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Sample Size Determination in Auditing Accounts Receivable
Using A Zero-Inflated Poisson Model

ABSTRACT

In the practice of auditing, a sample of accounts is chosen to verify if the accounts are materially
misstated, as opposed to auditing all accounts; it would be too expensive to audit all acounts. This
paper seeks to find a method for choosing a sample size of accounts that will give a more accurate
estimate than the current methods for sample size determination that are currently being used. A
review of methods to determine sample size will be investigated under both the frequentist and
Bayesian settings, and then our method using the Zero-Inflated Poisson (ZIP) model will be
introduced which explicitly considers zero versus non-zero errors. This model is favorable due to
the excess zeros that are present in auditing data which the standard Poisson model does not
account for, and this could easily be extended to data similar to accounting populations.



Introduction

When auditing a company’s accounts receivable, a sample of accounts is chosen to verify if
the accounts are materially misstated. An auditor is responsible for selecting a sample of
the reported book values, and making inferences about the accuracy of the company’s
records based on the sample. “Accounting populations are frequently very highly skewed
and the error rates which the auditor is seeking to detect are often extremely low” (Knight,
1979). This paper seeks to find a method for choosing a sample size of accounts that will
provide a more accurate estimate than the current methods for sample size determination
that are currently being used. In this paper, all accounts receivable book values constitute
the population. Book value is the value recorded for accounts or financial statements. A
sample is a selection of some, but not all, of the accounts. The information gathered from
the sampled accounts is used to make inferences about the population. The only way to get
the total value of the accounts is to audit all accounts, but this would be very costly. Not
having to verify the information on all accounts to make these inferences reduces the cost
in calculating the quantity of interest. Experience has shown that a properly selected
sample frequently provides results that are as good as the results from verifying all
accounts, (Higgins and Nandram, 2009). Dollar unit acceptance sampling to reduce needed
sample size in auditing data is thoroughly discussed in Rohrback (1986). Ponemon and
Wendell studied the benefits of using statistical sampling methods in auditing data, as
opposed to an auditor using his expertise to choose the sample (Ponemon and Wendell,
1995). Although cost is not specifically addressed in this paper, it provides motivation for

investigating what sample size is needed to get efficient results.

The Zero-Inflated Poisson model will be introduced in section 4, it is a model to
accommodate count data with excess zeros. If a company keeps accurate accounts
receivable, then there would be no errors, this means that there will be more zeros in the
data than would be accounted for under the standard Poisson model. Therefore, we hope
get a better estimate of the appropriate sample size. In “Monetary Unit Sampling:
Improving estimation of the total audit error” (Higgins and Nandram, 2009), the ZIP

method is dicussed and it is shown that for accounting data and other similar data



populations, that a bound under the ZIP model is reliable and more efficient than common

Monetary Unit Sampling practice.

Related Research

Kaplan (1973) conducted simulation studies based on hypothetical populations and error
patterns to observe the behavior of ratio and difference estimators when the population
contains a limited number of zeros. Kaplan found a strong correlation between the point
estimate and the estimated standard error, and showed that the nominal confidence level
implied by the normal distribution for large-sample confidence intervals was frequently far

different from the proportion of correct confidence intervals.

Baker and Copeland (1979) evaluated the use of stratified regression in comparison to
standard regression in account auditing data. A minimum of 20 errors for the difference of
book value and audit value as an estimator was found to give superior results for the
stratified regression. A minimum of 15 errors for a ratio estimator is needed for superior
results in stratified regression. The usefulness of this information is questionable due to

the low error rate of accounting populations.

Sahu and Smith (2006) explored a full Bayesian framework in the auditing context. They
found that non-informative prior distributions lead to very small sample sizes. Specifically,
if the mean of the prior distribution is far from the boundary value (or the per item
material error), then the sample size required is very small. In this case, the sample size
could be set by the auditor. When the prior mean is close to the material error a large

sample size is required.

Berg (2006) proposed a Bayesian technique for auditing property value appraisals. A Beta-
Binomial model was implemented, and their procedure required smaller sample sizes

relative to those based on classical sample size determination formulas.



Data

The data comes from Lohr (1999) where the recorded values by, bz, bs,......b, for a sample of
n=20 accounts for a company were listed, along with all the audited (actual) values ay, az,
az....an of the sample. The company had a total of N=87 accounts receivable. The total book
value for the N=87 accounts receivable of the company was $612,824. The total book value
of all accounts receivable for a company would be B= b + ba+....... + bn. The total audit
value for a company’s accounts receivable would be A=a; +az+ ........ +an. We'll define the
error to be the difference of the book value and the true audit value for each account i

(i=1, 2,3,... N)as y, =b, —a,,y, =0. This means that the total amount of error for the
N N
accountsis ¥ = Z y, = Z b, —a, . In the accounting context, we expect a large number of

accounts to have y, =0. Let 6 be the error rate per dollar. Therefore the error of each
account will be 8 = y,./b,. fori=1, ... ,n., and the error rate per dollar for the sample will be
willbe# =Y/B . Our initial estimate for # obtained from Lohr’s data is 6, =.007 with
standard deviation o, =.022 these estimates are the mean and variance calculated from the

sample in the Lohr text. A random sample of 20 accounts with replacement was taken from
the population of 87 accounts. The book value, the audit value, and the difference between
the book value and audit value for 16 of the accounts are listed in the table below. The
sample of size 20 in the Lohr text was with replacement, there were 4 accounts that were
repeated in the sample in the Lohr text, and these 4 accounts were removed for the

purpose of this paper.



Table 1:

Account Book Value Audit Value BV-AV
3 6842 6842 0
9 16350 16350 0
13 3935 3935 0
24 7090 7050 40
29 5533 5533 0
34 2163 2163 0
36 2399 2149 250

43 8941 8941 0
44 3716 3716 0
45 8663 8663 0
46 69540 69000 540
49 6881 6881 0
55 70100 70100 0
56 6467 6467 0
61 21000 21000 0
70 3847 3847 0
74 2422 2422 0
75 2291 2191 100
79 4667 4667 0
81 31257 31257 0
Initial Exploration

We first looked at the sample size required for » in a hypothesis test while controlling for a
significance level of .05 (a =.05) and power equal to .95 (8 =.95). We chose both Poisson
and Binomial models for our initial exploration. The poisson distribution is applied in
counting the number of rare events, which in the context of auditing data we are modeling

the occurrence of the book value not being equal to the audit value. A reasonable model for



initial exploration is y, ~ Poisson(b,0), i =1, ... ,N, which implies that the mean of the

difference of the book value and audit value is the book value multiplied by the error rate.
The Binomial model was also chosen for initial exploration because the binomial
distribution is easily approximated by the normal distribution, and here the thought would

be that the book value b, is the number of dollars in a particular account and each dollar

has probability 6 of being materially misstated. This model would be expressed

by v, ~ Binomial(b,,6) i=1, ... ,N. The binomial distribution does not allow for the large
number of y, =0 that we have in our sample, but as initial exploration, the results under

the binomial model can be compared with the results from the poisson model using similar
methods to make comparisons and help argue that our results are reasonable. (Sahu and
Smith, 2006) investigate the use of the normal distribution where the assumptions of
normality are not appropriate. A thorough discussion of confidence interval criteria is
given in (Jiroutek, Muller, Kupper and Stewart, 2003). Using decision theory to select and
appropriate sample size is covered in two papers by Menzefricke (1983 and 1984). In
sections 1 and 2 of this paper we use the poisson and binomial models respectively for a
frequentist approximation (section 1) and a Bayesian method of approximation (section 2).
Section 3 briefly discusses the interval for 8 from the posterior distribution of the poisson
model. A discussion of Bayesian model performance criteria is given in (Wang and Gelfand,
2002). In our paper, this initial exploration is moving towards the introduction of the Zero-

Inflated Poisson model that will be discussed in section 4.

1. Frequentist Approximation

First exploration involves looking at the sample size required for confidence intervals
under both the Poisson model and the Binomial model. Here, we chose to control for the
length of the interval, we allowed L (length) to be in the interval (.001,.02). This involved
using estimates from the data set. An initial estimate for the mean error per dollar 6,

called 6, was calculated from the sample to be 6, =.007, with a standard

deviationo, =.022. The formulas used to calculate the mean and the variance were
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b = L e i and o, = 1 e i _ , | ,Casella and Berger (2002). The results for
16 <= p, 16 -1 <"\ b,

the sample size n that result from this initial exploration under the respective models in

sections 1.1 and 1.2 below.
1.1 Frequentist Approximation for n under the Poisson Model:
Here, y, ~ Poisson(b0) i=1, .. , n.

Equation (1) computes a (1-a )% confidence interval foré. Here,

Y-bo

Jb6/n

Problo: SC% zl-a, (D)

where é‘o/ is used to represent the z-score for the «/2 percentile of the normal
2

distribution. However, we are not looking to compute a confidence interval for 8, but

rather we are looking to have an interval for the appropriate sample size n. The distance
of the two endpoints of this interval, 6 - CO/ *JbO/n to 0 + Co/ *,/b60/n is the length.
2 2

Since our interval is centered around 8, we can use 2 multiplied by the distance of 6 to

6 +&,, *,/bO/n to calculate the length.

%

This implies that the length of the interval resulting under this model can be described by

the function

SN
2 6227 + 2| —4p2y?
n
L= _ . 2
e (2)




The algebra to demonstrate the intermediate steps can be found in section 1.1 of the

appendix.

We also know that the expectation of Y and Y* based on the Poisson distribution will be
E({)=b6, and E(Y2 )= 58, (l;HO ) . Filling these values of the expectation in for ¥ and
n

Y? we are able to account for not having this information. After substituting these

expectations into our equation for Y , and solving for n, the result is

g? Qeo +./407 + 7 J
n=—%- . 3)
bL’

In Figure 1 below, the results for the sample size versus length are illustrated.

Figure 1:

Frequentist Approximation of SS Under The Poisson Model
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Figure 1 demonstrates that for an interval length less than 0.007 the sample size is increasing as
the length becomes smaller. A Length of the interval greater than 0.007 would require a sample

size of 1.

1.2 Frequentist Approximation for n under the Binomial Model:

Using the same method as above, the sample size is calculated under the Binomial model.
We seek to have an estimate for the sample size » that is similar to the estimate we
calculated under the Poisson model. Here,

Y, ~Bin0mial(b,,0) i=1,..,n

Under the Binomial model, equation (4) shows the interval for &,

Y-b6 \

< =1-
V@?RI:BSEJ C%é a (4)

ProblO:

This implies that the length of the interval under the Binomial model is expressed as in

equation (5) is

L= : (5)

Intermediate steps are found in section 1.2 of the Appendix. We also know that E()7)= 1;60

and E(I72 )= Var ()7)+ E(Y)Z =50,(1-06, )/n + (I;HO 7, then we substitute these expectations

into our equation for Y and Y. As before, intermediate algebraic steps can be found in

10



section 1.2 of the Appendix. After solving for »n, we get the following equation for », where

a is represented by

. L2+4n00(l+00(135—1», (6)
bn+¢_
and,
a-1 )
=|—— . 7
! (2beo-ab)§% (7)

Our work was verified by using a similar, simpler method for the binomial model above,
because the algebra to arrive at this result was extensive. Section 1.3 is the general outline
of another approach under the binomial model and this method also resulted in a similar

estimated sample size.

1.3 Frequentist Approximation to the simpler Binomial model:

If x, ~ Binomial(p,,0), i =1, ... ,n, this implies that the sum of the x, will be distributed as

X~ Binomial(nlz , 9).
N N .
We have, x, ~ Binomial(bi,ﬁ)z X = Z xX; ~ Binomial(Z bl.,H) = X ~ Binomial\nb ,0).

A confidence interval is first set up for 8. However, to simplify calculations we choose to let

nb =n". The representation of this is given as,

X -nbo

Jnb6(1-6)

Pr ob{ﬁ :

sg%}zl—a, (8)

wherenb = n", then

11



X-n6
Jn'6(1-0)

Calculations similar to those of the intervals for nresult in the formula for length given in

Prob{@: SC%}zl—a. (9)

equation (10),

X -x) 1.,
2 A8 AN
C%\/( n* )J+4C%
L= .

* 2
n f—
C%

(10)

Since we know that X ~ Binomial (nl; ,0 )=> E(X)=n"60 we can continue similarly to the
previous poisson and binomial intervals, by substituting in the expectation for X. The
results are similar to the previous estimation of sample size in the models above. Also

included is Figure 3 that displays the ratio of estimated sample size versus the length of the

interval.
Figure 2:
Frequentist Approximation of SS Under The Binomial Model
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Figure 2 has values of sample size that are slightly greater than the values of sample size in Figure
1 for a given length. However these values are similar, and this is more easily expressed in the
ratio plot Figure 3. It would be expected that the values of sample size for corresponding length

would be somewhat similar under the poisson and binomial models.

Figure 3:
Ratio of Sample Size vs. Length
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[t can be noticed by comparison of Figure 1 and Figure 2, that the estimated length of the
Poisson interval is smaller than the Binomial interval for any sample size, until a length of
.013. The ratio of sample size, displayed at Figure 3 of the two models is about 1 after a

length of .013, which means that at a length of .013 the required sample size is the same.

2. Bayesian Methods for Sample Size Determination

Next, we will take a look at Bayesian methods of approximation. Let Y = (X3, Xa,.....Xn) be

arandom sample of size n, we will look at the highest posterior density region under two

)

models. In part 2.1 assuming a population with density Y®lg ~ Poz‘sson(bﬂ), i=1,..,n

)

and prior distribution 6 ~ Gamma(y,5) of unknown 6, we will calculate the Posterior

13



distribution for 8 and then continue to find an estimate for the sample size » using a
normal approximation to the posterior distribution. McCray (1984) proposed a Bayesian
model for evaluating dollar unit samples, even if an informative prior probability
distribution on the expected total error is not available. In section 2.2 the model assumed a

6 ~ Binomial(b,,0) i =1, ... ,n with prior6 ~ Beta(p,w). Under the

population density y®

binomial model we will proceed by again finding the posterior distribution for € and then

using a normal approximation to find an interval for ».
2.1 Calculating the Posterior Distribution for 6 under the Poisson Model:

In Bayesian statistics, the posterior distribution is equal to the prior distribution times the
likelihood. We have already stated that the likelihood under the Poisson model is

Yo ~ Poisson(p.0), i=1, ... ,n and we are using prior 6 ~ Gamma(n,8). This implies that

the posterior distribution for # will therefore be 8|Y ) - Gamma@ +ny,0 +nb ) Given that

we have an estimate for 8, 6, =.007 from our data, with standard deviation estimate

o, =.022, we can use this information to solve for our initial estimates of  and ¢ .

Since the prior follows a gamma distribution, we can set up equations for the mean and

variance as E(6, )= g =.007, and Var (0, )= ;7—2 =.022°. After solving for n and §,  =.0996,

and d =14.28. Intermediate steps are found in section 2.1 of the Appendix. After filling
these values for 7 and 9 , the posterior distribution will be distributed as

G‘Y(”) ~ Gamma(0996 +ny,14.28 + nE}. However, we will still need information for y, and y

is unknown.

2.2 Solving for n, using the Normal Approximation for the Posterior of 6 under the

Poisson Model:

14



Under the poisson model, the posterior distribution for 6 given y is approximately normal

0996+ )y 0996+ .
E’i‘y’ and variance E_’=1y’ .
14.28 + nb (428 +nbo)

easily derived by using the formula for the mean and variance of a Gamma distribution.

Thus,

with mean The mean and variance were

0996+ v, 0996+ y,
1428 +nb (428 +nb6) |

0|y ~aN i=1,..,n

We want to choose a sample size for » in E; ¥, so that we have at least

100(1-a )% confidence for the true difference between the book value and the audited
value, given a specified length and total book value. The interval for 6 is from

.0996 + Eiiyi L .0996 + Ef=_1yf
1428 +nb 2 14.28 + nb

L
+—, because L is the total length of the interval, and

the normal distribution is symmetric. The following equation is for finding the smallest
area under our model that is at least 100(1 -« ) % confident for 6. The integration

involves averaging over y"’ so that we are no longer dealing with the posterior

distribution 6

v, but rather a function of 8. The formula representation for averaging over

y" is given in equation (12),

0996+3 1L, ; L
1428+nb 2

fﬂ(8|y("))d(9p(y("))dy(”) =l-a .

v 0996+30,y; L
1428+nb 2

In section 3, the appropriate sample size 7 is calculated for the posterior distribution of 6
given the information for y. However, in this part of the paper we are averaging over y, so

that this interval is calculated for » using similar information to the interval given in

section 1. The posterior distribution of9| y is approximately normal, so we can make use of

the properties of the normal distribution to simplify the calculations. Thus,

15

(11)

(12)



0996+ 31y, L _0996+31,, 0996+ 37y, L .0996+30y,
[lo 1428+nb 2 1428+nb | | 1428+nb 2 428snb || (0 )0 oy_ge  (13)

) 0996+ 37, , 0996+ 37y,
| (428+n5 ) \ (428405 )

Here the mean cancels in the numerator, which leads to the much more simplified looking

equation (14),

NE: LI_1828+m N ™)y =1-a . (14)
g 21,.0996 + 37y,

Monte Carlo integration was used to get the estimate for ¥/, y,, using the fact that

ny ~ Poisson(nl?@], i=1, ... ,n, sample sizes between 100 and 500 were used, and with each
sample size n, 10,000 simulations were drawn. The optimal value for » was found to be
n=16. Similar results were found under the posterior distribution of & under the Binomial

model, and are calculated and compared in section 2.4.

2.3 Calculating the Posterior Distribution for 6 under the Binomial Model:

For the Y9 ~ Binomial(bi,H), i=1, ... ,n, model with prioré ~ Bela(gi),a)), the posterior

distribution is again the prior times the likelihood and results in a
B‘Y "~ Beta(q) +ny,0+nb + n}) distribution. Again, the posterior distribution depends on

parameters that we can estimate. To solve for the parameters of the beta prior we will use

the known equations for the mean and variance, along with our initial estimates for 8 and

o . The mean of the beta prior is E(GO )= ¢L =.007 and the variance of the beta
+w

ow
@+wf@+w+0

distribution is given by Var (6, )= =.022%. Solving this system of equations

16



the resulting parameter estimates are ¢ =.09271 andw =13.1514 . Detailed calculation of
mean and variance are given in section 2.3 of the Appendix. After filling in these estimates,

the resulting posterior distribution is Q‘Y(”) ~ Beta(0.09271 +ny,13.1514 + nb + n}). Due to

the unknown information for y, looking at the normal approximation to the beta posterior

is again of interest.

2.4 Solving for n, using the Normal Approximation for the Posterior of 6 under the

Binomial Model:

Under the binomial model, the posterior distribution for 6 given y is approximately normal

0.09271+ Y "y, d variance ().09271 D 1312,754.244 -y J The

with mean
612,754.244 (612,754.244 ) (612,755.244)

mean and variance were easily derived by using the formula for the mean and variance of a

beta distribution. Thus,

EOIEIL IDIED 2L =D I

9|y~aN ¢+w+”5’€b+w+n5}@)+w+n5+l) o

(15)

Again, proceeding as we did in section 2.1 above, we want to choose a sample size for » in
E; ¥, so that we have atleast 100(1-a )% confidence for the true difference between the

book value and the audited value, given a specified length and total book value. The

0.09271+ N . 0.09271+ N .
E"“y’ —£to E"“y’ +£. Thus,
612,754.244 2 612,754.244 2

interval for 0 is from

0.09271+ 3"y, 6.09271 D 1312,754.244 -y
612,754.244 (612,754.244) (612,755.244)

0|y ~aN
’ (16)

17



Again, we are proceeding with the same methods as used above for the gamma posterior

distribution, by using known properties of the normal distribution. Here,

612,754.244 2

[ O)y")dep )" =1-a (17)

YV 0.09271+3%, v, L

612,754.244 2
can be written as,

0.0271+ "y, L 0.09271+ " y, 0.0271+ 3"y, L 0.09271+ Y y,
i= + - i= i= _ = i=
612,754.244 2 612,754.244 o 012754244 2 612754244 (0 . (18)
- P " =z1-a

{ ? \/ ().09271 + E; v, 1312,754.244 - E; y,.) \/ ().09271 + ELI », £12,754.244 - E; y,.)

(612,754.244 % (612,755.244) (612,754.244 % (612,755.244)

Here the mean cancels in the numerator just as previously seen in the gamma posterior

distribution. This cancelation leads to the much more simplified looking equation (19),

612,754.244 Ni612,755.244 )
f 20 L ( -1LpG"dy™ =1-a. (19)

2009271+ Sy, K12,754.244- 3 3, )

Using Monte Carlo integration to get the estimate for E; ¥, , using the fact that

; V, ~ Binomial(E:'=l b,,0 ,i=1, .. i sample sizes between 200 and 600 were used, and

with each sample size 7, 10,000 simulations were drawn. The optimal value for » was
also found to be n =16, this was the same sample size that was found to be optimal under

the poisson model.

Figures 4 and 5 below are plots of sample size vs. varying 1 -« confidence levels. This was

L
u+—
2
found using the formula for the normal approximation f fﬂ(9|y(”) YdOp(y " )dy"” =1-«,
y ”_ﬁ
2

under the two different models respectively. Both Figures 4 and 5 are for fixed L, L=0.001
andb b =7043.

18



Figure 4:
SSD For Normal Approximation Under The Poisson Model Posterior
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Figures 4 and 5 demonstrate that the 95% confidence level is achieved for an integer
sample size of 16 under both the normal approximation to the poisson model and the

binomial model with the length held at a constant.001 and the average book value,

b =7043.

Figure 5:
SSD for Normal Approximation of SS Under The Binomial Model Posterior
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Figures 6 and 7 demonstrate a sequence of values for length varying from .001 to .022,

where the sample size is the smallest integer value that solves the integral at greater than

1- o . So although the 1-a values for each sample size versus length are not the same, the

integer value that solves for the equation is the same in both Figures 6 and 7. This also

means that the ratio of sample size between the two different models will be 1 for all values

of length.
Figure 6:

15
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Normal Approximation Under Poisson Model vs. Length
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Figures 6 and 7 have the same shape as Figures 1 and 2. This implies that the sample size

vs. length under the frequentist method used and the Bayesian method are producing

similar results. Figure 7 follows on the next page, however it is easily noticed that Figures

6 and 7 are quite similar, and this is due to integer values for sample size being used as

input.

20



Figure 7:

Normal Approximation Under Binomial Model vs. Length
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As the length gets smaller than L=0.002 in both Figures 6 and 7, the sample size rapidly

increases.

Section 3:

Bayesian Estimates for the Posterior Distribution of 9| y

Simply using the posterior distribution from the normal approximation to the poisson model in

section 2.1, we are able to set up the relationship below,

1428+nb _ £.,(2)

L0996+ 5, L

The estimates .0996 and 14.29 are estimates for 1 and J respectively from the prior distribution

6~ Gamma(n, 0 ) The estimates for 17 and 6 are calculated in section 2.1 of the Appendix. Simple

algebraic manipulation of the above formula leads to the following inequality for n

21



L Ea 2(2)J-0996 +_Ef=1 y ~1428L
Lb

o2 (2)@996 + v -14.28L

In Table A below, if in the above inequality for » = 7

we

allow the value for &, , to vary, while setting E; ¥, =4226 as an initial estimate, holding

a =.05 as fixed, and L=.001 as fixed the corresponding values for sample size are given.

Eo 2(2)J-0996 3y, —14.28L
Lb

In Table B below, similarly if we use the inequality » = and

hold £,/ , constant at 1.96 and allow length to vary, the corresponding values for sample
size are given. For avalue of £, , slightly greater than 1.96, the choice of constant value in

sections 1 and 2, we have a corresponding sample size of 36.55. This value is larger than
the nominal sample size under the frequentist method and previous Bayesian method

where the values of y were averaged over. Also, it is noticed that as the length varies

(Table B) the values closely mimic the values depicted by Figures 1 and 6, these figures
correspond to the frequentist poisson approximation and the Bayesian poisson

approximation respectively.
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Table A:

- Sample
Sizep
1.28 23.63
1.38 25.47
1.48 27.32
1.58 29.16
1.68 31.01
1.78 32.86
1.88 34.7
1.98 36.55
2.08 38.4
2.18 40.24
2.28 42.09
2.38 43.93
2.48 45,78
2.58 47.63
2.68 49.47
2.78 51.32
2.88 53.16
2.98 55.01
3.08 56.86

On the following page are the Figures 8 and 9 for varying length vs. sample size for the

Table B:
Sample
Length Size

0.001 36.18
0.002 18.09
0.003 12.06
0.004 9.04
0.005 7.23
0.006 6.03
0.007 5.17
0.008 4.52
0.009 4.02

0.01 3.62
0.011 3.29
0.012 3.01
0.013 2.78
0.014 2.58
0.015 2.41
0.016 2.26
0.017 2.12
0.018 2.01
0.019 1.9

posterior distribution of 8 under the two respective models.
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Figure 8:

Normal Approximation to Posterior Distribution of # in The Poisson Model
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Figures 8 and 9 also have the same shape as Figures 1 and 2. Figure 8 (the Bayesian
poisson method) has slightly larger values than Figure 1 (the frequentist poisson method),
however, Figure 8 uses information for y that we do not have available to use before the
sample is chosen. This is similarly the case if we compare Figure 9 (the Bayesian binomial
method) to Figure 2 (the frequentist binomial method).
Figure 9:

Normal Approximation to Posterior Distribution of # in The Binomial Model
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4. Zero-Inflated Poisson Model

Zero-Inflated Poisson (ZIP) is a model to accommodate data with excess zeros. It assumes

with probability p the only possible observation is 0 (or a true zero), and with probability
(1-p)a Poisson(b8) i=1, .. ,n random variable is observed. If a company keeps accurate

accounts receivable, there will be no errors, and this implies that there will be many zeros.
Although the Poisson distribution includes zero, there are more zeros in the data than
appropriate for using the standard Poisson model. The ZIP model will produce a more
precise estimate. A thorough explanation of the ZIP model], fitting ZIP regression models
and the simulated behavior of their properties in manufacturing defect data is given in

(Lambert, 1992).

0 PZ-0-p

In the ZIP model, the responses Z; are independent and Z, = i
1 P(Z, =1)=1-p

-b6
e )
o Below is a table

Our model for y,under the zero inflation is given by y, = p + (1 - p)b,@

1

for the joint distribution for Z;and y, . The joint distribution defines the probability of

events in terms of both Z; and y, .

yi=0 yi=1

Z, =0 p 0

= —bi (l_p)bige
Z; =1 (1—p)bi06 " y

-b0
!
1

The likelihood function under the Zero-Inflated Poisson model is therefore given by

equation (20),

LGO)=0-p) " T[6+ - pp n@’;_y el
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Under this model, p and # are nuisance parameters and need to be estimated. Estimates for p and

A

6
0] ~ N(( ,E )] where 2 is the covariance matrix
13 0.p 0.p

p

6,namely p and 6 can be estimated by

of p and 6, and is calculated based on the second partial derivatives with respectto p and 6 The

second partial derivatives are given as equations (21), (22) and (23). Detailed steps which led to

these results are given in section 4 of the Appendix. The second partial derivatives are given by,

0 __ n—no _ E Q—e_‘%i (21)
ap’ (1—p)2 J’1»=0(U+(1‘p¥_6b[) ,

0 1-pphle ™ .
= p( p)ble_ebv _Ey_;’ (22)

lp+Q-phe] A0

and
—6b,

0 be (23)

900p ;)Lm(l—p)b,- e ]

These are the elements of the Hessian matrix, and these will be used to solve for the
covariance matrix p and 0 by taking the opposite of the Hessian matrix and then solving

for the inverse. Once we have determined the covariance matrix, only the (1,1) element of
the matrix is of interest, because it is the variance of theta. Detailed steps can be found in

section 4 of the Appendix. The estimate of 6 is approximately normal, and is given by,

6, —an|o,Ls - s =pk ™) enf-e )= p) )
(92 - np(1- )bze'gb)é[ e e (- pl ) +nl-e ) (- P)Z)W]
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n

0 -6b;
where n—n0=n[l—26 ] (24)

We need to get estimates p and 6 for the nuisance parameters p and 6 before we can
continue. Numerical methods were used due to the complexity of the problem. The EM-
algorithm yielded estimates of p =.78882 and 6=.01113, and the Nelder-Mead method
yielded estimates of p =.79991 and 6=.01143. This was calculated by first finding
estimates for the Z, ’s. Finding estimates for the Z, ’s was necessary because Z, is an

indicator variable therefore the sequence would not converge well if it were not first

estimated by the equations,

izi 2(1_21‘)71‘
= and ="

p=" . :
2 (1 - Zi )bi
The Z,’s follow a Bernoulli distribution Z, ~ Ber P e i=1 . ,n,
p+(-pk”

p
p+(-pe

The expectation for the Z, ’s are given by the equations, E[Zl. = 1|yi = 0]= v

and Elz, =1y, >0]-0.

The expectation for Z, can then be plugged into the equations for p and 6, and then the

numerical methods were performed and resulted in the estimates previously stated. After

obtaining estimates for the nuisance parameters, the EM method is preferred to the Nelder-
Mead method so the EM estimates were used in calculating the variance. 6, is distributed

das
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6, ~aN| 6,1+ ili-e B+ (- pk ) +nf-c® ) (- p) .
B L S B e e s
+ p

“w_n”n

We call this variance “a” and use our estimates 6 = .011 13, p=.78882, b = 7043, y =46.5

to solve for a =.00000167, we use this factorin a” = % =1.687012 to investigate the

sample size given in the ZIP model in comparison to the sample size under the standard
poisson model. This way we will have results similar to those that were given under the
frequentist poisson model, but they will be scaled by a factor " to make for ease in
comparison of the two models. Supplementary calculations can be found in section 4 of the
Appendix. The calculations for the sample size » under the ZIP model follow similarly to

the frequentist method used in section 1, but beginning with

) .

Multiplying and dividing through by " = % so that we will have a sample size that is

6, ~ N(@,

I |

easily compared to the Poisson frequentist model results in

A 6a
o - )

An interval for 6, will be

After some algebraic manipulation, with appropriate intermediate steps found in section 4

of the Appendix, the length of the interval under the ZIP model is

28
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a,
2

L=[|20,,+—2—| -462, . (28)
bn

After rearranging the length equation to solve for n, we are left with equation (29),

a’t? (20}» + (40, + [ )

n: I . (29)

The supporting algebra is found in section 4 of the Appendix. It is noticed that the interval
for n under the Zero-Inflated Poisson model is very similar to the interval for » under the
frequentist Poisson model. The only difference between the two equations for ris a factor

a*. Figure 10 below displays the Zero-Inflated Poisson model comparing the sample size

vs. length.
Figure 10:
SSD Under The Zero-Inflated Poisson Model
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The graph for the ZIP model (Figure 10) has a slightly higher sample size for any given
length than under the poisson frequentist model (Figure 1). Under the ZIP model we
expect there to be increased precision, however, this increased precision requires a larger

sample size to attain.

Conclusion:

We proposed a method using the Zero-Inflated Poisson (ZIP) model which explicitly considers
zero versus non-zero errors. This model is favorable due to the excess zeros that are present in
auditing data that the standard poisson model does not account for. This method could easily be
extended for data similar to accounting populations. The estimated necessary sample size was
larger under the ZIP model than under the standard poisson model. However, due to the excess
zeros in the data set, it would be reasonable to assume that the larger sample size is necessary for
increased precision. Further research and investigation is needed to examine more precisely the
benefits under the ZIP model. Below is a table summarizing the results of the methods from the

four sections of this paper when the length is L=0.001, « is fixed at a = 0.05, 6, =.007, and

b =7043.

Poisson Binomial ZIP
Frequentist 15.29 22.72 41.02
Bayesian 6 16 16

Bayesian 0|y | 3445

The ratio of the poisson frequentist sample size to the binomial frequentist sample size is 0.67.

Figure 3 in section 1 of the paper depicted the frequentist binomial sample size being larger, until

the length of the interval reached 0.013. The posterior distribution of 9|y for the poisson model

had a nominal sample size of n = 36.18, this was the value closest to our ZIP sample size estimate
of n=41.02. However, as stated in section 3 of this paper, information for y was used that would
not be available before deciding the number of accounts to select for the sample. The estimates

for the sample size under the Bayesian method where Monte Carlo integration was implemented

resulted in a sample size of 16 under both the poisson and binomial models. This was because we
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chose the first integer sample size with a length equal to 0.001 to have greater than .95 confidence

as our optimal sample size.
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APPENDIX

Section 1:
1.1 Frequentist Approximation to the Poisson model:

y, ~ Poisson(p,0) i=1, ... ,n.

(1) ProblO: Y_‘bg sC(V -«
\b8/n 2
Prob{6:5262—0(25}7+§2 ﬁ) 7250}21—05
% 7

The length of the interval for theta will be:

2

CQ
206227 + % | —4p2Y?
n
2) L= _
(2) Ve
g2\
27 + L | _472
n
2
I* = =
2 4
477 447 2 p L _4y?
2= n n
_ =

L*h*n® —4YE* n-£%* =0
Y is estimated by E(Y)= bo,
L’b*n’ —4b_90é‘;n—§; =0

After substituting in for Y, we can solve for n:



4b 0.5 t\/16l7262 ‘oparrpiet
OC% OC%+ C%

n=

2b 212

g; Qeo + /4607 + [ J

bI?

(3) n=

1.2 Frequentist Approximation to the Binomial model:

y, ~ Binomial(p,,0) i=1, ... ,n.

Y-b6 \

JEHG—H)%‘S

(4)Prob o : % =l-a

Probl0:0%|b* +&? b ~0|2bY + &2 b +Y2<0lzl-a

The length of the interval for theta will be:

n % n
I’ =
SRV
b2+ 2
n

EC)=56, 5dhe expectation of EG?)=var (7 )+ EGY =50,(-0,)n+ G0, )

This implies after filling in for E(Y) and E(Y2 ) that:
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g )

b2 260, +— 2| -4|b>+¢C
n %
A
52| b+ %
n
CZ 2 _ —
| _ . _ 1-
b2 256, + né —4(b2+§;i)(w+(5907)
2=
L -
A
n

After multiplying through top and bottom by nZ2 the resulting equation is

2
_ 2 )
(ZMO”*@%) 4n660(1-30)+n(b307]
_ 5 2 T CZ
(Bn+c,) blb+ %
n

L =

_ 2
L (0] g (1)
B 2 I;n+é'j/

(5n+C;)

Simply rearranging the equation and taking the square root of both sides results in:

AL PR ETA Y,
En_I_Cj/ a 5n+§f/

“w_n”n

We will call the square root term “a

6) a=\/L2 +4n00(1+60(n1;—1»
bn+C;

And we continue solving the equation for n



2b6.n+C>
0" C%
bn+&?

n C%

2b0.n-abn=al? -&*
n—a aé‘% C%

a-1 )
(7)"=(2590-a1?)§%

And proceed using a simple iterative algorithm to get values for n for varying lengths.

1.3 Frequentist Approximation to the simpler Binomial model:

X -nb6
8) Proble:|- 2% ¢ l=1-
®) ro{ Jnb6(-6) C%} ¢
Let nb =n"

X-n6
9) Provle:|- 2" Ioe Llai-
?) { JroG-0) C%} “

Prob{@:@z(n*z—C;n*)—H(ZXn*—Cf/n*)+X2 50}21—05

The length of the interval for theta will be:

2
2. 2Xxn" nt) —4XxX a2 n
\/( n +C%n) (n C%n)
L=
(” g/”)

\/4)(211*2 +4Xn7E7 +CP 7 —AX T 44X
.- % "o %

* * 2
ni|in -
-5
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4Xn?E? +C4n? +4XPnE?
=\/ C% C% C%

n*(n* —é’;)

L

Take out 2n*Z from under the radical, the n* in the numerator then cancels with the n* in

the denominator.

X -x) 1.,
2§%J( n' ))+4§%
(10) L =

* 2
n -
é%

Now to use E£(X) as an estimate for X, we know that X ~ Binomial(n*,0)=> E(X)=n'6

* 2 ZCH/ I’l*g(n* —I’Z*H 1 2
And after substituting in we would have n -~ = - - +—C
% L n 4%

However, a better approximation would involve:

EQG - x )= E(X )~ E(*)=n"0-|0(-0)-n"0" | n?0(-0)-n6(-0)= " -n" Pb(1-0)

2; %2 _ * _
And after substitution we are left with n’ - @2/ = L% \/[ Q’ L b(l 0 )] + %CZ/
% n %

2t
e () (e

Let n' —1=n", and add and subtract 1 from the left-hand side of the equation:

26, [
(n*—l)—C; +1=T4\/(n -110(1-0))&@;

n"-g? +1=2§—%\/n**(0(1—8))+1§2
% L 47 %
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Then square both sides:
2

> 4
) o 2 _ 2 _ _ % sk _ l 2
(22 1 )e(e 1) - e e
222 (0(1-0)) » &f
$o2 sk 2 _ _ % 2 _ __QA=
"+ 2n (g% 1) e +(§% 1) =0
This implies:
4
2 2 %
=A=(E-1) -
227 (6(1-0))
= B= (Z;z -1]- e
% L

420 B+ A=0
" +2n"B+B>+A-B> =0
(,**2+B2)=32-A
n*+B=+JB -4
n" =—Bi\/m

222 (0(-0)

2
el -1 -——— P -— 2 —1) e
" (C/ ) I’ (C% ) I’ (C% I’

I+

+2c%(e(1_e))i ¢, 4:%(0(21—6)f B

e B g T

Section 2:
2.1 Bayesian Normal approximation, under the Poisson model to the Gamma Posterior
Distribution:

y, ~ Poisson(b,0) i=1, ... ,n, which can be written as Y(”)|0 ~ Poisson(p,0) i=1, ... ,n. In

Bayesian statistics, this is called the likelihood.
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We assume prior distribution 6 ~ Gammal(y,d)

The Posterior distribution H‘Y(") is proportional to the Prior*Likelihood

Pllr® ) P(o)P(r o)

P@ y® )EX 0’7-1@_6962;\(” e_(zi&'b")g

PllY® ) PUE R GO
H‘Y(”) ~ GammaQ} +ny,0 + ng)
Solving for n and 6 given that 6, =.007 and o, =.022:

E@®,)= % ~.007

Var 0, )= (;7—2 =022

=.0075 -.000495° = 0

5. 007 J(007) -0

2(.00049)
=0 =14.28

now substitute in to solve forn:

=1 =14.28*.007 =.09996

67 ") ~ Gamma(0096 + ny,14.28 + nb )

2.2 Solving for n, using the Normal Approximation for the Posterior of 6 under the

Poisson Model:

40



0996+ 3"y, 0996+ 3"y,

11) 6|y ~aN p b
(11) 6]y 1428+nb (1428 +nb0 )
L
/'“'E
[ [70y)dop )y =1~
vk

2

0996+3 1L, ; L
1428+nb 2

(12) [ [76]y)dep(r )" = 1-cx

¥y 0996+, v, L
1428+nb 2

0996+ 31y, L _0996+31.y, 0996+ 3Ly, L 0996+,

(13)fq) 1428+nb 2 14.28+4nb | _g| 1428+nb 2 1428+nb p(y(n))dymzl_

(4.28+nb ) (4.28+nb )

(14) [| 20 LI_1828+m |y d™ s 1-a
g 2{,/.0996 + 37y,

2.3 Bayesian Normal approximation, under the Binomial model to the Beta Posterior
Distribution:

0

0 ~ Binomial(biﬁ) i=1, ... ,n.

0 ~ Beta(p,w)

The Posterior distribution again is given by:
Plolr® )= P(e)P( o)

P@‘Y(ﬂ))oc 9o (1 _o)" 02% (1 _ 0)21”'1,‘,%

P@‘Y("))oc 0¢—1+E;\'yl (1 _ 6)@—“2;"17,.%

Solving for ¢ and w given that 8, =.007 and o, =.022

o
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E@,)=—2—— 007
p+w

= ¢ =.007¢ +.007w
=.993¢ = +.007w

= ¢ = +.007050

_ Ppw _ 2
Var (6, )= GrotoromD) 022

¢ . @
:>¢+a) o+w
p+w+1

=.022°

_ (007)993) _ 0222
p+w+1

0.006951
=
p+w+1

=.00048841

= 0.006951=.00048841¢ +.0004884 1w +.00048841

= ¢ =w-13.244169
Simply solving the system of equations resultsin ¢=.09271 and w =13.1514.

2.4 Solving for n, using the Normal Approximation for the Posterior of 6 under the

Binomial Model:

¢+E:'1=1yi 64_2;)}1‘1”4'”5_2;%

c N o = -
(1 )H|y aN ¢+ w+nb (¢+w+nb}(¢+w+nb+l)

Ol ~ aN 0.09271+ "y, ().09271+2;in3.1514+612741—E;y,)
P 0.09271 4131514 + 612741 (0.09271+ 13,1514 + 612741 (0.09271+ 131514+ 612741 +1)
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(16) 6l ~ aV 0.09271+ 2; y, 6.09271 + 2; ¥, 1312,754.244 - 2; yl.j

612,754.244 (612,754.244) (612,755.244)

ffn(e

L
“73

(n))dgpo/( ))dy(n) >l-a

0.09271+ 37y, L
612,754.244 2

A7) [ [rOly")dop( " dy" =1-a

YV 0.09271+3%, v, L

612,754.244 2

(18)

0.09271+ 2 v L 009271+2" ¥, 0.09271+ E;y, L 0.09271+2j=1y,,

612,754.244 2 612,754.244 612,754.244 2 612,754.244 (y("))’ (n)
p " =zl-a

f \/ () 09271+ 3" £12,754.244 ) \/ @.09271 + > k12,754.244 - y,.)

(612,754. 244)2(612,755.244) (612,754.244 ) (612,755.244)

(19)f Sol L (612,754.244)/(612,755.244) o™ = 1-a
21009271+ 3"y, k127542445 ,)
Section 4:

Zero-Inflated Poisson model:

First Solving for the second partial derivatives of the likelihood function:

The likelihood function is L(7(y))= ]1(0 +(1-pe™ H(l (Hb )y -6,

20) LG O)=C=p) ]+ pk n’(ﬁ’;_')ye
1081/ 0= G- Jogl- p)+ oo +1-p k™ o 3 1g[("f;_>y)
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= (n -n, )log(l - p)+ E log(p + (1 - pk_%i )"' E Vi log(ebi )_ Hbi - log yi!
;=0 ;=0

9 __n-n 2 l1-e™
op 1-p Ap+(-pk™
o,

21 n-n, -e

o’ (-p)y .E-o(p+(1—p)e‘g’"’)
9 —(-phe™ Qb
= i i b
a0 y,=0p+(l_p¥ o 2 ;) l
i - — (1 - p)bie_gbl Vi

+ Y ==V b
00" 2 (o 20 A

(1-phe”

d d
30790 2 (o

u=-(-phe™ —u = (l—p)bfe'%"

D

Let v=p+ (1 )e —om, _ _(1 B p)bie“”’" then by the quotient rule:
0 _uv-uw QY
96° v y,=092
0 _(=pprer-pk }l1-ppe] D
e b+-ppe] 20°
2 _-0b;
(22) p(l p)b

|_p+(1 p)b e‘%j

(o)
—pk ™)

-6,
=be

—6b.
PR

d d

90p 90 LE‘)(P

—6b; !
u=l-be ™ —u

v=p+ﬁ—

Let

= _(1 - p)bie_ﬁbi

then by the quotient rule:
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0 _ E b,- e'9bi |_p + (1 - p)bl e—@bi J+ (1 _ py)ie—ebi h B bie_gbi J

000p & |_p + (1 - p)bi e J
0 Ebe ([p (1- P)]"‘(l pl be%)
000p 4 lo+-ph e ]

d b, e ™

(23) 260p = y2=0|_p N (1 —P))i o j

The Hessian Matrix will therefore be:

p(l pbe g EL be b
yo[p+(1 p)e%j 0’ yo[p+(1 Pk |

b e n-n, eebj

D) ey I 9 e A sy

We first take the negative of the Hessian Matrix:

b e™
1 2 -6b;
20‘92 Ep( yOLU+(1 p)e N

. b,
n-n, —e™

_y,=0|_p+(1i—p)8'9b"_| (-py yzﬂ(p (-pk gb)

Next, to obtain the inverse of this matrix:

B () I W K
2X2_cd - —c

ad—bc=(;g—;—;p(l—phze_%']((T__;O)z E(p 6(1 p)j””}] [

be

o+ (- p)ﬁ"”]
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1

),2052:EOP(I‘PW"’)[J—_;% D (1(1 ,,)3»)] [E[w(f o ﬂ"]]

n-n, (— ) be™
E(u -7 2o

1 2 _-6b;
D) vy SRS

The (1,1) element of this matrix will be:

n-n, 6 e_gb)
(-0} " 21

_ 2 0 n-mn, ﬁ_e Bbf) ) b, ot 2
2082 ;017(1 P)b’ ]((1_19)2 E_O(p_'_(l_p)g—eb,.yj [;[p+(1—p)€_%']]

0 -6b;

(24) We can use n - n, =n[1_26

] , after substituting this into the equation:
n

n|1- E e »
[(1’;)2 ]*yzo(pfl@_p)j%y

E Ep(l_p)ﬁ'ze_ebi) n I_ZT +E (1—@'9}") [ b o™ )2
%00 & (-pY  AG+-p™) | \Blp+-pr]

Although E (X 2 );e E(X,), itis approximately, so we will use E(X, ) to substitute into our
equations.

. nﬁ_e-eﬂ)
(-pF  (+l-pr™)

nll-

L by " e A be’” |
(-p) (p+(1—p)e‘95) (LH(l—p)e“’j]

2

np(l )5 2 -6b )
Using common denominator (1- p ) (P +(1-pr™® )
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nE—e'gg_{n+(1—p)€_gg)+n6—e_gg)(1‘l9)2 .
e e R R S (R N vt

nF e_%_{” -p)k 9b)+nﬁ ) ~p) 7
(e—np( ph’e Hb)(nﬁ e_%]“(l—p)e‘%)+n€_e—%)(1_p)z)_ bo

“w_n”n

We call this “a” and use our estimates 6 = .01113, p=.78882, b = 7043, v = 46.5 to solve

for a =.00000167, we use this factor in a” = % =1.687012 to investigate the sample size

given in the ZIP model in comparison to the sample size under the standard Poisson model.

(25) 6, ~ N(e,ﬁ)
n

(26) éZIP ~ aN(Hag—a )
bn

(27) Prob H:M <¢, , l=zl-a
Oa’ %

bn

% bn

Prob{ezég,P ~260,,0 +6° -§2/ Oa }21-(1

The formula for the length will be:

2a\

2 3k
(28) L = [2éZ,P+;é—J - 46°

n

47



I*h*n* -46,.ba" Zn—a*2 Y =0
ZIP C% C%

The interval for n will be:

2 2

A ® 7 o %2 - %2
. 40,,.a bé‘; i\/160mb ‘a :/ +4L°b’a Cj/
' 20°h°

2éZ[Pa*BC5/ * Ea*é‘; \/462110 + L

1*b?

a'g? (2éZ,P +J46,, + 2 )

“%
31 . —
( ) n LZE

n

You'll notice that this is very similar to the interval for n in the frequentist Poisson case,
except is it scaled by a factor of “a”.
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