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ABSTRACT 

  Parkinson’s Disease (PD) is a neurodegenerative chronic disorder with 

multiple motor and non-motor symptoms. People afflicted with Parkinson's Disease experience 

severe problems with performing daily activities including their gait (the way a person walks), 

which frequently links to a less steady walk, that arises from changes in posture, slowness of 

movement (bradykinesia), and a shortened stride. This distinctive walk is called ‘Parkinsonian 

gait. When a PD patient develops a Parkinsonian gait, they start to experience festination: 

progressively shorter but accelerated steps forward, often in a shuffling manner. Other 

symptoms include slowness of gait, hesitation of starting gait aka Freeze of Gait (FoG), 

difficulty making turns, and postural instability leading to frequent falls. Some features of 

Parkinsonian gait are likely to become more pronounced over time, particularly festination, 

stooped posture, and FoG. PD patients feel unsteady and lose confidence because of the fear of 

falling. Consequently, their social activities and their quality of life get severely impacted.  

 As PD has no ultimate cure, physicians aim to delay PD complications, especially those that degrade 

the patient’s quality of life such as motor symptoms and dyskinesia. Patients' lack of adherence to 

prescribed medication is a major challenge for physicians, especially for patients suffering from chronic 

conditions. The Centers for Disease Control and Prevention (CDC) estimates that medication non-

adherence causes 30 to 50 percent of chronic disease treatment failures and 125,000 deaths per year in 

the USA [119]. In PD patients particularly, adherence varies between 10% and 67% [120]. 

Since changes in PD gait can be a good measure for inferring the progression and severity of 

the disease to inform early intervention, gait has been part of the motor section of the Movement 

Disorder Society-Sponsored Revision of the Unified Parkinson’s Disease Rating Scale (MDS-

UPDRS). MDS-UPDRS motor part is mostly assessed by a professional clinician. To reduce 

the cost of care,  remote assessment in patients’ homes has recently become an alternative tool 

for monitoring the progression of Parkinson’s disease (PD).  Smartphones, particularly, provide 

an affordable, accessible, and easy-to-use platform for PD gait sensing. Smartphones are 

ubiquitous, portable, and user-friendly. Equipped with triaxial Accelerometers and gyroscopes 

in addition to powerful CPUs, smartphones offer the potential for remote gait assessment in the 

patient’s home environment.  
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In this dissertation, to facilitate an accurate remote Parkinsonian gait assessment, we proposed 

and rigorously evaluated a novel Deep-Learning (DL) based gait analysis system  that  assesses 

the severity of PD gait based on 30-seconds walk given by the patient, facilitating  home-based 

clinical monitoring by remotely assessing the PD patient gait.  Specific preprocessing steps 

were utilized including the calculation of the moving average, subtracting signal mean, and 

detection of gait strides. These techniques resulted in smoothing the signal, filtering of noise, 

and cancellation of gravity/breeding effects. These steps facilitate DL automatic feature 

extraction and eliminated the need for any kind of signal conversion.  

 

The most significant contribution of our work is the proposal of a deep-learning-based system 

that comprehensively classifies 3 PD symptoms: the severity of FoG, walking imbalance, and 

shaking/tremors from data gathered in one study. Prior work has trained and tested separate 

models to analyze each of these PD gait anomalies separately, the model we introduced is a 

single model that achieved impressive results for all of the PD gait symptoms. This was 

challenging because the model’s parameters had to be jointly tuned in order to establish 

relationships with different sets of PD symptom labels, all while using the same dataset as an 

input. To achieve the ultimate results, we investigated four different approaches based on 

multiple Machine Learning (ML) algorithms. The first approach employs the extraction of 

hand-crafted features as input to Machine learning algorithms, we conducted supervised 

classification experiments using 10-fold cross-validation and measured the performance of 

different models. In the second approach, we encoded the walking signal to an image format 

using the Gramian Angular Field (GAF) encoder. We employed the concept of Transfer 

Learning on the top image-based models such as ResNet50, Inception, SqueezeNet, and 

EfficientNet. The third approach employed variations of the Long Short Term Memory models, 

we investigated the simple LSTM, CNN-LSTM,  and parallel LSTM models. These first three 

models had limitations, necessitating research and development of a fourth method. The first 

ML approach, could not achieve an acceptable performance when classifying various walks, 

mainly because the handcrafted features were not able to linearly or non-linearly discriminate 

between the different classes. The second and Third approaches suffered data overfitting, 

because of the models' over-complexity, which could not be justified by our dataset, due to a 

large number of trainable parameters. 
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 Consequently, a DL multi-layer Conventional Neural Network (CNN) model was introduced, 

this model operates on 1Dimensional convolution filters to classify 30 seconds of walking data 

into one of five severity levels. Our DL network was able to Classify the PD Walking-Balance, 

Shaking/Tremor, and Freeze of Gait (FoG) symptoms, with an accuracy of: 99.1%,98.4%, and 

98.2% respectively.  

 

Another important contribution of this work is the model's ability to discriminate between PD 

patients on- vs off-medication and baseline HC walk. Unlike methods such as Drug-Bottles and 

urine or blood test that monitor discrete medication-related events, our approach analyzes data 

corresponding to continuous windows of time, submitted by PD patients every time they walk 

before/after taking their medication. By training our model on walking segments recorded 

before and after medication, we were able to present a medication adherence system that 

operates with an accuracy of 98.2%, which facilitates remote medication adherence. Finally, 

our DL-based gait analysis system was successfully applied to more than 450 participants from 

the independent dataset (mPower dataset). This system is proven to be applicable in home 

environments and capable of providing an accurate PD gait assessment in a telemedicine 

fashion. 
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CHAPTER 1 

INTRODUCTION 
 

Background and Motivation 

1.1.1 Parkinson's Disease 

Parkinson’s disease is the most common neurodegenerative movement disorder with a 

worldwide prevalence estimated at 16 million people [1]. This number is expected to double 

by 2050. Symptoms of PD become noticeable when the brain cells that produce dopamine 

begin to die off.  Dopamine, which works as a neurotransmitter, plays an important role in the 

control and coordination of the human brain. With less dopamine, the human brain loses its 

ability to control movements, leading to tremor, stiffness, and muscle pain [2] as shown in 

Figure (1.1). PD symptoms start as slight tremors, usually in one of the hands, then gradually 

increase to include a noticeable tremor, rigidity, akinesia, and postural instability.  

 

 

Figure 1.1: Symptoms of Parkinson’s disease 

 

Some features of Parkinsonian gait are likely to become more pronounced over time, 

particularly festination, stooped posture, and Freeze of Gait (FoG). PD patients feel unsteady 

and lose confidence because of the fear of falling. Consequently, their social activities and their 

quality of life get severely impacted. 
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Today there is no therapeutic treatment for PD. However, there are drugs that mitigate the 

symptoms. L-dopa drug for instance is commonly used by many PD patients to enhance the 

brain’s supply of dopamine and reduce the severity of PD symptoms when taken regularly. As 

PD progresses, gait symptoms can be grouped into episodic disturbances of gait initiation 

including FoG. And continuous disturbances of the step-to-step dynamics that cause shuffled 

and unbalanced gait. The severity of these symptoms helps physicians decide the overall stage 

of PD, and hence recommend the right medication dose. 

 

PD care and treatment are costly. In general, hospitalization is the largest component of PD 

health system costs (69% of total costs) [3]. Because the condition of PD patients mostly 

improves at the early stages of the disease, it is important to detect PD as early as possible and 

monitor its progression in the early stages. When PD progresses to a severe state, patients lose 

their ability to walk, talk and can experience depression, fatigue, and memory loss, resulting 

in a lack of adherence to prescribed medication. Approximately only 67% of PD patients were 

found to be adherent to their PD medications [4] with the level of non-adherence increasing as 

the daily dosage increases [5]. Non-adherence to medication raises the mean annual medical 

cost to $15,826 compared to $9,228 for adherent PD patients (71% increase). Non-adherence 

also leads to more hospitalization (2.3 vs. 1.8) and office visits (17.0 vs. 15.9) [6], which all 

increase the burden of PD complications on PD patients. 

 

1.1.2. Problems Addressed by this Dissertation 

This dissertation tackled 2 gait-related problems using smartphone sensor data.  

 Problem 1: Remote PD assessment (Walking Balance, Shaking/Tremor and FoG) from 

gait  

Remote assessment of gait in patients’ homes has become a valuable tool for monitoring 

the progression of Parkinson’s disease (PD) and to reduce the cost of care resulting from 

frequent hospital visits and inpatient days. However, these measurements are often not as 

accurate or reliable as clinical evaluations because it is challenging to objectively 

distinguish the unique gait characteristics of PD. We explore the inference of patients’ 

stage of PD from their gait using machine learning analyses of data gathered from their 

smartphone sensors. Specifically, we investigate supervised machine learning (ML) 
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models to classify the severity of the motor part of the UPDRS (MDS-UPDRS 2.10-2.13). 

Our goals are to facilitate remote monitoring, infer the patient PD stage based on their gait, 

and to find out which ML classifier types can discriminate the severity of PD gait 

anomalies. 

 

 Problem 2: Medication adherence inference from gait. 

Patients' lack of adherence to prescribed medication is a major challenge for physicians, 

especially for patients suffering from chronic conditions. The Centers for Disease Control 

and Prevention (CDC) estimates that medication non-adherence causes 30 to 50 percent of 

chronic disease treatment failures and 125,000 deaths per year in the USA [119]. In PD 

patients particularly, adherence varies between 10% and 67% [120].  

 The goal of this dissertation is to remotely determine whether PD patients have taken their 

medication, by analyzing gait data gathered from their smartphone sensors. Using this 

approach, physicians can track the level of medication adherence of their PD patients 

 

 

1.1.3 MDS-UPDRS RATING SCALE 

The most  widely used rating scale for PD is the Movement Disorder Society’s Unified 

Parkinson’s Disease Rating Scale (MDS-UPDRS) [7]. The MDS-UPDRS was developed to 

evaluate various aspects of Parkinson’s disease including non-motor and motor experiences of 

daily living. It includes a motor evaluation and characterizes the extent and burden of disease 

across various populations. The scale can be used in a clinical setting as well as in research. 

On this scale, PD anomalies are rated on a scale of zero (normal) to four (severe PD).  The 

MDS-UPDRS features sections that require independent completion by people with 

Parkinson's and their care-givers, and sections to be completed by the clinician. The main 

sections are: 

 Part 1: non-motor experiences of daily living. 

 Part 2: motor experiences of daily living. 

 Part 3: motor examination. 

 Part 4: motor complications. 
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In our work, we use the MDS-UPDRS as our primary PD measure to gauge PD gait severities. 

Table (1.1) shows the gait-related questions utilized in this dissertation.of the motor part of 

MDS-UPDRS. 

 

Table 1.1: The MDS-UPDRS gait questions utilized 

Question Variable name Variable details 

Over the past week, have you usually had 
shaking or tremor? 

MDS-UPDRS2.10 one of: {‘Normal’, ‘Slight’, ‘Mild’, 
‘Moderate’, ‘Severe’} mapping to 
{0, 1, 2, 3, 4} 

Over the past week, have you usually had 
problems with balance and walking? 

MDS-UPDRS2.12 one of: {‘Normal’, ‘Slight’, ‘Mild’, 
‘Moderate’, ‘Severe’} mapping to 
{0, 1, 2, 3, 4} 

Over the past week, on your usual day when 
walking, do you suddenly stop or freeze as if 
your feet are stuck to the floor? 

MDS-UPDRS2.13 one of: {‘Normal’, ‘Slight’, ‘Mild’, 
‘Moderate’, ‘Severe’} mapping to 
{0, 1, 2, 3, 4} 

 

1.1.4 Gait Cycle 

The natural human gait cycle starts with the contact of one foot and ends with new contact of 

the same foot with the ground as shown in Figure (1.2). Each cycle consists of stance and swing 

phases. The stance phase is when the foot is in contact with the ground. Swing, is as the name 

implies, refers to the period when the foot is airborne. It can be seen from Figure (1.2) that one 

gait stride contains two steps. Step length is the distance between the point of initial contact of 

one foot and the point of initial contact of the opposite foot. 

 

Various gait features can be extracted directly from the gait cycle, including step width, stance 

time, Step time, and Gait velocity. Gait features can capture the aspects of PD gait, and can 

highlight the severity of gait anomalies compared to a regular Healthy Control (HC). 
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Figure 1.2: Gait Cycle 

 

1.1.5 The Need for Remote Monitoring 

The majority of PD patients are cared for by an informal caregiver, usually a family member, 

the physical, financial, and mental work required by the caregiver is significant [121]. The 

medical community faces challenges as well, in terms of PD diagnostics and 

delivering/adjusting the therapy. With the increase in the number of people living with PD [1], 

existing methods of managing PD for both the caregiver and medical community will not scale 

up with the challenges, therefore remote monitoring and intervention are required now more 

than ever. 

 

Remote methods not only monitor patients’ gait and medication adherence continuously but 

also can be used to remind them to take their medications on time. There are multiple methods 

for effective PD remote monitoring. Sensor-rich wearables and widely owned smartphones, 

however, stand out and present an opportunity as viable platforms for remote monitoring and 

PD medication adherence.  
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1.1.6 Smartphone Sensing 

Smartphones are now owned by over 85% of the US population [8]. With this high adoption 

rate, smartphones can be used to sense the behavior and health of the smartphone user. 

Moreover, smartphones contain powerful processors for analyzing sensor data, making them a 

unique portable platform for mobile health applications. Researchers can conduct large-scale 

studies on millions of participants with the use of smartphone sensors to capture the fingerprint 

of the patient’s unique behaviors. Smartphone sensing for healthcare can facilitate remote 

assessment, follow-up and enable doctors to fine-tune medication to meet each patient’s needs. 

Several smartphone sensors have been demonstrated to be useful in assessing the symptoms of 

PD, including the use of microphone for voice analysis, accelerometer/gyroscope for gait 

assessment, and screen tapping for tremor/shaking evaluation [9-14]. Mobile health 

applications could play a key role in reducing healthcare costs and the burden of PD on 

patients, especially those living in remote areas.   

 

Home capture yielded an increased number of participants compared with similar studies that 

were performed in clinics. However, the home collection method has it is own challenges 

[66]. Sources of error include factors such as the variance of different devices/sensors used, 

the lack of expert proficiency in subjects’ self-assessment of gait severities, variability of the 

environment in which the assessment was performed, and level of subject adherence to the 

smartphone app instructions, which dramatically affects what subjects record as an 

observation. These factors ultimately lead to inconsistency in analyzing and classifying each 

activity and increase the margin of prediction error. PD data collected in the home 

environment is more realistic. But it is more confounded by noise and is more challenging to 

analyze than data collected in a lab/clinic or controlled environment. Any algorithm that 

analyzes a home-gathered dataset has to identify which records contain valid gait data. 

Another major challenge for home-based datasets is the chance of data mislabeling. Patient 

or their unofficial caregiver may erroneously label a walking record with a mild severity label 

instead of moderate or moderate instead of severe.  
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Goals  

In this dissertation, multiple ML models were investigated. The models explore the inference 

of PD gait by analyzing the patients' Smartphone walk data of 30 seconds into one of five 

severity levels (Normal, Slight, Mild, Moderate, Severe). Following the  traditional 

classification  approach, our model aims to extract discriminative features from the raw 

accelerometer and gyroscope data without  the need for  the domain expertise required to 

extract handcrafted gait features. We aim to use a patient-friendly approach, which allows 

patients, with the help of their caregiver, to self-record their walk in the convenience of their 

home. The patient then uploads the walk record for offline gait analysis. 

 

 

The goal of PD gait analysis is the ability to assess disease severity remotely and help the 

patient adhere to prescribed medication by differentiating the gaits signals recorded before and 

after taking medication. By experimenting with different ML algorithms, we aim to identify 

which machine learning classification model best distinguishes the severity of PD anomalies 

for motor aspects of the MDS-UPDRS. 

Given the gait signal from the inertia accelerometer and gyroscope sensors, and the signal 

magnitude, the patient walk signal can be expressed as:  

 

X = [αx (i), αy (i), αz (i), MagNGα(i), ωx (i), ωy (i), ωz (i), MagNGω(i)]T  

 

where i denotes discrete-time, α indicates acceleration, ω represents rotation and T denotes the 

Stride length. Our goal is to classify the accelerometer and gyroscope input X into one of five 

severity levels (Normal, Slight, Mild, Moderate, Severe), we will express those classes as Y = 

(𝑦1, 𝑦2, 𝑦3, 𝑦4, 𝑦5), The output of our model can be expressed as  𝑜(𝑖) = P( 𝑦𝑖 | X), or the 

probability of ( X ∈ 𝑦𝑖 ). If the gait severity of X is y, then y can be expressed as: 

y = arg 𝑚𝑎𝑥𝑦(𝑖) {𝑜(𝑖) | 1 ≤ 𝑖 ≤ 5 } (1) 

 

As can be seen from equation (1) the class with the maximum probability will be the output of 

the model. 

 

Desirable attributes of our proposed smartphone-based system include: 
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 Low cost: the wide adoption of smartphones minimizes the cost of our approach to 

patients and their caregivers and eliminates the need for acquiring dedicated 

hardware such as infrared cameras, motion sensors, or any purpose-built hardware. 

 Continuous Remote Monitoring: Unlike methods such as smart drug bottles and 

urine or blood test that monitor discrete medication-related events episodically from 

drug bottles or blood samples respectively, our approach analyzes data 

corresponding to continuous windows of time, submitted by PD patients every time 

they walk before/after taking their medication. 

 Minimal burden while recording patient data in the home setting: walking is a 

simple activity that presents a minimal burden to PD patients for data collection.  

 Anomalous gait detection: our system not only differentiates walks before/after 

medication but can also discriminate between regular walks for HC and the severity 

of PD walks. This can help with the early diagnosis of PD gait. 

 

Challenges 

1. Real-world gait data is noisy: PD data collected in the home environment is more realistic, 

as people act naturally without any proctor restrictions. However, such data is more  noisy 

and is more challenging to analyze than data collected in a lab/clinic or controlled 

environment. Noise examples includes Contradictory examples (examples of different 

class labels for same subject), attribute noise (Erroneous, missing or in-complete values) 

in addition to any variations of the sensors signals due to the difference in the smartphone 

models. Self-assessment has its many challenges and might not always generate reliable 

results. Any algorithm that analyzes a home-gathered dataset has to first identify which 

records contain valid gait data among several other non-valid records.  

2. Patients may misinterpret instructions: Another challenge is the chance of misinterpreting 

the task, while they are asked to walk 30 seconds in a straight line, PD patients  may choose 

not to follow the instructions,  which results in an invalid gait record. 

3. Provision of erroneous PD ground truth labels: Another major challenge for home-based 

datasets is the possibility of data mislabeling. Patient or their unofficial caregiver may 

Underestimate, overestimate, or forget to estimate and label the walking record. Therefore, 
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they can erroneously label a walking record with a mild severity label instead of moderate 

or moderate instead of severe.  

 

4. Imbalanced datasets: Having participants signing up online will often lead to imbalanced 

dataset classes, as the number of participants signing up with severe and moderate 

severities is often less than the particpants with mild and slight severities. Imbalanced 

dataset can lead to bias in the classification. Models that work on such datasets have to be 

prone to ML bias to perform well. 

 

Organization of Dissertation  

The material presented in Chapters 2 to 6 is roughly organized based on the overall approach 

we are presenting for the PD gait analysis, as briefed in the following sections. 

 

1.4.1 Chapter 2: Related Work 

In chapter 2 we discuss the Related Work. Prior work has explored various methods to analyze 

PD gait. In General, prior methods can be classified into two main categories, wearables, and 

non-wearables. Wearable sensors utilized in prior work include inertia sensors, portable-

wearable sensors, pressure sensors, and electromyography. Non-wearable sensors include floor 

sensors, image-processing including cameras, and stereoscopic vision. Since our approach 

utilizes smartphones, we also present the studies that used smartphone technology  analyze PD 

gait . 

 

 

1. 4.2  Chapter 3: Background on Data Gathering,StudyDataset and Data 

Preprocessing 

Chapter 3 discusses the MPower PD dataset that we used to evaluate our proposed ML/DL 

approaches, the criteria we  used to select participants and the walking records to be included 

in our  evaluation. We also discuss the signal processing techniques that we implemented to 

pre-process the walking signal and prepare it for both feature extraction and raw DL data 

analysis.  In addition to that, we present the methods we used to  segment the walking signal 
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using time-based and Stride-based segmentation. Lastly, we describe the algorithm utilized to 

convert the walking signal to an image for image-based DL investigation. 

 

 

1. 4.3 Chapter 4: Machine Learning Gait analysis 

In chapter 4 we explore the inference of patients’ stage of PD from their gait using traditional 

machine learning classification algorithms. Specifically, we investigate supervised machine 

learning (ML) models to classify the severity of the motor part of the UPDRS (MDS-UPDRS 

2.10-2.13). Our goals are to facilitate remote monitoring and to answer the following questions: 

1) What is the patient PD stage based on their gait? 2) Which features are best for 

understanding and classifying PD gait severities? 3) Which ML classifier types best 

discriminate PD patients from healthy controls (HC)? and 4) Which ML classifier types can 

discriminate the severity of PD gait anomalies? 

 

From the accelerometer and gyroscope sensor data,  statistical, time, wavelet, and frequency 

domain features were extracted, as well as  other lifestyle features  derived directly from 

participants’ survey data. We conducted supervised classification experiments using 10-fold 

cross-validation and measured the model precision, accuracy, and area under the curve 

(AUC). We found that the best classification model, best feature, highest classification 

accuracy, and AUC were 1) random forest and entropy rate, 93% and 0.97, respectively, for 

walking balance (MDS-UPDRS-2.12); 2) bagged trees and MinMaxDiff, 95% and 0.92, 

respectively, for shaking/tremor (MDS-UPDRS-2.10); 3) bagged trees and entropy rate, 98% 

and 0.98, respectively, for freeze of gait; and 4) random forest and MinMaxDiff, 95% and 

0.99, respectively, for distinguishing PD patients from HC. 

 

1. 4.5 Chapter 5: Deep Learning Gait analysis (DeePaGait) 

In chapter 5 we introduce DeePaGait, similar to DeePaMed, it is a data-driven neural network 

model, that focuses on the inference of PD gait by analyzing the patients' Smartphone walk 

data. DeePaGait consists of a multilayer 1D-CNN, that classifies 30 seconds of data into one 

of five severity levels (Normal, Slight, Mild, Moderate, Severe). With 1D CNN, DeePaGait 

follows a similar process to image classification models. DeePaGait extracts discriminative 
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features from the raw accelerometer and gyroscope data without a need for comprehensive 

data conversion or domain expertise for gait features extraction. DeePaGait uses a patient-

friendly approach, which allows patients, with the help of their caregiver, to self-record, and 

label their gait data in the convenience of their home. The patient then uploads the walk record 

for offline DeePaGait analysis.  Our DeePaGait DL network was able to Classify the PD 

Walking-Balance, Shaking/Tremor, and Freeze of Gait (FoG) symptoms, with an accuracy of: 

99.1%,98.4%, and 98.2% respectively. 

 

 

1. 4.4 Chapter 6: Deep learning-Based Medication adherence (DeepaMed) 

Chapter 6mainly describes DeePaMed, a data-driven neural networks methodology, that uses 

the Smartphone's built-in accelerometer and gyroscope sensors to evaluate PD patients’ 

medication adherence and response to medication based on their gait. DeePaMed consists of 

a multilayer Conventional Neural Network (CNN), that analyzes smartphone gait data. 

DeePaMed autonomously extracted discriminative features from raw triaxial accelerometer 

and gyroscope gait data. One-dimensional (1d) filters were used to extract gait features from 

individual signal components, and multi-dimensional filters captured overall signal variations. 

As DeePaMed runs on patients’ smartphone data, its simplicity and low cost facilitate 

monitoring of medication adherence of PD patients by having them walk at their homes before 

and after taking medication. While walking, the smartphone in the PD patients' pockets 

seamlessly records sensor data for offline DeePaMed analysis.  

 Our DeePaMed model was able to discriminate PD patients on- vs off-medication and baseline 

HC walk with an accuracy of 98.2%. The accuracy of our CNN model surpassed that of 

traditional Machine Learning methods by over 17%. We also found that our model performed 

best with inputs containing a minimum of 10 full gait strides. 

 

 

The ML approach discussed in Chapter (4) employs the extraction of hand-crafted features as 

input to Machine learning algorithms, we conducted supervised classification experiments 

using 10-fold cross-validation and measured the performance of different models. In the DL 

approach (Chapters 5-6), we encoded the walking signal to an image format using the Gramian 
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Angular Field (GAF) encoder. We employed the concept of Transfer Learning on the top 

image-based models such as ResNet50, Inception, SqueezeNet, and EfficientNet. The third 

approach (Chapters 5-6) employed variations of the Long Short Term Memory models, we 

investigated the simple LSTM, CNN-LSTM,  and parallel LSTM models. These first three 

models had limitations, necessitating research and development of a fourth method. The first 

ML approach, could not achieve an acceptable performance when classifying various walks, 

mainly because the handcrafted features were not able to linearly or non-linearly discriminate 

between the different classes. The second and Third approaches suffered data overfitting, 

because of the models' over-complexity, which could not be justified by our dataset, due to a 

large number of trainable parameters. 

 

 Consequently, a DL multi-layer Conventional Neural Network (CNN) model was introduced 

(Chapters 5-6), this model operates on 1Dimensional convolution filters to classify 30 seconds 

of walking data into one of five severity levels. Our DL network was able to Classify the PD 

Walking-Balance, Shaking/Tremor, and Freeze of Gait (FoG) symptoms, with an accuracy of: 

99.1%,98.4%, and 98.2% respectively.  

 

 

 

Contributions 

Our main contributions can be summarized in the following points: 

 Proposed DeePaGait: a data-driven neural network model, that focuses on the 

inference of PD gait by analyzing the patients' Smartphone walk data. DeePaGait 

consists of a multilayer 1D-CNN, that classifies 30 seconds of data into one of five 

severity levels (Normal, Slight, Mild, Moderate, Severe).  Our DeePaGait DL network 

was able to Classify the PD Walking-Balance, Shaking/Tremor, and Freeze of Gait 

(FoG) symptoms, with an accuracy of: 99.1%,98.4%, and 98.2% respectively. 

  Proposed a neural networks model that comprehensively classifies 3 PD 

symptoms: the severity of FoG, walking imbalance, and shaking/tremors from 

data gathered in the same study: While prior work has trained and tested separate 

models to analyze each anomaly of PD gait. DeePaGait achieved impressive results 

for all 3 PD symptoms. This was challenging because DeePaGait needed to tune the 
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network parameters to correlate with a different set of labels per PD symptom, all 

while using the exact dataset as an input.   

 Introduced DeePaMed: a data-driven neural networks methodology, that uses the 

Smartphone's built-in accelerometer and gyroscope sensors to evaluate PD patients’ 

medication adherence and response to medication based on their gait. DeePaMed 

consists of a multilayer Conventional Neural Network (CNN), that analyzes 

smartphone gait data. Our DeePaMed model was able to discriminate PD patients on- 

vs off-medication and baseline HC walk with an accuracy of 98.2%. The accuracy of 

our CNN model surpassed that of traditional Machine Learning methods by over 17%. 

We also found that our model performed best with inputs containing a minimum of 10 

full gait strides. 

 Proposed  task-specific preprocessing steps for  efficient use of raw sensor data: 

Preprocessing included calculation of the moving average, subtracting signal mean, 

and detection of gait strides. These techniques resulted in smoothing the signal, noise 

filtering, and cancellation of gravity/breeding effects. These steps facilitate DL 

automatic feature extraction and eliminated the need for any kind of signal 

conversion. 

 1D CNN for analyzing multiple aspects of PD gait: While one-dimension CNN 

has been proved to be effective on many diverse tasks, to the best of our knowledge, 

ours is the first work at this scale to analyze multiple aspects of PD gait, using a 1D 

CNN network. 
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CHAPTER 2 

RELATED WORK 
 

 Prior work explored various methods to analyze PD gait. Based on the 

sensor’s placement, gait analysis methods can be classified into two main categories, wearables, 

and non-wearables. In each category, a variety of sensors and methodologies have been 

investigated such as smartphones, smartwatches, infrared cameras, and force plates. We will 

summarize each subcategory in the next sections. For completeness, we reviewed prior work 

related to medication adherence, walking balance, and the work around ML features, especially 

the lifestyle features.  

 

2.1 Wearable Gait analysis 

Wearable sensors, shown in Figure (2.1), utilized include inertia sensors [15], portable-wearable 

sensors [16], pressure sensors [17], and electromyography [18]. Wearable sensors are relatively 

cost-friendly. But most of them are  not convenient for the patients and  require proctoring in a 

clinical environment.  Wearable sensors need to be purchased and worn by the patient which 

requires a commitment from the patient.   

 

Figure 2.1 Wearable Sensors 
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2.1.1 Inertia sensors  

The inertial sensor is one of the most widely used types of sensors in gait analysis, inertial 

sensor measures the acceleration and angular velocity of an object along three mutually 

perpendicular axes [121]. Accelerometers (measures acceleration in 3 dimensions), 

gyroscopes (measures angular velocity in 3 dimensions), and magnetometers (measures 

magnetic field) can be the component of the same Inertial Measurement Unit (IMU) as shown 

in Figure (2.2). Inertial sensors measure velocity, acceleration, orientation, and gravitational 

forces and can be used to study gait initiation [19], assess standing balance [20], and quantify 

bradykinesia [21] as shown in Table (2.1). 

 

An inertial sensor can be attached to the feet, legs, or waist [22]. Magnetometer included 

because it can provide information that cannot be determined by both an accelerometer and 

gyroscope [23]. The inertial sensor data can be processed on the fly or uploaded for offline 

processing. 

 

 
Figure 2.2 : Inertia Sensor 

 

 
Table 2.1: Studies utilizing nertia sensors for gait analyses  

Author  Year PD Patients 

/Controls 

Aspect of PD Device/ 

Sensor 

placement 

Test 

location 

Method Metric 

Chen et al  

[24] 

2021 50/50 Detect abnormal 

PD gait. 

Shoe sensor. Hospital

/clinic 

1D CNN 

on raw 

sensors 

data. 

Accuracy 

91.4%. 

Mazilu et 

al [25] 

2016 11/0 FoG wrist sensors Lab 

settings 

ML and 

hand-

FoG hit rate of 

0.9, and 
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crafted 

features. 

specificity 

between 0.66 

and 0.8 

Perez  et 

al[26]  

2020 2/0 detection of four 

gait events 

foot-

mounted 

Lab 

settings 

Modified 

SVM 

approach 

F 1 -scores 

were 0.987 and 

0.95 

 

2.1.2 Goniometer (Angle Measurement) 

In orthopedics, a goniometer is used as a device that measures an angle or permits the rotation 

of an object to a definite position. Goniometers read angle changes based on the change in the 

internal resistance of the sensor, angle changes has been useful for the determination of gait 

parameters [122]. The Goniometer sensor is easy to set up and use [30]. They are commonly 

used to study the angles for ankles, knees, hips, and metatarsals as shown in Figure (2.3). 

Several studies utilized Goniometer for gait analysis , those are listed in Table (2.2) below. 

 

Figure 2.3:  Goniometer  Sensor 

 
Table 2.2: Studies that utilized Goniometers/angle sensor for gait analyses  

Author  year PD Patients 

/Controls 

Aspect of PD Device/ 

Sensor 

placement 

Test 

location 

metrics 
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[27] Wang et 

al. 

2020 18/25 disease severity 

of PD 

Ankle  Lab settings angle metrics were 

significantly smaller in 

those with PD: mean step 

angle (F1,48=69.75, 

P<.001, partial eta-

square=0.59), initial step 

angle (F1,48=15.56, 

P<.001, partial eta-

square=0.25), and last step 

angle (F1,48=61.99, 

P<.001, partial eta-

square=0.56). 

[28] Meg et 

al. 

2005 12/12 PD step length. Hip, knee, ankle, 

pelvis 

Laboratory Stride length. 

[29] Wegan et 

al. 

2018 15/0 trunk posture 

angle  

Chest Home a significant decrease 

(average −5,4°) in trunk 

angle from the baseline 

period to the intervention 

period 

 

2.1.3 Pressure and Electromyography  

Force sensors  measure the ground reaction force under the foot as the subject walks over them, 

converting this force to a current or voltage proportional to the force applied, as shown in Figure 

(2.4). Sometimes this sensor is installed in the shoes  to save cost  [31]. Several previous studies 

used pressure and force sensors to study stride length variation of PD patients and also to study 

FoG. [32].  

 
Figure 2.4: Foot Peressure Sensor 

Electromyography sensor measures the small electrical signals generated by the muscles when 

they are in motor activity. Some Electromyography Sensors  have a wireless interface to 
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evaluate gait.  [33].  They can be used to study the PD postural disorders in Parkinson’s disease 

patients, and to explore  muscular activity in the Pisa syndrome [34] Table (2.3). 

 
Table 2.3: Gait studies using Pressure and Electromyography sensors  

Author  year PD Patients 

/Controls 

Aspect of PD Device/ 

Sensor 

Test 

location 

Metrics 

[35] Marcante 

et al 

2020 20/0 FoG Shoe pressure 

sensor 

clinical and 

ecological 

settings 

detected 90% of the FoG 

episodes. The false positive 

rate was 6% and the false 

negative rate was 4%. 

[36] Cando et 

al. 

2016 5/1 Detection of FoG Shoe pressure sensor Laboratory 

settings 

reduction in the freezing 

duration is  50.94%, also the 

time to complete the trial 

reduces showing an 

improvement of 34.25%. 

[37] Shalin et 

al. 

2021 11/0 LSTM to detect 

and predict FOG 

Shoe pressure sensor Laboratory 

settings 

The model correctly 

detected 95% of freeze 

episodes. 82.1% sensitivity 

and 89.5% specificity for 

one-freezer-held-out cross-

validation. 

[38] Kugler et 

al. 

2013 5/5 recognition of 

PD using surface 

electromyograph

y during gait. 

 

Leg muscles. Laboratory 

settings 

Sensitivity and specificity of  

0.90 using leave-one-

subject-out cross-validation 

of SVM classifier. 

 

 

2.1.4 Impulse Radio and Ultrasound sensors 

The Impulse Radio Ultra-WideBand (IR-UWB) sensor idea is based on the concept of  sending 

very short (typically 2-3 ns long)  signals, then tracking the body’s movement based on the 

reflected waves from the target body [60]. IR-UWB is used to measure activity for movement 

disorders [39]. This technology is also used for step and gait phase detection [40]. 

 

Ultrasonic sensors  are based on the same idea of sending a sound and estimating the movement 

based on the received reflected signal[33]. This technology is used for measuring step length 

and gait phase detection [41]. It is also useful in analyzing gait symmetry and coordination 

[42] Table (2.4). 
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Table 2.4: Gait Analyses studies that utilized IR-UWB  and Ultrasonic sensors  

Author  year PD Patients 

/Controls 

Aspect of PD Device/ 

Sensor 

Test 

location 

Metrics  

[43] 

Blumrosen, 

G., et al,  

2010 0/0 ( 

simulation) 

quantifies and 

analyzes 

tremor. 

estimated the 

tremor 

frequency 

UWB radar 

detection. 

Laboratory settings The 

approximated 

amplitude 

decreases with 

frequency. 

[42] 

Ashhar et 

al 

2017 0/5 assess the 

human gait 

symmetry 

ultrasonic 

transmitters were 

Placed just above 

the ankle joint 

Laboratory settings RMSE in 

millimeters is 

between 25.36 

and 28.78 

[41] 

Wahab et 

al. 

2011 N/A Time of 

Flight (Tof) 

Ultrasonic 

system in an 

instrumented 

shoe. 

Laboratory settings Sensor output is 

proportional to 

the Tof. 

 

 

2.2 Non-wearable Gait analysis 

Non-wearable sensors include floor sensors [44], image-processing including cameras[45] , 

and stereoscopic vision [46]. The majority of the Non-wearable analysis technologies are 

complex and expensive, so they cannot be deployed in the PD patient home environment. 

 

2.2.1 Floor sensors 

Floor sensors are the most basic method to collect initial data about a person’s gait pattern. 

Floor sensors are installed in a special floor mat. The mat can detect when a person walks and 

starts recording force and pressure measurements for processing [47,48]. Several studies used 

floor sensors to estimate and characterize gait impairments, including PD gait fibromyalgia 

[49-52]. Those studies are presented in Table (2.5). 

 
Table 2.5: Gait Analyses studies utilizing Floor sensors  

Author  year PD Patients 

/Controls 

Aspect of PD Device/ 

Sensor 

Test 

location 

Metris 

[48] Lee et al.       
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[49] 

Mondal, et 

al. 

2019 70/37 Compare gait 

stability and 

gait 

parameters 

Floor 

sensors 

Research 

center 

(lab 

settings). 

 mean velocity for HC 

(99.19cm/s) compared to PD 

patients (73.90cm/s, P value 

0.0001). cadence was 

comparable (103.29 vs. 

103.39, P value 0.966).  

[50] Yang 

et al 

2008 18/17 relationships 

between gait 

and dynamic 

balance 

Floor 

sensors 

Lab 

settings. 

People with early-stage PD 

exhibited significantly slower 

walking speed, shorter stride 

length, and smaller forward 

MV than the comparison 

group. 

[51] 

Rehman et 

al. 

2019 93/103 compare the 

impact of gait 

assessment 

systems on 

the 

performance 

of (SVM) and 

(RF)  

Floor 

sensor and 

an 

accelerome

ter attached 

at the lower 

back 

Axivity 

Lab 

settings. 

SVM performed better than 

RF. during CW Axivity 

significantly outperformed  

Floor sensors(AUC: 87.83 ± 

7.81% vs. 80.49 ± 9.85%); 

[52]  2002 11/11 distinguish 

gait 

characterist

ics of PD 

patients  

Floor 

sensor 

Lab 

settings. 

Mean Normalized Velocity 

(MNV) was 0.83 for PD at 

preferred speed and 1.14 at 

fast speed, the non-impaired 

was 1.33, and 1.70 

respectively. 

PD patients have lower FAP 

scores, shorter step lengths, 

and a long step time. 

 

 

2.2.2 Camera-based Gait Analyses 

 Camera-based systems consist of single or multiple cameras that record a person's walk and 

process the images to obtain information about their gait pattern. This technology is used for 

several applications including gait recognition [53], and other medical applications like 
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studying changes in the subject path [54], kinematic [55], and PD gait [56-59]. Image-

processing studies are presented in Table (2.6). 

 
Table 2.6 : Camera-based Gait Analyses  studies 

Author  year PD Patients 

/Controls 

Aspect of PD Device/ 

Sensor 

Test 

location 

Metrics 

[56] Tahir 

et al  

2012 12 / 20 Recognize 

gait pattern of 

PD. 

Infrared camera/ 

force plate. 

Clinic Both ANN and SVM 

achieve a high 

classification accuracy 

of >95%. 

[57] 

Tucker et 

al. 

2015 7/0 adherence to 

medication 

protocols, 

based on gait 

variations 

line of motion 

sensing  (Infrare

d Cam) 

Lab 

settings 

discriminate on and 

off medication, with 

97% for some and 

78% for multiple 

patients.  

[58] Rocha 

et al. 

2014 3/3 discriminatin

g PD vs HC. 

and PD ON 

and OFF). 

RGB-D camera 

(Microsoft 

Kinect)  

Clinic 

(University 

Hospital) 

the variance of center 

shoulder velocity is 

the highest 

discriminative to 

distinguish between 

HC vs PD, and ON vs 

OFF states (p = 

0.004). 

[59] 2021 49/0 Prediction of 

Parkinsonian 

Gait 

 

ceiling-mounted 

camera 

Clinic  accuracy of the model 

that only used gait 

features was 82.8%, 

while the model that 

also used joint 

trajectories had an 

accuracy of 94.2%. 

 

 

2.2.3 IR Thermography 

Infrared thermography is a technique used to recognize human gait, by creating an image based 

on the temperature of the human body surface (the skin). This sensor reading depends on the 

emissivity of the human skin [60]. 
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2.3 Smartphone Sensing 

With the advent of technology, smartphones can now  provide an affordable, accessible, and 

easy-to-use alternative to PD gait sensing. Smartphones are ubiquitous, portable, and user-

friendly. Equipped with triaxial accelerometers and gyroscopes and powerful CPUs, 

smartphones provide a viable alternative for remote gait assessment in the home environment. 

This smartphone technology  has been  used to analyze PD gait in several studies [61], 

including our prior work [62,63]. A comparison of PD smartphone studies for gait analysis is 

presented in Table (2.7), which includes a description of each study’s methodology, outcome 

measure, number of PD participants, smartphone placement, and the study performance 

metrics. 

 

Several PD studies  enabled participants to perform periodic assessment activities in their 

homes over extended periods using mobile health apps [64,65].  Accelerometer and gyroscope 

sensors have been demonstrated as useful in assessing gait, tremor, and walking balance [62]. 

Those previous studies were able to quantify multiple gait modalities of PD, including walking 

imbalance and FoG.  

 

 

 
Table 2.7: Smartphone Gait studies 

Author  year PD Patients 

/Controls 

Aspect of PD Device/ 

Sensor 

Test 

location 

Limitation/Outcome 

[67] Mazilu,  

Sinziana, et al 

2012 10/0 FoG. Smartphone 

and wearable 

accelerometers 

Clinic Small number of 

participants. Did not 

combine gait as well as 

lifestyle features.  

[65] Bot et al 2016 5718/ 1087 Data collection Smartphone sensors Remote Did not combine gait as 

well as lifestyle features. 

[68] Arora et 

al 

2015 10/10 Voice, posture, 

gait, 

finger tapping, 

and response 

time 

Smartphone sensors Clinic and 

remote 

Small number of 

participants. Did not 

combine gait as well as 

lifestyle features. 

[69] Ellis et al 2015 12/12 Gait variability Smartphone 

accelerometer, 

gyroscope, and 

Clinic Small number of 

participants. Did not 

combine gait as well as 

lifestyle features. 
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heel-mounted 

footswitch 

sensors 

[70] Printy et 

al 

2014 26/0 Bradykinesia. Smartphone 

gyroscope, 

accelerometer, 

touch screen, 

microphone, and  

front- camera 

Clinic Small number of 

participants. Did not 

combine gait as well as 

lifestyle features. 

[71] Kim, 

Hanbyul, et 

al 

2015 15/0 FoG Smartphone 

gyroscope, 

accelerometer 

Clinic Small number of 

participants. Did not 

combine gait as well as 

lifestyle features. 

[72]  Sharma, 

Vinod, et al 

2014 0/5 Facial tremors, 

speech, 

dyskinesia, gait 

abnormalities 

Smartphone/Smart

watch 

accelerometer, front 

camera, microphone 

Remote Small number of 

participants. Did not 

combine gait as well as 

lifestyle features. 

[73] Zhan, 

Andong, et 

al 

2016 121/105 Voice, balance, 

gait, 

dexterity, and 

reaction time. 

Smartphone/acceler

ometer, touch 

screen, mic. 

Remote Did not combine gait as 

well as lifestyle features. 

[74] Lee, 

Chae Young, 

et al. 

2016 57/87 Bradykinesia Smartphone/screen,  

mechanical tapper 

Clinic Small number of 

participants. Did not 

combine gait as well as 

lifestyle features. 

[14] 

Kassavetis, 

Panagiotis, et 

al. 

2016 14/0 Tremor, 

bradykinesia 

Smartphone/acceler

ometer, touch 

screen, 

Clinic Small number of 

participants. Did not 

combine gait as well as 

lifestyle features. 

[63] Abujrida 

et al. 

2019 340/116 Analyzed various 

aspects of PD 

gait. 

Smartphone 

Accelerometer and 

Gyroscope 

home Uneven data bins (classes). 

Accuracy can be improved 

with DL methods. 

[75] Zhang et 

al. 

2019  

247 

12 weeks 

Continuous 

monitoring, with 

smartphones, 

uncontrolled 

environment. 

Smartphone 

sensors. (CNN with 

Spectrogram signal 

conversion). 

home or office Unnecessarily conversion 

of time series by 

calculating spectrogram, 

adding complexity, no 

controls in the study, 

limiting the study to binary 

classification. 

[76] Kan et al. 2018 0/10 Smartphone app 

recording 

medication 

intake and ball-

game app to 

measure tremor. 

Smartphone 

Screen/Acceleromet

er/ gyroscope. 

Lab settings Small # participants who 

are not PD patients. 

ML/DL methods can 

extract informative 

features from sensor data. 



 

36 

[77] 

Lakshminaray

ana et al. 

2017 158/0 Smartphone app 

recording 

adherence using 

questionnaires. 

Smartphone app 

(Smartphone 

Screen) 

home depending on PD patients' 

inputs instead of 

measuring change by 

smartphone sensors. 

Lo et al, [78] 2019 237/0 falls, FoG,  

postural 

instability, 
Smartphone 

placed in 

Pocket, 
armband 

Smartphone 

microphone, 

triaxial 
accelerometer, and 

screen. 

in clinic and 

home 

Random falls, FoG, and 

postural instability: 

AUC = 0.94, 0.95, and 
0.9, respectively 

 

Fiems et al, 

[79] 

2020 59/0 Sway score to 

predict future 
falls. 

Smartphone  

Placed at chest 
harness  

triaxial accelerome

ter  

laboratory 

setting (clinic) 

AUC for 

ABC: 0.76 (Mini-
BESTest): 0.72, MDS-

UPDRS: 0.66, and sway: 

0.65 

Pepa et al 

[80] 

 

2020 44/0 FoG 

Handcrafted 

features from 
the 

accelerometer, 

range of values 
classification. 

Placed at the 
right or left side 

of the hip 

triaxial accelerome

ter  

laboratory and 

home 

FoG 

Se =0.85 

Sp = 0.95 
Acc=0.92 

AUC =  0.91 

 

Chen et al. 

[81] 

2020 37/35 discriminate PD 

participants 
from HCs, and 

estimate the PD 

disease severity 
(MDS-UPDRS 

total scores). 

rouser 
pocket/belt 

pouch 

Smartphone  

microphone, 
triaxial 

accelerometer, 

gyroscope 

Home 

environment 

Feature selection and 

shallow ML. 
Pearson correlation of 

0.72 (p<0.0001) and an 

RMSE of 16.58 between 
the estimated and the 

observed MDS-UPDRS 

total scores 

Su et al. [82] 2021 52/0 correlation of 
the calculated 

gait features to 

UPDRS. 

accelerometer, 
gyroscope, and 

compass, 

Smartphone 
placed in The front 

pocket of the pants 

Hospital/clinic Handcrafted features. 
Participants who walked 

with greater stride time 

variability exhibited a 
greater UPDRS III score. 

Borzì et al. 

[83] 

2020 42/7 Handcrafted 

features from 
the 

accelerometer, 

fed to shallow 
ML. 

Discrimination 
PD/HC, 

Discrimination 

between 
postural 

stability levels 

 

Accelerometer. 

waist-mounted 

Hospital/clinic (Binary classification) 

Discrimination PD/HC 
Accuracy = 100% 

PD with different levels 

of postural stability: 
Accuracy 72%-100% 

Memedi, 
Mevludin, et 

al [84] 

2013 95/10 Tremor, 
bradykinesia 

Touch-pad 
handheld 

computer 

Clinic and 

Remote 

Small number of 
participants. Did not 

combine gait as well as 

lifestyle features. 

 
 

A good number of studies rely on handcrafted features and traditional ML algorithms. 

However, handcrafted features need to be extracted by a domain expert, and need to be 

https://www.sciencedirect.com/topics/medicine-and-dentistry/accelerometer
https://www.sciencedirect.com/topics/medicine-and-dentistry/accelerometer
https://www.sciencedirect.com/topics/medicine-and-dentistry/accelerometer
https://www.sciencedirect.com/topics/medicine-and-dentistry/accelerometer
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evaluated on a large sample of participants to prove the validity of the features. It can also be 

noted from Table (2.7) that, each study focuses on one aspect of PD gait, i.e., 

classification/detection of FoG or posture stability, or the differentiation of PD gait from 

regular HC gait. Almost all studies have a small number of participants except the study by 

Lo et al, [78], although the model of this study can be improved using DL, to eliminate the 

dependency on handcrafted features.  

 

 

2.4  Studies Related to Medication Adherance  

One of the applications of our system is the evaluation of PD patients’ medication adherence 

and response to medication based on their gait. As part of our literature review, we analyzed 

several technological methods that focus on medication adherence.  

 

Prior work has explored various methods for measuring medication non-adherence, these 

include the reliance on physician’s judgment [8,9], patient self-reporting and management 

[15], tablet count [7], tracking drug levels in urine and blood [11], and using electronic devices 

[12,13,14,17]. While tracking the drug level in blood and urine is accurate, it requires visiting 

a lab, which presents a burden for patients. Moreover, as the majority of the medications are 

taken outside of the clinic, physicians tend to rely more on self-reporting and self-

management. As PD progresses, the loss of memory and depression dramatically increases 

the patients' non-adherence, which further increases as the patients’ daily dose increases  [10]. 

Passive, continuous, and unobtrusive methods of monitoring medication adherence would 

increase patients’ compliance and reduce missed episodes. Compared to traditional methods. 

Electronic measures and AI seem to be the most practical approach to track PD patients' 

medication intake. 

 

 

A comparison of PD studies and electronic adherence measurement studies is presented in 

Table (2.8). A good number of studies [85-87] rely on Medication Event Monitoring System 

(MEMS) drug bottles, there are several commercial products, but the main function is to record 

the date/time of opening the medication bottle. There are multiple issues with this approach, 



 

38 

First, sometimes the patient may open the medicine bottle but do not consume the medication. 

Secondly, MEMS approaches do not monitor the patients’ symptoms after taking the 

medication to also monitor the patient’s response. Infrared motion sensing presented in [57] 

provides a  viable approach to compare the differences in gait before and after taking 

medication. But due to the complexity of the system, it is not feasible in the patient’s home 

environment. The approach using smartphone sensors  presented in [75] is  suitable for  PD 

medication adherence problems, the processing of the walk time series and calculation of 

spectrograms from the raw sensor data resulted in unnecessary complexity and reduced the 

overall accuracy of the model. The Smartwatch approach [88] seems to be promising. 

However, it needs to be validated on a larger dataset. 

 

Table 2.8 : Medication Adherence studies 

Author  year Participants Duration of 

the study 

Device/ 

Sensor 

Pros Limitation 

Grosset et 

al [85] 

2005 68 12 weeks MEMS drug 

bottle 

Dosage 

reminders, 

long-life 

battery, bottle 

opening 

sensing and 

count. 

Patient misuse of the 

device, patients lost 

device, no guarantee 

for taking the dose 

except opening-

closing the bottle, 

limited # 

participants. 

Grosset et 

al [86] 

2009 112 4 weeks 

Leopold 

et al [87] 

2004 39 4 weeks 

Kalantaria

n et al 

[88] 

2015 20 Duration of 

data 

collection. 

Smartwatch 

detection of 

taking 

medication 

Automatic 

detection of 

medication 

intake. 

The use of hand-

crafted features can 

lead to overfitting. 

ML/DL methods can 

improve accuracy 

and reduce 

overfitting. 

Koesmahar

gyo et al 

[89] 

2020 4,182 varied  

 

Machine 

learning, 

smartphone 

front-facing 

camera 

Dosage 

reminders, 

uncontrolled 

environment. 

Accuracy is low. 

can be improved with 

DL methods. 

Tucker et 

al [57] 

2015 7 Duration of 

data 

collection 

session(s). 

line 

of motion 

sensing  (Inf

rared Cam) 

Examine the 

difference in 

symptoms 

between 

on/off 

medication 

states. 

Camera angle 

calibration and 

sensor constraints 

make it difficult to 

self-recording at 

home. model overfit 

on individual 

participants. 

small #participants. 

Zhang et 

al [75] 

2019 247 12 weeks Smartphone 

sensors. 

Continuous 

monitoring, 

Unnecessarily 

conversion of time 
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(CNN with 

Spectrogram 

signal 

conversion). 

with 

smartphones, 

uncontrolled 

environment. 

series by calculating 

spectrogram, adding 

complexity, no 

controls in the study, 

limiting the study to 

binary classification. 

 

 

2.5 Lifestyle Features for assessing PD Gait 

 

Lifestyle features including age, gender, smoking-history and recent history of exercise,  are 

often ignored when analyzing PD gait. To the best of our knowledge, lifestyle features have 

not been  included when assessing gait severities of PD using engineered sensor features. Van 

et al [90] found that PD rapidly increased over the age of 60 years, with only 4% of the cases 

under the age of 50 years. The rate for men (19.0 per 100,000, 95% CI: 16.1, 21.8) was 91% 

higher than that for women (9.9 per 100,000, 95% CI: 7.6, 12.2). Smoking reduced tremor, 

rigidity, bradykinesia, and gait disturbance, including frozen gait. These effects lasted for 

approximately 10-30 min after smoking a cigarette and relieved PD symptoms during the off-

medication period [91]. Fertl et al [92] found a significant reduction in physical activity during 

the course of the disease, but no complete abandonment of sports was observed. Swimming, 

hiking, and gymnastics were the favored sports. Reuter et al [93] concluded that motor 

disability in PD patients can be improved by intensive sports activities in the early to medium 

stages of PD, A comparison of PD lifestyle studies for gait analysis is presented in Table (2.9),  

 

 

Table 2.9 PD lifestyle studies 

Author  Year Partici

pants 

Lifestyle 

Features 

Duration of 

the study 

Approach Outcome 

Joshi  et 

al [123] 

2010 487  Age , 

Gender 

18 months ML Decision 

tree , Bagging, 

BF tree, 

Random 

Forest, RBF 

networks , and 

Neural 

Networks 

method 

PD classification with 

accuracy of 99.25%. 

Stroke, diabetes, 

genes and age play a 

major role in the 

development of PD 
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KC Paul 

et al 

[130] 

2019 360 Consum

btion of 

coffee, 

tea, 

alcohol. 

smoking

, 

physical 

activity 

(2 to 4 

examinati

ons; 

conducted 

in 2007- 

2014). 

physical 

examinations 

to one of the 

Hoehn & Yahr 

(H&Y) stages 

(1-5) based on 

clinical 

descriptions of 

each stage 

This population-

based study suggests 

that lifestyle factors 

influence PD 

progression and 

mortality. 

I Reuter  

et al[93] 

1999 16 influenc

e of an 

intensiv

e 

exercise 

training 

on 

motor 

disabilit

y 

20 weeks UPDRS 

Evaluations 

were 

performed 

before the start 

of the study 

(exam. 1), after 

7 wk (exam 2), 

14 wk (exam 

3), and 20 wk 

(exam 4/long-

term effect). 

UPDRS Σ score (P < 

0.0001) improved 

significantly by 

exercise training. Six 

weeks after 

termination of the 

training program, the 

majority of the 

patients had lost only 

minor components of 

their regained motor 

skills. 

 

Prior work utilized different sensors and ML algorithms to solve the problem of PD gait 

assessment. While many studies utilized the widely adopted Smartphone sensors, very few 

studies utilized the 1D CNN approach based on gait-cycle segments. For instance [128] utilized 

Vertical ground reaction force (VGRF) with 1D CNN, was able to achieve 88.7% accuracy, 

[131] utilized a visioni system with digital camera and 1D-CNN to achieve a highest accuracy 

of 79.3%. [129] also utilized (VGRF) and 1D CNN and achieved achieved an accuracy of 

85.3% in Parkinson’s severity prediction.  

 

In this dissertation we propose a deep-learning-based system that comprehensively classifies 

3 PD symptoms: the severity of FoG, walking imbalance, and shaking/tremors from data 

gathered in one study, in addition to the model ability to predict medication adherence.  Prior 

work has trained and tested separate models to analyze each of these PD gait anomalies 

separately, the model we introduced is a single model that achieved impressive results for all 

of the PD gait symptoms. This was challenging because the model’s parameters had to be 

jointly tuned in order to establish relationships with different sets of PD symptom labels, all 

while using the same dataset as an input. To the best of our knowledge, our 1D CNN based 
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model is the first to to Classify the PD Walking-Balance, Shaking/Tremor, and Freeze of Gait 

(FoG) symptoms, with an accuracy of: 99.1%,98.4%, and 98.2% respectively. Our model was 

also able to discriminate PD patients on- vs off-medication and baseline HC walk with an 

accuracy of 98.2%. The accuracy of our CNN model surpassed that of traditional Machine 

Learning methods by over 17%., and surpassed the best-published results achieved by prior 

1D CNN smartphone models by over 7% [128,129]. 
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CHAPTER 3 

BACKGROUND ON DATA GATHERING STUDY, DATASET AND   

PRE-PROCESSING 
 

3.1 Dataset 

Data were acquired from the mPower study [65] a clinical observational study on PD 

conducted entirely through an iPhone (Apple Inc., Cupertino CA, USA) app interface, Figure 

(3.1) shows the versions of the smartphone used in the study. The mPower study interrogated 

aspects of movement disorder through surveys and continuous sensor-based recordings from 

participants with and without Parkinson's disease.  

 

3.1.1 Dataset Overview 

The mPower study had a large enrollment (N= 9520) of participants who opted to share data 

broadly and contributed at least two measurements. The goal of the study was to help establish 

baseline variability of real-world activity measurement collected via mobile phones that might 

ultimately lead to quantification of the ebbs and flows of PD symptoms. The collected mPower 

activities included 35410 walking, 78887 tapping, and 8569 memory records as shown in Table 

(3.1). Subjects conducted the PD tests using an iPhone smartphone running the mPower data-

gathering application.  Participants self-reported PD severities and contributed activities 

several times during the day, before/after taking medication, and at another time of the day, as 

shown in Figure (3.1).  

Table 3.1: The mPower Dataset 

Activity  Frequency Participants Records 

Demographic Survey Once 6,805 6,805 

Walking  Daily 3,101 35,410 

Tapping  Daily 8,003 78,887 

Voice  Daily 5,826 65,022 

Memory Daily 968 8,569 

 

Not all participants complied with the application protocol, and therefore their number of 

recorded activities varied from a few to hundreds of recordings. Approximately 658 PD 
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patients performed 24001 walks, and 2165 HC performed 10585 walking activities in the first 

6 months of the study. Only 815 participants performed at least 3 walking activities.  

 

(3.1a) Time of walking for PD Patients 

 

                                             (3.1b) Time of walking for Healthy Controls 

Figure 3.1: Smartphone version and Time of walking 
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Participants filled out surveys including a subset of the UPDRS Section I (non-motor 

experiences of daily living) and Section II (motor experiences of daily living). Participants also 

completed a demographic survey, which included information on their general health history, 

PD history, and general lifestyle questions.  

 

3.1.2 Walking activity of the dataset 

The collected mPower activities included 35410 walking’s. But the number of walking 

records per participant varied from a few to hundreds. 658 PD patients performed 24001 

walks, and 2165 HC performed 10585 walks in the first 6 months of the study. Figure (3.2) 

shows a histogram of the walking activities of all participants. 

 

Figure 3.2: Number of Walks per participant 

  

3.1.3 Participants Selection  

In our work, we included only PD patients that contributed 3 walks before and 3 after taking 

medication. Healthy controls were selected if they contributed at least 3 walks in total. We 

also excluded activity records in which key values of the demographic survey were missing 

or certain sensor readings were missing. Because the MDS-UPDRS survey data are used for 

labeling the walk records, we filtered out participants whose survey data were not complete. 

Any walking record that had missing values such as sensor reading or key demographic values 
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has been dropped. In a few instances in which lifestyle questions had missing values, they 

were replaced (inputted) by the mean of the feature. The above subject selection rules yielded 

a working dataset with 152 PD patients (NPD = 152), and 304 healthy controls (NHC = 304), 

as shown in Table (3.2). For participants who performed more than 3 walks in each category 

(before/after medication or at another time), we selected walks performed close to the date on 

which participants completed the demographic survey to increase the accuracy of labels for 

each activity. PD symptoms are known to calm down after medication [94]. Therefore, we 

wanted to capture the patient symptoms at peak occurrence, so we mostly analyzed the walks 

recorded before taking medication, unless both before/after medication walks are required for 

some experiments. 

Participants also filled UPDRS survey describing the severity of gait anomalies, a sample of 

the UPDRS questions is shown in Table (1.1), and their corresponding results for the selected 

sample are shown in Figure (3.3). 

Table 3.2: Selected Sample 

PD 

Diag

nosi

s 

Classes Age 

Mean±

std 

Male: 

Femal

e 

RACE Partici

pants 

Records Trainin

g 

Record

s 

Testi

ng 

Reco

rds 

PD 

Patie

nts 

Before 

Medicati

on 

63.57±

8.09 

89:63 "White/Caucasian"   74.5% 

"Latino/Hispanic"      7.2% 

"Mixed"                     2.7% 

"South Asian"           2.7% 

"Middle Eastern"      2.3% 

"Black or African"     2.1% 

"East Asian"             2.1% 

"Other"                     6.1% 

152 

 

456 410 46 

After 

Medicati

on 

456 410 46 

Heal

thy 

Cont

rols 

Another 

Time 

40.14±

15.45 

213:91 "White/Caucasian"   93.1% 

"Latino/Hispanic"      1.1%   

"Mixed"                     0.56% 

"South Asian"           0.56% 

"Middle Eastern"      0.56% 

"Black or African"     1.1% 

"East Asian"             1.1% 

"Other"                      1.7% 

304 912 820 92 
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Figure 3.3: UPDRS2.10 (Shaking) and UPDRS2.12 (walking imbalance) severity by gender 

 

3.2 Signal Preprocessing 

Signal pre-processing involves several steps. Those will be discussed in the following few 

sections. Steps include signal filtering and segmentation. Some ML models needed feature 

extraction, while for DL methods we operated on raw signal components. 
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3.2.1 Smartphone Gait Signal Capture  

To perform the walking activity, participants were asked to walk for 30 seconds in a straight 

line while placing the smartphone in their pants' front pocket (Figure 3.4), stand for 30 

seconds, and subsequently turn and walk back for 30 seconds. The raw data gathered included 

the smartphone’s gyroscope and accelerometer data sampled at 100 Hz, as well as pedometer 

values and the time of the activity. Our work only analyzes the outbound walking to enable 

uniform analysis across patients and Healthy Controls (HC) by avoiding FoG and walking 

imbalance events that usually occur when PD patients attempt to start walking after they turn 

between the outbound and inbound walks. 

 

 
Figure 3.4: Participant Walking with Smartphone in pocket 

 

3.2.2 Signal smoothing and filtering 

Signal preparation start by pre-processing the sensor data and reorganizing it into a readable 

format. We obtained the two main signals from the smartphone sensors, i.e., acceleration and 

rotation vectors from the accelerometer and gyroscope, respectively: 

α(i) = [αx (i), αy (i), αz (i)] T  (in m/s2)   

ω(i) = [ωx (i), ωy (i), ωz (i)] T (in deg/s) 

where i denotes discrete time, α indicates accelerometer, and ω represents gyroscope. 
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PD tremor and balance classification have traditionally been captured by sway metrics derived 

from raw accelerometer values. However, we believe that features derived from the 

smartphone gyroscope data should supply additional information because it records angular 

velocity. To facilitate feature extraction, sensors were smoothed by computing the moving 

average (n=5) and removing sudden changes. The moving average calculation replaces each 

value in the sequence with the average of several points around it and is given by the following 

formula:  

 

𝑀𝐴𝛼𝑥 =
1

𝑛
∑ (𝛼𝑥(−𝑖) )

𝑛−1

𝑖=0
 

 

 

3.2.3 Preparing signal components 

The values of the three accelerometers and gyroscope axes are used to calculate the signal 

magnitudes, after which the signal’s mean is subtracted to eliminate gravity or any constant 

factors such as breathing. The resulting formula is given below:  

 𝑀𝑎𝑔𝑁𝐺𝛼 = (∑ (⎢⎢𝛼(𝑖)⎢⎢)
𝑛

𝑖=1

−  𝑀𝑎𝑔𝛼   ) (1) 

 𝑀𝑎𝑔𝑁𝐺⍵ = (∑ (⎢⎢⍵ (𝑖)⎢⎢)
𝑛

𝑖=1

−  𝑀𝑎𝑔⍵    ) (2) 

 

 

 

where MagNGα and MagNGω are the vector magnitudes of the acceleration and the rotation 

rates, respectively; and 𝑀𝑎𝑔𝛼 and 𝑀𝑎𝑔⍵    are the means of the acceleration and rotation 

rates, respectively. 

 

3.3 Signal Segmentation 

Depending on the algorithm used, we proceeded with different types of signal segmentation; 

Time-Based segmentation for ML and cycle-based segmentation for DL algorithms. 
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3.3.1 Time-Based Segmentation 

Time-based signal segmentation is used to prepare the signal for ML feature extraction.  

Signals are first divided into 5-second non-overlapping segments, then features extracted for 

each of the 5-seconds portions of the signal.  To give an example of a feature calculation, the 

computation of average step time is summarized below. 

To compute the average step time metric, we initially found the peaks of the accelerometer 

axis with the largest magnitude. Only those peaks that are greater than a minimum peak height 

(MPH) are considered a step. MPH is calculated by the following:  

𝑀𝑃𝐻𝛼 = 𝑀𝑎𝑔𝛼 + σ𝛼    

where σ𝛼    is the standard deviation of 𝛼. 

 

 Figure (3.5a) shows a sample of the accelerometer and gyroscope signals on the three axes 

after preprocessing, smoothing, and removing the gravity component. Figure (3.5b) shows the 

peaks detected, which are used to estimate the steps for this walking segment. Our 

methodology does not require the passing of the signal through filters. Figure (3.5c-d) shows 

the signal components and magnitudes. 

 

(3.5a) Acceleration 3D signal                  (3.5b) Acceleration Magnitude and gait peak detection. 
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(3.5c) Rotation 3D signal       (3.5d) Rotation Magnitude 

 

Figure 3.5: Acceleration and Rotation signals and gait peak detection 

3.3.2 Cycle-Based Segmentation 

            One of the issues of the mPower dataset is that participants' compliance with the 

Smartphone app varied from one participant to another. Also, the correct positioning of the 

Smartphone in the participants’ front pockets could not be verified. Consequently, the 

resulting walking records had gait and non-gait data. Therefore, as our goal was to analyze 

data for periods when the participants walked, it was essential to identify and extract gait 

cycles from noisy sensor data. Inspired by Cyclepro [95], we extracted gait segments from 

the time series and split the accelerometer and gyroscope signals into one-stride segments, 

according to the following steps; First,  the signal magnitude was calculated according to 

equation (1). Then  multiple templates were generated. A template, which represents one 

walking stride, is selected based on two consecutive local minima’s of the signal magnitude.  

Multiple templates were selected and then  the top template was chosen by comparing the 

template std (statistical standard deviation) with the std of the total walking signal magnitude. 

Cross-correlation  was calculated between the top templates and the MagNGα signal to 

identify the repetitive walking pattern. Cross-correlation  was calculated based on equation 

(3) below: 

 

 

𝐶(𝑖) =
∑ 𝑀𝑎𝑔𝑡(𝑗)𝑀𝑎𝑔𝑁𝐺𝛼 (𝑖 + 𝑗)

𝑇

𝑗=1

∑ 𝑀𝑎𝑔𝑡(𝑗)2
𝑇

𝑗=1

 
(3) 
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Where 𝑀𝑎𝑔𝑡 is the Template Signal Magnitude. 

The output of equation (3) is normalized and used for detecting the walking strides. First,  a 

window of regular cadence size was superimposed and  the local maxima’s within this 

window was found. Second, within the window,  only the highest maxima were selected and 

the rest of the maxima’s were filtered out. Finally, the final peak  was selected using Otsu’s 

method,  which finds the similarity of the peaks by minimizing the sum of inner variance 

within the peaks and separating the invalid peaks. 

The resulting maxima’s from the final step are used to split Gyroscope and Accelerometer 

signals into 1-Stride segments. Records of valid gait cycles are then sorted, correctly labeled, 

and saved for DL processing. The result was a dataset with gait data segmented into single-

stride segments, each labeled with the time of the walk, before/after medication for PD 

patients, and at-another-time for HC. 

 

3.4 Features Extraction 

From the two calculated magnitudes MagNGα and MagNGω (referred to as 𝑥𝑖 in subsequent 

sections),   the time, frequency, statistical, and wavelet domain features were extracted. After 

pre-processing the data, gait features were extracted using Matlab (Mathworks) from the 

accelerometer and gyroscope data gathered during the walking activity. Sway area features 

were calculated for the gyroscope data.  The extracted features were subsequently combined 

into larger data frames, and multiple datasets were derived and used in PD classification. 

 

 

3.4.1 Time-Domain Features  

Time-Domain features were calculated directly from 𝑥𝑖 as shown in Table (3.3). The table 

shows feature names, descriptions, and definitions. 

 

Table 3.3: Time-Domain features 

Time Domain Features and their use cases for Gait analysis 

S.N Feature Feature definition Description 
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1 Number of Steps Local Peaks The number of steps taken in a given time 

interval  

2 Average Step Time 𝑡𝑖𝑚𝑒

#𝑆𝑡𝑒𝑝𝑠
 

The average time elapsed for each step  

3 Average Cadence #𝑠𝑡𝑒𝑝𝑠

𝑡𝑖𝑚𝑒
 

The ratio of the total number of steps to the 

total time  

4 Skewness* 1
𝑛

∑(𝑥𝑖 − 𝜇𝑥)3

[
1
𝑛

∑(𝑥𝑖 − 𝜇𝑥)2]
3/2

 

Asymmetry of the signal distribution  

5 Coefficient of Variation of 

Step Time 

√1
𝑛

∑(𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑖 − 𝜇𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙)2

𝜇𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙
 

The within-subject standard deviation of 

the stride interval divided by the mean 

stride interval  

6 Average Step Length  
0.084

𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑆𝑡𝑒𝑝𝑇𝑖𝑚𝑒
+ 1.89 The average distance covered by each step  

7 Gait Velocity (
0.084

𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑆𝑡𝑒𝑝𝑇𝑖𝑚𝑒
+ 1.89)

𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑆𝑡𝑒𝑝𝑇𝑖𝑚𝑒
 

The ratio of the total distance covered by 

the total time  

8 Minimum and Maximum 

Difference* 

max(𝑥𝑖) − min (𝑥𝑖) A global maximum of one step minus a 

global minimum of one step averaged over 

all steps of one subject  

9 Root Mean Square* 
√

1

𝑛
∑ 𝑥𝑖

2 
Root Mean Square or quadratic mean is a 

statistical measure  

10 Entropy Rate*  − ∑ 𝑝𝑜𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦𝑢𝑛𝑖𝑞𝑢𝑒 𝑓𝑟𝑒𝑞

× 𝑙𝑜𝑔2(𝑝𝑜𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦𝑢𝑛𝑖𝑞𝑢𝑒 𝑓𝑟𝑒𝑞) 

The uncertainty measure of the signal, and 

the regularity of a signal when it is 

anticipated that consecutive data points 

are related   

11 Sway Area** X.Y, Y.Z, 

X.Z 

𝜋(𝐴𝐵) Area of an ellipse that encloses the 95 

percent confidence 

interval of all observed gyroscope points 

in the XY, YZ, and XZ planes. (A and B are 

the lengths of the semi-major and semi-

minor axes of the ellipse ) 

 

3.4.2 Frequency-Domain Features 

Frequency domain features were calculated after computing the fast Fourier transform (FFT) 

and power spectral density (PSD) as shown in Table (3.4). Frequency domain features were 

subsequently extracted for each walking segment record.  
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Table 3.4: Frequency domain features 

Frequency Domain Features and their use cases for Gait analysis 

12 Harmonic Ratio* ∑ 𝑉𝑖𝑖=1,3,5,…

∑ 𝑉𝑗𝑗=2,4,6,…
 

Harmonic Ratio quantifies the harmonic 

composition of the accelerations for a 

given stride via DFT  

13 Average Power* 𝑡𝑜𝑡𝑎𝑙 𝑝𝑜𝑤𝑒𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑖𝑔𝑛𝑎𝑙

𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑖𝑔𝑛𝑎𝑙
 

The mean of the total power underneath 

the curve of the PSD estimate for a 

signal 

14 The ratio of Spectral 

Peak* (with  Welch, FFT, 

DCT) 

max (𝑝𝑜𝑤𝑒𝑟𝑓𝑟𝑒𝑞)

𝑚𝑒𝑎𝑛(𝑝𝑜𝑤𝑒𝑟𝑓𝑟𝑒𝑞)
 

The ratio of the energies of low and 

high-frequency bands 

15 Signal Noise Ratio* 𝑝𝑜𝑤𝑒𝑟𝑠𝑖𝑔𝑛𝑎𝑙

𝑝𝑜𝑤𝑒𝑟𝑛𝑜𝑖𝑠𝑒
 Power of the whole signal over the 

power of its computed noise 

16 The energy in Band 0.5 to 

3Hz* 
∫ 𝑝𝑠𝑑𝑓

3

0.5

𝑑𝑓 
The energy in a frequency band 

describes components of distinct 

frequencies in the signal, and the 

frequency range is recommended as 0.5 

Hz to 3 Hz  

17 Windowed Energy in 

Band 0.5 to 3Hz* 
∫ 𝑤𝑖𝑛𝑑𝑜𝑤𝑒𝑑 𝑝𝑠𝑑𝑓

3

0.5

𝑑𝑓 
The energy in the frequency band of 5-

second windows with an overlap of 2.5 

seconds; windows from the complete 

signal sequence are averaged  

18 Peak Frequency* max(𝑝𝑜𝑤𝑒𝑟𝑓) The maximum spectral power  

19 Spectral Centroid* ∑ 𝑓 × 𝑝𝑜𝑤𝑒𝑟𝑓
2

∑ 𝑝𝑜𝑤𝑒𝑟𝑓
2

 
The frequency that divides the spectral 

power distribution into two equal parts  

20 Bandwidth* ∑(𝑓 − 𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑙𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑)2 × 𝑝𝑜𝑤𝑒𝑟𝑓
2

∑ 𝑝𝑜𝑤𝑒𝑟𝑓
2  

The difference between the uppermost 

and lowermost frequencies/range of 

frequencies in the signal (Weighted 

Average) 

 

3.4.3 Wavelet-Domain Features 

Wavelet domain features were calculated after calculating the Discrete Wavelet Transform 

(DWT) of the MagNGx signal. Showing in Table (3.5).  

Table 3.5: Frequency domain features 

Wavelet Domain Features and their use cases for Gait analysis 
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21 Wavelet Bandwidth* 𝑐𝐴′ ∗ 𝑐𝐴

(𝑐𝐴′ ∗ 𝑐𝐴 + 𝑐𝐷′ ∗ 𝑐𝐷)
 

The relative energy contribution in a 

time-frequency band  

22 Wavelet Entropy Rate* − ∑ 𝑝𝑜𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦𝑢𝑛𝑖𝑞𝑢𝑒 𝑓𝑟𝑒𝑞

× 𝑙𝑜𝑔2(𝑝𝑜𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦𝑢𝑛𝑖𝑞𝑢𝑒 𝑓𝑟𝑒𝑞) 

Wavelet entropy represents the signal 

disorder in the time-frequency domain 

 

3.4.1 Statistical Features  

Statistical features were calculated directly from 𝑥𝑖 as shown in Table (3.6). The table shows 

feature names, descriptions, and definitions. 

 
Table 3.6: Statistical-domain features 

Statistical Features and their use cases for Gait analysis 

23 Zeroth-Lag Cross-

Correlation Coefficient* 

∑(𝑥𝑖 − 𝜇𝑥)(𝑦𝑖 − 𝜇𝑦)

√∑(𝑥𝑖 − 𝜇𝑥)2 ∑(𝑦𝑖 − 𝜇𝑦)
2
 

The agreement or similarity between 2 

directional acceleration signals  

24 Kurtosis* 1
𝑛

∑(𝑥𝑖 − 𝜇𝑥)4

[
1
𝑛

∑(𝑥𝑖 − 𝜇𝑥)2]
2 

The extent to which the distribution of 

signal amplitudes lies predominantly on 

the left of the mean amplitude 

25 Standard Deviation* 
√

1

𝑛
∑(𝑥𝑖 − 𝜇𝑥)2 

Measure for signal spreading, defined as 

the square of standard deviation 

 

 

3.4.2 Lifestyle Features 

Lifestyle features were extracted directly from the mPower dataset surveys. Those features 

are shown in Table (3.7).  

 
Table 3.7: Lifestyle features extracted 

Lifestyle Features and their use cases for Gait analysis 

26 

GELTQ.1a 

The number of times the participant performed strenuous exercise for more than 15 

minutes over the past week. 

27 

GELTQ.1b 

The number of times the participant performed moderate exercise for more than 15 

minutes over the past week. 

28 

GELTQ.1c 

The number of times the participant performed minimal effort exercise for more than 

15 minutes over the past week. 

29 Smoked Ever smoked? (True/false question). 

30 Age Participant’s age (a number in years). 
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31 Years. Smoking Number of years participant has smoked (a number) 

32 Packs.per.day The number of packets smoked per day. 

32 Gender Female/male 

 

 

3.5 Features Selection 

Feature selection is the process of minimizing the number of input variables when developing 

a predictive model. Having irrelevant features can increase the training time and degrade the 

models’ overall performance. Limiting the model learning to the relevant features only,  

reduces the computational cost,  overfitting, and  training time. After feature extraction, we  

performed ML-based feature selection, due to its advantages as explained in the sections 

below. 

 

3.5.1 Statistical Feature selection 

Statistical-based feature selection involves evaluating the relationship between input variables 

and the target variable (or label) using statistical measures and selecting those variables that 

have the strongest relationship with the label. These methods can be fast and effective when 

the relation between input variables and the label is linear and predictive. However, statically 

feature selection does not do well when the relation is non-linear. Other feature selection 

mechanisms will be used in that case. 

 

3.5.2 Machine learning-based Feature selection 

We established which features  had statistically significant correlations with the MDS-UPDRS 

surveys and quantified the level of walking anomalies while patients walked for 30 seconds in 

a straight line. The walk data were labeled using participant self-assessments of their walk, 

which were used as labels for ML models. In constructing a decision tree, the importance of 

each feature is calculated by the decrease in the prediction error (mean squared error) and the 

increase of information gain, when the decision tree is split by the feature variable. 

 

Figures (3.6-3.8) below show the degree of importance of the selected features with and 

without consideration of lifestyle features. 
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From Figure 3.6, the entropy rate is the most important feature for differentiating the walking 

balance severity, The mean of entropy rate decreases with the increase in gait severities due to 

the irregularity of the walking signal associated with PD patients, which was captured by the 

accelerometer. This finding agrees with the results of our prior work. As a demographic 

feature, age supersedes any calculated gait feature, which agrees with the findings in prior 

work [90] and [96]. However, the effect observed in this study is not the effect of aging on 

walking balance but is mostly a result of PD complications, as we address further in the 

discussion section.  

 

Shaking and tremor can be inferred from gait features [73]. However, most prior studies were 

based on a limited number of participants, as explained in Table (2.7). Using data from 

participants in the mPower dataset,  the most important features that discriminate the level of 

shaking/tremor were identified in Figure (3.7). We noticed that lifestyle features are strongly 

important in classifying shaking/tremor. We also noticed that multiple gyroscope features are 

highly important in predicting shaking/tremor.   

 

Freeze of gait (FoG) has been studied extensively, and detection of FoG using smart sensors 

is possible [67,71]. Previous studies were based on a small number of participants and did not 

study the effect of lifestyle features and sway area as a gait feature. We were able to 

discriminate the severity of FoG reported by PD patients. We noticed that both the 

accelerometer and gyroscope features are highly predictive of FoG, as shown in Figure 3.8.  
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(3.6a) Features by Importance for Walking Balance including lifestyle features 

 

(3.6b) Features Importance for Walking Balance 

Figure 3.6: Features Importance – Walking Balance 
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                            (3.7a) Features by Importance for Shaking/Tremor including Lifestyle 

 
   (3.7b) Features Importance for Shaking/Tremor  

Figure 3.7: Feature Importance – Shaking/Tremor 
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(3.8a) Features by Importance for FoG including Lifestyle 

 
  (3.8b) Features Importance for FoG  

Figure 3.8: Feature Importance – FoG 
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3.6 Encoding Walking Signals as Images 

The main reason behind the boom of DL models is the success of computer vision and image 

classification applications. To leverage the development brought by computer vision models, 

we encoded the walking signal into an image format. There are multiple ways we considered 

to covert time-series to an image including; color-coded spectrogram (CCS), Markov 

Transition Field (MTF), and Gramian Angular Field (GAF).  We choose GAF due to its 

impressive results for different time-series datasets [97]. 

Given a Time series  {𝑥1, 𝑥2 , . . . , 𝑥𝑛}, GAF can be calculated by first normalizing the signal 

using the equation:  

 �̃�𝑖 =
( 𝑥𝑖 − min (𝑥𝑖)) + ( 𝑥𝑖 − max (𝑥𝑖))

(max(𝑥𝑖) −  min (𝑥𝑖))
 

From the normalized time series  and the time stamp values 𝑡𝑖 we can calculate the polar 

representation using the equation:  

{
ϕ = arccos( �̃�𝑖) , −1 ≤   �̃�𝑖  ≤ 1, �̃�𝑖  ∈  �̃�

𝑟 =  
𝑡𝑖

𝑁
,   𝑡𝑖 ∈ ℕ                                                       

 

Where the time series consists of 𝑁 timestamps 𝑡𝑖. The resulting map on the polar coordinates 

is unique and reversible for each time series. The polar representation also preserves the 

absolute temporal relations, so that we will not lose these temporal patterns when converting 

the walking signal. To capture the correlation between different time intervals the gram matrix 

is calculated according to the following equation: 

G = [

cos(ϕ1 + ϕ1) ⋯ cos(ϕ1 + ϕ𝑛)

⋮ ⋱ ⋮
cos(ϕ𝑛 + ϕ1) ⋯ cos(ϕ𝑛 + ϕ𝑛)

] 

Figure (3.9) below shows the GAF conversion of the 10-Strides walking signal and its 

equivalent polar representation. All the selected participants' walks were encoded to images 
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using the above GAF encoder and made available for further processing by DL image-

classification models.  

 

Figure 3.9: GAF for a walking signal and the corresponding polar representation 

 

 

3.7 Transfer Learning 

 

Transfer Learning (TL) is a machine learning method where a pre-trained baseline model can 

be reused as the starting point for a second model on a new ML problem Figure (3.10). TL 

allows repurposing the trained model, which is often trained on a large amount of data,  on a 

new task as an optimization that allows rapid progress when modeling the second task.  

 

Figure 3.10  Transfer Learning 
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TL helps with solving ML problem with limited data, whereby applying transfer learning to 

a new task, one can achieve significantly higher performance than training with only a small 

amount of data. 

 

In image classifications, researchers prefer to start from a pre-trained model that already 

knows how to classify objects and has learned general features like edges, shapes in images, 

than training a model from scratch. ResNet, AlexNet, and Inception are typical examples of 

models that have the basis of TL, therefore they are used as a baseline models for TL. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://www.v7labs.com/blog/image-classification-guide
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CHAPTER 4 

MACHINE LEARNING GAIT ANALYSIS  
 

  In this chapter, we present the prediction of PD gait aspects based on 

supervised ML classification using hand-crafted features. The overall methodology that we 

followed is illustrated in Figure (4.1). From the accelerometer and gyroscope sensor data,  

statistical, time, wavelet, and frequency domain features were extracted, in addition to other 

lifestyle features that were derived directly from participants’ survey data. Supervised 

classification experiments were conducted using 10-fold cross-validation and  the model 

precision, accuracy, and area under the curve (AUC) were measured and reported. 

 

Figure 4.1: Flow Diagram for data collection, feature extraction, and classification 

 
 

4.1 MODEL EVALUATION  
 

To ensure efficient use of all the data,  supervised classification experiments was performed 

using 10-fold cross-validation and measured the model precision, accuracy, and area under the 

curve (AUC). Cross-validation was performed by partitioning data into 10 disjoint folds at the 

population level. For each fold,  the model was trained using the out-of-fold observations. Then  

the model performance was assessed using the in-fold data. The average performance metrics 

were  calculated over all folds. Cross-validation requires multiple fits but gives a good estimate 

for the predictive accuracy of the final model trained and tested with all the data.  

 

4.1.1 EVALUATION METRICS 

 

 

• Accuracy: The percentage of correctly predicted samples over the total number of samples. 

Accuracy formulated as 
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• Precision: Precision is the fraction of the correctly predicted samples, to the total positive 

predicted samples.  

Precision measures the model's robustness against false positives. 

 

 

 

• Recall (Sensitivity): Is the fraction of the correctly predicted positive samples to the total 

positive samples in the Class. Recall gives an idea of the classification misses. 

 

 

Area Under Curve (AUC): is the area under the curve for the plot of sensitivity over 1- 

specificity (True Negative / [False Positive +True Negative] ) across thresholds 

 

4.2 INFERRING MDS-UPDRS 
 

Using only the selected features shown in Figures (3.6-3.8), we investigated multiple ML 

algorithms families, including Decision Trees (DT), Discriminant Analysis (DA), Support 

Vector Machines (SVM), k-Nearest Neighbors (KNN), Ensemble Classifiers (EC) including 

Random Forest (RF) and Logistic Regression (LR) for classifying the walking balance, 

tremor/shaking and freezing of gait of 152 PD and 304 HC subjects. For walking balance,  

entropy rate and cross-correlation were found to be the best features for classifying the walking 

balance severity, with p-values of 0.2792094 and 2.481161e-07, respectively. Note that a lower 

p-value does not necessarily guarantee better ML performance. [124] 
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4.2.1 Walking Balance (WB) 

Random forest is the best classifier for distinguishing between walking balance severities, 

with an accuracy of 93%, precision of 92%, and AUC of 0.97. Table (4.1) compares the 

performance, accuracy, and AUC of each classifier type. 

Table 4.1: Walking Balance (WB) Evaluation 

4.2 Walking Balance: Precision Accuracy AUC 

Accelerometer, 

Gyroscope  

Posturography and 

Lifestyle Features 

Random Forest 92% 93% 0.97 

Bagged Trees 88% 90% 0.95 

Cubic SVM 72% 81% 0.92 

Weighted KNN 63% 82% 0.86 

Logistic Regression 71% 72% 0.78 

Fine Tree 75% 83% 0.88 

Quadratic 

Discriminant 

71% 71% 0.75 

 

4.2.2 Shaking Tremor (ST) 

For shaking/tremor,  MinMaxRate and EntropyRate were found to be the best features for 

classifying severities. Bagged trees  was the best classifier for distinguishing shaking/tremor 

severity with an accuracy of 95%, precision of 95%, and AUC of 0.92. as shown in Table 

(4.2) below. 

Table 4.2: Tremor Evaluation 

4.3 Shaking Tremor: Precision Accuracy AUC 

Accelerometer, 

Gyroscope  

Posturography and 

Lifestyle Features 

Random Forest 85% 83% 0.93 

Bagged Trees 95% 95% 0.92 

Cubic SVM 63% 68.8% 0.86 

Weighted KNN 62% 68% 0.77 

Boosted Trees 71% 68% 0.83 

Fine Tree 60% 72% 0.87 

Linear 

Discriminant 

48% 61% 0.74 
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4.2.3 Freeze of Gait (FoG) 

For FoG, features including entropy rate, MinMaxRate, and gyroscope energy successfully 

discriminated FoG severity. Table (4.3) shows that Bagged Trees  was the best classifier for 

distinguishing FoG severity with an accuracy of 98%, precision of 96%, and AUC of 0.98. 

Table 4.3: FoG Evaluation 

4.4 Freeze of Gait (FoG): Precision Accuracy AUC 

Accelerometer, 

Gyroscope  

Posturography and 

Lifestyle Features 

Random Forest 92% 96% 0.90 

Bagged Trees 96% 98% 0.98 

Fine Gaussian 

SVM 

92% 93% 0.96 

Weighted KNN 91% 92% 0.95 

Boosted Trees 90% 91% 0.93 

Fine Tree 93% 94% 0.95 

Linear 

Discriminant 

89% 87% 0.71 

 

4.3 Classifying Patients and Controls 

 

One of the goals of our work is to be able to discriminate PD patients from healthy controls 

(HC) based on gait features. Using our selection of of 152 PD and 304 HC subjects,  ML 

analysis was performed using the subject's response to the question “Have you been 

diagnosed by a medical professional with Parkinson disease?” on their enrolment 

questionnaire [APPENDIX A] . This question was answered one time when participants filled 

out a demographic survey to report whether they had ever been diagnosed with PD.  

Cross-validation was performed by partitioning data into 10 disjoint folds at the population 

level. Six ML algorithms were used to classify participant gait features, namely, bagged trees, 

fine Gaussian SVM, subspace KNN, boosted trees, fine trees, and linear discriminant. Entropy 

rate and MinMaxDiff were the top features to successfully discriminate HC from PD. Random 

forest was the best for discriminating between PD and HC, with an accuracy of 95%, precision 

of 94%, and AUC of 0.99.  
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To isolate the effect of lifestyle and demographic/age features on model performance, we ran 

the ML classification algorithms using gait features while excluding lifestyle features, and the 

results of our classifiers were significantly degraded. For the walking balance, the best 

classifier results were random forest (Acc 77%, AUC 0.71). Figure (4.2) shows the effect on 

the total performance of the model and how the result deteriorated. For shaking/tremor, the 

accuracy of the bagged trees models degraded to Acc 72% and AUC 0.76, as shown in Figure 

(4.3). For FoG, the accuracy of bagged trees slightly degraded to Acc 91% and AUC 0.92 but 

was still accurate. It can be noted from Figure (4.4) how AUC slightly deteriorated when 

lifestyle features were excluded. 

 
(4.2a) AUC for Walking Balance with lifestyle features.   (4.2b) AUC for Walking Balance without lifestyle features. 

Figure 4.2: Walking Balance AUC 

 

(4.3a) AUC for Shaking/Tremor with lifestyle features.    (4.3b) AUC for Shaking/Tremor without lifestyle features. 

Figure 4.3: Shaking/Tremor AUC 
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(4.4a) AUC for FoG with lifestyle features.                  (4.4b) AUC for FoG without lifestyle features. 

Figure 4.4: FoG AUC 

 

Table 4.4: Comparison of ML algorithms for PD Patients vs. HC Classification 

Classifier details Precision Accuracy AUC 

Accelerometer, 

Gyroscope  

Posturography and 

Lifestyle Features 

Random Forest 94% 95% 0.99 

Bagged Trees 92% 93% 0.95 

Fine Gaussian 

SVM 

88% 88% 0.96 

Subspace KNN 91% 90.4% 0.92 

Boosted Trees 84% 90% 0.97 

Fine Tree 90% 91.2% 0.96 

Linear 

Discriminant 

83% 85.5% 0.91 

 

 In table (4.4) above, a comparison of the performance, accuracy, and AUC for the classifiers is 

presented. In this comparison, lifestyle features helped to significantly improve the result of 

classification. Specifically, the false positive rate is significantly higher (worse AUC curve) if 

lifestyle features are not included. Removing the lifestyle features led to a degradation of the 

classification results. Entropy rate and MinMaxDiff remained the top features. However, the 

accuracy of the random forest model deteriorated to Acc 82% and AUC 0.88. Figure (4.5) below 

shows the top 20 features selected for discriminating between PD patients and HC with and without 
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lifestyle features. Note that lifestyle features are less important in differentiating PD patients from 

HC. 

 

(4.5a) Feature Importance for PD Patients vs HC (including lifestyle) 

 

 

 

(4.5b) Feature Importance for PD Patients vs HC (no lifestyle) 

Figure 4.5: Feature Importance of PD vs HC 
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The AUC also decreased significantly when lifestyle features were excluded. Figure (4.6) 

below shows the AUC for HC/PD classification with and without lifestyle features. 

 

 

 
(4.6a) AUC for HC/PD Patient Classification with lifestyle features.                   (4.6b) AUC for HC/PD Patient Classification 

 

Figure 4.6 : AUC for PD patient vs HC classification with and without lifestyle features 

 

 

4.4 Improving Model Accuracy with Ensemble methods 

We attempted different variations of the ensemble random forest in order to tune its parameters. 

Random forest is composed of multiple estimators (decision trees) and aggregates their output 

to return the final ensemble result. If we have a classification problem with a data set in the 

form of (𝑋1,𝑌1), … … . (𝑋𝑛,𝑌𝑛), where X is a d-dimensional predictor variable and Y is a 

univariate response, to predict Y with J classes,  𝑌𝑖 ∈ {0, 1, . . . , J − 1} , the target function of 

interest is Ƥ[𝑌 = 𝑗|𝑋 = 𝑥] ( 𝑗 =  0, 1, . . . , J − 1)  

 

Random forest works by drawing 𝑎𝑛 observations (𝑋′1,𝑌′1), … … . (𝑋′
𝑛,

𝑌′
𝑛)  at random with 

replacement from the original data set. These drawn observations are the only observations 

considered in growing M different randomized trees to obtain different estimates  

𝑔1(·), 𝑔2(·), 𝑔3(·) … 𝑔𝑀(·).  In R random forest implementation, this number of (trees in the 
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forest) is represented by (ntree). The resulting estimator functions can be written as 

follows: 

𝑔𝑛 (·) =  ℎ𝑛,((𝑋′1,𝑌′1), … … . (𝑋′𝑛,𝑌′𝑛))(·) 

where the function ℎ𝑛 (. )  defines the estimator as a function of the dataset.  

 

At each cell of each tree, a split is performed based on several variables mtry has been chosen 

randomly among the overall number of variables (p). The construction of individual trees is 

stopped when each cell contains less than nodesize points. 

 

For any query point  𝑥 ∈ 𝑋𝑖 , each tree predicts Yi by growing the tree and making the final 

estimation that only depends on the 𝑎𝑛 preselected data points. Because the overall decision is 

obtained via a majority vote among the classification trees, we can construct an ensemble-

based function estimate gens (·) by taking linear combinations of the individual estimates: 

𝑔𝑒𝑛𝑠(·) = ∑ (𝑐k𝑔k) )
𝑀

𝑘=1
 

For ensemble bagging and [98] original random forests, the linear combination coefficients 

𝑐k =1/M are averaging weights, which also result in variance reduction.  

 

Tuning the forest parameters might result in a computational burden, particularly for large 

datasets with hundreds and thousands of observations and variables. Due to the manageable 

size of this study dataset, we tuned the following forest parameters with an affordable 

computational cost: 

1- Number of trees to grow (ntree, _Acc) 

2- Number of variables randomly sampled at each split (mtry_Acc) 

3- Maximum number of terminal nodes (mx_Acc) 

4- Minimum size of terminal nodes (nodeSize_Acc). 

 

Figure (4.7) shows different parameters of the random forest ensemble method and their effects 

on the model performance. When addressing classification problems, it is usually 

recommended to set nodesize to 1, and mtry to  √(p)  [99]. 
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Extensive discussion exists in the literature relative to the influence of mtry on the overall 

performance of the model. [100] show that different values of mtry did not affect the 

classification rates of their model and that other performance metrics (sensitivity, specificity, 

kappa, and ROC AUC) were stable under different values of mtry. However, [101] show that 

mtry had a strong influence on predictor variable importance estimates. Additionally, [102] 

claims that the default value of mtry is too small. Therefore, their approach  was to make 

mtry as large as possible (limited by available computing resources). We do not fully agree 

with the last finding, and we noticed that the overall accuracy improved significantly by 

increasing mtry. However, the relationship is not linear because the accuracy was maximized 

when mtry is 60% and 70% of p. By default, the maximum number of leaf nodes is set to the 

maximum possible. We experimented with limiting this parameter mx, which led to a negative 

impact on the overall accuracy.  

It is clear that the forest variance decreases as M grows. Thus, more accurate predictions are 

likely to be obtained by choosing a large number of trees (ntree). The computational cost of 

increasing a forest increases linearly with M, and thus a good choice results from a trade-off 

between computational complexity and accuracy. Finally, the default value of the parameter 

nodesize is 1 for classification and 5 for regression. These values are often reported as 

good choices [103], and even though this selection is not supported by solid theory, our results 

agree with those findings. 
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Figure 4.7: Random Forest Parameter Tuning 

 

4.5 Top Features 

The ensemble model uses decision trees with high variance and low bias as base learners. At 

each node of a decision tree, the split feature is found based on information gain (I.G.) or the 

more computationally low-cost Gini impurity reduction method. The information gain due to 

a feature summed across all the levels of decision trees determines its feature importance. 

Random forest and bagged trees are composed of multiple decision trees, and thus the 

importance of a feature is the normalized sum of I.G. delivered by that feature across all trees. 

The output of these separate trees is aggregated and returned as the final ensemble result. 

 

The correlation coefficient is commonly used to evaluate the degree of linear association 

between two variables. However, it can be shown that a correlation coefficient close to one 

might also be obtained for a clear curved relationship, depending on the nature of the ML 

algorithm used, and the selection of features based on correlation can be misleading. We found 

that the selection of features based on the ML ensemble led to a set of features with high 
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predictive power when used with nonlinear algorithms.  Some of our top features do not have 

a linear relationship with the response variable. For example, age does not correlate linearly 

with the label, as shown in Figure 4.8a. Prior studies have found that PD incidence rates for 

both men and women increased rapidly after the age of 60 years [90]. Based on our normalized 

age feature, elderly people, in general, have higher severities, but as Figure (4.8a) shows, 

severity does not necessarily increase with age. 

  

In contrast, top gait features (entropy rate and minMaxDiff) correlate linearly with gait 

severities. Figure (4.8b) shows that minMaxDiff always increased as gait severities worsened, 

which occurs due to differences in step swing that are captured  by accelerometer peaks. The 

mean of entropy rate (Figure (4.8c)) decreases with the increase in gait severities due to the 

irregularity of the walking signal associated with PD patients, which is captured by the 

accelerometer. Please note that the gait features in Figure (4.8) are normalized at the 

participant level, whereas age is normalized at the population level.  
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 (4.8a) Age vs. Severity of Gait anomalies. 
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 (4.8b) MinMaxDiff vs. Severity of Gait anomalies. 
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(4.8c) Entropy rate vs. Severity of Gait anomalies. 

Figure 4.8: Top Features vs. Severity of Gait anomalies 

 

  

In our analyses, we found that the gyroscope sway areas contributed significantly to the 

classification of walking balance, as shown in Figure (3.6a), but it had only minor contributions 

to shaking/tremor classification and no contribution to FoG classification. The accelerometer 

sensor and features were more useful in classifying shaking/tremor and FoG. Gyroscope-based 

analyses of sway can supply a powerful tool for early clinical trials and for monitoring the 

treatment efficacy for balance disorders in PD patients. Gyroscope sway area calculation can 

also be used in the online assessment of MDS-UPDRS walking balance (MDS-UPDRS 2.12). 
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4.6   Chapter Summary 

 

Remote measurement of gait has become an important tool for monitoring the progression of 

PD. Although measurements reduce hospital visits and offer convenience to both PD patients 

and the healthcare provider, the validity of these measurements compared with assessments in 

the clinic continues to be a challenge. In our work, we addressed the unique gait characteristics 

of PD and inferred the stage of each PD gait modality through machine learning classification 

of smartphone sensor data collected by a mobile health application. This work contains three 

main contributions in this regard: (1) Combination of time, frequency, and statistical features 

with sway area and lifestyle features to remotely infer the level of PD walking modalities for 

a large set of participants; (2) identification of the most important features that offer deeper 

ailment understanding and classification of PD gait modalities; and (3) determination of the 

best ML algorithm for analyzing each gait modality and the one that best discriminates PD 

patients from HC. Although the classification results were affected by the subjective nature of 

PD labels assigned by patients based on their responses to the MDS-UPDRS questions, we 

were able to demonstrate with a relatively large number of participants that remote and 

automatic PD patient classification based on sensor activity data can supply objective 

assessments of PD-related gait patterns and severity of gait anomalies, which ultimately has 

the potential to improve remote healthcare for PD patients. 
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CHAPTER 5 

DEEP LEARNING GAIT ANALYSIS (DEEPAGAIT) 
 

 In this chapter, we present the prediction of PD gait aspects based on 

DL approach. The overall methodology that we followed is illustrated in Figure (5.1). From 

the accelerometer and gyroscope sensor data we extracted features using DeePaGait; our DL 

multi-layer Conventional Neural Network (CNN). DeePaGait operates on 1Dimensional 

convolution filters to classify 30 seconds of walking data into one of five severity levels 

(Normal, Slight, Mild, Moderate, Severe). We conducted supervised classification experiments 

and measured the model precision, accuracy, Recall, and F1-score. 

 

 

 

 

Figure 5.1 : Flow Diagram for data collection, feature extraction, and classification using DeePaGait 

 

5.1 DEEPAGAIT NETWORK ARCHITECTURE 
 

Our DeePaGait network consists of the feature extraction layers followed by fully-connected 

and classification layers, as shown in Figure (5.2).  Feature extraction consists of 3 sets of 1D 

convolutions layers, the first two sets are followed by pooling layers, to downsize the feature 

map and reduce model complexity. The last set is followed by a fully-connected (FC), and 

softmax classification layer. Two dropout layers have been added to reduce the model 

overfitting and to improve the model’s overall performance. Table (5.1) lists all of the 

DeePaGait layers, the input size of each layer, and the number of trainable parameters. “None” 

refers to variable batch size. We set an input image patch size of 128 in our classification 

experiments.  
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Figure 5.2 : DeePaGait Network Architecture 

 

 

Table 5.1: DeePaGait CNN structure and parameters 

Layer (type)                 Output Shape               Param #    

CONV-1 (Conv1D)              (None, 900, 256)           7936       

CONV-2 (Conv1D)              (None, 898, 64)            49216      

Pool-1 (MaxPooling1D)       (None, 449, 64)      0          

dropout_1 (Dropout)          (None, 449, 64)      0        

CONV-3 (Conv1D)              (None, 447, 64)            12352      

CONV-4 (Conv1D)                      (None, 445, 64) 12352     

Pool-2 (MaxPooling1D)        (None, 222, 64)                0      

CONV-5 (Conv1D)              (None, 220, 64)            12352      

CONV-6 (Conv1D)             (None, 218, 64)            12352      

Flatten_1 (Flatten)          (None, 13952)              0         

dropout_2 (Dropout)          (None, 13952)           0          

FC (Dense)              (None, 32)                 446496     

Softmax Classification (Dense)                                                                  (None, 5)                  165        

Total params: 553,221 

Trainable params: 553,221 

Non-trainable params: 0 

 

5.2 EVALUATION  
 

In our work [62,63], we were able to discriminate PD patients from HC based on their gait. 

We also successfully classified gait severity using Traditional ML models based on 

handcrafted and lifestyle features. By using DL analysis, we extend our work to study the 
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most challenging gait symptoms of PD, which are: Walking Balance, Shaking, and Freeze of 

Gait. In the following sections, we present the results of our innovative DeePaGait algorithm, 

and then we compare DeePaGait performance to several variations of LSTM deployments, in 

addition to the state-of-the-art pre-trained, CNN image-classification networks. To evaluate 

the model performance, the following widely-used metrics were adopted: 

 

5.2.1 EVALUATION METRICS 

• Accuracy: The percentage of correctly predicted samples over the total number of samples. 

Accuracy formulated as 

 

 

• Precision: Precision is the fraction of the correctly predicted samples, to the total positive 

predicted samples.  

Precision measures the model's robustness against false positives. 

 

 

 

• Recall (Sensitivity): Is the fraction of the correctly predicted positive samples to the total 

positive samples in the Class. Recall gives an idea of the classification misses. 

 

 

F1-score: is the weighted average of Precision and Recall, which takes false positives and 

false negatives into account 
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5.3 INFERRING MDS-UPDRS  
 

Based on 456 walking records from 152 PD participants, we conducted a supervised 

classification experiment by training the DeePaGait network on 90% of the data and testing 

on the remaining 10%. Our results including performance metrics are presented in Table (5.2). 

It can be noticed that DeePaGait outperformed traditional ML classifiers by at least 6% for 

the WB problem and 4% in the case of Shaking/Tremor classification.  

 

Table 5.2: Performance metrics of DeePaGait 

 Precision Recall F1-Score Testing Accuracy 

Walking Balance 0.991 0.992 0.993 0.991 

Shaking/Tremor 0.984 0.981 0.983 0.984 

Freeze of Gait 0.983 0.981 0.982 0.982 

 

It can be seen from Figure (5.3) that DeePaGait is very adaptive to the gait classification 

problem compared to traditional ML [63], that is because: First, the mPower gait signals are 

non-linear and very noisy, which made the classification problem very challenging for ML. 

DeePaGait could adapt to the gait signals because it uses multiple layers with adaptive non-

linear activation functions. Second, the depth of the network adapted to the data volume, and 

that reduced the effect of overfitting. Last, hand-crafted features are limited in their ability to 

extract very discriminative features without overfitting the training data. 
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Figure 5.3: DeeePaGait Accuracy per epoch 
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5.4 Comparison of DeepaGait to Baseline Models  

5.4.1 Image-based Models Evaluation    

Classifying images on pre-trained DL models has become increasingly common. Those 

models can help the network learn the general-purpose features based on previous training on 

huge datasets. Therefore,  pre-training saves building a model from scratch and can 

significantly improve the performance of medical imaging diagnosis [104 -106]. Examples of 

such pre-trained models include ResNet50, Inception, SqueezeNet, and EfficientNet, which 

we utilized as baselines for comparison with DeepaGait..  

 

 ResNet50 

ResNet-50 is a 50-layers deep CNN. The pretrained version of the network is trained on more 

than a million images from the ImageNet database [107]. ResNet50 uses residual blocks and 

skip connections to combat the problems of vanishing gradient and network degradation. The 

pre-trained network can take input images of size, 224x224, and can classify the image into 1 

of 1000 classes. The network has learned a rich feature representation for a wide range of 

images, which makes It a perfect candidate for many image classification problems such as 

the classification of Alzheimer’s disease [125] , Breast cancer fiagnosis [126] and human gait 

identification [127]. 

 

  Inception  

Inception-v3 is a 48-layers deep CNN, that is based on the original work by Szegedy, et.al 

[108]. The main improvement that Inception network brings is the use of inception blocks. 

These involve convolving the same input with multiple filters  and concatenating their results.  

Inception-v3 was pretrained on million images from the ImageNet database [107] and attained 

an accuracy greater than 78.1%. The model learned rich feature representation through it is 

building blocks that included convolutions, average pooling, max pooling, concatenations, 

dropouts, and fully connected layers. We considered the Inception-V3 network because it was 

able to classify images of size 299x299 into one of thousand classes. 
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 EfficientNet 

EfficientNet is a 237 layers CNN that takes images of the size 224x224. EfficientNet was 

trained on a million images from the ImageNet database [107] and fine-tuned on new datasets. 

The base EfficientNet-B0 network imploy the inverted bottleneck residual blocks to reduces 

the number of parameters and matrix multiplications. The pretrained EfficientNet was applied 

(as a TL) to various datasets, the results show that EfficientNets consistently achieve better 

accuracy parameters than existing CNN Models [109]. 

 

2.5.2.3 Transfer Learning (TL) Approach  

To compare the performance of our DeePaGait model to the state-of-the-art retrained models, 

we slightly modified those models and evaluated them using our dataset of GAF images.  the 

overall TL approach is shown in Figure (5.4) and outlined in the steps below: 

 

 

 

 

 

 

 

 Step1: All Accelerometer and Gyroscope signals were encoded to images representation 

using the GAF method. 

Step2: Data were randomly split into 90% training set and 10% as a test set. 

Step3: The last CONV, FC, and classification layers were adapted to match our 5 classes' gait 

severity data.  

Step4: The network was trained.  

Step5: The network was evaluated on the test set and the performance metrics reported.  

Using the method of TL shown in Figure (5.5), we created transferred pre-trained models, 

trained, and tested ResNet50, Inception, and EfficientNet networks. 

Replace Final 
layers 

Resize input images 
and train the 

network    

Predict Accuracy 
on the test set 

Load Pre-Trained 
Network 

Figure 5.4 : Illustration of the mechanism for TL 
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Figure 5.5 : TL using the Pre-trained model 

 

Using the GAF  sensor image representation, we converted the gait signals into images. We 

then investigated some of the top image-classification networks using the method of TL. 

Details of the results are presented in table (5.3) and figure (5.6) shows that DeePaGait 

outperformed the ResNet-50, EfficientNet, and Inception-V3 pre-trained image-based 

models. The table compares the TL model’s results to DeePaGait in terms of network depth, 

the memory size needed for training, and the model complexity represented by the number 

of trainable parameters. In all of our gait classification experiments, the Inception-V3 model 

was the best performer, with an accuracy higher than 84% in the WB and ST problems, and 

an accuracy of 92.5% for the FoG classification.  

Table 5.3:  Comparison of Pretrained TL models and DeePaGait 

 Model Depth 

(layers) 

Parameters  

(millions) 

Size 

 (MB) 

Training 

Accuracy 

Testing  

Accuracy 

Accuracy  

difference(pp

*) 
W

a
lk

in
g
 

B
a

la
n

ce 
DeePaGait 7 0.55 0.98 0.993 0.991 0.2 

ResNet-50 50 25.6 96 0.978 0.746 23.2 

EfficientNet 82 5.3 20 0.994 0.689 30.5 

Inception-V3 48 23.9  89 0.986 0.845 14.1 

S
h

a
k

in
g

 

/T
rem

o
r 

DeePaGait 7 0.55 0.98 0.986 0.984 0.2 

ResNet-50 50 25.6 96 0.977 0.713 26.4 

EfficientNet 82 5.3 20 0.992 0.651 34.1 

Inception-V3 48 23.9  89 0.993 0.863 13 

F
reeze o

f 

G
a

it 

DeePaGait 7 0.55 0.98 0.987 0.982 0.5 

ResNet-50 50 25.6 96 0.993 0.883 11 

EfficientNet 82 5.3 20 0.992 0.848 14.4 

Inception-V3 48 23.9  89 0.993 0.925 6.8 

* (percentage points) 

Input Images Layers of retrained Model Replaced Layers 

 

Moderate 

Severe 

Normal 

Mild 
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 (5.6a) TL Accuracy per epoch for WB 

 

 

 

 

 

 

 

(b) WB-ResNet-50 

(a) WB-Inception-

V3 

(d) ST-Inception 

(c) WB-EfficientNet  
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 (5.6b) TL Accuracy per epoch for ST 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(f) ST- EfficientNet 

(g) FoG-Inception-V3 

(e) ST-ResNet-50 

(h) FoG-ResNet-50 
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 (5.6c) TL Accuracy per epoch for FoG 

Figure 5.6 :  TL Accuracy per epoch 

 

Table (5.3) compares the model overfitting by presenting both the training and testing 

accuracy. The last column shows the difference between Training and Testing accuracies in 

percentage points. We can see that all TL models suffered some level of overfitting, with the 

severity of overfitting increasing with the increase of the number of trainable parameters. 

Figure (5.6) shows that overfitting started on all TL models from the 4th epoch, and continued 

steadily until the end of the training session, for all of the TL models. 

 

5.4.2 LSTM Models Evaluation 

The parallel LSTM network has been investigated recently for Human Activity Recognition 

(HAR) problem and has proven to outperform shallow ML algorithms, Uni-LSTM, and Bi-

LSTM networks [110,111]. Figure (5.7) shows the parallel LSTM architecture that we used, 

it consists of 6 parallel LSTM sub-networks, each sub-network operates on one dimension of 

the 3D Accelerometer and Gyroscope signals. The output of all the sub-networks is combined 

using a concatenation layer and fed to the FC layer followed by a final softmax layer that 

generates the overall class prediction.  

 

(i) FoG-EfficientNet 
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Figure 5.7 : Parallel LSTM Architecture 

 

The deep learning method of the serial CNN-LSTM showed superior performance in the 

problem of gait authentication and human activity tracking [112,113]. Figure (5.8) shows the 

CNN-LSTM architecture we used to compare to our DeePaGait model. The CNN-LSTM 

model consists of CNN layers that work as spatial feature extractors. The extracted features 

are then flattened and fed to the LSTM network that extracts the temporal features just before 

the final classification is done using Fully-Connected (FC) and a Softmax layer. 

 

 

Figure 5.8: CNN-LSTM Architecture used 

 

We investigated the performance of the Vanilla LSTM, parallel LSTM, and CNN-LSTM 

models and compared the performance to our DeePaGait model. Results are shown in Table 

(5.4). From the table, we can see that the proposed DeePaGait model with the 1D CNN 
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architecture allows the best distinction between PD gait severity levels. The F1-score 

similarity for different gait impairments indicates the stability and consistency of the 

DeePaGait algorithm.  

Table 5.4: Comparison of LSTM models to DeePaGait 

 Gait Impairment Precision Recall F1-Score Testing Accuracy 

DeePaGait Walking Balance 0.991 0.992 0.993 0.991 

Shaking/Tremor 0.984 0.981 0.983 0.984 

Freeze of Gait 0.983 0.981 0.982 0.982 

LSTM Walking Balance 0.699 0.574 0.628 0.673 

Shaking/Tremor 0.715 0.456 0.553 0.612 

Freeze of Gait 0.827 0.793 0.809 0.819 

CNN-

LSTM 

Walking Balance 0.955 0.951 0.953 0.952 

Shaking/Tremor 0.965 0.963 0.964 0.966 

Freeze of Gait 0.969 0.969 0.969 0.970 

Parallel 

LSTM 

Walking Balance 0.835 0.819 0.827 0.825 

Shaking/Tremor 0.793 0.776 0.785 0.787 

Freeze of Gait 0.835 0.830 0.833 0.859 

 

CNN-LSTM model is the best of all other models that we studied as shown in Figure (5.9), 

we believe CNN-LSTM performed better because it combines the power of CNN spatial 

features with LSTM temporal features before making the final classification decision. 

However, the CNN-LSTM model slightly overfits the training data as shown in Table (5.5). 

By looking at the two other variations of LSTM, we notice that Vanilla LSTM has low 

performance because the network is missing the required depth, while parallel LSTM learns 

very slowly and significantly overfits on the training set because of the model over-

complexity for the gait analysis problem. 
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Figure 5.9 : Results for LSTM, Parallel LSTM, and CNN-LSTM models 
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It is well known that increasing DL model complexity can make the model vulnerable to 

overfitting, instead of learning discriminative features, the model memorizes the gait 

impairment pattern of the training set. By comparing to LSTM models in Table (5.5) we can 

see that DeePaGait can generalize to the testing set, indicating that our DeePaGait was able 

to learn discriminative features that separate the severities classes of PD gait impairments.  

Table 5.5: Comparison of LSTM models and DeePaGait Overfitting 

 Model Depth  

(layers) 

#Param’s  

(millions) 

size  

(MB) 

Training  

Accuracy 

Testing  

Accuracy 

Difference 

W
a
lk

in
g
 b

a
la

n
ce 

DeePaGait 11 0.55 0.98 0.993 0.991 0.2 

LSTM 3 0.08 0.31 0.689 0.673 1.6 

Parallel 

LSTM 

5 38.4 151.4 0.978 0.825 15.3 

CNN-

LSTM 

9 2.9 11.35 0.991 0.952 3.9 

S
h

a
k
in

g
/ 

T
rem

o
r 

DeePaGait 11 0.55 0.98 0.986 0.984 0.2 

LSTM 3 0.08 0.31 0.629 0.612 1.7 

Parallel 

LSTM 

5 38.4 151.4 0.991 0.787 20.4 

CNN-

LSTM 

9 2.9 11.35 0.994 0.966 2.8 

F
reeze o

f G
a
it 

DeePaGait 11 0.55 0.98 0.987 0.982 0.5 

LSTM 3 0.08 0.31 0.829 0.819 1 

Parallel 

LSTM 

5 38.4 151.4 0.987 0.859 12.8 

CNN-

LSTM 

9 2.9 11.35 0.988 0.970 1.8 
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5.5  Chapter Summary 

DeePaGait is a data-driven neural network model, that explores the inference of PD gait by 

analyzing the patients' smartphone walk data. DeePaGait can distinguish the severity of gait 

aspects based on the smartphone’s acceleration and rotation signals. After experimenting 

DeePaGait on 152 PD patients, we  demonstrated that gait severities can be accurately 

predicted using smartphone sensing of the motor symptoms of PD gait. Our DeePaGait DL 

network was able to classify the severity of Walking-Balance, Shaking/Tremor, and Freeze 

of Gait (FoG), with an accuracy of: 99.1%,98.4%, and 98.2% respectively.  To the best of our 

knowledge, the accuracy of our DeePaGait model surpassed the best-published results 

achieved by prior 1D CNN smartphone models by over 7% [128,129]. Despite the challenges 

of working with a self-labeled, crowdsourced dataset, we were able to demonstrate that gait 

classification based on smartphone sensor data is feasible and has potential value as a 

diagnostic support tool. In future work, we plan to infer the overall UPDRS score based on 

gait, we would also like to experiment DeePaGait on multiple independent datasets, and 

multiple age groups. We are also planning to evaluate DeePaGait in a live deployment in the 

future. 
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CHAPTER 6 

DEEP LEARNING-BASED MEDICATION ADHERENCE (DEE-PA-

MED) 
 

 In this chapter, we present the prediction of medication adherence 

based on DL approach and compare it to the tranditional ML approach. Figure (6.1) presents 

our DL methodology.  The first stage is data mining of the mPower gait records and surveys. 

We processed the mPower data and extracted the relevant survey information and the 3D gait 

signals. Data were then arranged in a usable format. The two main signals were the 

smartphone’s acceleration (from the accelerometer sensor) and rotation (from the gyroscope 

sensor). These are given below: 

α(i) = [αx (i), αy (i), αz (i)] T  (in m/s2)   

ω(i) = [ωx (i), ωy (i), ωz (i)] T (in deg/s) 

where i denotes discrete-time, α indicates acceleration, and ω represents rotation. The sensor 

data corresponding to gait cycles were fed to DeePaMed; a multilayer Conventional Neural 

Network (CNN), crafted for patches of gait strides.  DeePaMed classified 30 seconds of a 

walk as either PD patient “On” vs.  “Off” medication, or if the gait data belongs to an HC. 

We conducted supervised classification experiments and measured the model precision, 

accuracy, Recall and F1-score.  

 

 

 

 

 

 

6.1 DEEPAMED NETWORK ARCHITECTURE 
 

Inspired by prior neural networks-based work by Zou et al [114], we created the CNN 

architecture shown in Figure (6.2). The network consists of the feature extracting layers 

followed by fully-connected and classification layers, as shown in Table (6.1).  Feature 

extraction consists of four convolutions and two pooling layers. While Convolution layers 

generate the features, pooling layers are added to downsize the features map.  
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Figure 6.1  Flow Diagram for data collection, feature extraction, and classification using DeePaMed 
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The mPower study collected data in an uncontrolled environment.  The participant had the 

freedom of positioning the phone in their pocket, which led to an inconsistent axis orientation 

from one participant to another. To consider this, axis independent features were extracted 

individually using one-dimensional filters, enabling the capture of the PD signal variation on 

that particular axis. The overall signal variation is captured by feeding the accelerometer and 

gyroscope signal magnitudes to the network. Following this mechanism, we ensured that every 

spike of PD gait fluctuation was captured and analyzed throughout the 30-sec walk, in chunks 

of N-Strides patches. Axis interdependent features were extracted at a later stage in the 

network, specifically at the Conv4 layer, using 8x1 filters. Convolutional and pooling layers 

are followed by fully connected and classification layers. 

 

 

Table 6.1: DeePaMed CNN structure 

Layer Name  Filter size Filters Feature Map 

Conv1 1x9 32 8x90x32 

Pool1 1x2 N/A 8x45x 32 

Conv2 1x3 64 8x45x 64 

Conv3 1x3 128 8x45x 128 

Pool2 1x2 N/A 8x22x 128 

Conv4 8x1 128 1x22x 128 
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Figure 6.2 : DeePaMed Architecture 
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6.2 EVALUATION METRICS  
 

Based on 760 walking records from 456 participants,  we conducted a supervised classification 

experiment by training the ML algorithms and our DeePaMed network on 90% of the data and 

testing on the remaining 10%. To evaluate modules’ performance, the following performance 

metrics, that are widely used in mobile health applications, have been adopted: 

 

• Accuracy: The percentage of correctly predicted samples. Accuracy formulated is 

=
Correctly Classified Samples

Total Testing Samples
 

 

• Precision: Precision is the fraction of the correctly predicted samples, to the total positive 

predicted samples.  

Precision measures the robustness of the tested module against false positives. 

 

=
True Positive

True Positive + False Positive
 

 

• Recall: Also called the Sensitivity, is the fraction of the correctly predicted positive samples 

to the total samples in the classification class. Recall gives an idea of the classification 

misses. 

=
True Positive

True Positive + False Negative
 

 

F1-score: is the weighted average of Precision and Recall, it takes false positives and false 

negatives into account 

 

  = 2 ×
Precision × Recall

Precision + Recall
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6.3 MODELS EVALUATION 
 

To infer medication adherence, we experimented with solving the classification problem by 

traditional Machine Learning (ML) algorithms, deep learning DeePaMed architecture, and 

other DL methods, these methods will be discussed in the following sections. 

 

 

6.3.1 ML Medication Adherence 

Using the same methodology explained in chapter (4), we estimated PD patients' medication 

adherence, by classifying walks into two categories, Before and After medication.  Time and 

statistical features were calculated directly from the MagNGα and MagNGω. Frequency 

domain features were calculated from the Fast Fourier Transform (FFT) and Power Spectral 

Density (PSD). Frequency domain features were subsequently extracted for each walking 

segment record. Wavelet domain features were  extracted from the discrete wavelet transform 

(DWT) of the MagNGx signal. After the  extraction of features, a dataset  was prepared and 

fed to different ML algorithms for medication adherence classification.  

 

 Various ML algorithms families were experimented with, including Decision Trees (DT), 

Support Vector Machines (SVM), k-Nearest Neighbors (KNN), Logistic Regression (LR), 

Naïve Bayes, and Ensemble Classifiers (EC) including Random Forest (RF) and bagged trees. 

The results including performance metrics are presented in Table (6.2). Random Forest  was 

the best classifier for distinguishing between medication states, with an accuracy of 83.4%, 

precision of 83.0%, and F1-Score of 85%.  

 

Table 6.2 : Comparison of ML and DeePaMed algorithms 

Medication 

Inference: 

Precision Accuracy Recall F1-Score 

Random Forest 83.0% 83.4% 87.1% 85.0% 

Bagged Trees 80.1% 80.2% 78.0% 79.0% 

Cubic SVM 74.9% 74.9% 75.1% 75.0% 

Weighted KNN 78.5% 78.6% 77.8% 78.1% 
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Logistic Regression 55.3% 55.6% 54.9% 55.1% 

Fine Tree 74.7% 74.9% 73.8% 74.24% 

Naïve Bayes 61.75% 52.9% 60.0% 60.9% 

 

Based on the results seen in Table (6.2),  it can be observed that  ML could not achieve an 

acceptable performance when classifying various walks before/after taking medication and at 

another time (HC), mainly because the handcrafted features were not able to linearly or non-

linearly discriminate between the different PD classes.  

6.3.2 Image-based Models Evaluation    

To evaluate our DeePaMed model, we compared DeePaMed performance to the state-of-the-

art pre-trained DL models mentioned above, in terms of model architecture (depth and 

parameter size), and performance (Training, and Testing Accuracy). We adopted the method 

of transfer learning (TL) shown in Figure (6.3) and followed the procedure outlined below: 

Step1: We converted all the Accelerometer and Gyroscope signals to an image representation 

using the GAF method. 

Step2: Image data were randomly split into 90% training set and 10% as a test set. 

Step3: The network architecture was adapted to our medication adherence prediction task by 

replacing the last CONV, FC, and classification layers to match our 3 classes of data. 

Step4: The network was trained.  

Step5: The network was evaluated on the test set and the performance metrics reported.  

 

 

 

 

 

 

 

 

Using the method of TL shown in Figure (6.4), we investigated different DL models on the 

challenging mPower dataset.  Detailed results are presented in Table (6.3).  The table shows 

the complexity of the model in terms of parameter size, the memory needed, and the depth of 

the network. Table (6.3) also shows the training and test accuracy in comparison to our 

DeePaMed model. The TL models with the best performance were Inseption-V3, and ResNet-

Replace Final 
layers 

Load Pre-Trained 
Network 

Resize input images 
and train the 

network    

Predict Accuracy 
on the test set 

Figure 6.3 : Illustration of the mechanism for TL 
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50 which agree with the results of PDMove [75]. Inception-V3 and ResNet-50 achieved a 

testing accuracy of 87% and 81% respectively. However, by examining the training and test 

accuracies, we can observe that overfitting occurs in all of the models. All the models 

performed well on the training set, as shown in Figure (6.5). But once validated on the unseen 

testing set TL models misclassify many of the walk images to the wrong class. This observation 

will be further discussed in the discussion section. 

 

 

Figure 6.4: TL using the Pre-trained model 

 

Table 6.3: Comparison of Pretrained TL models and DeePaMed 

Model Depth 

(layers) 

Parameters 

(millions) 

size  

(MB) 

Training 

Accuracy 

Testing 

Accuracy 

DeePaMed 7 0.26 0.98 99% 98% 

ResNet-50 50 25.6 96 99% 81% 

EfficientNet 82 5.3 20 99% 73% 

Inception-V3 48 23.9  89 99% 86% 

ShuffleNet 50 1.4 5.4 99% 70% 

 

Input GAF Images Layers of retrained Model Replaced Layers 

Transferred Pretrained Model Output Class  

Before  
Medicati
on  

After  
Medication  

At Another 
 Time  
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Figure 6.5 : Results of Pretrained TL models 
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6.3.3 LSTM Models Evaluation 

Deep learning methods such as LSTM and variations of CNN-LSTM have achieved promising 

results in the problem of gait authentication [115]  and human activity tracking [116].  We 

investigated the performance of the Vanilla LSTM, parallel LSTM, and CNN-LSTM models 

and compared the performance to our DeePaMed model. Results are shown in Table (6.4). 

As shown in Figure (6.6), the CNN-LSTM model uses CNN layers as automatic feature 

extractors and the LSTM for time series prediction. CNN-LSTM has previously been used for 

activity recognition and image/video description [117],  as well as gait analysis [113]. The 

model extract features using CNN Convolution layers. The extracted features are then flattened 

and provided as input to the LSTM network to extract features before the final classification is 

done using the softmax layer. The results of CNN-LSTM are the best of all the models that we 

studied as shown in Figure (6.8), we believe this happens because it combines both the 

differentiation power of 1D Conv layers and the time series prediction of the LSTM network. 

However, the CNN-LSTM network also overfits the training data, while the accuracy on the 

testing set did not exceed 93%. 

 

 

Figure 6.6 : CNN-LSTM Architecture used 

 

 

A parallel LSTM architecture has been explored for Human Activity Recognition (HAR) and 

led to better performance than shallow ML algorithms with a performance comparable to CNN 

models [110]. The parallel LSTM model we utilized is presented in Figure (6.7). The 

architecture consists of 6 parallel LSTM nodes, where each part of the 3D Accelerometer and 
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Gyroscope signals is fed to one LSTM layer. The output of all LSTM layers is combined using 

a concatenation layer, followed by an FC layer and softmax for the overall prediction 

calculation.  One issue with this network is that it learns slowly, and it is performance is  lower 

than DeePaMed, as shown in Figure (6.8) 

 

 

Figure 6.7 : Parallel LSTM Architecture used 

 

Table 6.4: Comparison of LSTM models and DeepaMed 

Model Depth 

(layers) 

Parameters 

(millions) 

size (MB) Training 

Accuracy 

Testing 

Accuracy 

DeePaMed 7 0.26 0.98 99% 98% 

LSTM 3 0.08 0.31 61% 56% 

Parallel LSTM 5 38.4 151.4 99% 79% 

CNN-LSTM 9 2.9 11.35 99% 93% 
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Figure 6.8: Results for LSTM, Parallel LSTM, and CNN-LSTM models. 
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6.3.4 DeePaMed Evaluation 

To overcome the inadequate performance with ML algorithms and due to the demonstrated 

performance of neural networks on various gait analysis and classification problems, we 

explored a deep learning approach (DeePaMed) to extract various abstractions of gait features 

over multiple convolutions and pooling layers.  

 

The classification accuracy with 2 strides segments was 86.6% as presented in Table (6.5). 

This result exceeds the performance of traditional ML algorithms by a reasonable margin, 

However, PD step-to-step signal variations due to the effects of tremor, and shuffling made it 

hard for DeePaMed to distinguish those variations from the signal calm that happens after 

taking medication, this led us to experiment different segment sizes.  

 

It can be seen from Table (6.5) that we got the best results with 10-Strides segments. We 

computed the ROC curve for this best-performing model. ROC curve is a good measure of 

how the model distinguishes between classes, by plotting FPR on the x-axis against TPR on 

the y-axis. As expected FPR is low for high TPR, particularly for this model, which leads to 

an area under the ROC curve of 0.97/1, shown in Figure (6.9).  

 

 

 

Figure 6.9 : ROC curve for the best performing 10-Strides model 
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6.4 Improving DeePaGait Performance     

6.4.1 Improving Performance by Inputting  Multiple Strides    

We experimented with varying the input data sizes, consisting of a different number of strides. 

The results as can be seen in Table (6.5) shows a performance increase as we fed input 

containing more strides to the network.  With more strides fed into the network, DeePaMed 

could learn stride-to-stride variations better, an attribute that distinguishes PD gait from regular 

HC walk. Since taking the medication calms the patient and reduced PD gait anomalies, stride-

to-stride variations are also reduced, improving our results for discriminating the walk before 

and after taking medication.  

 

Table 6.5: DeepaMed performance with various numbers of strides 

Stride 

overlaps  

 Strides  Accuracy  Precision Recall F1 Score 

1 2 86.6% 86.3% 85.6% 85.6% 

2 3 88.6% 86.6% 88.3% 87.6% 

3 4 91.9% 90.4% 91.0% 93.34% 

4 5 93.7% 92.4% 93.3% 92.7% 

5 6 93.5% 92.0% 92.0% 92.0% 

6 7 96.5% 95.6% 95.6% 96.0% 

7 8 97.48 96.7% 97.0% 97.0% 

8 9 97.1% 96.3% 96.3% 96.3% 

9 10 98.2% 97.7% 97.7% 98.0% 

 

6.4.2 Improve DeePaMed Performance by Model Tuning 

We explored improving performance further by tuning DeePaMed’s parameters. Dropout is a 

technique to reduce overfitting in Neural Networks. Dropout works by randomly dropping out 

some neurons' output during the training phase, at a rate specified by the dropout rate. The goal 

is to generalize the model and prevent complex coadaptation.  When studying the impact of 

stride length, we fixed the dropout rate to 50% But we noticed that training accuracy surpassed 

the testing accuracy regardless of the number of strides used. Here  the number of strides were 

fixed  at 10 and varied the dropout rate. Results are presented in Table (6.6) below.  We notice 
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that the difference between Training and Testing accuracy reached the lowest level when using 

80% as the training dropout rate. The dropout rate was always kept at 0% (or no dropout) 

during the testing phase. 

 

Table 6.6: DeePaMed performance with a variable dropout rate 

 Dropout 

keep_probe 

Dropout rate   

= 1-keep_prob 

Train 

Accuracy  

Test 

Accuracy 

Notes 

1 1 0 100% 88.1% 10 strides and 50 

epochs 

2 0.9 0.1 100% 90.9%  

3 0.8 0.2 100% 95.4%  

4 0.7 0.3 100% 97.7%  

5 0.6 0.4 100% 97.3%  

6 0.5 0.5 100% 98.2%  

7 0.4 0.6 100% 97.9%  

8 0.3 0.7 100% 98.9%  

9 0.2 0.8 99.6% 99.2%  

10 0.1 0.9 98.4% 99.1%  

 

As the dropout rate was increased to 0.8, the testing accuracy got very close to the training 

accuracy, and overfitting decreased dramatically. Figure (6.10) shows the performance 

improvement while training the network,  the network loss and accuracy were measured for 

both the training and testing sets, as Figure (6.10) shows the accuracy surpassed 90% after 20 

epochs. Also, very small differences can be noticed between the training and testing plots 

demonstrating that our models did not suffer from overfitting, compared to TL models. 
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Figure 6.10 : 10-Strides model Performance 

 

 

6.5  Chapter Summary      

 

PD Patients' lack of adherence to prescribed medication is a major challenge that PD physicians 

face. The existing methods of remotely measuring medication adherence are inconvenient, not 

continuous or passive. We introduced DeePaMed, a deep learning smartphone approach that 
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can differentiate PD walk before and after medication for PD patients. DeePaMed can also 

distinguish a non-PD walk by HC’s based on the smartphone’s acceleration and rotation 

signals. After experimenting DeePaMed on 452 participants, we prove that medication non-

adherence can be accurately predicted using smartphone sensing of the motor symptoms of PD 

gait. Our DeePaMed model was able to discriminate PD patients on-  vs off-medication and 

baseline HC walk with an accuracy of 98.2%. The accuracy of our CNN model surpassed that 

of traditional Machine Learning methods by at least 17%. We also found that the CNN model 

performed best with inputs containing a minimum of 10 full gait strides and a 0.8 dropout rate. 

Our findings suggest that remote monitoring of medication adherence using the smartphone is 

feasible.  
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CHAPTER 7 

CONCLUSION 
 

7.1  DISCUSSION      
 

The majority of prior PD gait studies have been conducted in a clinic/lab-closed environment, 

under a proctor's supervision. This resulted in datasets with a limited number of participants. 

The participants’ errors were corrected by proctors hid any possible human errors, and hence 

the performance was unrealistic. The mPower dataset we adopted here is collected by 

participants in their home environment. While this led to a very noisy dataset, as people act 

freely and randomly in real life, participants' movements were realistic. Our signal processing 

and gait extraction technique successfully identified and extracted only valid gait records. Our 

Signal Processing included smoothing the gait signals, subtracting signal mean, and 

identifying gait cycles. These steps filtered out all the non-gait data and fed only a valid 

combination of gait strides to our model, which helped significantly in improving the 

performance of the overall model.  

The performance achieved by our PD models are possibly higher than would be achieved in 

the real world deployments for the following reasons: 

 Our PD training set was selected to be balanced: However, in the real world an 

imbalanced dataset is likely because PD occurs in a relatively small percentage of the 

population. Specifically, the mPower study had more participants with Slight and Mild 

severities than Moderate and Severe. Ultimately, imbalance is likely to reduce the 

performance of our gait analyses models, which were trained on balanced dataset.  

 Our training dataset was split using random splitting, which may have caused 

data leakage between the training set to the testing set, which in turn may have led 

to testing the classifier with data records that are very similar to the records seen during 

the training process. A more realistic result would have been achieved using subject-

level splitting wherein all of each subject’s data appears in either the training or test 

set but not partially in either one. Subject-level data splitting was not possible due to 

the limited number of subjects who performed all the required walks. Exploring 

subject-level splitting is an interesting potential future research direction.  
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 Limited diversity in our participant sample; The mPower dataset had 74.5% 

White/Caucasian participants while all other races combined did not exceed 20%. 

Moreover, 6% of subjects opted not to disclose their race. Our model might have 

performed well on our current predominantly white/Caucasian dataset but has not been 

evaluated on a diverse dataset with respect to race/age-group, which may challenge 

and possibly reduce the performance of our models.  

 The nominal values generated by on-device sensors of smartphones made by 

different manufacturers can vary by up to 30%, which could affect the 

performance of our PD gait analyses models significantly; A study [135] 

Investigated accelerometer and gyropscope sensors on 36 devices (including 

smartphones and smartwatches), that sensor values of smartphones from different 

manufacturers differed by up to 30%. The paper also found that training models 

targeted at similar groups of devices outperformed models that generated one model 

for all phone models. The mPower data was collected using an iphone (v5 and v6 

(Apple Inc., Cupertino CA, USA)) smartphone. If our model to be deployed on other 

devices-models, sensor bias introduced by the differences in their sampling rates could 

reduce the performance of our gait analyses models. 

Some commercial mobile apps compromise security by accessing smartphone sensors. These 

apps can record the microphone, monitor location, and take photos, all without the user's 

permission. To address these privacy concerns, the mPower app gives full control of the 

sensors' recording to the user and limits the gait data collection to 30 seconds before and 30 

seconds after taking medication. Furthermore, our signal processing includes smoothing the 

signal, subtracting the signal mean, and calculating of signal magnitude, all of which will help 

hide the personal signal variation. Also, our experiments are conducted at the population level 

using de-identified patient data. The goal is to identify and characterize signal changes that 

reflect the relatively calm gait that occurs after the medication is taken. In comparison to the 

segment-level classification that we explore, subject-level classification will require more 

data per subject. Consequently, an algorithm with more depth will be needed to classify the 

subject unique walking signal.  
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As PD progresses to a severe state, patients tend to miss medication doses for various reasons, 

including depression and memory loss. The level of non-adherence increases as the daily 

dosage increase [5]. Patients also start developing resistance to taking medication when they 

notice that medications are not effective. A study found that 20 to 40 out of 100 people with 

Parkinson's noticed that the drugs are becoming less effective after five years of treatment 

[132]. By comparing walks before and after medication. DeepaMed can continuously detect 

and alert both patient and caregiver of nonadherence and medication ineffectiveness, resulting 

in a reduction of clinic visits and providing more data points for the treatment process.  

 

An overfitted model is a statistical model that contains more parameters than can be justified 

by the data [133]. When such a model predicts a trend in very noisy data, like in our case the 

mPower dataset, it tends to overfit the training set, and perform less well on the test set. 

DeePaMed and DeePaGait models overpass the performance of all the pre-trained TL models 

and LSTM models, that is because DeePaMed has the right complexity and depth to predict 

the medication adherence trends in the mPower data.  

 

Due to the complexity of PD, no one treatment that fits all patients. Instead of standardizing 

the treatment, and to embrace the concept of “Personalized Medicine (PM)”, treatment needs 

to be prescribed based on the susceptibility of specific subtypes of PD to side effects with 

consideration of lifestyle, genetic framework, personality, and pharmacogenetics. [134]. In 

PM, Physicians adjust the treatment plan based on occasional hospital visits and input from 

patients. Alternately, DeepaMed can provide continuous inputs from the patients, so that 

doctors can monitor and adjust the individual treatment to fit each patient's unique case.  

 

 

7.2  CONCLUSION 
 

Nearly 10 million people worldwide are living with Parkinson’s disease (PD) [118]. The 

progression of the disease can be inferred from changes in the patients’ gait to inform early 

intervention. Due to the high cost of hospital visits and in-patient days, remote measurement 

of gait has become an important tool for monitoring the progression of PD. Although 

measurements reduce hospital visits and offer convenience to both PD patients and the 
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healthcare provider, the validity of these measurements compared with assessments in the 

clinic continues to be a challenge.  

 

Another major challenge that PD physicians face is the PD Patients' lack of adherence to 

prescribed medications. The existing methods of remotely measuring medication adherence 

are inconvenient, not continuous or passive. 

 

Due to their near-ubiquitous ownership, smartphone sensing is one of the very effective, 

highly available ways to classify gait. Equipped with triaxial Accelerometers and gyroscopes 

in addition to powerful CPUs smartphones provided a potential alternative for remote gait 

assessment in the home environment. This smartphone technology used to analyze PD gait in 

several studies 

 

In our work, we addressed the unique gait characteristics of PD and inferred the stage of each 

PD gait modality through deep learning classification of smartphone sensor data collected by 

a mobile health application. Specifically, we introduced a data-driven neural network model, 

that explores the inference of PD gait by analyzing the patients' smartphone walk data. Our 

model can distinguish the severity of gait aspects based on the smartphone’s acceleration and 

rotation signals.  Our model can also differentiate PD walk before and after medication for 

PD patients. DeePaMed can also distinguish a non-PD walk by HC’s based on the 

smartphone’s acceleration and rotation signals. 

 

After experimenting on 452 participants, we prove that medication non-adherence can be 

accurately predicted using smartphone sensing of the motor symptoms of PD gait. Our model 

was able to discriminate PD patients on-  vs off-medication and baseline HC walk with an 

accuracy of 98.2%. The accuracy of our CNN model surpassed that of traditional Machine 

Learning methods by at least 17%. We also found that the CNN model performed best with 

inputs containing a minimum of 10 full gait strides and a 0.8 dropout rate. Our findings 

suggest that remote monitoring of medication adherence using smartphone is feasible 
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We Also prove that gait severities can be accurately predicted using smartphone sensing of 

the motor symptoms of PD gait. Our DL network was able to classify the severity of Walking-

Balance, Shaking/Tremor, and Freeze of Gait (FoG), with an accuracy of: 99.1%,98.4%, and 

98.2% respectively.  To the best of our knowledge, the accuracy of our DeePaGait model 

surpassed the best-published results achieved by prior 1D CNN smartphone models by over 

7%. Despite the challenges of working with a self-labeled, crowdsourced dataset, we were 

able to demonstrate that gait classification based on smartphone sensor data is feasible and 

has potential value as a diagnostic support tool.  

 

Although the classification results were affected by the subjective nature of PD labels 

assigned by patients based on their responses to the MDS-UPDRS questions, we were able to 

demonstrate with a relatively large number of participants that remote and automatic PD 

patient classification based on sensor activity data can supply objective assessments of PD-

related gait patterns and severity of gait anomalies, which ultimately has the potential to 

improve remote healthcare for PD patients. 

 

 

7.3  FUTURE WORK 
 

Planned future work includes the exploration of other signal segmentation strategies and 

various segmentation window lengths, and techniques such as Bayesian segmentation. Future 

work also includes the evaluation of DeePaGait model on PD gait datasets that are diverse in 

terms of participant ages and race, and also a similar number of walks for each severity level. 

We would also investigate evaluating our models on datasets collected at lab/clinc environment 

and work with doctors to collect additional data  to validate our models using both home-

collected and clinic-collected data. 

 

Another area we would like to work on is evaluating our models on data collected using 

different devices and smartphone-models, to ensure the models robustness to sensors bias and 

changes in the sensors sampling frequencies.  
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Model improvement is to be investigated by performing classification using subject level data 

splitting, in order to evaluate the model using data from unseen subjects during the training 

stage. Also, there are other associated comorbidities that may affect gait, including dementia 

and Hip and knee osteoarthritis, and age differences, which may confound gait signals. In 

future, we will collect data on and investigate the effects of these associated comorbidities and 

age-groups and explore methods to factor them in.   

 

The exploration of combining walking with other activities such as voice and tapping and 

memory to predict the PD stage is to be investigated. Since features from those activities can 

improve the prediction accuracy and facilitate remote follow-up with PD patients. Based on all 

the activities, the inference of the overall UPDRS score is planned to be investigated. Finally, 

in future, both DeePaMed/DeePaGait models will be evaluated in a live development. 
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APPENDICES 
APPENDIX A 

 

MPOWER DEMOGRAPHICS SURVEY. 

From: The mPower study, Parkinson disease mobile data collected using ResearchKit 

Question Variable 

name 

Variable details 

How old are you? age integer 

What is your sex? gender one of {‘Female’, ‘Male’, ‘Prefer not to answer’} 

Which race do 

you identify with? 
race 

check all that apply {‘Black or African’, 

‘Latino/Hispanic’, ‘Native American’, ‘Pacific 

Islander’, ‘Middle Eastern’, ‘Caribbean’, ‘South 

Asian’, ‘East Asian’, ‘White or Caucasian’, 

‘Mixed’} 

What is the 

highest level of 

education that 

you have 

completed? 

education 

one of {‘2-year college degree’, ‘4-year college 

degree’, ‘Doctoral Degree’, ‘High School 

Diploma/GED’, ‘Master's Degree’, ‘Some 

college’, ‘Some graduate school’, ‘Some high 

school’} 

What is your 

current 

employment 

status? 

employment 

one of {‘A homemaker’, ‘A student’, 

‘Employment for wages’, ‘Out of work’, 

‘Retired’, ‘Self-employed’, ‘Unable to work’} 

What is your 

current marital 

status? 

maritalStatus 

one of {‘Divorced’, ‘Married or domestic 

partnership’, ‘Other’, ‘Separated’, ‘Single, never 

married’, ‘Widowed’} 

Are you a spouse, 

partner or care-

partner of 

someone who has 

Parkinson 

disease? 

are-

caretaker 
one of {‘true’, ‘false’} 

https://www.nature.com/articles/sdata201611
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Question Variable 

name 

Variable details 

Have you ever 

participated in a 

research study or 

clinical trial on 

Parkinson disease 

before? 

past-

participation 
one of {‘true’, ‘false’} 

How easy is it for 

you to use your 

smartphone? 

smartphone 
one of {‘Difficult’, ‘Easy’, ‘Neither easy nor 

difficult’, ‘Very Difficult’, ‘Very easy’} 

Do you ever use 

your smartphone 

to look for health 

or medical 

information 

online? 

phone-

usage 
one of {‘true’, ‘false’, ‘Not sure’} 

Do you use the 

Internet or email 

at home? 

home-usage one of {‘true’, ‘false’} 

Do you ever use 

the Internet to 

look for health or 

medical 

information 

online? 

medical-

usage 
one of {‘true’, ‘false’} 

Did you happen 

to do this 

yesterday, or not? 

medical-

usage-

yesterday 

one of {‘true’, ‘false’, ‘don’t know’} 

Do you ever use 

your smartphone 

to participate in a 

video call or video 

chat? 

video-usage one of {‘true’, ‘false’} 
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Question Variable 

name 

Variable details 

Have you been 

diagnosed by a 

medical 

professional with 

Parkinson 

disease? 

professional-

diagnosis 
one of {‘true’, ‘false’} 

In what year did 

your movement 

symptoms begin? 

onset-year integer input 

In what year were 

you diagnosed 

with Parkinson 

disease? 

diagnosis-

year 
integer input 

In what year did 

you begin taking 

Parkinson disease 

medication? Type 

in 0 if you have 

not started to take 

Parkinson 

medication. 

medication-

start-year 
integer input 

What kind of 

health care 

provider currently 

cares for your 

Parkinson 

disease? 

healthcare-

provider 

one of {‘Don't know’, ‘General Neurologist 

(non-Parkinson Disease specialist)’, ‘Nurse 

Practitioner or Physician's Assistant’, ‘Other’, 

‘Parkinson Disease/Movement Disorder 

Specialist’, ‘Primary Care Doctor’} 

Have you ever 

had Deep Brain 

Stimulation? 

deep-brain-

stimulation 
one of {‘true’, ‘false’} 

Have you ever 

had any surgery 

for Parkinson 

surgery one of {‘true’, ‘false’} 
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Question Variable 

name 

Variable details 

disease, other 

than DBS? 

Have you ever 

smoked? 
smoked one of {‘true’, ‘false’} 

How many years 

have you 

smoked? 

years-

smoking 
integer input 

On average, how 

many packs did 

you smoke each 

day? 

packs-per-

day 
one of {1, 2, 3, 4, 5} 

When is the last 

time you smoked 

(put today’s date 

if you are still 

smoking)? 

last-smoked year last smoked 

Has a doctor ever 

told you that you 

have any of the 

following 

conditions? Please 

check all that 

apply. 

health-

history 

Multiple choice from {‘Acute Myocardial 

Infarction/Heart Attack’, ‘Alzheimer Disease or 

Alzheimer dementia’, ‘Atrial Fibrillation’, 

‘Anxiety’, ‘Cataract’, ‘Kidney Disease’, ‘Chronic 

Obstructive Pulmonary Disease (COPD) or 

Asthma’, ‘Heart Failure/Congestive Heart 

Failure’, ‘Diabetes or Prediabetes or High Blood 

Sugar’, ‘Glaucoma’, ‘Hip/Pelvic Fracture’, 

‘Ischemic Heart Disease’, ‘Depression’, 

‘Osteoporosis’, ‘Rheumatoid Arthritis’, 

‘Dementia’, ‘Stroke/Transient Ischemic Attack 

(TIA)’, ‘Breast Cancer’, ‘Colorectal Cancer’, 

‘Prostate Cancer’, ‘Lung Cancer’, 

‘Endometrial/Uterine Cancer’, ‘Any other kind 

of cancer OR tumor’,‘Head Injury with Loss of 

Consciousness/Concussion’, ‘Urinary Tract 

infections’, ‘Obstructive Sleep Apnea’, 

‘Schizophrenia or Bipolar Disorder’, ‘Peripheral 
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Question Variable 

name 

Variable details 

Vascular Disease’, ‘High Blood 

Pressure/Hypertension’, ‘Fainting/Syncope’, 

‘Alcoholism’, ‘Multiple Sclerosis’, ‘Impulse 

control disorder’, ‘AIDS or HIV’, ‘Liver Disease’, 

‘Leukemia or Lymphoma’, ‘Ulcer Disease’, 

‘Connective Tissue Disease’, ‘Coronary Artery 

Disease’, ‘Anemia’,‘Asthma’} 
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APPENDIX B 
(MDS-UPDRS)Part II: Motor Aspects of Experiences of Daily Living (M-EDL)  
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