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Abstract 

 

 In this report, we investigated two questions in the field of spectral graph theory. The first 

question was whether it is possible to extend recent results to find a large class of graphs 

uniquely determined by the spectrum of its adjacency matrix. Our investigation led to the 

discovery of a pair of cospectral graphs which contradicted the existence of such a class of 

graphs. The second question was whether there exists a construction of cospectral graphs that 

consists of adding a single edge and vertex to a given pair of cospectral graphs. We discovered 

that such a construction exists, and generated several pairs of cospectral graphs using this 

method. Further investigation showed that this construction of cospectral graphs is strongly 

related to two previously studied constructions. 
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1. Introduction 

 

 The (0,1)-adjacency matrix is one of many possible representations of a graph. The 

adjacency matrix is a useful representation of a graph, as it condenses the entire structure of a 

graph, its vertices and edges, into a single mathematical object. By determining the eigenvalues 

of the adjacency matrix, we obtain the spectrum of a graph with respect to the adjacency matrix. 

In this paper, we will refer to this simply as the spectrum of a graph. The development of a graph 

spectrum has introduced another parameter of a graph to be studied, and has prompted further 

research in an attempt to discover what information is encapsulated within the eigenvalues of a 

graph‟s adjacency matrix. 

 The notion of graph spectra has been used to investigate open questions within other 

fields of research. The properties of a graph‟s spectrum have been applied to the field of 

chemistry, by using graph theoretical techniques to examine the structure of molecules [3]. It has 

also been applied to networking problems, with prior work measuring the relationship between 

the spectrum and the connectivity of the network [1]. Thus, there are real-world applications to 

the application of linear algebra ideas and techniques to graph theory. 

 To this end, the field of spectral graph theory has developed to investigate the properties 

of graph spectra. Two questions which have been a topic of research in this field will be looked 

at in this paper. Firstly, which graphs, or classes of graphs, are uniquely determined by their 

spectra? That is, which graphs have a spectrum that no other graph, up to isomorphism, could 

possibly have? Secondly, what methods exist to construct pairs of non-isomorphic graphs that 

are cospectral, or have the same spectrum? There has been much research into these questions, 

yielding results for many different classes of graphs. 
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Expanding upon recent research which showed that certain classes of unicyclic and 

bicyclic graphs are uniquely determined by their spectra, we investigated a more general class of 

graphs consisting of a core cycle and disjoint paths which are adjacent to that cycle. Our initial 

aim was to determine whether there was some generalized class of graphs, similar to those 

previously studied, whose spectra were unique. The process instead revealed a method for 

constructing pairs of cospectral graphs by adding a single edge and vertex. This construction 

allows for the creation of an infinite class of graphs that are not uniquely identified by their 

spectra. After further research, it was found that this construction is very closely related to two 

previously discovered constructions of cospectral graphs. 
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2. Background 

 

2.1 Spectral Graph Theory 

 

 There are several different representations to describe a given graph. Some of these use 

matrices to describe the characteristics of the different vertices and edges of a graph. Such 

matrices include the adjacency matrix, the Laplacian matrix, the signless Laplacian matrix, and 

the Seidel matrix. Each matrix has a different definition, leading to diverse matrices which each 

somehow represent the structural properties of a given graph. 

In this report, we will look at the (0,1)-adjacency matrix. In an adjacency matrix, an entry 

      is assigned the value 1 if there exists an edge between vertices   and  , and the value 0 

otherwise. Using such a representation for a graph, certain properties of the graph are easy to 

identify. These include simple properties such as the number of vertices and edges, as well as the 

degree of each vertex and whether the graph is bipartite. Other properties can also be determined 

using the adjacency matrix, such as the number of walks of any given length between two 

vertices. 

The field of spectral graph theory probes further into the usefulness of the adjacency 

matrix by applying linear algebra to find the eigenvalues and eigenvectors of a graph. Taken 

together, the set of eigenvalues, with repetition, of a matrix are referred to as the spectrum of a 

matrix. Thus, a graph can also be described by the spectra of the several matrices that may be 

used to represent it. For this paper, we will use the term spectrum to refer to the spectrum of a 

graph with respect to its adjacency matrix. The largest eigenvalue of a graph‟s spectrum is 

referred to as the spectral radius of the graph. 
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Since the adjacency matrix is a graph invariant, each graph is associated with a single 

spectrum and is thus also a graph invariant. If there is no other graph, up to isomorphism, that 

has the same spectrum, then the graph is uniquely identified by its spectrum. If two non-

isomorphic graphs share the same spectrum, then these graphs are referred to as cospectral 

graphs.  

 

2.2 Known Theorems 

 

 In this report, we will solely look at simple graphs. Let               be a simple 

graph with order |    |    and size |    |     Assign a labeling to the vertices of the graph, 

so that               , and let A be the (0,1)-adjacency matrix of graph G, based on the 

following construction. 

         ,
                 
                      

 

 Let       be the characteristic polynomial of the matrix A, and                

      its associated eigenvalues. Thus, the values               form the spectrum of the 

graph G. The spectral radius of G is defined to be      , the largest eigenvalue of the adjacency 

matrix. 

One useful facet of the adjacency matrix is that it can used to determine the number of 

walks between any two vertices of the graph by taking powers of the matrix. Thus,   
      gives 

the number of walks of length n between vertices i and j. By considering the diagonal entries of 

the powers of A, one can also find the number of closed walks of any given length on a given 

vertex. 
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The trace       of a matrix   is equal to the sum of the entries on the main diagonal of 

the matrix, and is also equal to the sum of the eigenvalues of the matrix. By the definition of the 

adjacency matrix,       ∑    , and so the values of the spectrum of a graph must add to 

zero. By taking the trace of powers of the adjacency matrix,   (  ), one can obtain the number 

of closed walks of a given graph.  

 From the spectrum, much information can be determined concerning the parameters and 

structure of a graph: 

 

Theorem 2.1 [11]:  

Using the (0,1)-adjacency matrix, the following information can be deduced from the 

spectrum of a graph: 

 The number of vertices |    |   . 

 The number of edges |    |   . 

 Whether G is regular. 

 The number of closed walks of length i, for any i. 

 Whether G is bipartite. 

 

Thus two graphs having the same spectrum must have some very similar structural 

properties. Investigating this topic further has required the development of theorems and 

formulas for calculating the characteristic polynomial and the spectrum of a graph. Some of 

these theorems which will prove useful in the remainder of our paper are included here. The 

following theorem gives an inequality that relates the values of the spectrum of a graph to the 

spectrum of a subgraph. 
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Theorem 2.2: (Interlacing Theorem) [6] 

 Let G be a graph with n vertices and spectrum                    , and let H 

be an induced subgraph of G with m vertices and spectrum                    . Then 

for                    . 

 

Corollary 2.3: 

 Let G be a graph with n vertices and spectrum                    , and let H 

be an induced subgraph of G with n-1 vertices, created by deleting a vertex from G, and with 

spectrum                    . Then: 

                                        . 

  

 The following two theorems provide methods for calculating the characteristic 

polynomial of a graph by performing some manipulations of the structure of the graph. 

 

Theorem 2.4 [2]: 

 Let G be a graph obtained by joining by an edge a vertex x of graph    and a vertex y of 

graph   . Then: 

         
       

                      

 

Theorem 2.5 [2]: 

 Let G be a graph and x a pendant vertex of G. Let y be the neighbor of x in G. Then: 
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2.3 Graphs Uniquely Identified by Their Spectrum 

 

An open question in the field of spectral graph theory is to determine which graphs are 

uniquely identified by their spectra, and which graphs are not; that is, whether two graphs which 

are cospectral (have identical spectra) are also isomorphic. It is known that not every graph is 

uniquely identified by its spectrum, and Figure 1 below shows the smallest pair of non-

isomorphic graphs which share the same spectrum. 

 

 

Figure 1 - Smallest Cospectral Graphs 

 

 

There are, however, many classes of graphs whose spectra do uniquely identify a graph. 

The survey “Which Graphs Are Determined by Their Spectrum?” by van Dam and Haemers [11] 

covers such results. For example, it is known that all paths, cycles, complete graphs, and 

complete bipartite graphs are each uniquely determined by their spectra.  

 Continuing this investigation, recent papers have expanded the analysis of spectra to 

further classes of graphs. Boulet and Jouve [4] proved that all lollipop graphs are identified by 

their spectra. The definition of a lollipop graph relies on a graph construction called coalescence. 

The coalescence of two graphs,    and   , is created by first selecting a distinct vertex    in    

and a distinct vertex    in G2 on which to perform the manipulation. Then, the coalescence 
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      consists of the vertices and edges of the individual graphs, except that the two vertices    

and    are combined into a single vertex   which is adjacent to every vertex in    adjacent to    

and every vertex in    adjacent to   .  

A lollipop graph is thus defined as a coalescence of a cycle and a path, with one of the 

path‟s end vertices as a distinguished vertex. Figure 2 shows an example of a lollipop graph 

consisting of a coalescence of a    and a   . Boulet and Jouve completed their proof by counting 

the closed walks of a lollipop graph, and showing that no other graph could share the same 

number of closed walks. 

 

 

Figure 2 – Example of a Lollipop Graph 

 

Wang, Belando, Huang, and Li Marzi [12] proved that dumbbell graphs, with some 

exceptions, are identified uniquely by their spectra. A dumbbell graph is defined as a coalescence 

of two cycles and a path, such that each cycle is adjacent to one of the end-vertices of the path. 

An example of a dumbbell graph consisting of a   , a   , and a    is shown in Figure 3. Their 

proof followed a similar method as Boulet and Jouve. 
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Figure 3 – Example of a Dumbbell Graph 

 

These discoveries indicate the possibility that there may be a more generalized class of 

graphs consisting of cycles and paths that may be uniquely identified by its spectrum with regard 

to their adjacency matrices. 
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3. Findings 

 

3.1 Expanding a Lollipop/Dumbbell Family of Graph 

 

To investigate the possibility of finding a more generalized class of graphs that have 

unique spectra, our first goal was to try to extend the uniqueness of the lollipop graph to possibly 

allow for a second path branching out of the core cycle. Thus, we chose the graph   shown 

below in Figure 4, which consists of a        graph (a cycle of length 5 connected to a path of 

length 3) with an additional edge connected to the cycle. 

 

 

Figure 4 - Extension of Lollipop Graph 

 

To demonstrate that this graph has a unique spectrum, we used several properties of 

graphs and graph spectra to determine what structural characteristics a graph cospectral with this 

graph must have. We enumerated all the graphs with these properties, and then used Maple to 

calculate the spectra of these possibilities in an effort to find a cospectral graph. 

 Since the spectrum of a graph demonstrates the number of vertices and edges of a graph, 

any graph cospectral with   must also have 9 vertices and 9 edges. Furthermore, the main 
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structure of the graph can be clarified by considering the number of closed walks of  . From 

Theorem 2.1, the number of closed walks of any length can be deduced from the spectrum of a 

graph. Thus, two cospectral graphs must share the same number of closed walks of any length. 

Since the number of closed walks of length 3 is directly proportional to the number of triangles 

in the graph, two cospectral graphs must share the same number of triangles. Similarly, if there 

are no triangles, then the number of closed walks of length 5 is directly proportional to the 

number of 5-cycles, and thus cospectral graphs share the same number of 5-cycles. Using these 

properties, it can be seen that any graph cospectral with G must be triangle-free, and must have 

exactly one 5-cycle. This information narrows the list of possible graphs cospectral to G greatly. 

 To further narrow down possibilities, we next considered the class of graphs that contain 

       as a subgraph, a class which closely resemble the graph  . Again, we used the fact that 

cospectral graphs must share the same number of closed walks of all lengths to examine these 

options. Since these graphs share almost all the same edges (namely those in the        

subgraph), they share the same number of closed walks that do not traverse the one unique edge 

in each graph. Thus, we only need to compare the number of closed walks that traverse the edge 

not part of the        subgraph, and the graphs are not cospectral if they contain a different 

number of closed walks for some length. Using this method, we were able to rule out all graphs 

containing        as a subgraph. Furthermore, this method leads us to believe that it is 

impossible for two graphs created by taking a graph and adding a single vertex and an edge 

connecting that vertex to the original graph to be cospectral unless they are isomorphic. 

 Thus, a graph cospectral with   must contain exactly one 5-cycle, no triangles, and must 

not contain        as a subgraph. There are a total of 25 such graphs, most of which consisting 

of a 5-cycle that acts as a central node, with the remaining edges forming a tree around this node. 
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Without any further means of removing non-cospectral graphs, we next developed a worksheet 

in Maple to calculate the exact spectrum of a graph, given its adjacency matrix. This worksheet 

consisted of the assignment of the matrix to the variable  , followed by the two evaluations. 

  

  

These functions give the eigenvalues of the adjacency matrix as given by the variable assignment 

which precedes it. This worksheet was used to determine the spectra of the 25 graphs which 

satisfy the conditions of cospectrality with  , as given above. 

By enumerating the spectra for all graphs which may potentially be cospectral to  , we 

have determined that there is no graph that is cospectral to   without being isomorphic to  , and 

thus that   is uniquely identified by its spectrum. However, through this process, we discovered 

a new pair of graphs which are cospectral, but not isomorphic. These graphs are shown below in 

Figure 5.  

 

 

Figure 5 - Cospectral Graphs with 9 Vertices 
 

The discovery that the graph shown on the right side of Figure 5 is not uniquely identified 

by its spectrum seems to indicate that there is not a generalized class of graphs, consisting of a 
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cycle and disjoint paths branching off that cycle, which is determined by its spectra. 

Furthermore, the methods which have been used to determine that the graph   has no non-

isomorphic graphs cospectral to it would not scale well to graphs of a larger order, or to graphs 

which contain an even cycle instead of an odd. Even cycles would be more difficult because, 

while we could conclusively say in this case that any graph cospectral with our original graph 

must have exactly one odd cycle of a given length, we would not also be able to say that there 

must be a cycle of the same even length if the original graph contained an even cycle. 

 

3.2 A Construction of Cospectral Graphs 

 

 Another aspect of spectral graph theory that has prompted a large research effort is the 

construction of non-isomorphic cospectral graphs. This research has developed several different 

methods that can be used to generate classes of graphs having the same spectra. This research 

has yielded positive results for many different constructions of graphs. Here, we investigated 

whether it is possible to construct a pair of cospectral graphs by adding a single vertex and edge 

to a smaller pair of cospectral graphs. This construction is formally defined below, and an 

example of is shown in Figure 6. 

 

 Definition of construction: Let     and    be graphs with the same spectrum, and let    

and    , respectively, be vertices of these graphs. Construct new graphs     by adding a vertex 

    and edge           to   , and     by adding a vertex     and edge         to   . 
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Figure 6 - Example of Constructed Graphs 

 

If we assume that    and    are cospectral, then we can determine under what conditions 

this construction will yield graphs     and     that are also cospectral. This can be done by 

considering the number of closed walks of each length in the respective graphs, as cospectral 

graphs must have the same number of closed walks. Since    and    are cospectral, it is 

established they have this property. Thus, since the graphs     and     have these graphs as 

subgraphs, any closed walk in    is also a closed walk in    , and a similar argument is made for 

   and    . These closed walks in fact consist of the set of all closed walks in     and     which 

do not travel through vertices     and    , respectively. Since it has been shown that there are the 

same number of such closed walks in    and   , to show     and     are cospectral it will be 
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sufficient to show that the number of closed walks that contain     in     and     in     are 

identical. 

Thus, adding a new vertex and edge to a pair of cospectral graphs will result in a new pair 

of cospectral graphs only if the number of new closed walks added of each length is identical. 

We thus considered what factors determine how many new closed walks of small lengths are 

added to identify under what circumstances the graphs maintain cospectrality. Closed walks of 

length 2 must necessarily travel along only one edge, from one vertex to another. Since     and 

    each have only one additional edge, the number of closed walks of length 2 in the graphs 

must be identical. Similarly, closed walks of length 3 must necessarily travel on a triangle, and a 

new triangle is not created in either     or    . Thus, the number of closed walks of length 3 in 

each graph remains unchanged. 

Thus, the first obstacle that may prevent cospectrality arises when closed walks of length 

4 are considered. There are 3 possible forms that such a walk could take: a walk could travel 

over the same edge twice, it could travel over two adjacent edges, or it could travel over a 4-

cycle. Since walks of the first type correspond between     and    , and a 4-cycle is not added 

with this construction, the only possible difference would be over walks of the second type. 

Since one of the two edges of this closed walk must be the new edge added in the construction, 

the number of closed walks of the second type is determined by the number of edges adjacent to 

the new edge; or, alternatively, it is determined by the degree of the vertex   . Thus, one of the 

conditions necessary for     and     to be cospectral is that the degrees of vertices    and    

must be identical. 

Looking at closed walks of larger length, it is possible to develop further conditions 

necessary for cospectrality. Walks of length 5 must contain either a triangle or a 5-cycle. Since 
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    and     both have degree 1 and thus cannot be a part of a triangle or a 5-cycle, the only 

possible form a new closed walk of length 5 can take is along a triangle on   , and also visits    . 

Thus, the number of new closed walks of length 5 is determined by the numbers of triangles that 

contain the vertices    and   , and so for the graphs to be cospectral these numbers must be 

equal. Arguments such as this become more complicated as the lengths of the closed walks 

become longer. For closed walks of length 6, for example: in order for     and     to be 

cospectral, the number of vertices distance 2 from    and    plus twice the number of 4-cycles 

containing    and    must be equal.  

Thus, by looking at the number of closed walks added to the graphs by forming this 

construction, we have found three minimum conditions that must be true for the construction to 

yield a new pair of cospectral graphs. This information is reflecting in the following theorem. 

 

Theorem 3.1: 

 Let    and    be graphs with the same spectrum, and let     and     be graphs 

constructed as defined above. Then the following conditions must hold for the graphs     and     

to possibly be cospectral: 

1)    and     must have the same degree. 

2) The number of triangles in    containing    and the number of triangles in    

containing      must be equal. 

3) The number of vertices distance 2 from    and   , plus twice the number of 4-cycles 

containing    and    must be equal. 
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We can find a further condition for this construction to yield cospectral graphs by 

considering the characteristic polynomial of the graphs. From Theorem 2.5, we have an equation 

for finding the characteristic polynomial of a graph with a pendant vertex. This equation can be 

used to find the characteristic polynomial of     and    . From this, we can see that these 

characteristic polynomials is depending on the characteristic polynomials of    and   , as well 

as the characteristic polynomials of the graph forming by deleting    from    and deleting    

from   . Using this, we can formulate the following corollary to the theorem. 

 

Corollary 3.2: 

Let    and    be graphs with the same spectrum, and let     and     be graphs 

constructed as defined above. Then     and     are cospectral if and only if       and       

are cospectral. 

 

Thus, there are several conditions that we can test for in our search for a pair of graphs 

for which this construction may be successful. We began by testing small graphs and measuring 

the following parameters for each unique vertex  : 

    – degree of vertex 

    – number of triangles containing vertex 

    – number of vertices distance 2 from vertex 

    – number of 4-cycles containing vertex  

This was done with the goal of finding two vertices in a pair of cospectral graphs such 

that the values   ,   , and           are all equal. Such a pair of vertices would be a 



22 
 

candidate for adding a pendant vertex. For the smallest cospectral graphs, this did not yield any 

viable candidates, as shown in Figure 7 and Figure 8 below. 

 

 

Figure 7 - Attempt 1 at Finding Pair of Vertices to Build on 

 

 

Figure 8 - Attempt 2 at Finding Pair of Vertices to Build on 

 

From here, we sought to examine a pair of graphs larger and more complex in structure. 

This led us to choose the pair of cospectral graphs we found in Section 3.1 to perform this 

analysis, as shown below in Figure 9. These graphs offer more promise than the two previous 
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pairs, as there are a few pairs of vertices that meet the conditions that must be met for the 

construction of cospectral graphs to be possible. These correspondences are illustrated by the 

lines connecting the two tables. 

 

 

Figure 9 - Attempt 3 at Finding Vertices to Build on 

 

To test whether any of these possibilities result in the construction in a pair of cospectral 

graphs, we calculated the spectrum of each of the graphs using Maple. This process verified that 

such a construction is in fact possible, and that there are three unique pairs of cospectral graphs 

that can be constructed by added a single vertex and edge to the graph above. One of these pairs 

is shown below in Figure 10 along with its spectrum, and all three pairs can be found in 

Appendix A. 
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Figure 10 - Cospectral Graphs with 10 Vertices 

 

Thus, it is clear that it is possible to construct a pair of graphs with the same spectrum 

from a smaller pair of cospectral graphs. One may ask whether this process can be repeated, so 

that an even larger pair of cospectral graphs may be constructed. This is in fact true in all cases, 

and can be easily shown using Theorem 2.5. Recall that if   is a graph with a pendant vertex  , 

then the characteristic polynomial of G is given by                          , where   

is the neighbor of  . Consider a scenario where two cospectral graphs have already been 

constructed, and we attempt to repeat the process by building off the newly added vertex.   We 

can then define   and    to be these newly constructed graphs. Thus, from Theorem 2.5, the 

characteristic polynomial of these graphs can be calculated from the characteristic polynomials 

of the smaller graphs on which they were built. Since these graphs were cospectral, their 

characteristic polynomials are the same, and it follows that the graphs   and    must also be 

cospectral. 

With the knowledge that the construction can be repeated to produce larger cospectral 

graphs, it is clear that graphs of infinite size can be built while preserving cospectrality. 

Referring back to the graphs in Figure 9 of order 9, it is possible to construct 12 unique pairs of 
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cospectral graphs of order 11 by twice adding a pendant vertex. These pairs of graphs are shown 

in Appendix A, along with their spectra and characteristic polynomials. 

 Returning to the question of whether there is a generalized class of unicyclic graphs 

uniquely determined by its spectrum. It has been shown that there is not such a class, and using 

the results of this section, it is possible to construct an infinite class of unicyclic graphs that have 

a non-unique spectrum. The graphs constructed in this report illustrate an infinite class of 

unicyclic graphs, with a cycle of length 5, which are cospectral to another infinite class of 

graphs. As described above, these graphs can be seen as being built off of Godsil‟s remarkable 

pair of graphs, shown in Figure 12, by attaching a path of length 3 to two of the vertices.  

 However, there is no reason to limit this only to paths of length 3, as any length path 

would also result in a pair of graphs which are cospectral, including one that is unicyclic. Just as 

in the original case, we could build off of these graphs infinitely while maintaining cospectrality.  

Thus, it is possible to construct an infinite class of unicyclic graphs, for any cycle length, which 

are cospectral to another infinite class of graphs. An illustration of these infinite classes of graphs 

is shown below in Figure 11, with dotted lines representing unspecified parts of the graph that 

could be constructed in any way without destroying the cospectrality of the graphs. 
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Figure 11 - Infinite Class of Graphs That is Unicyclic, Cospectral 

 

 With the open-ended nature of graphs that this construction allows, it is possible to 

construct many classes of graphs which will remain cospectral even as vertices and edges 

continue to be appended to them. 

 

3.3 Comparison to Known Constructions 

 

 With this development of an infinite construction of cospectral graphs, we turned to prior 

methods of constructing graphs with the same spectrum to see if there was any prior work that 

also led to this conclusion. This turned out to be true, as the construction we developed bears a 

strong relation to two known constructions of cospectral graphs which have been previously 

discovered in prior work on spectral graph theory. 

 One such established method, described in [6], uses the coalescence of graphs to 

formulate a pair of graphs that share the same spectrum. By the following theorem, it is possible 

to construct cospectral graphs by taking the coalescence of graphs. 
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Theorem 3.3 [6]: 

 Let    and    be graphs with the same spectrum, and let   be another graph. If       

and       also have the same spectrum, then      and      are cospectral. 

 

 This theorem allows for a construction of cospectral graphs which is a stronger version of 

the construction described in this report. It can easily be seen that Corollary 3.2 mirrors this 

theorem, and in fact Corollary 3.2 can be proved by taking   in this theorem to be a graph 

consisting of a single vertex. A construction based on this theorem is stronger than a construction 

based on Corollary 3.2, as it allows for graphs of any structure to be appended onto the 

cospectral graphs, whereas the construction defined in this report does not allow for any 

connected loops to be created with the addition of vertices. 

 This theorem has also been used to develop extensive families of cospectral trees, and in 

fact Schwenk [9] found that this construction shows the existence of arbitrarily large families of 

cospectral trees. Schwenk also showed that, as larger trees are considered, the probability that the 

tree will be uniquely identified by its spectrum approaches zero, leading him to make the claim 

that almost all trees are cospectral. 

 The construction described in this paper also has similarities to a method of construction 

of cospectral graphs developed by Godsil which relies on edge switching. In [10] there is a brief 

mention at the end of the paper of a pair of cospectral graphs with what is termed a „remarkable 

property‟, discovered by Godsil and described to Schwenk through personal communication.  

These graphs are shown below in Figure 12. 
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Figure 12 – Graphs from [10] with ‘Remarkable’ Property 

 

 The remarkable property of these graphs is that, by taking any graph   and connecting it 

to the bottom row of vertices in each graph, one can obtain a pair of cospectral graphs. This 

procedure is illustrated in Figure 13 below. 

 

 

Figure 13 – Constructing Cospectral Graphs from the Remarkable Graphs 

 

 In [7], released a few years later, Godsil again noted the pair of graphs shown above. In 

this case, he illustrated these graphs as an example of his construction of cospectral graphs using 

local switching. This construction relies on matrix-theoretical techniques to identify partitions of 

vertices that allow for edges to be switched while preserving the eigenvalues of the adjacency 

matrix. For example, the graphs shown in Figure 12 meet the conditions such that the edge 

switching performed to change the left graph to the right graph does not change the eigenvalues 
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of the adjacency matrix. Thus, for any graph that satisfies the structure shown in Figure 13, it is 

possible to partition the vertices so that the subgraph found in Figure 12 is in its own partition, 

and thus local switching allows for the construction of a cospectral graph. 

 The construction of cospectral graphs which has been described in this paper is thus 

closely related to Godsil‟s construction of cospectral graphs. The analysis of vertices from earlier 

in this section shows that the chosen vertices of the graphs shown in Figure 11 are candidates to 

be built upon using the construction of this paper. When a pendant vertex is added, the resulting 

graphs are cospectral, as expected. Similarly, the cospectral graphs that we have constructed all 

have one of these „remarkable‟ graphs as a subgraph, meaning that these graphs could also have 

been constructed by building off of the „remarkable‟ graphs. Thus, the construction of cospectral 

graphs described in this report produces the same construction as at least one example of the 

construction used in [7], but arrives at it through different methods. 

 Thus the construction found in this report is not a novel, undiscovered method for 

constructing cospectral graphs. It springs naturally from a theorem found in [6], and is used 

extensively in [9] to identify cospectral trees. In addition, the graphs which we have constructed 

in this report are also examples of the local switching method described in [7]. However, as far 

as we can tell, the method of identifying potential candidate vertices to build off by examining 

the parameters of the vertex (such as the degree and the number of triangles on which it is 

located) is a new way of identifying new constructed graphs. This gives another tool besides 

checking if the graphs created by deleting a vertex are cospectral, a method which becomes more 

difficult as graphs become larger. Thus, this method may allow for larger cospectral graphs to be 

identified more easily. 
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3.4 Further Areas to Explore 

 

Other Graphs To Build Upon 

 With this successful discovery of a method to construct pairs of cospectral graphs by 

building off of smaller graphs, the next step is to determine which graphs allow for this 

construction. The vertex conditions covered in this report provide a useful method of searching 

for viable possibilities. However, from there it is necessary to calculate the spectrum in order to 

determine whether the construction is in fact successful. Further research can be done to search 

for other graphs for which this construction works, or possibly for other methods for identifying 

which graphs allow for this construction. 

 One special interest that this research can focus on is the use of regular cospectral graphs 

to aid this construction. Preliminary investigation in this area shows the possibility of promising 

results. For example, the cospectral pairs of graphs shown below in Figure 14, each consisting of 

12 vertices, allow for vertices to be added adjacent to any other vertex, each resulting in 

cospectral graphs. 

 

 

Figure 14 – Smallest Pair of Regular Cospectral Graphs [6] 
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 Performing the same action on a pair of regular cospectral graphs of order 16 also proves 

to successfully produce a pair of cospectral graphs. One can wonder if this construction would be 

successful on any pair of regular cospectral graphs. Further exploration would perhaps find an 

answer to this question. 

 

Spectral Radius 

 With the full spectra enumerated for each of the cospectral graphs we constructed in this 

report, we can examine how the spectral radius (the largest eigenvalue of the adjacency matrix) 

changes with the addition of a new vertex and edge. From the Interlacing Theorem (Theorem 

2.2), it follows that the spectral radius of a graph must increase with the addition of a new vertex 

and edge. This increase, however, is different for each placement of the new edge. The 

constructed graphs listed in Appendix A are sorted in ascending order of their spectral radius. 

Thus, it can be seen how the placement of the new edge determines the change in spectral radius. 

The graphs which result in the largest spectral radius seem to be those where the new vertex is 

placed adjacent to a vertex in a more centralized location in the graph. Further research can be 

done to test whether this is true in all cases, and possibly to determine whether there is any way 

to predict the increase in the spectral radius of graph caused by adding a vertex and edge. 

 

Other Extensions to the Lollipop and Dumbbell Graphs 

 This report investigated whether there was some more general class of graph related to 

the lollipop and dumbbell graphs which is determined by its spectrum. While we found such a 

class does not exist, it is possible there may be other specific classes which are determined by its 
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spectrum. One example of a class that could be tested is the graph shown below in Figure 15, 

which extends the one-cycle structure of the lollipop and two-cycle structure of the dumbbell.  

 

 

Figure 15 - Tri-cyclic extension of lollipop and dumbbell graphs 
 

 This graph consists of three cycles, each coalesced with paths that meet at some center 

point. Further research could be done to test the spectrum of these classes of graphs, to possibly 

determine if these graphs, or perhaps a certain subset of these graphs, are determined by their 

spectra. 
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Appendix A - Spectra of Constructed Cospectral Graphs 

 

Constructed Cospectral Graphs with 10 Vertices: 
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Constructed Cospectral Graphs with 11 Vertices: 
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Appendix B - Pascal’s Triangle Mod 3 

 

In their paper “Binomial Graphs and Their Spectra”, Christopher and Kennedy [5] 

examined the properties of binomial graphs as they relate to spectral graph theory. A binomial 

graph is a type of graph constructed by translating the entries of Pascal‟s triangle, modulo 2, into 

a matrix, and then considering this as the adjacency matrix of some graph. They identified a self-

similarity in the matrix of binomial graphs, such that the matrices could be described in terms of 

a Kronecker product of smaller matrices. They used this fact to formulaically describe the 

spectra of binomial graphs. We examined a similar type of graph, whose adjacency matrix 

consists of the entries of Pascal‟s triangle taken modulo 3, to see if a similar argument could be 

made. However, since this type of graph could not be represented as a Kronecker product, no 

formula for the spectrum of such a graph could be found. 

 A binomial graph    is defined to have vertex set                       and 

edge set    {{     }   (   
 

)           }. With such a graph, the adjacency matrix       

bears a close similarity to Pascal‟s triangle, modulo 2. The binomial graph    and its adjacency 

matrix       are shown below in Figure 16. 

 

 

Figure 16 - Binomial Graph    and its adjacency matrix        
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 The adjacency matrix       thus contains the first   rows of Pascal‟s triangle, modulo 2, 

in the top left corner, with zeroes below and to the right. It can also be seen that the adjacency 

matrix shows a self-similarity which allows it to be expressed as a Kronecker product of smaller 

binomial graphs. The Kronecker product of two matrices is defined as follows: If         is an 

    matrix, and   is a     matrix, then the Kronecker product     is the       

matrix,     [    ]  By using this operator, we can define    as follows. 

      [
              

        
]  *

  
  

+                        

 Furthermore, if a graph can be represented as the Kronecker product of two smaller 

graphs, then it is possible to easily calculate the spectrum of the larger graph from the spectra of 

the smaller graphs. If   is a     matrix with eigenvalues            and B is a     

matrix with eigenvalues            , then     has    eigenvalues of the form      for each 

          and each          . Thus, since       can be expressed recursively as the 

Kronecker product of      , a 2x2 matrix, it is not difficult to calculate the spectrum of any 

binomial graph. 

 Here, we investigate whether this process can be extended by constructing a graph from 

Pascal‟s triangle, modulo 3. We define a graph    to have vertex set                    

   and to have an edge set such that if (   
 

)           , then there is one edge between    and 

  , and if (   
 

)           , then there are two edges between    and   . With this definition, 

the adjacency matrix       contains the first    rows of Pascal‟s triangle, modulo 3, in its top 

left corner, and zeroes below and to the right of it. The graph    and its adjacency matrix       

are shown below in Figure 17. 
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Figure 17 - Graph    and its adjacency matrix        

 

 Looking at the adjacency matrix      , we can see that it has close to the same self-

similarity as was seen with the binomial graph above. However, this self-similarity is not perfect, 

and this prevents the matrix from being represented as a Kronecker product. The matrix       is 

identical to the Kronecker product       in every cell except for cell (4,4). In the Kronecker 

product, this cell has the value 4, however in       this value is only one due to the matrix being 

taken modulo 3. This discrepancy means that the adjacency matrix cannot be represented as a 

Kronecker product, and thus that there is no easy method for calculating the spectrum of the 

graph   . 


