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Abstract

Scientific material discovery, important for economic prosperity and well-being

from transportation, construction, and security, to healthcare; has traditionally been

tackled both by intensive mathematical modeling and extensive physical experimen-

tation. Recently, popular deep learning models have emerged as a promising solu-

tion approach. However, challenges remaining include overfitting due to the typically

small size of datasets in this domain, tiny but critical pixels, strong false positives, lack

of domain knowledge, etc.

In this dissertation, I tackle four particular directions of research related to deep

learning models on experimental complex data such as images derived from real-

world projects for scientific material discovery.

In the first part, we designed and developed the first open-source corrosion im-

age dataset, annotated for data-driven automation in scientific corrosion assessment

using expert labeling. Using this dataset, we built an AI platform, incorporating our

published deep learning model, for real-world anti-corrosive material discovery rat-

ing via automatic data collection, exchange, and visual analytics embedded with our

published deep learning models.

In the second part, we focused on deep learning models in image-based scientific

corrosion assessment for existing alloys. Techniques like augmentation, transfer learn-

ing, contrastive learning, as well as generative self-supervised learning were incorpo-

rated into the solution to improve its effectiveness.

In the third part, we innovated a science-informed deep learning model named

DeepSC-Edge, enhanced by a novel edge guidance submodel. This submodel focuses



attention on high-level edge shapes while utilizing our unique loss function to pre-

vent overfitting to edges. Additionally, our model incorporates a class-balanced loss,

improving segmentation, particularly with challenging yet essential edges crucial for

scientific corrosion assessment.

In the fourth part, we created a domain-promptable AlloyGAN model aimed at

producing microstructure images for alloys that have not previously existed in the

world, based on their chemical composition and manufacturing parameters. By inte-

grating domain knowledge into the model, my research empowers material scientists

to effectively handle hypothetical alloys through instant and scientifically validated

material simulation and evaluation. This approach represents a quicker and equally

precise alternative to conventional methods in material science for evaluating alloy mi-

crostructures, while also showcasing the potential of GAN-based models in advancing

scientific exploration in the realm of materials discovery.

This work is based on a collaboration with material scientists at the DEVCOM Army

Research Laboratory (ARL) - with the later testing and working with the resulting

technology. In a collaboration between ARL, WPI, and ASM, the technology is being

transitioned into practice for marketing and release by ASM. In general, the application

of AI techniques to material science challenges promises to save time and effort for

scientific material discovery.
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1 Introduction

The field of material discovery plays a pivotal role in driving scientific advancements and

expanding our technological horizons. However, traditional approaches heavily reliant

on complex mathematical modeling often encounter limitations in terms of efficiency and

practical applicability. To address this challenge, this dissertation focuses on harnessing

the power of deep learning, a highly data-centric technique, and applying it to expedite

the process of material discovery. Despite the promising potential of this approach, a

significant obstacle persists - the scarcity of datasets in the realm of material science, lead-

ing to issues such as overfitting when employing deep learning models. To overcome

these hurdles, this research explores innovative methods of embedding material science

knowledge into deep neural networks.

1.1 Motivation

Motivated by the immense possibilities that arise from integrating AI with material sci-

ence and the opportunity to make substantial strides in material discovery, our collab-

oration with the Army Research Laboratory (ARL) was initiated in 2019. The primary

objective was to address the scarcity of data and the challenge of overfitting when apply-

ing deep learning models to material science research.

With the growing use of AI to advance understanding in diverse fields, such as en-

gineering, medicine, healthcare, agriculture, and environmental science, we recognize

the potential of a semi-automated model. In this model, human scientists work along-

side AI systems, necessitating precise communication of existing knowledge to the AI

and comprehensible presentation of the AI’s findings. Given the remarkable successes of

deep neural works in various tasks, there remains a critical gap in how corrosion science

knowledge can be effectively integrated into deep learning models to automate material

science research.
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1.1.1 Motivating Example: WPI-ARL GQP Project

Figure 1: WPI-ARL Collaboration in Data Science GQP Projects

Collaborating closely with researchers from the Army Research Lab (ARL), we em-

barked on developing digital technologies to support the study and design of materi-

als with enhanced corrosive properties. This endeavor included the collection of real-

world data from corrosion experiments conducted in both indoor and outdoor testing

environments, enabling detailed analytics. Additionally, we developed an automatic

smartphone-based tool to collect and rate corrosion data in the field, along with the scal-

able and secure management of experimental data in a big data store. By optimizing

the data collection tool, we significantly reduced the workload for effective data collec-

tion by ARL researchers in the field. Details can be viewed at our project home website:

https://arl.wpi.edu/

During these projects, we have mentored over 100 WPI students majoring in Data

Science, Computer Science, Mechanical Engineering, Material Science, IT, Statistics, etc.

https://arl.wpi.edu/
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Material science researchers and marketing specialists have been joined from ARL and

ASM to collaborate, utilize, and commercialize the products.

1.1.2 Overall Objectives

The overarching aim of this work is to bridge the gap between corrosion science and

AI research, accelerate the discovery of new materials, and facilitate efficient knowledge

transfer between domain experts and AI models. We endeavor to usher in a paradigm

shift in material science, transitioning from a labor-intensive, slow-paced process to a

rapid, automated approach powered by advanced AI techniques.

In this dissertation, we aim to explore how corrosion science knowledge can be seam-

lessly incorporated into deep learning models, thus effectively automating material sci-

ence research. We identify domain knowledge as expert annotations that measure anti-

corrosive capability or material composition, such as chemical elements and manufactur-

ing temperature. Through a series of machine learning tasks, in collaboration with our

domain collaborator at ARL, we tackle the challenges of scientific corrosion classification,

regression, segmentation, and material generation using deep learning techniques.

1.2 Part I, II, III – Automating Scientific Corrosion Assessment on Existing Materials

1.2.1 State-of-the-Arts

For corrosion science, machine learning solutions have been applied to automate engi-

neering tasks such as defect detection [1–4] and corroded pipe detection [5]. However,

there is no well-performing ML work that exists for scientific corrosion assessment [6].

Due to the difficulty and expertise required to annotate the corrosion, to the best of

our knowledge, our work provides the first expert-level image, rating, and segmenta-

tion datasets for scientific corrosion assessment and corresponding high-performing deep

learning methods for standardized corrosion assessment with innovations in both data
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and material science fields. In the broader sense, deep learning has been widely used in

image prediction tasks. UNet is a popular deep learning model that has been successfully

applied in various image prediction tasks [7–10], such as image segmentation. It was first

introduced for biomedical image segmentation and primarily introduced the utilization

of a skip-connection structure to propagate information from the encoder to the decoder.

Furthermore, there exist works that aim to refine predicted segmentation by integrating

additional boundary and edge information [11–14]. Losses to address class imbalance

during training in tasks like object detection by applying a modulating term to the cross

entropy loss to focus learning on hard, misclassified examples has been shown to be ef-

fective in improving deep learning performance in real-world tasks [15]. In this work, we

also incorporate edge information into UNet, however, critically demonstrate methods

involving ground-truth edges and a class-balanced loss to benefit scientific corrosion seg-

mentation, especially on difficult-to-segment images that pose both domain-related and

general-purpose segmentation challenges.

1.2.2 Challenges

However, precisely, quickly, and safely assessing corrosion progression remains a chal-

lenging task, hampering the understanding of corrosion and material discovery as a

whole. Several factors contribute to this challenge, including the costs of manufactur-

ing processes and running tests, the danger of hazardous chemicals, the need for expert

knowledge to identify corrosion, long observation periods for corrosion progression, and

inherent biases associated with human analysis and measurements.

From the perspective of computer vision, applying deep learning to corrosion assess-

ment faces specific challenges: 1) Limited High-Quality Data: Collecting high-quality

corrosion data suitable for training data-driven models is challenging due to the limited

observation of high-quality samples, which are essential for accurate scientific results. 2)

Small Dataset Size: Corrosion datasets often have limited samples, making it difficult to
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train deep learning models effectively. 3) Diverse and Complex Patterns: Corrosion im-

ages exhibit intricate patterns, tiny scales, corrosion underneath, and similar colors and

textures with non-corrosion objects, posing challenges for accurate classification. 4) Trans-

fer Learning and Pre-training: Assessing the suitability of transfer learning from pre-

trained models on ImageNet to corrosion classification is essential, as corrosion images

differ significantly from natural images. 5) Manual augmentation and Self-supervision:

Verifying which ways to field semantic information well is necessary, manual augmen-

tation, contrastive or generative self-supervision are conducted to compare the perfor-

mance.

1.3 Part IV - Discovering Unknown from Known via Generative Models

1.3.1 State-of-the-Arts

Conventional approaches in alloy microstructure modeling involve extensive compu-

tational efforts and expertise. Techniques such as Phase Field modeling, Monte Carlo

methods, and Cellular Automation have been used to simulate various aspects of recrys-

tallization and solidification but face challenges in complex metallurgical processes and

transition rules. On the other hand, deep learning methods, including Generative Adver-

sarial Networks (GANs), Variational Autoencoders (VAEs), and Convolutional Neural

Networks (CNNs), have shown promise in material generation and microstructure anal-

ysis. We propose to structure utilizes fundamental material compositions as conditions

to prompt microstructure image generation, thereby facilitating the process of scientific

alloy discovery.

1.3.2 Challenges

Traditional numerical methods struggle to simulate the final microstructure in alloy for-

mation accurately due to the complex nonlinear chemical and physical interactions in-
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volved. These methods, which often rely on intricate Partial Differential Equations (PDEs)

and Finite Element Methods (FEM), can be computationally demanding and require spe-

cific expertise in material science, limiting their accessibility.

1.4 Overview Dissertation Tasks

To address the aforementioned challenges and achieve the objectives of this dissertation,

we define a series of tasks:

1.4.1 Part I: Open Corrosion Image Dataset and MOSS AI Platform

The initial task involves creating the first-ever open corrosion image dataset with expert

annotations. This dataset aims to provide a valuable resource for the computer vision

community, enabling research in scientific corrosion analysis.

Additionally, we develop an AI platform to automate scientific corrosion assessment,

facilitating seamless collaboration between AI models and domain experts.

1.4.2 Part II: Automatic Corrosion Rating

In this task, we explore the use of CNN and Transformer-based models for corrosion

classification. We investigate the effectiveness of manual domain-specific data augmen-

tation compared to self-supervised deep learning models. In self-supervised models, we

compared PIRL and Masked Auto-Encoder (MAE) models to find if a contrastive or gen-

erative approach works with corrosion ratings. By leveraging transfer learning and self-

supervised learning techniques, we aim to improve classification performance despite the

limited dataset size. Additionally, we incorporate ordinal regression instead of classifica-

tion, utilizing corresponding loss functions on the best-performing model to further suit

the nature of corrosion rating.
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1.4.3 Part III: Learning Segmentation via Ground-truth Edges

Thirdly, we delve into corrosion segmentation and introduce a novel ground-truth edge

guidance technique to enhance the performance of the UNet architecture. By leveraging

innovative loss functions that prevent overfitting on edges, we empower UNet to effec-

tively learn intricate corrosion segmentation, utilizing high-level edge shapes guided by

the Decoder.

1.4.4 Part IV: GAN for Unseen Alloy Discovery

Lastly, we develop promptable generative models that allow material scientists to view

instantaneous corrosion simulations based on established parameters, such as chemical

reactions. This facilitates rapid material performance assessment without the need for

complex and inefficient mathematical equations.

1.5 Roadmap

We commence our journey by presenting the first-ever open corrosion image data set

with expert annotations and an AI platform incorporated with our published deep learn-

ing model for (Part I). We then explore the use of Convolutional Neural Networks (CNN)

and Transformers for corrosion classification, leveraging techniques like manual augmen-

tation, transfer learning, and self-supervised learning to improve performance, includ-

ing ordinal regression on corrosion data using generative self-supervised models (Part

II). Further, we devise a ground-truth edge guidance methodology in the decoder with

innovative loss functions, enabling UNet to learn complex corrosion segmentation via

ground-truth edge shape in the Decoder (Part III).

Lastly, we invent promptable generative models for innovative Alloy simulations on

microstructure images (Part IV). This model is now openly available, offering fast and

scientifically valid results instead of the slow and equivalent outcomes produced by com-
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plex conventional material science models.

By overcoming the challenges associated with small data sizes in deep learning and

their applications to real-world scientific material discovery, we aspire to create a robust

bridge between material science and AI. The resulting technology is set to significantly

save time and labor in the pursuit of new material discovery, thereby bringing us closer

to the next wave of technological advancements.

Our resulting methodologies and findings have been published in renowned confer-

ences and are accessible through public platforms, enabling the broader research commu-

nity to benefit from our work. Moreover, our software products, including an iPadOS app

and web dashboard, embedded with our published deep learning models, are in use by

ARL, under standardized by ASM, and going to apply with PPG and NASA, further af-

firming the practical impact of our research. We thank ARL, NSF, and DoE for sponsoring

this research.
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Part I

Open Corrosion Image Dataset and MOSS AI

Platform

2 First-ever Open Corrosion Image Dataset and MOSS AI Platform

used for Machine Learning to Accelerate Real-world Material Dis-

covery (Task 1)

In this part, we introduce a novel corrosion image dataset, the first of its kind, featuring

expert annotations and ratings obtained through standardized material science experi-

ments. Comprising 600 real-world images of experimentally-tested material panels, the

dataset provides a unique resource for advancing the application of AI in materials re-

search, specifically in accelerating the discovery of new materials. Figure 1 illustrates

examples of the dataset.

One of the challenges posed by our dataset is the inherent complexity of the images,

which may exhibit single or double scribe lines, variable background colors, and noisy

spots unrelated to the actual corrosion. Furthermore, the thinness of certain corrosion

instances can make them virtually invisible to the untrained eye.

2.1 Motivation: Expert vs. Non-expert Ratings

The complexity of our dataset and the intricacies of corrosion assessment become ap-

parent when comparing the performance of trained non-experts to that of experienced

corrosion scientists. We carried out a study in which non-experts, who received training

from a corrosion expert, attempted to rate corrosion on a subset of 60 image panels from

our dataset.
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Despite following the ASTM D1654 standards, the non-experts achieved a classifica-

tion accuracy of only 0.38 when compared to the ground truth expert ratings. This un-

derscores the importance of domain expertise and experience in accurately identifying

and rating corrosion, and motivates the use of deep learning as a means to replicate this

expertise.

2.2 Dataset Details and Contributions

Our open dataset includes 600 corrosion panel images of 512x512 pixels each, with each

panel having a ground truth rating assigned by a corrosion scientist. To avoid imbalances

in the data and to focus on the most domain-relevant corrosion ratings, we included only

panels with ratings in the range of 5-9.

In addition to the images, the dataset includes expertly curated binary segmentation

masks for each panel. These masks were obtained through an iterative process involv-

ing the use of the OpenCV GrabCut algorithm and consultation with domain experts to

ensure accuracy.

This dataset represents a significant contribution to the field, not only due to the

unique data it provides, but also due to the challenges overcome in its creation. These

challenges include the domain knowledge required for panel assessment, the time and

cost of experimental procedures, and the need for appropriate laboratory facilities.

Figure 2: Non-expert rating procedure. Corrosion areas are identified in 12 locations on an image,
measured on the computer in a pixel width, averaged across the 12 boxes, converted to a mm
width, and then assigned the appropriate scribe corrosion rating 0-10.
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Figure 3: Three sample images per corrosion rating class 5 - 9 from our data set.

2.3 Related Publications and Software Products

The creation of this unique dataset and its implications for automating the scientific as-

sessment of materials have been detailed in our paper published in the 2021 British Ma-

chine Vision Conference (BMVC).

In addition, we have developed an innovative AI-based digital platform, MOSS (Ma-

terials Open Science Software), to support materials science corrosion research. This plat-

form, which was developed in collaboration with the Army Research Lab, includes a

user-friendly iPadOS app for in-field corrosion progression data collection, a deep learn-

ing module for tasks like automatic corrosion assessment, a robust data repository for

long-term experimental data archiving and modeling, and a visual analytics web portal

for materials science research. The architecture of the MOSS platform is shown in Figure

2. The platform is transited to ARL and more details, including user cases, have been

published to the 2023 Conference on Information and Knowledge Management (CIKM).
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Figure 4: Capture, record, and save all experimental information about a new experiment.

The MOSS platform, in a real-world setting, is utilized in field studies to analyze corro-

sion progression in different materials. The accompanying app facilitates comprehensive

real-time data collection, including photos, material condition notes, and environmental

readings, even under limited internet connectivity. Once data is collected, it is uploaded

for analysis on the server and web portal. The platform’s deep-learning module assesses

each material sample’s corrosion state, providing clear and automatic insights into corro-

sion understanding.

iPadOS App to Serve Data Collection. Initial data collection is carried out using the

user-friendly iPadOS app. A technician can collect, annotate, and save their experimental

procedures and observations in an organized fashion. After logging in, the technician

can begin to review or create new experiment sessions and tasks. Users can review past

experiments and detailed records. Each material sample, complete with its details such

as surface substrate, pretreatment, profile, primer, topcoat, timestamp, and a unique QR

code, can be reviewed and shared among a team.

As seen in Figure 4, a new experiment can be created, wherein a user can photograph

the material and input corrosion measurements. Corresponding rating scores are then
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Figure 5: Select from a variety of plotting tools and material features to visualize trends and rela-
tionships across observations of corrosion progression ratings.

Figure 6: Automatically assess a corrosion panel image with embedded deep learning classifica-
tion model. Confidence shows the softmax probability of the predicted class.

calculated and displayed in boxes, with our deep learning algorithm offering a predicted

corrosion rating for optional inclusion.

Data Repository to enable long-term data integration. After collecting data for an ex-

periment session, the user can select and back the data up to the data repository. This data

repository allows for long-term and comparative studies, assisting in building a compre-

hensive understanding of corrosion progression. The system’s advanced search capabil-

ities, along with data versioning features, ensure efficient data management and uphold

data integrity.

Web portal to enable Deep Learning and Visual Analysis. After collecting and sav-

ing data, further analysis and discoveries can be done through our web portal. As seen

in Figure 5, the web portal allows for interactive data visualization from MOSS uni-
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fied database to recognize patterns and interrelationships of detailed corrosion ratings

on samples, weather conditions, and materials. Most importantly, corrosion and AI re-

searchers can easily access the data and view manual and automatic assessments by inter-

acting with the embedded deep-learning models. Sample image results from the database

can be displayed on the web portal (See ”Get results by server” tab in Figure 6), where

researchers can also upload local images to view deep-learning results (See ”Get results

by uploading” tab and results shown in Figure 6)

In this demonstration, we showcase through real-world use cases how MOSS sup-

ports and expedites corrosion assessments over time and with it the development of new

corrosion-resistant materials. This ultimately may contribute to the reduction of the eco-

nomic burden and safety problems caused by the corrosion of our national infrastructure.

Our vision is to inspire a broader adoption of AI technologies in corrosion research in

particular and, in doing so, ignite a revolution in the field of materials sciences in general.

Our MOSS platform has been deployed and attempted at the Army Research Lab. We

provide a video demo at: https://www.youtube.com/watch?v=CzcxMMRsxkE

https://www.youtube.com/watch?v=CzcxMMRsxkE
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Part II

Automatic Corrosion Rating

3 Corrosion Classification from CNN and Transformer via Manual or

Self Augmentation (Task 2)

Deep learning models, such as Convolutional Neural Networks (CNN) and Transformers,

have shown significant potential in computer vision tasks. However, these models often

require large amounts of data for training, which may not be readily available in all fields.

In the domain of material science, particularly in corrosion classification, presents several

challenges, primarily due to the scarcity of annotated data and the need for a comprehen-

sive understanding of material degradation mechanisms. The small dataset size restricts

the ability of traditional regression models to generalize effectively, leading to potential

overfitting and inaccurate predictions. To overcome this hurdle, we investigate the use

of manual and self-augmentation from the perspective of self-supervision to improve the

model performance, including generative self-supervision, as the complex interplay be-

tween various corrosion factors demands a robust method capable of capturing nuanced

correlations and generating meaningful representations.

Our task is crucial to advancing material discovery and establishing a more efficient

connection between material science and AI research.

3.1 Manual Augmentation

Manual augmentation is a widely adopted technique in machine learning and computer

vision tasks to increase the amount of training data. This process involves applying var-

ious transformations, such as rotation, scaling, and translation, to the original images to

create new, ’augmented’ images.
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Figure 7: Literature Review: Self-supervised Learning

We used manual augmentation to increase our dataset size, which originally consisted

of 600 images. Our augmentation methods included rotations and flips, resulting in an

augmented dataset that was four times the size of the original one. By leveraging these

manually augmented images, we were able to improve the performance of our corrosion

classification model.

3.2 Self Augmentation

While manual augmentation is an effective method to increase the dataset size, it may not

be sufficient for complex tasks like corrosion classification, which require an understand-

ing of high-level features. To further boost the performance of our model, we explored

self-augmentation techniques, specifically self-supervised learning.

Self-supervised learning is a learning paradigm where the model learns to predict a

part of the data from other parts of the same data. In our case, we used the MixMatch al-

gorithm, a semi-supervised learning method, which treats the predictions on augmented
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unlabeled data as targets, and then refines these targets using the labeled data.

3.3 Results

• Learning with manual data augmentation: ResNet-18, ResNet-50, DenseNet, and HR-

Net [16–18] are trained from scratch with extensive tuning with 9 different data aug-

mentation approaches, achieving 0.81, 0.77, 0.80, and 0.77 best test accuracy using 10-

fold cross-validation, respectively.

• Self-supervised learning: We investigate the potential of a recent self-supervised learning

approach, PIRL [19], which takes advantage of data augmentation automatically for

representation learning. We compare the pretrained PIRL on ImageNet and the PIRL

trained from scratch on our data, leading to 0.75 and 0.72 test accuracy, respectively.

Figure 8: Corrosion Classification Results show MAE, a generative self-supervised learning
model, outperforms other types of deep learning models if with transfer learning

By guiding generative self-supervised learning with material science knowledge and

expert annotations, our methods aim to revolutionize corrosion regression, thereby en-

abling a deeper understanding of material performance under corrosion conditions and

accelerating the discovery of novel corrosion-resistant materials. Our results using MAE

with ordinal regression loss compared to cross-entropy loss can be seen in Table 2.



PhD Dissertation Proposal: Biao Yin 26

Augmentation Parameters ResNet-18 ResNet-50 DenseNet HRNet
None N/A 0.78 ± 0.03 0.72 ± 0.03 0.79 ± 0.01 0.76 ± 0.04
Color Jitter Prob. 25%, Brightness (1.5, 2), 0.79 ± 0.03 0.74 ± 0.03 0.76 ± 0.02 0.68 ± 0.04

Contrast (0.5, 1.5), Hue 0.5,
Saturation (0.5, 1.5)

Gaussian Blur Prob. 75%, Kernel 11, Sigma 5 0.75 ± 0.04 0.71 ± 0.05 0.74 ± 0.03 0.75 ± 0.02
Horiz. Flip Prob. 25% 0.74 ± 0.03 0.70 ± 0.03 0.78 ± 0.03 0.77 ± 0.04
Rand. Erasing Prob. 25%, Max Attempt 5, 0.78 ± 0.04 0.74 ± 0.04 0.80 ± 0.02 0.75 ± 0.02

Area Ratio (0, 0.05)
Rand. Perspective Prob. 75%, Distortion Scale 25% 0.76 ± 0.03 0.74 ± 0.04 0.74 ± 0.02 0.76 ± 0.05
Rand. Resized Crop Prob. 25%, Scale (0.3, 0.7) 0.77 ± 0.03 0.76 ± 0.04 0.77 ± 0.03 0.77 ± 0.04
Rand. Rotation Prob. 75%, Degrees (-25, 25) 0.77 ± 0.03 0.69 ± 0.03 0.74 ± 0.04 0.75 ± 0.03
Vert. Flip Prob. 50% 0.75 ± 0.03 0.72 ± 0.04 0.80 ± 0.02 0.76 ± 0.04
Rand. Crop Prob. 50%, Padding 4, 0.81 ± 0.04 0.74 ± 0.02 0.79 ± 0.02 0.77 ± 0.03

Padding Mode Constant
Combination Same settings 0.81 ± 0.04 0.77 ± 0.03 0.80 ± 0.03 0.76 ± 0.04

Pretrained + Combination Same settings 0.83 ± 0.01 0.76 ± 0.02 0.79 ± 0.04 0.83 ± 0.03

Table 1: Test accuracy comparison using 10-fold cross-validation.

Method Mean Absolute Error (MAE)
MAE with Ordinal Regression Loss 84.99± 2.64

MAE with Cross-Entropy Loss 83.662± 2.17

Table 2: Current results – Comparison of MAE using different loss functions.

3.4 Conclusion

With our data set in Part I, we demonstrate that we can leverage deep learning techniques

to automate corrosion assessment. We demonstrate that image augmentation methods

can be tuned to our data achieving 0.83 classification accuracy in corrosion assessment.

Our longer-term goal is to build quality assessment models and integrate the assessment

model with standardized experimental procedures to speed up experimental workflows.

Our data set will drive innovation and development of deep learning techniques such as

generative models for corrosion progression prediction and new representation learning

techniques for small data sets – over time bridging computer vision and material innova-

tion.
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Part III

Learning Segmentation via Ground-truth Edges

4 Corrosion Ordinal Regression in Generative Self-Supervised Learn-

ing with Intrinsic Long-tail Data (Task 3)

4.1 Background

Corrosion is defined as the gradual degradation of a metal over time due to chemical

interactions with its environment. It results in major safety risks worldwide and nega-

tively impacts the environment, societal health, national infrastructure, manufacturing,

and transportation. The associated economic burden is substantial, with global losses

estimated to be around 4% of the gross domestic product (GDP), equivalent to approxi-

mately $2.5 trillion [20, 21]. Consequently, studying corrosion is an active research field

in material science that aims to design new materials capable of preventing corrosion.

This involves conducting corrosion tests by various industries, government agencies, and

countries [22–28].

However, it is challenging to assess corrosion progression precisely, quickly, and safely.

This impedes the understanding of corrosion and material discovery in general. Tra-

ditional manual segmentation methods to understand and assess corrosion are time-

consuming, labor-intensive, and prone to errors. Therefore, an automated corrosion seg-

mentation tool using Machine Learning (ML) algorithms is highly needed. However, this

is hindered in the AI and computer vision communities due to the lack of high-quality, sci-

entific, corrosion segmentation data. Obtaining such data is hard due to domain reasons

including varied corrosion patterns on invented materials, complex expert-dependent an-

notations, water stains with similar colors or textures to corrosion, and millimeter-level

observations, especially when defining the boundaries of corrosion. For example, shown
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Figure 9: Sample corrosion images with the segmentation ground truth we provide with corrosion
experts.

in Figure 9, corrosion underneath, i.e. corrosion under coating, has not broken through

the panel’s topcoat but the measured corrosion of interest should include the area. To

assess this, the expert needs to scrape the corresponding coating out, which is labor-

intensive and may result in a harmful environment. Other examples like thin or discontin-

uous corrosion show visually apparent corrosion to be segmented where the knowledge

and effort of experts are highly needed to distinguish these small areas where corrosion

exists. In addition, experts only assess corrosion along the scribe in a corrosion test while

corrosion in other areas is not of interest although their textures or colors may be the

same.

Data and Ground Truth In corrosion science, experimentalists develop and validate new

corrosion-inhibiting materials following standard material science procedures. Each panel

is scribed, exposed, scraped (if necessary), and assessed for its amount of corrosion present

as defined in the ASTM standard [26]. Additional details on the procedure can be found

in [29], including access to the 600 original images of corroded panels for scientific corro-

sion classification.

Ground truth, expertly curated, binary segmentations are produced for each of the 600

images in this work. To obtain the ground truth segmentations, we use the OpenCV Grab-
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Cut algorithm to segment out scribe corrosion areas of interest from the background [30].

In consultation with domain experts, we develop criteria on how to segment scribed areas

of corrosion such that we include all necessary areas of corrosion and exclude superfluous

background pixels. The binary segmentations we obtained were reviewed by corrosion

domain experts for their accuracy and refined based on an iterative feedback methodol-

ogy.

4.2 Challenges

From examples shown in Figure 9, challenges that are both domain-specific and which

extend to the general computer vision community [31], include i) a variety of textures

and shapes in limited images, ii) tiny-scale and detailed areas to segment, iii) similarities

in color with coating or image artifacts such as water staining, iv) areas of corrosion not

visibly apparent on the images but identifiable to domain experts, and v) class imbalance

between corrosion and background pixels, which arises naturally due to the relatively

small size and irregular distribution of interest, such as any item above. These challenges

lead us to think:

• To what extent can a deep learning architecture be trained to learn and recover these

domain-specific and challenging corrosion areas?

• How to further alleviate these challenges in the deep learning architecture by exploiting

strategies tied to these observations, such as edge detection or class imbalance meth-

ods?

4.3 Methodology

We establish baseline segmentation performance using UNet [7] – a deep learning archi-

tecture widely used and proven successful for machine segmentation tasks on small data.

We observe that UNet is not fully learning sharp-edge information of small-scaled corro-

sion crucial for corrosion understanding and assessment. This motivates us to enhance
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UNet with edge maps generated by deterministic computer vision techniques such as the

Canny edge operator 1.

Thus, we develop an edge-guided baseline architecture, ET-UNet. This architecture

inherits the backbone from UNet [7] and edge-guidance modules from ET-Net [32]. This

represents a second baseline comparable with the UNet baseline. Although ET-UNet may

guide UNet to learn low-level features of corrosion edges in early encoder layers, it may

not provide direct guidance that could further verify the edge of segmentation prediction;

we aim to address this with our proposed strategies.

Adding onto the ET-UNet baseline, we thus propose combinations of 3 different strate-

gies to overcome challenges of difficult edges and class-imbalance for scientific corrosion

segmentation. Accordingly, our three strategies are: 1) targeted edge guidance on ET-

UNet from segmentation prediction, 2) soft involvement to further regularize the model

to predict segmentation rather than the guidance itself, and 3) class-balanced loss, Focal

Tversky Loss (FTL), to better distinguish challenging and minority corrosion of interest.

Models reflecting these strategies and their combinations are listed in Table 3.

4.3.1 Innovative Loss to Achieve Ground-truth Edge Guidance via Shapes in Decoder

Our strategies are added to our DeepSC-Edge models listed in Table 3. We define the

loss functions of these deep learning models below. Combining Binary Cross Entropy

(BCE) and Dice loss (Dice Loss) [7], UNet loss function is calculated by ground truth

segmentation Y and the segmentation prediction Ŷ :

LUNet = BCE(Y, Ŷ ) +Dice Loss(Y, Ŷ ) (1)
1https://kornia-tutorials.readthedocs.io/en/latest/ nbs/filtering edges.html#canny-

edges

https://kornia-tutorials.readthedocs.io/en/latest/_nbs/filtering_edges.html##canny-edges
https://kornia-tutorials.readthedocs.io/en/latest/_nbs/filtering_edges.html##canny-edges
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Other than UNet, ET-UNet also learns edges of ground truth segmentation in early en-

coder layers so that its loss function can be described as:

LET−UNet = LUNet + λ · Ledge (2)

where Ledge = BCE(Y edge, Ŷ edge)

+Dice Loss(Y edge, Ŷ edge), (3)

In Equation (3), Y edge is the edge map of ground truth segmentation, Ŷ edge is the pre-

dicted edge map from its Edge Guidance Module illustrated in Figure 10, and λ controls

the strength of this edge guidance. We then involve the additional edge guidance shown

in Table 3:

Ledge∗ = BCE(Y edge, Ŷ edge∗)

+Dice Loss(Y edge, Ŷ edge∗). (4)

where Ŷ edge∗ denotes the edge map of segmentation prediction output from the Weighted

Aggregation Module of ET-UNet – instead of Ŷ edge that is output from the Edge Guid-

ance Module as shown in Figure 10. We control this additional guidance using γ. So

that:

LGuided ET−UNet = LET−UNet + γ · Ledge∗ (5)

LS−Guided ET−UNet = LET−UNet

+
1

max (Lseg − θ, 0) + 1
· Ledge∗ (6)
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Model Description (Equation) Method
UNet UNet baseline for image segmentation (1) Baseline 1
ET-UNet Edge guidance architecture based on UNet (2) Baseline 2
Guided ET-UNet ET-UNet (2) + additional edge guidance (5) Proposed Strategy 1
S-Guided ET-UNet ET-UNet (2) + additional edge guidance in a soft manner (6) Proposed Strategy 1, 2
UNet + FTL UNet (1) + class balanced loss (7) Baseline 1 + Proposed Strategy 3
ET-UNet + FTL ET-UNet (2) + class balanced loss (7) Baseline 2 + Proposed Strategy 3
Guided ET-UNet + FTL ET-UNet (2) + additional edge guidance (5) + class balanced loss (7) Proposed Strategy 1, 3
S-Guided ET-UNet + FTL ET-UNet (2) + additional edge guidance in a soft manner (6) + class balanced loss (7) Proposed Strategy 1, 2, 3

Table 3: Model descriptions: UNet-based models that reflect our methods combining baselines
and proposed strategies. Strategy 1 or 2 is proposed upon ET-UNet. DeepSC-Edge A is Guided
ET-UNet. DeepSC-Edge B is S-Guided ET-UNet.

By assigning θ appropriately, we involve the additional guidance, Ledge∗ , in the follow-

ing soft (S) manner: the prediction edge, Ŷ edge∗, will provide its guidance in inverse

proportion to Lseg, and the full guidance to the prediction segmentation only if Lseg is

smaller than or equal to θ. For Strategy 3, class balanced loss FTL [33] combines Tversky

Index [33] and Focal loss [15]:

FTL = (1− TI)1/β (7)

where TI =
TP + ε

TP + αFN + (1− α)FP + ε
(8)

We embed FTL loss into our models (+FTL) shown in Table 3 instead of their Dice Loss.

In Equation (8), we calculate True Positive (TP), False Negative (FN), and False Positive

(FP) pixels according to ground truth and prediction in Dice Loss used in the model. If

α is larger than 0.5, the loss penalizes FN, so the model will emphasize learning these

challenging corrosion areas more. β further down-weights the contribution of corrosion

that is easy to predict and focuses more on challenging corrosion during training. In this

way, the model would learn to preserve sharp, minority, or challenging edges rather than

avoid them, and as a result, this would make the prediction of edges smooth.

4.4 Experiments and Results

Experimentation. Using one Nvidia A100 GPU, we trained and evaluated all the mod-

els on the dataset consisting of 600 corrosion image pairs: the original images and their

corresponding ground truth segmentation we provide in this work. To grid-search hyper-



PhD Dissertation Proposal: Biao Yin 33

Figure 10: Guided ET-UNet: UNet encoder layers are in green, while UNet decoder layers are
highlighted in blue. Edge Guidance Module [32] is in orange. Weighted Aggregation Module [32]
is highlighted in purple. ‘Conv’, ‘U’, ‘C’, and ‘+’ signify the convolutional layer, upsampling, con-
catenation, and addition layers, respectively. Red Arrow illustrates the deterministic canny edge
operator. Our Strategy 1 develops a loss (Equation 5) to train this new decoder edge guidance
with traditional encoder edge guidance loss (Equation 2) upon UNet loss (Equation 1) for seg-
mentation. Our Strategy 2 proposes a novel loss (Equation 6) to regularize the proposed Guided
ET-UNet loss so not to overfit to edges via weighting it with the segmentation loss (Equation 1).
The decoder edge guidance in Guided ET-UNet is expected to gradually increase if it encourages
the overall corrosion segmentation. However, this guidance will not be effective once the segmen-
tation has been fully learned, as the weight will be 0 if the segmentation loss is smaller than a
hyperparameter theta. In our Strategy 3 (similar to Strategies 1 and 2), we integrate a class imbal-
anced method (Equation 7) into the segmentation and related edge guidance methods for telling
corrosion with challenging but critical boundaries.
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parameters in UNet, we select learning rates from a set {1e-1, 1e-2, 1e-3, 1e-4, 1e-5} and

batch size from a set {8, 16}. We found that all of the models work the best with learning

rate 1e-3 and batch size 8. The best λ in ET-UNet (2) is 0.5 tuned from a set {0.001, 0.1, 0.5,

1.0, 1.5}. The best γ in Guided ET-UNet (5) based on the best ET-UNet is 1.0 tuned from a

set {0.001, 0.1, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0}. The best θ in S-Guided ET-UNet (6) based on the

best ET-UNet is 3.0 tuned from a set {1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0}. For Proposed Strategy

3 on all the above best models, we found the best penalization weight α in FTL is 0.88 for

ET-UNet + FTL and S-Guided ET-UNet + FTL models, and 0.90 for other models related

– both showing a high false negative rate penalization is beneficial in the dataset. We also

present an ablation study – showing our results are robust to hyperparameter choice in

the proposed strategies.

We evaluate the model performance using Dice and IOU scores as broadly used in

machine segmentation tasks [7]. To better observe the evaluation, we also define their

variants other than scores – rank, increase, and weighted increase (W-Inc as shown in

Table 4). The Dice or IOU rank takes the average rank performance of a model after

calculating its rank compared with other models on every test image. The Dice or IOU

increase takes the average score improvement of a model rather than the UNet baseline

across the test set. The Dice or IOU weighted increase (W-Inc) takes the weighted average

score improvement of a model rather than the UNet baseline after weighting each test

image with its prediction rank using the UNet baseline. In this way, we evaluate how a

model is or is not able to predict challenging corrosion of interest better. If W-Inc is larger

than 0, it indicates that the model outperforms UNet in predicting corrosion segmenta-

tion, especially on challenging corrosion.

Shown in Table 4, our results indicate that all of our strategies can improve baseline

models. S-Guided ET-UNet (+FTL) model performs the best based on its Dice, IOU, and

corresponding ranks and increases, demonstrating its superior performance in solving

the corrosion segmentation task compared to other strategies and baselines, especially
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Model
Dice IOU

Score ↑ Rank ↓ Increase ↑ W-Inc ↑ Score ↑ Rank ↓ Increase ↑ W-Inc ↑
UNet 0.8672 ± 0.0179 5.5167 0.0000 0.0000 0.7727 ± 0.0263 5.5167 0.0000 0.0000
ET-UNet 0.8670 ± 0.0181 5.6667 -0.0002 0.0014 0.7721 ± 0.0268 5.7000 -0.0006 0.0014
Guided ET-UNet 0.8687 ± 0.0176 5.3167 0.0015 0.0028 0.7749 ± 0.0260 5.2500 0.0022 0.0040
S-Guided ET-UNet 0.8696 ± 0.0199 4.6333 0.0024 0.0045 0.7763 ± 0.0288 4.6167 0.0036 0.0062
UNet + FTL 0.8738 ± 0.0152 4.0167 0.0066 0.0149 0.7823 ± 0.0226 4.0500 0.0096 0.0133
ET-UNet + FTL 0.8763 ± 0.0151 3.6833 0.0091 0.0094 0.7855 ± 0.0227 3.6833 0.0128 0.0214
Guided ET-UNet + FTL 0.8768 ± 0.0168 3.8500 0.0096 0.0155 0.7864 ± 0.0254 3.8667 0.0137 0.0232
S-Guided ET-UNet + FTL 0.8772 ± 0.0140 3.3167 0.0100 0.0166 0.7870 ± 0.0212 3.3167 0.0143 0.0241

Table 4: Test performance using 10-fold cross-validation: each cell shows the average test perfor-
mance of a model under a metric. The best-performing cell in each metric column is highlighted
with a red background.

Figure 11: Loss plots on the best UNet validation fold: Top row, from left to right, shows UNet,
ET-UNet, Guided ET-UNet, and S-Guided ET-UNet. The bottom row shows the corresponding
models with FTL.

on challenging corrosion. Furthermore, incorporating any of our proposed strategies ele-

vates ET-UNet performance over UNet – showing its effectiveness in edge-guidance. This

is a notable improvement, considering that UNet is commonly used in the field of im-

age segmentation with limited data. Moreover, from Weighted Increase performance for

handling the difficult-to-segment corrosion, ET-UNet is able to outperform UNet without

strategies, but they are indeed feasible to make this improvement larger. In addition, from

the loss plots in Figure 11, the models with FTL tend to have smaller total loss values, and

our best-performing model shows smooth training and validation losses – denoting the

robustness.
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Image ID: I44 UNet baseline
Dice score: 0.7987

S-Guided ET-UNet 
+FTL
Dice score: 0.8202

Ground truth 
segmentation

Image ID: I275 UNet baseline
Dice score: 0.7863

S-Guided ET-UNet 
+FTL
Dice score: 0.8639

Ground truth 
segmentation

Figure 12: Case study: Challenging corrosion panels segmented by UNet and our proposed S-
Guided ET-UNet + FTL model.

Model (+ FTL)
β = 1.0 β = 1.5 β = 2.0

α = 0.1 α = 0.3 α = 0.7 α = 0.9 α = 0.1 α = 0.3 α = 0.7 α = 0.9 α = 0.1 α = 0.3 α = 0.7 α = 0.9

UNet 0.7346 0.8322 0.8737 0.8632 0.7434 0.8223 0.8741 0.8717 0.7547 0.8072 0.8614 0.8669
ET-UNet 0.7891 0.8377 0.8740 0.8672 0.7513 0.8479 0.8711 0.8741 0.7927 0.8493 0.8572 0.8646
Guided ET-UNet 0.7506 0.8359 0.8763 0.8679 0.7461 0.8336 0.8721 0.8768 0.7582 0.8109 0.8557 0.8687
S-Guided ET-UNet 0.7346 0.8276 0.8758 0.8654 0.7706 0.8227 0.8755 0.8766 0.7777 0.8173 0.8659 0.8711

Table 5: Ablation Study to Proposed Strategy 3 – class-balanced loss in models. Each cell shows
the test performance using Dice Score metric.

Ablation Study. From Table 4, the class-balanced loss, (7), shows a significant improve-

ment to our task. This strategy forces the model to learn minority pixels better by penal-

izing false negatives or false positives while predicting segmentation or its edge. It helps

us to solve the class imbalance challenge where corrosion of interest, in the minority, is

visually similar to any other pixels such that it is hard to segment – via controlling α and

β in the loss. We show an ablation study to these hyperparameters in Table 5. From the

table, we conclude that our hyperparameter choice is robust.

Case study. Providing visual examples of the segmentation predictions from the baseline

models and proposed strategies can be a useful way to explain why our strategies are

necessary for corrosion segmentation when leveraging the popular UNet deep learning

architecture. In Figure 12, we display test results of the baseline UNet using its best vali-
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dation fold model and corresponding predictions from our best-performing model. This

comparison highlights the benefits of our proposed strategies in challenging corrosion

segmentation tasks. Overall, these visual examples provide an intuitive understanding

of our proposed strategies and their potential impact on improving the performance of

scientific corrosion segmentation. More examples can be viewed in our supplementary

document.

4.5 Contributions

In summary, our key contributions in this work are as follows:

• Novel soft method enabling edge guidance deep learning loss enabling Decoder to

learn edges by solving a general model issue from this Decoder rather than existing

Encoder guidance – over-segmentation to edges.

• Uniquely apply the class-imbalanced loss to our novel edge guidance method learning

segmentation with challenging edges.

• Our method’s performance, particularly on images with challenging edges, is affirmed

by the ”Rank” metric.

• Expert-curated corrosion segmentation dataset in material science showing CV chal-

lenges.

• We exploit UNet models with the aid of ground-truth edges and a class-balanced loss

– overcoming the identified challenges.

• We open rich research opportunities with our dataset and strategies for material science

discovery, deep learning, and computer vision.
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Part IV

GAN for Unseen Alloy Discovery

5 Promptable Generative Models to Discover Microstructure of Un-

seen Alloys Given Prior Chemical Knowledge (Task 4)

Figure 13: Our breakthrough material simulation model using deep neural networks, AlloyGAN,
published at ICMLA 2023: Promptable generation algorithm serving a novel scientific alloy dis-
covery platform built by an AIGC startup 2. Red arrows indicate model training, purple for model
inference, black solid for material science verification, and black dash for data collection.
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5.1 Background

The global metal market forms a critical backbone for several economies, largely driven

by the demand from sectors such as construction, automobiles, aerospace, electronics, and

more. Central to this burgeoning market are alloys—a blend of two or more metals or a

metal and another element—recognized for their diverse and enhanced properties. Alloy

manufacturing, thereby, stands as a cornerstone in the metal market, which is projected

to surpass a staggering $18.5 trillion by 2030 [34].

5.2 Motivation

Alloy production, while critical, faces substantial challenges, making it a subject of in-

tense scrutiny and innovation. A striking pain point in the industry is the high rate of

rejected metal casting products, which must be re-melted and re-cast due to various de-

fects. Annually, the industry sees tens of millions of tons of metal casting products fall

into this cycle [35]. This high rate of rejection and reprocessing not only introduces an

alarming level of waste but also incurs prohibitive manufacturing costs, placing a con-

siderable economic burden on the industry. Thus, there is tremendous value if efficient

models that generate trustworthy results for accelerating scientific Alloy discovery and

manufacturing could be found.

5.3 Challenge

Traditional numerical methods have struggled with the complex solidification process

in alloy formation, characterized by vast nonlinear chemical and physical interactions

[36–40]. This complexity challenges conventional mathematical modeling attempting to

accurately simulate the final microstructure based on the basic Alloy compositions shown

in Figure 13. Additionally, these models are intricate, computationally demanding, and

require specific knowledge of material science, limiting their accessibility to the broader
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research community [41–46].

5.4 Problem Definition

Given the limitations of traditional methods and the complexity of the problem at hand,

a well-defined problem emerges, namely, there is an urgent need for a method that can

effectively generate plenty of microstructure images of metal alloys based on initial pro-

cessing conditions like chemical compositions. Such a method should overcome the lim-

itations of traditional models, be capable of handling the intricacies of the solidification

process, and require less intensive data collection efforts. It should also offer robust ac-

curate results while being computationally efficient and capturing fundamental physical

properties.

5.5 State-of-the-art

Conventional Alloy Microstructure Modelling Approach. Traditional alloy microstruc-

ture modeling demands significant resources and expertise in solving intricate Partial

Differential Equations (PDEs) over analytical models and Finite Element Method (FEM)

[36–40]. Phase Field modeling requires extensive computation – 768 GPUs for 12 days to

compute a voxel cell [41], while the Monte Carlo method struggles with aligning simu-

lation and physical time [42, 43]. Cellular Automation (CA) assists in simulating recrys-

tallization and solidification [42,43] but faces heavy domain challenges with complicated

metallurgical processes and transition rules [46]. Despite their mathematical and physi-

cal clarity, these conventional methods may fall short in providing prompt, scientifically

robust decisions in large-scale alloy discovery.

Deep learning in material generation. The application of deep learning methods, such

as Variational Autoencoders (VAEs) and Convolutional Neural Networks (CNNs), in mi-

crostructural analysis is in its nascent stages [47–51]. Although the application of Gener-

ative Adversarial Networks (GANs) and Conditional Generative Adversarial Networks
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(cGANs) in material science has gained some traction in modeling and augmenting mi-

crostructural images [52–59], their application is still largely limited in handling basic al-

loy compositions, like chemical elements, for creating scientifically valid microstructure

images. While there has been an initial exploration of deep learning methodologies for

material generation, these efforts have not yet effectively addressed the complexity of ma-

terial science. This void emphasizes the need for innovative solutions capable of dealing

with the complex, nonlinear dynamics of alloy microstructure formation and delivering

robust generations to accelerate scientific Alloy discovery.

5.6 The Methodology: AlloyGAN

To bridge this gap, we propose AlloyGAN, a ground-breaking approach leveraging the

prowess of deep learning to create scientifically valid alloy microstructure images from

basic alloy compositions (See Figure 13). Augmented with unique adaptations that incor-

porate prior knowledge from solidification reaction factors, AlloyGAN, as a chemically-

constrained cGAN architecture, successfully conditions the generation process related to

the basic alloy compositions involved, thereby successfully simulating the complex solid-

ification process to verify Alloy properties.

Illustrated in Figure 5.7, both the AlloyGAN Generator and Discriminator are equipped

with a core module where prior chemical reaction factors can be applied to the basic com-

positions of alloy. This injects prior knowledge with domain-specific conditions into the

Generator and Discriminator pair, providing AlloyGAN the capability to generate alloy

microstructure images with rich informative chemical properties.

5.6.1 The AlloyGAN Generator

The AlloyGAN Generator concatenates two different types of inputs: a random noise

tensor and a condition tensor. The noise vector introduces a degree of randomness into

the generation process following a standard normal distribution. The condition tensor re-
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Alloy ID Si Fe Cu Mn Mg Ni Cooling Rate Sr/P
A356 7 0.5 0.25 0.35 0.3 0 2.5, 10, 57, 143 Yes, No
A360 9.5 0.6 0.1 0.05 0.5 0 2.5, 10, 57, 143 No
A369 11.5 1 0.5 0.25 0.4 0.05 2.5, 10, 57, 143 Yes, No
A339 12 1.2 2 0.5 1 1 2.5, 10, 57, 143 No
A393 22 1.3 0.9 0.1 1 2.3 2.5, 10, 57, 143 Yes, No
A355 5 0.65 1.25 0.55 0.5 0 2.5, 10, 57, 143 No
A308 5.5 0.8 4.5 0.5 0.1 0 2.5, 10, 57, 143 No
A319 6 1 4 0.4 0.55 0.35 2.5, 10, 57, 143 No
A332 9.5 0.9 3 0.5 2.1 0.5 2.5, 10, 57, 143 No

Table 6: Summary of labels: Chemical composition with experienced manufacturing environ-
ments that together determine Alloy microstructure in our dataset.

ceives prompted user inputs of basic alloy compositions containing the amount of chem-

ical elements and the manufacturing settings. Before concatenating, these conditions will

be processed with prior deterministic factors from the chemical reaction of the alloy so-

lidification process. To produce the desired realistic images, the processed conditions are

randomly selected and concatenated with the noise tensor before passing through sev-

eral transposed convolutional layers. This ensures the prompted conditions upon priors

to better fool the Discriminator so that the generated images can be discriminative accord-

ing to the conditions upon priors. The convolutional layers include batch normalization

and leaky ReLU activation functions to stabilize the training process and prevent overfit-

ting. The output of these layers is a 2-dimensional tensor in the same shape as our target

binary microstructure image.

5.6.2 The AlloyGAN Discriminator

Illustrated in Figure 15, the Discriminator of AlloyGAN serves as a classifier that tries to

distinguish between real and generated data. It takes in both real images with their cor-

responding conditions upon priors and the generated images produced by the Generator

and assigns a probability that a generated image can be predicted as a real image.
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Figure 14: AlloyGAN: The pink-colored module illustrates how we incorporate the prompted
inputs with the domain prior knowledge for cGAN enhancements for this domain-specific task.
The resulting conditions are concatenated with the respective images as additional channels in the
workflow. Conv indicates Convolutional layers, while Norm indicates Max-Min normalization on
features.

5.6.3 Prior from Chemical Reaction in Alloy Solidification

Incorporating targeted domain-specific prior knowledge into the prompted conditions

differentiates AlloyGAN from a standard cGAN. Illustrated in the pink subnet in Figure

5.7, the integration of the quantifiable prior with the prompted alloy composition condi-

tions is formulated as a concatenation of two types of normalized features:

1. Features of Chemical Elements: This feature subset accounts for the influence of

each chemical element on the generated alloy by multiplying its quantity with a

conversion factor in Table 7. This factor represents the expected impact of each el-
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ement on the solidification process critical for the resulting alloy properties. The

features were then normalized with a unified scale from 0 to 1 for training stability

using max-min normalization.

2. Features of Manufacturing Environments: This feature subset represents the con-

ditions under which the alloy is manufactured. Key factors like the cooling rate and

Sr/P modification are taken into account. Similar to the chemical features, these

manufacturing features undergo a max-min normalization process. This step ac-

counts for potential variations in manufacturing environments.

The above intricate formulations of the prompted alloy compositions with the chemi-

cal reaction prior factors capture domain-specific alloy chemical and manufacturing con-

ditions that are critical for AlloyGAN to generate microstructure images taking the com-

plex interplay among these conditions into consideration. This is why conditions not

previously in our input data set could be inferred and thus meaningfully generated by

our trained AlloyGAN with limited data.

Domain-driven Chemical Element Normalization. The standard cGAN individually

normalizes each raw input feature shown in Table 6. However, this approach does not

consider the relative contributions of each element to the alloy. For example, the Si ele-

ment greatly changes the alloy microstructures, whereas other elements have less impact.

This may be because their content is relatively low (less than 4.5 wt.) compared with Si.

Moreover, the chemical reaction outcomes of these elements with aluminum need also

be considered. Table 7 shows the outcome of chemical reactions of each element to alu-

minum and the factor of converting a unit of weight percentage of elements to the atomic

percentage of outcomes. The conversion factor embodies an indicator of the impact of

elements on the microstructure metallograph. This is what we thus propose to use as a

prior to prompted chemical composition conditions.
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Element Si Fe Cu Mn Mg Ni
Outcome Si Al3Fe Al2Cu Al12Mn Mg2Si Al3Ni
Factor 0.036 0.018 0.016 0.018 0.021 0.017

Table 7: Summary of chemical reaction outcome and factors in alloy manufacturing: a factor indi-
cates the conversion factor of a unit of weight percentage of the Element to the amount of atomic
percentage (at.) of the outcome – formulating the domain prior onto prompted conditions in Al-
loyGAN.

5.6.4 Training Process

AlloyGAN is trained using a two-step iterative process. In the first step, the generator

creates a batch of synthetic microstructure images with the processed prior. The discrim-

inator then evaluates the later. The generator’s weights are updated to minimize the

difference between the discriminator’s output to distinguish the synthetic images from

the real images. In the second step, the discriminator’s weights are updated using a batch

of real microstructure images from the training alloys and the synthetic images from the

first step. This step aims to classify real versus generated images from random noise with

conditions normalized with the prior.

This process is repeated for several epochs until the generator can produce synthetic

microstructure images that the discriminator can no longer distinguish from real ones.

The resulting trained model is then ready to generate new microstructure images for any

given alloy composition — including those compositions that had previously not been

unseen in the training process.

AlloyGAN training models a two-player minimax game with prior chemical reactions

on the prompted alloy compositions for a robust, accurate, and fast generation. The Gen-

erator (G) tries to minimize this objective against an adversary D that tries to maximize

it, i.e., minG maxD V (D,G). The prompted alloy compositions are represented in a con-

ditioning vector y that is concatenated with G (as y1 after Conv) or D (as y2 after Conv)

illustrated in Figure 5.7 and formulated as:

y = Concat (Norm(w ∗ I1), Norm(I2)) (9)
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Figure 15: Example generated images in the training process. Top raw shows standard cGAN
generations. The bottom row shows AlloyGAN generations. Each column shows the last batch
of the epoch: 1st, 20th, 40th, 60th, 80th, 90th, and 100th. The random seed is the same for both
models. Upon the same hyperparameters, including the random seed, AlloyGAN outperforms
cGAN in generating informative microstructure images of alloys.

where Norm denotes min-max normalization, I1 User Input 1 to prompt the wt.% content

of each chemical element, I2 User Input 2 to prompt manufacturing environments, and w

Domain Prior from chemical reaction factors. The loss function of training AlloyGAN is:

min
G

max
D

V (D,G) = Ex,y1∼pdata(x,y1)[logD(x|y1)]+

Ez∼pz(z),y2∼pdata(y2)[log(1−D(G(z|y2)))] (10)

In Eq. (1), x denotes the sample image, and y1 is the conditioning vector capturing the

domain prior illustrated as ”Chemical Reaction Factors” in Figure 5.7. z is a noise vector.

D(x|y1) corresponds to the discriminator’s estimate of the probability that real alloy mi-

crostructure image x, given y1. G(z|y2) is the fake alloy microstructure image by the gen-

erator, given z and y2. The integration of the domain prior factors, w, provides chances

to further distinguish the importance of chemical composition prompts, I1, in AlloyGAN,

thereby enhancing cGAN to generate applicable images with robust performance.
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5.6.5 Evaluation Metrics

We evaluate AlloyGAN and cGAN performance in this study using FID [?], a widely-

used machine learning metric. FID evaluates the performance of a generative model by

looking at how close the generated data is to the real data in the embedding space of

an object classification model (commonly using the InceptionV3 model in particular) [?].

We calculate FID between real and generated images on our test set so that we know

how the model generates the microstructure images of previously not-trained alloys. To

build the embedding space required for the calculation, we not only utilize the pre-trained

InceptionV3 network upon the ImageNet dataset as a general space but also finetuned

the network according to our domain train dataset as a domain-specific space for the

evaluation.

We note, however, that general evaluation metrics in machine learning, such as FID,

cannot measure the chemical properties of generated alloy microstructure images for sci-

entific use. We thus also utilize three domain-science metrics to evaluate whether Alloy-

GAN creates valid images that are feasible for fast material verification in alloy discovery.

Micrograph Evolution with Si Content. This metric measures whether the generated

images show the trend that Si content in metallography increases with the addition of Si

wt.% in alloys. The Si content in metallography can be quantifiable by calculating the

area of fractions (black area after binarizing the image).

Effect of Cooling Rate on the Secondary Dendritic Arm Spacing. The theory of com-

putational material science shows that there must be a correlation between the cooling

rate and the Secondary Dendritic Arm Spacing in the images satisfying the following

formula:

λ = k(CR)−n (n > 0), (11)

where λ represents the secondary dendritic arm spacing measured by the distance be-
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tween the neighborhood white areas separated by a black arm in the generated image

and CR represents the cooling rate (K/s) in the manufacturing environment. For scien-

tifically valid microstructure images of an alloy, there must be a strong linear relationship

between (CR)−n and λ with a constant n and a coefficient k.

Modification of Strontium and Phosphor on the Alloy Microstructure. This met-

ric measures whether Primary Al dendrites are branched after the modification. Sr/P is

added to aluminum in very small amounts (<0.05 wt.%), yet they significantly impact the

microstructures of aluminum alloys. Sr and P atoms act as ”poisons” to the solidification

of the Si phase, causing it to form more branched and rounded structures. Aluminum al-

loys with Sr/P modification typically exhibit microstructure images with dispersed dark

particles. In contrast, alloys without Sr/P modification display larger and segregated

dark Si particles.

5.7 Experimental Study

Our research results bear witness to the transformative potential of AlloyGAN. The technique

has demonstrated the ability to quantify the impact of individual chemical elements on

the microstructure’s metallography. Notably, the accuracy and robustness of AlloyGAN’s

results stand on par with traditional computational material science methods. The key

differentiator, however, lies in AlloyGAN’s efficiency—our method accomplishes these

outcomes with a significantly reduced computation time, offering a promising pathway

for expedited material science research.

While evaluating AlloyGAN, we utilize domain-specific metrics assessing that the cre-

ated images correctly show: 1) a trend that Si content in metallography increases with the

addition of Si in alloys, 2) the effect of Cooling Rate on Secondary Dendritic Arm Spacing

following a mathematical equation, and 3) the effects of Sr/P modification.

To compare AlloyGAN and standard cGAN performances, we evaluate their gener-

ated images on the same training hyperparameters default from standard cGAN. The
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latent layer dimension was set to nz=100, allowing for a diverse range of features to be

generated in the Generators. The Adam optimizer was utilized for both the generator

and discriminator, with a beta value of 0.5. The training was conducted using a batch

size of 64, a learning rate of 0.0002, and lasted for 100 epochs which are all recommended

settings in standard cGAN. According to our dataset, the images used for training and

testing are of size 128x128 pixels, with a single channel (nc=1). We use NVIDIA-A100

GPU with the same global random seed for all the GAN experiments. Moreover, in or-

der to further tune and test the model performance, we tune AlloyGAN vs. standard

cGAN by a combination of the epoch length (ep) from a set of {100, 1000} and latent layer

dimension (nz) from a set of {30, 100}.

FID from Pretrained Inception Network ↓ ep = 100, nz = 30 ep = 100, nz = 100 ep = 1000, nz = 30 ep = 1000, nz = 100
AlloyGAN Overall test performance 804.08 746.15 1394.04 1550.11
cGAN Overall test performance 1948.17 1398.75 1455.63 1298.18
AlloyGAN Alloy-wise test performance 1022.15 ± 251.85 1001.22 ± 184.40 1650.96 ± 403.76 1769.98 ± 169.39
cGAN Alloy-wise test performance 2150.85 ± 226.71 1634.39 ± 231.64 1578.84 ± 288.56 1602.19 ± 151.22
FID from Finetuned Inception Network ↓ ep = 100, nz = 30 ep = 100, nz = 100 ep = 1000, nz = 30 ep = 1000, nz = 100
AlloyGAN Overall test performance 14.88 14.02 26.35 39.84
cGAN Overall test performance 68.01 38.00 38.18 46.82
AlloyGAN Alloy-wise test performance 29.83 ± 20.24 33.55 ± 22.32 43.35 ± 16.58 54.22 ± 22.80
cGAN Alloy-wise test performance 68.69 ± 21.61 43.51 ± 20.04 50.30 ± 10.90 60.49 ± 26.95

Table 8: We report one FID score over all test images as the Overall calculation method and mean
± standard deviation across different test alloys as the Alloy-wise calculation method. The FID
score by the finetuned inception network shows AlloyGAN outperforms standard cGAN in every
hyperparameter setting. The best AlloyGAN Alloy-wise test performance is under a small epoch
with less latent dimension (ep = 100, nz = 30). The best AlloyGAN Alloy-wise test performance
is under cGAN default hyperparameter setting (ep = 100, nz = 100). The best cGAN Overall or
Alloy-wise test performance is under cGAN default hyperparameter setting (ep = 100, nz = 100).

AlloyGAN vs. cGAN. Figure 15 shows that AlloyGAN generates informative images

that effectively represent the microstructure of the training alloys, unlike standard cGAN.

We evaluate both models via machine learning metrics in Table 8 or material science met-

rics in Figures 16, 17, and 18.

In Table 8, the smaller FID scores, the better the generation images perform as real im-

ages. Since the inception network is pre-trained on ImageNet dataset which is distinctive
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from our domain microstructure dataset, we finetuned this network by optimizing the

alloy classification according to the train and validation microstructure images. Using

the finetuned inception network as the feature extractor to calculate FID scores, Alloy-

GAN outperforms standard cGAN on the test set with alloys previously unseen during

the training process. The result remains consistent when calculating the score for each

alloy and then aggregating the scores through methods like taking the mean or standard

deviation. No matter the pretrained or fine-tuned networks as feature extractors, as a

general metric, FID cannot evaluate whether the generated images are scientifically valid

for alloy discovery. We thus also employ domain-science metrics to evaluate alloy foun-

dational chemical properties of the generated images from the conditions of unseen alloys

on our test set.

5.7.1 Micrograph Evolution with Si Content:

We evaluate whether generated images of AlloyGAN are able to reflect the proposed

effect of Si content. Shown in Figure 16, generated images using AlloyGAN perform a

clear trend of the area of fractions when Si content increases. This illustrates AlloyGAN

has the capability to create valid microstructure images reflecting the Si effects, especially

with alloys that previously had not been manufactured.

5.7.2 Effect of Cooling Rate:

We then evaluate whether AlloyGAN is able to handle the proposed effect of the Cool-

ing Rate. Shown in Figure 17, its generated images exhibit a strong correlation between

Cooling Rate and SDRS. This illustrates AlloyGAN has the capability to create valid mi-

crostructure images reflecting the cooling rate effects. This is of particular interest for

generating alloys that previously had not been manufactured before.
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5.7.3 Effect of Sr/P Modification:

Figure 18 shows the model successfully predicts the effects of Sr/P modification on A356

and A393 alloys. This illustrates that AlloyGAN can create valid microstructure images

reflecting the Sr/P modification, especially with never-manufactured alloys.

Figure 16: Area fraction of Si phase vs. Si amount in created images: Si wt. content (a) 4%, (b) 9%,
(c) 15%, and (d) 22%.

Figure 17: Effect of Cooling Rate: Red bars illustrate how we measure SDRS in each generated
image in terms of cooling rates and manufactured alloys. R2 indicates the fitness of linearity
based on samples measured in each example alloy.
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Figure 18: Example generations given different Sr/P conditions: (a) A356 alloys with Sr/P Non-
Modified and (b) A356 alloys with Sr/P Modified; (c) A393 alloys with Sr/P Non-Modified and
(b) A393 alloys with Sr/P Modified. All alloys are under a Cooling Rate of 10 K/S.

5.8 AlloyGAN Website

AlloyGAN is a product from a data science project team formulated by machine learning

researchers, software engineers, and domain material scientists. We open a publicly ac-

cessible website to serve AlloyGAN interactive demo at https://deepalum.com/. The

website is built by our collaborative startup. Users can create scientifically valid images

given their text prompt to determining expected Alloy compositions within 1 second. En-

hancements of AlloyGAN to support different types of materials continue to drive up its

value to the material science community and customers.

https://deepalum.com/
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6 Conclusion

This Ph.D. dissertation aims to revolutionize material discovery by leveraging the power

of deep learning while addressing the challenges posed by small datasets in the field of

material science. The overarching goal is to enhance the efficiency of material discov-

ery processes through the integration of material science knowledge into deep neural

networks. The research comprises two main tasks, with one already completed and the

other proposed for investigation.

”Automating Scientific Corrosion Assessment on Existing Materials,” began in collab-

oration with the Army Research Laboratory (ARL) in 2019. The research team developed

the first-ever open corrosion image dataset, enriched with expert annotations. To tackle

the limited accessibility of these sophisticated annotations to non-expert annotators, the

team explored the effectiveness of Convolutional Neural Networks (CNNs) and Trans-

formers in classifying corrosion. They further employed various techniques, including

manual augmentation, transfer learning, and self-supervised learning, to improve per-

formance. The cornerstone of this work was the development of a ground-truth edge

guidance methodology on Decoder with innovative loss functions. The successful im-

plementation of this approach on UNet architecture facilitated precise segmentation, en-

abling the automation of corrosion assessment. As a result, the team developed AI plat-

forms, including an iPadOS APP, that revolutionized data collection and visualization for

corrosion scientists. These tools have been adopted by prominent entities such as ARL,

PPG, ASM, NASA, etc.

”Discovering Unknown from Known via Generative Models,” explores how AI and

deep learning can discover unseen materials guided by expert prompts and prior material

science knowledge. We constructed promptable generative models capable of simulating

the performance of unknown materials based on known parameters, such as basic chem-

ical reactions. This rapid image simulation provides invaluable insights into unknown
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material microstructure behavior within seconds.

The central focus of this dissertation is to address the challenges of applying deep

learning techniques to small datasets in real-world scientific material discovery. By au-

tomating scientific corrosion assessment and developing promptable generative models,

this research will significantly expedite material discovery processes and foster a seam-

less connection between material science and AI research. The proposed research has the

potential to revolutionize material discovery, leading to technological advancements and

saving time and effort in the quest for novel materials.



PhD Dissertation Proposal: Biao Yin 55

7 Future Work

Based on our experiment results, there are several avenues for future work that can be

pursued to extend the findings and address the limitations identified in our studies.

7.1 Enhancement of Scientific Corrosion Segmentation Techniques

The current results of the domain of scientific corrosion segmentation have highlighted

the effectiveness of DeepSC-Edge, our innovative UNet-based Decoder edge guidance,

over MedTransformer. However, we could conduct and compare large language models

(LLMs) for the task of corrosion detection and segmentation. Notably, we found that

segmenting thin corrosion is not well-addressed by the Segment Anything Model (SAM),

posing a significant opportunity for future research, such as expert-annotated ground-

truth guidance in LLMs.

7.2 Integrating Generative Self-Supervised Learning with Multitask Framework for

Long-tailed Corrosion Assessment

Future investigations will focus on a multitask learning framework that integrates two

key tasks: ordinal regression and segmentation. The primary task involves employ-

ing Generative Self-Supervised Learning (GSSL), such as Masked Auto-Encoder that we

used, for long-tailed ordinal regression specifically tailored for corrosion assessment. This

task addresses the challenges of infrequent but critical corrosion phenomena, such as

heavy corrosion in the testing field, by enhancing model training on underrepresented

corrosion states, thereby improving the predictive accuracy for these vital scenarios.

The second task will augment the initial model by integrating advanced segmenta-

tion techniques aimed at the precise identification and characterization of different stages

of corrosion. This addition is particularly focused on enhancing both corrosion regres-

sion and segmentation capabilities, especially for detecting and analyzing unseen anti-
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corrosive materials. The integration of these tasks within a single framework enables

cross-task knowledge transfer, where insights from segmentation directly refine the ordi-

nal regression models, significantly boosting the overall predictive utility and specificity

of the assessments.

This dual-task approach is expected to lead to substantial advancements in corrosion

diagnostics, merging these methodologies to extend the analytical capabilities essential

for material preservation and safety across various industrial applications. The focus on

unseen anti-corrosive materials also prepares the model for future material innovations,

ensuring its adaptability and long-term relevance.

7.3 Advancements in Alloy Microstructure Generation

The research into alloy microstructure generation using generative adversarial networks

(GANs) has unveiled their potential in simulating the discriminative properties of alloys.

Future studies should focus on further enhancing the capability of GANs or other con-

ditional generative models like guided diffusion [60] to accurately replicate the complex

physical and chemical properties of alloys. This includes the development of algorithms

that can handle a wider range of material compositions, particularly those around outliers

in the dataset. Improvements in the resolution and color fidelity of generated microstruc-

tures are also critical to better align with real-world materials.

Despite these advancements, a noticeable gap persists between AI and materials sci-

ence [61], a divide our AlloyGAN design seeks to bridge by facilitating new discoveries,

as depicted in Figure 13. Yet, AlloyGAN is not poised to replace materials scientists. The

dataset used for AlloyGAN, derived from ASM-certified experiments, minimizes label

bias and is chosen for its relevance to current market demands. However, it shows limi-

tations in accurately modeling properties such as stability and grain boundaries in poly-

crystals [62]. My work with AlloyGAN highlights the significant role that GAN models

can play in assisting materials science discovery. I am committed to advancing the inte-
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gration of data science and materials expertise, and I am optimistic about the transfor-

mative potential of generative AI models in scientific material discovery, particularly as

we strive to overcome existing limitations, inspired by the latest advancements in Large

Language Models.

In summary, our future work aims to address the current limitations by innovating

and refining the methodologies and models used in both domains. By focusing on these

areas, researchers can significantly contribute to the fields of corrosion detection and ma-

terials science, pushing the boundaries of what is currently possible in scientific analysis

and material generation.
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