85;

u=1;

b=.1;

’Acute Infection’

end

n=10;

P=0.1;

dt=0;

tstart=0;

T=30;

%matricies to accumulate the output: col vector of time steps, col vector

%of non specific antibodies at each time step, and matrices of virus and

%antibody of/for each strain at each time step

tend=zeros(1,1);

vend=zeros(1,n);

xend=zeros(1,n);

zend=zeros(1,1);
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%generates initial values

y0=zeros(2*n+1,1);

for j=1:n

y0(j,1)=rand;

vend(1,j)=y0(j,1); %puts initial values in output

end

options=odeset(’Events’,@events);

%runs ode45, one iteration runs ode45 until stopped by event function, the

%output is accumulated, n is increased for new mutation, and initial times

%and values reset

while tstart<T

[t,y]=ode23s(@model,[tstart T],y0,options);

tstart=t(length(t));

%accumulates output

tend=vertcat(tend,t);

vend=vertcat(vend,y(:,1:n));

xend=vertcat(xend,y(:,n+1:2*n));

zend=vertcat(zend,y(:,2*n+1));

%Increases number of mutations

n=n+1;

%resets intial values to be ready for next iteration

y0=zeros(2*n+1,1);

for l=1:n-1

y0(l,1)=y(length(t),l);

y0(n+l,1)=y(length(t),(n-1)+l);

end

y0(2*n+1,1)=y(length(t),length(y(length(t),:)));

y0(n,1)=rand;

%adds strain and antibody for the output

vend=horzcat(vend,zeros(length(vend),1));

vend(n,1)=y0(n,1);

xend=horzcat(xend,zeros(length(xend),1));

end

%Sums virus and antibodies at each time point
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v=zeros(length(tend),1);

x=zeros(length(tend),1);

for i=1:length(v)

if i<=length(tend)

v(i,1)=sum(vend(i,1:n));

x(i,1)=sum(xend(i,1:n));

end

end

%Graph the solutions

plot(tend,v,’b’,’LineWidth’,2)

xlabel(’Time’,’fontsize’,14);

ylabel(’Virus Load’,’fontsize’,14)

title(’Virus’,’fontsize’,16)

figure;

plot(tend,x,’b’,’LineWidth’,2)

xlabel(’Time’,’fontsize’,14);

ylabel(’Antibodies’,’fontsize’,14)

title(’Specific Antibodies’,’fontsize’,16)

figure;

plot(tend,zend,’b’,’LineWidth’,2)

xlabel(’Time’,’fontsize’,14);

ylabel(’Antibodies’,’fontsize’,14)

title(’Nonspecific Antibodies’,’fontsize’,16)

%Setting up the model

function dy = model(t,y)

global r

global p

global q

global c

global b

global u

global k

global n

%Defines the system of 2n+1 equations

dy=zeros(2*n+1,1);

for i=1:n

dy(i) = y(i)*(r-p*y(n+i)-q*y(2*n+1));%viruses
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dy(n+i) = c*y(i)-b*y(n+i)-u*sum(y(1:n,1))*y(n+i);%specific antibodies

end

%nonspecific antibodies

dy(2*n+1,1) =-b*y(2*n+1)-u*sum(y(1:n,1))*y(2*n+1)+ k*sum(y(1:n,1));

%Defining the Event Function

function [value,isterminal,direction] = events(t,y)

global P

global dt

global tstart

dt=t(length(t))-tstart;

%P*dt is probability of new mutation, with P being mutation rate and dt

%being time since last mutation

if rand<P*dt

value=0;

else

value=1;

end

isterminal = 1; % Stop the integration

direction = -1; % Negative direction only

B.2 Code for Chapter 3

B.2.1 Code to Graph the Solutions of System (3.1)

%This function solves the system of ODE’s using ode23s and then

%produces graphs of the solutions

function [t,y] = modelgraph

%Solve the System

y0 = [0; 0; 0; 0; 0; 0; 500; 11000; 0; 0]; %Initial Conditions

tstart = 0; %Time Start

T = 500000; %Time End

[t,y] = ode23s(@model, [tstart, T], y0);

%Graph the Solution

plot(t,y(:,1),’g’,’LineWidth’,2)
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hold on

plot(t,y(:,5),’b’,’LineWidth’,2)

hold on

xlabel(’Time’,’fontsize’,14)

ylabel(’Population’,’fontsize’,14)

title(’Naive Cells’,’fontsize’,16)

legend(’Naive B Cells’,’Naive Epithelial Cells’,’Location’,’SouthEast’)

figure;

plot(t,y(:,2),’g’,’LineWidth’,2)

hold on

plot(t,y(:,3),’b’,’LineWidth’,2)

hold on

plot(t,y(:,4),’c’,’LineWidth’,2)

xlabel(’Time’,’fontsize’,14)

ylabel(’Population’,’fontsize’,14)

title(’Infected B Cells’,’fontsize’,16)

legend(’Latently Infected B Cells’,’Memory B Cells’,’Lytically Infected B Cells’)

figure;

plot(t,y(:,6),’g’,’LineWidth’,2)

xlabel(’Time’,’fontsize’,16)

ylabel(’Population’,’fontsize’,14)

title(’Infected Epithelial Cells’,’fontsize’,16)

legend(’Infected Epithelial Cells’)

figure;

plot(t,y(:,7),’g’,’LineWidth’,2)

hold on

plot(t,y(:,8),’b’,’LineWidth’,2)

xlabel(’Time’,’fontsize’,14)

ylabel(’Population’,’fontsize’,14)

title(’Virus’,’fontsize’,16)

legend(’B Cell Virus’,’Epithelial Cell Virus’)

figure;

plot(t,y(:,9),’b’,’LineWidth’,2)

hold on

plot(t,y(:,10),’g’,’LineWidth’,2)

xlabel(’Time’,’fontsize’,14)

ylabel(’Population’,’fontsize’,14)

title(’T Cells’,’fontsize’,16)

legend(’T Cell for Latent Cells’,’T Cell for Lytic Cells’,’Location’,’NorthWest’)

%Function that sets up the system for ode23s

function dy = model(t,y)
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%Parameter Values

d1=1/6000;

muEB=3.3*10^-10;

muBB=muEB/100;

rho=2;

d2=1/11520;

c=.001;

k2=3.8*10^-8;

r=8.3*10^-5;

s=2;

d4=1/4320;

k4=7.6*10^-8;

dE=1/6000;

muBE=3*10^-11;

muEE=muBE/5;

gamma=1/6000;

n=1000;

dV=1/2160;

phi2=1.95*10^-5;

phi4=4.48*10^-5;

theta2=3.25*10^-5;

theta4=3.25*10^-5;

K=10^5;

delta=1/156000;

T1=300000;

B0=370000;

E0=200000;

dy = zeros(10,1);

%The System

%The System

dy(1) = d1*(B0-y(1))-muEB*y(8)*y(1)-muBB*y(7)*y(1);

%Naive B Cells

dy(2) = rho*(muEB*y(8)*y(1)+muBB*y(7)*y(1))-(d2+c)*y(2)-k2*y(2)*y(9);

%Latently Infected B Cells

dy(3) = c*y(2)+r*y(3)-s*r*y(3);

%Latently Infected Memory B Cells

dy(4) = r*y(3)-d4*y(4)-k4*y(4)*y(10);

%Lytically Infected B Cells

dy(5) = dE*(E0-y(5))-muEE*y(8)*y(5)-muBE*y(7)*y(5);

%Naive Epithelial Cells
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dy(6) = muEE*y(8)*y(5)+muBE*y(7)*y(5)-(dE+gamma)*y(6)-k4*y(6)*y(10);

%Infected Epithelial Cells

dy(7) = n*d4*y(4)-dV*y(7);

%Free Virus from B Cells

dy(8) = n*gamma*y(6)-dV*y(8);

%Free Virus from Epithelial Cells

dy(9) = phi2*T1*(y(2)/(K+y(2)))+theta2*y(9)*(y(2)/(K+y(2)))-delta*y(9);

%T Cells for Latent Cells

dy(10) = phi4*T1*((y(4)+y(6))/(K+(y(4)+y(6))))

+theta4*y(10)*((y(4)+y(6))/(K+(y(4)+y(6))))-delta*y(10);

%T Cells for Lytic Cells

B.2.2 Code to Solve for Steady States and Eigenvalues of the Jaco-
bian Matrix Evaluated at the Steady States

%This function finds the steady states and eigenvalues

%of the Jacobian evaluated at the steady states. It takes

%two functions as inputs, one used for ode23s (f1) and one used

%for fsolve (f2), and starting values (y0) for the fsolve function

function solvefun(f1,f2,y0)

%First, ode23s is used to get sarting values for fsolve

tstart = 0;

T = 500000;

[t,y] = ode23s(f1, [tstart, T], y0);

x0=transpose(y(length(y),:));

%fsolve is used to find states and the jacobian evaluated at

%the steady state, then eig was used to find the eigenvalues

%of the jacobian

[sstates,fval,exitflag,o,jac] = fsolve(f2,x0);

evals=eig(jac);

B.2.3 Code used for f1 Input in Section B.2.2

%This function is used for the MATLAB function ode23s

%in order to find initial values for fsolve, which is used to

%find steady states and the Jacobian of the system

function dy = modelode(t,y)
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%Parameter Values

d1=1/6000;

muEB=3.3*10^-10;

rho=2;

d2=1/11520;

c=.001;

k2=3.8*10^-8;

r=8.3*10^-5;

s=2;

d4=1/4320;

k4=7.6*10^-8;

dE=1/6000;

muBE=3*10^-11;

gamma=1/6000;

n=1000;

dV=1/2160;

phi2=1.95*10^-5;

phi4=4.48*10^-5;

theta2=3.25*10^-5;

theta4=3.25*10^-5;

K=10^5;

delta=1/156000;

T1=300000;

B0=370000;

E0=200000;

dy = zeros(10,1);

%The System

dy(1) = d1*(B0-y(1))-muEB*y(8)*y(1)-muBB*y(7)*y(1);

%Naive B Cells

dy(2) = rho*(muEB*y(8)*y(1)+muBB*y(7)*y(1))-(d2+c)*y(2)-k2*y(2)*y(9);

%Latently Infected B Cells

dy(3) = c*y(2)+r*y(3)-s*r*y(3);

%Latently Infected Memory B Cells

dy(4) = r*y(3)-d4*y(4)-k4*y(4)*y(10);

%Lytically Infected B Cells

dy(5) = dE*(E0-y(5))-muEE*y(8)*y(5)-muBE*y(7)*y(5);

%Naive Epithelial Cells

dy(6) = muEE*y(8)*y(5)+muBE*y(7)*y(5)-(dE+gamma)*y(6)-k4*y(6)*y(10);

%Infected Epithelial Cells

dy(7) = n*d4*y(4)-dV*y(7);

%Free Virus from B Cells
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dy(8) = n*gamma*y(6)-dV*y(8);

%Free Virus from Epithelial Cells

dy(9) = phi2*T1*(y(2)/(K+y(2)))+theta2*y(9)*(y(2)/(K+y(2)))-delta*y(9);

%T Cells for Latent Cells

dy(10) = phi4*T1*((y(4)+y(6))/(K+(y(4)+y(6))))

+theta4*y(10)*((y(4)+y(6))/(K+(y(4)+y(6))))-delta*y(10);

%T Cells for Lytic Cells

B.2.4 Code used for f2 Input in Section B.2.2

%This function is used for the MATLAB function fsolve

%in order to find steady states and the Jacobian of the system

function z = modelfsolve(y)

%Parameter Values

d1=1/6000;

muEB=3.3*10^-10;

muBB=muEB/100;

rho=2;

d2=1/11520;

c=.001;

k2=3.8*10^-8;

r=8.3*10^-5;

s=2;

d4=1/4320;

k4=7.6*10^-8;

dE=1/6000;

muBE=3*10^-11;

muEE=muBE/5;

gamma=1/6000;

n=1000;

dV=1/2160;

phi2=1.95*10^-5;

phi4=4.48*10^-5;

theta2=3.25*10^-5;

theta4=3.25*10^-5;

K=10^5;

delta=1/156000;

T1=300000;

B0=370000;

E0=200000;
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%The System

z = [d1*(B0-y(1))-muEB*y(8)*y(1)-muBB*y(7)*y(1);

%Naive B Cells

rho*(muEB*y(8)*y(1)+muBB*y(7)*y(1))-(d2+c)*y(2)-k2*y(2)*y(9);

%Latently Infected B Cells

c*y(2)+r*y(3)-s*r*y(3);

%Latently Infected Memory B Cells

r*y(3)-d4*y(4)-k4*y(4)*y(10);

%Lytically Infected B Cells

dE*(E0-y(5))-muBE*y(7)*y(5)-muEE*y(8)*y(5);

%Naive Epithelial Cells

muBE*y(7)*y(5)+muEE*y(8)*y(5)-(dE+gamma)*y(6)-k4*y(6)*y(10);

%Infected Epithelial Cells

n*d4*y(4)-dV*y(7);

%Free Virus from B Cells

n*gamma*y(6)-dV*y(8);

%Free Virus from Epithelial Cells

phi2*T1*(y(2)/(K+y(2)))+theta2*y(9)*(y(2)/(K+y(2)))-delta*y(9);

%T Cells for Latent Cells

phi4*T1*((y(4)+y(6))/(K+(y(4)+y(6))))

+theta4*y(10)*((y(4)+y(6))/(K+(y(4)+y(6))))-delta*y(10)];

%T Cells for Lytic Cells
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