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Abstract

Network intrusion detection is a constantly evolving field with researchers

and practitioners constantly working to keep up with novel attacks and grow-

ing amounts of network data. Traditionally, signature-based techniques and deep

packet inspection have been employed, however, the volume of data and com-

plexity of network attacks has made these techniques overbearing and susceptible

to zero-day attacks. For this reason, there has been a shift in focus to explore the

power of deep learning anomaly-based methods to perform network intrusion de-

tection.

In this dissertation we develop and explore several deep learning techniques

and their application to performing anomaly-based network intrusion detection.

Central to the work is an exploration of the development of unique feature sets

using autoencoder feature residuals which have traditionally been overlooked in

favor of aggregate residuals. We show that using feature sets generated using au-

toencoder feature residuals provide an improvement in downstream classifier per-

formance compared to an original feature set for network intrusion detection. In

doing so, we find that these overlooked byproducts of anomaly-based methods can

be used as a drop-in replacement for an original feature set, meeting or exceeding

its performance.
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Executive Summary

Overview of Our Work
In this dissertation we aim to balance both theoretical and practical applications

of autoencoders in the field of network intrusion detection. We focus on several

techniques with the majority of the focus centered on using autoencoder feature

residuals as features to perform classification of network attacks.
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Figure 1: A comparison of an original set of features X , the autoencoder recon-
struction L, and the autoencoder feature residuals S, using 100 samples of network
flow data. One can see that the autoencoder feature residuals for benign samples,
Sb, on the bottom left side of the plot, is sparse and significantly lower in magni-
tude than the autoencoder feature residuals for attack samples, Sa, on the bottom
right-hand side. Differences such as these, in the autoencoder feature residuals
between benign and attack samples, allow our technique to improve downstream
classifier performance.

We first highlight the application of autoencoder dimension estimation to de-

tect large scale network attacks in Chapter 4. In doing so, we find that the tech-

nique works well for attacks such as a distributed denial of service, which have

network-wide impacts. On the other hand, the technique was not designed for
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Table 1: Samples of some of our best results performing network intrusion detec-
tion using autoencoder feature residuals in combination with a variety of down-
stream classifiers. Values in green highlight the improved scores.

Classifier Dataset Original F1-Score Improved F1-Score

KNN CTU13 Scenario 6 0.800 0.870

LR CICIDS2017 Wednesday 0.900 0.940

MLP NF-ToN-IoT-V2 0.973 0.975

MLP NF-UNSW-NB15-V2 0.780 0.825

IF ToN-IoT 0.393 0.770

OCSVM BoT-IoT 0.793 0.934

LOF ToN-IoT 0.758 0.936

detecting more subtle attacks that we must concern ourselves with in the area of

network intrusion detection.

We then move on to develop our technique for generating and using feature

sets that take advantage of autoencoder feature residuals in Chapter 5. After

outlining the general technique we discuss the properties of autoencoder feature

residuals that provide the opportunity to generate optimal features for down-

stream tasks. Along with this, we contrast these properties with conditions found

in data that may reduce the technique’s effectiveness, and close with a comparison

to using aggregate residuals for anomaly detection.

Having outlined the theory of using autoencoder feature residuals, we focus

Chapter 6 on the application of this technique to network intrusion detection.

Through exhaustive empirical studies we show that using autoencoder feature

residuals as features for downstream classifiers improves performance over some

initial set of features for network intrusion detection, and at a minimum does not

reduce the comparative performance.
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We close in Chapter 7 with a set of practical work that was formed through

dealing with the challenging properties of network data. In this work, we develop

a set of guidelines and open source framework to improve the development and

hand off of network intrusion detection datasets between researchers.
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Our Contributions

• We demonstrate how autoencoder dimension estimation can be applied ef-

fectively to network intrusion detection using network flow data from a net-

work under attack conditions.

• We propose a novel method of using autoencoder feature residuals to im-

prove classifier performance for network intrusion detection using network

flow data. We develop its theory and define the key properties surrounding

the technique.

• We develop the first application of using autoencoder feature residuals as

input to classical machine learning algorithms, various neural network ar-

chitectures, and several one-class classifiers for network intrusion detection

problems.

• We provide a comprehensive analysis to show that usage of autoencoder fea-

ture residuals provides a general increase in performance compared to using

a baseline set of original features for network intrusion detection. This anal-

ysis is performed using more than ten cybersecurity scenarios, eleven down-

stream classifiers, and two encodings of network intrusion detection data.

Additionally, statistical support using the two-sample Kolmogorov-Smirnov

test is provided for the analysis.

• We identify and demonstrate the potential data compression benefits that can

be found when using autoencoder feature residuals.

• We identify a set of common limitations that affect the handoff of network

intrusion detection datasets between researchers. In response to these lim-

10



itations we develop a set of guidelines for dataset researchers to follow to

help mitigate these limitations. An open source containerized framework is

developed which implements the guidelines such that it can be used by re-

searchers.

• We have made the key portions of our work available for the public including

implemented code and data such that it can benefit other researchers1234.

1https://github.com/WickedElm/feature residuals
2https://github.com/WickedElm/feature residuals with pretraining
3https://github.com/WickedElm/feature residuals for iot
4https://github.com/WickedElm/niddff
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1 Introduction

1.1 Motivation

We currently rely on networks for nearly all aspects of our lives today. As individ-

uals, we often take for granted having connectivity to the internet for both work

and leisure. Networks serve as a critical backbone to the efficiency and scale of op-

erating modern businesses. The benefits of network technology and our reliance

on it has caused networks to grow in both size and complexity in recent decades

[51]. It is now common to use networks for transactions that require sensitive data

such as banking, completing purchases with credit cards, storing competition sen-

sitive trade data, and to support critical infrastructure [102, 57].

While a majority of network users remain respectful of sensitive data and use

networks responsibly, there remain numerous bad actors that perform network

attacks. The motivation for these attacks include a number of factors such as mon-

etary gain, personal beliefs, as well as state-sponsored interests [55]. The number

of these attacks increased 600% globally during the COVID-19 pandemic and is

expected to cost $10.5 trillion globally by 2025 [96]. Our work is intended to help

stem this staggering damage that network attacks impose on both organizations

and individuals. To achieve this goal we explore the application of deep learn-

ing to network intrusion detection (NID) with a focus on techniques that detect

network attacks by treating them as anomalies.
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1.2 Overview

We begin in Chapter 2 by guiding the reader through the necessary preliminaries

that support the development of our techniques with a focus on network intru-

sion detection and anomaly detection. We discuss the relevant machine and deep

learning algorithms used along with our technique, however, a particular focus is

spent on autoencoders as they are central to the remainder of the work presented.

Having covered the central concepts surrounding the background of our tech-

nique, we move into Chapter 3 where we review recent related works in the area of

network intrusion detection. In addition, this chapter covers robust autoencoders,

which provided the seeds for the exploration of autoencoder feature residuals.

Moving into our research we first cover the application of autoencoder dimen-

sion estimation to network intrusion detection in Chapter 4. In this chapter we

review the technique and show that while it performs well on distributed denial

of service (DDoS) attacks, it struggles to detect more subtle network attacks.

Chapter 5 is dedicated to the development of autoencoder feature residuals.

Here, we formally define what we mean by autoencoder feature residuals and how

to generate them using autoencoders. Additionally, we review the properties of

autoencoders in relation to autoencoder feature residuals and define the various

feature sets explored in our research based on these properties.

Having reviewed the general technique for using autoencoder feature residu-

als, we move into Chapter 6 to explore the particulars regarding applying the tech-

nique to network intrusion detection. Here we review the feature encodings used,

model architectures explored, hyperparameter selection, as well as the results ob-

tained detecting network attacks in conjunction with a wide range of classifiers and

network intrusion detection scenarios. It is through these empirical results that we
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show the utility of the technique in the area of network intrusion detection.

While working through the application of autoencoder feature residuals to net-

work intrusion detection, we found a number of constructive complexities regard-

ing the state of network intrusion detection datasets. We explore these shortcom-

ings in Chapter 7 along with a set of guidelines and a framework we developed to

help improve the situation for future researchers.

We conclude our discussion in Chapter 8 and outline what we believe to be

fertile ground for future work extending this research in Chapter 9.
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2 Background Information

2.1 Cyber Defense

Cyber defense is a broad area which can be considered the protection of any com-

puter asset. One could break down the area of cyber defense into the types of

attacks being defended against [28], however, for this work it is more suitable to

break the area down into the main goals of defenders: network intrusion detection,

host intrusion detection (HID), and malware detection/analysis.

2.1.1 Network Intrusion Detection

NID analyzes network data in order to detect network attacks. We refer to the

system that performs NID as a network intrusion detection system (NIDS). The

NIDS consists of a combination of software and network hardware to perform the

required analysis. Depending on the network, the hardware can be embedded on

existing network infrastructure devices or have dedicated hardware. Depicted in

Figure 2 one can see an example of a network that utilizes a NIDS.

In general, there are two broad categories of methods that we consider when

discussing NIDS: signature-based and anomaly-based [64]. With signature-based

methods, we attempt to identify a network attack based on previously seen pat-

terns, referred to as a signature, for a known attack [64]. Anomaly-based methods

attempt to set a baseline for what is considered normal operations for a network

and detect any deviations from this baseline [64]. While signature-based methods

are effective against known attacks, they have the drawback of failing to detect

novel, zero-day attacks, that the NIDS has not seen previously. Comparatively,

anomaly-based methods are more effective at detecting zero-day attacks, however,
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Internet
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Figure 2: A simplified network which makes use of a network intrusion detec-
tion system with dedicated hardware and collects and analyzes network flow data.
These pieces would be used in combination with the pictured firewall as well as
host intrusion detection systems present on Clients one through three. Our work
could be deployed to the NIDS hardware or a combination of the NIDS hardware
as well as utilizing a separate training server such as the depicted flow analyzer
hardware.

they often suffer from high false-alarm rates. Due to the significant threat that

zero-day attacks pose, current research is focused toward anomaly-based methods

or methods that consist of a hybrid of both signature and anomaly-based methods

[64, 28, 10].

2.1.2 Network Data

In order to perform NID, a NIDS must analyze network data. This data comes in

one of two formats referred to as packet capture (PCAP) and network flow (Net-

Flow) data. The source for both of these formats is binary, however, for our ap-

plication they are generally extracted into a format suitable for machine learning

such as comma-separated value (CSV) files.

PCAP data is used to gather a complete set of packets from a given network

or relevant section of a network. This format for data is dense and consists of all

of the contents of the captured network packets including payload data as shown

in Figure 3. The main advantage of PCAP data is its completeness since no data
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Figure 3: A sample extraction of packet capture (PCAP) data taken using Wire-
shark. This format is dense and includes all the information contained in the pack-
ets that were captured including all headers and the data payload.

is lost compared to what was communicated on a network. While this format

is necessary to perform deep packet inspection, the main drawback of using it for

machine learning is that the volume of data captured becomes overwhelming even

for small networks.

As a way to mitigate the amount of data collected when capturing full packet

data, Cisco Systems developed the original NetFlow standard [99]. While there

have been multiple iterations since its first introduction, the main idea behind

NetFlow data is that rather than capturing all network packet data, statistics are

collected that describe network connections between hosts. These connections are

generally described using the 5-tuple: (source IP, source port, destination IP, des-

tination port, protocol). For a given connection, statistics such as number of bytes

and packets transmitted are collected. It should be noted that there are multiple
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standards used for NetFlow data and that the fields collected are dependent on

both the choice of standard for a given network and how the network administra-

tor has the network configured. For example, when using the IP Flow Information

Export (IPFIX) Protocol an administrator can customize what network data to an-

alyze [25].

There are two primary ways that network flow data is collected. For many

research applications, cybersecurity scenarios are executed in a lab where source

PCAP data is collected initially. After this has been completed, tools such as Zeek5

are utilized to generate NetFlow data, which is delivered as a dataset for down-

stream researchers. In practice, however, there is generally dedicated network

hardware and software that consists of a NetFlow exporter, collector, and ana-

lyzer as depicted in Figure 2. These resources are used to extract the NetFlow data

into a format that is usable for machine learning. It is worth noting that the term

NetFlow data is used commonly in literature to pertain to any data that uses the

traditional 5-tuple in order to capture summary statistics about the connection.

2.1.3 Challenging Properties of Network Data

Having had a brief discussion on the format and type of data used for cyber de-

fense, we will now discuss the key properties of the data that pose challenges when

using it for machine learning. In the following discussion regarding the properties

of network data we do not distinguish between PCAP, NetFlow data, or other

variants specifically, as the key properties discussed manifest in all of these data

formats.

5https://zeek.org/
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Imbalanced Data

Network data used for cybersecurity suffers from being imbalanced when com-

paring benign network data and attack network data [12]. The large majority of

network traffic will be benign for a given network compared to any attack net-

work traffic. One example of the prevalence of the imbalanced nature of network

data can be seen when reviewing Table 3 from Ring’s survey, where he denotes if

a dataset is balanced or not across 34 surveyed datasets [84]. In that analysis, only

one dataset [15] is indicated as being balanced, though that dataset is not publicly

available. Similar results can be seen when reviewing the statistics of benchmark

datasets.

The issues introduced due to imbalanced data for cybersecurity are similar to

the issues found in other domains with imbalanced data. Namely, training on the

imbalanced data tends to result in a model that performs extremely well on the

majority class, while performing poorly on the minority class [42]. Unfortunately,

this is an intrinsic property of cybersecurity data that researchers must deal with

in order to optimize classifier performance. In general, one can leave the data as-is,

use an undersampling technique, or use an oversampling technique.

Network Drift

We use the term network drift to refer to concept drift as it affects data in the

area of cybersecurity. Concept drift occurs when the context of our data changes

in relation to our predicted target [105]. In practical terms, this means the data

we used to train a machine learning model is no longer applicable to the current

state of our novel samples of data in relation to making a prediction. For this

discussion, we break down the challenges posed by concept drift when applying

machine learning to cyber defense data into three categories: In-Network Drift,
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Drift Across Networks, and Evolving Attacks.

For In-Network Drift we consider a single network and its behavior over time.

It has been shown that in the general operating of a given network, there are tem-

poral drifts in normal network activity [65]. This occurs on various time scales

such as daily, weekly, and seasonally [65].

This property of network data complicates applying machine learning tech-

niques to cybersecurity as the training data must account for these patterns in or-

der to identify benign behavior from attack behavior. As an example, consider a

routine audit of a network which takes place at the same time each week, in which

machines are tested for security policy compliance for which ports should be open.

At that time of the week, we would not want a machine learning model to flag an

alert for a port scan attack as it is a routine audit. However, if the same behavior

occurs at a different time, we would want the model to flag it as suspicious activity.

When referring to drift across networks, we consider the fact that each network

is unique and will have different network traffic patterns that would be considered

normal behavior. This provides a burden on the application of machine learning

to cybersecurity as one can train a model on a single network or public benchmark

dataset, but truly have little idea of how generally applicable that model is across

different networks. This issue is magnified for any machine learning model that

unwisely utilizes IP addresses as features, as these will vary drastically from net-

work to network in both value and behavior. Recent research seeks to improve

this situation through the use of techniques aimed to standardize some differences

across networks such as using Feature as a Counter (FaaC) [66] and other transfer

learning techniques [109].

The final area of drift for discussion comes in the area of the attacks being
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launched against systems. One of the main reasons researchers have looked to ap-

ply machine learning to cybersecurity is that signature-based methods are begin-

ning to fail to be effective against evolving attacks, and provide little help against

zero-day attacks [108]. For supervised machine learning methods employed for

cyber defense, this requires periodic retraining and the availability of data which

contains up-to-date attack samples. This issue is less severe for machine learning

techniques that are semi-supervised or unsupervised, where anomaly detection

methods will have a leg up on detecting zero-day attacks compared to supervised

methods [98].

Heterogeneous Data

Earlier in this chapter we indicated that the native collection formats for cyberse-

curity data, and network data in particular, is a binary format. This is not unlike

other areas where machine learning is applied, however, the format requires spe-

cialized tools such as Wireshark6 or Zeek7 to read the data. Additionally, within the

binary format, is heterogeneous data of both statistical measures and categorical

data that must be accounted for when performing machine learning. This property

of the data provides another area of challenge when applying machine learning to

cybersecurity, and we discuss the specifics here.

There are numerical features associated with cybersecurity data that include

items like MTU size, packet size, bytes transferred, and number of packets in a

given network flow. These are relatively easy to deal with in a fashion similar to

other areas where machine learning is applied. When dealing with NetFlow data,

however, one can observe that the range of certain values such as bytes transferred

6https://www.wireshark.org/
7https://zeek.org/
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can vary wildly depending on network activity. While generally a standard prac-

tice, some sort of normalization or scaling to the values is usually employed.

The more complicated aspect of dealing with cybersecurity data occurs when

we introduce the categorical data that is included. This includes items like proto-

col, TCP flags, IP address, and port number. While these are represented as num-

bers, the numbers provide little meaning to what they indicate functionally or in

relation to each other. One can consider port numbers as an example of the com-

plications they pose for machine learning. Port numbers generally range from 0

through 65535 on most systems. This makes it untenable to simply one-hot encode

the values seen in cybersecurity data. Additionally, the values of two port num-

bers do not indicate how closely related their functionality may be. So if these are

to be used for machine learning, one must find a proper way to encode this infor-

mation while remaining faithful to the relationships of the ports. Similar compli-

cations arise when considering IP addresses and the relationships they represent

on a given network.

We can contrast this to another field which uses binary formats such as image

processing. In this field, all the data of an image represents a value corresponding

to a certain color. Using image data as input to a machine learning algorithm, one

can simply take the image “as-is” or perform some simple normalization on the

image to get a meaningful representation.

Variability of Network Data

As indicated by Sommer, the input data used when applying machine learning

to cybersecurity contains “enormous variability” [97]. A given network, within

its normal operations, can exhibit unpredictable behavior over short periods of

time. This includes periods of unexpected bursty traffic or even unexpected lulls
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in traffic. The variability extends to the type of network traffic taking place as well;

protocols being used will vary over time in an unpredictable manner [97].

One of the main drivers for this is the fact that the data seen across a network

is driven by a combination of software and human initiated activities. As the goals

and interests of the users of a network change, so will the nature of the network

traffic. This becomes more widespread the larger the network is in terms of both

infrastructure and users.

The implications of this variability mean that machine learning models need

enough data that represents normal network activity to attempt to account for this

variability. Ideally, we would want a machine learning model to ignore some “be-

nign anomaly” on the network but flag one that is indicative of an issue or at-

tack. This likely means multiple extended periods of data collection on a specific

network for which machine learning is going to be applied. Alternatively, some

recent works seek to combine data from multiple networks to attempt to achieve

more robustness against this issue [109, 91].

2.1.4 Host Intrusion Detection

Host intrusion detection (HID) has similar detection goals as NID, however, it is

concerned with activity within a single host. In this environment, when perform-

ing HID, we have access to the local host’s network activity, system logs, software

files, and software behavior that can be analyzed. An example of parts of a host

intrusion detection system (HIDS) would include a local firewall or a user’s an-

tivirus software. As with NID, both signature-based and anomaly-based methods

are commonly employed for HID.
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2.1.5 Malware Detection and Analysis

While it could be considered a part of HID, we provide a distinct description for

malware detection and analysis. Distinctly, malware detection and analysis is often

done either on a live system or in an environment specifically set up for analyzing

malware, such as a virtual machine or honeypot. Classically, antivirus software

would attempt to detect malware in a signature-based manner, however, we are

now seeing methods employed based on software behavior, system logging, or

deep learning methods which analyze binary files [28].

2.2 Anomaly Detection

To begin discussing anomaly detection one must first define what is meant by an

anomaly and more specifically, what constitutes an anomaly. A general definition

is that anomalies are patterns found in data that differ from some defined concept

of patterns that are considered normal [22]. We draw a distinction from concepts

such as noise and outliers found in data in that an anomaly provides some inter-

esting insight into the data that we would want to discover [22]. Additionally, we

distinguish anomalies from novelties found in data in that novelties are the initial

emergence of new normal patterns, though we may not know this at the time of

their discovery [22].

There are generally three types of anomalies to consider: point anomalies, con-

textual anomalies, and collective anomalies [4]. With point anomalies, a single

sample of the data deviates from the normal pattern one would expect [4]. As

an example, the daily average high temperature for the end of December in Mas-

sachusetts is 390. One would consider a day in the end of December with a temper-

ature of 700 to be a point anomaly. Contextual anomalies are data samples that are



2.2 Anomaly Detection 28

only considered anomalous due to a particular context or dependency [4]. One ex-

ample of a contextual anomaly would be a severely overcrowded supermarket that

is not close to a popular holiday. This same type of crowd would not be consid-

ered an anomaly close to a popular holiday as the crowd would be expected close

to the holiday. A collective anomaly occurs when a particular pattern (or similar

patterns) in the data are considered anomalous when grouped together [4]. As an

example, it is not completely uncommon for a single stock to crash on a given day

(though it would likely be a point anomaly), however, if a complete market crash

occurred and all stocks crashed on a given day we could consider that a collective

anomaly.

The method used for detecting anomalies is generally determined by the avail-

ability of labels within a given problem domain [20]. If completely labeled data

is available, for both normal samples and anomalies, one could effectively ap-

ply supervised anomaly detection methods [20]. This is rare for most problems

in anomaly detection and so more emphasis in the research is placed on semi-

supervised learning and unsupervised learning. Semi-supervised learning can be

applied when we have labeled (or known) normal samples of data. With many of

these types of techniques, one can obtain a representation of “normal” for the data

and then use that model with new samples to detect anomalies by how much they

deviate from this model. When no labels are available, unsupervised anomaly de-

tection is employed. The general assumption with these methods is that the data

will be dominated by normal samples [4]. When this assumption is untrue, a lot of

false positives will likely occur with these methods [4].

There are two main types of output for an anomaly detector: anomaly score and

label [4]. The anomaly score is some value associated with how likely a given data
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sample is an anomaly. Often, a threshold is applied to this score, where if the score

is greater than the threshold then the anomaly detector flags the sample as anoma-

lous. When an anomaly detector outputs a label it is generally a binary output

that indicates if a sample is an anomaly or normal. When applying anomaly detec-

tion to NID, we make the assumption that attack network data will be anomalous

compared to benign network data.

2.3 Machine Learning Algorithms

In our work we sought to pair our techniques with many different downstream

classifiers in order to gain confidence in its general effectiveness. In this section

we provide background for the machine learning algorithms utilized throughout

our research. We go into detail for the algorithms that are significant for their

application to NID or potential for practical application beyond research. For the

remainder we provide a lighter treatment as they would be less likely candidates

for practical applications beyond our own empirical research studies.

2.3.1 Random Forest

Random forest is a classic supervised learning algorithm that uses an ensemble of

decision trees to arrive at a prediction. While they can be used for both regres-

sion and classification, they are generally used for classification when applied to

NID. When constructing a single decision tree for classification, we perform recur-

sive binary splitting such that a prediction from a given region will align with the

majority classification label within that region. Each split is made according to its

purity, the number of samples within a split that belong to the same class. This

is measured either by the Gini index or entropy as shown in equations 1 and 2
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respectively [46].

G “
K
ÿ

k“1

p̂mkp1´ p̂mkq (1)

D “

K
ÿ

k“1

p̂mk log p̂mk (2)

In these equations we assume that there areK classes and that p̂mk is the proportion

of training samples of the kth class in the mth region of the tree [46]. The split is

made where the values of the measures are smallest, as that is an indicator of high

purity [46].

Random forest improves upon a traditional decision tree by using predictions

from an ensemble of decision trees. When constructing the trees for the forest, each

split of a given tree only considers a random sample of features to use to make the

split. This increases the diversity of the trees in the random forest often leading to

stronger predictions.

When applied to NID, random forest is overall a well-performing algorithm

[75, 9]. This has held true within our own work, where its performance on recent

datasets was generally best out of all traditional machine learning algorithms. The

main reason for its inclusion as a key machine learning technique for NID is that

despite being a traditional algorithm, it often performs better than neural networks

[9]. In addition, we can normally get a respectable baseline of the complexity of a

given NID dataset by evaluating it with a random forest model. For these reasons

researchers continue to use random forest either on its own, with some variation

of tree generation [47], or as part of a larger pipeline of models [9].
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2.3.2 Naive Bayes Classifier

The naive Bayes classifier is a supervised method based on probability theory and

Bayes’ theorem [46]. This classifier minimizes classification error by assigning each

test sample to the class which it most likely belongs using its features in compari-

son to training data [46]. Using the conditional probability in equation 3 we assign

a given sample to the class j for which the probability of the sample belonging to

that class is greater than 0.5 [46]

PrpY “ j|X “ x0q (3)

where Y is either zero indicating a benign sample, or one, indicating an attack sam-

ple, and x0 represents the features of our test sample. The Bayes classifier was used

for benchmarking purposes with an assumption that the likelihood of features for

a given sample follows a Gaussian distribution in our work with classical algo-

rithms, however, it is not prevalent in current research within the field of network

intrusion detection.

2.3.3 Logistic Regression

Logistic regression is a supervised classification algorithm that adapts the concepts

of linear regression such that they can be applied to the classification setting [46].

Taking the typical linear regression model, ppXq “ β0`β1X , the main issue that can

occur is that our probabilities may be negative or greater than one. For this reason,

logistic regression applies the logistic function, a sigmoid function, as shown in

equation 4 [46]
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ppXq “
eβ0`β1X

1` eβ0`β1X
(4)

which constrains the probabilities to be between zero and one. We fit the parame-

ters of the function using maximum likelihood and then use the learned parame-

ters during inference. In our work we used logistic regression as one of our com-

parison classical machine learning algorithms, however, it is often insufficient for

use in network intrusion detection and is not seen often in this area of research.

2.3.4 K-Nearest Neighbors

K-Nearest Neighbors (KNN) is a supervised classification algorithm that attempts

to estimate the Bayes decision boundary [46]. It does this by taking a novel sample,

and then considering the K closest neighboring samples, which we identify asN0.

As shown in equation 5, we classify the sample using the label of N0 with the

highest probability [46].

PrpY “ j|X “ x0q “
1

K

ÿ

iPN0

Ipyi “ jq (5)

In our work we used K set to values of five and ten when exploring classical al-

gorithms. While KNN often produced results comparable to random forest in our

results, it is not considered a primary classifier when working with network intru-

sion detection due to its reliance on labels and sensitivity to training data.

2.3.5 Support Vector Machine

The support vector machine is a supervised machine learning algorithm constructed

from a generalization of the support vector classifier. When used for binary classifi-
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cation, the main idea behind a support vector classifier is to construct a hyperplane

such that if a sample falls on one side of the hyperplane, it is assigned to one class.

Falling on the other side of the hyperplane, the other class is assigned to the sam-

ple. We call the hyperplane a maximal margin hyperplane as we want there to be

the maximal amount of distance between the hyperplane and the closest samples

of data. These closest samples of data that define the hyperplane are referred to

as support vectors. One can define the solution to a support vector classifier using

equations 6 through 9 [46].

maximize
β0,β1,...,βp,ε1,...εn,M

M (6)

subject to
p

ÿ

j“1

β2
j “ 1, (7)

yipβ0 ` β1xi1 ` β2xi2 ` ...` βpxipq ąMp1´ εiq, (8)

εi ě 0,
n

ÿ

i“1

εi ď C, (9)

In these equations, we have n samples denoted as x with p dimensions and β rep-

resenting the hyperplane’s parameters. M is the margin we are maximizing with

ε allowing for slack such that some observations can be on the wrong side of the

hyperplane constrained by a non-negative tuning parameter C.

The support vector machine generalizes these equations to allow for the use

of kernel functions which map to a higher dimensional space and can create non-

linear hyperplanes represented by equation 10 [46]
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fpxq “ β0 `
ÿ

iPS

αiKpx, xiq (10)

where S is the set of support vectors and K represents a kernel function that maps

to a higher dimensional space. Popular kernel functions include a polynomial

kernel or radial kernel [46].

2.3.6 One-class Support Vector Machine

One-class support vector machine (OCSVM) is an algorithm that adjusts the previ-

ously discussed traditional support vector machine to operate in an unsupervised

manner [92]. The main concept for a OCSVM is to find a hyperplane such that it

has a maximum margin that separates normal samples from anomalies [92]. The

algorithm does this by minimizing equation 11 [92]

min
w,ξ,ρ

1

2
||w||2 `

1

vn

ÿ

i

ξi ´ ρ (11)

subject to pw ¨ φpxiqq ě ρ´ ξi, ξi ě 0 (12)

where n is the number of samples, ξ are slack variables, ρ is the distance to the

origin, and w is a vector perpendicular to the hyperplane in a high-dimensional

feature space mapped by some function φ, and v is a parameter to control the

trade off between the two terms of the equation. Once fit, the OCSVM determines

outliers using fpxq “ sgnppw ¨ φpxqq ´ ρq such that inliers are positive with outliers

being negative. Similar to the traditional support vector machine, the OCSVM

supports the use of various kernel functions for introducing non-linearity to the

hyperplane. In our work, we seek to fit the OCSVM using only benign network
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flow samples such that attacks will be considered anomalies.

2.3.7 Isolation Forest

Isolation forest is an unsupervised algorithm first introduced as a way to perform

anomaly detection without depending on measures of density or distance among

training samples [61]. Consisting of an ensemble of binary trees referred to as

isolation trees, the main insight of the technique is that anomalies should be more

prone to isolation; separation from other samples, compared to those which exhibit

normal behavior [61]. In terms of a single isolation tree, a normal sample would

require more partitions in the feature space to be isolated compared to an anomaly.

This quality allows one to construct an anomaly score using the average height of

the trees in an isolation forest as shown in equation 13 [61]

spx, ψq “ 2
´Ephpxqq

cpψq
(13)

where x is the input sample, ψ is number of samples drawn from training data used

to construct each isolation tree, Ephpxqq is the mean path length of sample x across

the isolation trees in the forest, and cpψq is a normalizing factor calculated based

on the given sampling size ψ [61]. In our work, we fit isolation forests using only

benign network samples. In doing this we expect that attack network flow samples

will be easier to isolate compared to benign network flow samples, leading to a

higher anomaly score for those samples.

2.3.8 Local Outlier Factor

The local outlier factor (LOF) algorithm has two differences compared to most

other anomaly detection methods. Namely, it provides a score for how much a
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given sample is outlying, called the local outlier factor, and determines this score

based on how isolated the sample is compared to its local neighborhood of sam-

ples [17]. One advantage of this algorithm is that by dealing with the locality of

points, it avoids issues related to only using global densities of the data, which can

cause outliers to be misclassified under certain conditions [17]. The local outlier

factor of a given sample p would be determined using equation 14 [17]

LOF ppq “

ř

oPN

lrdpoq
lrdppq

|Nppq|
(14)

where N is the sample’s local neighborhood and lrd is the local reachability den-

sity function outlined in the original work [17]. This calculation provides the ra-

tio between a given point’s local reachability density compared to that of its local

neighborhood [17]. When sample p is an inlier, this value will be close to one,

while outliers would have a value greater than one. In our use of the algorithm,

we expect that attack network flows would have a larger local outlier factor than

benign network flows.

2.4 Feed Forward Neural Networks

We refer to the trainable models used in deep learning as neural networks. While

these networks come in many shapes and sizes they all typically form some pa-

rameterized function that seeks to approximate an unknown true function based

on provided training data. In general, the structure of neural networks can be de-

scribed using six parts: input layer, hidden layer(s), output layer, activation func-

tions, cost function, and an optimization function. Figure 4 provides a high-level

view of a feed forward neural network and its structure. Deep learning models
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Figure 4: Sample architecture of the main components of a feed forward neural
network. Depicted in blue are the input features. Depicted in pink are nodes of a
hidden layer. This network has a single output y1 denoted in yellow.

are normally trained using some form of gradient descent derived optimization

algorithm [39]. As input flows through a neural network, we call this forward

propagation, which has a loss calculated by a model’s cost function. The gradi-

ent of this loss is then calculated back through the network in a stage called back

propagation. This gradient is then used to update the trainable parameters of the

model.

Non-linearity for a deep learning model is introduced by non-linear activation

functions that are used between layers of a network. Common activation functions

used include the Rectified Linear Unit (ReLU), sigmoid, and the hyperbolic tangent

(tanh) function.

In feed forward networks a sample is provided to the model at the input layer

with a node for each feature of the sample. The data is then passed through the

network between connections of each node of a previous layer to the next layer.
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In general, an activation function is present between each layer. The number of

layers, nodes, and activation functions to use are generally determined empirically

based on validation data performance of the model. The layers of a feed forward

neural network typically perform an affine transformation defined as h “ gpWx`

cqwhere x is the input, W are associated weights, c is a vector if biases, and g is our

selected activation function [39]. Given this we can represent a full neural network

with m layers using equation 15

fpθ, xq “ gpWm...pgpW2gpW1x` c1q ` c2q...` cmq (15)

where θ are all of the weights and biases learned by the network based on training

data. While different loss functions can be used such as mean-squared error (MSE)

or binary cross entropy, the loss calculated after forward propagation can generally

be represented using equation 16

Loss “ `py ´ fpθ, xqq (16)

where y represents some target for the output of the network and ` is the loss

function. During training, the gradient of this loss is then used to update our

parameters θ as shown in equation 17

θnew “ θ ´ α∇Loss (17)

where ∇Loss is the gradient of our loss and α is a hyperparameter referred to as

a learning rate, which controls the magnitude of the movement of the parameters

during each step of training. While the specific criteria can vary, we generally stop

training once convergence of the parameters occurs resulting in little change from
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one round of training to the next.

In our work, we utilize feed forward neural networks for classification. Addi-

tionally, as discussed in Section 2.6, the core structure of our method can be con-

sidered a specialized format of a feed forward neural network.

2.5 Recurrent Neural Networks

One of the limitations of feed forward neural networks is that each sample is

processed through the network individually such that information from previous

samples are lost. Recurrent neural networks (RNNs) were created as a way to

provide some memory to a neural network such that they can better perform in-

ference on datasets with sequential dependencies [85]. Depicted in Figure 5 in both

a rolled and unrolled fashion, one can see that these networks consider samples at

some time t. The input to the RNN at a time t consists of the state of the network

from time t ´ 1 and the current input Xt [85]. This is visualized in Figure 5 with

the specific calculation used in this work provided in equation 18 [85]

ht “ tanhpXtU
T
` ht´1V

T
` bq (18)

whereXt is the input at timestep t, U are the weights associated with the input, ht´1

is the hidden state of the previous time step with V being the respective weights

for the previous hidden state, and b represents the biases. The output can then be

calculated using equation 19 [39]

yt “ htW
T
` d (19)

where ht is defined by equation 18 with W and d being the weights and bias asso-
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Figure 5: Sample architecture of the main components of a recurrent neural net-
work. Depicted in blue are the input features. Depicted in pink are recurrent
hidden nodes. The network’s output from each hidden node is denoted as y in
yellow.

ciated with the output.

Similar to feed forward networks, RNNs utilize a loss function and a gradi-

ent descent based backpropagation optimization, backpropagation through time

(BPTT), to perform learning of the network parameters. There are several variants

to RNNs such that they can provide an output at each time step or a single output

after a sequence has been processed as used in this work.

2.5.1 Long Short Term Memory

In additional to a classic RNN, Long short term memory (LSTM) networks were

created to overcome issues encountered when training RNNs such as vanishing

and exploding gradients [44]. In addition, they have shown the ability to success-

fully perform inference on tasks that require long-lasting memory [39]. The main

differences between the RNN depicted in Figure 5 and LSTMs, is that LSTMs in-

clude cells with self-loops and a series of gates that control the flow of memory

through the network [44]. These gates, which are controlled by learned parame-

ters of the network include the input gate, forget gate, and output gate. For each
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cell, the input gate controls if a given feature will be accumulated within the cell.

The state unit of a cell contains the self-loop which is controlled by the forget gate.

The output gate determines how much of a given cell’s state, ct, will be output.

Each of these gates are generally neurons with learned parameters and a sigmoid

activation function. The relevant LSTM calculations are shown in equations 20

through 25 [87].

it “ sigmoidpWiixt ` bii `Whiht´1 ` bhiq (20)

ft “ sigmoidpWifxt ` bif `Whfht´1 ` bhf q (21)

gt “ tanhpWigxt ` big `Whght´1 ` bhgq (22)

ot “ sigmoidpWioxt ` bio `Whoht´1 ` bhoq (23)

ct “ ft d ct´1 ` it d gt (24)

ht “ ot d tanhpctq (25)

In these equations it, ft, ot are the input, forget, and output gates respectively; gt is

the cell activation; ct is the cell state at time t; ht is the hidden state at time t; ht´1 is

the hidden state of the previous time step; and ct´1 is the cell state at the previous

time step. Additionally, d is the Hadamard product with W and b representing

the various weight and bias vectors of the network. It should be noted that in our

work we do not use the LSTM calculations that make use of projections as outlined

in the proposed LSTM architecture of [87]. While this makes the LSTM simpler in

structure, it does not impact our main goal of comparing its performance between

different sets of input features.
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2.6 Autoencoders

Autoencoders are a commonly used form of feed forward neural network with

properties that lend themselves to a number of applications such as data genera-

tion, feature selection and reduction, denoising, and anomaly detection [39]. As

autoencoders are a specialized form of neural network, the general components

and properties described in Section 2.4 apply to these networks as well. With the

goal of reconstructing the original input, the useful properties of autoencoders are

a result of its unique structure consisting of an encoder with a bottleneck layer

and a subsequent decoder [54]. The encoder consists of one or more hidden lay-

ers and takes as input the original input features. The final layer in the encoder,

commonly referred to as the bottleneck layer, contains fewer nodes than the orig-

inal input [54]. The decoder then takes as its input the output of the encoder and

reconstructs the original input. The key part of the autoencoder structure is the

bottleneck layer, as it forces the model to learn a compressed representation of

the original data and presumably learns the most important characteristics of the

original input [54]. The structure of a basic autoencoder can be seen in Figure 6.

In our work we refer to the original input as X and define L as the autoencoder

reconstruction using equation 26

L “ DpEpXqq (26)

where E is the encoder, and D is the decoder. While training an autoencoder, the

goal is to minimize the difference between the original input and the autoencoder

reconstruction. Rewriting equation 16 for an autoencoder yields equation 27 which

can be simplified to our notation shown in 28.
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Bottleneck

Encoder Decoder

Figure 6: Sample architecture of the main components of an autoencoder. Depicted
in blue are the input features and their respective reconstructions. Depicted in pink
are hidden nodes. Depicted in red is the bottleneck layer.

Loss “ `pX ´DpEpXqq (27)

Loss “ `pX ´ Lq (28)

Common loss functions used when training autoencoders include MSE or Kullback-

Leibler (KL) divergence. In our work we typically use MSE for our loss function.
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3 Related Work

3.1 Learning Techniques Applied to Network Intrusion Detec-

tion

There is a wealth of learning techniques employed for NID that include statistical

methods, classic machine learning, and deep learning. In this section we provide a

review of the literature with a concentration on learning methods, with a focus on

deep learning methods, which have begun to dominate the research space in this

domain.

One recent work uses statistical analysis of network data to determine a nor-

mal network profile using only benign network data [71]. In that work, the authors

determine the probability density function (PDF) of a Drichlet Mixture Model us-

ing the benign data during training. During testing, the lower-upper interquartile

range is used as a threshold on new samples to detect attacks. A similar work

uses statistical methods for feature selection where multiple correlation matrices

of network features are used to generate features and a profile of normal network

behavior [40]. Anomalies are detected by comparing the statistical features of new

samples to the normal profile using the Mahalanobis distance.

Traditional machine learning models remain a popular technique in current lit-

erature. Random forest is often used for initial benchmarking of datasets as it has

been shown to generally perform well for network intrusion detection in partic-

ular [75, 9]. Despite being a traditional machine learning algorithm, researchers

have shown it to outperform neural networks for some NID datasets [9]. In recent

research we see variations on how the trees in a random forest are generated [47]

or it is used as part of a larger pipeline of models [9].
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The main limitation to many classic machine learning algorithms is the fact that

many of them require supervised learning which produces models that struggle

with zero-day attacks. For this reason, researchers tend to favor algorithms that

can be trained in an unsupervised manner or using only benign network data. As

an example, OCSVM was shown to perform well on network intrusion data and

mitigates the issues surrounding the scarcity of real-world attack data [37]. Several

recent works incorporate OCSVM models into a larger pipeline of models with

success detecting network attacks [67, 3]. Other works concentrate on augmenting

OCSVM to optimize its parameters in the context of network intrusion detection

[86, 36].

More prominent in recent literature are learning techniques that incorporate

neural networks and deep learning. Feed forward neural networks are often em-

ployed to perform classification on network data [64]. For example, one recent

work focuses on taking advantage of feed forward neural networks specifically

for software defined networks [100]. In addition to feed forward networks, re-

cent literature also applies convolutional neural networks (CNN) to network in-

trusion detection in order to find localized and correlated features. One such work

compares a CNN’s performance to a traditional multilayer perceptron (MLP) and

shows that it outperforms the MLP for NID [5]. Another work presents the HCRN-

NIDS model, which uses a CNN in conjunction with an LSTM to successfully de-

tect network attacks [50].

Perhaps one of the more striking shifts in the literature over the last decade is

the emergence of taking advantage of the sequential nature of network data by us-

ing models such as RNNs, LSTMs, and Gated Recurrent Units (GRU). The DDoS-

Net model combines the architectures of an RNN with an autoencoder and utilizes
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the bottleneck layer to classify distributed denial of service (DDoS) attacks using

network flow data [30]. The recent work by Ullah and Mahmoud performed ex-

tensive analysis of RNNs, GRUs, and LSTMs to show their suitability for network

intrusion detection specifically for Internet of Things (IoT) networks [103].

3.2 Feature Generation Techniques for Network Intrusion Detec-

tion

In this section we review recent works related to feature generation when applying

machine learning to network intrusion detection. We reserve feature generation

techniques that utilize autoencoders to Section 3.3 as it is one of the common us-

ages of autoencoders in this space. Finding optimal features for learning models

applied to network intrusion detection is a perennially present focus in the litera-

ture. One recent work combines an interesting ensemble of models and techniques

to perform feature generation using NetFlow data [81]. An ensemble of recurrent

models consisting of a RNN, GRU, and LSTM are trained, and dimension reduc-

tion is performed on their output features using kernel principal component anal-

ysis (KPCA). The resulting features are then combined and provided to several

downstream classifiers such as random forest.

The work that presents the full NIDS called Kitsune also contains a unique fea-

ture generation component [69]. Kitsune calls this component its feature mapper,

and it utilizes agglomerate clustering to divide the original feature space into non-

overlapping subspaces. Each subspace is then provided to its own set of down-

stream models to perform attack detection. A similar work takes an original fea-

ture set from NID datasets and uses a greedy recursive feature addition algorithm

to fine-tune their final features used in downstream classifiers [62].
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Another approach for feature generation comes from Sarhan et al. where they

promote using a standard set of features to be used when applying learning al-

gorithms to NID [91]. In this work, features are generated based on the NetFlow

v9 standard such that the data should be available in the vast majority of network

settings in a well-defined manner.

3.3 Autoencoders Applied to Network Intrusion Detection

In this section we cover recent applications of autoencoders for NID. We can cat-

egorize the general usage of autoencoders for NID into several broad categories

based on two of the key components of the autoencoder model as shown in Figure

7. In one case when applied to NID, we often see the latent layer of autoencoders

used either for feature reduction or feature selection. In the other general case,

we see the reconstruction loss from an autoencoder used to detect network attacks

or as part of a feature generation process. In the former, the reconstruction loss is

generally transformed using an aggregation operation such as calculating the MSE

of a NetFlow sample. On the whole, we make the observation that in most cases,

autoencoders are used for the general purpose of anomaly detection when applied

to NID.

3.3.1 Using the Autoencoder Latent Layer

The general idea of using the autoencoder bottleneck layer for either feature reduc-

tion or feature selection stems from the insight that it captures a compact encoding

of the salient parts of the original features. For this reason, many recent works con-

centrate on this technique for NID [18, 110, 74, 104]. One recent work is dedicated

to analyzing the effects of the bottleneck size when using autoencoders for NID
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Figure 7: A taxonomy of the broad categories in which different parts of the au-
toencoder are used. Traditionally the bottleneck, or latent layer, of the autoencoder
is used for various feature reduction or feature selection tasks. The reconstruc-
tion loss of an autoencoder is generally used as an aggregate statistic to perform
anomaly detection with a threshold. Some works use the reconstruction loss as
a way to generate features for downstream tasks, again, generally using an ag-
gregate statistic to characterize the loss. Highlighted in yellow is the category in
which our technique falls. While we display a category for using feature residuals
directly for anomaly detection it is rarely seen in practice.

[98]. Here, the authors varied the bottleneck size and used a z-score threshold of

the reconstruction error, an aggregate residual metric, to evaluate its effects. This

work found that often times very small bottleneck sizes can be used depending on

the NID dataset being evaluated.

An interesting modification to this technique in recent literature adds a dropout

layer after the bottleneck layer during training [33]. It was shown that doing this

during training improves the robustness of the encodings in the latent layer which

can then be used as features to downstream models effectively. Other works that

modify the autoencoder structure to enhance the efficacy of the bottleneck layer in-

clude the DDoSNet model [30]. In that work the autoencoder layers are modified

from traditional affine layers to be recurrent layers in order to capture the sequen-

tial nature of network data. The bottleneck layer was then used as input to a final

softmax layer for classifying network attacks.
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The usage of the bottleneck layer is quite prevalent when applying NID to IoT

networks. In these networks, there is generally less computing power available

compared to traditional networks. By using the bottleneck features of an autoen-

coder for downstream processing, the compute power needed for inference can

often be reduced [56, 63, 14]. One unique application of this technique for IoT

modifies the traditional training process for an autoencoder by constructing two

bottleneck layers. One bottleneck is trained using only benign samples, while the

other is trained using both attack and benign samples. A filtering process is then

used to determine which features are critical to discriminating attacks from benign

network samples. This reduced feature set is then used for inference in combina-

tion with a downstream classification method.

3.3.2 Using the Autoencoder Reconstruction Loss

When using autoencoder reconstruction loss to identify network attacks the gen-

eral idea is to train the autoencoder on only benign network data. In doing so, the

assumption is that the autoencoder will struggle to reconstruct attacks and have a

higher resulting reconstruction loss on those samples. Within this general frame-

work, many works in this area are unique in their autoencoder architectures, how

they determine their threshold, or the actual aggregate loss metric used for detect-

ing anomalies [7, 11, 23, 111, 38]. One recent work that uses this general framework

focuses on cyber-physical environments and combines lightweight features while

training the autoencoder using only benign samples [76]. A threshold is then ap-

plied to the MSE of the resulting autoencoder reconstructions to detect anomalies.

A similar work uses this same concept as part of a larger two-stage system to de-

tect network attacks [112]. In the first stage of the system, the authors use a light
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gradient-boosting model to perform initial detection of network attacks. An au-

toencoder is then used in the second stage to confirm any network flows identified

as benign also have a reconstruction MSE that is below a threshold to confirm the

original decision.

Another recent trend in the literature uses an ensemble of autoencoder recon-

struction loss to detect network attacks. Discussed previously, Kitsune trains an

autoencoder for multiple sub-spaces of the original set of features. A final anomaly

detection process is performed by using the MSE from each autoencoder along

with a threshold operation. Another work uses a similar ensemble of autoencoder

reconstruction loss as the third step in a three-step anomaly detection system [62].

Several additional works focused on IoT networks train an autoencoder for

each device in order to obtain a benign profile for each device on the network

[68, 29]. This helps alleviate issues with creating such a profile on networks with a

high amount of heterogeneous devices. The reconstruction loss from each device

is then used to evaluate if network samples are attacks. The proposed Auto-IF

NIDS uses the MSE of the autoencoder loss to divide IoT traffic into attack and

benign samples. Two isolation forests are then used as a second measure to further

confirm that the benign and attack traffic has been correctly identified.

We now explore recent works that augment an original feature set by utiliz-

ing autoencoder reconstructions and their loss for NID. One recent work takes the

autoencoder reconstruction and generates their final feature set by performing a

sum operation with the original features [107]. AIDA is a full NIDS introduced to

detect network attacks which uses a single autoencoder reconstruction loss metric

for each sample [8]. This single metric is then used as a single additional feature

to augment their original feature set which is then provided to a downstream clas-
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sifier. Similarly, another work augments their classifier input feature set using a

stacked sparse autoencoder to produce three additional features [113]. First, a bot-

tleneck layer of a single node is used as a feature. The authors then use two forms

of the reconstruction error from the autoencoder, Euclidean distance and cosine

similarity, as the other two additional features.

There is little literature exploring the use of autoencoder feature residuals for

network intrusion detection that we will develop in detail in Chapters 5 and 6.

Among them includes the work that develops the DeepAID framework which has

a goal of adding interpretability to deep learning-based anomaly detection sys-

tems [41]. In DeepAID, the autoencoder feature residuals are not actually used for

anomaly detection. That work takes already identified anomalies and then uses

the autoencoder feature residuals to interpret why they were classified as such.

In our work, by using autoencoder feature residuals to actually identify network

attacks, we get some of this interpretability for free by inspecting which features

have high residuals. In other words, the feature residuals of attack samples with

high magnitude identify the particular features that deviate the most from benign

data.

One final work worth noting that makes use of autoencoder feature residuals

is a work where the authors train an autoencoder on each device connected to a

network [109]. A global classifier is then used to detect attacks from the network

data with its input being the normalized autoencoder feature residuals from each

device. While the focus of that work is on their entire NIDS, we differentiate our

work by explicitly exploring the use of autoencoder feature residuals and captur-

ing their performance across numerous robust conditions in order to show that

they are generally applicable.



3.4 Robust Deep Autoencoders 52

3.4 Robust Deep Autoencoders

In this section we discuss robust deep autoencoders (RDA) which served as the

initial impetus leading our work towards using autoencoder feature residuals.

RDA is a method with the goal of introducing the non-linearity data represen-

tation capabilities of deep autoencoders with the anomaly detection benefits of

robust principal component analysis (RPCA) [77, 114]. RPCA takes an input ma-

trix X and splits it into a low rank matrix Lrpca and a sparse matrix Srpca such that

X “ Lrpca ` Srpca [77, 114]. In this context, Lrpca contains a low-dimensional rep-

resentation of X and Srpca contains the outliers of the original matrix X [114]. To

train the RPCA model we seek to minimize equation 29 subject to the constraints

in equation 30.

min
L,S

||Lrpca||˚ ` λ||Srpca||1 (29)

s.t.||X ´ Lrpca ´ Srpca||
2
F “ 0 (30)

RDA adjusts this optimization by accounting for the use of an autoencoder for

non-linearity. When detecting instance anomalies, one can use the minimization

operation for RDA shown in equation 31 subject to the constraints in equation 32

min
θ,S
||Lrda ´DθpEθpLrdaqq||2 ` λ||S

T
rda||2,1 (31)

s.t.X ´ Lrda ´ Srda “ 0 (32)

where Lrda is the autoencoder reconstruction, Srda consists of noise from the data,
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λ is a hyperparameter controlling the sparsity of Srda, and DθEθp.qq is the autoen-

coder. Of interest for the training process is that it must be trained in an alternating

fashion using alternating direction method of multipliers (ADMM) where the au-

toencoder is optimized with Srda fixed, while Srda is optimized with Lrda fixed in an

alternating cycle [114]. The resulting Lrda after the training procedure is complete,

is a noise-free reconstruction of X , while Srda contains the anomalous outliers and

noise.

This technique was shown to provide anomaly detection capabilities on a num-

ber of benchmark datasets [114]. However, when implementing this technique

across a variety of network intrusion detection datasets, it proved difficult to main-

tain consistent detection of network attacks and have a training process that con-

verged consistently. For this reason we sought to relax the training process and

pursue autoencoder feature residuals as discussed in detail in Chapters 5 and 6

while maintaining the spirit of having input data split into both an easy to recon-

struct Lrda with anomalous data being captured into a separate Srda.
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4 Autoencoder Dimension Estimation Applied to Net-

work Intrusion Detection

4.1 Autoencoder Dimension Estimation Overview

The technique of autoencoder dimension estimation (AEDE) was developed by

Nahadur and Paffenroth as a way to estimate the intrinsic dimensionality of datasets

with potentially non-linear dependencies [13]. Dimension estimation looks at a

dataset and attempts to determine the number of latent factors it expresses. This

intrinsic dimensionality is often less than the actual number of features present in

the dataset due to a number of factors such as redundant features, locally corre-

lated features, and dependencies between features [13]. Classic techniques such as

principal component analysis (PCA) use orthogonal linear projections to perform

both dimension estimation and dimension reduction, however, they are unable to

accurately perform dimension estimation when the data contains non-linear de-

pendencies. To account for this shortcoming, AEDE uses the non-linearity of the

autoencoder and performs several transforms to its bottleneck layer in order to

find a set of values analogous to singular values found by PCA, which are referred

to as singular value proxies (SVP).

The main challenge that AEDE accounts for is enforcing both sparsity and con-

sistency in the latent layer of the autoencoder which is required to perform DE [13].

To do this, AEDE applies two transforms to the latent layer of the autoencoder

which both normalize the values and apply a sparsity penalty. First the values

of the latent layer are processed through a sigmoid function and then normalized

using equation 33
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yinorm “
yi

b

řk
i“1 y

2
i

(33)

where yi is each node of the hidden layer which contains k nodes total. Next an ||.||1

penalty is applied to the normalized values to encourage sparsity of the values.

This is represented in the objective function Jsparse for AEDE shown in equation 34

Jsparse “ `pX ´ Lq ` λ
k

ÿ

i“1

||yinorm||1 (34)

where λ is a hyperparameter that controls the amount of sparsity applied to the

hidden layer. Intuitively, as λ is increased we expect reconstructions to be less

accurate as we are losing more data in the encoding.

These transforms cause the hidden layer values to be both consistently in the

range between zero and one as well as sparse. There are two remaining operations

that are performed to finalize creation of the SVP dual to singular values. Shown

in Figure 8, we first sort each row independently such that the highest values of

each row are to the left. We then take the mean of each column to find our SVPs. To

use the SVPs to determine intrinsic dimension we perform a threshold operation

on them using a tunable parameter α.

4.2 Applications to Network Intrusion Detection

When applying this technique to NID, we asked the question: “Does network di-

mensionality change when the network is under a cybersecurity attack?”. To an-

swer this we utilized the CICIDS2017 NID dataset NetFlow data as described in

Appendix A.4, using Monday’s all-benign data for training and validation of the

autoencoder while testing on the remaining scenarios. We used 70% of the benign
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(a) Latent Layer

(b) Re-fashioned latent layer

(c) SVP creation process
Figure 8: An example of SVP sorting from [13] which uses the MNIST dataset.
(a) Without any transformation, the innermost hidden layer, which has 64 nodes
is shown here. (b) After sorting the 64 hidden layer nodes (rows) independently
we get an image where the larger hidden layer values are on the left and smaller
values are on the right. (c) Steps needed to convert a latent representation into
SVPs that can be used to estimate dimension.
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Table 2: AE architecture used for performing AEDE on the CICIDS2017 dataset.
Layer Type Nodes Regularizer Activation

input layer 74 - -

encoder layer 1 60 - relu

dropout layer 1 Drop 1% - -

encoder layer 2 45 - relu

dropout layer 2 Drop 1% - -

encoder layer 3 35 - relu

dropout layer 3 Drop 1% - -

lambda layer 35 - -

hidden layer 25 `1 sigmoid

decoder layer 1 35 - relu

decoder layer 2 45 - relu

decoder layer 3 60 - relu

output layer 74 - sigmoid

data for training, leaving the remaining 30% for validation. We removed all net-

work identifying features such as IP addresses, ports, and protocols resulting in

74 features serving as input to our autoencoder. All features were normalized us-

ing min-max normalization based on the training data as described in Appendix

A.3.1. We note that this operation increases the dataset dimension by one but does

not affect our overall analysis as we are interested in comparing relative changes

in dimension over time.

A hyperparameter search was performed across multiple λ values based on the

resulting MSE of autoencoder reconstructions as depicted in Figure 9. A λ value

of 0.0001 was chosen based on this search. The autoencoder architecture used is

summarized in Table 2 where the number of layers and sizes were determined

through ablation studies.

We can now estimate the dimensionality of the network while it is not under
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Figure 9: Choosing the value of the λ parameter to control the sparsity of the en-
coder’s hidden layer was performed using the MSE of the autoencoder model. It
can be seen that the lowest MSE correlates to a λ of 0.0001. Based on this, the λ
chosen for the model was 0.0001.
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Figure 10: The scree plot generated using the singular value proxies for each au-
toencoder trained with varied values of λ to control the sparsity of the hidden layer
of the encoder. Shown in blue, using the singular value proxies from the autoen-
coder trained with λ = 0.0001 assesses the dimensionality of the Monday benign
network traffic data of the CICIDS2017 dataset to be seven based on the “knee” in
the curve. For comparison, PCA is shown in brown and assesses the dimensional-
ity of the data to be thirteen.

attack. These estimates across different values of λ are shown in Figure 10. Our

chosen λ of 0.0001 estimates the dimensionality of the network to be seven, which

is smaller than the linear PCA estimate of thirteen. For λ values which resulted in

poor reconstruction performance compared to our chosen λ, one can see that the

dimensionality is estimated to be less than seven.

After choosing the λ to use for the model, we considered where to set the sin-

gular value proxy threshold α. The task of finding the proper value of α is not
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well-defined and relies on both empirical measures and judgement based on do-

main knowledge. Some insights can be gained by performing dimension estimates

using several α of increasing magnitude as summarized in Figure 11. It is intuitive

to consider that with α set to 1 we will estimate a dimensionality of 0, while an α of

0 will estimate a dimensionality equal to the number of nodes in the hidden layer

of the encoder. In line with this, one can see that there is a range of α between 0.001

and 0.003 inclusive which appear to be thresholds that are not restrictive enough.

Similarly, values of α greater than 0.006 appear too prohibitive. This leaves several

values of α to look at closer. A value of 0.006 was chosen for α as its estimate of di-

mensionality aligned with the “knee” in the scree plot for the chosen model which

can be seen by comparing Figures 10 and 11. It should be noted that choosing the

optimal α is an open problem that could be explored further.

We used time intervals of 1, 5, and 10 minutes of network data to evaluate the

performance of AEDE. From Table 3 and Figure 12 one can see that we obtain rel-

atively consistent estimates across all time intervals on the benign validation data

used. We now examine the results from different types of network attacks found

in our dataset. The most success was found detecting DDoS attacks in Friday’s

scenario from the dataset as seen in Figure 13. Darker blues indicate a higher di-

mension estimate which shows that while under the attack, shown between two

dashed lines, the network dimensionality increases. The remaining periods report

relatively consistent dimensionality estimates. PCA also has a change in its di-

mensionality estimate during the attack period, however, there is a considerable

amount of variability on either side of the attack when compared to AEDE. In

addition, when provided with longer time intervals, PCA is unable to detect the

attack period compared to AEDE.
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Figure 11: A study of increasing values of the singular value proxy threshold α
was performed using the validation data. One can see an area which provides
little filtering of singular value proxies until α = 0.004. Values of α greater than
0.006 appear to be too restrictive. A value of α = 0.006 was chosen for this work.

Table 3: Mean and standard deviation of dimension estimation on Monday’s be-
nign data from the CICIDS2017 dataset.

1 Min. 5 Min. 10 Min.

PCA 18.83˘ 1.4 19.68˘ 0.2 19.77˘ 0.28

AE 7.24˘ 0.5 7.04˘ 0.2 7.08˘ 0.28
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Figure 12: AEDE on Monday’s all benign data from the CICIDS2017 dataset that
visualizes the summary data reported in Table 3. The top plot estimates dimen-
sion at 1 minute intervals, the middle plot at 5 minute intervals, and the bottom
plot in 10 minute intervals. One can see that the dimensionality is estimated con-
sistently for all time periods with the 5 and 10 minute periods yielding slightly
better results.
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Figure 13: Dimension estimates of the Friday network traffic flows in the CI-
CIDS2017 dataset. The AE used was trained for 4,000 epochs with λ “ 0.0001
to control sparsity of the innermost hidden layer of the encoder. A SVP threshold
of α “ 0.006 was used when estimating the dimensions. The top plot estimates
dimension at 1 minute intervals, the middle plot at 5 minute intervals, and the bot-
tom plot in 10 minute intervals. Darker colors of blue indicate a higher estimate of
network dimensionality. The time period between the two black dotted lines indi-
cates when the network was under a Distributed Denial of Service (DDoS) attack.
The autoencoder dimension estimate clearly shows an increase in the dimension
of the network during the attack period. PCA shows a similar detection, however,
with considerably more noise during benign periods and it is unable to handle
larger time intervals such as the 10 minute interval.
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This detection of large attacks held true for the Wednesday denial of service

(DoS) attacks as depicted in Figure 14. However, for other more subtle attacks

such as port scans and web attacks as depicted in Figures 15 through 18, AEDE

was unable to perform well at providing a clear indicator of an attack taking place.

There are several takeaways that we can note from these findings related to

using AEDE for network intrusion detection. First, its strength in this area is at

detecting attacks which cause large network disruptions across the entire network

such as DoS and DDoS attacks. With more subtle attacks, or attacks targeted at

a specific machine, it is not well-suited. Additionally, given that this technique

analyzes the network as a whole, it provides no indicator of which network devices

are under attack or contributing to the attack conditions. For these reasons, we

sought to continue researching this area and began exploring RDAs as discussed

in Section 3.4 and ultimately began looking at autoencoder feature residuals which

are discussed in Chapters 5 and 6.



4.2 Applications to Network Intrusion Detection 65

Figure 14: AEDE is able to successfully detect a change in dimensionality during
multiple different denial of service attacks that occur in Wednesday’s data from
the CICIDS2017 dataset. The top plot estimates dimension at 1 minute intervals,
the middle plot at 5 minute intervals, and the bottom plot in 10 minute intervals.
One can observe that AEDE yields more definitive results compared to PCA.
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Figure 15: Both AEDE and PCA struggle to consistently detect changes in dimen-
sionality during brute force attacks present in Tuesday’s data from the CICIDS2017
dataset. The top plot estimates dimension at 1 minute intervals, the middle plot at
5 minute intervals, and the bottom plot in 10 minute intervals.

Figure 16: Both AEDE and PCA struggle to consistently detect changes in di-
mensionality during web attacks present in Thursday’s data from the CICIDS2017
dataset. The top plot estimates dimension at 1 minute intervals, the middle plot at
5 minute intervals, and the bottom plot in 10 minute intervals.
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Figure 17: Both AEDE and PCA struggle to consistently detect changes in dimen-
sionality during a heartbleed attack present in Wednesday’s data from the CI-
CIDS2017 dataset. The top plot estimates dimension at 1 minute intervals, the
middle plot at 5 minute intervals, and the bottom plot in 10 minute intervals.

Figure 18: Both AEDE and PCA struggle to consistently detect changes in dimen-
sionality during a port scan present in Friday’s data from the CICIDS2017 dataset.
The top plot estimates dimension at 1 minute intervals, the middle plot at 5 minute
intervals, and the bottom plot in 10 minute intervals.
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5 Autoencoder Feature Residuals

As noted in Chapter 4, after exploring AEDE we found that it struggled to gen-

eralize for network attacks with small footprints. Attacks such as advanced per-

sistent threats (APT) and emerging zero-day exploits would likely be undetected

by techniques that are unable to classify individual network flows as attack or be-

nign. For this reason, inspired by the work of Zhou and Paffenroth [114, 78], we

sought a technique that is able to differentiate normal samples from anomalies in

a dataset. As described next, we developed the creation of novel feature sets using

autoencoder feature residuals (AEFR) to meet this need. Here we define AEFR in

a general way and reserve their application to NID for Chapter 6 where we review

its application through exhaustive empirical analysis.

5.1 Defining Autoencoder Feature Residuals

At its core, AEFR provide unique feature sets for downstream methods. While we

focus on classifiers in our work, the usage of these features need not be restricted

to that downstream task. We start our definition by utilizing the structure of the

autoencoder as explained in Section 2.6. We define X as some original feature set

with k features. Providing X as input to a feed forward autoencoder we obtain the

autoencoder reconstructions of X which we define as L in equation 35

Lk “ DpEpXk
qq (35)

where E is the encoder, D is the decoder, and Lk is the k-dimensional reconstruc-

tion of X produced as output by the autoencoder.

We then produce the autoencoder feature residuals by performing an element-
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Table 4: The feature sets made possible using autoencoder feature residuals start-
ing with an original set of k features we refer to as X . The autoencoder recon-
struction of these features is referred to as L. The autoencoder feature residuals
are referred to as S. While we focus solely on using all k elements from X , L, and
S one could also create feature sets with a subset of the features as well.

Feature Vector Number of Features

X k

L k

S k
ÝÝÑ
XL 2k
ÝÝÑ
XS 2k
ÝÑ
LS 2k
ÝÝÝÑ
XLS 3k

wise subtraction of L from X as shown in equation 36

Sk “ Xk
´ Lk (36)

where Sk are the k autoencoder feature residuals.

At this point, one can create new feature sets by utilizing Xk, Lk, and Sk in

combinations as outlined in Table 4. We note that we concentrate our research on

utilizing all k elements from X , L, and S when creating feature sets, however, one

could utilize subsets from these as well.

5.2 Autoencoder Feature Residuals Training Procedure

Having outlined the mechanical definition of AEFR and their generation, we note

that the produced feature combinations outlined in Table 4 likely hold little value

compared toX if not paired with a specific training procedure which we discuss in

this section. We start with the intuition that an autoencoder will have an easier time
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reconstructing samples that are the same or similar to those used during its train-

ing. The mirror to this statement is that the autoencoder will have a harder time

reconstructing samples that are different from those seen during training. During

inference on new samples, this results in the reconstruction error being higher for

samples that differ from those seen during training. This idea is the basis of many

anomaly detection techniques that use autoencoder residuals in an aggregate man-

ner [8, 69, 79, 20].

Shown in Figure 19, we incorporate this idea into our training process by only

training using samples from one class, which we will refer to as the normal class,

and denote its samples as Xk
n . In training the autoencoder on only samples of this

type, we aim to have an autoencoder that has a robust overall representation of

what characterizes a sample as normal. We refer to the anomalous class using the

subscript d such that we can represent samples of that class as Xk
d . With this in

mind, when training an autoencoder to generate features using AEFR, we seek to

minimize equation 37

min
θ

`pXk
n ´DpEpX

k
nqqq (37)

where θ are the autoencoder weights and biases we are learning and ` is our loss

function to calculate the difference between our input and reconstruction of normal

samples. During inference, we attempt to reconstruct both normal and anomalous

samples and represent each case using equations 38 and 39

Lkn “ DpEpXk
nqq (38)

Lkd “ DpEpXk
d qq (39)
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Figure 19: A high level overview of the process used to generate and use autoen-
coder feature residuals. First, a one-class pre-training step is performed to produce
an autoencoder using only normal samples of data which we refer to as Xk

n . The
trained autoencoder is then provided with both normal and anomalous data sam-
ples to generate feature sets using the original features, autoencoder reconstruc-
tions, and autoencoder feature residuals. We refer to anomalous samples as Xk

d .
The feature sets and trained autoencoder are then available for use in downstream
tasks.
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which allows us to then compute the AEFR represented by equations 40 and 41.

Skn “ Xk
n ´ L

k
n (40)

Skd “ Xk
d ´ L

k
d (41)

Note that when we refer to a mixture of normal and anomalous samples we con-

tinue using the notation from equations 35 and 36.

5.3 Properties of Autoencoder Feature Residuals

5.3.1 General Properties

The general properties that relate to AEFR are relatively straightforward with most

of them having been outlined in Sections 5.1 and 5.2. For completeness we want to

explicitly state that when working with AEFR and the feature sets that can be gen-

erated with them, there is no new data being created. In other words, all the data

that is used was already present in our initial Xk and our processing through the

autoencoder to generate Lk and Sk is a restructuring of this data. To compliment

this idea we can express this using equations 42, 43, and 44.

Xk
“ Lk ` Sk (42)

Xk
n “ Lkn ` S

k
n (43)

Xk
d “ Lkd ` S

k
d (44)
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Normal Sample Anomaly Sample
Xn

Ln

Sn

Xd

Ld

Sd
Figure 20: An example of the optimal result one could hope to achieve when work-
ing with autoencoder feature residuals. Here we have a normal sample on the left
and a pure anomalous sample on the right each with five features. The color bars
represent the value of each feature. The top row shows the original features X ,
which are put through an autoencoder to produce L in the middle row. In this
ideal scenario, the autoencoder has perfectly reconstructed Xn, making Ln “ Xn

and Sn “ 0, while at the same time not being able to reconstruct any portion of the
anomalous sample Xd. This leaves Ld “ 0 and Sd “ Xd. Having an autoencoder
that behaved in this manner on all samples of X , one could use either L or S as
optimal features for downstream tasking such as classification or revert to using
a summary metric as is often done in anomaly detection. In reality, such a result
is unattainable as there will generally be some error in reconstruction of normal
samples and some portion of anomalies that can be reconstructed.

Moreover, in the absence of the ideal conditions discussed in Section 5.3.2, using

only Lk or Sk for features results in strictly having removed data from Xk.

5.3.2 Ideal Conditions

When working with AEFR one can identify a set of ideal conditions that would

prompt for using either Lk or Sk as features for optimal anomaly detection. This

situation would occur if one had an autoencoder that could reconstruct all normal

samples without error, while at the same time, being unable to reconstruct any

portion of the anomalous samples. Depicted in Figure 20, we can express this

using equations 45 through 48.
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Lkn “ Xk
n (45)

Skn “ 0 (46)

Lkd “ 0 (47)

Skd “ Xk
d (48)

With these conditions being met, one could useLk or Sk as optimal inputs to down-

stream anomaly detection tasks. Meeting these conditions is unlikely for most real-

world datasets, however, we note them here as what to strive for when working

with this technique.

5.3.3 Failure Conditions

There are several general conditions to note that can cause this technique to be

less effective than desired. First, the anomaly detection capabilities of the features

generated with AEFR is affected by the quality of the normal training data used for

the autoencoder. If it is not trained using adequately difficult normal samples that

are representative of realistic conditions during inference, it is likely to produce Skn

with higher values, which is undesirable.

Similarly, if inference is performed on problems that are prone to frequent con-

cept drift, then the autoencoder may struggle to reconstruct emerging benign sam-

ples. As a way to mitigate this, one could perform continuous training of the au-

toencoder to account for changes in the target environment.
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The generation of AEFR as formulated here consists of using a feed-forward

autoencoder which does not use any form of memory. If the features of a sample

could be either normal or anomalous given the context surrounding the sample,

the actual AEFR will not be able to account for these differences. There are several

ways to mitigate this such as re-formulating the input to the autoencoder to consist

of data from multiple individual samples. Another alternative is to use a down-

stream method that can account for the context of the sample such as an RNN or

LSTM classifier.

5.4 Comparison to Aggregate Residuals

It is common to see anomaly detection performed using an autoencoder trained

on normal data after which, during inference, anomaly detection is based on an

aggregate error metric of the reconstruction along with a threshold [8, 69, 79, 20].

As the usage of AEFR is much less prevalent, it begs a look into why we would

expect AEFR to have an advantage over such techniques.

An example of a common aggregate residual used is MSE as outlined in Ap-

pendix A.3.2. During inference the MSE of a sample is calculated and compared

to a generally user-defined threshold. If the sample MSE, commonly referred to

as anomaly score, is higher than a threshold, it is considered an anomaly. We start

our discussion by noting that all the failure conditions for AEFR discussed in Sec-

tion 5.3.3 also apply when using an aggregate residual. However, the situation is

much worse for techniques using aggregate residuals as the anomaly score has lost

valuable data that AEFR preserve. This can be shown through a synthetic example

depicted in Figure 21 where we have Sk for two samples with k “ 5. The recon-

struction error for the samples are feature-wise mirror images of each other. One
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Normal Sample Anomaly Sample

Sn Sd
Figure 21: In this synthetic motivating example we show the disadvantages that
can arise when using aggregate loss metrics for detecting anomalies. On the left
hand side we show the AEFR for a normal sample, while the right hand side shows
the AEFR for an anomaly. The error for both samples is equal, however, it is dis-
tributed differently among the features. An aggregate metric such as MSE would
calculate the anomaly score the same for both samples, resulting in the normal
sample being flagged as a false-positive. Providing the AEFR to a downstream
classifier provides the classifier with the opportunity to differentiate the two sam-
ples.

sample is normal while the other is anomalous, however, the MSE calculated for

each reconstruction are equal. Relying on an aggregate residual metric is unable

to determine a difference between the two samples resulting in one being misclas-

sified as an anomaly. The data necessary to do this, however, is preserved when

using AEFR since we can see that there are differences in which individual features

have high residuals for the normal and anomalous sample.

As another motivating example, one can see Figure 22, which shows another

synthetic example of Sk for a normal and anomalous sample. In this situation,

however, we have minor residuals for all features of the normal sample, while the

anomalous sample is characterized by a single large anomalous feature that the au-

toencoder could not reconstruct. Again in this situation, using aggregate residuals

is not adequate as it has removed the details necessary to properly differentiate the

normal sample from the anomalous sample.

Another shortcoming related to working with aggregate residuals that we need

not deal with (unless desired) is the usage of a threshold to detect anomalies. This

threshold may be different across domains and imposes an additional hyperpa-
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Normal Sample Anomaly Sample

Sn Sd
Figure 22: In this synthetic motivating example we show the disadvantages that
can arise when using aggregate loss metrics for detecting anomalies. On the left
hand side we show the AEFR for a normal sample, while the right hand side shows
the AEFR for an anomaly. The normal sample has a loss of 0.1 across all features
for a total of 0.5. The anomaly has a loss of zero for four of its features, while the
autoencoder could not reconstruct feature three which has a loss of 0.5. Here, an
aggregate residual metric would consider both of these anomalies as it does not
account for the structure of the errors. Using AEFR allows downstream tasks to
take advantage of this structure for performance improvements.

rameter to tune, or the exploration of normalization procedures to apply to the

metric prior to thresholding. While we have this option when working with AEFR,

it is not strictly necessary given the granularity of information that is being main-

tained. Additional options, such as using AEFR along with a downstream neural

network classifier remain at our disposal.

5.5 Synthetic Examples

Prior to investigating the application of AEFR to real-world datasets, we first ex-

plored its usage on synthetic datasets that we constructed. With these datasets,

we defined a pattern that we considered to be normal and then injected random

anomalies of a specific value. We consider these synthetic samples relatively easy,

so if we were unable to detect anomalies in this situation, it would be likely that

the technique would be unable to translate over to NID datasets.

In the first scenario, we defined our normal samples to be those containing

features with a value of one while injecting random values of two. After training an

autoencoder on normal samples, our expectation would be forLk to contain mostly
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Figure 23: A synthetic example where normal samples contain features with all
their values set to one. An autoencoder was trained on normal samples only.
Anomalous entries contain features with a value of two. One can see that after
training on normal samples Lk is dominated by values of one while Sk is sparse
and contains the anomalies.

values of one, while Sk would be sparse except for areas where the anomalies were

injected. This can be seen in Figure 23, where both of these expectations are met.

Figures 24 and 25 show two additional examples of increasing complexity which

were both met with success. While there are some subtle artifacts that can be seen

in all of these examples in both Lk and Sk, it remains clear that the training proce-

dure for generating AEFR is able to successfully break Xk into an Lk that contains

the easy to reconstruct portions of a sample while Sk contains the more difficult

anomalies. We take this moment to acknowledge that we liken our Lk and Sk to
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Figure 24: A synthetic example where normal samples are represented by rows
with either values of one or values of two. An autoencoder was trained on normal
samples only. Anomalous entries contain features with a value of five. One can
see that after training on normal samples, Lk is dominated by values of all ones or
all twos, while Sk is sparse and contains the anomalies.

the Lrda and Srda covered in Section 3.4. Given this success, we moved to applying

the use of AEFR for NID in order to detect network attacks as discussed in detail

in Chapter 6.
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Figure 25: A synthetic example where values of the features for normal samples are
generated using a sin function. An autoencoder was trained on normal samples
only. Anomalous entries contain features with a value of five. One can see that
after training on normal samples, Lk is dominated by rows constructed by the sin
function, while Sk is sparse and contains the anomalies.
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6 Autoencoder Feature Residuals Applied to Network

Intrusion Detection

In this chapter we cover the application of the concepts from Chapter 5 to NID. We

note that our goal in this endeavor is to empirically determine general applicability

of the feature sets produced by AEFR to the area of NID. In doing so, we cover a

wide range of types of downstream classifiers, across a multitude of NID datasets,

and using several encodings of the data. This breadth, however, likely came at a

cost for leaving performance on the table by not optimizing our architectures and

hyperparameters for individual NID scenarios. In this regard, we actually believe

this is a more practical approach for moving research into actual NID settings due

to the volatility and dynamic scenarios that must be covered in this area, which we

touch upon in Section 6.3.

6.1 Methodology Overview

Here we simplify the notation from Chapter 5 to be specific to the NID problem

domain as well as outline our overall methodology, deferring details to the fol-

lowing sections. In this domain, we consider the normal samples to be benign

network traffic and the anomalies to be attack network traffic. In line with this, we

adjust the notation used for our original set of input features to be X , Xb, and Xa

where we have dropped the k and the subscript b represents only benign network

samples while the subscript a represents only attack network samples, while no

subscript represents a mixture of both benign and attack network samples. Sim-

ilarly, we have equations 49, 50, and 51 to represent autoencoder reconstructions

on network data,
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L “ DpEpXqq (49)

Lb “ DpEpXbqq (50)

La “ DpEpXaqq (51)

again dropping the k and using the subscripts b and a. Finally, we have the same

adjustments made to represent the AEFR as shown in equations 52, 53, and 54.

S “ X ´ L (52)

Sb “ Xb ´ Lb (53)

Sa “ Xa ´ La (54)

For our application of AEFR, we pair the generation of the feature sets using

AEFR along with a large selection of classifiers which include traditional machine

learning models, neural networks of various architectures, as well as unsupervised

methods executed in a one-class manner. Our overall general process, which fol-

lows from that outlined in Chapter 5, is depicted in Figure 26.

We begin by training an autoencoder using only benign NetFlow samples. In

doing so, we are making an assumption that after training, the autoencoder will be

able to easily reconstruct unseen benign NetFlow samples, while struggling with

attack NetFlow samples. After training is complete we are able to generate L and
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1. During training we use only benign samples to train our autoencoder. Infer-
ence is performed on benign and attack data.

X LEncoder Decoder

2. Create autoencoder feature residuals: X ´ L “ S

´ “

X L S

3. Use X , L, and S to create novel feature combinations.
X
L
S

XS
LS

XLS

4. During training only benign samples used to train classifiers. Inference is
performed on benign and attack samples.

Naive Bayes KNN Random
Forest

Logistic
Regression

SVM

MLP RNN LSTM

Isolation
Forest

One-class
SVM

LOF

5. During inference our trained autoencoder and classifier are used together to
classify network traffic as benign or attack.

Benign Attack

Figure 26: The overall process for constructing and using feature sets that take advantage of au-
toencoder feature residuals as we applied it to NID. In blue we show the various classical machine
learning models we used for downstream classification. In orange we show the various neural net-
work architectures we used for downstream classification. In purple we show the various one-class
classifiers we used for downstream classification.
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S using both benign and attack NetFlow samples. With X , L, and S in hand we

construct our feature sets and use each of them to train a separate downstream

classifier. We are then able to assess the technique using a holdout test dataset

using both the trained autoencoder and classifier.

6.2 Performance Metrics

We collected a number of metrics throughout our research in order to assess the

performance of our method on classifying network attacks. In general, we most

commonly report the f1-Score as it remains more suitable compared to accuracy

for problems with a heavy class imbalance such as NID. Additionally, we provide

an analysis of the false alarm rate as it carries significant real-world implications in

the area of NID as discussed in Section 6.8. We define the metrics utilized as part

of the research outlined in this dissertation in Appendix A.2.

6.3 Encoding Network Intrusion Detection Data

We discussed the difficult intrinsic properties of network data in Section 2.1.3. Here

we discuss one final complexity and outline how we accounted for these difficul-

ties in our research. Namely, one issue that complicates both research and the

practical application of machine learning to cybersecurity is that there is no stan-

dard set of features to use for the task [90]. This issue stems from various points in

the process of applying machine learning to cybersecurity. First, network admin-

istrators and researchers must determine which attributes to actually collect from

their network infrastructure. If there are enough resources to collect full packet

captures then there is no major issue, however, this is rarely the case. This results

in the collection of NetFlow data and likely only a subset of all the available fea-
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tures of NetFlow data.

This affects downstream consumers of the data attempting to perform machine

learning as each dataset has different features derived from network traffic [90].

Looking at Table 26 in Appendix A.4, one can see that aside from related datasets,

none of the commonly used benchmark datasets deliver the same feature set.

For this reason we use an encoding that consists of the simple features shown in

Table 5 that can be commonly found across a wide variety of datasets. In general

we focus on features derived from bytes, packets, protocol, and ports which are

all generally available in benchmark datasets. Additionally, we conducted studies

summarized in Table 6 to determine if features derived from bytes and packets

were helpful in performing classification prior to including them in our encoding.

Though not available at the start of our research, we also later utilized a set of

datasets from Sarhan [91] and described in Appendix A.4, which encodes the data

using standard NetFlow v9 features which we refer to as the NFV2 encoding.

6.4 Determining Autoencoder Architecture

In early work we performed multiple ablation studies to determine the autoen-

coder architecture to use for generating AEFR. There are several notable obser-

vations from these studies related to our choice of autoencoder architecture. We

found that using the ReLU activation function between hidden layers provided the

best results in terms of reconstruction loss across a wide variety of NID datasets.

Additionally, in early work we performed ablations across both the number of

layers in the encoder and decoder combined with different levels of compression

in the bottleneck layer. Figure 27 shows results across the extremes of the abla-

tion study for the CTU-13 Scenario 6 dataset where we paired using AEFR with a
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Table 5: The encoding of NetFlow features used for the majority of this research.
We utilized features based on bytes, packets, protocol, and ports which are all
generally available across benchmark datasets. Details regarding the one hot en-
codings can be found in Appendix A.5.1 and A.5.2.

Feature (Type) Description

communication type (OHE) L4 [SRC|DST] PORT

protocol (OHE) PROTOCOL

destination bytes per second (Float) Natural log

destination packets (Float) Natural log

destination packets per second (Float) Natural log

duration (Float) Duration in seconds

packets per second (Float) Natural log

source bytes per second (Float) Natural log

source packets (Float) Natural log

source packets per second (Float) Natural log

total bytes (Float) Natural log

total bytes per second (Float) Natural log

total destination bytes (Float) Natural log

total packets (Float) Natural log

total source bytes (Float) Natural log

label (Binary) 1 = attack
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Table 6: Summary metrics from a study conducted to determine which features to
use in our encoding of NetFlow data. Our baseline features consisted of source and
destination bytes and packets as features. We then independently added either a
new set of columns or new columns with a transform applied to them. We used
the mean f1-score using a random forest classifier trained on 34 network scenarios
as our metric. In general, we used all features that improved the f1-score in our
final encoding.

Feature Mean F1-Score

Baseline 0.765

Bytes Per Second 0.783

Packets Per Second 0.775

Log Applied to Bytes Columns 0.879

Log Applied to Packets Columns 0.777

Log Applied to Bytes Per Second Columns 0.850

Log Applied to Packets Per Second Columns 0.783

random forest classifier, though its results are representative of the trends across

most datasets used in the study. We show additional details from these studies in

Appendix A.7. We see more consistent results for the various inputs used as we

increase the number of layers in our autoencoder and expand the bottleneck size.

Based on these results, most of our autoencoders use an architecture consisting of

six layers in the encoder and decoder and a bottleneck size of 12.

An additional concern with the autoencoder architecture is regarding the final

output layer and what activation function to use. As we apply a min-max nor-

malization to our data one may be tempted to apply a sigmoid function on the

output layer, however, we found the results when combining this with AEFR to

be disappointing. We found more success by applying no activation function to

the output layer of our autoencoder. Table 7 provides the detailed information for

the autoencoder architectures used in our early research pairing AEFR with classi-

cal machine learning algorithms. Table 8 provides the detailed information for the
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Figure 27: Snapshot of the extremes of an ablation study run on the CTU-13 Sce-
nario 6 dataset. We paired AEFR inputs with a downstream random forest clas-
sifier to see the best results. In general, increasing the number of layers in the
autoencoder while also increasing the bottleneck size provided more consistent
results across all combinations of inputs used.
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autoencoder architectures used throughout our remaining research for both our

simple encoding and the NFV2 encoding of network data.

6.5 Training Autoencoder on Network Intrusion Data

When training our autoencoders for generating AEFR, as mentioned previously,

we only provide benign network flow samples. Additionally, we use the Adadelta

optimization function with the initial learning rate set to 1.0. MSE is used as the

loss function during our training.

There are several other particulars worth discussing in this area. First, we ini-

tially trained our autoencoders using a batch size of 32. This was adequate for the

NID datasets we used initially, however, we found using the same batch size on

other NID datasets resulted in shrinking gradients and a collapse in training. To

avoid this, we found that increasing the batch size to 128 prevented this situation

from occurring, and we were able to maintain stable training.

Additionally, we found that we had to train our autoencoders for no less than

400 epochs in order to have a fully trained autoencoder, though we often train to

500 epochs when we approach new datasets in later work. While this seems like

a trivial step, given the downstream usage of AEFR, without checking explicitly

for convergence it is easy to miss an undertrained autoencoder. Shown in Figure

28, we see an example of an undertrained autoencoder and the resulting L and

S. Here we see that L is a relatively constant value per feature. When using S

in downstream tasks, it ends up performing as well as X as it is simply a shifted

version of X . To avoid this confusion, it is imperative to have a fully trained au-

toencoder when generating AEFR.
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Table 7: Architecture of the autoencoders used in our early research working with
classic machine learning algorithms. The architectures below use a bottleneck size
of 12. The number of nodes in each layer is adjusted slightly when a different
bottleneck size is used. All autoencoders used the Adadelta optimization function
with a learning rate of 1.0 and mean squared error for the loss function.

2 Layer AE 3 Layer AE 4 Layer AE 5 Layer AE 6 Layer AE

Input Dimension 35 35 35 35 35

Encoder Layer 1 23 27 29 30 31

Activation ReLU ReLU ReLU ReLU ReLU

Encoder Layer 2 12 19 23 25 27

Activation ReLU ReLU ReLU ReLU ReLU

Encoder Layer 3 - 12 17 20 23

Activation - ReLU ReLU ReLU ReLU

Encoder Layer 4 - - 12 15 19

Activation - - ReLU ReLU ReLU

Encoder Layer 5 - - - 12 15

Activation - - - ReLU ReLU

Encoder Layer 6 - - - - 12

Activation - - - - ReLU

Decoder Layer 1 23 19 17 15 15

Activation ReLU ReLU ReLU ReLU ReLU

Decoder Layer 2 35 27 23 20 19

Activation - ReLU ReLU ReLU ReLU

Decoder Layer 3 - 35 29 25 23

Activation - - ReLU ReLU ReLU

Decoder Layer 4 - - 35 30 27

Activation - - - ReLU ReLU

Decoder Layer 5 - - - 35 31

Activation - - - - ReLU

Decoder Layer 6 - - - - 35
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Table 8: Architectures of the autoencoders used with our most current research.
Both autoencoders use the same general structure with 6 layers in the encoder and
decoder and a bottleneck size of 12. The ReLU activation function is used for each
layer except for the final output layer which does not use an activation function.
The autoencoders use the Adadelta optimization function with a learning rate of
1.0 and mean squared error for the loss function. There is a slight difference in the
number of nodes in each layer to account for the NFV2 dataset having 39 input
features and the simple encoding having only 35.

NFV2 AE Simple Encoding AE

Input Dimension 39 35

Encoder Layer 1 34 31

Activation ReLU ReLU

Encoder Layer 2 29 27

Activation ReLU ReLU

Encoder Layer 3 24 23

Activation ReLU ReLU

Encoder Layer 4 19 19

Activation ReLU ReLU

Encoder Layer 5 14 15

Activation ReLU ReLU

Encoder Layer 6 12 12

Activation ReLU ReLU

Decoder Layer 1 14 15

Activation ReLU ReLU

Decoder Layer 2 19 19

Activation ReLU ReLU

Decoder Layer 3 24 23

Activation ReLU ReLU

Decoder Layer 4 29 27

Activation ReLU ReLU

Decoder Layer 5 34 31

Activation ReLU ReLU

Decoder Layer 6 39 35



6.5 Training Autoencoder on Network Intrusion Data 92

Figure 28: An example of X , L, and S produced by an autoencoder that has been
undertrained. In this case, L is essentially a constant value and S is a shifted ver-
sion of X . Without explicitly looking, one could mistake S as being effective for
downstream tasks, however, the data provided to downstream tasks is closer to
simply using X .
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6.6 AEFR Effectiveness for NID

To assess the effectiveness of using AEFR for NID we paired the AEFR technique

with a number of various types of downstream classifiers. Additionally, we uti-

lized both our simple encoding and the NFV2 encoding across a large number of

NID scenarios. This breadth of testing helps to support that using AEFR is effective

for detecting network attacks.

6.6.1 AEFR with Machine Learning Classifiers

When pairing AEFR with classic machine learning classifiers for NID, we explored

all the autoencoder architectures denoted in Table 7 across six NID scenarios. We

performed random stratified sampling of 500,000 NetFlow samples from each dataset

and used a 70/15/15% split of the data for training, validation, and testing pur-

poses respectively. Min-max normalization was performed on all samples using

the training data to determine what values to use for normalization.

In addition to those described in Table 4, we created feature sets that utilize

a thresholded version of S. This was performed as an effort to move our results

closer to the ideal conditions described in Section 5.5. The thresholding was ap-

plied to each sample of S in the following manner. During autoencoder validation,

we determine the loss for benign and attack samples separately. We then use those

values to determine the thresholds using Equation 55

`b ` p`a ´ `bqp (55)

where `b is the benign network flow autoencoder loss, `a is the attack network flow

autoencoder loss, and p indicates a desired percentile between these two values.
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We explored thresholds with p set to 0.0, 0.25, 0.5, 0.75, and 1.0. Using these thresh-

olds we performed the threshold operation shown in lines 15-22 of Algorithm 1 on

S. We found a large majority of results that showed an improvement over using

onlyX included the thresholded S as part of the features provided to the classifier.

We refer to this thresholded version of S as T in our results.

To visualize the impact of thresholding we refer the reader to Figures 29 and

30. Figure 29 shows a set of samples where no thresholding has been applied to S.

In this situation, we see that our autoencoder performed better at reconstructing

benign network flows than reconstructing attacks. However, there is still data in

Sb for benign flows which we would like to eliminate. Shown on the left-hand side

of Figure 30 plot (a), using the 50% threshold results in the remaining values of Sb

being eliminated while the majority of the attack flows, shown on the right-hand

side, have been retained. It is worth noting that the threshold has been found to be

sensitive to the amount of separation of loss between the autoencoder reconstruc-

tion of benign and attack flows. For instance, on the right-hand side of Figure 30

plot (b), one can see that when using the higher `a threshold on the same samples

depicted in Figure 30 plot (a), we begin to aggressively degrade Sa.

Another example using the 50% threshold is shown in Figure 30 plot (c) to

demonstrate that often the thresholding is imperfect, and some benign network

flows contain data in Sb. Taken as strictly an anomaly detection framework, this

would indicate that those benign flows are likely anomalous. For classification us-

ing AEFR, however, a situation like this is not destined to incorrectly identify these

benign flows as attacks. Because we are passing the features to a secondary classi-

fier, the feature residuals can be used to attempt the proper classification, whereas

the more common method of using a single summary metric of the residuals would
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Figure 29: Samples of X , L, and S taken from CTU-13 Scenario 6 network flows
using no thresholding on S. We see that the autoencoder performs well but some
data still remains in Sb for benign network flows.

not have this opportunity.

After exploring combinations of X , L, and S along with thresholds applied to

S, we used initial validation data to determine the most desirable feature sets to

use for each scenario. To test this methodology and its robustness, we utilized

a completely separate group of data to train these selected models and tested on

an independent set of data from each scenario. Final test results are reported in

Table 9 where each entry is the mean f1-score from five independent executions of

algorithm 1.

Several observations can be made from Table 9 regarding the effectiveness of

this technique. First, we observe that in most instances, using our feature com-

binations and feature residuals with thresholding is able to increase a classifier’s

f1-score beyond their baseline performance. In many other cases, we at least meet

the original baseline values making this technique and its feature sets a viable al-

ternative to simply using the original features. We note that no attempts were

made to balance our training data which results in poor performance for some al-

gorithms such as naive Bayes and support vector machine. While performance
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Algorithm 1 AEFR training process used when paired with classic machine learn-
ing algorithms. The default parameters for these algorithms can be viewed in Ap-
pendix A.6. We include all possible features here as input to classifier training. In
practice, this could be any combination of the features.

Input: X, p
Output: AE,CLF , Trained autoencoder and classifier.

1: ‚ Perform data preprocessing on X
2:
3: Xb “ benign samples in X
4: Xa “ attack samples in X
5:
6: ‚ Initialize autoencoder AE with random weights
7: ‚Minimize msepXb ´ AEpXbqq using back propagation
8:
9: `b “ msepXb ´ AEpXbqq

10: `a “ msepXa ´ AEpXaqq

11: t “ `b ` p`a ´ `bqp Ź Threshold to be used.
12: L “ AEpXq
13: S “ X ´ L
14:
15: for each sample s in S do
16: s residual mse “

řN
i“0 s

2
i

N

17: if s residual mse ă“ t then
18: Set all entries of s to zeros and add row to T
19: else
20: Add s to T
21: end if
22: end for
23:
24: ‚ Initialize CLF with default classifier parameters
25: ‚ Fit CLF using combinations of X,L, S, and T
26: return AE, CLF
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Table 9: Final results pairing AEFR feature sets with classic machine learning al-
gorithms using an independent test set. The default parameters for the algorithms
used can be viewed in Appendix A.6. T indicates feature residuals with a thresh-
old applied to them as given in the Threshold column. The top row of each section
shows the result using a classifier with just the original features. Values in green
indicate an increase in f1-score greater than 0.01. Values in red indicate a decrease
in f1-score greater than 0.01. Values in blue indicate no change in f1-score greater
than 0.01.

Model Parameters F1-Score
Layers Bottleneck Features Threshold NB KNN RF LR SVM

CTU13 Scenario 5
- - X - 0.03 0.76 0.70 0.00 0.00
2 11 L, S - 0.05 ˘0.01 0.75 ˘0.01 0.72 ˘0.02 0.00 ˘0.00 0.00 ˘0.00

2 11 X, L, S - 0.04 ˘0.00 0.76 ˘0.00 0.73 ˘0.02 0.00 ˘0.00 0.00 ˘0.00

2 11 L, T 75% 0.06 ˘0.03 0.74 ˘0.01 0.73 ˘0.04 0.00 ˘0.00 0.00 ˘0.00

2 11 X, L, T 75% 0.03 ˘0.00 0.75 ˘0.01 0.73 ˘0.03 0.00 ˘0.00 0.01 ˘0.02

2 12 L, S - 0.06 ˘0.02 0.76 ˘0.01 0.72 ˘0.02 0.00 ˘0.00 0.00 ˘0.00

2 12 X, L, S - 0.03 ˘0.00 0.76 ˘0.00 0.71 ˘0.02 0.00 ˘0.00 0.01 ˘0.02

2 12 L, T 75% 0.06 ˘0.04 0.75 ˘0.01 0.72 ˘0.02 0.00 ˘0.00 0.00 ˘0.00

2 12 X, L, T 75% 0.03 ˘0.00 0.75 ˘0.01 0.72 ˘0.00 0.00 ˘0.00 0.01 ˘0.02

CTU13 Scenario 6
- - X - 0.00 0.80 0.86 0.00 0.00
6 12 S - 0.02 ˘0.02 0.87 ˘0.00 0.86 ˘0.00 0.00 ˘0.00 0.00 ˘0.00

6 12 T 25% 0.03 ˘0.02 0.82 ˘0.03 0.81 ˘0.03 0.00 ˘0.00 0.00 ˘0.00

6 12 T 50% 0.03 ˘0.03 0.80 ˘0.00 0.80 ˘0.00 0.00 ˘0.00 0.00 ˘0.00

6 12 T 75% 0.02 ˘0.03 0.48 ˘0.44 0.48 ˘0.44 0.00 ˘0.00 0.00 ˘0.00

UNSW-NB15
- - X - 0.48 0.87 0.88 0.58 0.56
2 9 L, T 25% 0.23 ˘0.01 0.87 ˘0.00 0.87 ˘0.00 0.57 ˘0.03 0.60 ˘0.02

2 9 X, L, T 25% 0.23 ˘0.04 0.87 ˘0.00 0.88 ˘0.00 0.60 ˘0.01 0.64 ˘0.01

2 9 X, S, T 25% 0.48 ˘0.10 0.87 ˘0.00 0.88 ˘0.00 0.61 ˘0.01 0.64 ˘0.02

3 9 L, T 25% 0.27 ˘0.10 0.87 ˘0.00 0.88 ˘0.00 0.54 ˘0.04 0.58 ˘0.06

3 9 X, L, T 25% 0.27 ˘0.10 0.87 ˘0.00 0.88 ˘0.00 0.61 ˘0.00 0.65 ˘0.02

3 9 X, S, T 25% 0.50 ˘0.12 0.87 ˘0.00 0.88 ˘0.00 0.61 ˘0.00 0.66 ˘0.02

4 9 L, T 25% 0.19 ˘0.02 0.87 ˘0.00 0.87 ˘0.00 0.51 ˘0.03 0.52 ˘0.05

4 9 X, L, T 25% 0.20 ˘0.01 0.87 ˘0.00 0.87 ˘0.00 0.60 ˘0.00 0.63 ˘0.02

4 9 X, S, T 25% 0.53 ˘0.01 0.87 ˘0.00 0.88 ˘0.00 0.61 ˘0.01 0.64 ˘0.01

CICIDS2017 Wednesday
- - X - 0.69 0.98 0.99 0.90 0.90
6 12 X, S - 0.72 ˘0.00 0.98 ˘0.00 0.99 ˘0.00 0.94 ˘0.00 0.94 ˘0.01

6 12 X, T `b 0.72 ˘0.00 0.99 ˘0.00 0.99 ˘0.00 0.93 ˘0.00 0.93 ˘0.01

6 12 X, T 25% 0.72 ˘0.00 0.99 ˘0.00 0.99 ˘0.00 0.93 ˘0.01 0.94 ˘0.01

6 12 X, T 50% 0.72 ˘0.00 0.99 ˘0.00 0.99 ˘0.00 0.93 ˘0.00 0.93 ˘0.01

6 12 X, T 75% 0.72 ˘0.00 0.99 ˘0.00 0.99 ˘0.00 0.93 ˘0.01 0.93 ˘0.01

6 12 X, T `a 0.72 ˘0.00 0.99 ˘0.00 0.99 ˘0.00 0.93 ˘0.01 0.93 ˘0.01

CICIDS2017 Thursday
- - X - 0.02 0.52 0.52 0.00 0.00
6 12 X, S - 0.03 ˘0.00 0.51 ˘0.00 0.53 ˘0.01 0.00 ˘0.00 0.00 ˘0.00

6 12 X, T `b 0.03 ˘0.01 0.52 ˘0.00 0.52 ˘0.00 0.00 ˘0.01 0.01 ˘0.01

6 12 X, T 25% 0.03 ˘0.00 0.51 ˘0.00 0.52 ˘0.00 0.00 ˘0.00 0.00 ˘0.00

6 12 X, T 50% 0.03 ˘0.00 0.52 ˘0.00 0.52 ˘0.00 0.00 ˘0.00 0.02 ˘0.00

6 12 X, T 75% 0.02 ˘0.00 0.52 ˘0.00 0.52 ˘0.00 0.00 ˘0.00 0.03 ˘0.03

6 12 X, T `a 0.02 ˘0.00 0.52 ˘0.00 0.52 ˘0.00 0.00 ˘0.01 0.01 ˘0.01

CICIDS2017 Friday
- - X - 0.73 1.00 1.00 0.98 0.99
6 12 X, S - 0.79 ˘0.03 1.00 ˘0.00 1.00 ˘0.00 0.99 ˘0.00 0.99 ˘0.00

6 12 X, T `b 0.74 ˘0.08 1.00 ˘0.00 1.00 ˘0.00 0.99 ˘0.00 0.99 ˘0.00

6 12 X, T 25% 0.76 ˘0.05 1.00 ˘0.00 1.00 ˘0.00 0.99 ˘0.00 0.99 ˘0.00

6 12 X, T 50% 0.71 ˘0.06 1.00 ˘0.00 1.00 ˘0.00 0.99 ˘0.00 0.99 ˘0.00

6 12 X, T 75% 0.69 ˘0.07 1.00 ˘0.00 1.00 ˘0.00 0.99 ˘0.00 0.99 ˘0.00

6 12 X, T `a 0.69 ˘0.07 1.00 ˘0.00 1.00 ˘0.00 0.99 ˘0.00 0.99 ˘0.00
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Figure 30: Three examples from CTU-13 Scenario 6 showing the effects of thresh-
olding on S where each row shows S broken out into Sb and Sa. (a) A threshold of
50% is applied to the original S from Figure 29. All values for samples of Sb on the
left hand side have been eliminated which results in better performance for classi-
fication. (b) A higher threshold applied to the same samples used in plot (a) begins
to degrade Sa shown on the right hand side, which is undesirable. (c) An example
using samples independent from those used in plots (a) and (b) showing the use
of a 50% threshold resulting in some data remaining in Sb on the right hand side.
Methods using an aggregate residual metric would suspect the benign samples are
anomalies. Our method may still take advantage of passing the feature residuals
to a secondary classifier for proper classification.

was still often improved in these circumstances, it was generally not sufficient to

make using these algorithms on unbalanced data possible.

It was found that choosing the proper threshold is highly sensitive to the amount

of separation between benign and attack residuals. This is observed in Table 9 by

looking at the results of using random forest with the CTU13 Scenario 6 data. Here,

one can see that as we increase the threshold on S, the performance of the classi-

fier goes from being sufficient to severely degraded. Additionally, we observed

that for the UNSW-NB15 dataset, a threshold with p set to 0.25 on S ended up be-

ing slightly too high resulting in poor classifier performance using the naive Bayes

classifier. Using a slightly lower threshold, the results for this classifier increase

significantly from a baseline f1-score of 0.48 to 0.62 across all feature combinations

listed in Table 9 for this dataset. Instances where an increase in threshold resulted
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in degraded performance caused a mean drop in f1-score of 0.11 using the results

in Table 9.

A second cause of classifier performance degradation occurs due to volatility

introduced when using L as part of the feature set for classification. This can be ob-

served in Table 9 for the results of the CTU13 Scenario 5 and UNSW-NB15 datasets.

Discounting feature combinations that include L yields feature sets that only meet

or exceed original classification results. In general, if training data indicates the

option of feature sets that include or exclude L, it is recommended to favor the

feature sets that exclude L.

6.6.2 AEFR with Neural Networks

Having shown effectiveness on classic machine learning algorithms, we next ex-

plored the use of AEFR in combination with several neural network classifiers.

The neural network architectures included a feed forward multilayer perceptron

(MLP) as well as recurrent architectures such as the RNN and LSTM. In general all

of these experiments used stratified random sampling of 500,000 NetFlow records

where we used 70/15/15% splits for training, validation, and test respectively.

Autoencoders were trained for 500 epochs using the architectures from Table 8.

Our MLP classifier was trained for 100 epochs and was based on the MLP used

in Sarhan’s work, whose results served as a comparative performance baseline

across the datasets explored [90]. The classifier consists of four layers such that

each hidden layer contains 10 output nodes with the final layer providing a single

output. The ReLU activation function was used for each layer except for the final

layer where a sigmoid function was applied. Binary cross entropy was used for

the loss function along with the Adam optimizer configured with a learning rate
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Table 10: Architecture of the MLP classifiers used. The input layer takes in a mul-
tiple of 39 features when we use the NFV2 dataset or a multiple of 35 features for
our simple encoding. The remaining layers all have 10 nodes with the final layer
providing a single output. We use ReLU for all layers except for the last, where the
sigmoid function is applied. The Adam optimizer with a learning rate of 0.001 is
used along with the binary cross entropy loss function.

Input Dimension Output Dimension Activation

Input Layer Multiple of 39 or 35 10 ReLU

Layer 1 10 10 ReLU

Layer 2 10 10 ReLU

Layer 3 10 1 Sigmoid

of 0.001. Table 10 shows the details of the MLP classifiers.

We first examine our results with an MLP from the perspective of using S as

a substitute for X . In Table 11 one can observe the mean f1-scores from ten ex-

periment executions for using X and S as input features to a classifier using the

NFV2 family of datasets. We see that the performance of S as a substitute for X

yields comparable results with supporting p-values for the NF-UNSW-NB15-V2,

NF-BoT-IoT-V2 and NF-CSE-CIC-IDS2018-V2 datasets. For the NF-ToN-IoT-V2

dataset we see that the unadjusted p-value indicates a statistically significant dif-

ference in the results with using S being slightly lower than using X . In this case,

however, the difference in mean f1-scores between X and S is only 0.003 showing

little practical relevance in score differences. Figure 31 shows 100 samples of the

NF-CSE-CIC-IDS2018-V2 test data from these results to provide a comparison of

X , L, and S. One can observe that the autoencoder does a sufficient job reconstruct-

ing benign data and does potentially too well reconstructing attacks. Additionally,

there are several large autoencoder feature residuals in the bottom left-hand side

of the plot for Sb which have the potential to impact performance when using S

for classification. Despite these areas for improvement, we were able to perform
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comparable to using the original feature set.

Based on these results one would be able to use S in place of X with little to

no change in classification performance. This is an indication that our technique in

generating S has maintained the majority of mutual information fromX needed to

yield comparable results. We find this result fascinating given that we are strictly

removing data from X . In addition, in Section 6.9 we show that using S has addi-

tional benefits compared to using X in terms of potential data compression.

Another option that the generation of autoencoder feature residuals lends itself

to is forming feature sets using S in combination with X and L. We see in Table 11

that combining S with X and L produces results at least as good as using solely X

and in several cases the results are improved. For example, we see statistically sig-

nificant improvements in performance for many of the combinations that include

S on the NF-UNSW-NB15-V2 and NF-ToN-IoT-V2 datasets. We do note that these

improvements are likely not substantial enough to deem one feature combination

to be preferred over the others from a practical perspective.

In a second set of experiments we took the data from the NFV2 datasets and en-

coded it as described in Table 5 to compare performance across different encodings

of the same data. With this encoding, the baseline performance ofX is significantly

worse on the UNSW-NB15 dataset compared to the original NFV2 dataset, while

the other baseline results are comparable. Interestingly, we see in Table 12 that

using S or feature combinations including S provides a significant improvement

in f1-score with this encoding applied to the UNSW-NB15 data. Similar improve-

ments are seen for the other datasets as well except for the BoT-IoT dataset, where

the new feature combinations maintained baseline performance.

Another interesting result that shows the benefit of using S in place ofX comes
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Table 11: Mean f1-score test results based on ten experiment executions using
S in combination with X and L as input to our classifier. P-values using the
Kolmogorov-Smirnov test are provided where values greater than 0.05 indicate
the f1-scores were likely drawn from the same distribution. Values in blue indi-
cate an f1-score and p-value that supports comparable performance compared to
X . Values in green indicate an f1-score and p-value that supports we have im-
proved performance compared to X . Values in orange indicate an f1-score and
p-value that supports we have degraded performance compared to X . From this
table it can be observed that using S alone or in combinations with X and L gen-
erally does at least as well as using X alone in terms of classification performance
making these combinations of features generally safe to use in place of only using
X .

NF-UNSW-NB15-V2 NF-BoT-IoT-V2 NF-ToN-IoT-V2 NF-CSE-CIC-IDS2018-V2

F1-Score p-value F1-Score p-value F1-Score p-value F1-Score p-value

X 0.909 0.989 0.973 0.924

S 0.904 0.052 0.989 0.418 0.970 0.012 0.924 0.787

XS 0.912 0.052 0.990 0.052 0.975 0.001 0.924 0.168

LS 0.912 0.018 0.990 0.075 0.975 0.011 0.925 0.052

XLS 0.912 0.052 0.990 0.168 0.975 0.003 0.924 0.418

Table 12: Mean f1-score test results based on ten experiment executions using S in
combination withX and L as input to our classifier using an alternative simple en-
coding. P-values using the Kolmogorov-Smirnov test are provided where values
greater than 0.05 indicate the f1-scores were likely drawn from the same distri-
bution. Values in blue indicate an f1-score and p-value that supports comparable
performance compared to X . Values in green indicate an f1-score and p-value that
supports we have improved performance compared toX . It can be seen that using
S and feature combinations including S often outperform using X . In other cases
these combinations generally perform at least as well as just using X .

NF-UNSW-NB15-V2 NF-BoT-IoT-V2 NF-ToN-IoT-V2 NF-CSE-CIC-IDS2018-V2

F1-Score p-value F1-Score p-value F1-Score p-value F1-Score p-value

X 0.780 0.994 0.950 0.958

S 0.814 0.012 0.993 0.994 0.953 0.168 0.974 0.000

XS 0.820 0.003 0.995 0.787 0.954 0.012 0.972 0.000

LS 0.825 0.000 0.995 0.418 0.954 0.012 0.973 0.000

XLS 0.819 0.000 0.995 0.787 0.953 0.052 0.969 0.000
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Figure 31: A comparison of X , L, and S using 100 samples with the NF-CSE-CIC-
IDS2018-V2 dataset. Using S in place of X provided comparable classification
performance. One can observe that the autoencoder has more trouble reconstruct-
ing attack network flows on the right-hand side, however, there remain several
prominent autoencoder feature residuals visible in Sb in the bottom left-hand side
of the plot. These autoencoder feature residuals in Sb have the potential to dimin-
ish the performance of using S in place of X for classification, leaving room for
improvement such that S has the potential to exceed the performance of X .
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when looking at the performance on the CSE-CIC-IDS2018 dataset. With this en-

coding we have a baseline f1-score of 0.958 which is lower than the original base-

line f1-score of 0.97 reported in the work that introduced the NF-CSE-CIC-IDS2018-

V2 dataset [91]. Using S instead ofX , however, improves our performance to 0.974

allowing this encoding to match that of the NF-CSE-CIC-IDS2018-V2 encoding.

This result is compelling as the simple encoding is dominated by one hot encod-

ings along with basic statistics regarding bytes and packets, making it inefficient

compared to the NFV2 encoding. One can observe in Figure 32, 100 samples of the

simple encoding applied to the NF-CSE-CIC-IDS2018-V2 test data where the au-

toencoder does extremely well at reconstructing benign network flows compared

to attack network flows. The sparsity observed in Sb in the bottom left-hand side

of the plot compared to the large autoencoder feature residuals in Sa in the bottom

right-hand side of the plot both contribute to the improvement seen over using X

for classification. While it remains unclear if using autoencoder feature residuals is

specifically effective on simple encodings, this analysis shows that its impact may

vary depending on how a dataset is encoded.

Both the RNN and LSTM models used in this work were unidirectional. The

model architecture for our recurrent models was found through ablation stud-

ies that assessed appropriate sequence lengths, recurrent layers, and hidden state

sizes to use. For this work we used a constant sequence length of 25, two recur-

rent layers with a hidden state size of 24, and a final fully connected layer. Each

recurrent layer uses the tanh activation function and a final sigmoid activation is

performed on the output of the fully connected layer. We used the default ini-

tialization strategy provided by PyTorch8 for the initialization of hidden and cell

states in our recurrent models. Binary cross entropy was used for the loss function
8https://pytorch.org/
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Figure 32: A comparison of X , L, and S using 100 samples with the simple en-
coding applied to the NF-CSE-CIC-IDS2018-V2 data. Using S with this encoding
improved the baseline result compared to using X as input to a classifier, such
that it met the original benchmark figures reported on the NF-CSE-CIC-IDS2018-
V2 dataset. One can see that Sb on the bottom left side of the plot is sparse with
significantly lower autoencoder feature residuals than Sa on the bottom right-hand
side.
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Table 13: Architecture of the RNN classifiers used. The input layer takes in a mul-
tiple of 35 features as these models use the simple encoding of our datasets. The
two recurrent layers each have a hidden state size of 24 with the final fully con-
nected layer providing the final output. We use tanh for all recurrent layers and
apply a sigmoid activation function to the final fully connected layer. The Adam
optimizer with a learning rate of 0.001 is used along with the binary cross entropy
loss function. Note that this architecture was used for both the RNN and LSTM
models used for classification.

Input Dimension Hidden Dimension Output Dimension Activation

RNN/LSTM Layer 1 Multiple of 35 24 24 tanh

RNN/LSTM Layer 2 24 24 24 tanh

Fully Connected Layer 24 - 1 Sigmoid

along with the Adam optimizer configured with a learning rate of 0.001. The loss

was based on the classifier performance predicting the final NetFlow sample in a

given sequence as being attack or benign. The details of the recurrent models are

provided in Table 13.

We adjusted our training procedure when using recurrent models such that we

utilize 50/25/25% splits (training/validation/test) in order to avoid introducing

optimistic results due to any time bias between the training and test data. Ad-

ditionally, it was found that the recurrent models needed to be trained for 500

epochs. A single sample presented to the recurrent neural networks on which we

make a classification consists of 25 consecutive NetFlow samples ordered by flow

start time. The features used for each NetFlow sample consisted of our feature

sets created using autoencoder feature residuals. For each input sequence we pre-

dicted if the final sample in the sequence was attack or benign. This can be seen

visualized in Figure 33 where we show a portion of a recurrent model taking in a

sequence of NetFlow samples where each sample is represented by X , L, and S.

When using recurrent architectures for our classifier, one can see from Tables 14

and 15 we achieve similar behavior as reported for feed forward networks when
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Figure 33: Here we show the general structure for how the features generated us-
ing our technique are used with recurrent models. After samples are processed
through our autoencoder to create X , L, and S, combinations of these feature sets
are used to represent a single network flow. In this example we represent a net-
work flow using all three feature sets; referred to as XLS. A sequence of these
samples are provided to the recurrent model. The hidden state of the final unit
in the recurrent layers is then provided to a fully connected layer which produces
our final prediction of the sequence being an attack or benign sequence. In our
experiments we consider a sequence of network flows to be an attack or benign
sequence based on the label of the final NetFlow sample in the sequence.
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using autoencoder feature residuals as input. In general, using either S on its own,

or in combination with other features, we are able to maintain or improve clas-

sification performance. While many of these gains are modest we note several

practical improvements in f1-score compared to using X , such as using XS as in-

put to an LSTM classifier on the CTU-13 Scenario 13 data. In this case the base

f1-score of 0.582 was improved to 0.671. We note a drop in performance on the

ToN-IoT dataset when using feature sets that include S without the support of

X . However, when S was paired with X in a feature set, our technique achieved

a significant performance improvement compared to only using X on that same

dataset. Additionally, we see performance improvements using autoencoder fea-

ture residuals as input to both RNN and LSTM architectures across all the CTU-13

dataset scenarios demonstrating that this technique may be well-equipped for the

detection of botnet attacks.

We note two common conditions encountered when training recurrent models

for network intrusion detection. First, it is common to experience some amount

of overfitting to training data when working with recurrent models on datasets

with a high class imbalance. Additionally, as one moves further out in time for

a network intrusion detection scenario, it becomes more likely that the data char-

acteristics change compared to training data [105, 65]. As we were focusing these

experiments on getting a general idea for the performance of autoencoder feature

residuals on recurrent networks, we put forth little effort to mitigate these two

factors. We note this to show that the general model performance improvements

reported in Tables 14 and 15 over using X demonstrates that using autoencoder

feature residuals provides some benefit in mitigating these factors, while requir-

ing little model tuning compared to other methods.
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Table 14: Mean f1-score test results based on ten experiment executions using S in
combination with X and L as input to an RNN classifier using the alternative sim-
ple encoding. P-values using the Kolmogorov-Smirnov test are provided where
values greater than 0.05 indicate the f1-scores were likely drawn from the same
distribution. Values in blue indicate an f1-score and p-value that supports com-
parable performance compared to X . Values in green indicate an f1-score and
p-value that supports we have improved performance compared to X . Values in
orange indicate an f1-score and p-value that supports we have degraded perfor-
mance compared to X .

UNSW-NB15 ToN-IoT CTU13 Scenario 6 CTU13 Scenario 9 CTU13 Scenario 13

F1-Score p-value F1-Score p-value F1-Score p-value F1-Score p-value F1-Score p-value

X 0.980 0.923 0.826 0.818 0.731

S 0.979 0.168 0.889 0.012 0.872 0.000 0.828 0.168 0.742 0.418

XS 0.980 0.994 0.934 0.168 0.834 0.168 0.833 0.002 0.801 0.002

LS 0.980 0.787 0.935 0.002 0.834 0.052 0.837 0.000 0.808 0.002

XLS 0.981 0.052 0.927 0.012 0.842 0.052 0.838 0.000 0.792 0.012

Table 15: Mean f1-score test results based on ten experiment executions using S
in combination with X and L as input to an LSTM classifier using the alterna-
tive simple encoding. P-values using the Kolmogorov-Smirnov test are provided
where values greater than 0.05 indicate the f1-scores were likely drawn from the
same distribution. Values in blue indicate an f1-score and p-value that supports
comparable performance compared to X . Values in green indicate an f1-score and
p-value that supports we have improved performance compared to X . Values in
orange indicate an f1-score and p-value that supports we have degraded perfor-
mance compared to X .

UNSW-NB15 ToN-IoT CTU13 Scenario 6 CTU13 Scenario 9 CTU13 Scenario 13

F1-Score p-value F1-Score p-value F1-Score p-value F1-Score p-value F1-Score p-value

X 0.976 0.926 0.809 0.778 0.582

S 0.975 0.052 0.832 0.000 0.816 0.168 0.796 0.002 0.639 0.012

XS 0.976 0.418 0.952 0.012 0.828 0.168 0.797 0.000 0.671 0.002

LS 0.976 0.787 0.919 0.012 0.822 0.418 0.797 0.000 0.664 0.002

XLS 0.977 0.052 0.951 0.002 0.835 0.012 0.798 0.000 0.654 0.012
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While the focus of these experiments is on using S, we do recognize that one

could also use L or XL as feature combinations in place of X . We found that in

general XL performed comparable to X , however, L generally performed worse

than X when using an MLP, RNN, or LSTM classifier. We believe this is in line

with our findings for classic machine learning algorithms; in that the usage of L,

or combinations with L, tends to hold some volatility in results dependent on the

differences of benign training samples compared to the test data used.

6.6.3 AEFR for One-class Classification

Having already explored a number of supervised algorithms and neural networks,

we sought to explore methods that could make the entire path of identifying net-

work attacks possible by only training with benign network flow samples. To do

this, we alter our training such that the downstream classifier is only provided

benign network flow samples similar to how we train our autoencoder. This is of

significance for NID as there is mainly an abundance of benign network data avail-

able, however, quality attack data is generally scarce. In our one-class classification

experiments we continue using the same feature encodings along with several In-

ternet of Things (IoT) datasets to test the usage of AEFR with one-class algorithms.

These algorithms include isolation forest, one-class support vector machine, and

local outlier factor. Due to the importance of one-class classification in this area

we first examine baseline results with no algorithm tuning. We then performed

ablations across the downstream classifier parameters for further analysis of the

effectiveness of pairing AEFR with one-class classifiers. For all experiments we

take a random stratified draw based on the class labels of no more than 500,000

samples and use splits of 70/15/15% corresponding to training, validation, and
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test data respectively. The autoencoder training process remains unchanged from

our previous experiments described in this chapter, using only benign data from

the training split. Our final results continue to utilize the hold out test split to

obtain our final reported performance measures.

We first look at the results of each feature combination in comparison to just

using X as input to each classifier. In these initial experiments no tuning was done

to the classifiers and so the default parameters selected by the sklearn9 libraries

were used. These parameters and their default values can be found in Appendix

A.6. Table 16 shows our results across seven IoT scenarios using our technique as

input to three different algorithms which we trained as one-class classifiers. From

the table one can see that using our feature sets generated with autoencoder fea-

ture residuals generally outperforms X or at a minimum performs at least as well.

We note several cases where using S provides a significant performance improve-

ment, such as when using IF on the BoT-IoT dataset, where using X received an

f1-score of 0.393 and S was able to achieve an f1-score of 0.770. Similar signifi-

cant improvements were realized when assessing OCSVM on the BoT-IoT dataset

as well as when applying LOF on the simple encoding of the ToN-IoT dataset. In

cases such as these, it may be possible to use S in place of X as an alternative to

extensive hyperparameter tuning of X .

Denoted in orange in Table 16 are baseline results that did not perform as well

as X . For many of these results the differences are negligible in practical terms,

such as the application of OCSVM to Scenario 13 of the IoT-23 dataset, where S

achieved an f1-score of 0.787 compared to 0.789 for X indicating only a difference

of 0.002. We note the results when applying IF and OCSVM to the ToN-IoT dataset

where both X and S perform poorly. These results imply that when X requires
9https://scikit-learn.org/stable/index.html
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Table 16: Baseline performance measures taken using default parameters for each
one-class classifier. We report mean f1-score test results based on ten experiment
executions using S in combination withX and L as input to our classifier. P-values
using the two sample Kolmogorov-Smirnov test are provided where values greater
than 0.05 indicate the f1-scores were likely drawn from the same distribution. Val-
ues in blue indicate an f1-score and p-value that supports comparable performance
compared to X . Values in green indicate an f1-score and p-value that supports we
have improved performance compared to X . Values in orange indicate an f1-score
and p-value that supports we have degraded performance compared to X . We see
that using S or S along with X and L often provides significant performance in-
creases compared to only using X and at a minimum does not harm classification
performance.

ToN-IoT BoT-IoT ToN-IoT (Simple) IoT-23 Scenario 1 IoT-23 Scenario 13 IoT-23 Scenario 19 IoT-23 Scenario 20

F1-Score p-value F1-Score p-value F1-Score p-value F1-Score p-value F1-Score p-value F1-Score p-value F1-Score p-value

Isolation Forest

X 0.303 - 0.393 - 0.946 - 0.939 - 0.887 - 0.598 - 0.679 -

S 0.063 0.000 0.770 0.000 0.751 0.000 0.950 0.052 0.879 0.052 0.605 0.012 0.631 0.052

XS 0.120 0.343 0.527 0.502 0.926 0.168 0.947 0.168 0.877 0.052 0.624 0.168 0.646 0.052

LS 0.111 0.169 0.622 0.001 0.877 0.002 0.928 0.168 0.898 0.012 0.709 0.994 0.675 0.418

XLS 0.111 0.160 0.510 0.905 0.933 0.168 0.930 0.012 0.868 0.012 0.647 0.787 0.669 0.418

One-class Support Vector Machine

X 0.605 - 0.793 - 0.938 - 0.886 - 0.789 - 0.628 - 0.662 -

S 0.485 0.000 0.934 0.000 0.987 0.000 0.881 0.002 0.787 0.000 0.689 0.012 0.847 0.000

XS 0.597 0.001 0.893 0.567 0.938 0.000 0.887 0.002 0.788 0.000 0.754 0.000 0.777 0.000

LS 0.617 0.000 0.889 0.038 0.938 0.000 0.887 0.000 0.790 0.000 0.869 0.000 0.709 0.168

XLS 0.607 0.399 0.866 0.333 0.938 0.000 0.887 0.000 0.790 0.000 0.847 0.000 0.705 0.168

Local Outlier Factor

X 0.365 - 0.861 - 0.758 - 0.951 - 0.918 - 0.893 - 0.737 -

S 0.406 0.000 0.888 0.000 0.936 0.000 0.950 1.000 0.918 1.000 0.898 0.787 0.705 0.168

XS 0.368 0.168 0.880 0.000 0.770 0.002 0.950 0.994 0.918 1.000 0.895 0.994 0.737 0.052

LS 0.361 0.052 0.879 0.000 0.763 0.002 0.950 0.994 0.918 1.000 0.897 0.168 0.738 0.052

XLS 0.361 0.052 0.883 0.000 0.763 0.052 0.951 1.000 0.918 1.000 0.900 0.418 0.738 0.052

additional hyperparameter tuning, the same may apply to S.

Based on our initial baseline results, we explored tuning the algorithms in ef-

forts to compare using each algorithm optimized forX as well as for our generated

feature combinations. We performed ablations across most parameters of the algo-

rithms but found the contamination, nearest neighbors, and kernel parameters, as

summarized in Figure 34, to be most significant in terms of increasing performance

for these algorithms. In addition, we performed grid searches across combinations

of parameters but generally found no significant increases in performance com-
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pared to that depicted in Figure 34. There were several key takeaways learned

from performing these studies in terms of the dynamics of X and S. First, we

found that in general, after performance tuning S and X individually, S is likely to

outperform X . In nearly all other instances, S or a feature combination including

S at least meets the performance of X .

Along with these results, we found that the algorithm parameters that work

well with X are not always the same as the parameters that result in a high per-

forming S. When applying various levels of contamination across all datasets for

the LOF algorithm, both X and S track together with performance increasing or

decreasing depending on the level of contamination indicated. For an algorithm

such as OCSVM, however, we observe that S is much more sensitive to the selected

kernel compared to X , and it is often not the same kernel that works best for both

of them. This can be seen by the results of the BoT-IoT dataset, where S performed

best with the rbf kernel, while X showed its best result using a polynomial kernel.

In general, these ablation studies show that with little risk, one can simply tune

S or a feature combination using S in place of X and likely increase their classifi-

cation performance for IoT network intrusion detection.

We now provide two comparisons to the best results achieved after perfor-

mance tuning X across all datasets. As shown in Table 17, we have a direct com-

parison of using S with the same algorithm that yielded the best performance with

X as its input. We then show our best performance across all the feature combina-

tions and algorithms assessed during our evaluation. From the direct comparison

of X and S one can see that S generally outperforms X in many cases and meets

the performance of X in other cases. This makes it a suitable substitute for X pro-

vided that we independently perform a hyperparameter search for S on the same
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Figure 34: Four ablation studies performed across all datasets to compare using
feature combinations that include S to just using X when the one-class classifica-
tion algorithms have been optimized for performance. In general, these ablation
studies show that our novel feature combinations generally outperform X or meet
the same performance of X even when the classifiers are optimized beyond their
baseline settings.
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Table 17: A comparison of the best performance found using X compared to S by
itself, as well as all of the assessed feature combinations constructed by our tech-
nique. We note the highest mean f1-score in bold. It can be seen that in general
the feature combinations constructed with our technique outperforms X . Addi-
tionally, we can see that S on its own often provides improved performance over
X .

Best X Algorithm X Parameters S Parameters X F1-Score S F1-Score Our Best Algorithm Our Parameters Our Best F1-Score

ToN-IoT Local Outlier Factor contamination = 0.5 contamination = 0.5 0.704 0.738 Local Outlier Factor S; contamination = 0.5 0.738

BoT-IoT Local Outlier Factor neighbors = 30 neighbors = 500 0.916 0.952 Isolation Forest S; contamination = 0.1 0.967

ToN-IoT (Simple) Isolation Forest contamination = 0.5 contamination = 0.4 0.973 0.976 One-class SVM S; kernel = rbf 0.987

IoT-23 Scenario 1 Local Outlier Factor contamination = 0.1 contamination = 0.1 0.975 0.974 Local Outlier Factor XS; contamination = 0.1 0.975

IoT-23 Scenario 13 Isolation Forest contamination = 0.1 contamination = 0.1 0.960 0.955 Isolation Forest XS; contamination = 0.1 0.957

IoT-23 Scenario 19 Local Outlier Factor neighbors = 1000 contamination = 0.3 0.967 0.948 Local Outlier Factor LS; neighbors = 1000 0.968

IoT-23 Scenario 20 Isolation Forest contamination = 0.5 contamination = 0.5 0.789 0.790 One-class SVM S; kernel = rbf 0.848

algorithm. Additionally, we see that opening up our consideration of feature com-

binations and algorithms, using our technique was able to meet or exceed the best

performing X . The one exception occurred with the IoT-23 Scenario 19 dataset

where X achieved an f1-score of 0.960 while we achieved 0.957, which we do not

consider significant when using this technique in practical IoT settings.

Taking an intuitive look at our results, we find it fascinating that using S and

its accompanying feature combinations are able to meet and often surpass the per-

formance of X . In our process, S is derived from X , meaning that no new data

is generated and actually, data is removed. This implies that the generation of S

is removing non-essential portions of X and presenting features to downstream

classifiers in a more efficient representation.

6.7 AEFR Precision and Recall Summary

As a summary metric we report mean f1-scores for our experiments, as it serves as

a useful comparative metric. Along with this we also collect precision and recall

metrics which are used to calculate the f1-score. These collected results are pro-

vided in Appendix A.7.2 and we provide a summary of the insights they provide
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here.

There are several takeaways that shed light into how AEFR increases overall

classification performance. First, we note that in general for neural networks, our

feature combinations tend to increase precision while maintaining respectable re-

call measures. When looking at using AEFR with one-class classifiers, we perform

well in both precision and recall, while we note inconsistent results with our fea-

ture combinations when the baseline metrics for X would be considered undesir-

able. Interestingly, our ablation studies with one-class classifiers found that using

AEFR nearly always outperformed X in terms of recall, while, maintaining preci-

sion metrics compared to X .

We note that these findings align with the previously reported f1-scores as pre-

cision and recall are used to calculate that metric. Additionally, we note the im-

provements in precision performance align with our results to be reported in Sec-

tion 6.8, in that our increases in precision align with a reduction of false alarm rate.

6.8 AEFR Impact on False Alarm Rate

One of the key metrics to consider when performing NID is the false alarm rate

(FAR) as defined in Appendix A.2.5. Often called the false positive rate in other

settings, this metric has significant implications to the practical application of NID.

When a potential network intrusion is detected by a NIDS, this generally triggers

an alert to network operators for investigation. If a large number of these alerts

are benign and not actually attacks, it causes additional work for the network op-

erators. Additionally, when this is severe, operators may experience false alarm

fatigue and ignore many alerts that could be potential attacks. For this reason, we

pay special attention to to minimizing this metric in the area of NID.
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Table 18: Mean false alarm rate (FAR) based on ten experiment executions using S
in combination with X and L as input to our MLP classifier whose classifications
results are reported in Table 11. P-values using the Kolmogorov-Smirnov test are
provided where values greater than 0.05 indicate the false alarm rate were likely
drawn from the same distribution. Values in blue indicate a false alarm rate and
p-value that supports comparable performance compared to X . Values in green
indicate a false alarm rate and p-value that supports we have decreased the false
alarm rate compared toX . Values in orange indicate a false alarm rate and p-value
that supports we have increased the false alarm rate compared to X .

NF-UNSW-NB15-V2 NF-BoT-IoT-V2 NF-ToN-IoT-V2 NF-CSE-CIC-IDS2018-V2

FAR p-value FAR p-value FAR p-value FAR p-value

X 0.024 0.020 0.114 0.000

S 0.025 0.873 0.028 0.357 0.126 0.357 0.000 1.000

XS 0.023 0.873 0.021 0.873 0.099 0.873 0.000 1.000

LS 0.025 0.873 0.020 1.000 0.109 0.873 0.000 1.000

XLS 0.023 0.873 0.020 1.000 0.106 0.357 0.000 0.873

For the MLP classification experiments reported in Section 6.6.2 we show the

associated FAR results in Tables 18 and 19. In general, the baseline FAR when

using X is at an acceptable level across the datasets tested, which is somewhat

expected due to these being supervised algorithms. We can also see from these

results that the use of AEFR has either maintained this baseline FAR or improved

it. In particular we can see in Table 19 we improve the FAR by 1% when using S

for the NF-CSE-CIC-IDS2018-V2 dataset with the simple encoding.

We examine the FAR metrics collected along with our experiments that utilized

RNN and LSTM classifiers in Tables 20 and 21 respectively. Similar to the results

obtained with MLPs, we have a generally low FAR for our baseline results using

X . We note that in this context our feature combinations generated using AEFR

generally lowered the FAR though often only in modest amounts. It is interesting

to see that on its own, using S on the ToN-IoT dataset increased the FAR with both

the RNN and LSTM classifiers. When used in combination with other supporting
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Table 19: Mean false alarm rate (FAR) based on ten experiment executions using
S in combination with X and L as input to our MLP classifier using an alterna-
tive simple encoding whose classification results are reported in Table 12. P-values
using the Kolmogorov-Smirnov test are provided where values greater than 0.05
indicate the false alarm rate were likely drawn from the same distribution. Values
in blue indicate a false alarm rate and p-value that supports comparable perfor-
mance compared to X . Values in green indicate a false alarm rate and p-value that
supports we have decreased the false alarm rate compared to X . Values in orange
indicate a false alarm rate and p-value that supports we have increased the false
alarm rate compared to X .

NF-UNSW-NB15-V2 NF-BoT-IoT-V2 NF-ToN-IoT-V2 NF-CSE-CIC-IDS2018-V2

FAR p-value FAR p-value FAR p-value FAR p-value

X 0.145 0.075 0.214 0.017

S 0.122 0.357 0.064 0.357 0.199 0.873 0.007 0.008

XS 0.125 0.357 0.059 0.079 0.204 0.873 0.010 0.008

LS 0.140 1.000 0.059 0.079 0.210 0.873 0.009 0.008

XLS 0.117 0.357 0.066 0.873 0.201 0.873 0.010 0.008

features, however, our features provide a significant reduction in FAR with a re-

duction of 8.2% when using XLS for the RNN classifier and a reduction of 9.4%

when using LS for the LSTM classifier.

Examining the FAR metrics collected along with our baseline experiments us-

ing one-class classifiers we see that the baseline FAR using X reported in Table

22 is often considerably higher compared to the previously discussed supervised

classifiers. This is in general expected when working with algorithms that only

use partial labels. From these results we can see that using our feature combina-

tions often provide significant improvements or maintain the baseline FAR. In the

instances where using our feature sets results in an increase in FAR, the difference

from the baseline using X is often within 1%. In contrast, when we decrease the

FAR, it is often by more than 1% with the greatest improvement occurring on the

ToN-IoT (Simple Encoding) dataset where we decreased the FAR by 14.9% using
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Table 20: Mean false alarm rate (FAR) test results based on ten experiment execu-
tions using S in combination with X and L as input to an RNN classifier using the
alternative simple encoding whose classification results are reported in Table 14. P-
values using the Kolmogorov-Smirnov test are provided where values greater than
0.05 indicate the false alarm rates were likely drawn from the same distribution.
Values in blue indicate a false alarm rate and p-value that supports comparable
performance compared to X . Values in green indicate a false alarm rate and p-
value that supports we have decreased the false alarm rate compared to X . Values
in orange indicate a false alarm rate and p-value that supports we have increased
the false alarm rate compared to X .

UNSW-NB15 ToN-IoT CTU13 Scenario 6 CTU13 Scenario 9 CTU13 Scenario 13

FAR p-value FAR p-value FAR p-value FAR p-value FAR p-value

X 0.010 0.151 0.001 0.047 0.009

S 0.009 0.000 0.161 0.000 0.001 0.000 0.040 0.000 0.005 0.000

XS 0.009 0.000 0.099 0.000 0.001 0.000 0.043 0.000 0.006 0.000

LS 0.009 0.000 0.085 0.000 0.001 0.000 0.039 0.000 0.005 0.000

XLS 0.009 0.000 0.069 0.000 0.001 0.000 0.039 0.000 0.006 0.000

Table 21: Mean false alarm rate test results based on ten experiment executions
using S in combination with X and L as input to an LSTM classifier using the
alternative simple encoding whose classification results are reported in Table 15. P-
values using the Kolmogorov-Smirnov test are provided where values greater than
0.05 indicate the false alarm rates were likely drawn from the same distribution.
Values in blue indicate a false alarm rate and p-value that supports comparable
performance compared to X . Values in green indicate a false alarm rate and p-
value that supports we have decreased the false alarm rate compared to X . Values
in orange indicate a false alarm rate and p-value that supports we have increased
the false alarm rate compared to X .

UNSW-NB15 ToN-IoT CTU13 Scenario 6 CTU13 Scenario 9 CTU13 Scenario 13

FAR p-value FAR p-value FAR p-value FAR p-value FAR p-value

X 0.012 0.153 0.001 0.058 0.013

S 0.012 0.000 0.201 0.000 0.001 0.000 0.051 0.000 0.010 0.000

XS 0.012 0.000 0.081 0.000 0.001 0.000 0.053 0.000 0.009 0.000

LS 0.012 0.000 0.059 0.000 0.001 0.000 0.052 0.000 0.009 0.000

XLS 0.012 0.000 0.094 0.000 0.001 0.000 0.050 0.000 0.010 0.000
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S as input to the Isolation Forest classifer.

When comparing the FAR metrics which correlate to the best performing one-

class classifiers using X and our feature sets, we see that our method generally

meets or exceeds the FAR obtained when using X as reported in Table 23. In the

two instances where X has a more favorable FAR compared to feature combina-

tions using AEFR, we increase the FAR by 1.8% and 0.4% when considering our

best performing algorithms, maintaining respectable performance.

Overall, our analysis of the FAR when using AEFR compared to usingX shows

that similar to classification performance, our method generally improves FAR

metrics or attains the same performance. In instances where we do increase the

FAR, it was found to be by small amounts. In contrast, in instances where using

AEFR reduced the FAR, our technique provided comparatively larger improve-

ments. These results show that when applying AEFR to NID, we need not worry

about causing a significant increase in FAR and maintain the potential to reduce

the FAR when compared to using X .

6.9 Compression Properties of AEFR

As noted throughout our results, there are times when S performs only as good as

X , which leads to a question of determining if there are any benefits for using S

if we knew those cases a priori. One such benefit is the potential for compressing

collected data and reducing the load on the collection resources of a network. We

outline a simple set of assumptions to allow for a brief analysis of the compression

of S. If inserted into the collection pipeline of a NIDS, one could reduce the amount

of data required to be collected by forgoing collection on the features of X and

only collect S. For this analysis, we consider only benign network samples as that
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Table 22: Baseline performance measures taken using default parameters for each
one-class classifier whose classification results are reported in Table 16. We report
mean false alarm rate (FAR) test results based on ten experiment executions using
S in combination with X and L as input to our classifier. P-values using the two
sample Kolmogorov-Smirnov test are provided where values greater than 0.05 in-
dicate the false alarm rates were likely drawn from the same distribution. Values
in blue indicate a false alarm rate and p-value that supports comparable perfor-
mance compared to X . Values in green indicate a false alarm rate and p-value that
supports we have decreased the false alarm rate compared to X . Values in orange
indicate a false alarm rate and p-value that supports we have increased the false
alarm rate compared to X .

ToN-IoT BoT-IoT ToN-IoT (Simple) IoT-23 Scenario 1 IoT-23 Scenario 13 IoT-23 Scenario 19 IoT-23 Scenario 20

FAR p-value FAR p-value FAR p-value FAR p-value FAR p-value FAR p-value FAR p-value

Isolation Forest

X 0.068 - 0.056 - 0.211 - 0.231 - 0.237 - 0.279 - 0.227 -

S 0.035 0.000 0.031 0.000 0.062 0.000 0.183 0.052 0.257 0.052 0.263 0.012 0.192 0.168

XS 0.038 0.000 0.034 0.000 0.084 0.000 0.199 0.168 0.261 0.052 0.260 0.418 0.190 0.012

LS 0.064 0.106 0.048 0.012 0.076 0.000 0.247 0.787 0.215 0.012 0.285 0.168 0.241 0.168

XLS 0.054 0.012 0.044 0.007 0.096 0.000 0.253 0.052 0.285 0.012 0.282 0.787 0.209 0.418

One-class Support Vector Machine

X 0.500 - 0.496 - 0.513 - 0.457 - 0.498 - 0.484 - 0.530 -

S 0.502 0.000 0.497 0.012 0.512 0.012 0.479 0.002 0.505 0.000 0.496 0.000 0.520 0.052

XS 0.498 0.000 0.494 0.012 0.513 0.418 0.456 0.002 0.502 0.000 0.485 0.168 0.532 0.418

LS 0.499 0.001 0.497 0.052 0.498 0.012 0.453 0.000 0.495 0.000 0.488 0.012 0.527 0.168

XLS 0.499 0.000 0.495 0.168 0.510 0.000 0.453 0.000 0.495 0.000 0.487 0.002 0.538 0.168

Local Outlier Factor

X 0.105 - 0.073 - 0.133 - 0.184 - 0.167 - 0.113 - 0.270 -

S 0.111 0.002 0.113 0.000 0.164 0.000 0.185 1.000 0.167 1.000 0.116 0.418 0.272 0.418

XS 0.105 0.168 0.078 0.000 0.135 0.002 0.186 0.994 0.167 1.000 0.114 0.787 0.273 0.052

LS 0.107 0.012 0.077 0.000 0.130 0.000 0.187 0.994 0.167 1.000 0.113 1.000 0.269 0.418

XLS 0.105 0.052 0.076 0.000 0.131 0.002 0.184 1.000 0.167 1.000 0.114 0.787 0.268 0.052

Table 23: For each of the best performing one-class classifiers from Table 17 we
report the mean false alarm rate (FAR). We note the lowest mean FAR in bold.

Best X Algorithm X Parameters S Parameters X FAR S FAR Our Best Algorithm Our Parameters Our Best Algorithm’s FAR

ToN-IoT Local Outlier Factor contamination = 0.5 contamination = 0.5 0.539 0.539 Local Outlier Factor S; contamination = 0.5 0.539

BoT-IoT Local Outlier Factor neighbors = 30 neighbors = 500 0.077 0.231 Isolation Forest S; contamination = 0.1 0.095

ToN-IoT (Simple) Isolation Forest contamination = 0.5 contamination = 0.4 0.508 0.410 One-class SVM S; kernel = rbf 0.508

IoT-23 Scenario 1 Local Outlier Factor contamination = 0.1 contamination = 0.1 0.092 0.093 Local Outlier Factor XS; contamination = 0.1 0.092

IoT-23 Scenario 13 Isolation Forest contamination = 0.1 contamination = 0.1 0.079 0.089 Isolation Forest XS; contamination = 0.1 0.083

IoT-23 Scenario 19 Local Outlier Factor neighbors = 1000 contamination = 0.3 0.259 0.320 Local Outlier Factor LS; neighbors = 1000 0.253

IoT-23 Scenario 20 Isolation Forest contamination = 0.5 contamination = 0.5 0.541 0.537 One-class SVM S; kernel = rbf 0.524
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would generally dominate the data collected on a network unless it is actively

under attack. Due to the fact that S is derived from X we will assume that the

features of S and X require the same amount of base storage. We then perform

our comparison by eliminating any values that are zero, assuming they contain no

interesting data, as would be the case if our autoencoder perfectly reconstructed a

feature within a sample. While there would need to be some form of meta-data to

describe what data is present in the compressed format, we assume this is equal for

bothX and S, allowing us to simply analyze a sampling of our data by eliminating

all values that are zero.

Taking 500 samples of X and S we report the mean compression ratios in Table

24. In doing this it was found that due to our current autoencoder structure, no

values in S were truly zero while many were minuscule and could be considered

zero. To account for this we empirically determined that any values greater than

-0.001 and less than 0.01 could be considered zero without impact to classification

performance, and were treated as such for this analysis.

Looking at the compression ratios of the thresholded S, we see that it generally

outperformed the compression possible on X based on our assumptions. A higher

compression rate was found for X on the NF-BoT-IoT-V2 dataset compared to that

of the thresholded S which is likely due to suboptimal thresholding options for

that particular dataset. We leave exploring a more definitive way of thresholding S

and regularizing the autoencoder to induce values of zero in the feature residuals

to future work. While this was a simplistic view of a compression scenario, it

shows that S has potential benefits overX beyond classification performance gains

that could be explored further in future research.
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Table 24: Mean compression ratios based on 500 samples of benign data from each
dataset. For this analysis we removed any values that were zero in the samples.
We see that S does not naturally have exact zeros that can be removed so small
positive and negative thresholds were used to determine what to drop from S.
We see that overall, a thresholded S has a higher compression ratio compared to
compressing X in the same manner. In parentheses we show the mean f1-scores
from these experiments which were comparable to those reported in Table 11 for
S.

NF-UNSW-NB15-V2 NF-BoT-IoT-V2 NF-ToN-IoT-V2 NF-CSE-CIC-IDS2018-V2

X (No Zeros) 1.857 2.254 2.313 2.326

S (No Zeros) 0.000 0.000 0.000 0.000

Thresholded S (No Zeros) 3.168 (0.903) 2.074 (0.989) 3.331 (0.964) 5.075 (0.924)

6.10 AEFR Efficiency Discussion

Having reviewed the detailed results across a wide variety of datasets, down-

stream classifiers, and data encodings, we wanted to summarize some of the re-

curring themes that have been found regarding the usage of AEFR in our research.

First, and perhaps most surprising, is that these results provide confidence that one

can use S in place of X for NID with essentially no risk to performance. Contrary

to this, however, usage of L results in volatile performance and often performs

worse than X . Finally, we want to reinforce the notion that among all of our fea-

ture combinations, no new data is generated as we derive all of it from X . This

implies that using AEFR tends to remove inefficiencies in X that make the data

more accessible to downstream models.
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7 Improving the Network Intrusion Detection Dataset

Workflow

Applying deep learning techniques to perform network intrusion detection has

expanded significantly in recent years. Throughout our research we relied on

the availability of sufficient NID datasets. Despite recent improvements to these

datasets, it remains difficult to effectively compare methodologies across a wide

variety of datasets due to the unique features generated as part of the delivered

datasets. In addition, it is often difficult to generate new features using a dataset

due to the lack of source data or inadequate ground truth labeling information for

a given dataset. These limitations have been identified by a number of researchers

in recent literature [24, 32, 90, 91, 88, 91, 106]. In this chapter we seek to reduce

the impact of limitations that occur as a result of the handoff of NID datasets from

a dataset developer to downstream NID researchers. We propose a set of guide-

lines to help dataset developers overcome handoff limitations and extend the pos-

itive impact these datasets can have on downstream researchers. Our focus on the

handoff of NID datasets between researchers has not been well explored in current

NIDS dataset research. While many of the guidelines are generic in nature, we pro-

vide details on how to specifically implement them for NID datasets. In addition

to the guidelines, we developed an open source containerized environment and

framework to support implementation of the guidelines10.

Figure 35 shows the dataset development process adapted from descriptions in

recent research to show where this research logically fits [90, 52]. As can be seen

highlighted in the figure, we focus on improvements for NIDS dataset feature and

10https://github.com/WickedElm/niddff
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Network
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Figure 35: An overview of the NID dataset development process. The areas that
our research seeks to improve are depicted in blue with a gray background.

label generation which leads to additional improvements for the final delivery of

the dataset. The provided set of guidelines can be used such that the end delivery

of a NIDS dataset includes the original source network data as well as concrete

scripts for generating each feature and label. With both of these items in hand,

researchers will be able to reliably recreate a dataset from source data, ensure the

same features are available across multiple datasets, and perform additional fea-

ture engineering.

7.1 NID Dataset Development Tools

One of the earliest tools concerned with NID datasets was FLAME [16]. The main

goal of the FLAME tool was to take existing NetFlow data and augment it by inject-

ing new anomalies into the existing flows. In doing this, it would allow researchers

to capture live network traffic and then augment it later with anomalies, resulting

in a dataset usable for developing NID methodologies.

With a goal similar to FLAME, the ID2T tool also focused on augmenting net-

work data with attacks [26, 27]. The ID2T tool, however, approached this from

the packet level, ingesting PCAP files as opposed to NetFlow data. In addition,

the ID2T tool is capable of providing reports regarding the attacks injected such

that they can be used to facilitate data labeling. These qualities allowed ID2T to

be capable of injecting a larger variety of network attacks making it useful for the

generation of new NID datasets that combine live network traffic with synthetic



7.1 NID Dataset Development Tools 126

attacks.

The INSecS-DCS tool [80] is another NID dataset creation tool which has an

expanded scope compared to both FLAME and ID2T. Rather than focus on inject-

ing attacks, INSecS-DCS focuses on processing packet data, live or from a PCAP

file, such that one can customize the features to include in a final processed dataset.

These features can be captured as packet level statistics or based on time windows.

Another related work introduces NDCT [2], which provides a toolkit for the

collection and annotation of cybersecurity datasets. NDCT is presented as a system

that is primarily used during a cybersecurity scenario exercise. During the scenario

execution, users are provided with dialogues to annotate specific packets for tasks

such as labeling. These annotations can also be used to generate rules such that

similar packets receive the same labeling, making the labeling task more efficient.

Our research presented here is distinguished from these related works in sev-

eral ways. First, our guidelines and framework do not explicitly focus on inject-

ing attacks into existing source data. Our implementation, however, complements

both FLAME and ID2T such that one could use both tools as part of a pipeline

for NID dataset creation within the framework. Similarly, one could incorporate

the INSecS-DCS tool for feature creation within our framework. We currently in-

corporate both Zeek11 and Argus12 for our container environment, however, the

intention is to grow the environment such that tools like these can be incorporated

based on community demand. While NDCT focuses on supporting the live anno-

tation of network data during scenario execution, our framework would support

downstream feature engineering on the resulting source data. The other main dif-

ferentiator for our work compared to those discussed here, is that we focus on

11https://zeek.org/
12https://openargus.org/
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being able to reproduce a dataset from source files and facilitate its exchange be-

tween researchers. The previous works in this space do not generally have this

focus as they seek to improve the actual NID data itself as opposed to the process

of creating it.

7.2 NID Dataset Limitations

7.2.1 Reproducibility

The main focus of the guidelines and framework presented in our work is to in-

crease the ability of researchers to reproduce datasets from source files. To be clear,

we are not concerned with reproducing and re-executing a NID scenario. Rather,

we would like to take the resulting PCAP and NetFlow files from such a scenario

and be able to reliably reproduce the dataset’s original features and then perform

further feature engineering.

An example of the need for this type of reproducibility has been researched

recently by analyzing the usage of publicly available datasets by downstream re-

searchers [24]. In most instances, the original datasets are augmented in some way,

however, it was found that most of the work related to these augmentations was

unable to be duplicated due to insufficient code, documentation, or both [24]. The

framework delivered in our work seeks to improve this situation by providing a

standard way to document and code dataset augmentations from source files.

Other work has proposed a set of content and process requirements for gener-

ating a reproducible dataset [32]. The content requirements outlined include pro-

viding full PCAP files with their data payload, anonymization of network traffic,

providing ground truth data, using up-to-date network traffic, labeling the data,

and providing information regarding encryption. The process requirements per-
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tain to information that should be provided in order to make generating the dataset

reproducible. Our guidelines support these requirements, and we look to extend

them with our framework through inclusion of the scripts used to generate fea-

tures and perform labeling, along with full PCAP files. This leaves no ambiguity

in descriptions for how to regenerate a dataset.

In addition to these works, there is no shortage of NID literature that discusses

the need to have reproducible datasets [27, 59, 93, 49].

7.2.2 Unclear Labeling Criteria

One of the major challenges that researchers face when working with NID datasets

is the lack of datasets with complete and accurate labeling [59, 72]. Many of these

labeling issues arise as the task is often performed by human analysis, making

it both time-consuming and error-prone [59]. In other cases, the labeling criteria

used is either incomplete or influenced negatively by previous errors in the dataset

generation process [58].

For these reasons, accurate labels along with truth data is generally considered

a major component of a useful NID dataset [27, 80, 52]. While ground truth on

its own is useful, it can be misleading depending on the granularity in which it is

provided. For instance, given only IP addresses and timestamps one would have

to assume that any traffic related to that IP address is malicious, however, it is

typically the case that a mixture of both benign and attack traffic would be present.

For this reason, our proposed guidelines and framework call for the inclusion of

labeling scripts which may make use of ground truth data if necessary. We note

that in the case of manually labeled data this scripting could simply be index-based

using the ordering of the data being processed.
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7.2.3 No Standard Feature Set

In a recent series of papers, Sarhan et al. explores limitations of current datasets

and the impact these limitations have on evaluating methods across multiple net-

works and transitioning research into practical applications [88, 89, 91, 90]. The

main limitation explored in these works is the fact that with such varied features

included with delivered datasets (See Table 26 in Appendix A.4), one cannot reli-

ably compare a methodology across multiple networks to test for generalizability.

This leads to hindrances during the transition from research to practical applica-

tions.

Our work looks to extend the ideas expressed by Sarhan et al. in order to enable

researchers to overcome these identified limitations. We aim to make it easier for

researchers to provide a dataset that is reproducible from source data and easily

expanded or adjusted. In this way, one could easily use a standard feature set as

well as research augmenting such a feature set for improvements.

While not the main focus, both [52] and [60] discuss and tackle the need to use

a common feature set for comparison of their methods as opposed to using propri-

etary features delivered with most NID datasets. Both works provide informative

descriptions regarding the features used in their research. In addition, [60] pro-

vides the actual calculations for the features used in their work. We believe this is

a step in the right direction for the level of detail necessary to reproduce datasets

from source data. We seek to naturally extend this information into scripts that are

provided along with source network captures to make reproducing and extending

the dataset more accessible and leave less opportunity for error.
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7.3 The Intrinsic Value in NID Datasets

We believe it is worthwhile to provide a brief discussion regarding the intrinsic

value provided by NID datasets as related to their development and subsequent

distribution. Namely, the intrinsic value of a NID dataset is created during the sce-

nario development, execution, and source data collection and not by the final deliv-

ered features. To be clear, the final features are valuable, but they are representative

of a separate feature engineering activity that takes place after the intrinsic value

of a network scenario has been captured in source data. In other words, the value

provided by the NID dataset is derived from the actual network intrusion scenario

and its collected source data. A researcher could provide any number of derived

features with varying degrees of value for attack detection, however, the intrinsic

value of the source data remains constant as it is derived from the scenario that

was captured.

One goal of our framework is to highlight these two separate activities by ad-

vocating for the delivery of both source data and separate scripts that generate

the features that take place during any subsequent feature engineering. Providing

both items delivers the value of both activities to downstream researchers.

7.4 NID Dataset Delivery Guidelines

The main ideas behind the proposed guidelines are simple in statement but often-

times overlooked in practice. Specifically considering the hand off of datasets from

one researcher to another; the guidelines focus on ease of access, reproducibility

from source data, verification, and extension. The guidelines are meant to provide

general guidance for making the delivery of NID datasets meet these four areas of

focus and reduce the impact of the limitations discussed in Section 7.2. We note
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that our framework allows for the specific implementation of the guidelines to

vary depending on the particular methods employed by researchers. While some

common tools are provided in our framework environment, we expect it to expand

to meet researchers’ needs based on demand. In addition, it is important to make

the distinction that when we reference reproducibility of a dataset, we refer to re-

producing the dataset’s final features from the original source data as opposed to

recreating and re-executing the dataset’s NID scenario.

The ten guidelines are outlined and described in Table 25 along with their justi-

fication and details regarding how NID researchers can implement each guideline,

with a focus on our companion framework. Guidelines one through four pertain

to providing downstream researchers with the resources necessary to actively re-

produce and enhance the provided dataset. Guidelines five through nine outline

steps that can be taken to ensure that all the dataset features and labels can be re-

generated from source data, and that the steps for this generation of features can

be verified and understood by downstream researchers. Finally, guideline ten is

specifically included to emphasize that the delivered datasets can be considered

active projects and adjust over time for any errors found after initial presentation

to researchers. This aims to help avoid situations such as with the KDD Cup ’99 [1]

and CICIDS2017 [94] datasets, where researchers have found issues with the origi-

nal datasets resulting in multiple variants of datasets being available with specific

corrections [101, 58, 31].

7.5 NID Dataset Framework

In this section we cover the main ideas of our containerized environment and im-

plementation of the guidelines. As an example of the implementation, we devel-
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oped a demo dataset which takes a single PCAP file from the UNSW-NB15 dataset

[73] and duplicates most of the original dataset’s features and extends them to con-

tain new features. For brevity, many specifics regarding the framework’s usage

have been omitted. For additional details we recommend consulting the frame-

work repository.

7.5.1 Container Environment

We provide a containerized environment to support our implementation in order

to improve reproducibility and eliminate the need to install multiple tools used

by other researchers. Currently, this minimal environment includes the Zeek and

Argus network analysis tools, as well as python13 and a set of default python li-

braries as described in the tool’s repository. It is expected that this would grow in

the future, however, we consider this an adequate starting point to demonstrate its

usefulness.

The intention of our framework is that the tool and our container would be

used in conjunction together, however, the container environment could be used

on its own just to ensure specific versions of tools are easily accessible. Running

the container without specifying a command to execute will place the user into a

shell prompt with access to the installed tools. The intended method of executing

the environment, however, is to map the container’s disk drive {niddff to the di-

rectory of the user’s local repository of our tool infrastructure. This allows for the

development of a dataset using the framework and container to be performed in a

variety of ways.

13https://www.python.org/
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7.5.2 Framework Implementation

Our implementation provides a standard format for defining and delivering NID

datasets using configuration files, naming conventions, and a standard directory

structure. At the core of the implementation we read in a YAML configuration file

customized for a dataset and use that information to fully process the dataset from

source. The high level algorithm followed by the tool can be seen in Algorithm 2.

Algorithm 2 General processing used to generate a NID dataset based on an input
configuration file. The input file is processed in a top-down manner with a loop
for processing multiple source files prior to combining them together at the end.

Input: config, YAML configuration file
Output: dataset, NID dataset suitable for ML

1: Read in config
2:
3: Store documentation information from config
4: Process setup options
5:
6: Read in metadata for source data
7: if download source == TRUE then
8: Download all source PCAP and NetFlow files
9: end if

10:
11: for each source file do
12: Execute feature processing commands
13: Execute label processing commands
14: Execute post-processing commands
15: Save intermediary dataset file
16: end for
17:
18: Execute final dataset processing commands
19: Combine intermediary dataset files
20: return dataset
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7.5.3 Dataset Directory Structure

Each NID dataset has its configuration and generation scripts contained in a dedi-

cated directory. This allows it to be maintained by the original dataset developers

and then plugged into the framework by consumers of the dataset. The general

structure of a dataset directory is shown in Figure 36 where one can see the YAML

configuration file, directories for source metadata, ground truth metadata, output

files, and each processing step’s files.

For the source and ground truth data, the directory contains metadata files

which are in a comma-separated format where each line contains a download URL

and the destination file name which is read in by the framework when acquiring

source data. In addition, each processing step can contain simple files with the

naming convention load . ă tool ą where ă tool ą is one of the framework’s

supported tools such as Zeek or Argus. While the particulars of how each tool be-

haves varies, these files have each line denote a single feature or process to run for

a given tool. If applicable, an associated script with the same name as the feature it

generates is contained in the same directory. In other words, users can easily iden-

tify the features being generated by reviewing the load . ă tool ą files and the

scripts that they reference. This promotes having easy to identify source code for

each feature as indicated in guideline six, as well as having self-contained features

as indicated in guideline seven.

7.5.4 Dataset Configuration File

Each dataset has a YAML configuration file that drives its creation. As seen in

Listing 1 it contains documentation, options, and can contain a mix of built-in

framework commands as well as custom commands to execute. For example, the
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dataset/

config.yaml

source/

pcaps.meta

ground truth/

gt.meta

output/

step acquire source data/

load .argus

load .python

load .zeek

step feature processing/

load .argus

load .python

load .zeek

step label processing/

load .argus

load .python

load .zeek

step post processing/

load .argus

load .python

load .zeek

step final dataset processing/

load .argus

load .python

load .zeek

Figure 36: A default directory structure for a dataset within the proposed frame-
work. Each processing step has its own directory intended to contain loading
scripts for supported tools as well as any other scripts used in a given step. It
should be noted that these directories are only needed if they are used for a given
dataset. For instance, the framework takes care of default processing for several
stages but the user has the option of customizing each stage with their own scripts.
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framework takes information from the setup options section and determines what

source files to download during the step acquire source data step. Other built-in

commands such as run zeek have default behavior requiring little setup on the

user’s part in the configuration file. In general, these commands look into the cur-

rent step’s directory and reads an associated load . ă tool ą file. This file is

then used by the framework to either generate features, labels, or perform some

other intermediary processing. Aside from commands supported by the frame-

work, user’s can also specify any custom commands or scripting to execute, and

they will be processed in the order they appear in the file. For these commands,

users have access to a number of built-in variables that can be accessed in order to

direct particulars, such as paths to source files to read in and where to place out-

put. The main benefit of this single configuration file is that it fully self-describes

how the dataset is created and provides the information needed for users to access

the code used to generate features and perform labeling.

7.5.5 Benefits for NID Dataset Developers

The framework implementation provides several benefits for NID dataset devel-

opers. First, it provides enough flexibility such that there are varying degrees of

buy-in for using the framework. For instance, suppose a NID dataset researcher

only provides source files and ground truth data or has a previously generated

dataset that they would like to incorporate into the framework with little effort.

This can be achieved through the framework by generating the source file meta-

data files and ground truth metadata files. While minimum effort is required by

the NID dataset researcher, it provides additional accessibility of the files to down-

stream consumers. On the other end of the spectrum, the container environment



7.5 NID Dataset Framework 137

provides tools for analyzing source data which can be taken advantage of by NID

dataset researchers. This use of the container allows downstream researchers to

use the same versions of the software when working with the dataset.

Another benefit for NID dataset researchers is that the framework implementa-

tion provides an organized structure to follow and self-documents how the dataset

features and labels were generated from source data. When updating the dataset

or expanding it, the change history of the configuration files within the framework

can be inspected to track the changes provided there are no updates to the source

data. Additionally, any improvements or feedback can be provided from end users

back to the NID dataset researcher by lightweight updates to these configuration

files.

The intent of this framework is such that no significant additional work is im-

posed on NID dataset developers as all the steps it encapsulates must already be

performed to generate a given dataset. The emphasis of the framework and guide-

lines is such that these steps are simply organized in a standardized manner.
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documentation :

n iddf f : n iddf f/niddf f : 0 . 1

se tup opt ions :

dataset name : demo dataset

source data : unsẃ nb15

ground truth data : unsẃ nb15

c l e a n o u t p u t d i r e c t o r y : True

expected outputs :

´ unsw nb15 dataset . csv

argus :

c lean : True

arguments : ´S 60 ḿ

e x e c u t e r a : True

s t e p a c q u i r e s o u r c e d a t a :

download : True

s t e p f e a t u r e p r o c e s s i n g :

´ run zeek

´ run argus

´ r u n p y t h o n s c r i p t s

s t e p l a b e l p r o c e s s i n g :

´ r u n p y t h o n s c r i p t s

s t e p p o s t p r o c e s s i n g :

´ run combine features

s t e p f i n a l d a t a s e t p r o c e s s i n g :

´ run combine data

Listing 1: A sample input file consumed by our framework specifying where to

obtain source data and how to process it to produce a final dataset. Options can be

overridden on the command line if necessary.

7.5.6 Benefits for NID Dataset Consumers

This framework also provides benefits for downstream researchers using NID datasets.

For researchers looking to simply use the original dataset as provided, there is gen-

erally no changes in workflow imposed by the framework, though they would be

able to easily obtain the dataset using the download metadata. For researchers
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Figure 37: A diff comparison of extracted Argus features from the first PCAP of
the UNSW-NB15 dataset. On the top, the left hand side of the diff shows a portion
of the original Argus features from the original dataset while the right shows the
same section of the output but generated by running Argus with no command line
options on the source PCAP. On the bottom, the left hand side of the diff shows
the same portion of the original Argus features from the original dataset while the
right now shows the same section of the output generated by running Argus with
the ´S 60 option. The differences on the top demonstrate the necessity of having
the exact command line options used to generate dataset features in order to make
a dataset reproducible.

seeking to analyze a dataset, the container environment and configuration files

approach provides a way for them to reproduce the dataset reliably since all the

tools and the command line options used to run them are contained within the

scripts. As an example of this benefit, we look at the implementation of our demo

dataset, which uses a single PCAP from the UNSW-NB15 dataset [73]. As depicted

in Figure 37, without using a particular set of options for Argus, one would re-

ceive results with an additional 2,529 rows compared to what the original dataset

authors intended. This was found experimentally for our research but shows the

value of the ambiguity that is removed when researchers have the full commands

readily available. Similar benefits are gained by having the full labeling criteria

laid out in the dataset configuration files.

An additional benefit comes in the form of being able to generate a standard
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feature set from any source data. If some standard feature set is not included by

the original dataset authors, a researcher can easily adapt the original dataset with

a standard feature set in order to facilitate comparisons across multiple datasets.

By following the guidelines and using the framework, the scripts to produce such

a feature set become plug-n-play for any dataset that uses the same source format.

Similar to this plug-n-play nature of scripts when using the containerized envi-

ronment and framework, a similar benefit can be realized for individual features of

a dataset. As an example, one can consider the situation where two researchers are

using the same container version and source dataset and perform different feature

engineering. The use of the container and framework allows them to exchange

their feature scripts or just the resulting data for individual features and simply

merge the results into their work. This ability provides additional benefits if the

environment is expanded to include a server-based component in future research.
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Table 25: Guidelines for improving the handoff of NID datasets from dataset re-
searchers to downstream researchers.

Guideline Justification Implementation Details

(1) Provide direct
access to all data
and scripts for
dataset

The main purpose of this
guideline is to prevent bar-
riers to obtaining datasets.
[84, 27]

This can be achieved through a
simple download script. The im-
plemented framework provides
a mechanism such that dataset
developers can provide meta-
data consisting of a download
URL and destination file name to
meet this guideline.

(2) Include com-
plete source data to
the most detailed
extent possible

Full source data is neces-
sary to adequately repro-
duce and/or augment a
dataset. [84, 27, 32]

This should generally be a
standard format such as PCAP
or NetFlow. Full PCAP files
are more favorable than partial
PCAP files with no payload. If
only NetFlow data is available,
a full collection of attributes is
better than a partial collection.

(3) If possible, pro-
vide access to all
tools needed to gen-
erate dataset

Differences in tools, en-
vironments, and their
versions can limit the
ability of downstream re-
searchers to obtain the same
results as intended by the
original dataset authors.
Without this, extending
the dataset with feature
engineering may not be
successful. [24, 91, 19]

The implemented framework
meets this guideline by provid-
ing a containerized environment
with specific versions of tools
such as Zeek and Argus. This
ensures that users of the frame-
work can use the same baseline
of tools and environment as
was used by the original dataset
developers.

(4) Provide doc-
umentation in-
dicating how to
reproduce a dataset
from source data

Clear documentation re-
duces ambiguity provided
in general descriptions of
dataset creation. Differ-
ences in commands used
to generate a dataset from
source can produce differ-
ent results than the original
dataset. [24, 32]

Versions of tools and specific
commands used to execute
them should be documented.
The provided framework is
self-documenting as researchers
can review YAML files for
each dataset to view the com-
mands used to generate them as
discussed in Section 7.5.
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(Table 25 Continued)

Guideline Justification Implementation Details

(5) Include source
code needed to re-
produce dataset fea-
tures

Providing feature genera-
tion source code ensures
downstream researchers
can duplicate a dataset,
verify feature correctness,
and understand details
of the feature calculation.
[32, 84]

One should avoid making code
too specific to a particular user
environment. The implemented
framework supports this guide-
line with a containerized envi-
ronment, specific directories for
feature generation scripts, and
infrastructure to support fea-
tures generated with network
analysis tools.

(6) The source code
for each feature
should be easily
identifiable

This guideline is recom-
mended to make analysis
of the features of a dataset
more accessible for down-
stream researchers. [58, 24]

This can be implemented
through naming conventions
for scripts that match the final
feature name and techniques
such as using a separate script
or function for each feature.
The implemented framework
supports this by enforcing these
conventions in its interfaces with
network analysis tools.

(7) The generation
of each feature
should be indepen-
dent from others

This guideline is recom-
mended to avoid execu-
tion dependencies between
features and it facilitates
the ability to remove or
add new features by down-
stream researchers. This
also makes the code for each
feature more understand-
able and reviewable. [58,
24]

The implemented framework
supports this guideline in the
way it interfaces with network
analysis tools to generate fea-
tures in an independent manner
where possible. In addition, the
built-in framework encourages
this by providing standard con-
figuration files that can be used
to identify each feature script to
run.
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(Table 25 Continued)

Guideline Justification Implementation Details

(8) Apply guide-
lines outlined for
features to labels as
well

While labels are significant
for model training, dur-
ing dataset generation time,
they can be considered a
special case of features. In
this way, we want to apply
guidelines (4), (5), and (6) to
labels as well. [32, 59, 27, 80,
52]

The implemented framework
supports this goal by providing
the same infrastructure available
for feature development to label
development.

(9) Make source
code for labeling
distinct from other
features

This guideline is rec-
ommended to make the
labeling criteria used for a
dataset clear for collaborat-
ing researchers. Because
the label features/proce-
dure can inform machine
learning model design de-
cisions it is helpful to have
it distinctly identifiable.
For example, if the labeling
criteria is based on a single
IP address, it is likely that
the IP address features
should not be provided to a
model.
[58]

The implemented framework
supports this guideline by hav-
ing a separate step of processing
for label scripts and by having
them contained in a separate
directory for a given dataset.

(10) Provide a
mechanism to
receive and im-
plement feedback
from researchers to
correct issues and
improve dataset

This guideline encourages
collaboration between
NID researchers, allows a
dataset to remain current,
and provides a feedback
loop to dataset researchers
to correct any issues found
by the research community.
[84, 58]

The implemented framework
supports this guideline through
its use of scripting and metadata
to describe a dataset such that
each dataset can be maintained
in an independent source code
repository or as part of the
default environment.
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8 Conclusion

In this dissertation we presented several methodologies for improving network

intrusion detection using deep learning with autoencoders. We first showed the

application of autoencoder dimension estimation as a suitable methodology for

network attacks that have network-wide footprints. We then developed the gener-

ation of novel feature sets using autoencoder feature residuals and explored pair-

ing them with a variety downstream classifiers for performing network intrusion

detection. Ultimately, this work showed that using feature sets generated with au-

toencoder feature residuals improves classification performance over an original

feature set for network intrusion detection using a robust number of cybersecurity

scenarios and attacks. In other words, autoencoder feature residuals can be used

as a drop-in replacement for an original feature set with little risk of degrading

classifier performance while often providing an increase in performance.

We then provided a focus on practical matters related to the hand off of network

intrusion detection datasets between researchers. A set of ten guidelines were de-

veloped and outlined in detail along with an implemented framework that can be

used by both dataset researchers and consumers to improve the reproducibility of

feature engineering performed on source data.

Through a blend of both theoretical and practical methodology, we believe that

this research has helped improve our ability to perform network intrusion detec-

tion and has laid the groundwork for future exploration using autoencoder feature

residuals.
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9 Future Work

We believe that the work presented in this dissertation provides the opportunity

for extension through further research. Suggestions for interesting areas of exten-

sion are listed below.

• Further research could be performed to determine the effectiveness of var-

ious autoencoder architectures at generating autoencoder feature residuals.

Examples could include variational autoencoders, sparse autoencoders, and

denoising autoencoders.

• In this research we generally focused on the effectiveness of using only be-

nign NetFlow data to train our autoencoders. It would be interesting to ex-

plore the effects of using varying amounts of attack NetFlow data during

training to help drive differences in the autoencoder feature residuals of be-

nign samples compared to attack samples.

• This work primarily focuses on the applicability of autoencoder feature resid-

uals in the domain of network intrusion detection. An intriguing extension

would be exploring other domains to research if their effectiveness is univer-

sal.

• Excepting the one-class classifiers explored, many of the downstream clas-

sifiers explored were supervised methods, which limits their suitability for

anomaly detection. It would be exciting to explore combining autoencoder

feature residuals with additional unsupervised and single class techniques

such as a one-class neural network [21].
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• While we explored using recurrent methods such as RNNs and LSTMs as

downstream classifiers, a compelling extension of this technique would be to

incorporate recurrent layers in the autoencoder. Doing so has the potential

to account for the sequential nature of network activity in the autoencoder

feature residuals.
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A Appendix

A.1 Network Intrusion Detection Using Iterative Neural Networks

and Autoencoder Feature Residuals

In this section we outline the final work contributing to this dissertation which

was in progress at the time of this writing. We have included our current results

and their analysis so far, but note that this area could be enriched further and

benefit from additional experimentation. Here, we explore concepts developed by

Paffenroth and Hershey, and initially explored in Hershey’s thesis [43]. We seek

to exploit the sequential nature of network data to detect network attacks using

an alternative formulation of neural networks, and recurrent neural networks in

particular, referred to as iterative neural networks.

A.1.1 Overview

Traditionally neural networks are defined through the expression of layers, nodes,

and non-linear activation functions. In doing so, we generally formulate a param-

eterized network such that we can approximate some true function using training

data, which is assumed to be representative of our true problem. A tedious amount

of time and hyperparameter tuning often goes into determining the proper archi-

tecture for neural networks such as MLPs, RNNs, and LSTMs.

This tuning is often performed under the assumption that the actual structure

of the network, in terms of layers and nodes, is an optimal way to construct neural

networks. In other words, we often assume that an exhaustive number of neural

network representations have been explored and this logical representation has

been deemed ideal. Drawing on influences from dynamical systems, iterative neu-
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ral networks (INNs) challenge this notion by offering an alternative way to for-

mulate neural networks in terms of a weight space of trainable parameters such

that the parameters are applied recursively against the network’s input over mul-

tiple repetitions [43]. We next briefly formulate INNs to make their structure and

definition clear, followed by an examination of our current results exploring their

application to network intrusion detection.

A.1.2 Iterative Neural Networks

Our aim with defining INNs is to show that it is a broader class of neural networks

which is flexible enough to be equivalent to MLPs and RNNs [43]. To do this,

we start with our definition of an MLP, and show how it can be expressed in an

iterative manner. MLPs with an arbitrary number of layers as outlined in Section

2.4 can be expressed using Equation 15. For simplicity, we start with an MLP of

only two layers which can be expressed using Equation 56.

fpθ, xq “ gpW2gpW
T
1 x` c1q ` c2q (56)

This can then be to be simplified into matrix notation as in Equation 57

fpXq “ gpW 2XgpW 1Xqq (57)

by having X be a d x n matrix of all n input samples with each sample having

d dimensions. Adding a single vector of ones to X allows us to concatenate the

biases into our weight matrix W . In this way each layer i can be expressed using

Equation 58
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f ipXq “ gpW iXq “ H i (58)

where H i is the output of a given hidden layer, with the final layer returning our

network’s final output. Returning to our two layer MLP, it can be represented in

this new form as shown in Equation 59 [43]

f 1
˝ f 0

pXq “ gpW 1
pgpW 0Xqq “ Y (59)

where Y is the output of our network.

We now use these matrices to create our INN using a square matrix fpXq with

the transition from MLP to INN shown in Figure 38. In this figure one can see

that we vertically concatenate the component matrices X , H , and Y from the MLP

vertically to serve as a single input matrix X̄ . Both H and Y in X̄ are initialized

as zero matrices with the dimensions of X̄ being pd ` h ` yq x n. The iterative

weight matrix fpXq is a square matrix with dimensions pd` h` yq x pd` h` yq as

shown in the middle portion of Figure 38. We replicate the two layer MLP in an

iterative fashion by taking fpXq and multiplying it twice by X̄ where each iteration

represents a layer in the original MLP. This iterative function can be expressed

using Equation 60 [43].

fpfpX̄qq “ gpW 1gpW 0
pXqq “ Y (60)

As shown in the bottom portion of Figure 38, for INNs, a more generalized

representation of the bottom ph ` yq rows of fpXq can be realized by considering

the entirety of this area of the matrix to be our weight space. In other words, we can

tune our INN using various compositions of trainable parameters and sparsity
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Figure 38: This figure is adapted from the work presented in [43]. Transforming
a traditional two layer MLP to an equivalent INN. We start with the original two
layer MLP and then represent it using a square matrix with trainable weights that
can be applied iteratively to a stacked representation ofX ,H , and Y . We then relax
the weight space to be arbitrary layouts of weights which we consider a general-
ized INN.
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Representing RNN as INN

Figure 39: This figure is adapted from the work presented in [43]. The notional de-
tails regarding how an RNN can be represented using an iterative structure with
INNs. Here we divide the weight space into two halves for the weights corre-
sponding to the weights of an RNN. Additionally, we collapse H and Y together
to be the hidden state of the previous time step H t´1.

within this area of the iterative matrix.

A.1.3 Iterative Neural Networks for Sequential Data

Having shown the transition from an MLP to an equivalent INN, we can now relax

some of the structural constraints to allow the INN structure to process sequential

data in an iterative manner. To do this, we consider the weight space to be a single

dense matrix of trainable parameters which can notionally be divided into two

halves referred to as W i and W h as shown in Figure 39. Also depicted in Figure 39,

we collapse Y and H together to form H t´1 and use the ReLU activation function

[43]. In this form, we see that we have formed an iterative equivalent to an RNN

represented by Equation 61 [43].

H t
“ ReLUpW iX t

`W hH t´1
q (61)
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We note one difference between traditional RNNs and INNs as formulated

here, related to the common usage of a final dense projection layer for the out-

put of a traditional RNN. While this can be replicated with INNs by constraining

parts of the weight space to be an untrainable matrix and requiring an additional

iteration, we generally do not enforce this constraint when working with INNs,

favoring to allow the weight space to take on broad formulations of dense and

sparse weight distributions. The implication, though generally negligible, is that

the weight space must compensate for the fact that the final output Y t does not

receive the hidden state H t at time step t because they are calculated at the same

time in the INN formulation.

A.1.4 Applying Iterative Neural Networks to NID

In our application of INNs to NID, we executed preliminary experiments to com-

pare X and S across RNNs, LSTMs, and INNs while varying the number of pa-

rameters and levels of sparsity. The experimental setup remains the same as our

previous work with autoencoder feature residuals with the exception that the clas-

sifiers used the iterative structures described in Section A.1. Our data was encoded

using our standard dataset processing outlined in Section 6.3 and Table 5. We note

that we used stratified random sampling of sequences across entire datasets based

on the samples being attack or benign network flows, which is a slightly different

strategy than previous work with recurrent methods that was employed in Sec-

tion 6.6.2. In our previous work, we had constrained our random sampling to the

areas of datasets that contained attack scenarios. This new strategy was used as

it is more practical to maintain across a large number of datasets. Each sequence

consists of 25 NetFlow samples where the label for prediction is the label of the
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final sample of the sequence.

Our primary comparisons used RNN and LSTM models as a baseline for com-

parison to INNs with varying levels of sparsity in the weight space. This sparsity

was handled through a parameter referred to as R which can range from 0.0 to 1.0.

The value ofR indicates the likelihood that a given weight in the weight space will

be trainable or not, where higher values indicate it is more likely to be trainable. In

other words, as R approaches zero, the weight space becomes increasingly sparse.

To maintain a certain number of parameters, the overall size of the weight space

is increased to account for the fact that some weights will no longer be trainable

compared to a dense INN.

Our preliminary results are currently inconclusive as for the effectiveness of

this technique to NID. Examining Figures 40 and 41 for the UNSW-NB15 dataset,

one can see that the LSTM performed best overall with the highest marks being

achieved using S in combination with an LSTM. This boost in performance using

S is in line with our previous findings in this area. Our initial expectation was that

the introduction of sparsity in the INN weight space would allow the INN models

to outperform the LSTM with fewer parameters, as was found in previous work

using benchmark image datasets [43]. For the UNSW-NB15 dataset, however, this

was not the case as the LSTM model outperformed all other methods handily re-

gardless of the number of parameters used or sparsity level. The best performance

on this dataset was achieved using S as input to an LSTM model with 24,480 pa-

rameters, which achieved an f1-score of 0.766. We also note, that an LSTM using S

as its input features with only 306 parameters achieved an f1-score of 0.573. This

result was better than all RNN and INN models across the parameters examined

for the UNSW-NB15 dataset.
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We now examine results using the ToN-IoT dataset, which run contradictory to

our findings with the UNSW-NB15 dataset. In these results, shown in Figures 42

and 43, we see that introducing sparsity has caused the INN to achieve superior

performance compared to an RNN and LSTM model. This is true when using ei-

ther X or S as input to the models, with using S providing the best results overall,

achieving an f1-score of 0.991 with an INN that contains 11,249 trainable param-

eters and the sparsity parameter R set to 0.7. We note that for this dataset, we

were able to achieve an f1-score of 0.978 using an INN with only 346 parameters

and R set to 0.3, which outperformed all LSTM models using up to 24,480 pa-

rameters. While these intial results are promising for the ToN-IoT dataset, further

exploration would need to be performed in order to make definitive statements

regarding the effectiveness of sparse INNs for NID.
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Figure 40: Here we show a comparison using X along with models formulated in
an iterative manner. The parameter R indicates the amount of sparsity applied to
the parameter space in the INN models where the values for R range from 0 to
1 and indicates the likelihood of a given parameter being trainable or not. This
plot shows that using an LSTM performed better than all other models across all
numbers of parameters.
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Figure 41: Here we show a comparison using S along with models formulated in
an iterative manner. The parameter R indicates the amount of sparsity applied to
the parameter space in the INN models where the values for R range from 0 to
1 and indicates the likelihood of a given parameter being trainable or not. This
plot shows that using an LSTM performed better than all other models across all
numbers of parameters.
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Figure 42: Our results using the ToN-IoT dataset as input to INNs using only X as
features. The parameter R indicates the amount of sparsity applied to the parame-
ter space in the INN models where the values for R range from 0 to 1 and indicates
the likelihood of a given parameter being trainable or not. The bottom plot shows a
smaller range compared to the to plot to make additional details visible. Here one
can see that both an LSTM and the sparse INNs outperformed the RNN models.
Additionally, the sparse INNs achieved the highest performance overall.



A.1 Network Intrusion Detection Using Iterative Neural Networks and
Autoencoder Feature Residuals 158

0 0.5 1 1.5 2 2.5 3 3.5

¨104

0

0.2

0.4

0.6

0.8

1

Number of Parameters

F1
-S

co
re

ToN-IoT F1-Score vs. Parameters

S RNN
S LSTM

S INN; R = 0.02
S INN; R = 0.05
S INN; R = 0.1
S INN; R = 0.2
S INN; R = 0.3
S INN; R = 0.4
S INN; R = 0.5
S INN; R = 0.6
S INN; R = 0.7
S INN; R = 0.8
S INN; R = 0.9

0 0.5 1 1.5 2 2.5 3 3.5

¨104

0.6

0.7

0.8

0.9

1

Number of Parameters

F1
-S

co
re

ToN-IoT F1-Score vs. Parameters

S RNN
S LSTM

S INN; R = 0.02
S INN; R = 0.05
S INN; R = 0.1
S INN; R = 0.2
S INN; R = 0.3
S INN; R = 0.4
S INN; R = 0.5
S INN; R = 0.6
S INN; R = 0.7
S INN; R = 0.8
S INN; R = 0.9

Figure 43: Our results using the ToN-IoT dataset as input to INNs using S as input
features. The parameter R indicates the amount of sparsity applied to the parame-
ter space in the INN models where the values for R range from 0 to 1 and indicates
the likelihood of a given parameter being trainable or not. The bottom plot shows a
smaller range compared to the to plot to make additional details visible. Here one
can see that both an LSTM and the sparse INNs outperformed the RNN models.
Additionally, the sparse INNs achieved the highest performance overall.
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A.2 Performance Metrics

In this section of the appendix we provide details regarding the performance met-

rics used throughout our research. As the majority of the metrics are calculated in

relation to classifying network attacks we outline some initial common language

used when calculating performance metrics.

• true positive (TP)

We consider a true positive to be when we classify a sample as an attack and

the true label of that sample is an attack.

• true negative (TN)

We consider a true negative to be when we classify a sample as benign and

the true label of that sample is benign.

• false positive (FP)

We consider a false positive to be when we classify a sample as an attack,

however, the true label of that sample is benign.

• false negative (FN)

We consider a false negative to be when we classify a sample as benign, how-

ever, the true label of that sample is attack.

A.2.1 Accuracy

Accuracy is a simple measure that provides the proportion of samples for which

the classifier produces the correct prediction and can be calculated using equation

62 [39].

accuracy “
TP ` TN

TP ` TN ` FP ` FN
(62)
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While this can be a suitable metric for many problems, it is not well suited for

heavily imbalanced problems such as network intrusion detection. In network

intrusion detection, in most cases one could simply always predict samples to be

benign and achieve a high accuracy. For this reason, we general rely on precision,

recall, and f1-score which are discussed in the following section.

A.2.2 Precision

Precision is a metric that reports the fraction of positive classifications that are

correct out of all positive predictions made [39]. In our case, this means it is the

number of samples we classify as attacks that are also labeled as attacks when

considering all samples that we classified as attacks. This is expressed in equation

63.

precision “
TP

TP ` FP
(63)

Values for this metric range between zero and one with larger values indicating

better performance.

A.2.3 Recall

Recall is a metric that reports the fraction of true positive classifications that were

detected out of all possible true positive events that occurred [39]. In our case,

this means it is the number of samples labeled as attack that we classified correctly

compared to all of the samples that were labeled as attack. This is expressed in

equation 64.

recall “
TP

TP ` FN
(64)
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Values for this metric range between zero and one with larger values indicating

better performance.

A.2.4 F1-Score

Classification performance can be considered a trade-off between both precision

and recall as defined in sections A.2.2 and A.2.3. For this reason we often report

the f1-score, which is the harmonic mean between precision and recall [39]. This

measure can be expressed as shown in equation 65.

f1-score “
2 ˚ precision ˚ recall

precision` recall
(65)

Values for this metric range between zero and one with larger values indicating

better performance. We note that this metric remains dependent on the ratio of

positive to negative samples being used. However, in our work we are generally

comparing performance using different feature sets using the same datasets. As

the ratios of attack and benign samples remain the same when doing this, we can

use the metric effectively for comparative performance reporting.

A.2.5 False Alarm Rate

The false alarm rate provides the ratio of false positives compared to the total num-

ber of negative samples presented to a classifier [46]. In our work this is the num-

ber of samples we classify as attacks that are truly benign compared to all benign

samples. This can be expressed as shown in equation 66.

False Alarm Rate “
FP

FP ` TN
(66)
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This metric ranges from zero to one where values closer to zero indicate better

performance. In the field of network intrusion detection we seek to minimize the

false positive rate as false positives often result in alerts to network operators and

ultimately wasted resources.

A.3 Common Equations

A.3.1 Min-Max Normalization

The goal of min-max normalization is such that each feature has a value between

zero and one. As shown in equation 67

x̂k “
xk ´minpxkq

maxpxkq ´minpxkq
(67)

where xk is the kth feature. This scaling is determined using training data and then

applied to training, validation, and test data. This can result in some values greater

than one or less than zero if the original value exceeds the min and max values of

the training data.

A.3.2 Mean Squared Error (MSE)

We use the mean squared error to calculate the loss for our autoencoder using the

general equation 68

MSE “
1

n

n
ÿ

i“1

pY ´ Ŷ q2 (68)

where Y is the target value and Ŷ is the predicted value. In our case we are using

an original input X and an autoencoder reconstruction yielding equation 69
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MSE “
1

n

n
ÿ

i“1

pX ´DpEpXqqq2 (69)

A.3.3 Two Sample Kolmogorov-Smirnov Test (KS-Test)

To support comparisons between our mean f1-scores we perform a two-sample

Kolmogorov-Smirnov test (KS test). The two-sample KS test takes two samples

and provides a statistic defined by equation 70

D “ sup
u
|Fmpuq ´Gnpuq| (70)

where Fm is the empirical distribution function of one sample containing m data

points and Gn is the empirical distribution function of a sample containing n data

points [45]. We have u as the union of both samples used for comparison where

the statistic returned is the supremum of the absolute value of the differences be-

tween the two distributions across u [45]. In our case, we have Fm be the empirical

distribution function for results using X as input features and Gn is our method’s

results. In our case m “ n as we take the same number of runs for each experi-

ment for comparison. The KS test statistic is used to determine if the two input

samples are from the same distribution [45]. We use associated p-values for this

purpose with a p-value less than or equal to 0.05 indicating we could reject the null

hypothesis that the two samples come from the same distribution.

A.4 Dataset Descriptions

Here we provide descriptions and references for datasets used in this dissertation

as well as some of the popular datasets that are commonly found used in research.

A high level summary of the features of the datasets can be seen in Table 26.
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A.4.1 KDD99

The KDD99 dataset captures seven weeks of data from the DARPA ’98 evaluation

program [101]. At the time of its release it was one of the most robust datasets

available and included properties such as a dedicated test set with attacks not con-

tained in the training set [101]. While we cover this dataset for historic purposes,

there have been a number of corrected issues with the dataset such that one should

favor using the NSL-KDD dataset [101]. The specific attacks in this dataset are now

outdated and research using this as a benchmark should be looked at with a dis-

criminating eye.

A.4.2 NSL-KDD

After the release of the KDD99 dataset, a number of researchers found issues per-

taining to inconsistencies in attack definitions, duplicate records, and its data dis-

tribution [101]. In response to these issues, the authors of [101] resolved these

issues and produced the NSL-KDD dataset. After doing so, the usable size of the

KDD99 dataset was reduced by 75.15% [101]. While this dataset is now aged, it is

still in wide use for benchmarking network intrusion detection techniques. Some

drawbacks to this dataset include that it has a custom feature set and is now out-

dated. While it is preferred over the KDD99 dataset and useful for benchmark

comparisons with other methods due to its widespread use, it is preferred to use

other datasets to fully assess new techniques.

A.4.3 CTU-13

The CTU-13 dataset consists of 13 botnet scenarios captured using the Czech Tech-

nical University network [34]. This dataset combines real botnet traffic along with
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a mixture of normal and background traffic. The dataset provides both packet cap-

ture (PCAP) files and NetFlow data generated using Argus. As is typical for most

cybersecurity datasets, there is a large imbalance between the number of attack

and benign samples as would be typical in most real world network settings.

A.4.4 UNSW-NB15

The UNSW-NB15 dataset was developed by the University of South Wales in or-

der to improve upon existing datasets by using real modern network traffic and

the low network footprint of modern-day attacks [73]. With the goal of helping to

improve network intrusion detection systems, the dataset contains nine different

attack types along with benign network traffic. Interestingly, the dataset is con-

structed using real modern benign network traffic combined with synthetic net-

work attacks. The data is available in a labeled CSV format containing NetFlow

data and features generated using the Argus and Bro network tools.

A.4.5 WSN-DS

The WSN-DS dataset was produced specifically to improve research on network

intrusion detection for wireless sensor networks [6]. The dataset focuses on denial

of service attacks for which wireless sensor networks may struggle against given

their generally lower processing power compared to traditional networks [6]. In

addition, the dataset is used to assess how the LEACH protocol used in wireless

sensor networks performs in the presence of these attacks [6]. While this dataset is

not seen as often as other benchmarks, it is an example of a network intrusion de-

tection dataset with a specific focus for wireless sensor networks and the LEACH

routing protocol in particular.
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A.4.6 UGR16

The UGR16 dataset was generated by the University of Granada using real net-

work traffic captured over the course of several months combined with synthetic

attack traffic [65]. The real network traffic included was collected from a Tier 3 ISP

network. One of the goals of this dataset was to capture network traffic over a long

period of time in order to include the cyclostationary nature of network traffic [65].

This quality of the data may make it appropriate for researching network drift as

well as RNNs.

A.4.7 CIDDS-001

The CIDDS-001 dataset was developed by researchers in order to provide an anomaly

detection network intrusion dataset [83]. This dataset was captured over four

weeks using a network simulated with OpenStack in combination with python

scripts to emulate specific behaviors [83]. The environment emulates a small of-

fice with clients and servers and attempts to recreate network drift characteristics

according to working hours. The main idea behind this dataset was to emulate in-

sider threats that businesses may face that generate within their internal networks.

A.4.8 CIDDS-002

This dataset is an extension put together by the researchers that generated the

CIDDS-001 dataset [82]. Unlike the CIDDS-001 dataset, the main focus of this

dataset is on various port scanning techniques [82].
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A.4.9 CICIDS2017

The CICIDS2017 dataset consists of five days of network data including one full

day of benign data that was developed by the Canadian Institute for Cyberse-

curity at the University of New Brunswick [95]. This dataset aimed to provide

up-to-date network attacks and realistic background traffic which was lacking in

many available datasets at the time of its publishing. The delivered features were

captured by post-processing PCAP files using the CICFlowMeter software devel-

oped by their group and also made publicly available [95]. Its scenarios have been

used as a benchmark cybersecurity dataset for many works and is still in use today.

Recently, researchers have provided updated versions of this dataset that address

potential issues found with the dataset and should also be considered for use [58].

A.4.10 CSE-CIC-IDS-2018

The CSE-CIC-IDS-2018 dataset was developed by the Canadian Institute of Cyber-

security at the University of New Brunswick 14. Generated using sets of profiles

for normal and attack behaviors it simulates a mixture of hundreds of hosts along

with servers that are attacked by a set of 50 attack hosts. Similar in nature to the

CICIDS2017 dataset produced by the same research group using the same toolset,

it serves to provide an updated set of attacks targeted to a larger infrastructure.

A.4.11 BoT-IoT

The BoT-IoT was developed by researchers at UNSW Sydney in Australia [53]. The

main goal of this dataset was to have a representative network intrusion detection

dataset consisting of IoT devices attacked in the context of a botnet [53]. To do

14https://www.unb.ca/cic/datasets/ids-2018.html

https://www.unb.ca/cic/datasets/ids-2018.html
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this a virtual environment was set up that included IoT devices such as a weather

station and various smart home devices. The Ostinato tool was used to provide

large amounts of benign traffic for the scenarios in this dataset.

A.4.12 SDN-IoT

The SDN-IoT dataset is a relatively new dataset being introduced in 2020 [48]. The

objective of this dataset is to provide samples of an SDN controlled network with

IoT devices within it. Modeled after the ToN-IoT dataset, it contains many of the

same attacks and similar architecture. It includes five attacks, but the dataset as a

whole is dominated by port scanning attacks [48]. While this dataset was used in

[81] recently, it will be interesting to see if this becomes a common benchmark for

network intrusion detection.

A.4.13 ToN-IoT

The ToN-IoT dataset was developed to provide a realistic benchmark in the In-

ternet of Things environment [70]. To develop the dataset, researchers utilized a

software defined network, network function virtualization, and service orchestra-

tion facilitated by the NSX vCloud NFV platform. Unique in this goal of targeting

a specific type of network environment, it provides nine network attack types on

IoT devices and infrastructure.

A.4.14 IoT-23

The IoT-23 dataset was developed in the Stratosphere Laboratory in efforts to cre-

ate a large amount of real labeled malware and benign IoT traffic to be used for

network intrusion detection research [35]. It consists of 23 IoT scenarios executed
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in a controlled environment using real IoT devices in combination with malware

executed from Raspberry Pi devices. In this work we utilize scenarios 1, 13, 19, and

20 chosen mainly for practical reasons based on the conservative number of net-

work flows included in these scenarios. Additionally, we augment the scenarios

by including all the benign samples from the three benign-only scenarios included

in the dataset. We refer the reader to the original work for details of each scenario

[35].

A.4.15 NF-V2 Datasets

The NF-V2 datasets are a collection of previously developed datasets restructured

from their PCAP files to all have a standard set of features [91]. Motivated by stan-

dardizing benchmark features in order to facilitate comparisons among network

intrusion detection research, these datasets all contain features from the NetFlow

v9 protocol. There is a restructured dataset for UNSW-NB15, ToN-IoT, BoT-IoT,

and CSE-CIC-IDS-2018, as well as a dataset that combines all of them together.

One drawback for these datasets is that the timestamp data for network flows is

not included, making them less viable when using techniques such as RNNs or

focusing on the sequential aspect of network data.

A.5 NetFlow Encoding Details

A.5.1 Communication Type One Hot Encoding

Communication type is determined using the source and destination ports utilized

in a given NetFlow record. In some instances, datasets only provide an entry such

as “service” which we were also able to use for mapping to a communication type.

To determine the actual fields appearing in Table 27 we took counts of occurrences
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across many public benchmarks and utilized the most commonly used ports leav-

ing an “other” field for any less used or unseen ports.

Table 27: Communication type one hot encoding features found using source and
destination ports present in NetFlow records.

One Hot Encoding Feature Mapped Port Numbers

system defined 0

ftp 21

ssh 22

dns 42, 53, 135, 5353

http 80, 443

kerberos 88

ntp 123

samba 137, 138, 139

ldap 389, 3268

ms-smb 445

smtps 465

registered ports ě 1024 and ď 49,151

user application ports ě 49,152

other any unmappable ports

A.5.2 Protocol One Hot Encoding

The protocol one hot encoding was determined based on the most used proto-

cols across a large swath of network intrusion detection datasets. Some datasets

provide a protocol number while others use an actual protocol name which we ac-

count for in our mappings. It should be noted that we include all logical OSI layer

protocols in this mapping and do not separate them. Details of the mapping can

be found in Table 28.
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Table 28: Protocol one hot encoding column mappings based on protocol values
contained in a NetFlow record.

One Hot Encoding Feature Mapped Values

rtp rtp, rtcp

tcp 6, tcp

udp 17, udp, udt

sctp 132, sctp

icmp 1, icmp

igmp 2, igmp

tunneling 50, 47, 94, esp, gre, ipip, ipnip

ip 0, 41, 55, 4, 44, 43, 59, 60, ip, ipv6,
ipv6-frag, ipv6-route, ipv6-no,
ipv6-opts

arp 54, 91, arp

ospf 89, ospf

other any unmappable protocol

A.6 Machine Learning Algorithm Default Parameters

In our work we often use the default parameters set by the sklearn algorithms

as we are interested in comparative performance as opposed to optimizing per-

formance. The following set of tables provide what these default parameters are

based on the sklearn libraries. Unless otherwise noted, when performing ablation

studies of a particular parameter, the remaining parameters would remain set to

the values in these tables. For additional descriptions of what each parameter con-

trols one can review the documentation for the algorithm for the sklearn library15.

15https://scikit-learn.org/stable/modules/classes.html
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Table 29: The parameters and their default values from the sklearn algorithm for
naive bayes classifier.

Parameter Type Default Value

priors array-like None

var smoothing float 1e-9

Table 30: The parameters and their default values from the sklearn algorithm for
K-Nearest Neighbors.

Parameter Type Default Value

n neighbors int 5

weights str uniform

algorithm str auto

leaf size int 30

p int 2

metric str or callable minkowski

metric params dict None

n jobs int None
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Table 31: The parameters and their default values from the sklearn algorithm for
random forest.

Parameter Type Default Value

n estimators int 100

criterion str gini

max depth int None

min samples split int or float 2

min samples leaf int or float 1

min weight fraction leaf float 0.0

max features str, int or float sqrt

max leaf nodes int None

min impurity decrease float 0.0

bootstrap bool True

oob score bool or callable False

n jobs int None

random state int, RandomState instance, or None None

verbose int 0

warm start bool False

class weight str, dict, or list of dicts None

ccp alpha non-negative float 0.0

max samples int or float None
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Table 32: The parameters and their default values from the sklearn algorithm for
logistic regression.

Parameter Type Default Value

penalty str l2

dual bool False

tol float 1e-4

C float 1.0

fit intercept bool True

intercept scaling float 1

class weight dict or balanced None

random state int, RandomState instance None

solver str lbfgs

max iter int 100

multi class str auto

verbose int 0

warm start bool False

n jobs int None

l1 ratio float None
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Table 33: The parameters and their default values from the sklearn algorithm for
support vector classifier.

Parameter Type Default Value

penalty str l2

loss str squared hinge

dual str or bool True

tol float 1e-4

C float 1.0

multi class str ovr

fit intercept bool True

intercept scaling float 1.0

class weight dict or balanced None

verbose int 0

random state int, RandomState instance or None None

max iter int 1000

Table 34: The parameters and their default values from the sklearn algorithm for
isolation forest.

Parameter Type Default Value

n estimators int 100

max samples auto, int or float auto

contamination auto or float auto

max features int or float 1.0

bootstrap bool False

n jobs int None

random state int, RandomState instance or None None

verbose int 0

warm start bool False
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Table 35: The parameters and their default values from the sklearn algorithm for
one-class support vector machine.
Parameter Type Default Value

kernel linear, poly, rbf, sigmoid, precomputed, or callable rbf

degree int 3

gamma scale, auto, or float scale

coef0 float 0.0

tol float 1e-3

nu float 0.5

shrinking bool True

cache size float 200

verbose bool False

max iter int -1

Table 36: The parameters and their default values from the sklearn algorithm for
the local outlier factor.

Parameter Type Default Value

n neighbors int 20

algorithm auto, ball tree, kd tree, or brute auto

leaf size int 30

metric str or callable minkowski

p int 2

metric params dict None

contamination auto or float auto

novelty bool False

n jobs int None
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A.7 Supplemental Data

A.7.1 Sample Autoencoder Architecture Ablation

We present a number of figures representative of the ablation studies used to choose

our autoencoder architecture. These initial ablation studies were carried out across

five NID scenarios and used to determine autoencoder architecture.

Figure 44: A sample of one of many ablation studies used to determine what au-
toencoder architecture to use for our research. Here we show an ablation study
varying the number of layers in the encoder and decoder from two to six while
also varying the bottleneck size from seven to twelve. While this figure is specific
to the CTU-13 Scenario 5 dataset, it was used to determine a general autoencoder
architecture to use in later research.
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Figure 45: A sample of one of many ablation studies used to determine what au-
toencoder architecture to use for our research. Here we show an ablation study
varying the number of layers in the encoder and decoder from two to six while
also varying the bottleneck size from seven to twelve. While this figure is specific
to the CTU-13 Scenario 6 dataset, it represents the general trend found across all
datasets.
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Figure 46: A sample of one of many ablation studies used to determine what au-
toencoder architecture to use for our research. Here we show an ablation study
varying the number of layers in the encoder and decoder from two to six while
also varying the bottleneck size from seven to twelve. While this figure is spe-
cific to the UNSW-NB15 dataset, it was used to determine a general autoencoder
architecture to use in later research.
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Figure 47: A sample of the extremes tested in our ablation studies used to deter-
mine what autoencoder architecture to use for our research. While this figure is
specific to Tuesday’s scenario from the CICIDS2017 dataset, it was used to deter-
mine a general autoencoder architecture to use in later research.

Figure 48: A sample of the extremes tested in our ablation studies used to deter-
mine what autoencoder architecture to use for our research. While this figure is
specific to Wednesday’s scenario from the CICIDS2017 dataset, it was used to de-
termine a general autoencoder architecture to use in later research.
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Figure 49: A sample of the extremes tested in our ablation studies used to deter-
mine what autoencoder architecture to use for our research. While this figure is
specific to Thursday’s scenario from the CICIDS2017 dataset, it was used to deter-
mine a general autoencoder architecture to use in later research.

Figure 50: A sample of the extremes tested in our ablation studies used to de-
termine what autoencoder architecture to use for our research. While this figure is
specific to Friday’s scenario from the CICIDS2017 dataset, it was used to determine
a general autoencoder architecture to use in later research.
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A.7.2 Precision and Recall Metrics

In this appendix we provide detailed information regarding the precision and re-

call metrics that support our f1-score reported measures. Tables 37, 38, 39, and

40 provide the precision and recall metrics for our experiments with MLP classi-

fiers across the two encodings used in this dissertation. Tables 41, 42, 43, and 44

provide the precision and recall metrics for our experiments with RNN and LSTM

classifiers using our simple encoding. Tables 45 and 46, along with Figures 51 and

52, provide the precision and recall metrics for our experiments using one-class

classifiers.

Table 37: Mean precision results based on ten experiment executions using S in
combination with X and L as input to our MLP classifier. P-values using the
Kolmogorov-Smirnov test are provided where values greater than 0.05 indicate
the precision scores were likely drawn from the same distribution. Values in blue
indicate a precision and p-value that supports comparable performance compared
to X . Values in green indicate a precision and p-value that supports we have im-
proved performance compared to X . Values in orange indicate a precision and
p-value that supports we have degraded performance compared to X . These val-
ues are included to supplement Table 11.

NF-UNSW-NB15-V2 NF-BoT-IoT-V2 NF-ToN-IoT-V2 NF-CSE-CIC-IDS2018-V2

Precision p-value Precision p-value Precision p-value Precision p-value

X 0.881 0.995 0.963 0.997

S 0.875 0.873 0.993 0.357 0.959 0.357 0.997 0.873

XS 0.885 0.873 0.994 0.873 0.968 0.873 0.997 0.873

LS 0.875 0.873 0.995 1.000 0.965 0.873 0.998 0.873

XLS 0.886 0.873 0.995 1.000 0.966 0.357 0.997 0.873
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Table 38: Mean recall results based on ten experiment executions using S in
combination with X and L as input to our MLP classifier. P-values using the
Kolmogorov-Smirnov test are provided where values greater than 0.05 indicate
the recall scores were likely drawn from the same distribution. Values in blue in-
dicate a recall and p-value that supports comparable performance compared to X .
Values in green indicate a recall and p-value that supports we have improved per-
formance compared to X . Values in orange indicate a recall and p-value that sup-
ports we have degraded performance compared to X . These values are included
to supplement Table 11.

NF-UNSW-NB15-V2 NF-BoT-IoT-V2 NF-ToN-IoT-V2 NF-CSE-CIC-IDS2018-V2

Recall p-value Recall p-value Recall p-value Recall p-value

X 0.945 0.985 0.986 0.862

S 0.931 0.873 0.986 0.357 0.979 0.357 0.861 0.873

XS 0.941 0.873 0.985 1.000 0.983 0.873 0.862 0.873

LS 0.975 0.357 0.985 0.873 0.985 0.873 0.861 0.873

XLS 0.940 0.873 0.985 1.000 0.986 1.000 0.862 0.873

Table 39: Mean precision test results based on ten experiment executions using S in
combination with X and L as input to our MLP classifier using an alternative sim-
ple encoding. P-values using the Kolmogorov-Smirnov test are provided where
values greater than 0.05 indicate the precision scores were likely drawn from the
same distribution. Values in blue indicate a precision and p-value that supports
comparable performance compared to X . Values in green indicate a precision and
p-value that supports we have improved performance compared to X . These val-
ues are included to supplement Table 12.

NF-UNSW-NB15-V2 NF-BoT-IoT-V2 NF-ToN-IoT-V2 NF-CSE-CIC-IDS2018-V2

Precision p-value Precision p-value Precision p-value Precision p-value

X 0.730 0.996 0.946 0.952

S 0.765 0.079 0.997 0.357 0.950 0.357 0.981 0.008

XS 0.767 0.079 0.997 0.079 0.949 0.357 0.972 0.008

LS 0.755 0.357 0.997 0.008 0.948 0.873 0.975 0.008

XLS 0.776 0.079 0.997 0.079 0.950 0.873 0.973 0.008
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Table 40: Mean recall test results based on ten experiment executions using S in
combination with X and L as input to our MLP classifier using an alternative sim-
ple encoding. P-values using the Kolmogorov-Smirnov test are provided where
values greater than 0.05 indicate the recall scores were likely drawn from the same
distribution. Values in blue indicate a recall and p-value that supports compa-
rable performance compared to X . Values in green indicate a recall and p-value
that supports we have improved performance compared to X . These values are
included to supplement Table 12.

NF-UNSW-NB15-V2 NF-BoT-IoT-V2 NF-ToN-IoT-V2 NF-CSE-CIC-IDS2018-V2

Recall p-value Recall p-value Recall p-value Recall p-value

X 0.835 0.992 0.956 0.964

S 0.849 0.873 0.992 1.000 0.957 0.873 0.969 0.079

XS 0.885 0.873 0.993 0.873 0.959 0.357 0.974 0.079

LS 0.919 0.008 0.992 1.000 0.961 0.079 0.971 0.079

XLS 0.868 0.873 0.993 0.873 0.956 0.873 0.975 0.008

Table 41: Mean precision test results based on ten experiment executions using S in
combination with X and L as input to an RNN classifier using the alternative sim-
ple encoding. P-values using the Kolmogorov-Smirnov test are provided where
values greater than 0.05 indicate the precision scores were likely drawn from the
same distribution. Values in blue indicate a precision and p-value that supports
comparable performance compared to X . Values in green indicate a precision and
p-value that supports we have improved performance compared to X . Values in
orange indicate a precision and p-value that supports we have degraded perfor-
mance compared to X . This table supports the values reported in Table 14.

UNSW-NB15 ToN-IoT CTU13 Scenario 6 CTU13 Scenario 9 CTU13 Scenario 13

Precision p-value Precision p-value Precision p-value Precision p-value Precision p-value

X 0.979 0.872 0.897 0.814 0.692

S 0.980 0.000 0.859 0.000 0.923 0.000 0.836 0.000 0.772 0.000

XS 0.981 0.000 0.913 0.000 0.899 0.000 0.830 0.000 0.790 0.000

LS 0.981 0.000 0.921 0.000 0.896 0.000 0.842 0.000 0.813 0.000

XLS 0.980 0.000 0.936 0.000 0.893 0.000 0.844 0.000 0.779 0.000
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Table 42: Mean recall test results based on ten experiment executions using S in
combination with X and L as input to an RNN classifier using the alternative sim-
ple encoding. P-values using the Kolmogorov-Smirnov test are provided where
values greater than 0.05 indicate the recall scores were likely drawn from the same
distribution. Values in blue indicate a recall and p-value that supports comparable
performance compared to X . Values in green indicate a recall and p-value that
supports we have improved performance compared to X . Values in orange indi-
cate a recall and p-value that supports we have degraded performance compared
to X . This table supports the values reported in Table 14.

UNSW-NB15 ToN-IoT CTU13 Scenario 6 CTU13 Scenario 9 CTU13 Scenario 13

Recall p-value Recall p-value Recall p-value Recall p-value Recall p-value

X 0.981 0.981 0.765 0.821 0.778

S 0.979 0.000 0.924 0.000 0.827 0.000 0.821 0.000 0.724 0.000

XS 0.979 0.000 0.959 0.000 0.778 0.000 0.836 0.000 0.815 0.000

LS 0.980 0.000 0.952 0.000 0.791 0.000 0.833 0.000 0.804 0.000

XLS 0.982 0.000 0.926 0.000 0.796 0.000 0.834 0.000 0.808 0.000

Table 43: Mean precision test results based on ten experiment executions using S in
combination withX and L as input to an LSTM classifier using the alternative sim-
ple encoding. P-values using the Kolmogorov-Smirnov test are provided where
values greater than 0.05 indicate the precision scores were likely drawn from the
same distribution. Values in blue indicate a precision and p-value that supports
comparable performance compared to X . Values in green indicate a precision and
p-value that supports we have improved performance compared to X . Values in
orange indicate a precision and p-value that supports we have degraded perfor-
mance compared to X . This table supports the values reported in Table 15.

UNSW-NB15 ToN-IoT CTU13 Scenario 6 CTU13 Scenario 9 CTU13 Scenario 13

Precision p-value Precision p-value Precision p-value Precision p-value Precision p-value

X 0.974 0.872 0.888 0.771 0.549

S 0.975 0.000 0.819 0.000 0.871 0.000 0.795 0.000 0.626 0.000

XS 0.975 0.000 0.928 0.000 0.896 0.000 0.792 0.000 0.658 0.000

LS 0.975 0.000 0.939 0.000 0.887 0.000 0.792 0.000 0.649 0.000

XLS 0.976 0.000 0.919 0.000 0.891 0.000 0.798 0.000 0.633 0.000
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Table 44: Mean recall test results based on ten experiment executions using S in
combination withX and L as input to an LSTM classifier using the alternative sim-
ple encoding. P-values using the Kolmogorov-Smirnov test are provided where
values greater than 0.05 indicate the recall scores were likely drawn from the same
distribution. Values in blue indicate a recall and p-value that supports comparable
performance compared to X . Values in green indicate a recall and p-value that
supports we have improved performance compared to X . Values in orange indi-
cate a recall and p-value that supports we have degraded performance compared
to X . This table supports the values reported in Table 15.

UNSW-NB15 ToN-IoT CTU13 Scenario 6 CTU13 Scenario 9 CTU13 Scenario 13

Recall p-value Recall p-value Recall p-value Recall p-value Recall p-value

X 0.977 0.987 0.742 0.785 0.623

S 0.975 0.000 0.854 0.000 0.770 0.000 0.798 0.000 0.655 0.000

XS 0.978 0.000 0.979 0.000 0.770 0.000 0.803 0.000 0.687 0.000

LS 0.977 0.000 0.907 0.000 0.767 0.000 0.801 0.000 0.682 0.000

XLS 0.977 0.000 0.987 0.000 0.787 0.000 0.799 0.000 0.681 0.000
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Table 45: Baseline performance measures taken using default parameters for each
one-class classifier. We report mean precision test results based on ten experiment
executions using S in combination with X and L as input to our classifier. P-
values using the two sample Kolmogorov-Smirnov test are provided where values
greater than 0.05 indicate the precision scores were likely drawn from the same
distribution. Values in blue indicate a precision and p-value that supports com-
parable performance compared to X . Values in green indicate a precision and
p-value that supports we have improved performance compared to X . Values in
orange indicate a precision and p-value that supports we have degraded perfor-
mance compared to X . These results support the reported f1-scores in Tables 16
and 17.

ToN-IoT BoT-IoT ToN-IoT (Simple) IoT-23 Scenario 1 IoT-23 Scenario 13 IoT-23 Scenario 19 IoT-23 Scenario 20

Precision p-value Precision p-value Precision p-value Precision p-value Precision p-value Precision p-value Precision p-value

Isolation Forest

X 0.891 - 0.941 - 0.991 - 0.885 - 0.798 - 0.871 - 0.873 -

S 0.744 0.000 0.987 0.000 0.996 0.000 0.907 0.052 0.785 0.052 0.885 0.052 0.882 0.418

XS 0.832 0.002 0.975 0.000 0.996 0.000 0.900 0.168 0.782 0.052 0.889 0.787 0.883 0.052

LS 0.719 0.000 0.974 0.000 0.996 0.000 0.877 0.787 0.816 0.012 0.896 0.168 0.870 0.168

XLS 0.764 0.000 0.965 0.018 0.996 0.000 0.875 0.012 0.769 0.012 0.886 0.418 0.880 0.787

One-class Support Vector Machine

X 0.754 - 0.852 - 0.978 - 0.796 - 0.652 - 0.819 - 0.757 -

S 0.692 0.000 0.884 0.000 0.980 0.000 0.788 0.000 0.649 0.000 0.832 0.002 0.824 0.000

XS 0.752 0.000 0.876 0.000 0.978 0.052 0.796 0.002 0.650 0.000 0.850 0.002 0.800 0.000

LS 0.760 0.000 0.875 0.000 0.978 0.012 0.797 0.000 0.653 0.000 0.880 0.000 0.775 0.168

XLS 0.738 0.115 0.870 0.000 0.978 0.000 0.797 0.000 0.653 0.000 0.874 0.002 0.771 0.168

Local Outlier Factor

X 0.870 - 0.976 - 0.991 - 0.906 - 0.848 - 0.969 - 0.870 -

S 0.879 0.000 0.966 0.000 0.993 0.000 0.906 1.000 0.848 1.000 0.969 0.994 0.860 0.168

XS 0.871 0.168 0.975 0.000 0.991 0.002 0.905 0.994 0.848 1.000 0.969 0.994 0.869 0.052

LS 0.867 0.002 0.976 0.012 0.992 0.002 0.905 0.994 0.848 1.000 0.969 0.168 0.870 0.168

XLS 0.868 0.168 0.976 0.002 0.992 0.000 0.906 1.000 0.848 1.000 0.969 0.787 0.871 0.052
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Table 46: Baseline performance measures taken using default parameters for each
one-class classifier. We report mean recall test results based on ten experiment
executions using S in combination withX and L as input to our classifier. P-values
using the two sample Kolmogorov-Smirnov test are provided where values greater
than 0.05 indicate the recall scores were likely drawn from the same distribution.
Values in blue indicate a recall and p-value that supports comparable performance
compared to X . Values in green indicate a recall and p-value that supports we
have improved performance compared to X . Values in orange indicate a recall
and p-value that supports we have degraded performance compared to X . These
results support the reported f1-scores in Tables 16 and 17.

ToN-IoT BoT-IoT ToN-IoT (Simple) IoT-23 Scenario 1 IoT-23 Scenario 13 IoT-23 Scenario 19 IoT-23 Scenario 20

Recall p-value Recall p-value Recall p-value Recall p-value Recall p-value Recall p-value Recall p-value

Isolation Forest

X 0.183 - 0.252 - 0.905 - 1.000 - 1.000 - 0.462 - 0.556 -

S 0.033 0.000 0.637 0.000 0.612 0.000 0.998 0.168 1.000 1.000 0.4657 0.168 0.496 0.052

XS 0.065 0.000 0.366 0.052 0.866 0.012 1.0000 1.000 1.000 1.000 0.4835 0.168 0.511 0.012

LS 0.060 0.000 0.461 0.000 0.790 0.000 0.986 0.994 1.000 1.000 0.6057 0.418 0.554 0.168

XLS 0.060 0.000 0.365 0.230 0.878 0.002 0.992 1.000 1.000 1.000 0.5090 0.168 0.541 0.418

One-class Support Vector Machine

X 0.505 - 0.741 - 0.900 - 1.000 - 1.000 - 0.509 - 0.588 -

S 0.374 0.000 0.988 0.000 0.994 0.000 1.000 1.000 1.000 1.000 0.6050 0.012 0.872 0.000

XS 0.496 0.000 0.911 0.000 0.901 0.000 1.000 1.000 1.000 1.000 0.7019 0.000 0.757 0.000

LS 0.519 0.000 0.905 0.000 0.901 0.012 1.000 1.000 1.000 1.000 0.8758 0.002 0.661 0.168

XLS 0.507 0.115 0.863 0.000 0.901 0.012 1.000 1.000 1.000 1.000 0.8452 0.000 0.654 0.168

Local Outlier Factor

X 0.231 - 0.771 - 0.614 - 1.000 - 1.000 - 0.827 - 0.640 -

S 0.264 0.000 0.822 0.000 0.888 0.000 1.000 1.000 1.000 1.000 0.837 0.787 0.599 0.168

XS 0.233 0.168 0.802 0.000 0.630 0.002 1.000 1.000 1.000 1.000 0.831 0.994 0.640 1.000

LS 0.228 0.052 0.800 0.000 0.620 0.002 1.000 1.000 1.000 1.000 0.835 0.168 0.641 0.418

XLS 0.228 0.052 0.806 0.000 0.620 0.052 1.000 1.000 1.000 1.000 0.839 0.418 0.640 1.000
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Figure 51: Four ablation studies performed across all datasets to compare using
feature combinations that include S to just using X when the one-class classifica-
tion algorithms have been optimized for performance. In general, these ablation
studies show that our novel feature combinations generally outperform X or meet
the same performance of X even when the classifiers are optimized beyond their
baseline settings. This figure supports the f1-score reported in Figure 34.
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Figure 52: Four ablation studies performed across all datasets to compare using
feature combinations that include S to just using X when the one-class classifica-
tion algorithms have been optimized for performance. In general, these ablation
studies show that our novel feature combinations generally outperform X or meet
the same performance of X even when the classifiers are optimized beyond their
baseline settings. This figure supports the f1-score reported in Figure 34.
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