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Abstract

This project explores the feasibility of creating an autonomous 1:10 scale car capable of
racing against RC cars on any indoor track. Prior to conducting autonomous testing, a custom
made scale car equipped was designed and manufactured. Comprised mainly of 3D printed
parts, the car used rear-wheel drive with independent and passive front and rear suspensions.
Additionally, tachometers, strain gages, temperature sensors, and an inertial measurement unit
were integrated to determine vehicle performance. The data from all sensors were displayed in
real time on a webpage. For autonomous navigation, the car leveraged Artificial Neural
Networks to produce optimal driving outputs. Taking grayscale pixel input from a single,
front-facing camera, the car down-sampled and masked the input data to locate brown walls.
Without relying on mapping or localization, the car collected high quantities of training data to
navigate variable track conditions. Ultimately, the training produced a car that could perform
partial laps under its own control.
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Executive Summary

Introduction

Worcester Polytechnic Institute (WPI) offers a course titled ME4320, Advanced
Engineering Design. Within the course, students are tasked with the construction of a remote
control 1:10 scale car with a custom gearbox and steering assembly. After designing, analyzing,
and manufacturing the vehicle, the class then culminates in a race. Here, the cars are raced
around a wooden track and ultimately, the winners receive significant grade boosts.

While the course is very successful and regularly produces high quality cars, there are
three fundamental aspects of the course which could be improved. First, in light of the 7-week
time constraints of the course, the students are often unable to pursue more elaborate car
designs. Second, the students, although required to conduct mechanical analysis, are unable to
collect sensory data to substantiate the performance of their vehicles. Finally, the race at the
end of the class is often won by the best driver rather than the best car.

Based on the three aforementioned flaws, this project looks to improve further the quality
of the Advanced Engineering Design course. In order to create a more complicated car design,
this project first explores the feasibility of creating a custom, 1:10 scale car equipped with
passive front and rear suspension. Next, in order to provide sensory data, this project examines
the prospect of creating a modular sensor package which can be readily equipped to any of the
produced scale cars. Finally, in order to eliminate driver bias, this project tests the
implementation of a modular Artificial Intelligence (Al) package which allows for autonomous
navigation of the vehicles.

Background

A radio controlled (RC) car is a car that is operated using a receiver-transmitter pair.
While the RC car is typically much smaller than an actual vehicle (often 1:10 scale), it
possesses many of the same fundamental driving features as does a normal vehicle. Among
them, the RC car has suspension, drivetrain, chassis and steering mechanisms. As RC cars are
normally cheap and used for hobbyist applications, these mechanisms, however, are typically
created in different manners.

Seen in Figure ES-1 (reproduced as is from [1]) is an RC car. Of particular importance
with the car’s mechanical design are the circled elements such as the front and rear
suspension, chassis, steering assembly, and drivetrain. Conventionally, the front suspension of
a scale vehicle is independent. Furthermore, the rear suspension is typically dependent utilizing
a four-bar mechanism. The chassis, normally a single plate, connects the front and rear
suspensions while also holding all appropriate electronics including the battery and motor.
Meanwhile, the steering assembly is prone to vary across different RC models. Among the
variations, a parallelogram linkage with a servo motor typically is used to control the rotation of
the front wheels. Finally, the drivetrain consists of a brushed or brushless electric motor
connected to a gearbox transmission. The output of the gearbox is then translated to an output
shaft which is fitted with universal joints to allow for rear suspension articulation. This energy is



ultimately transferred to the rear differential, which then splits and rotates the energy to the
wheels.

In conjunction with the mechanical design, the RC car is normally equipped with the
following electrical components: battery, servo, ESC, motor, and receiver. Either Lithium
Polymer or Nickel Metal Hydride, RC cars typically use batteries to power their equipment. For
steering, RC cars also utilize servo motors which connect to the steering assemblies. In order to
accelerate and decelerate the vehicle, a motor and compatible ESC are also fitted to the car.
Typically brushed or brushless, this combination is comparable to the internal combustion
engine of a full-sized vehicle. Finally, the receiver communicates with the controller used by the
operator.

O Front Suspension, Front Contral Arm O DC Motor

Battery o Serva Motor

O Electronic Speed Controller (E5C) Rear Suspension, Rear Cantrol Arm

Figure ES-1: Labeled top view of the GT-2Ve RC Car. Reproduced as is from [1].

In order to make the RC car autonomous, there are two fundamental additions to the
electrical and mechanical structure: hardware and software. The hardware comes in the form of
sensors and computing, while the software involves some form of artificial intelligence. Among
the many potential sensor systems, some include RADAR, LiDAR, and cameras. With RADAR
and LiDAR, both systems transmit and receive a signal (electromagnetic wave and laser pulse),
which contains information pertaining to the sensor’s immediate surroundings. This influx of
rapidly produced data can then be arranged into point clouds to create a representation of the
surrounding environment. Meanwhile, cameras, much like human eyes, do not produce a
transformation of reality. Instead, cameras capture the actual representation of the scene using
a matrix of pixels with appropriate RGB (Red, Green, Blue) values.

In order to handle the influx of data collected by the vehicle’s sensors, autonomous scale
cars must also utilize an onboard computer. While the specific computational power is
dependent on the application, the RC car must be able to integrate hardware such as a
Raspberry Pi [2] or a micro-computer into its mechanical and electrical structure. This computer
must then function as the brain of the RC vehicle when appropriately programmed. Ultimately,
among the many subdisciplines of Al, the car must be capable of accepting sensory data,
processing said data, and then producing an optimal vehicular response based on the output.



Over the previous decade, an abundance of work has been documented in the
autonomous car spectrum. Seen most frequently with automotive giants, car manufacturers like
Tesla harness 8 external cameras, 12 ultrasonic sensors, and a radar to collect the sensory data
necessary for autonomous navigation [3]. While the race for Level 5 autonomy is most common
among major enterprises, the quest has also expanded into the hobbyist and academic sectors.
Seen in the hobbyist product, Donkey Car [4], cameras and open-source neural networks have
provided cheap and attainable means to creating simple autonomous navigation vehicles.
Ultimately, Donkey Car, Tesla, and all other autonomous solutions generate data to form an Al
capable of producing autonomous navigation controls. While open-source platforms like Donkey
Car rival the concept, however, no system appears to be fully modular for scale vehicles.
Consequently, the creation of a modular Al package for scale vehicles will be a fundamental
objective examined in this report.

Car Design

Prior to conducting any autonomous testing, a scale vehicle was created. As illustrated
in Figure ES-2, the vehicle was 16.38 inches long by 8.85 inches wide by 4.71 inches tall and
6.3 pounds. For the front suspension, the car followed a typical RC car convention and used a
modified independent single wishbone. Additionally for the rear suspension, the car used a
similarly modified independent wishbone. Using a servo controlling mechanism, the steering
assembly was based on the parallelogram design. The drivetrain of the vehicle consisted of a
brushless DC motor connected to a gearbox transmission with a 1:9 step down. The rotary
output from the gearbox was then transmitted to the rear differential which had a 1:3 step ratio.
This power was then delivered to the two rear wheels of the car. Finally, as the car had to hold
many electronics and sensors, the chassis of the car was appropriately designed to carry many
mounting features. Ultimately, while Figure ES-2 illustrates the final car design, the vehicle
underwent countless iterations and modifications. Not only was the car design dependent on
mechanical performance, the car also had to satisfy the many requirements of the Al.

Figure ES-2: Final iteration of 1:10 scale car.



In order to monitor the physical performance of the car while driving, the car was also
fitted with a modular sensor dashboard. Capable of producing real-time data readouts, the car
was equipped with a tachometer, temperature sensors, and an inertial measurement unit (IMU).
To produce real-time updates, these sensors were connected to an Arduino Mega which relayed
the sensory data to a Raspberry Pi. The Raspberry Pi was then able to send the sensory data to
a webpage, producing graphics similar to the ones depicted in Figure ES-3. While data flow in
the dashboard can be seen in Figure ES-4.
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Figure ES-3: Example of graphs on webpage. These graphics were produced using mock data.
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Figure ES-4: Standard dashboard layout for sensor module.

For autonomy, the car was fitted with a single, front-facing camera for sensory data
collection. Using a Raspberry Pi for computation, the Red-Green-Blue (RGB) data was then
downsampled and masked into a 640x480x1 matrix of grayscale valued pixels. This matrix was
then fed to a convolutional neural network which produced appropriate driving instructions.
These instructions were ultimately sent to an Arduino Mega which appropriately controlled the
servo and brushless motor of the car.



Results

Having produced a car and an autonomous sensor package, the project culminated in
the performance of its autonomous navigation module. Tested on numerous tracks and even
more convolutional neural network models, the car ultimately produced variable results. For its
best performance, the car autonomously navigated approximately 50% of a track (Figure ES-5).
Figure ES-5.a shows the car driving down a straight after a gradual left turn. As seen in Figure
ES-5.b, the car begins to drift right down the straight, until it performs a strong correction.
Re-centered, the car encounters a left hair-pin turn seen in Figure ES-5.c. The car successfully
navigates the turn, however, it does oversteer slightly. The car continues down a new straight
until it fails at a right hair-pin turn. The test showed that the car was capable of performing
gradual and hair-pin turns, while also showing an effort to make turning corrections when placed
in precarious positions. Ultimately, while the car was unable to autonomously navigate a full
track, it illustrated the potential of the system. Therefore, the car’s performance has indicated
the feasibility of producing a 1:10 scale car that can autonomously navigate using solely a
front-facing camera.
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Figure ES-5: Pictures of car driving autonomously around approximately 50% of the track.
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1.0 Introduction

1.1 Driverless Technology

The quest for fully autonomous vehicles has sparked rapid growth in research and
development (R&D) among automotive giants. Evidenced by Ford’s $1 billion investment in
ArgoAl and SoftBank Vision Fund’s $2.25 billion investment in GM Cruise Holdings, the influx of
wealth devoted to the creation of autonomous vehicles has created unprecedented demand for
engineers and advancements in technologies like artificial intelligence (Al) and computer vision
[5, 6]. While the effects may ultimately be for the better, or for the worse, the race to create fully
autonomous vehicles contains global implications.

As per the guidelines set by the Society of Automotive Engineers (SAE), there are six
levels to autonomy. The seemingly unanimous system by which automotive producers rank
vehicles, the SAE guidelines illustrate the spectrum between no automation (Level 0) and full
automation (Level 5) [75]. Despite the relatively subjective nature by which companies rank
cars, the end goal for the creation of autonomous cars is clear: cars that can safely operate
without any instance of user input. In order to achieve such independence, autonomous cars
leverage a plethora of sensors and supercomputers. Integrating big data analytics with Al, car
manufacturers must focus not only on keeping a vehicle on the road, but also the abundance of
indefinable variables that characterize human action and inaction.

In an attempt to scale down the enormous financial, moral, and technological
implications of driverless technology, consider the Radio Controlled (RC) car. A cheap and
simple means of replicating the dynamic behavior of a full-sized vehicle, the RC car can
replicate full-scale conditions without severe life-threatening or financial consequences.
Furthermore, in an effort to expand on the standard complications of autonomous vehicles,
consider the following: the creation of a modular Al system for autonomous cars. Inherently
“plug and play,” this system will not only drive one RC car in volatile conditions, but instead, it
can be readily adapted to drive any RC car in volatile conditions.

Over the previous decade, an abundance of work has been documented in the
autonomous car spectrum. Seen most frequently with automotive giants, car manufacturers like
Ford regularly report work showing their progress towards creating a Level 5 autonomous
vehicle by the year 2021 [8]. The quest for autonomous vehicles, however, has also expanded
into the hobbyist and academic sectors. Seen in the creation of autonomous scale vehicle kits
by hobbyist companies such as Donkey Car and the work on an autonomous golf cart by
academic scholars at Worcester Polytechnic Institute, the challenge in creating autonomous
vehicles has produced an immense quantity of scholarly work [4,9]. While the design of an
autonomous vehicle has become a global challenge, however, the modular Al system intricacy
appears to be a relatively novel concept.
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1.2 ME 4320: Advanced Engineering Design

ME 4320, Advanced Engineering Design, is a capstone design class for mechanical
engineers at Worcester Polytechnic Institute (WPI). The course requires students to work in
teams to design and fabricate a 1:10th RC car. RC cars are the subject of the final project in the
course because they have many complex subsystems that need to work together in order for
the car to perform well. Each sub system such as the gearbox, transmission, and steering needs
to be well designed, well fabricated, and analyzed to ensure that it will work well in the situation
outlined in the competition rules. The cars were then evaluated in a race at the end of the term.

One of the problems that arose in the race was the issue of driver skill. It became
apparent that the biggest factor in who won the race was the amount of practice the driver had
with the car, not the car itself. Often poorly designed cars would out race well designed cars
because they had more experienced drivers. In order to address this problem, Professor
Radhakrishnan tasked us with creating a proof of concept car to test whether self driving cars
would be feasible on this scale. He hopes that in the future, all of the cars created in the course
will be able to be autonomously race each other, remove the drive from the equation entirely.

Additionally, during the course, students are tasked with analyzing the mechanical
systems present on their cars. In an effort to validate their theoretical calculations and provide
increased exposure to electronic circuits, specifically sensors, Professor Radhakrishnan tasked
us with creating a modular sensor dashboard. The sensor dashboard is intended to be
compatible with ME4320 cars. Furthermore, the dashboard should be both scalable and
customizable to suit each team’s individual requirements.

1.3 Project Statement

This report explores the feasibility of creating a modular Al system for autonomous cars.
Using a 1/10 scale RC car as the testing platform, this project will have five major examinations.
First, the project will test the ability of manufacturing a 1:10 scale car equipped with front and
rear suspension. Second, the project will test the performance of a modular sensor package
capable of producing live data updates. Third, the project will test the ability of a trained RC car
to drive itself around an indoor track without the use of mapping. Fourth, the project will test the
ability of the RC car to navigate around the track while racing against other, human controlled
RC cars. Finally, the project will test the feasibility of creating a modular Al system. Specifically,
it will test whether or not an Al system can be readily fitted to other cars so that they can
navigate autonomously.

1.4 Format of Report

The remainder of the paper will be formatted as follows. The second chapter will contain
background discussing RC cars, sensors, autonomous solutions, and neural networks. The third
chapter will provide a brief overview of the project’s procedure and timeline. The fourth chapter
will discuss the proof of concept work that was done to validate the team’s ability to accomplish
the project goals. The fifth chapter will detail the design and construction of the custom car built
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by the team. The sixth chapter will discuss the mechanical analysis of the systems on the
custom car. The seventh chapter will detail the modular sensor system made by the team. The
eight chapter will detail the process of selecting and implementing a neural network. The last
chapter, chapter eight, will conclude the paper, wrapping up the discussions in the previous
chapters and conveying final thoughts.
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2.0 Background

First, this chapter defines the RC car and the major mechanical and electrical
subassemblies of which it is comprised. Following, the chapter provides an introduction to
artificial intelligence (Al), most specifically emphasizing the basic software and hardware
requirements needed to create an autonomous vehicle. This chapter ends with a brief
discussion of the Worcester Polytechnic Institute (WPI) course, ME4320, Advanced Engineering
Design. Improving this course is a primary objective to the work performed in this project.

2.1 What is an RC Car?

An RC, or Radio Controlled car is a car operated by a receiver-transmitter pair [10].
Commonly owned by hobbyists, RC cars are often scaled-down versions of popular cars. For
example, Figure 2-1 (reproduced as is from [10]) shows a 1/10" scale RC car of the Ford
Mustang.

Figure 2-1: 1/10™ scale RC car designed after a Ford Mustang. Reproduced as is from [11].

Often modeling full-sized vehicles, RC cars contain many of the electrical and
mechanical components found within normal street vehicles. Their more compact, simplistic,
and cheap nature, however, make them a great tool for hobbyists and autonomous vehicle
testing. Shown in Figure 2-2 is a top view of a GT-V2e, a relatively standard RC car. Specifically,
Figure 2-2 (reproduced as is from [1]) and its corresponding legend highlight the major
mechanical and electrical components found within conventional scale RC cars.
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O Front Suspension, Front Control Arm O DC Mator

Battery O Servo Maotar
O Electronic Speed Controller (ESC) Rear Suspension, Rear Control Arm

Figure 2-2: Top view of the GT-2Ve RC Car. As per the legend, the circled components of the car illustrate many of
the important subassemblies fitted to the vehicle. Reproduced as is from [1].

The cars built by the students in ME 4320 share many similarities to commercially
available cars, such as the one pictured in Figure 2-2. The typical cars built by students have
many similar components including a battery, DC motor, gearbox, servo motor, and steering
linkage, but vary in other ways by not having suspension systems. By not including suspension
in their car design, the steering and transmission linkages are dramatically simplified. These
cars are discussed in more detail in Section 2.5. It is important to consider the design of the cars
made my students in ME 4320 as the long term goal of the project is to make the cars designed
and built by students in ME 4320 self drive.

2.2 Components of an RC Car

2.2.1 Mechanical Components

As seen in Figure 2-2 (reproduced as is from [1]), the scale RC car contains many
mechanical components. For simplicity, the most important components include: the motor,
transmission, driveshaft, differential, suspension, steering, and chassis.

Motor

While the majority of full-sized cars rely on the internal combustion engine, the RC car
normally relies on electric motors. Drastically easier to scale and much more appropriate for the
physical requirements of the RC car, the electric motor for RC applications comes in two general
options: brushed and brushless. While the specifics of the brushed and brushless motors will be
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discussed in Section 2.3, it is essential first to note the general mechanics and function of the
electric motor.

A typical electric motor used in hobbyist activities can be seen in Figure 2-3 (reproduced
as is from [12]). In its simplest sense, the electric motor receives electrical energy via electric
current and ultimately converts said electrical energy into rotational, mechanical motion.
Leveraging the inherent relationship between electricity and magnetism to convert energy, the
electric motor is comprised of a rotor and a stator. While the specific construction of the rotor
and stator varies among the many electric motor types, at least one of the components utilizes
coiled wire to behave as an electromagnet. Consequently, the introduction of current to the
electromagnet creates a magnetic field which interacts with the magnetic field of the
complementary component. Inevitably, the proper manipulation of these two magnetic fields
creates a rotational force. Based on this theoretical foundation, the electric motor is ultimately
capable of creating very high instantaneous torque values. As a result, the electric motor
produces rapid acceleration forces [13].

Figure 2-3: Standard Hobbyist Electric Motor. Reproduced as is from [12].

Transmission

The main purpose of the transmission is to convert the high frequency (rotations per
minute) rotational power generated by the electric motor to a more controlled and optimal
rotational power at the vehicle wheels [14]. While road cars are typically known to possess
variations of automatic or manual transmissions, the RC car typically utilizes one of five options:
direct drive, compound gearing, belt drive, chain drive, and planetary gearing [15]. For simplicity,
Table 2-1 illustrates many of the benefits and drawbacks of each transmission system.
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Table 2-1: Benefits and Drawbacks of RC Transmission Systems [15]

Benefits Drawbacks
Direct Drive: Direct Drive:
- Lightweight - No gear reduction
- Simple - Gears easily damaged by debris

- Highly efficient

Compound Gearing:

- Easyto assemble

- Easy to maintain

- Non-slip

- Large constant velocity ratios

- Can handle high-end loads

- Can transmit large amounts of power

- High transmission efficiency (85-95%)

- Compact

- Can transmit power between
non-parallel shafts

Compound Gearing:
- Not ideal for long distance power
transmission
- Not flexible
- Not ideal for higher speeds
- Heavy
- High noise and vibration

Belt Drive:
- Easyto assemble
- Easy to maintain
- Extremely high transmission efficiency
(95-98%)

Belt Drive:
- Not compact
- Belts fatigue
- Lower power transmission
- High load on shafts and bearings

- Overload protection - Beltslip

- Jam protection

- Good for long distance power
transmission

- Quiet and low vibration

- Shock absorption for load fluctuation

Chain Drive: Chain Drive:

- Non-slip - Expensive

- Constant angular velocity between - Difficult to scale down
sprockets - High noise and vibration

- High-velocity ratios

- Strong with power transmission for
most shaft distances

- Limited maintenance

- High transmission efficiency

- Relatively compact

- Relatively low shaft load

- Heavy

- Less compact than compound gears

- Heavier shaft load than compound
gears

Planetary Gearing:
- Extremely compact
- Input and output shafts in-line
- Non-slip
- Fully enclosed
- High load capabilities

Planetary Gearing:
- Not ideal for high speeds
- Not flexible
- Heavy
- Hard to maintain
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Driveshaft

Using the transmission to optimize the motor output, the next stage of power
transmission is the driveshaft. Typically a cylindrical shaft that connects the output of the
transmission to the drive axle, the driveshaft translates the optimized motor torque to the axle
holding the drive wheels. Shown in Figure 2-4 (reproduced as is from [16]) is a full-sized drive
shaft for a Jeep Wrangler. While many design variations of the driveshaft exist, it is best
understood as the component which translates motor torque [17].

Figure 2-4: Driveshaft for Jeep Wrangler. Reproduced as is from [16].

Differential

Using the driveshaft to translate the motor torque across the length of the car to the drive
axle, the final stage of power transmission is the differential. Due to the 90 degree angle
between the drive shaft (motor rotation) and the drive axle (wheel rotation), the drivetrain must
also rotate the motor output. Known as a differential, this component of the drivetrain can rotate
the torque of the driveshaft to the rear axle, while simultaneously allowing for independent wheel
rotation. While the differential has many different design variations, its most basic design
consists of a pinion gear from the driveshaft and a ring gear which rotates about the drive axle
[18]. For further clarification, Figure 2-5 (reproduced as is from [19]) illustrates the components
of the open differential design.

Figure 2-5: Open differential with pinion and ring gears. Reproduced as is from [19].
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Suspension

Vehicle suspension serves three main purposes: (i) to allow the vehicle to ride
undisturbed over rough roads, (ii) to keep the tires in contact with the ground, and (iii) to
minimize the body roll experienced by the car. Although there are a variety of different
suspension systems, each system is based on the following two components: springs and
dampers. When compressed or expanded, springs store mechanical energy and exert a force.
Subsequently, this inherent property of springs promotes smoother vehicle travel. Unfortunately,
while springs may capture some energy, they will not dissipate said energy. Consequently,
springs are most effective when coupled with dampers. Devices which convert kinetic energy
into thermal energy, dampers help reduce the movement experienced by the vehicle [20]. For
further clarification, Figures 2-6 and 2-7 (reproduced as is from [21-26]) illustrate some
examples of both springs and dampers commonly used in vehicles.

(a) (b) (c) (d)
Figure 2-6: Suspension Components (a) Coil spring, (b) leaf spring, (c) torsion bars, and (d) air springs. Reproduced
as is from [21-24].

(a) (b)

Figure 2-7: Suspension Components Il (a) shock absorbers and struts, and (b) anti-sway bar. Reproduced from [25,
26].
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In addition to the various combinations of springs and dampers, suspensions can also be
dependent or independent. Known for the rigid axle that binds its wheels, dependent
suspension is commonly used for the rear suspension of modern full-size vehicles. While this
suspension allows for axle articulation, however, any movement experienced by the one wheel
will be mirrored by the wheel opposite [20, 27].

Although the rear suspension is commonly dependent, the front suspension is typically
independent. Among its many strengths, the front suspension is normally independent for three
main reasons: (i) dependent suspension is prone to swaying by virtue of amplification of inertia
from one wheel to the other, (ii) dependent suspension increases unsprung weight, and (iii)
dependent suspensions make wheel alignment difficult. Furthermore, as the front suspension
must also contain the steering mechanism, the following three reasons illustrate the importance
of an independent front suspension [20, 27].

Due to the many variables related to suspension design, modern vehicles use a variety
of different suspension systems for both the front and rear of the vehicle. For simplicity, Table
2-2 lists several independent front suspension systems and several dependent rear suspension
systems.

Table 2-2: Common Vehicle Suspension Systems [20]

Independent Front Suspension Systems

Dependent Rear Suspension Systems

MacPherson Strut Solid Axle
Double-Wishbone Beam Axle
Trailing Arm 4-Bar

Twin [-Beam De Dion

Moulton Rubber

Transverse Leaf spring

Steering

Integrated with the front suspension, the steering system allows the vehicle to change
direction. In most cars the steering systems works by changing the angle of the wheel relative to
the body of the car. By rotating the wheels, the direction of travel changes so that the car can
make turns. Some steering systems work by only rotating the front two wheels, while other
systems rotate all four wheels. Given the smaller scale of RC cars, however, the two wheel
steering is best suited to simplify the design of the car, as well as, the control scheme.

In order to rotate the front wheels, the car uses a steering linkage. Among the many
variations, three of the more standard steering linkage systems include: rack and pinion,
parallelogram, and Haltenberger [28]. As will be discussed, each style of linkage has its own
advantages and disadvantages for implementation on a 1/10th scale vehicle.
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Rack and pinion linkages are commonly among the easiest steering linkages to
implement in vehicles. As the steering wheel rotates, a pinion gear rotates against a rack gear
causing the linkage to slide. While the physical design is very simple, the disadvantage to using
this steering system at a 1/10 scale is that the steering input is controlled by a servo rather than
a person turning a steering wheel. As servos typically have a limited range of motion, it would be
difficult to effectively slide the linkage [28]. For further illustration, an example of a rack and
pinion steering linkage can be seen in Figure 2-8 (reproduced as is from [29]).

Figure 2-8: Model of rack and pinion steering linkage. Reproduced as is from [29].

The Haltenberger linkage is the most complex of the three as it requires precise
geometries and tolerances that would be hard to implement in an RC car. In practice, this
system works by rotating a link called the Pitman arm. When the Pitman arm rotates, the inner
and outer tie rods move laterally. Consequently, as the tie rods move, the wheels move with
them [28]. Figure 2-9 (reproduced as is from [30]) shows the Haltenberger linkage.

Inner Tie Rod Outer Tie Rod End

Figure 2-9: Drawing of Haltenberger linkage. Reproduced as is from [30].
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In order to prevent binding within the system, the Haltenberger linkage requires very tight
tolerances. As a result, it is a very difficult system to implement on a 1:10 scale [28].

The final type of linkage, as shown in Figure 2-10 (reproduced as is from [31]), is a
parallel or parallelogram linkage. Sharing many similarities with the Haltenberger linkage, the
parallelogram linkage also uses a rotating Pitman arm to provide input to the system. As the
Pitman arm rotates, the center link moves, which then connects to the tie rods and finally the
wheels [28].

CENTER LINK PITMAN ARM

w/iPS B8083 w/PS B6604
wio PS 58082 wio PS $8089

S8076  TIE ROD END

CLAMP
TIE ROD i olfe 58078

RH $8074
TUBE & CLAMPS

STEERING LINKAGE 58076 TIE ROD

LH S8072

Figure 2-10: Drawing of parallelogram linkage. Reproduced as is from [31].

The disadvantage to this system is the greater number of components than present in
the rack and pinion or Haltenberger linkages. While this disadvantage makes manufacturing
more complex, the parallelogram linkage can scale down more easily [28].

Chassis

The chassis serves as the structural foundation of the car. Designed to handle
longitudinal, lateral, torsional and bending stresses and strains, the chassis creates a rigid
vehicular structure. On a full-size vehicle, the chassis normally forms an exoskeleton. As
illustrated in Figure 2-11 (reproduced as is from [32]), interconnecting metal rods create the
vehicle frame and roll cage [33]. While the general principle of the chassis extends to scale cars,
the design is typically different. Given the smaller, lighter and more compact nature of the scale
RC car, the chassis does not normally have to be a series of interconnected metal rods.
Furthermore, as toy scale cars are not explicitly designed to handle crashes, the chassis need
not be as elaborate. Consequently, the chassis of an RC scale car is often designed as seen in
Figure 2-12 (reproduced as is from [34]). Typically a single metal plate that connects the front
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and rear axle, this chassis satisfies the significantly simpler mechanical requirements of a scale
car.

Figure 2-11: Example of chassis on a larger car. Reproduced as is from [32].

Figure 2-12: Example of chassis for RC car. Reproduced as is from [34].
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2.2.2 Electrical Components

In addition to the mechanical components outlined in Section 2.2, the RC car contains
many electrical components. Among the many, the components that are most important are the
motor, battery, servo motor, electronic speed controller (ESC), and power regulators.

Motor

Among the many variations of the electric motor, the two most relevant for RC cars are
the brushed DC motor and the brushless DC motor. As outlined in Section 2.2.1, both variations
of the electric motor operate according to the same electromagnetic principles. The fundamental
difference between the two motors, however, is their means of interaction between the stator
and rotor. For simplicity, the strengths and weaknesses of each electric motor are listed in Table
2-3.

Table 2-3: Brushed vs. Brushless Electric Motors [35]

Strengths Weaknesses
Brushless Motor: Brushless Motor:
- Highly efficient - Expensive
- Very powerful - More complicated
- Limited maintenance - Requires Electronic Speed Controller
- Limited wear - More susceptible to malfunction
- Low electromagnetic interference
Brushed Motor: Brushed Motor:
- Simple - Brushes wear out
- Rugged - Less powerful
- Cheap - Mechanical restrictions
- Brush arcing

As highlighted by their listed strengths and weaknesses, the performance characteristics
of both the brushless and brushed DC motors are byproducts of their designs. As the brushed
DC motor relies on physical connection using contacts (commutators) to energize the rotor
windings, mechanical flaws such as inertia and friction compromise the efficiency of the motor.
Meanwhile, as the brushless DC motor relies on well-timed stator winding energization, the
brushless DC motor achieves more optimal performance but at an additional cost. In conclusion,
each motor satisfies specific mechanical needs [35].

Battery

The battery is an energy storage device which allows for continued operation of an RC
car. Utilizing chemical bonds to store electrical energy, the RC car battery powers the motor,
electronic speed controller (ESC), servo, and all other peripherals. Among the many different
chemical compositions of batteries, the RC community most commonly uses two variations:
Nickel-Metal Hydride and Lithium Polymer. Better known as NiMH and LiPo respectively, these
two battery types satisfy the same requirement: to power the equipment of the RC car [36]. As
illustrated in Table 2-4, however, there are fundamental differences between the performance
levels of NiMH and LiPo batteries.

34



Table 2-4: NiMH vs. LiPo Batteries [36]

Strengths Weaknesses
NiMH Battery: NiMH Battery:
- Rugged - Less energy dense
- Cheap - Heavy
- Simple - Steadily decreasing voltage
LiPo Battery: LiPo Battery:
- Very energy dense - Expensive
- Light - Special maintenance restrictions
- Maintains constant voltage longer

Servo Motor

While the brushed and brushless DC motors induce motion within RC cars, the servo
motor controls steering. As illustrated in Figure 2-13 (reproduced as is from [37]), the servo
motor consists of a DC motor, a potentiometer, a gearing system, and a control system. Unlike
the DC motors that drive the RC car, the servo does not continuously spin. Instead, the servo
receives a Pulse-Width Modulated (PWM) signal from a microcontroller which corresponds to a
specific angular rotation. Upon attaining the desired orientation, the servo remains motionless
until it receives the next signal instruction [38].

Figure 2-13: Standard RC Servo Motor. Reproduced as is from [37].

Electronic Speed Controller

The electronic speed controller, or ESC, has two typical configurations: brushed and
brushless. Acting as a medium between the battery and the DC motor, the brushed ESC is
compatible with brushed DC motors while the brushless ESC is compatible with brushless DC
motors. For brushed DC motors, the two-wire ESC acts solely as a voltage regulator for the
electric motor. Meanwhile, for the brushless DC motor, the three-wire ESC acts as a voltage
regulator and a throttle control. Consequently, the brushless ESC, such as the one in Figure
2-14 (reproduced as is from [39]), utilizes a PWM signal to provide variable speed control [40].
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Figure 2-14: Brushless Electronic Speed Controller. Reproduced as is from [39].

Voltage Regulator

A voltage controller is an electronic circuit designed to provide a constant voltage
independent of current requirements [41]. Among the many variations, three types of power
regulators were considered for this project: (i) voltage dividers, (ii) zener diode voltage
regulators, and (iii) switching power supplies. In order to evaluate each regulator’s performance,
the important parameters were determined to be: (i) circuit simplicity, (ii) power efficiency, and
(iii) voltage consistency for both constant current draw and modulating current draw.

The first power regulating circuit, a voltage divider, was the simplest of the voltage
regulators. Shown in Figure 2-15, the voltage divider uses two resistors in series to modify the
output voltage across the load, RLy. Under constant current, R, is chosen so that the equivalent
resistance of R, and R in parallel creates a voltage divider with R, that produces the desired
output voltage. Under condition two, the current through R, must be much larger than the
current through R, so that fluctuations in the current to the load do not cause large fluctuations
in the output voltage. Because constant voltage is required under modulating current, if a
voltage divider is used to regulate the voltage, condition two must be used. The constant current
through R, and R, that is significantly greater than the current to the load, makes the voltage
divider very inefficient, however, if the current through R, and R, is large enough, the output
voltage can be considered to be constant.
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Figure 2-15: Voltage Divider Circuit

The zener diode voltage regulator, as seen in Figure 2-16, has a resistor in series with a
reverse biased zener diode. The zener diode is selected with a breakdown voltage equal to the
desired V . This circuit has two states of operation based on if the V_, that would be produced
by the R, and R voltage divider is (i) less than the zener diode breakdown voltage or (ii) greater
than the zener diode breakdown voltage. In case one, V_, is determined by the R, and R
voltage divider, with the diode acting as an open circuit. In case two, V_, is equal to the zener
diode breakdown voltage because the current that does not go through R, but is needed to
maintain V, at V,, minus Vg, goes through the zener diode. Ideally the circuit is always
operating under case two so that the voltage is maintained constant independent of | or V,.
Similar to the voltage divider, this circuit is inefficient partially due to the power lost at R,, but it is
also inefficient because of power lost through D [42].

V,.0—

o

Figure 2-16: Zener Diode Voltage Regulator
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Switching power supplies operate by switching the V, on and off, resulting in an average
voltage equal to the desired voltage. Inductors and capacitors are used to minimize the shock to
the system between the on and off switching periods. Because there is no series resistor, these
switching power supplies can be very power efficient with power losses predominantly coming
from the switching circuit. Drawbacks for these circuits include voltage ripples caused by
switching, large inductors and capacitors to reduce the voltage ripple, and circuit complexity
caused by the switching system. There are three switching power supplies that were
considered: (i) the buck converter (Figure 2-17a), which is a step down DC to DC converter, (ii)
the buck-boost converter (Figure 2-17b), which is a step up or step down DC to DC converter
and (iii) the Cuk converter (Figure 2-17c¢), which is a constant power DC to DC converter [43].
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Figure 2-17: Switching power supplies, (a) Buck Converter, (b) Buck-Boost Converter, and (c) Cuk Converter
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2.3 Sensors, Artificial Intelligence and Neural Networks

The aforementioned mechanical and electrical components create an RC car capable of
motion. In order to induce motion autonomously, however, the vehicle must also leverage
sensors and artificial intelligence.

2.3.1 Sensors

Sensors are sophisticated devices capable of converting physical data into electrical
signals. For a car to behave autonomously, it must collect data describing its environment.
Concerned with other cars, the shape of the road, the presence of pedestrians and the
countless other variables that define driving, these sensors must produce responsive and
accurate results. While there are many different sensors and variations, the following are the
most commonly used in autonomous cars.

RADAR

RADAR, an acronym for Radio Detecting and Ranging, is a technology based on the
transmission and receiving of radio waves. Sent from an antenna transmitter, an
electromagnetic wave propagates through space. In the event that the electromagnetic wave
comes across an obstacle, some of the electromagnetic wave will reverse directions. Heading
into the direction of the receiver (or transceiver), the electromagnetic wave is then analyzed and
manipulated. Based on the amount of pulse returned and the time duration of its transmission
and reception, the shape and velocity of the surroundings can be determined [44].

LiDAR

LiDAR, or Light Detection and Ranging, uses measured laser pulses to determine
distances of surrounding objects. Very similar in principle to RADAR, LiDAR uses a laser which
acts as a transmitter. When laser pulses are sent, some pulses encounter objects which force
the pulsed particles to change direction. As a portion of the pulse returns to the laser, it is then
read by a scanner. By measuring the quantity of the original pulse that returned and the time
duration, the shape and distance of the surrounding environment can be predicted.

In order to generate valuable LIDAR data, the system operates very quickly and creates
point clouds. These point clouds, when containing sufficient data, can then be calibrated and
constructed into estimated representations of the surroundings. Ultimately, while very similar in
principle to RADAR, LiDAR units have experienced greater success and abundance in
autonomous driving systems. In light of their abundance, however, LIiDAR units are far more
expensive than their RADAR counterparts [45].

GNSS

A Global Navigation Satellite System (GNSS) consists of several constellations of
satellites in space continuously transmitting data. Small chip receivers located on Earth can
receive said data, and ultimately use those data to calculate its position on Earth. While orbiting
the globe, each satellite specifically transmits information describing itself and the whole
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constellation of satellites. Providing data such as its unique 1D, almanac, ephemeris, and time of
transmission, the satellites help GNSS receivers perform direct geolocation. The datum that
ultimately enables GNSS receivers to determine their location is the time of transmission.

The receiver compares the time of transmission to its internal time and calculates the
total transmission time from satellite to receiver. In this calculation there are many variables
taken into consideration such as the effects of the atmosphere on the signal transit time. With
the total transmission time, the GNSS receiver can then determine the distance to each satellite
because all radio signals travel in a vacuum at the speed of light, 300,000 km per second.

The calculated distance is a pseudo-range representing the receiver’s knowledge of the
satellite’s location. This pseudo-range then creates a sphere around the satellite of possible
locations for the GNSS receiver. When a receiver calculates four or more pseudo-ranges from
different satellites, the receiver can then perform a process known as trilateration to determine
its location on the Earth. Shown in Figure 2-18 (reproduced as is from [46]), the trilateration
method is used to determine a GNSS receiver’s location by finding an overlapping region of the
potential spherical locations [47, 48].
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Figure 2-18: GPS Trilateration with Uncertainty [46]

Shown in Figure 2-18 (reproduced as is from [46]) is an example of trilateration with four
different satellites. Alone, no satellite provides sufficient data for a location solution. When a
GNSS receiver calculates the distance from a single satellite, the receiver is unable to
determine its orientation and therefore could be anywhere on the surface of each sphere. As the
GNSS receiver collects more satellite data from different satellites, however, an overlapping
area is found where the surface of these spheres all intersect and thus an estimated location is
determined. Ultimately, with the data provided by four satellites, a GNSS receiver is able to
estimate its location anywhere on Earth.
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Camera-enabled Computer Vision

Cameras are a popular choice of sensors for autonomous exploration. A cheap
alternative to RADAR and LiDAR, cameras capture images using a matrix of pixels, each with a
specific red, blue, green (RGB) value. A direct representation of the ambient environment, a
camera with the help of ‘Computer Vision’ or sophisticated image recognition can view and
collect data from the surrounding environment just the way we do with our eyes. [49] As defined
by Elon Musk, the CEO of Tesla on the importance of cameras for autonomy - “The whole road
system is meant to be navigated with passive optical, or cameras, and so once you solve
cameras or vision, then autonomy is solved. If you don’t solve vision, it's not solved.” [50] Figure
2-19 (reproduced from [51]) shows the application of camera-enabled computer vision by
Tesla’s autopilot learning feature for one of it's self driving cars. In the image, the
camera-enabled computer vision indicates which portion of the image is most important for the
car to make its next decision.

Figure 2-19: Camera-enabled computer vision in Tesla Autopilot [51]

Inertial Measurement Unit

The inertial measurement unit (IMU) is a device capable of producing independent
orientation references. While the modern Inertial Measurement Unit (IMU) has many different
designs, it typically contains three sensors each with a 3-axis configuration. Collectively
representing 9 Degrees of Freedom (DOF), the 3-axis accelerometer, 3-axis gyroscope, and
3-axis magnetometer allow the IMU to create a location and orientation estimate given initial
conditions.

In general, there are two main categories of IMU designs: gimballed and
microelectromechanical systems (MEMS). Gimballed systems utilize gimbals to isolate the IMU
from the movement of the attached system. Largely mechanical, these systems offer simplicity
and accuracy at the cost of size and weight [52]. On the contrary, MEMS IMUs take an
intrinsically mechanical action, such as rotation, and generate a corresponding electrical signal.
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Often packaged into systems a few millimeters in size, MEMS technology allows for compact
sensor implementations, such as those within smartphones.

Accelerometers

MEMS accelerometers have two main categories: mechanical and vibrating element.
Mechanically based accelerometers measure the change in position of a known mass to
determine the forces and acceleration on that mass. Meanwhile, vibrating element
accelerometers, such as surface acoustic wave (SAW) accelerometers, utilize a lever arm with a
mass on it. When the mass has a force applied to it, the lever arm’s resonant frequency
changes. Subsequently, by measuring the change in frequency, the force applied to that mass
can be determined.

Gyroscope

A MEMS gyroscope, often called a Coriolis vibratory gyroscope (CVG), contains a
vibrating mass that allows for the measurement of rotational acceleration using the conservation
of momentum. When undergoing rotation, the gyroscope measures the Coriolis Effect, which
states that a mass moving within a rotating system experiences an external force called the
Coriolis force. This force is perpendicular to the direction of motion and to the axis of rotation.
[53] Ultimately, one IMU typically consists of multiple gyroscopes or multiple-axis gyroscopes to
capture a movement with 3 degrees of freedom.

Magnetometer

Most MEMS magnetometers utilize the Lorentz force, which is the force exerted by an
electromagnetic field on a moving charge, or current. When a magnetic field is applied across
the central beam, the beam moves proportionally in the z-axis. This movement produces a
change in capacitance across the finger electrodes on both sides of the beam. The strength of
the magnetic field is a function of this change in capacitance [54].

Determining Orientation with Inertial Measurement Unit Sensors

Each sensor within an IMU—accelerometer, gyroscope, and magnetometer—is typically
seen in a 3-axis configuration, taking measurements about the device’s x, y, and z direction.
Using these measurements, the IMU’s orientation can be found, most often in terms of roll,
pitch, and yaw [55].

Each sensor within the IMU provides data that can be used to calculate the device’s
pitch, roll, and yaw. A gyroscope measures the device’s angular rate. Integrated over time, this
measurement can determine the device’s angle with respect to an initial orientation [47]. An
accelerometer can be used to measure translational acceleration. This measurement can be
integrated once with respect to time to produce a 3-axis change in velocity, or twice to produce a
3-axis change in position. As the 3-axis accelerometer also measures the constant force of
gravity, it can be also used to determine the direction of Earth’s gravity vector. By knowing the
direction of Earth’s gravity vector, or which way is down, the device’s roll and pitch can be
calculated [56]. A magnetometer can be used to measure the device’s relative magnetic field
strength and can be calibrated to determine the direction of magnetic North. The direction of
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North can be used to determine the device’s yaw compared to North, also commonly referred to
as azimuth or heading [47]. Figure 7-15 below summarizes the measurement and orientation
contribution of each IMU component, with A meaning, “change in”.

Table 2-5: Measurement and Orientation Contribution of each IMU Component

IMU Component Measurement Uses (3 Axes) Orientation Contribution(s)
Gyroscope A Angle Roll, Pitch and Yaw
Accelerometer Acceleration Roll and Pitch
A Velocity
A Position
Magnetometer A Angle from Magnetic North Yaw
Tachometer

A tachometer is a device which measures the rotational speed of a spinning shaft. Used
in a wide variety of applications, tachometers often utilize very different design variations.
Among the variations, tachometers typically count rotations using either electromagnetic,
electronic, or optics principles. Furthermore, tachometers also have fundamental differences
including contact, non-contact, frequency-based calculations, and time-based calculations.

Due to the wide variety of system designs, tachometers range in complexity. The most
specific tachometers, often interfaced with Arduino microcontrollers, utilize a Hall-Effect, or
magnetic field sensor and a magnet. Using the sensor to monitor the location of the magnet
placed on the shaft, the rotational speed of the shaft can ultimately be deduced [57].

2.3.2 Artificial Intelligence

With a steady source of reliable data, the next step is to process that data and make
decisions. This typically involves the use of artificial intelligence (Al). As defined by
Merriam-Webster, artificial intelligence is the capability of a machine to imitate intelligent human
behavior [58]. A capability increasingly prevalent in the modern world, Al plays fundamental
roles in search engines, email spam rejection, and countless other technological applications.
For the purposes of this project, Al is implemented with autonomous vehicles. As it is a relatively
high-level concept, Al can be attained using several different technological phenomena. Given
the general mission of creating a small scale autonomous vehicle, however, neural networks will
be used.

2.3.3 Neural Network

Created to loosely model human neural function, Artificial Neural Networks (ANN) are
computational programs comprised of several layers possessing interconnected nodes, or
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neurons. Consisting of an input layer, an output layer, and at least one hidden layer, the ANN
attempts to generate a rational output based on a large influx of input data.

Seen in Figure 2-20 (reproduced as is from [59]), each layer of the ANN is comprised of
interconnected nodes. Acting in a binary state (e.g. “On” or “Off’), each node relies on an
activation function which determines whether or not the node should fire. Propagating
throughout the network, activation and inactivation of nodes on the input layer influences the
activation or inactivation of nodes within the first stage of the hidden layer. Continuing
throughout all of the hidden layers, the ANN then concludes with an output layer with
appropriately activated neurons. Reflective of the ANN'’s “decision”, this output layer serves as
the system’s response to the aforementioned input data. In its simplest form, neural networks
are interconnected linear equations that result in reducing complex data down to relatively

simple outputs.

output layer

input layer

hidden layer

Figure 2-20: Internodal connections within an Artificial Neural Network. Reproduced as is from [59].

When creating a neural network, the program must be “trained.” Provided input data and
the corresponding ground truth, the network tries different combinations of weights between
each of the nodes to identify which configuration arrives at the most accurate conclusions.
Once run through the training data, a set of validation data is used to test how well the network
is trained. While the idea of training occurs within all neural networks, there are distinctions
based on the two types of networks used: supervised and unsupervised. For example, a
“backpropagation neural network” (BPNN) [60], the most common supervised network design,
begins with an initial guess of the weights. As per its name, it then propagates back through the
calculation, determining errors and reweighting values on certain nodes. Continuously iterating
through the nodes, the BPNN gradually optimizes the weight parameters. Ultimately by using a
gradient descent algorithm, the BPNN determines the global minimum along the steepest error
curve which theoretically depicts the lowest error rate of weights [60].

Careful to avoid overfitting, the fundamental goal of training a network is to produce
output appropriately responsive to input data. Once the training is completed, the network can
be switched to a forward only propagation state where it is used as a purely analytical tool to
generate correct solutions to the given problem. In the case of this project, the Al will be trained
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to react to situations that it could encounter on a race track in order to teach the network to drive
a scale car.

2.4 Existing Autonomous Solutions

One existing autonomous solution for 1:10 scale RC cars is the Donkey Car [4]. An
open source module, the Donkey Car can be calibrated to drive any RC car. The system design
heavily influenced the design used by this team. The Donkey Car module consists of an
Arduino, Raspberry Pi, and a Raspberry Pi Camera Module. With theses pieces of hardware
and an incredible amount of open source contribution from enthusiasts, the Donkey Car system
has been incredibly versatile for getting RC cars to self drive. The Donkey Car uses several
Python packages for creating, training and running an ANN onboard the Raspberry Pi to drive
any car at a reasonable speed. While the Donkey Car exists as a template to prove that self
driving RC cars are possible and attainable, it is, however, unable to produce autonomous
solutions for any track.

Another prevalent self-driving solution for cars comes from Tesla. A major proponent for
self driving capabilities over the previous decade, Tesla utilizes large sensor suites to collect
environmental information. With current designs using 8 external cameras, 12 ultrasonic
sensors, and a radar, Tesla performs high scale sensor fusion to produce autonomous driving
capabilities. Ultimately, while Tesla produces work far beyond the scope of this project, it acts as
an additional reference for the goal of autonomous navigation.

Lastly, several previous MQPs have create autonomous vehicles. The three of the most
relevant projects were the Semi-Autonomous Wheelchair Navigation Project and the
Autonomous Campus Modular Platform. The Semi-Autonomous Wheelchair Navigation Project,
involved creating an autonomous wheelchair for people who are unable to use a traditional
joystick controller [61]. The team used several sensors, including LiDAR, ultrasonic distance
sensors and IR sensors to make the wheelchair autonomous. For the autonomous campus
mobility platform, the team designed a long board that used LIiDAR to autonomously navigate
around campus [62].

2.5 ME 4320 Advanced Engineering Design

Currently, Worcester Polytechnic Institute (WPI) offers a course within the Mechanical
Engineering department titted Advanced Engineering Design. Known by its course number, ME
4320, this course is instructed by Professor Pradeep Radhakrishnan. Among many topics, the
course challenges students to create a 1:10 scale RC car. Specifically, as per the course design
guidelines, the students create a rear-wheel drive car with a servo-controlled steering
mechanism and a custom gearbox.

Aside from the fundamental design requirements, the students are allowed to construct
their scale cars, however, they please. The cars designed by students vary vastly in
construction, component selection, overall size, linkage design, gearbox design, and material
used. Figures 2-21 to 2-23 below, illustrate some of the cars that have been produced.
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Figure 2-21: A car designed by Vinve Lucca, Joe Stapleton, Peter Nash, Colin Saunders, Zach Fischer, Jake
Chiudina featuring a billet machined chassis and laser cut gearbox housing.
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Figure 2-22: A steering linkage designed by Derek Kruzan, Tim Esworthy, Walter Kwiecinski, Jessica Elder, Nolan
Bell and Xavier Little, featuring entirely 3D printed components.

46



AR, BN 3 .-.I.iQ { 05k £y ", ' . W
N b B0 By ¥ LS L N e,
Vi r . 4 - E " ] 4 AN Tty .

Figure 2-23: A gearbox designed by Amanda Richards, Michael Wilkinson, Tim Bill, Jamie Stephen, and Chris
Mayforth, constructed out of mostly VEX gears and axles.

As seen in the figures above, the cars vary dramatically between teams. For example, in
the transmission systems, some teams use plastic gears, while some teams will use metal
gears. Some teams will have multiple stages in their gear reductions while some use a single
stage. In the steering linkages, most linkages, although typically planar, vary dramatically in
size, design and performance. Furthermore, some linkages have large dead zone areas where
the linkage will not respond despite movement of the input linkage, while in other linkages the
steering is responsive. Additionally, the range of motion of the steering linkages varies as well.

As discussed above, the students are responsible for designing, analyzing, and
manufacturing their cars. Once the students have completed these steps, they compete in a
race to evaluate the performance of the car. The race is designed to act as a tool to differentiate
the high performing cars from the low performing cars. The race track typically consists of
ramps, gradual turns, hair-pin turns, and tunnels. Unfortunately, while the race may appear to be
a great way of determining car performance, its results can be clouded by the various skill levels
of the drivers. In order to combat this, the implementation of an autonomous module could
mitigate driver bias and provide more parity in determining the capabilities of the designed cars.
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Ultimately, this chapter provided an overview of Radio Control cars and their assembly.
Additionally, this chapter served as a literature review for the basic sensors and neural networks
necessary for autonomous navigation. The chapter culminated in an overview of the ME4320
course, Advanced Engineering Design. Here, the fundamental project goals for improving the
course were reiterated. The next chapter discusses the general methodology of the project.

Specifically, the following chapter illustrates the iterative methodological process used to satisfy
all project goals.
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3.0 General Methodology

While subsequent chapters detail the specific mechanical, electrical, and neural network
design, this chapter first provides an overview of the general methodology. Acknowledging all of
the work conducted, the general nature of the project can be divided into four stages: (i)
research, (ii) proof of concept (POC), (iii) car development, and (iv) neural network
development.

During the research phase, the team sought to answer three fundamental questions.
First, what additional design requirements could be added to the ME4320 car project? Second,
is it possible to make the ME4320 cars autonomous? Third, what kind of real-time data could be
captured in order to monitor and aid the operation of the cars? While each question undergoes
more elaborate analysis in the following chapters, preliminary research led to the following
conclusions. First, the implementation of a front suspension, rear suspension, and rear
differential could be a possible addition to the ME4320 car design requirements. Second, a
neural network leveraging input from a camera could feasibly make the ME4320 cars
autonomous. Third, the car orientation, temperature, and motor RPM could be important
real-time data relevant to the operation of the car.

Having conducted preliminary research, the next step was the creation of a POC. Among
many questions, the primary uncertainties regarding the capabilities of the car’s control system
and Al included: what hardware is necessary for controls and autonomy, if camera and receiver
training data could be collected, if a neural network could be created and trained, if a neural
network could control a test car, and if a neural network could make real-time decisions using
images from an input camera. While explicitly detailed in Chapter 4, each of the aforementioned
questions was successfully validated using a test car. Consequently, successful fulfillment of the
project requirements became more plausible.

While developing the POC, the initial car development stage simultaneously began.
Taking into account the new design additions (i.e. front suspension, rear suspension, rear
differential), an initial car was designed and manufactured. Given the importance of Al
development and testing, this initial car was designed and manufactured as quickly as possible.
While the original car was quickly manufactured, however, continued car modifications and
iterations were made throughout the remainder of the project.

Immediately following the initial car design and assembly, the neural network
development stage began. For the remainder of the project, both the car and neural network
development stages ran in parallel. Ultimately, the goal of the neural network development stage
was to create a neural network that could drive around a track. This involved collecting data,
generating neural network models, testing the models, altering test parameters, and then
refining the process.

Ultimately, as the project was highly interdisciplinary in nature, specific design choices
regularly impacted the design and performance of seemingly unrelated car features.
Consequently, the methodology of creating a scaled autonomous car was highly iterative. This
was most significant between the car design stage and the neural network development stage.
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Despite the volatile nature of the design process, however, the flow chart shown in Figure 3-1
depicts the general methodology described above.
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Figure 3-1: General Methodology Flow Chart

Having established the general project procedure, the next chapter discusses the
preliminary work performed on the test car given to the team. Specifically, the next chapter
discusses the proof of concept nature of the test vehicle.
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4.0 The Test Car

This chapter discusses the test car used to develop a proof of concept (POC) for the
artificial neural network (ANN) with a camera. As the principal use of the test car was the
validation of the POC, little was done to modify the underlying car design. Instead, the majority
of the car modification was done in the effort to make it autonomous. This chapter is divided into
seven sections. Section 4.1 discusses the test car that was provided to the team. Section 4.2
discusses the hardware that was selected for POC testing. Section 4.3 discusses the mounts
that were made to add the new hardware components to the test car. Section 4.4 discusses the
procedure to control the test car using the POC hardware. Section 4.5 discusses the powering
of the new hardware. Section 4.6 discusses the problems the team encountered while
implementing the Al to the test car. Finally, Section 4.7 illustrates the results of the POC
following the test car experimentation. For reiteration, the fundamental POC questions from
Chapter 3 can be seen in Table 4-1 below.

Table 4-1: Proof of Concept Questions for Test Car

1. What hardware is necessary for the control and autonomy systems of the RC car?

2. Can camera and receiver training data be collected?

3. Can a neural network be created and trained?

4. Can a neural network control the test car?

5. Can a neural network make real-time decisions using images from an input camera?

4.1 Donation of a Test Car

For initial research and autonomous testing, a car previously designed from a Worcester
Polytechnic Institute (WPI) class was used. Courtesy of previous students from the Advanced
Engineering Design class, the vehicle was a 1:10 scale car with remote control capabilities.
Seen in Figure 4-1, the car modeled the specifications for the Advanced Engineering Design
course (ME4320). Consequently, the car was rear-wheel drive and had no front or rear
suspension. Despite the minimalist design, however, the car could drive and was capable of
providing preliminary testing data.
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Figure 4-1: Test RC Scale Car. created by Alan Hunt, Colin Maschack, Aimilios, Tachiaos, Jake Halverson, Jesse
Kaufman, Marissa Ford, Kyle Whittaker, Howard Vance, Frank Bucknor, and Edward Crofts.

4.2 Preliminary Hardware

In order to ultimately perform autonomous navigation, the test car also needed to have
the appropriate hardware. Specifically, the test car required hardware for sensory data
collection, car control (i.e. servo, ESC), and Al computation. In addition to the required tasks,
the selected hardware had to satisfy general constraints. Among the many constraints, the
hardware had to interface correctly, have reasonable power requirements, be reasonably scaled
to fit a 1:10 scale car, and be reasonably cheap.

4.2.1 Sensor

In order to collect the car’s sensory data, many different sensors were considered. The
considered sensors included: camera, ultrasonic sensor, LIDAR, RADAR, and WiFi localization.
As a fundamental goal of the project was to produce an autonomous system that did not rely on
mapping or localization, the use of WiFi beacons was immediately rejected. Furthermore, while
ultrasonic, RADAR, and LiDAR are commonly used on full-sized vehicles, these sensors fit
more appropriately with Simultaneous Location and Mapping (SLAM) or sensor fusion systems.
As these systems rely on high volume point clouds to reproduce the surrounding contours, the
systems rely on computationally expensive mapping for accurate driving.

Ultimately, the one sensor which best accommodated the constraints and design goals
of the project was the camera. Cheap, easy to integrate, and capable of non-SLAM applications,
the camera theoretically provided all data necessary for simple autonomy. Furthermore, as the
camera is the sole sensory device used by Donkey Car, it was theoretically sufficient for the
fundamental project goals. The Amadget Wide Angle Fish-eye Camera Module, discussed in
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the next chapter, was used as the camera for the test car. Specifications of the camera are in
said chapter.

4.2.2 Car Control

The next piece of hardware selection was the microcontroller used to control the servo
and ESC. Using the Donkey Car as a reference, the Arduino was selected. Capable of
interfacing with most microcomputers and fitted with sufficient digital 10 (Input/Output) and pulse
modulation pins, the Arduino was a cheap and effective means of controlling the car
performance. While there are many different Arduino boards, the Arduino Mega was selected.
Equipped with 54 digital IO pins and 4 UART (Universal Asynchronous Receiver and
Transmitter) serial ports, this model was well equipped to adapt to the various needs of the
project [63].

4.2.3 Al Computation

The last hardware requirement was the selection of a microcomputer capable of
operating neural network models. Among the many options, the considered microcomputers
included: the Raspberry Pi 3b+, Odroid-XU4, Nvidia Jetson Nano, and the Intel Compute Stick
STK1. While each system was capable of running a neural network model, there were several
design variations differentiating the compatibility of each system. The Intel Compute Stick, while
powerful, lacked the interfaces necessary for autonomous navigation. Containing only two USB
ports and no other pins, the Intel Compute Stick lacked adaptability [64]. The Jetson Nano,
although equipped with the necessary interfaces and a GPU, was a more expensive solution
[65]. Furthermore, much of the additional computational power provided by the Jetson would be
unnecessary for the applications. The Odroid-XU4 was a relatively cheap and powerful system
also considered [66]. Unlike the Jetson Nano and Intel Compute Stick, the Odroid did not have
any fundamental flaws. Despite the strengths of the Odroid-XU4, however, the Raspberry Pi 3b+
was used [2]. The cheapest option with sufficient processing and interfacing capabilities, the
Raspberry Pi could handle all necessary tasks. Furthermore, the strong Raspberry Pi
community and its use in the Donkey Car were fundamental reasons for the selection of the
Raspberry Pi.

Ultimately, while the selected components were diligently selected, their proof of success
was still unknown. Consequently, the experimentation discussed in the following sections played
a pivotal role in determining whether or not the selected hardware would be adequate for the
control and Al system of the real car.

4.3 Mounts

To accommodate the camera, Arduino, and Raspberry Pi, the test car had to be
appropriately modified. First, in order to implement the camera, one major design consideration
was the inclusion of variable mounting locations in order to adequately test the impact of the
camera angle on neural network performance. In order to produce an interface capable of
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housing the variable camera placement, the original battery, electronic speed controller (ESC),
and receiver mounts were replaced with a pegboard-style cover (Figure 4-3). The camera
mount, attaching the camera to the pegboard, was then designed as an assembly with three
sections (Figure 4-3a). The first section, as seen in Figure 4-3c, attached the assembly to the
pegboard. Once secured, pole segments could be added or removed to the base to change the
camera height. Finally, the third piece held the camera at a specified angle (Figure 4-3b).
Ultimately very easy to manufacture and modify, the development of this pegboard camera
mount system was highly effective and versatile.

Figure 4-2: Pegboard-style cover so the camera can be mounted at several locations.

ved VY

(a) (b) (c)

Figure 4-3: Camera mount assembly (a) with interchangeable camera to pole mounts (b),a base to pegboard mount
(c), and pole segments.

With the camera appropriately mounted, the next step was the implementation of the
Arduino and Raspberry Pi. Using the same pegboard illustrated in Figure 4-2, the Arduino and
Raspberry Pi were properly fitted as shown in Figure 4-4. Unfortunately, space limitations on the
pegboard left little room for the battery, receiver, and ESC on the test car. Consequently, all
three pieces were hung from the side of the car using the mounts shown in Figure 4-5. The test

54




car, with all the components on the car, is shown in Figure 4-6. While this design modification
ultimately reduced the turning radius by approximately 15 degrees, the design additions
integrated all of the hardware necessary to test the POC. As such, the decrease in mechanical
performance was tolerable considering the test car was only meant to provide a POC regarding
the functionality, design and performance of the Al.

(a) (b)

Figure 4-4: Arduino (a) and Raspberry Pi (b) pegboard mounts

(@) (b)

Figure 4-5: ESC and Receiver mount (a), and Battery mount (b)
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(a) (b)

Figure 4-6: Test car modifications, Front right (a) and back left (b) views of test car with mounts and components.

4.4 Communication

For the neural network to make correct decisions, it needed to be trained from the data
of realistic case scenarios. Naturally, every situation can be decomposed into a decision matrix
containing the necessary information for the neural network to act appropriately. During training,
the neural network was then provided the correct response known as the output matrix. This
meant that training the car’s neural network required input from the camera (the decision matrix)
and the corresponding output to the RC car (the output matrix). Both of these matrices could be
created by driving the RC car, recording the input from the camera, and recording the output of
the receiver. For this reason, one of the goals of the POC was to validate that the team could
successfully collect the output from the receiver.

The output from receivers is a pulse modulated wave (PMW) with a duty cycle ranging
from 5% to 10% (Figure 4-7) and a period of approximately 20ms. In order to determine the
output from the receiver, the duty cycle needed to be measured. As discussed in Section 4.2.2,
the team chose an Arduino to read the output from the receiver and be a bridge between the
neural network and RC car. To read the signal from the receiver, the team connected pins 22
and 23 of the Arduino to channels two and three on the receiver (Figure 4-8). The following, two
methods were developed to measure the PWM from the two channels.
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Figure 4-7: Voltage of receiver output signal (measured with Arduino)
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Figure 4-8: Arduino and Receiver Schematic. Note the colors within the figure are to better illustrate the individual
wires.

The first method looked for state changes at each input pin. If there was no change, the
program would begin to execute its other functions. If there was a change, the program would
update the duty cycle. This method was successful, as shown in Figure 4-9, which shows the
duty cycle changing per every change in state of the input pin. When a second duty cycle pin
was added, however, the amount of noise created by time missed between state measurements
became significant. As illustrated in Figure 4-10, the resulting noise made this method not
viable.

The second method measured the pulse of the duty cycle. Instead of continuing onto
other computations between measurements, the program stopped to measure the exact rise
and fall times of the next pulse before moving on. This method was far more accurate than the
original with little to no noise (Figure 4-11). While the noise was minimized, the time it took to
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measure the duty cycle increased significantly. Figures 4-12 and 4-13 show the time it took to

measure a duty cycle with method one, approximately 16ms (less than one duty cycle), and the

time it took to measure a duty cycle with the second method, approximately 40ms (two duty

cycles). This was important because there were two pins that needed to be measured, which
caused each loop in the Arduino to take approximately 80ms, reducing the responsiveness of
the program. Ultimately though, the improved accuracy was determined to be worth the extra

time requirements because the program maintained a relatively fast response time.
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Duty Cycle Measurement - Method One, Two Pins

15
|
|
12
| 1 1l
(i I H| h (111 |
\I I “‘W‘ ‘I“| H Il
R AN .,
. | ‘ H i o \H‘ ‘\M‘ “ g \‘\”\ ‘ \ ”
Duty Cycle (%) 9 | \‘ I I‘ |‘|“‘”\ || |\ I\ H itk |‘H| | I ‘"l‘“‘l I ‘ ‘ ‘
[ I it | 1l \M\
miEn “'\‘I‘W f [ "'\ |l (L — 0 WL T
Mu m:;"”‘l\ ;
R
i,
6 Mw \
M \I
I\‘ L‘ ‘
3
562 662 762 862 962 1062
Measurement
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Once an accurate method of measuring the duty cycle from the receiver had been
completed, the team needed to show that the Arduino could successfully control the RC car.
This was done by creating a program titled “Conductor”. The program began by measuring the
duty cycle from the receiver (Figure 4-11). Then the duty cycle was converted into degrees,
where 0 degrees is a 5% duty cycle and 180 degrees is a 10% duty cycle [48]. Lastly, the Servo
library, a standard Arduino library, was used to output a PWM signal corresponding to the
computed degree. To send the signal to the ESC and servo, the team connected the ESC and
servo signal pins to pins 4 and 5 on the Arduino, respectively (Figure 4-16). Both of these pins
could produce a PWM signal. Figure 4-14 shows the duty cycle percentage that is read from the
receiver and Figure 4-15 shows the output PWM to the servo from the Arduino.

Conductor - Measured Duty Cycle
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Figure 4-14: Conductor, measured duty cycle of the input signal
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Figure 4-16: Conductor circuit schematic. Note the colors within the figure are to better illustrate the individual wires.

After the Arduino could successfully measure the input from the receiver and control the
test car, the team created a program that would allow the neural network to control the Arduino
through a serial connection. This was done by replacing the receiver input with commands read

from the serial connection with the Raspberry Pi. As expected, the Arduino capably read the

instructions sent by the Raspberry Pi.
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4.5 Power

Once fully modified, the test car contained two Raspberry Pis, two Arduino Megas, an
ESC, a servo and a receiver. The first Raspberry Pi and Arduino pair was intended to monitor
the car’s sensory systems (Chapter 7), the second Raspberry Pi and Arduino pair was intended
to be used by the ANN (Chapter 8), and the remaining components were needed for the test car
to have the required functionality of an RC car. In order to power these components, a 7.4V,
2.2Ah, 25C battery that came with the test car was used. While all other components were
compatible, the Raspberry Pis were unable to connect directly to the 7.4V LiPo battery [68].
Instead, the Raspberry Pis utilized a buck converter which stepped the 7.4V down to 5V. In
order to obtain a functional power regulator, the team initially began designing a buck converter
that could power the Raspberry Pis and Arduinos. Ultimately, however, the team prioritized the
development of the neural network and purchased two voltage regulators to power the
Raspberry Pis. The remaining components were powered directly by the battery.

4.6 Implementation Problems

With the test car appropriately modified, system control and neural network testing
began. While Chapter 8 provides a more detailed explanation of the training and testing
process, the general neural network procedure was as follows. First, the test car was driven
using the remote control, on a given track, for about 10 minutes. Although this quantity of
training data was insufficient for producing effective models that could drive around the track the
car was trained on, the minimal training data satisfied the POC. With data from the camera and
the controller input, the data was next synchronized and used for the creation of a neural
network model. Having produced the model, the model was then loaded onto the Raspberry Pi
and the car electronics were reconfigured. Specifically, the operation of the receiver was
replaced by the Arduino. Ultimately, the neural network was then tested.

Unfortunately, shortly after preliminary testing began, problems with the test car began to
develop. First, the pre-installed servo motor in control of the steering assembly failed. Once
disassembled, it was determined that the gears in the servo had been stripped, as shown in
Figure 4-17a. The team assumed that the gears stripped during a crash. Once the broken servo
motor was replaced, preliminary testing resumed. Once again, however, the new servo motor
failed. To prevent the breaking of future servos, one of the steering assembly links was modified.
While the original link was made of aluminum, the new part was 3D printed with a thin neck, as
shown in Figure 4-17b. Designed to have minimal bending during normal use and break in the
event of a crash, the new steering component acted as a failsafe to protect the servo motor.
Having fixed the immediate design issue with the car, the car became mechanically capable to
fully resume POC testing.
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(a) (b)

Figure 4-17: Steering assembly failures of test car, servo with stripped gears (a) and replacement steering link (b).

Although the car seemed mechanically capable, the team encountered a second
problem. While performing training and testing, the car would stop after approximately 30
minutes of operation. After investigating the problem, the team found that the battery could not
retain a full charge. When depleted, the battery was unable to supply the current draw required
by the ESC. As a result, the battery’s output voltage would drop, the Raspberry Pi would power
off, and the ESC would change to safety mode. As the preliminary neural network testing was
only done as a POC, the team did not attempt to fix or replace the battery. This limitation,
however, was both an inconvenience and an obstacle for preliminary neural network design.

4.7 Proof of Concept Results

The fundamental purpose of the test car was to establish a Proof of Concept. Specifically
referenced in Table 4-1, the primary POC questions sought to establish the feasibility of the
design considerations chosen for the future vehicle. With respect to question 1, the hardware
selection, preliminary results established the efficacy of using a camera, Arduino, and
Raspberry Pi. All systems operated and, as seen in Figure 4-7, the Arduino proved its capability
of interacting with the receiver. The successful selection of hardware ensuingly solved the
uncertainties affiliated with question 2. Used as training data, both the camera frames and
controller inputs were captured from the selected hardware. Consequently, this data solved
question 3 and allowed for the creation of preliminary neural network models.

Unfortunately, questions 4 and 5 of the POC were unanswered from the experimentation
on the test car. While neural networks were capable of being loaded onto the Raspberry Pi, the
Arduino was unable to read the Raspberry Pi’s instructions. Consequently, the neural network
exhibited no control of the vehicle. Although the interface of Raspberry Pi and Arduino was not
perfected with the test car, however, it was quickly fixed once initial testing was conducted on
the real car.

Ultimately, while the test car was not optimal for autonomous driving, it played a pivotal
role in the development of the project. Providing a foundation on which preliminary work
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regarding controls and neural networks could be tested, the test car served as a proof of
concept for future work. With the proof of concept, the next chapter highlights the process of
creating a new custom car.
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5.0 Custom Car

Although there are plenty of RC cars available on the market that could have been
purchased and customized for the project, it was most appropriate to design and manufacture a
custom car. Not only was the design and manufacturing an important academic exercise, the
design helped determine the feasibility of creating a scale car with features not currently
required in the ME4320 course. Furthermore, the custom design helped create a car that was
specifically designed for autonomous testing.

This chapter discusses the custom car built by the team to create and test an
autonomous car and modular sensor package. Due to the interdisciplinary nature of the project,
poor selection of initial components, and manufacturing difficulties, the design of the custom car
was very iterative. As a result, this chapter was divided into two sections. The first section
discusses the early stages of the custom car including the initial components, system designs,
and electronics. Additionally, the section discusses the design problems of the initial car. The
second section discusses changes that were made throughout the project to improve the car
and the analysis done on the final design of the car.

5.1 Early Stages

While the car underwent consistent redesign, modification, and maintenance, Figure 5-1
illustrates one of the initial car design iterations. Equipped with all necessary hardware, as well
as, front and rear suspension systems, the car contained all necessary equipment for
autonomous testing. This section discusses the systems and components in the initial design.

Figure 5-1: Initial Car Design

One of the difficulties of designing the custom car was fitting all the mechanical systems
and electrical components into a compact design. The initial layout of the car will be described
with the aid of Figure 5-2 below. The front and rear suspensions were limited to the front and
back ends of the chassis, labeled as A and H respectively. The steering assembly was placed
directly behind the front suspension, labeled as B. The electrical components are all placed in
the middle of the chassis. The receiver and ESC are behind the steering assembily, labeled E.
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The Raspberry Pi, Arduino, and circuit boards are on the sides of the car encompassing the
battery and gearbox. The circuit boxes holding the Raspberry Pis, Arduinos, and circuit boards
are labelled C and F. The battery and gearbox are in box D, with the battery above the gearbox.
Lastly, the rear differential and driveshaft are in the center rear of the vehicle, located in boxes G
and |, respectively.

Figure 5-2: Initial layout of custom car

Figure 5-3: Initial custom car dimensions
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The initial car design was approximately 9 inches wide and 18 inches long. Furthermore,
the car weighed approximately 6.3 pounds and was approximately 8 inches tall without the
camera tower (Figure 5-3). As can be seen in Figure 5-1, the majority of the car was 3D printed
with a few selected parts machined. While certain components such as the shock absorbers,
wheels, and camber links were purchased, the majority of the car was custom designed. For a
complete Bill of Materials (BoM), refer to Appendix F.

Proceeding sections discuss the specific systems in the custom car. Figure 5-4 should
be referred to while reading these sections to help understand how the various subsystems are
connected.
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5.1.1 Steering Assembly

The steering assembly designed by the team and located in box B of Figure 5-2 was
based on a parallelogram steering system. The steering system connected the servo to the left
of the parallelogram via a horizontal link. When the servo turned, it subsequently pulled or
pushed the bottom link of the parallelogram. This, in turn, changed the angle of the left and right
links in the parallelogram by pivoting it around an anchoring point on the chassis. When the right
link angle changed, it caused the top link to push or pull the links connecting the parallelogram
to the wheel mounts as represented by links G and I. Ultimately, this produced a steering
system with a turning radius of approximately 2 feet and a maximum turn angle of approximately
45 degrees. For further illustration, a top view of the steering assembly can be seen below in
Figures 5-5 and 5-6.

Figure 5-5: Kinematic diagram of steering assembly
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Z

Figure 5-6: Steering System

Figure 5-7: Selected Servo

To select the initial servo, the team estimated that the maximum force necessary to turn
the wheels would be about 5kg-cm. This was estimated by using Figure 5-5 to calculate the
torque at the servo caused by a force acting at the wheel. The force at the wheel was assumed
to be the full weight of the car in order to add a considerable safety factor for unconsidered
forces (i.e. friction). Due to this calculation, the S6020 High Torque Mid Speed Digital Plastic
Servo, seen in Figure 5-7, was chosen. This plastic servo has a torque of between 7.2-10.5
kg-cm. The servo also has quick response speed between 0.19-0.23 seconds per 60 degrees of
rotation. Other servo specifications are listed in Table 5-1. In addition to exceeding the
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estimating torque requirements, the servo was recommended by the owner of the
Turn4Hobbytown where other components were purchased. A basic model of the servo was
made in SolidWorks and can be seen in Figure 5-8.

Figure 5-8: SolidWorks Drawing of Servo

Table 5-1: Servo Motor Specifications

Torque 7.2kg-cm@4.8V, 10.5kg-cm@6V
Speed 0.23sec/60deg@4.8V, 0.19sec/60deg@6V
Dimensions 1.6”(L)x0.8"(W)x1.5”(H)
Weight 1.70z
Gear Material Metal with 1 Plastic gear

5.1.2 Front Suspension

Designed around the existing steering assembly, the front suspension of the car was
designed from a modified version of a double wishbone suspension. A common design in
commercially available RC cars, the selected wishbone suspension is a modified four bar
linkage.

The front suspension, as illustrated in Figure 5-9, was comprised of several components
including the top and bottom links, shock tower, shocks, steering knuckle, and lower plate.
Acting as the mechanical foundation, the shock tower was rigidly attached to the base of the car
through the lower plate. The shocks then attached from the shock tower to the lower links. One
side of the lower link was attached to the lower plate, which held the pin on which the lower links
pivoted, while the other side was attached to the steering knuckle. The middle of the steering
knuckle supported the stub axle that connected to the wheel, while the top half was connected
to the top link. The top link was then connected back to the shock tower.
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Figure 5-9: Front Suspension

The selected shocks had an overall extended length of 110mm and a compressed length
of 70mm. This meant that the shocks could experience a maximum undulation inducing 40mm
of length change. There were several problems with the front suspension, that prevented the
suspensions from articulating fully. First, the shocks were mounted at an angle so the actual
maximum lateral translation was closer to 35mm instead of the maximum 40mm. Second, the
shock absorbers used passive, air-controlled dampeners. Consequently, the dampeners
commonly had air pockets which affected the responsivity and travel of the entire shock
absorber. Ultimately, while not tested due to time constraints, the onboard IMU could have been
used to approximate the actual undulations experienced by the front suspension.

5.1.3 Drivetrain

Motor

With the front suspension and steering assemblies created, the next subassembly of the
vehicle was the drivetrain. Consisting of a DC brushless electric motor, electronic speed
controller, gearbox, driveshaft, and differential, the drivetrain produced and translated power to
the wheels. As the vehicle was rear-wheel drive, the design of the drivetrain was also integrated
into the design of the rear suspension.

During the motor selection, the team first determined what the required input torque from
the motor would be. This value was estimated by determining the stall torque required to lift 75
percent of the car’s expected weight from one of the rear wheels. The estimated weight of the
car was 3kg and the radius of the wheels was 6.35cm. Based on these values, the team
determined that the required torque of the motor at the rear axle would need to be 1.4Nm. Due
to this design constraint, the team selected the Justock-3650 (Figure 5-10). The Justock-3650 is
a 1800KV DC brushless electric motor that produces 110W of power. The motor has a stall
current of 103.5A and a torque constant of 5.56e-4, resulting in a stall torque of 0.0575Nm. After
being attached to the drivetrain with a 1:27 step down, the output torque at the wheels was
1.55Nm. Additional specifications about the motor can be found below in Table 5-2.
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Table 5-2: Motor Specifications

Figure 5-10: Selected Motor

Model Justock-3650-G2-21.5T
KV (No-load) 1800KV
Resistance 0.0715Q
Current (No-load) 1.3A
Current at M.O.P 33A
Max. Output Power 110W

Dimensions Diameter=3.17mm Length=52.5mm
Weight 182g
Input Voltage 7.4V

Having selected the Justock-3650, it was next modeled in SolidWorks in order to assist
the design of the gearbox. Specifically, the dimensions of the motor were essential in designing
adequate clearance and alignment. The SolidWorks model of the DC brushless electric motor

can be seen in Figure 5-11.
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Figure 5-11: SolidWorks Drawing of Motor

Electronic Speed Controller

To complement the selected DC motor, the next step was the selection of an electronic
speed controller (ESC). As seen in Figure 5-12, the XR10 Justock ESC was selected.
Compatible with the chosen motor, the ESC satisfied the one fundamental requirement for its
operation. As illustrated in Table 5-3, the XR10 also had many other specifications. Similar to
the motor, the ESC was modeled in SolidWorks as seen in Figure 5-13.

Figure 5-12: Selected ESC
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Figure 5-13: SolidWorks Drawing of ESC

Table 5-3: ESC Specifications

Model XERUN XR10 Justock
Output (BEC) 6V, 2A
Continuous Current 60A
Peak Current 380A
Dimensions 33.5mm(L) x 28.5mm(W) x 30.5mm(H)
Weight 59.8¢g

Gearbox

With the necessary electronics to produce torque, the next step in the drivetrain was the
gearbox. A means of reducing the high RPM of the electric motor to generate greater torque, the
gearbox design can be seen in Figures 5-14 and 5-15.

In accordance with the requirements for ME4320, a principle design goal for the car was
to have an overall speed ratio of 1:27 from the motor to the wheels. The gearbox had a step
down of 1:9, and the differential that was selected had an additional 1:3 reduction. Together, the
entire gearing system produced create an overall 1:27 reduction. Within the gearbox, the 1:9
reduction was created using a 12 tooth, 48 pitch pinion gear, and a 36 tooth, 48 pitch spur gear.
To ensure their compatibility with the selected motor, the smaller pinion gears were purchased
from a local hobby store, TurndHobbytown. Meanwhile, the larger spur gears were purchased
on McMaster Carr. Table 5-4 gives more detail about the components of the gearbox.
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Table 5-4: Gear Specifications

Stage One Gears Teeth

Input Pinion Gear

Output Spur Gear

Stage Two Gears Teeth

Input Pinion Gear

Output Spur Gear

# of

12

36
# of

13
36

Pitch
(teeth/in)

48

48

Pitch

48
48

Pitch Shaft

Diameter (in) Diameter (in) Mounted on Material
0.25 1/8 Motor Shaft Steel
0.75 1/4 Compound Axle Steel
Pitch

Diameter Shaft Size Mounted On Material
0.25 1/8 Compound Axle Steel
0.75 1/4 Output Shaft Steel

By stacking the two stages, the input and output shafts of the gearbox could be
positioned so that they were in line with each other. This was done in order to reduce the overall
size of the gearbox, thus making it possible to mount the gearbox at the center of the car. The
overall size of the gearbox is 2.375” x 2" x 2.5”.

X

+

Z

Figure 5-14: Transmission Design
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(a) (b)

Figure 5-15: Gear Mesh Within Gearbox. (a) Stage 1, (b) Stage 2

In order to assemble the gearbox, the first step was to attach the middle spacers shown
in blue in Figure 5-14 to the base plate of the car. Next, the motor mounting plate was screwed
to the motor, and the pinion gear was attached to the motor shaft. All gears are attached to their
respective shafts via set screw and any shafts that were machined had a facet to screw on.
Following, the first stage spur gear was mounted on the compound axle and the shaft was slid
into the middle mounting plate. Once the middle mounting plate was in place, the second stage
pinion gear was attached. The second stage spur gear was then mounted to the output shaft
and the output shaft was fed through the outer plate. Screws were then threaded through all of
the plates and the gearbox was closed.

During gearbox assembly, several inspections were performed including: testing the fit of
all shafts to ensure that they spun freely, ensuring that the gears were aligned and lubricated,
ensuring that the shafts were at the right height, ensuring that the gears were tightly mounted on
the shafts, and that the output shaft and motor shaft have enough clearance. The distance
between the output shaft and motor input shaft was 0.085”. Each of these inspections was
critical to the consistent operation of our gearbox.

Driveshaft

From the gearbox, the next step in the drivetrain was the transfer of rotational power
from the output shaft to the rear differential. For a car with either an independent rear
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suspension or no rear suspension, the rear differential could have been connected directly to
the output of the gearbox using a rigid cylindrical rod. As this car iteration utilized a dependent
rear suspension, however, the design of the driveshaft was more complicated.

As the rear suspension allowed the entirety of the rear axle to articulate, the output shaft
had to be able to transfer power to the rear differential at variable angles. Given this design
constraint, the output shaft utilized a universal joint purchased from Turn4Hobbytown. This
piece was then given appropriate adaptors and was modified to 4.5 inches to fit the dimensions
of the car. An illustration of the customized output shaft can be seen in Figure 5-16.

Figure 5-16: Driveshaft Design

Differential

Connected to the universal joint driveshaft, the final step of the drivetrain was the
differential and rear axle. As illustrated in Figures 5-17 and 5-18, the car was equipped with an
open differential with a 1:3 step down ratio. Furthermore, the ring gear was 2 inches long with
While full-size vehicles normally use limited slip differentials or other more complicated
mechanisms, the car did not require nor need a sophisticated differential. Instead, the car
needed a simple open differential which could rotate the torque of the output shaft to the rear
axle while simultaneously allowing each wheel to spin independently.

In order to support the two gears of the differential, a housing was also constructed.
Using the low-friction nature of PLA as bearings, the housing consisted of a top and bottom
piece which encompassed the pinion and ring gears of the differential. Ultimately, this housing
helped ensure the stability of the differential gears while simultaneously articulating with the rear
axles and wheels. Furthermore, as the differential housing was 5.45 inches long, its legs helped
contact the axle mounts on the rear axle. This allowed the differential housing to also act as a
Panhard rod, reducing the lateral strain experienced at the rear.
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Figure 5-17: Differential and Differential Housing

N

Figure 5-18: Selected Differential. Reproduced from [67].

Table 5-5: Differential Specifications

Model JLB Racing EA1057
Step Down Ratio 1:3
Material Iron
Dimensions 43mm(L) x 50mm(W) x 26mm(H)

With the differential integrated, the drivetrain was fully assembled. As seen in Figure
5-19, the drivetrain looked as follows. Particularly of note was the length of the driveshaft which
covered the gap between the gearbox and the input pinion to the rear differential. As the gap
had to accommodate the free rotation of the driveshaft and universal joint, the distance was 4.05
inches.
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Figure 5-19: SolidWorks Assembly of Powertrain

5.1.4 Rear Suspension

The final design step was the implementation of the shock absorbers and linkages to
create a rear suspension. In order to connect the rear axle to the base plate of the car, a
four-bar linkage was used. Comprised of two vertically stacked rods on each side of the
differential, these rods physically connected the rear axle to the car chassis while still allowing
vertical motion. Specifically, the design of the four-bar mechanism can be seen in Figure 5-21.
As can be seen in the illustration, the rear axle mounts had bearings to ensure that the rear axle
could still rotate while supporting the weight of the linkages.

Although the linkages ensured that the rear axle remained attached to the chassis, the
linkages were unable to keep the rear of the chassis elevated. Consequently, in order to control
the vertical elevation and displacement of the chassis, two shock absorbers were implemented.
Using a shock tower fastened to the base plate as the foundation, the other end of the shock
absorbers was attached to the rear axle mounts used for the linkages. As for the four-bar
linkage, the implementation of the shock absorbers can be seen in Figure 5-21.
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Figure 5-20: Dependent Rear Suspension

Using the same shock absorbers as the front suspension, the maximum theoretical
travel of the rear suspension was 40mm. Due to the extreme shock absorber angle (45 degrees)
and the presence of air gaps within the dampeners, however, the rear suspension was
discovered to achieve a maximum displacement of 20mm when externally forced.

5.1.5 Other Components
Battery

Figure 5-21: Selected Battery

Seen in Figure 5-21 is the battery selected for the RC car. This battery is a 2-cell lithium
polymer battery in a hard case. The battery capacity of 5200mAh was chosen specifically so
that the team could run the car for long periods of time without needing to recharge or replace
the battery. Furthermore, the 50C discharge rate allowed the group to power all of the onboard
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electronics as well as the servo and motor. Using an estimated power usage of 1.7W, 1.0W,
20W, and 2.3W for the Raspberry Pi, Arduino, motor, and servo, the estimated power draw of
the components was 27W. This resulted in an estimated battery life of about 1.4hr. The battery
was then modeled into SolidWorks as seen in Figure 5-22. Additionally, Table 5-6 illustrates the
battery specifications.

Figure 5-22: SolidWorks Drawing of Battery

Table 5-6: Battery Specifications

Voltage 7.4V
Energy Storage Capacity 5200mAh
Discharge Rate 50C
Charge Rate 2C
Dimensions 138mm(L) x 47mm(W) x 25mm(H)
Weight 2669

Camera

The specifications required by the team were that it needed to have a wide field of view
and be compatible with the Raspberry Pi 3 B+. The camera needed to have a wide angle view
to capture the amount of data necessary to run the ANN. The camera had to also be compatible
with the Raspberry Pi 3 B+ because it needed to be able to interface with the hardware on the
custom car. To meet these specifications, the team chose the Amadget Wide Angle Fish-eye
Camera Module, model OV564, shown in Figure 5-XX. This camera has a 175 degree field of
view and is compatible with the Raspberry Pi 3 B+, making it perfectly suited the team’s needs.
Additional Amadget Wide Angle Fish-eye Camera Module, model OV564, specifications are
tabulated in Table 5-7.
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Table 5-7: Camera Specifications

Figure 5-23: Selected camera [67]

Model OoVv5647
Compatibility Raspberry Pi Models A/B/B+, Pi2 and Pi3
Lens Type Fish-eye
Resolution 2952 x 1944
Viewing Angle 175°
Focal Length Adjustable

Dimensions

25mm(L) x 24mm(W) x 9mm(H)

Weight

32g
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Figure 5-24: Chassis

The chassis shown in Figure 5-24 served two purposes. First, it connected the front and
rear of the vehicle using a rigid frame. Second, it held all of the components needed to operate
the car, including the servo, motor, Arduino, Raspberry Pi, and all remaining electronics. During
its design, the mounting locations of each of the components and the turning radius of the
wheels were considered. Holes for screws were designed for each of the components and
component mounts, and an appropriate amount of space was given for the front wheels to turn.
Ultimately, the base was 12.78inches-by-8.85inches-by-0.38inches and 3D printed.

Mounts

The parts that needed to be mounted on the custom car included two Arduinos, two
Raspberry Pis, three PCBs, three temperature sensors, an IMU, a battery, an ESC, and a
receiver. In order to make the PCBs, Arduinos and Raspberry Pis readily accessible, separate
boxes were placed on opposite sides of the car. Shown in Figure 5-25, the boxes allowed for the
vertical placement of all PCBs, Arduinos, and Raspberry Pis. As seen in Figure 5-26, slots
behind the two Raspberry Pi CPUs were made for two of the temperature sensors. Furthermore,
the clip shown in Figure 5-27 went around the motor to hold a third temperature sensor. The
battery was placed in the center of the car, above the motor to make the battery easily
accessible. The mount, Figure 5-28, was specifically designed to raise the battery above the
gearbox while also containing a slot for the IMU. Lastly, the receiver and the ESC, were
mounted in front of the left circuit box. Seen in Figure 5-29, the mount was designed so the
components would remain motionless during car operation while remaining easily accessible for
modification.

84



Figure 5-25: Raspberry Pi, Arduino, and PCB Mount

Figure 5-26: Temperature Sensor Mounts for Raspberry Pi
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Figure 5-27: Temperature Sensor Mount for Motor

—

Figure 5-28: Battery Mount

Figure 5-29: ESC and Receiver Mount
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5.1.6 Electronics

Power

The electrical components on the initial custom car were powered by the same methods
used to power the components on the test car. The two Raspberry Pi CPUs on the car were
powered by two voltage regulators that stepped the voltage down from 7.4V to 5.0V. The two
Arduinos, the ESC, and the servo were directly powered by the battery. The other components
on the car, for example, the receiver and camera, were powered from the Arduino or Raspberry
Pi.

Control Systems

The system controls for the servo and ESC were the same as the ones used in the test
car. They were directly controlled by an Arduino, which received instructions from a receiver
during training and a Raspberry Pi during neural network testing. When the Arduino was
controlled by the receiver, the servo and ESC commands were measured as two PMWs.
Subsequently, the commands were converted into degrees and sent to the servo and ESC using
the standard servo library as seen in Figure 5-30. When the Arduino was controlled by the ANN,
the commands were read, in degrees, from the Arduino’s serial connection with the Raspberry
Pi. The commands were then sent to the servo and ESC using the standard servo library as in
Figure 5-31.
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Figure 5-30: Control of Servo and Motor During ANN Training
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Figure 5-31: Control of Servo and Motor During ANN Testing

5.2 Design Issues

After developing the first stage of the car, the neural network training and testing began.
Unfortunately, the frequent use of the vehicle revealed several flaws in the car’s design. The
systems with the most significant problems were the front suspension, the steering assembly,
and the gearbox positioning.
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5.2.1 Front Suspension

As the front suspension moved vertically, the wheels toed either inward or outward. This
phenomenon was a result of the connection between the tie rod and the wheel mount not
moving synchronously with the wheel mount pivot axis as the front suspension moved vertically.
This was a consequence of the suspension links not experiencing the same horizontal travel as
the connection between the tie rod and the wheel mount. This inconsistency had three causes.
The first inconsistency occurred because the tie rod in the steering linkage had a different length
than the top and bottom links of the suspension (77mm, 58mm, and 60mm respectively). The
different lengths resulted in different rotations and therefore different horizontal travels. The
second inconsistency was caused by the suspension links not being the same length (568mm
and 60mm). These different lengths also resulted in different rotations and therefore different
horizontal travel of the links. The last reason for the inconsistency was that the tie rod and
suspension links had misaligned mounting locations and were not parallel. Again, this resulted
in different rotations and therefore different horizontal travel of the links.

The toeing, while a problem on its own, produced an additional problem. Due to the way
the steering linkage interacted with the suspension, the compression of the shocks induced
changes in both the angle of toe and the contact angle between the tires and the ground. This
meant that the actual observable undulation that the front suspension could undergo was
reduced from 35mm to about 15mm. This was not due to binding in the shocks, but was a
constraint to ensure that the position of the tire was relatively consistent throughout the travel of
the suspension system.

5.2.2 Steering Assembly

The steering assembly had two problems. The first problem involved play in the steering
of about a quarter of an inch. This was a significant issue because the neural network expected
a deterministic environment. This meant that when a command was given, the output was
exactly as commanded with no variability. When this did not happen, the ANN was put into
situations that it was not trained to handle, causing the car to crash.The play resulted in a
nondeterministic world because it would cause drift, i.e. a command from the ANN of straight did
not result in the car going perfectly straight. The play in the steering assembly was caused by
the imprecision of the 3D printed parts used in the steering system. As prints came off of the
printer, they would often be either too big or too small at locations such as holes. In order to
account for this, holes were undersized by approximately 2mm and then drilled out. This method
resulted in holes that were more consistent and more precise than holes that were printed to
size. The second problem with the steering assembly involved the servo. When the car would
crash, the servo would short circuit and fail. This happened because as the wheels hit a wall,
the servo would continue to send power even though the position of the servo was not
changing. Eventually, this maximum current draw would cause the servo to burn out. This
resulted in the team needing to replace the servo twice.
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5.2.3 Gearbox

The last significant design flaw was that the gearbox was mounting too far back on the
chassis. With the gearbox located where it was, the team had trouble fitting a driveshaft, which
required two universal joints and a dog bone, between the transmission and the rear
differential. Although the team was able to work around this by moving back the rear
suspension, it lengthened the car by approximately 4in, making it more difficult to drive on the
small tracks for which the car was designed. Had the gearbox been mounted closer to the front
of the car, there would have been more space for the drive shaft connecting the transmission to
the rear differential.

5.2.4 Additional Issues

Another design flaw, although not significant to a specific section, was the melting of 3D
printed parts due to excessive rubbing. Most notably, this caused problems in the steering
assembly and the rear differential. In the steering assembly, excessive rubbing of the rotating
wheel on the wheel mount created significant play. In the rear differential, the excessive rubbing
caused both the housing and plastic axles to deform, causing the gears to slip and the car to
have areas of high friction.

Several of the problems listed above were related to either poor design or a poor
understanding of the way components were going to be manufactured. For example, the original
housing for the rear differential was made out of 3D printed PLA. As the axle spun, is rubbed on
the housing creating friction and heat. As the part heated up, the plastic melted and the housing
was no longer able to function properly. Had the component been designed better from the
beginning so that there was less friction, or had the component been made out of a more wear
and temperature resistant material, this problem could have been avoided.

Nearly all of the components on the car were manufactured on campus through a variety
of methods, including CNC Mills, CNC Lathes, 3D printers, and hand tools. Each of these
methods had limitations that should have been considered earlier in the design process. For
example, the rear axles in the car were very long rods with stepped diameters. The parts were
to be machined out of steel which would require the use of a lathe, but due to the length of the
axles and the limitations of turning operations, the parts had to be redesigned. The lathe can
only have so much stock material protruding from the chuck or the workpiece will experience
significant amounts of deflection. To combat this deflection, the axles were redesigned so that
less of the overall workpiece needed to be turned down. If we had considered the limitations of
the lathe when designing this component, we could have saved time and materials.

In order to prevent issues such as these for future students who may work on this Major
Qualifying Project, or students in ME 4320, we created a Design for Manufacturability Guide that
can be used to create more manufacturable parts. This guide outlines the limitations or each
manufacturing method as well as some general design guidelines. This ensures that parts will
be manufacturable and function as intended.
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5.3 Last Stage

After becoming more aware of the design flaws with the initial custom car, the team
created several iterations of the car systems to fix or improve the problems. In addition, other
features were added to increase the car’s usability. This section discusses the result from the
iterations including the modifications that were made and the final car design.

5.3.1 Component Changes

To prevent shorting or overheating, the original servo was replaced with an all metal
servo that had a higher torque specification. The specifications of the servo motor can be seen
in Table 5-8 while Figure 5-32 shows an image of the new servo.

Table 5-8: New Servo Motor Specifications

Model SC-1268SG
Input Voltage 7.4V
Speed 0.11 sec/60°
Torque 25.0 kg-cm
Dimensions 54mm(L) x 20.2mm(W) x 37.2mm(H)
Weight 62.0g

Figure 5-32: New Servo Motor
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5.3.2 Design Alterations

To improve the play in the steering, the team made modifications to both the steering
assembly, and front suspension. Furthermore, the car underwent a significant redesign of the
rear suspension. To reduce the imprecision of the 3D printed parts that contributed to the play,
each part was altered so the pin holes were initially printed too small (approximately 2mm each).
After being printed, each hole was then stripped with the screw or pin that would hold it in place
so the parts would have a tight fit. The wheel mounts in the steering assembly were also
adjusted so the wheels tilted towards the car, making it so the car had a natural resting location.
These modifications reduced play within the car’s steering by about 95 percent. The second
problem with the steering assembly, the wheels toeing when the front suspension moves
vertically, was not fixed because any design alterations that would have fixed it would have
required a full redesign for the front of the car. However, the team did develop a solution where
the steering assembly turned the wheels while keeping the tie rods parallel with the suspension
links. This was done by ensuring that the tie rod always pivots about the same point. In the
solution, when the servo was turned, it extended or contracted rods with a notch on which the tie
rods pivot. The extending or contracting of the rods pushed or pulled a slanted slider,
consequently causing the tie rods to extend or contract. The tie rods remain parallel with the
suspension links because they always rotate about the rods connected to the servo. The model
of the solution that the team developed is shown in Figures 5-33 and 5-34.

Table 5-33: Isometric view of steering assembly solution
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Table 5-34: Top view of steering assembly solution

In addition to replacing the servo to prevent shorting or overheating from a crash, the
team also designed a bumper. The bumper can be seen in Figure 5-35 below. The bumper was
attached to the front of the chassis and encompassed the majority of the front wheels. This
modification prevented the wheels and the servo from jamming during a crash. See Figure 5-35
for a model of the front of the car with the bumper.

Figure 5-35: Model of the custom car with the bumper

In order to reduce the overall length of the vehicle, the rear suspension was also
redesigned. Changed from dependent to independent, the new rear suspension utilized a
modified wishbone structure similar to that of the front suspension. While not shown in Figure
5-36, the new rear suspension used two modified universal joints as rear axles. By making the
rear suspension independent, this consequently eliminated the need for a long drive shaft. As a
result, the overall length of the car reduced by approximately 3 inches.
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Figure 5-36: Independent Rear Suspension

Taking into account the design and component changes, the finalized car was produced
as seen in Figure 5-37.

Figure 5-37: Finalized Car

5.3.3 Controls

Although the same method for controlling the car was used in all the iterations of custom
car, several features were added to improve the ease of training and testing. The alterations
included combining the programs that control the Arduino via the receiver and the ANN, adding
the ability to pause and play the ANN testing, and adding the ability to collect data with steps
different amounts of turning options. The team combined the programs so switching from
training and ANN testing could be done immediately. The pause and play feature for the ANN
testing was added so when the car started driving could be controlled more easily. The ability to
collect data with different amounts of turning steps was added so that the data collected would
be the same as the data outputted by the ANN, which produces an output with a predetermined
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amount of turning steps. Each of these features was controlled with a remote controller with the
feature that is being used being indicated by three LEDs on the car.

5.4 Conclusion

In conclusion, the team successfully created a custom 1:10 scale car. Included on the
car was a custom independent front suspension, independent rear suspension, rear differential,
transmission, and steering assembly. Although the car had several design flaws, they were not
significant, allowing the project to continue forward.

After the design of the car had been completed, the team analyzed the custom
components and systems on the car. The types of analyses done included static analysis, bond
graph analysis, finite element analysis, and dynamic analysis. The next chapter discusses each
of these analyses in detail.
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6.0 Mechanical Analysis

In order to monitor the loads experienced by the car, many of the car’s assemblies
underwent analysis. Consisting of static, dynamic, finite element, and bond graph studies, the
majority of the vehicle was analyzed.

6.1 Static Analysis - Front Suspension

Seen in Figure 6-1 is a SolidWorks model of half of the front suspension. Furthermore,
Figure 6-2 illustrates the front suspension in a kinematic, linkage outline. Ultimately, the primary
interest with the static analysis was to determine the internal forces endured by the front
suspension components, as well as, the system’s theoretical displacement.

dix

Figure 6-1: SolidWorks Model of Half of Front Suspension

Figure 6-2: Kinematic Outline of Front Suspension

Using Figure 6-1 as a reference, the front suspension was first broken into its
fundamental components. Following, free body diagrams of the forces undergone by each
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component were produced. Finally, using these free body diagrams, the sum of the forces in the
x and y direction were set to 0 and the sum of the moments in the z direction was set to 0.

Seen in Figure 6-3 is the first component analyzed. Consisting of the wheel, stub axle,
and wheel mount, these pieces were simplified into one piece. Taking into account the 5 degree
positive camber, the free body diagram of the simplified component can be seen in Figure 6-4.
Set as the ground, (0,0), force A represented the normal force exerted by the surface on the
wheel. While the normal force only consisted of a y-component for a static case, the
x-component was included for clarity. At their corresponding locations, forces B and C
represented the interaction at the interface between the wheel assembly and 2.

Y

Bx

Figure 6-3: Wheel Assembly

B {4196, 65.77)

C[39.18, 34)

Y

Figure 6-4: Free Body Diagram of Wheel Assembly
Due to static theory, the summation of the forces within the x and y direction had to be

equal to 0. Additionally, the moment about an arbitrary force location had to be equal to 0. Given
these fundamental laws of statics, the following equations were created.
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YF. =0= AX — BX + CX
YF, =0=AY - BY + CY

¥My =0 =6577BX — 41.96BY — 34CX + 39.18CY

Seen in Figure 6-5 is the mechanism which allowed for articulation of the front
suspension while also allowing for rotation and camber adjustment of the wheels. Taking into
account the forces and locations of said forces, the free body diagram seen in Figure 6-6
illustrates the loads experienced by this piece. Particular interest should be devoted to the units
of the locations of the forces within the free body diagrams. All force locations were specifically

written in units of millimeters.

Y

B

Figure 6-5: Wheel Mount Holder
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Figure 6-6: Free Body Diagram of Wheel Mount Holder
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YF, =0= BX —CX+DX — EX
$F, =0=BY — CY + DY — EY

YMp=0= —3177CX + 2.78CY — 6.82DX + 9.52DY — 28.11EX + 8.2EY

Seen in Figure 6-7 is the camber link which controlled the camber of the front wheels. Its
free body diagram in Figure 6-8 depicts illustrates the loads experienced by this component.

Y

Hex

Figure 6-7: Camber Link

Y

. F104.73,96.62)
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D |51.48,7259)

DX

DY

Figure 6-8: Free Body Diagram of Camber Link
YE. =0= —DX+FX
Y.F, =0= —DY +FY
YMp = 0= —24.03FX + 53.24FY
Seen in Figure 6-9 is the modified wishbone used to create an independent front
suspension. As illustrated within the free body diagram of Figure 6-10, this piece experienced

forces from its connection with the main frame and the wheels. Additionally, however, the
wishbone had to account for the forces exerted by the shock absorbers.
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Figure 6-9: Wishbone

Y HY

‘é"x H [58.43,39.27] G197, 43.44]

Figure 6-10: Free Body Diagram of Wishbone

YE, =0= EX — GX — HX
SF, =0 =EY +GY — HY

Y Mg =0=0578GX + 63.24GY + 2.21HX — 24.67THY

Seen in Figure 6-11 is the shock absorber. A very important piece for the front
suspension, the shock absorber helps support the weight of the vehicle, while also allowing for
articulation of the suspension. The forces undergone by the shock absorber can be seen in the
free body diagram in Figure 6-12.

Y

Bx

Figure 6-11: Shock Absorber
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Figure 6-12: Free Body Diagram of Shock Absorber

YF, =0= HX —IX
¥F, =0=HY —I¥

YMy =0=78.18lX — 48.11¥

The final component of the front suspension is illustrated in Figure 6-13. The mounting
mechanism, this component connected the wishbone to the chassis of the vehicle while also
serving as a shock tower for the two front shock absorbers. The force body diagram on half of
the mounting mechanism can be seen in Figure 6-14. Within the figure, the term ‘Force’ refers to
one quarter of the car’s total weight. This was based on the assumption that the weight of the
car could be evenly divided into four concentrated forces at each wheel.
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Figure 6-13: Shock Tower
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Figure 6-14: Free Body Diagram of Shock Tower

Y =0= —FX+GX+1IX
¥F, =7.01N = —FY — GY + IY — Farce
YMg =0 =053.18FX — 7.73FY — 74.61IX + 9.53IY = 244.86N — mm
Ultimately, while the weight of the car could have been represented as an external force
at Point A, this analysis analyzed the forces at Point A as purely reactionary. Furthermore, while

friction, suspension undulation, and centripetal force could have been integrated, the analysis
represented the resting forces present within the front suspension with a static car.
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Having obtained 18 equations representing the static conditions of the front suspension,
a system of equations was created to determine the 18 unknowns. The determined forces at
each component, in units of Newtons, can be seen in Table 6-1 below.

Table 6-1: Static Forces of Front Suspension

AX =0N DX = 25.5565N GX =8.2178N
AY =7N DY = 11.5350N GY =9.6367N
BX =9.2874N EX = 25.5565N HX = 17.3387N
BY =7.3409N EY = 18.5450N HY =28.1817N
CX =9.2874N FX =25.5565N IX=17.3387N
CY = 0.3309N FY = 11.5350N Y =28.1817N

Modeling the entire front suspension system as a linkage, the displacements
experienced by each component can be determined using dynamics equations. Using the forces
endured by the shock absorber, the travel of the front suspension can be estimated. Using
Hooke’s Law, F = kx, the internal forces experienced by the shock absorber would produce a
displacement indicating the car’s equilibrium ride height. As time was limited, the experimental
values for the spring and damping constants of the shock absorber were never determined.
Consequently, the equilibrium compression of the front shock absorbers cannot be currently
calculated.

6.2 Bond Graph Analysis

Bond graph analysis was performed separately on the gearbox and suspension system.
The analysis was done not to create templates that describe the systems. These template will
be experimentally tested and improved by future teams to develop models that adequately
describe the actual systems. Included in each system template is a system diagram, a bond
graph, a list of the assumptions present in the bond graph, and a differential matrix of the
system’s state equations. There were several nomenclature formats used during the bond graph
analysis of the gearbox. Refer to the list of nomenclature for nomenclature format clarification.

Gearbox

Due to the complexity of real systems, the team simplified the bond graph by making
several assumptions about the gearbox. The first assumption the team made was that the gears
in the gearbox were perfectly machined and mesh perfectly. This means that damping and
spring effects between gears did not need to be considered in the model. The team also
assumed that all rotations within the gearbox are small, allowing the team to use the equation
v = wr to relate velocity to angular velocity. Additionally, angular moments J,, J,, and J, were
assumed to occur at gear A, D,, and D, respectively. This meant that these inertias act at the
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corresponding locations and can therefore be placed in those locations in the bond graph.

Lastly, the components connecting to the output shaft of the gearbox were assumed to have a

reactionary torque and were therefore modeled as a source of effort. Figure 6-15 contains a

diagram labeling the components, dampers, inertial masses, and springs in the gearbox and the
bond graph of the gearbox can be seen below in Figure 6-16.
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Figure 6-15: Labeled Gearbox Diagram
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Figure 6-16: Gearbox Bond Graph
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From the bond graph, the team found four state equations. Then, using the flows and
efforts outlined in the bond graph, the team developed a differential matrix to describe the state
equations. The matrix and other related equations are shown in Figure 6-17. The accompanying
equations and their derivations used to develop the matrix are shown in appendix C.

n=4: 9;;, hé’, 94’,, hé = F(gj, h(], 94, h3, CUM,‘L'R)

0; 6, |1 0
T L O e PR L
ol e, o Mo|®
hy hy 0 C
0 . 0 0
]ﬁk'? 0 - C]6k4 0
Js+]it+ Je N Np(s+Ja+ Je)
M = [ ) -1
0 (i 0 /;
0 0 J3k.6, -D, - D,
L+l +]s h+l+]s
_]3NA

Cc= ——m—
Ng(s +J2 +J5)
Figure 6-17: Gearbox matrix equations

Suspension

Similar to actual gearboxes, actual suspension systems are very complex. To simplify
this suspension system, the team made several assumptions. The first assumption the team
made was that the front and rear suspension on the right side of the car was identical to the
front and rear suspension on the left side. This allowed the team to use the half car model to
analyze the suspension. The team also assumed that links connecting the wheels to the body
car and the rubber on the wheels can be modeled as a spring and damper in parallel. The third
assumption the team made was that the chassis of the car is rigid and therefore does not bend.
Lastly, the team assumed that forces in the Z direction and masses one and two are negligible.
As a result all of these components were neglected. Figure 6-18 contains a diagram of the half
car model, damping constants, inertials, and spring constants used for the analysis. Additionally,
the bond graph of the suspension system can be seen in Figure 6-19. [69]
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Figure 6-18: Half car model for suspension
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From the bond graph, the team found six state equations. Each state equation was then
solved for using the flows and efforts in the bond graph. Lastly, using these equations a
differential matrix was created that describes the state equations. The state equations and
differential matrix can be seen below in Figure 6-20. By obtaining D through experimentation,
the state equations can be solved. For additional information, both the accompanying equations
and their derivations used to develop the matrix are shown in appendix C.

n = 6: X1, X34, P2, Mo, X35, X3 = F (X1, %24, P2 o, X X3, V1, Uyas Fy)
x1 Xy a 0 0
X3a X2a b 0 0
x5 x 0 c 0
Blam| 72|+ Vit |Unz ¥ Fy
X5p Xop 0 d 0
2] P2 e f 1
h h, g h 0
—k, k, =D DR,
0 0 D,
D, +D, D, +D, m, (1+32) J1(D; +Dy)
ky k, 0 0 D, DiR,
D, — Dy Dy —D, my (Dy — D) J2(D; = Dy)
ks ks _ =D — D4R,
0 0 — Dy
D, +Ds D, + D, m; (1+5%) J2(Dy + D)
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Figure 6-20. Suspension Bond Graph Matrix

6.3 Finite Element Analysis for Von Mises Stress

In order to determine the critical points on several of the more complex components, we
used Finite Element Analysis (FEA). FEA works by taking complex parts and breaking them into
smaller shapes that can be analyzed more easily. Each finite element is then analyzed and then
the elements are combined back into the complex shape, in order to analyze the entire model.
FEA can be used to do several types of analysis, such as static, fatigue, buckling, and thermal
analysis. In our project, we used FEA to locate the critical regions, where there was the most
stress on the part, as well as the location of the maximum deflection. Below, you can find the
process for setting up and running a static analysis using solidworks simulation.
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The first step in static FEA analysis is to assign a material to the part. Many of the
calculations performed by the software are dependant on the material properties of the part.
This can be done by selecting a material from the materials database, or by adding a custom
material.

With a material selected, the next step was to define the fixturing of the part. Fixtures tell
the FEA software how the part is held in place.There are several types of fixtures, and you
should select the type that matches how the part is fixtured. The most common fixture types are
fixed, fixed hinge, roller slider, and elastic support.

After the fixturing has been defined, the next step is to define the loads on the part.
There are several types of loads that can be applied such as forces, torques, pressures, and
gravity. In order to apply these loads, the program asks you for the magnitude of the load and
the location. Once you have defined the material, fixturing, and loading, you are ready to run a
basic study. For the servo horn in our steering assembly, the component can be seen below.

Figure 6-21: SolidWorks FEA of Servo Horn

As you can see in the Figure 6-21, the green arrows represent fixturing locations and the
purple arrows represent the loads. In the part above, the part is rigidly fixed about the central
axis. On this servo horn, the part is fixtured through the central hole where the screw is used to
keep it rigidly attached to the servo. The servo provides a torque on the part through the central
axis. The magnitude of the torque was found from the servo specifications provided by the servo
manufacturer. There is a pin through the outermost hole on the appendage that then connects to
the next link in the steering system, which acts as a rigid fixture in this simulation.

Once we have defined the fixtures and loads on the servo horn, we run the study to
calculate the critical points. This creates a mesh which breaks your component into finite
elements and analyzes each element individually. One thing to be aware of, is that the program
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show a deformed result that is exaggerated when compared to the actual deformation seen in

the part. The Von Mises Stress results can be seen in Figure 6-22.

Figure 6-22: Von Mises Stress of Servo Horn

In Figure 6-22, the areas of higher stress are represented by warmer colors, which helps

von Mises (Nfm=2)
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visually identify the locations of maximum stress. The values used to set up this analysis can be

seen Table 6-2 below.
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Table 6-2: Simulation Parameters for Von Mises Stress

Material Used ABS
Elastic Modulus 2000000000 Pa
Poisson's Ratio 0.394
Mass density 1020 kg/m*3
Tensile Strength 30000000 Pa
Shear Modulus 318900000 Pa
Fixture Type Location
Fixed Geometry Countersunk Screw Hole
Fixed Geometry Pin Hole for Steering Arm Connection
Applied Load
Torque 146 0z-in
Results
Max Von Mises Stress 24700000 Pa
Maximum Displacement 0.2317 mm
Maximum Strain 0.0147

These locations where the stress is maximum are the locations where the part is most
likely to break. You can see another example of this in Figure 6-23.

Figure 6-23: Von Mises Stress of Steering Pivot

In the part above from the steering assembly, the FEA analysis shows us that the part is
most likely to break from torsional stress around the center of the column. When analyzing this
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component, the results of the static analysis for the steering system was used in order to
determine what the resulting forces were on the component and where they were located.

In the steering are pictured in Figure 6-24 below, we can see that the maximum shear
stress is actual located at the holes where the pins go that connect arm to the steering posts.

Figure 6-24: Von Mises Stress of Steering Arm

Results of static Finite Element Analysis of stress and displacement of several
components are shown in Appendix A.

6.4 Static and Dynamic Analysis for Steering System

Static and dynamic analysis was done on a simplified two dimensional model of the car.
This model assumes that the links are rigid, that all links are made of Polylactic Acid by 3D
printing, the forces in the third dimension are negligible, the joints connecting links are
frictionless and massless, the links and masses are small enough to be considered point
masses, links Gl and HK are assumed to be only in the Y direction, and the center of mass of
each link is considered to be the center of the link. The diagram of the segments is shown in
Figure 6-25 and the methods and solutions are in Appendix H. Using the input torque of the
servo motor, which was 19.04 Ib-in, the torque at the wheel’s point of rotation, points J and L
when solved statically was 11.7 Ib-in and was 9.8454 |b-in when solved dynamically. Both of
these values allow the steering system to overcome the friction of the large wheels on the
ground to make sure that the car handles in an expected way and can always turn the wheels.

Figure 6-25: Steering Linkage System
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7.0 Sensor Dashboard

The fundamental goal of the sensor dashboard was to create a sensor system that could
monitor a scale car’s performance. This system is intended to be integrated into ME4320
course. Within the course, students will be tasked with implementing the sensor system into
their manufactured cars. The collected data is intended to be used as a validation for the
theoretical analysis performed in the course. In order to make the sensor system compatible
with the various car designs produced in the course, the system was designed to be both
modular and customizable.

This chapter is divided into three sections. The first section discusses the sensors used
in the dashboard. The second section discusses the implementation of the sensors onto the
existing car hardware. The third section discusses the modularity of the dashboard. Finally, the
last section will discuss the real-time capabilities of the sensor dashboard.

7.1 Sensors

There are numerous measurements that can be used to verify the theoretical
calculations done on the ME4320 cars. These measurements include component travel,
component stress and strain, shaft rotation, heat generation, spring forces, and damping forces.
The measurements selected for the initial design of the sensor dashboard were heat generation,
component travel, shaft rotation. These measurements were included because the equipment
required to take these measurements, an IMU, a tachometer, and temperature sensors, are
inexpensive, not excessively complex, and easily scalable.

7.1.1 Thermal System

As the scale car’s control system consists of many electrical and mechanical
components that are sensitive to heat, it was important to monitor the heat generated in the car
and if needed regulate the heat flow within the vehicle. In order to do this, temperature sensors
and a cooling fan were both added to the sensor dashboard. The temperature was intended to
be monitored in real-time and when the system was too hot, the cooling fan would turn on.

Temperature Sensor

Of the numerous temperature sensors available, the team narrowed the selection to the
DHT11 and the DHT22. This was done due to the available and inexpensiveness of the
temperature sensors. After further investigation, it was determined that the DHT-22 was better
suited for the team’s needs than the DHT11. This was due to the larger temperature range that
the sensor could measure with a minimal cost increase. An image for the DHT22 temperature
sensor and more information on both of the sensors can be seen in Figure 7-1 (reproduced as is
from [71]) and Table 7-1, respectively.
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Table 7-1: DHT22 vs. DHT11 Temperature Sensors [71][72]

Temperature Sensor DHT 22 DHT 11
Power Supply 3.3-6V DC 3-5.5V DC
Temperature Range -40 to 80 Celcius 0-50 Celsius
Measures Humidity 0 to 100% with 2-5% humidity 20-90% with 4-8%
accuracy accuracy
Average Sensing Period 2s 2s
Dimensions 14*18*5.5mm 12*15.5*5.5mm
Weight 0.32 ounces 0.1 ounces
Cost $10 $8
P &
selire
23

Figure 7-1: DHT22 Temperature Sensor. Reproduced as is from [71].

Cooling Fan

For the cooling fan, a 4-pin DC cooling fan was chosen over a regular 3-pin DC cooling
fan. A 4-pin fan was chosen over a 3-pin fan because 3-pin fans require additional external
circuit to control the fan’s speed control whereas, no such circuitry would be necessary while
using a 4-pin fan. The additional circuitry was a deterrent because it increased both the
complexity and cost, consequently reducing its scalability. The 4-pin fan that was chosen was
the Noctua NF-A4x10 due to its low power and space requirements. The fan has a maximum
input power of 0.35W and was only 4cm tall, 4cm wide, and 1cm in depth. An image for the
Noctua NF-A4x10 and more details about the fan can be seen in Figure 7-2 (reproduced as is
from [72]) and Table 7-2, respectively.
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3

Figure 7-2: Noctua NF-A4x10 cooling fan. Reproduced as is from [73].

For the 4-pin fan, Noctua NF-A4x10 5V PWM cooling fan was selected and integrated
into the thermal system (Figure 7-2 reproduced as is from [73]). The fan specifications are listed

in Table 7-2. [73]

Table 7-2: Cooling Fan Specifications [73]

Cooling Fan NF-A4x10 5V PWM
Size 40 x40 x 10 mm
Max. rotational speed (+/-10%) 5000 RPM

Max. airflow 8.9 m3h

Max. acoustical noise 19.6 dB(A)

Max. static pressure 1.95 mm H20

Max. input power / operating voltage 0.35W / 5V
Connector 4 - Pin

7.1.2 Inertial Measurement Unit

There are many IMUs that are commercially available. Pololu MinIMU-9 was selected
for due to the extensive documentation provided by the manufacturer. Additionally, it was
selected because is small, can be easily used with an Arduino and was readily accessible to the
team. Figure 7-3 illustrates the Pololu MinIMU-9’s size, axis orientation and pins. Specifications
of the Pololu MinIMU-9 are tabulated in Table 7-3
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Figure 7-3: Pololu MinIMU-9 v3. Reproduced as is from [74].

Table 7-3: Pololu MinIMU-9 v3 specifications [75]

Dimensions

0.8"x0.5"x0.1”

Weight without header pins

0.7 g (0.02 0z)

Operating voltage 25055V
Supply current 10 mA
Output format (I?C) Gyro: one 16-bit reading per axis

Accelerometer: one 12-bit reading
(left-justified) per axis

Magnetometer: one 12-bit reading
(right-justified) per axis

Sensitivity range (configurable)

Gyro (°/s): £250, £500, or £2000

Accelerometer(g): £2, £4, £8, or £16

Magnetometer (gauss): £1.3, £1.9, +2.5, £4.0,
+4.7, +5.6, or £8.1

7.1.3 Tachometer

For simplicity, the tachometer used for the sensor module was an electromagnetic,
non-contact tachometer using a hall-effect sensor and a magnet. The selected hall-effect sensor
was the KY-003 (Figure 7-4, reproduced as is from [76]) which was accompanied with the use of
neodymium magnets (Figure 7-5, reproduced as is from [77]).
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Figure 7-4: KY-003 Hall-Effect Sensor. Reproduced as is from [76].

Figure 7-5: Neodymium Magnets. Reproduced as is from [77].

7.2 Implementation

In order to make the sensor dashboard fully functional, each sensor needed to be
calibrated and tested before being integrated into one functional sensor dashboard. This section
is a detailed methodology of the design process that was carried out to implement the thermal
system, IMU and tachometer. These components are controlled and monitored by an Arduino,
as shown below in Figure 7-6.
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Thermal
System

Figure 7-6: Arudino and sensor communication

7.2.1 Thermal System

As discussed previously, the thermal system is comprised of a cooling fan (Noctua
NF-A4x10) and temperature sensors (DHT22s). The temperature sensors are intended to
monitor the heat generated by mechanical and electrical systems. When a threshold
temperature has been reached the cooling fan is turned on to regulate the heat flow. The layout
of the thermal system is shown below in Figure 7-7.

TS2 TS3

Cooling

Figure 7-7: Arudino communication with the thermal system

Temperature Sensors

To implement the DHT22 temperature, pins 1, 2, and 4 of the of DHT22 were connected
to the, 5V, PWM 2, and ground pins of an Arduino mega, respectively. Pin 3 of the DHT22 is not
used. Additionally, a 10KQ pull up resistor was used at pin 2 of the DHT22. A diagram of the
circuit can be found below in Figure 7-8.
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PWM2 PIN1
SV PIN2

3.3V 10k PIN3

Vin |1 |—|PIN4

Figure 7-8: DHT22 Temperature sensor circuit

S1

Arduino

Using the template described above, more DHT22 temperature sensors could be added
to the Arduino, allowing the temperature to be monitor at multiple locations. The team decided to
use three temperature sensors. The number of sensors can be increased or decreased
however to fit a ME4320 team’s individual needs. A test circuit that used the three temperature
sensors is shown in Figure 7-9.

Figure 7-9: Multiple DHT22 temperature sensors circuit

The Arduino program that used the temperature sensors, read multiple temperature data
points from each of the three temperature sensors and then outputted an average of the
temperatures measured at each sensor, as seen in Figure 7-10. The Arduino code for installing
these temperature sensors and obtaining an average temperature is shown in Appendix D. The
average temperatures were then used to control the cooling fan. The logic that governed the fan
actuation is explained in the next section.
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Humidity: 30.60 %, Temp: 23.10 Celsius
Humidity: 31.10 %, Temp: 24.50 Celsius
Humidity: 29.80 %, Temp: 23.9@ Celsius
Average Temp: 23.83 Celsius

Humidity: 38.70 %, Temp: 23.2@ Celsius
Humidity: 38.70 %, Temp: 25.00 Celsius
Humidity: 34.20 %, Temp: 24.3@ Celsius
Average Temp: 24.17 Celsius

Humidity: 69.40 %, Temp: 23.40 Celsius
Humidity: 58.20 %, Temp: 25.7@ Celsius
Humidity: 54.60 %, Temp: 25.00 Celsius
Average Temp: 24.70 Celsius

Figure 7-10: Average temperature reading output to the Arduino’s serial monitor

Once the temperature sensor circuit template had been made and Arduino code that
could read the average temperature sensors were complete, three strategic temperature
sensors were chosen. The locations were chosen based on which parts of the custom car were
most prone to heat. These locations were beside the two Raspberry Pis and under the motor,
each of which is a major heat producing unit on the custom car. Figure 7-11 shows the locations
of the temperature sensors on the custom car.

A Temperature Sensor 1
B Temperature Sensor 2

C Temperature Sensor 3

Figure 7-11: Temperature sensor locations

Cooling Fan

To implement the selected cooling fan, the VCC, Ground, and PWM pins of the of
Noctua NF-A4x10 were connected to the, 5V, ground, and PWM 9 pins of an arduino mega,
respectively. The tach pin on the NF-A4x10 is not used. A diagram of the circuit can be found
below in Figure 7-12.
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ue4

Arduino

Figure 7-12: NF-A4x10 circuit

The fan speed was controlled by a PWM signal sent from the Arduino. The signal sent
from the Arduino is set by using the analog write command with an input parameter between 0 -
255. Setting the fan speed to 255 results in PWM signal with a 100% duty cycle i.e. full voltage
of 5V to achieve maximum rotations per minute. Other such values than can be used to control
the duty cycle, which inturn controls the fan speed, are tabulated in the Table 7-4 below.

Table 7-4: PWM pin values and corresponding duty cycles

PWM pin value Duty cycle Rpm (fan speed)

0-1 0% OFF

85 25% One fourth speed

127 50% Half the maximum speed
170 75% 75 % of the maximum speed
225 100% Maximum speed

For the fan placement, the team determined that the center of the car would be the best
place for the fan. The team chose this location because it had the most restricted air flow and
had the highest concentration of heat generation, which came from the motor and Raspberry
Pis. The combination of these two facts made the center of the car requiring the most heat
regulation. Figure 7-13 depicts the location on the custom car where the fan was placed.
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Figure 7-13: Cooling Fan Placement

Thermal Control

After setting up the three temperature sensors and a cooling fan individually. The next
step was to combine them A diagram of the integrated temperature sensors and cooling fan can
be seen below in Figure 7-14. Additionally, an image of the physical circuit can be seen in
Figure 7-15.

Vin
SCL _TGND o
SDA ACH| 3

o PWM2 PWM

.E PWM4 10k Vin

S [PWMS | | e AAN SIG1 c7|>

< | PWM6 sigz| =

s PWM7 |= d GND

@ | PWMI |-~

" Vin

o s5v :

(2] sig1| =
3.3V 10k sicz| 8
Vin
GND { GND

10k Vin

-~W- sig1|

? SIG2| @
GND

Figure 7-14: Circuit diagram of integrated temperature sensors and cooling fan
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Figure 7-15: Temperature sensors and cooling Fan Integrated into the Thermal System

Once combined, the Arduino was programmed in such a way that the fan actuated in
accordance with the average temperature readings from the temperature sensors. At higher
temperatures the fan would function at full throttle, i.e at maximum capacity to bring down the
internal temperature. At lower temperatures, the fan would be set to a lower speed to save
power. The relationship between the average temperature and the PWM output to the fan was
determined based on Table 7-5. The resulting output from the integrated system based on the
imputed measured temperature can be shown in Figure 7-16.

Table 7-5: Arduino PWM output based on measured temperature

Temperature (Celcius) PWM Duty Cycle
Max = 100%
0-15 85 33%
15-20 127 50%
20-25 170 66%
>25 255 100%
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14 e Average Temperature
B85 e Duty Cycle
18 e Average Temperature
127 e Duty Cycle
22 e Average Temperature
170 e Duty Cycle
< Average Temperature
255 ., Duty Cycle
30 i Average Temperature
255 Duty Cycle
34 e Average Temperature
255 ... eeieiiiie... Duty Cycle

Figure 7-16: Output to fan from the Arduino based on the average temperature

7.2.2 Inertial Measurement Unit

To add odometry measurements to the sensor dashboard, the team used an IMU (the
Pololu MinIMU-9). To get the odometry from the IMU, the team initially used the provided
libraries recommended by the manufacturer [78]. These libraries solly use the IMU’s gyroscope.
After extensive testing, the team determined the data obtained from this library was not
accurate. As an alternative, the team implemented the Complementary filter. This section details
the circuitry used by these methods and discusses their implementation.

Circuit

The IMU was wired into the Arduino to set up the I?°C connection.The SDA pin on the
IMU was connected to the SDA pin on our Arduino Mega (pin 20) and the SCL pin (pin 21) on
the Arduino. The IMU circuit schematic is shown in Figure 7-17.

SCL SCL
g SDA SDA| _
5[5V GND E
'E 3.3V Vin
< | vin [— VDD
GND —_—

Figure 7-17 : IMU Circuit Schematic

Gyroscope

In order to calibrate the IMU to use the gyroscope, the team used the LSM303 library [7].
The library’s Calibrate.ino code (Appendix E) was used to obtain the Minimum and Maximum
headings for the sensor. The Calibrate.ino script repeatedly polls, at 100ms, the compass for X,
Y, Z values and replaces the globally defined vector values if they are ever less than the
minimum or greater than the maximum. To cover all possible X, Y, Z header values, the IMU
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was moved in all possible orientations to obtain the Maximum and Minimum values. The range
of the calibrate poll data from the terminal is as shown in Figure 7-18. The maximum and
minimum values obtained from this data are as shown in Table 7-6.

[ ] /dev/cu.usbmodem1411 (Arduino/Genuinc Mega or Mega 2560)

Send
Calibrate in: { -16@9, -1161, +1210} { -310, +1420, +1929}
#include <Wire.h> min: { -1609, -1161, +1210} o { -310, +1420, +1929}
#include <LSM3@3.h> min: { -1609, -1161, +121@} o { -310, +1420, +1929}
min: { -1609, -1161, +121@} : { -310, +1420, +1929}
LSM303 compass; min: { -1609, -1161, +1210} o { -310, +1420, +1929}
LSM303: :vector<int16_t> running_min = {32767, 32767, 32767}, runming_max = {-3276min: { -1609, -1161, +1218} :{ -310, 41420, +1929}
min: { -1609, -1161, +121@} :{ -310, +1420, +1929}
char report[80]; min: { -1609, -1161, +444} : { -310, +2484, +1929}
min: { -1609, -1161, +444} L f 310, +2404, +1929}
void setupO { min: { -1609, -1161, -1822} :{ -310, +2405, +1929}
Serial.begin(9600); min: { -1609, -1161, -2554} : { -310, +2405, +1929}
Wire.beginQ); min: { -1609, -1161, -2554} :{ =310, +24@5, +1929%
compass. ini£0); min: { -2209, -1161, -2554} D[ -310, 42405, +1929}
compass . enabledefault0); min: { -2879, -1161, -2554} £ { -310, +2405, +1929}
3} min: { -2879, -1161, -2554} o { -310, +24@5, +1929}
min: { -2879, -1161, -2554} L[ -310, 42405, +1929}
woid 1o0pQ) { min: { -2879, -1161, -2554} ©{ -310, +2405, +1929}
compass . read(); min: { -2879, -1161, -2554} o { -310, +2405, +1929}
min: { -2879, -1161, -2554} L { -310, +2405, 41929}
running_min.x = minCrunning_min.x, compass.m.x); min: { -2879, -1161, -2554} :{ -310, +2405, +1929}
running_min.y = min(running_min.y, compass.m.y); min: { -2879, -11el, -2554} :f -310, +2405, +1929}
ruaning_min.z = min(running_min.z, compass.m.z); min: { -2879, -1161, -2554} : { -310, +2660, +1929}
min: { -2879, -1161, -2554} : { -310, +2660, +1929}
running_max.x = max(running_max.x, compass.m.x); min: { -2879, -1161, -2554} :f -310, +2897, +1929}
running_max.y = max(running_max.y, compass.m.y); min: { -2879, -1161, -2554} { -310, 42913, +1929}
running_max.z = mox(running max.z, compass.m.z); min: { -2879, -1161, -2554} ©{ -310, 42913, +1929}
min; { -2879, -1161, -2554} o f -310, 42931, +1929}
snprintf(repert, sizeof(report), "min: {%+6d, %+6d, %+6d} max: {¥%+6d, %+6d, |min: { -2879, -1161, -2554} + { -310, +2931, +1929}
running_min.x, running_min.y, running_min.z, min: { -2879, -1161, -2554}  { -310, +2931, +1929}
UG IGX. X, PUANING RIGX. Y. FUnIing Tax.z); min: { -2879, -1161, -2554} i { -310, +2931, +1929}
Serial.println(report); min: { -2879, -1161, -2554} 1 -310, 42931, +1929}
min: { -2879, -1161, -25543% ©{ -310, 42931, +1929}
delay(100); min: { -2879, -1161, -2554} 2 { -310, +2931, +1929}
[ -2879, -1161, -2554} L[ -310, 42931, 41929}
. { -2879, -1161, -2554% ©{ -310, 42931, +1929}
{ -2879, -1lel, -2554} o { -310, 42933, +1929}
. [ 2879, -1161, -2554} D { -310, 42933, 41929}
. { -2879, -1161, -2554} s { -310, 42933, +1929}
o { -2879, -1161, -2554} o { -310, 42933, +1929}
in: { -2879, -1161, -2554} : { -310, +2933, +1929}
{ -2879, -1161, -2554} : { -310, +2933, +1929}
o { -2879, -1161, -2554} o { -310, 42933, +1929}

Autoscroll No line ending o 9600 baud C] Clear output

Arduino/Genuino Mega or Mega 2560, ATmega2560 (Mega 2560) on /dev/cu.usbmd

Figure 7-18: Calibration readings

Table 7-6 : Minimum and Maximum IMU sensor headings

Values X Y Z

Minimum -2879 -2435 -3591

Maximum +2422 +2933 +2921

After calibrating the Pololu MinIMU-9, the roll, pitch, and yaw, were measured. To do this,
the Gyro_minimu.ino (Appendix E) was uploaded onto the Arduino. This script provided the X, Y,
and Z values that corresponded to the orientation of the IMU. An example of the output from the
script is shown in Figure 7-19.
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o ® /dev/cu.usbmodem1411 (Arduino/Genuino Mega or Mega 2560)
Send

G X: =12.35 Y: -111.13 Z: -27.74

G X: -7.94 Y: -107.71 Z: -48.78

G X: -23.54 Y: -113.40 7Z: -40.45

G X: -30.03 Y: -117.75 Z: -25.97

G X: -12.15 Y: -109.56 7: -30.77

G X: 63.03 Y: -97.19 Z: -13.85

G X: 67.23 Y: -98.60 Z: -13.82

G X: 132.00 Y: -103.47 Z: -13.35

G X: 134.84 Y: -101.48 7: -13.38

G X: -39.71 Y: -99.79 Z: -2.39

G X: -74.16 Y: -94.53 7: -4,67

G X: -41.23 Y: -96.85 Z: -6.79

G X: -36.29 Y: -98.47 Z: 2.38

G X: -27.96 Y: -102.50 Z: -6.56

G X: -26.97 Y: -104.08 Z: -6.10

G X: -27.11 Y: -102.39 Z: -6.69

G X: -23.98 Y: -48.79 7: -5.30

G X: -26.7@ Y: -15.54 Z: -7.23

G X: -27.73 Y -11.15 Z: -9.22

G X: -30.61 Y: -22.93 Z: -12.88

G X: -31.63 v: -151.78 Z: -12.91

G X: -34.11 Y: -187.09 Z: -12.18

G X: -28.45 Y: -172.36 Z: -12.41

G X: -27.49 Y: -104.47 7: -30.34

G X: -28.01 Y: -101.54 Z: -32.25

G X: -23.76 Y: -101.75 Z: -0.42

G X: -19.72 Y: -78.92 Z: 72.81

G X: -28.66 Y: -76.21 7: 77.34

G X: -28.24 Y: -73.47 7: 77.12

G X: -30.48 Y: -76.27 Z: 43.96

G X: -3.01 Y: -113.32 7: -84.57

G X: -12,53 Y: -118.40 7: -127.15

G X: -18.95 Y: -118.21 Z: -127.57

G X: -17.85 Y: -101.62 Z: -105.52

G X: 19.82 Y: -54.80 Z: -68.10

G X: 21.73 Y: -44.65 Z: -65.86

G X: 23.17 Y: -42.08 7: -65.61

G X: 25.51 Y: -39.96 Z: -65.01

G X: 26.42 Y: -38.88 Z: -65.50

G X: 27.23 Y: -38.11 Z: -66.17

G X: 27.96 Y: -37.46 7Z: -66.88

G X: 28.62 Y: -36.97 Z: -67.73
Autoscroll No line ending a 9600 baud E Clear output

Figure 7-19: Resulting output from Gyro_minimu.ino

Next, the accuracy of the roll, pitch were tested. The team performed various tests at
different orientations about the X, Y and Z axis. The experiment was performed by first setting a
base orientation and then seeing if a 90 degree rotation along an axis resulted in the gyroscope
output to correctly shift by 90 degrees on the appropriate axis. The base case used in the
experiment was the home/nose up position of the IMU that it was calibrated with. All orientations
were referenced with respect to tise base case coordinates. The base orientation and global
coordinate axis is as shown in Figure 7-20.

Base case : In resting position (Nose up)

OUTPUT =

G X:376.25Y:-540.24 Z: -173.43

Figure 7-20: Base case, in resting position (Nose up)

The first orientation, as shown in Figure 7-21, was achieved by rotating about the X axis
counterclockwise by 90 degrees. The theoretical output should have only changed in X axis by
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-90 degrees. However, the actual outputted value along the X axis changed by -101.82 degrees
(469.07 degrees - 367.25 degrees), as shown in Table 7-7. The 2.6 percent error was
considered to be significant. But the team, continued with the experiment and performed a

second test.

Test 1 : Rotate X axis counterclockwise by 90

| OUTPUT =

G X:469.07 Y: -561.84 Z: -176.36

Table 7-7: Difference between the Calculated and Actual readings from test 1

Figure 7-21: Test 1, rotate X axis counterclockwise by 90

*All values Base Desired Theoretical Actual Error (%)
are in Orientation Rotation Result Result
degrees.
X 376.25 90 457.25 469.07 2.585
Y -540.24 0 -540.24 -561.84 3.998
V4 -173.43 0 -173.43 -176.36 1.747

For the second test, the IMU was rotated clockwise about the X axis and then again
rotated clockwise about the Z axis. Next, the base position (Figure 7-20) and the Test 2 position
(Figure 7-22) were compared and the expected output was then calculated. The output from the
gyroscope for this new orientation in Test 2 was then compared to the calculated readings to
calculate error and overall accuracy of the gyroscope component. The results of the error
calculations are tabulated in Table 7-8.
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Test 2 : Rotate X Clockwise by 90 and rotate Z Clockwise by 90

GYRO OUTPUT =

G X:294.54 Y: -566.42 Z: -303.30

Table 7-8: Difference between the Calculated and Actual readings from test 2

Figure 7-22: Test 2, rotate X Clockwise by 90 and rotate Z Clockwise by 90

Agr\;}a:ﬁes Base Desired Theoretical Actual Error (%)
Orientation Rotation Result Result °
degrees.
X 376.25 -90 286.25 294.54 2.896
Y -540.24 -0 -540.24 -566.42 4.848
Z -173.43 -90 -263.43 -303.30 15.135

As with test one, there was a significant amount of error in the data. The team
hypothesized that the error was caused by only taking advantage of the IMU’s gyroscope, while
neglecting the accelerometer and magnetometer. This led to the team to move to the
complementary filter, which makes use of the gyroscope and the accelerometer.

Complementary Filter

The complementary filter [79] is a sophisticated filter that measures both the long term
and short term scenarios. The short time measurements taken by the filter, depend heavily on
the data from the gyroscope. This is because the gyroscope is very precise for short term
measurements and is not affected by outside forces. For the long term measurements, data
from the accelerometer is preferred as it does not drift. The complementary filter in its simplest
form is,

Angle = 0.98* (angle + gyroscope_data*dt ) + 0.02*(accelerometer_data)

Where, the gyroscope data is integrated every timestep with the current angle value and
then, it is combined with the low-pass data obtained from the IMU’s accelerometer. The
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constants (0.98 and 0.02) have to add up to 1 but can of course be changed to tune the filter
properly. Every iteration the pitch and roll angle values are updated with the new gyroscope
values (gyroscope_data) by means of integration over time. The filter then checks if the
magnitude of the force seen by the accelerometer has a reasonable value that could be the real
g-force vector. If the value is too small or too big, we know for sure that it is a disturbance we
don't need to take into account. Afterwards, it will update the pitch and roll angles with the
accelerometer data (accelerometer_data) by taking 98% of the current value, and adding 2% of
the angle calculated by the accelerometer. This will ensure that the measurement won't drift, but
that it will be very accurate on the short term [77].

In order to implement the complementary filter, the compliment.ino library [Appendix E]
was uploaded onto the Arduino and the gain values were modified with respectto X, Y, and Z
values. The readings obtained from the complementary filter are shown in Figure 7-23.

[] [] fdevjcu.usbmodem1411 (Arduino/Genuino Mega or Mega 2560)
| Send
min: { -starting calibration

-3743.81

820.54

94.11

Accel Device ID3

GX: ©.36 GY: -0.15 GZ: -0.88 Ax = ©0.00 Ay = ©.00 Az = 0.00

GX: 45.07 GY: -10.41 GZ: -127.76 Ax = ©0.00 Ay = ©.00 Az = 0.00
GX: 66.86 GY: -9.43 GZ: -157.11 Ax = 0.0 Ay = 0.60 Az = 0.00
GX: 91.47 GY: -17.77 GZ: -162.44 Ax = 0.00 Ay = 0.00 Az = 0.00
GX: 112.34 GY: -17.78 GZ: -161.83 Ax = ©.00 Ay = ©.00 Az = ©.00
GX: 148.85 GY: -19.52 GZ: -170.49 Ax = @.00 Ay = ©.00 Az = 9.00
GX: 175.46 GY: -20.26 GZ: -172.92 Ax = ©.00 Ay = ©.00 Az = 0.00
GX: 285.12 GY: -20.16 GZ: -176.71 Ax = ©.00 Ay = ©.00 Az = @.00
GX: 234.67 GY: -20.23 GZ: -180.08 Ax = ©.00 Ay = ©.00 Az = ©.00
GX: 264.58 GY: -20.11 GZ: -182.83 Ax = ©.00 Ay = ©.00 Az = 0.00
GX: 293.64 GY: -20.15 GZ: -185.79 Ax = @.00 Ay = ©.00 Az = 9.00
GX: 323.18 GY: -20.23 GZ: -188.84 Ax = ©.00 Ay = ©.00 Az = 0.00
GX: 351.12 GY: -20.07 GZ: -191.17 Ax = ©.00 Ay = ©.00 Az = @.00
GX: 348.99 GY: €1.00 GZ: -190.98 Ax = 0.00 Ay = 0.00 Az = 0.00
GX: 384.08 GY: 60.79 GZ: -193.60 Ax = 0.00 Ay = ©.00 Az = 0.00
GX: 410.13 GY: 34.89 GZ: -212.10 Ax = 0.00 Ay = 0.00 Az = 0.00
GX: 436.73 GY: 39.36 GZ: -210.82 Ax = 0.00 Ay = 0.00 Az = 0.00
GX: 458.83 GY: 47.46 GZ: -187.71 Ax = 0.00 Ay = ©.00 Az = 0.00
GX: 490.79 GY: 18.61 GZ: -188.96 Ax = ©.00 Ay = 0.00 Az = 9.00
GX: 636.67 GY: 65.64 GZ: -205.26 Ax = 0.00 Ay = ©.00 Az = 0.00
GX: 755.1@0 GY: 27.50 GZ: -244.53 Ax = 0.00 Ay = 0.00 Az = 0.00
GX: 760.01 GY: 22.20 GZ: -245.79 Ax = 0.00 Ay = 0.00 Az = 0.00
GX: 647.19 GY: 28.17 GZ: -171.36 Ax = 0.00 Ay = ©.00 Az = 0.00
GX: 593.89 GY: 37.88 GZ: -172.99 Ax = 0.00 Ay = 0.00 Az = 0.00
GX: 592.87 GY: 4.26 GZ: -189.15 Ax = 0.90 Ay = 0.00 Az = 0.90
GX: 622.23 GY: 3.16 GZ: -192.49 Ax = 0.0 Ay = 0.00 Az = 0.00
GX: 723.95 GY: 35.01 GZ: -203.38 Ax = 0.00 Ay = 0.00 Az = 0.00
GX: 776.57 GY: 49.30 GZ: -194.21 Ax = 0.00 Ay = ©.00 Az = 0.00
GX: 8@9.98 GY: 51.25 GZ: -197.67 Ax = 0.00 Ay = 0.00 Az = 0.00
GX: 840.49 GY: 51.01 GZ: -200.82 Ax = 0.00 Ay = 0.00 Az = 0.00
GX: 870.49 GY: 50.79 GZ: -203.90 Ax = 0.00 Ay = ©.00 Az = 0.00
GX: 900.80 GY: 51.80 GZ: -207.19 Ax = 0.00 Ay = 0.00 Az = 0.00
GX: 932.27 GY: 50.08 GZ: -211.08 Ax = 0.00 Ay = 0.00 Az = 0.00
GX: 962.03 GY: 50.15 GZ: -214.15 Ax = 0.00 Ay = 0.00 Az = 0.00
GX: 991.64 GY: 49.92 GZ: -217.17 Ax = 0.00 Ay = 0.00 Az = 0.00
GX: 1021.33 GY: 50.82 GZ: -220.33 Ax = ©.00 Ay = ©.00 Az = 0.00
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Autoscroll No line ending ] 9600 baud ﬁ Clear output

Figure 7-23: Terminal Showing Readings of Complementary Filter

After completing the setup of the complementary filter, the test performed in the
gyroscope section were repeated.

Test 1: Rotate X axis counterclockwise by 90 using the Complementary Filter
In order to analyse the efficiency of the complementary filter, it was put under a similar

test as that of using a gyroscope. The IMU was rotated counterclockwise about the X axis and
the X, Y, and Z output was recorded in Table 7-7, in which, the complementary filter can be seen
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in comparison to the previously obtained readings using only the gyroscope, in Table 7-9. From
Table 7-9 and Figure 7-24 below, we can see that errors calculated using a complementary filter
are smaller than those calculated using the gyro. The errors are graphically displayed in Figure

7-24.

Table 7-9: Complementary filter measurements vs Gyroscope measurements in test 1 (in degrees)

X

B Gyroscope

Complementary Filter

All values | Calculated Actual Error Calculated Actual Error
are in (GYRO) (GYRO) (GYRO) (COMP (COMP (COMP
degrees. FILTER) FILTER) FILTER)
X 457.25 469.07 11.82 450.00 445 .67 4.33
Y -540.24 -561.84 21.6 -540.00 -545.72 5.72
Z -173.43 -176.36 2.93 -180.00 -179.23 0.77
Gyroscope VS Complementary Filter
25
20
15
Error
(Deg) 10

z

Figure 7-24: Comparing errors in Gyro vs Complementary filter for test 1

Test 2 : Rotate X and Z Clockwise by 90 using the Complementary Filter

For test 2, the IMU is rotated clockwise by 90 degrees on the X axis and then rotated
clockwise again by 90 degrees on the Z axis. The readings from using the complementary filter
in comparison to the readings obtained from only using the gyroscope are tabulated in Table
7-10 Additionally, Table 7-10 shows the errors calculated using a complementary filter. Again,
the errors produced by the complementary filter are smaller than the errors produced by the

gyroscope. The errors are also graphically displayed in Figure 7-25.
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Table 7-10: Complementary filter vs Gyroscope readings obtained in test 2

All values | Calculated Actual Error Calculated Actual Error
are in (GYRO) (GYRO) (GYRO) (COMP (COMP (COMP
degrees. FILTER) FILTER) FILTER)
X 286.25 294 .54 8.29 270.00 265.27 473
Y -540.24 -566.42 26.18 -540.00 -532.71 7.29
Z -263.43 -303.30 39.87 -270.00 -278.53 8.53
Gyroscope VS Complementary Filter
45
40
35
30
Error 25
(Deg) 20
15
10
. B
0
X e z
m Gyroscope Complementary Filter

Figure 7-25: Comparing errors in Gyro vs Complementary filter for test 2

From the comparison of the gyroscope and the complementary filter, the team
determined that the data obtained from the complementary filter was more accurate. Note that
the Arduino scripts are in the Appendix E.

7.2.3 Tachometer

Using the KY-003 Hall-Effect sensor and neodymium magnets, a tachometer was
created. Connected to pin 2 of the Arduino Mega, the hall-effect sensor would detect every
instance where the magnet crossed its path. Following the code seen in Appendix G, the
number of magnetic detections were counted per unit of time. Ultimately, this ratio, when
appropriately converted, produced the revolutions per minute (RPM) of the drive wheels. While
placement of the sensor and magnet required some trial and error, the sensor and magnet were
ultimately integrated into the car as seen in Figure 7-26. Specifically, the Hall-Effect sensor was
glued to the external siding of the differential housing. Furthermore, a stack of three neodymium
magnets were glued to one of the adaptors to the rear axle. By strategically placing the sensor,
the rotation of the magnets nearly touched the sensor per every revolution. Ultimately, this
allowed for very responsive and accurate magnet detections.
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Figure 7-26: Hall Effect Sensor

7.3 Modularization of the Sensor System

After the team had implemented and selected sensors for specific sensor components,
the next goal was to combine the sensors scalable and customizable system by making a PCB
that uses all the sensors. Creating a PCB makes the sensor system scalable because once
PCB has been successfully designed, it can be replicated indefinitely. Creating a PCB also
makes the sensor system customizable because not all the pins on the PCB need to be used.

To make the PCB, the team started by combining the individual circuit schematics
described in previous section. Figure 7-27 shows the flow of the IMU, thermal system, and
tachometer sensory information into the Arduino and Figure 7-28 shows the combined sensor
circuit schematics.

(=

\ \/

Figure 7-27: Flowchart of Sensor Dashboard Data

Arduino
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Figure 7-28: Combined sensor circuit schematics

After team had created the schematic of the combined circuit schematic and knew which
pins that would be used by the devices, the Arduino scripts from each sensor were combined
into a single Arduino script. Appendix G contains the resulting Arduino script. Once the sensors
had been consolidated into one design, the team began designing a PCB based on the
schematic in Figure 7-28. The PCB was designed using Altium 18.4 software [80] and was
custom ordered from an external source, Oshpark LLC [81]. To design the PCB in Altium 18.4, a
new PCB project was created in which, a PCB schematics library, a PCB Library, new
schematics and new PCB were created. Initially, individual components for each sensor
connector on the PCB were designed in the schematics library. The three temperature sensors
components from the schematics library are shown in Figure 7-29. After adding all the individual
components in the schematics library, they were included in the main PCB schematic and
connections to the power and ground were added. Figure 7-30 shows the complete PCB
schematics sketch for the sensor electronics PCB.
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DHT22

Figure 7-29: Temperature sensor components in Altium schematics Library
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Figure 7-30: Final PCB schematics in Altium
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Next, the PCB components, such as headers, were added to the PCB library and placed
on the PCB layers. To design this custom PCB, a top and bottom layer were only required as
most of the sensors were present externally and not required to be on the PCB itself. This was
mainly because sensors such as temperature sensors are to be placed in proximity of heat
sensitive units of a system for protection and not on the PCB itself. Additionally, the IMU is also
preferred to be placed at the center of mass of a system for accurate readings and will therefore
not be placed on the PCB either. Thus, the PCB was designed to only account for any external
circuit required for the operation of a sensor and not account for the actual sensor installation.
Figure 7-31 shows the top layer design of the custom PCB with DHT22 sensor components and
Figure 7-32 shows the complete PCB design of the top and bottom layer in 2-D and 3-D view.
The red wiring on the PCB, as shown in Figure 7-32, illustrates the top layer of the PCB
whereas, the blue wiring illustrate the bottom layer.

x: 6970.000 mil

y: 1460.000 mil

Top Layer (Single)
Snap: 5mil Hotspot Snap: 8mil

@@00 .@@.
@.0.

s » [ TopLayer [ Bottom Layer [ Mechanical1 M Top Overlay [ Bottom Overlay M Top Paste [ Bottom Paste [ Top Solder [ Bottom Solder

Figure 7-31: DHT22 sensor components on top layer in PCB design

Figure 7-32: 2-D design, 3-D view of final PCB design
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Lastly, Gerber files were generated and an order was placed to OshPark LLC for three
custom PCBs for $16. The delivered PCB was immediately ready to be integrated into the
sensor system. Figure 7-33 shows the final custom PCB product. Due to time constraints,
however, the PCB could not be integrated into the sensor system to replace breadboard
circuitry. This has now become a future goal for the next team that will work on the sensor
system.

R1
—Q0—0000 |

R2 U2
00 —0000

R3 U3
00 0000 |

Figure 7-33: Final Printed Circuit Board for Sensor Dashboard

7.4 Data Collection

Although the team did not have sufficient time to implement the PCB described in the
previous section, it was able to use a breadboard implementation of the circuit. Using this circuit,
the team was able to obtain real-time data from each sensor on the custom car. Graphs of each
of the data collected with the car running can be found below in Figures 7-34, 7-35, and 7-36.

Figure 7-34 illustrates the estimated RPM of the rear axle while the car is driving. While
the test was conducted briefly, the spikes in the graphic illustrate moments of acceleration
where the rear axle was increasingly torqued. Figure 7-35 illustrates the readings produced from
the three temperature sensors while the car was driving. As expected, the temperature sensors
located near the Raspberry Pis obtained the highest temperature readings. Overall, the
nonvolatile and low magnitude temperature profile of the car gave little reason for thermal
concerns. Finally, Figure 7-36 shows a sample reading from the inertial measurement unit. As
the car was driven in circles during this data collection period, the primary fluctuations captured
by the IMU related to the car’s yaw orientation. While the car was driven on a flat surface, both
roll and pitch had some inconsistency with their readings. Due to some body roll of the car’s
suspension and gyroscopic drift, however, said inconsistencies were marginal.
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Figure 7-34: Data collected by the tachometer
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Figure 7-35: Data collected by Temperature sensors 1, 2 and 3
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Inertial Measurement Unit (IMU)
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Figure 7-36: Data collected by the IMU

7.5 Sensor Dashboard

An important aspect of placing sensors on the car is to be able to view information in as
readable and fast a way as possible. The goal of the modular sensor package was to bundle all
of the information on a real time dashboard viewable on a webpage.

7.5.1 Display Server

In order to achieve this, the team connected the Arduino that was directly interfacing with
the sensors to a Raspberry Pi. That Raspberry Pi captured the data sent by the Arduino over a
serial connection and displayed that data on a simple web server.
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Figure 7-37: Data flow from Arduino to CSV and Webpage

As seen in Figure 7-37, data from the Arduino was sent over a serial connection as a
string of comma separated values. That data was read in on the Raspberry Pi and parsed to be
sent to the website. Since the data received by the Raspberry Pi was a string of comma
separated values, the order of those values is constant. The received string was parsed from
strings to a list of integers so it could be manipulated more effectively. Each sensor was
separated into its own array of data and every time new data was sent to the Raspberry Pi, the
most recent seventy five data points were sent through a socket to the website where each
graph was updated. While the data is being sent to the website it is also being captured in a
comma separated value file in order to allow for more intense analysis of the data over longer
periods of time by the users of the sensor system. This system was designed to be extremely
flexible with the only limit being the number of sensors that could be physically attached to the
pins of the Arduino.
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7.5.2 Graphics

The goal of the live data sensor module was to view data in real time. The webpage
served by the Raspberry Pi is capable of displaying an unlimited amount of graphs. Some
theoretical graphs are shown below. The three graphs included below include a sample
temperature graph to show any ambient heat zones on the car, a sample graph from a
tachometer to show the rotational speed of the shafts of the car, and finally a graph showing
sample inertial measurement displaying the odometry of the car.

The collected data can be used to verify calculations and infer any issues with the car.
For example, if the calculated rotational speed of a shaft is 180rpm at top speed, the users of
the dashboard would be able to look at the real time data of the tachometer to either verify the
car was operating inside normal operating parameters or if there was a malfunction causing the
shaft to spin too quickly or too slowly.

eee Socket 0 chat x +

<« ¢ @ ® localhost:3000 Y@ e @ & K

53 From Goegle Chrome €S 525/DS 5953 Inf.., % CS4401- Homepage M trivia— Firebase - Fi.. €D Watch technical mo...

[ Terp Probe 1 Terp Probe 1 Temp Probe 3
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Figure 7-38: Mockup displays of sensor dashboard data using HTML/CSS/Javascript

In Figure 7-38, we have provided a mockup of what the dashboard could look like. Each
graph is placed in its own card on the website to allow for simple dynamic repositioning. Each
graph can be customized to contain as many data sets as desired. For example all of the
temperature datasets could be placed in series on one chart to view all of the heat zones
together. Similarly since these graphs can be generated using any visualization library the
possibilities for what the data looks like on the website is endless.

7.6 Conclusion

In conclusion, the team made a modular sensor suite that could be utilized in WPI
courses, specifically the Advance Engineering Design course (ME4320). This was done through
the creation of a sensor dashboard that tracks a car’'s odometry, speed, internal temperatures,
and axle rotation. The system was created by incorporating sensors such as an inertial
measurement unit (IMU), multiple temperature sensors, and a tachometer. The sensor system
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was made to be modular, scaleable, and customizable by integrating the circuits onto a PCB.
Lastly, the data collected from the sensory components of the system was parsed and saved as
a Comma Separated Values file (CSV file) and displayed in real-time on a webpage.

Future iterations of the project should continue with the implementation of a real-time
display. Additionally, more sensors should be added to increase the sensor dashboard’s
capabilities. More specifically, strain gauges should be added to help perform analysis on
mechanical systems. This chapter discussed the modular sensor system designed by this

team, the next chapter will discuss the autonomous driving module and the methodology
behind its design.
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8.0 Autonomous Driving

This chapter will discuss the methodology behind the implementation of the autonomous
driving module for the team’s car. Specifically discussed is implementation of the Al, component
selection, data collection, data formatting, data parsing, and the issuing of instructions back to
the car itself.

8.1 Implementation

Figure 8-1 depicts the general flow of data when the car is operating under the control of
the autonomous driving module. Data is collected from the camera and sent to the Raspberry
Pi. Thatimage is sent through an OpenCV masking function that reduces the dimensionality of
the image and increases its computational effectiveness. The masked image is sent through a
neural network running on the Raspberry Pi which outputs an instruction command. That
command is sent to the Arduino connected to the Raspberry Pi which delegates the instructions
to the relevant mechanical systems.

e R

Processed

OpenCV Camera Data
Pre-Processor

Image Camera Data

Camera Raspberry Pi

Neural Network
Speed Speed

Driving
Instructions
—_—
Instructions Instructions

Motor ESC Arduino

Turning
Instructions
Servo

L Al Data Flow

Figure 8-1: Al Data Flow

8.2 Collecting Data

When creating an artificial intelligence to perform a given task, you need to have a way
to teach it. In this project, we taught our Al using supervised learning. Supervised learning is a
method of creating an Al that utilizes labeled training data. Labeled training data is any data with
corresponding ground truth values. In our case, we recorded data by driving our car around a
race track. The video produced from the camera was the data, and the commands issued to the
car from the controller were the labels (ground truths). Data was collected using the maximum
resolution available from our camera, (640x480), and our controller inputs were recorded with
up to 100 degrees of resolution.
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8.2.1 Collection System

For the physical data collection, the team had to establish a system that read input data
from the radio controller and match that to the recorded frames from the camera that gives the
car its vision. The team used an Arduino and a Raspberry Pi to accomplish this task. First, the
Arduino was connected to the radio controller in order to read the signal from the controller and
pass that input along to the physical hardware on the vehicle. The Arduino took the data it was
receiving and sent that through a serial connection to the Raspberry Pi.

The Raspberry Pi is responsible for receiving serial data from the Arduino and capturing
that data to a text file. The Raspberry Pi collected and recorded the camera data to an avi file.

The recording script on the Raspberry Pi is very straightforward, written below is pseudo-code
for the process.

while(True):
frame read camera_data()
input = read_controller_data()

video writer.write(frame)
file writer.write(input)

The code on the Raspberry Pi starts by opening a serial connection to the Arduino. The
code then loops indefinitely reading both controller data from the Arduino and sequential frames
from the camera on the Raspberry Pi. Figure 8-2 illustrates a sample of the controller data
written to the file with the format, Frame Number: Acceleration, Turning.
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233
234
235:
236
237
238
239:
240
2471
242
243
244
245
246
247
248
249
250
251:
252
253:
254
255!
256
257

Figure 8-2: Sample of data written to file format FRAME_NUM: ACCEL,TURN

8.3 Formatting Data

111,135
111, 135
111, 135
111, 135
111, 135
111, 135
111, 135
111, 135
111, 135
111, 135
111, 135
111, 135
111, 115
111, 90
111, 90
111, 90
111, 90
111, 90
111, 90
111, 105
111, 105
111, 105
111, 105
111, 105
111, 100

When giving training data to an Al, it is always important to attempt to make the data as

basic as possible. If we input our raw recorded data into the Al for training, it might detect

patterns that are less than ideal. For example, perhaps coincidentally there was a blue mark on
a pillar in the background, that just happened to appear in view every time the car was to make
a right U-turn. The Al may begin to associate blue marks on pillars with right U turns, when in

reality that pillar and blue mark have nothing to do with why the car is turning right.

During our initial testing of the system, we used raw camera data and a camera placed
on the front edge of the car, the resulting camera data was ultimately not useful for training for a

number of reasons. Firstly, the image was mostly not relevant information meaning that the
camera was capturing the view from directly in front of the car, only the bottom third of that
image was useful, as seen in figure 8-3, since it contained the track.
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Figure 8-3 Front positioned camera data

Without any preprocessing we tried to train an Al using that front positioned camera
data. The resulting Al was unable to determine what information was relevant to driving as
there was so much noise in the data. We realized that camera positioning was far more
important that we first thought. Secondly, the quality of the incoming data was the next
challenge the team had to address. When the camera was on the front of the car we were
getting far more irrelevant data than relevant data. Our team changed the position of the
camera to be elevated at the back of the car as seen in Figure 8-4, this increased the quality of
the data we were receiving because it was only capturing relevant data around the car. The next
step was filtering out noise from the image including the body of the car itself, the floor color
variation, any information that was not a wall.

To solve this problem, it is essential that all non-important features are removed from the
input data. The method used to remove these non-important features must be quick and
efficient, since we will need to employ it in real time on the car while it is driving itself.

Figure 8-4: Raw versus Masked Image Data
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convert_frame_to _masked(raw_frame):
lower _mask = [wood_red 1, wood green_1l, 0]
upper_mask = [wood_red_u, wood_green_u, 0]
return cv2.inRange(raw_frame, lower_mask, upper_mask)

Images captured by the camera are sent through an OpenCV pre-processor that masks
the image. The mask filters all pixels that are in the range of the color of the walls to be white,
and all other pixels become black. This reduced the complexity of the image, increasing
computational effectiveness while also allowing the neural network to learn more efficiently
because it was only being sent relevant data.

The masking of image data reduced our training data size by a factor of 12. Before
masking the image data, our team collected roughly six hours of training data per track we built
and the Al being trained on that data was still not performing at all. Once the images Al was
trained on masked data, we were able to reduce out training time to less than thirty minutes of
data collection and the resulting Al was able to navigate 50% of a difficult track.

The goal for the Al module was to be able to navigate any wooden track constructed out
of the planks provided to our team. Below are several images of tracks that the car was trained
on in our exploratory process of training parameters.

Figure 8-5 Example switchback track
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Figure 8-6 Example rounded track
In Figures 8-5 and 8-6 there are two different track configurations that were tested. The
goal of a track configuration was to have as many varieties of turns that a car could encounter
on an unknown track. This included sharp and mild turns, when recording data the tracks were
traversed in both directions to ensure that the training data could teach both left and right turns.
Ultimately the car was trained more successfully on the switchback track than the rounded one.

8.4 Issuing Commands

Issuing commands to the car required a separate set of scripts than collecting data. The
goal with issuing commands was to run the neural network on the Raspberry Pi and have that
format commands over the same serial connection used for recording. The challenge was
getting serial instructions to be issued correctly to the Arduino. Formatting them on the
Raspberry Pi was simple, just creating a string, but getting the Arduino to interpret them
correctly was a distinct challenge. The biggest issue involved with sending commands to the
Arduino from the ANN was how the Arduino accepts information through its input buffer.

8.4.1 Arduino Serial Events

In order to successfully initialize a serial connection with an Arduino, it must send some
sort of serial output to the monitoring computer. Our team chose to send a string in the required
setup function of the Arduino. A print function is required in the setup of the Arduino code
because that allows the monitoring computer to verify and establish a connection over the serial
channel, the content of the printed string does not matter. The second step for issuing
commands to the car is to ensure proper formatting of instructions. Since the serial channel on
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the Arduino is a buffer communication is continuous and there needs to be a way to indicate that
one instruction has ended. The instructions were sent in the format of a three digit number
padded by zeros in the front if necessary, separated by a comma, and ended with a pipe
character. This format was chosen specifically because it matches the type of data collected in
the supervised learning as seen in Figure 8-2. The only difference between the collected data
and the command instruction format is that commands are sent with a terminating | character.
The pipe was chosen because it is a non-standard character that can be used to mark the
separation of values in an input stream. In order to process data the group wrote a function
that executes at the top of every call to the loop function. This function reads the incoming byte
stream and as long as there are characters available to be read the function appends them to a
string. As soon as the next incoming character is a “|” the function stops recording appending to
the string and marks that input string as ready to be processed for execution. The input string is
then processed and the resulting instruction is completed by the system.

8.4.2 Neural Network Design

Implementing a Neural Network requires a lot of testing. Training individual models took
anywhere from 5 to 20 minutes based on the complexity of the model. Different factors to
consider when constructing a model included: number of hidden layers, size of layers, whether
or not to use fully connected layers or convolutional layers, activation functions, and many more.
Below is a simple sample model:
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Figure 8-7: Simple Fully Connected Neural Network

In this model, we can see a simple fully connected neural network. We learned quickly
that a model like this is not very effective. Each dense layer is fully connected to the subsequent
dense layer, this can slow computation because the size of the network is dictated by the
complexity of the network and the more connected nodes there are the larger the network.
Dense layers by definition are fully connected, for our application there was no need for a fully
connected network like this because our images did not have a lot of nuance. Below is a more
nuanced model design that was heavily inspired by the EuroPilot open source self driving
implementation:
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Figure 8-8 - Neural Network Model Inspired by EuroPilot [82]
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This model utilizes batch normalization and convolutional layers, which are not fully
connected. This network is far more effective at driving a car because the lack of full connection
of nodes allows for more robust quick computations. Convolutional layers, Conv2D in the
image, are layers that do not have to fully connect to the subsequent layer. This can increase
computational effectiveness because they do not have fully connected paths that will never be
activated. The batch normalization steps apply an algorithm that smooths images. The
algorithm takes a pixel from the image and examines all of the surrounding pixels and sets that
pixel to be the value most common value around it. This algorithm helps remove noise from
image processing by ensuring that zones that are surrounded by white pixels, meaning walls,
will be filled in to hopefully get stronger training classification.

8.5 Conclusion

During this project we were able to prove that creating a cheap self driving solution using
a neural network and a camera is completely feasible. We produced software to properly filter
important features from our sensor, and integrated it with the neural network to drive the car
autonomously. The only sensor required for our Al was a camera. We successfully integrated a
data collection system onto an RC car that could control the car reasonably well. We were able
to successfully send and receive communication from an Arduino through a serial channel.
Overall we designed a modular autonomous driving system that can be integrated with any RC
car platform. This chapter discussed the modular autonomous driving module designed by this
team, the next chapter will discuss the conclusions and final thoughts from this project.
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9.0 Conclusion

In summary, this report examined the feasibility of creating a 1:10 scale car with modular
autonomy and sensory packages. Due to the iterative and interdisciplinary nature of the work,
the project was broken down into 3 fundamental sections. First, the creation of a 1:10 scale car
with independent front and rear suspension and corresponding analysis. Second, the creation of
a modular sensor package which could collect performance and other car data. Third, the
creation of a modular autonomy package leveraging a Raspberry Pi and single, front-facing
camera.

Mechanical

As a team we were able to design a full 1:10th scale RC car capable of driving reliably
around a track. There were three main goals the car itself needed to accomplish. The car
needed to have front and rear suspension, it needed to perform reliably, and it needed to be
able to accommodate the sensor and autonomous packages. Ultimately, we were able to
accomplish the first task by designing independent front and rear suspensions for the car. This
task required us to stray from the standard designs of students in the course to design steering
and transmission systems that can accommodate the different positions of the front and rear
wheels. The second task was accomplished through a series of design alterations to improve
car design and performance. Ultimately, our car was able to perform reliably through the long
periods of driving required to collect data for Al training and the many crashes that resulted from
testing different Al models. Third, we were able to accommodate the sensor and autonomous
modules through the design of custom mounts.

In order to apply metrics to evaluate the reliability of the car, we performed analysis on
the mechanical subsystems. By performing Finite Element Analysis, we were able to determine
the weak spots on several of the components. By performing static analysis, we were able to
determine the forces on each component, allowing us to better understand the loading on each
component. By performing dynamic analysis we were able to determine how components would
react to dynamic loading such as sudden starts and stops. All of these analyses were able to
give us a broader sense of the strengths and weaknesses of the car.

Sensor Module

For this project, we were able to successfully design and produce a modular and
scalable sensor suite capable of collecting and displaying live car data. The groundwork
provided for the creation of the sensor dashboard has been completed. The sensor dashboard
that future teams implement could accurately display the car’s orientation and speed and
monitor its internal temperature. Tracking orientation and speed helps in supervising the car’s
behavior in various situations while regulating the heat flow is vital to protect various heat
sensitive mechanical and electrical components.

While there was no time to leverage the data collected from the scale car, the data from
the IMU could be used to enhance the autonomy of the vehicle. More specifically, the IMU data
could potentially be able to correct the car’s orientation whenever necessary and help sustain
the desired direction of movement. This could also account for any mechanical play in the
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system which might cause the car to deviate from the path determined by the artificial
intelligence.

The modular sensor suites could also be utilized in other WPI courses which require
collection of such data. Most specifically, the Advance Engineering Design course (ME4320)
could potentially use these sensor suites to supervise scale car behaviors for performance
analysis.

Artificial Intelligence

During this project we were able to prove that creating a cheap self driving solution using
a neural network and a camera is completely feasible. We produced software to properly filter
important features from our sensor, and integrated it with the neural network to drive the car
autonomously. The only sensor required for our Al was a camera. We are confident that with
slightly more time investment, it will be possible to drastically improve the autonomous package
and create a fully autonomous vehicle. In its current state, our neural network model is capable
of driving the car through approximately 50% of an indoor wooden track.

Future Work
For future work, we have organized our suggestions into three categories: Al,
Mechanical, and Sensor Module. The suggestions are as follows:

Mechanical
e Mechanical design refinement
o Improve front suspension
m Better articulation
m More responsive suspension
m Softer springs
o Improve Steering Linkage
m Redesign to reduce toe out
m Redesign to improve responsiveness
m Redesign to better integrate with front suspension
o Improve Rear Suspension
m Better articulation
m Softer springs
o Transmission
m Improve connection between differential and gearbox
m Reduce friction in differential
m Replace 3D printed axles
m  Move gearbox closer to front of car so that drive shaft can be closer
e Convert parts from 3d prints to machined versions
o Replace parts that break or melt with more durable materials
e Mechanical Analysis
o Synthesize new four bar for front and rear suspension
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Sensor Module
e Integrate the live dashboard
e Integrate the PCB
e |Integrate strain gages on the car

Al
e Create a more systematic training process for the Al
e Include statistical analysis to monitor, track, and evaluate Al metrics
e Train on more complex tracks with extremely varied design
e Train with other cars to learn car avoidance
Reflection

Highly interdisciplinary in nature, this project called for the integration of mechanical
engineering, electrical engineering, robotics engineering and computer science. For mechanical
engineering, the construction of the car required immense knowledge of manufacturing,
SolidWorks, and dynamical analysis. Highly iterative, the mechanical design and manufacturing
of the car required tremendous trial and error and modification. Furthermore, while the
manufacturing of the car could have been more systematic, the difficulty in design illustrated the
gap that can form between theory and practice.

For electrical engineering, the work primarily revolved around controls and signals
engineering. Focusing on timing, microcontrollers, and communication, the electrical
engineering requirements of this project emphasized precision and speed. Among many
lessons, one of the most important was the importance of synchronization between systems.

Integrating electrical and mechanical principles, robotics engineering describes the
general nature of the whole project. As such, the robotics work was highly dependent on
kinematics, controls, and sensor knowledge. The discipline that symbolized the interdisciplinary
nature of the project, the robotics work was particularly helpful in showing the importance of
sensors and their affiliation with the surrounding world.

Finally, for computer science, the work primarily revolved around timing, communication,
and artificial intelligence. Producing both the control and autonomy systems of the car, all
computer science work was pivotal towards achieving the project’'s fundamental goals. Among
many lessons learned, one of the most important was the highly sensitive nature of neural
networks. Highly dependent and sensitive to an abundance of variables, the creation of effective
neural networks required iterative and systematic designs.

Societal Impacts

As technology becomes increasingly digitized, data becomes more prevalent, hardware
becomes more powerful, and artificial intelligence improves, the autonomous car will play an
increasingly important role in society. Evidenced by the work of Tesla, a leader in car autonomy,
Level 5 autonomy cars will arrive in the not too distant future. While the thrill and reward of
autonomous navigation has sparked a nearly global competition among major companies, it has
also invoked academic intrigue. It is for this reason that this report is written.
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While the work of legal, full-sized autonomous vehicles is far beyond the scope of this
project, this work illustrates many of the challenges associated with driverless technology.
Avoiding the tremendous legal, financial, moral, and societal constraints of full-sized
autonomous technology, this project provided an agnostic view on the pros and cons of
autonomous navigation. Instead, this project hopes to both inspire and educate those who wish
to pursue the academic challenges of driverless cars.
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Appendices

Appendix A: Finite Element Analysis

Table A-1: Parameters for FEA on Front Lower Suspension Link

Fixture Type
Fixed Geometry
Fixed Geometry

Loading Type

Force

Results
Max Von Mises Stress
Maximum Displacement

Maximum Strain

Location
Rear Pin

Front Pin

0.2248

315600
0.00494
0.001034

Ibf

Pa

mm

won Mises (Mm™2]

Figure A-1: Von Mises Stress Analysis for Front Suspension Lower Link
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Figure A-2: Displacement Analysis for Front Suspension Lower Link

Table A-2: Parameters Used for FEA on Servo Horn

Material Used ABS
Elastic Modulus 2000000000 Pa
Poisson's Ratio 0.394
Mass density 1020 kg/m”3
Tensile Strength 30000000 Pa
Shear Modulus 318900000 Pa
Fixture Type Location
Fixed Geometry Countersunk Screw Hole
Fixed Geometry Pin Hole for Steering Arm Connection
Applied Load
Torque 146 0z-in
Results
Max Von Mises Stress 24700000 Pa
Maximum Displacement 0.2317 mm
Maximum Strain 0.0147
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Figure A-3: Von Mises Stress Analysis for Servo Horn (Bottom View)
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Figure A-4: Displacement Analysis for Servo Horn (Top View)
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Figure A-5: Displacement Analysis for Servo Horn (Side View)
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Appendix B: Design for Manufacturability Manual

This document is a collection of design for manufacturability practices that can be used
to help make your parts and assemblies more manufacturable. This guide is split up into
sections based on general practices as well as method specific recommendations.

General Design Considerations
1. Understand the functional requirements

The first step in designing a part that will be manufacturable is to understand the
functional requirements of the part. In addition, the part’s interaction with other
components, geometry requirement, tolerances, etc. are all important considerations.

2. Incorporate manufacturing into the design process

A key part of design for manufacturability is understanding the processes available to
produce the part. Each process has its own design challenges and recommendations.
For example, a part produced using a milling machine requires different design
considerations than a 3D printed part. These design considerations should be
incorporated into the design from the beginning as it is easier to design a part with
manufacturability in mind than to modify an existing part to be more manufacturable.

Some suggestions and guidelines for common practices can be found below.

3. Reduce design complexity
More complex designs usually means that more operations are needed in order to make
your part. This translates to increased manufacturing lead time and cost. . Reducing
design complexity can include limiting the number of features on a part to only those
that are necessary, but it can also include things like using standard hole sizes, and
using standard parts instead of custom parts. By reusing parts, a lot of time spent in

setting up manufacturing operations can also be reduced.

4. Buy off the shelf when available
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It is almost always better to buy commercially made, standard parts instead of making
them if those parts meet all of the functional requirements. This saves time and possibly
cost in the process.

5. Work with lab staff early

If you are going to be using a lab facility to make your part, schedule a consultation with
lab staff early and have them critique your design. For example, if you want to make a
part using the CNC machines in Wsahburn shops, scheduling a meeting with one of the
Sr. Instructional Lab Technicians, lan Anderson or James Loiselle. By meeting with
them early, you can get feedback on your design, order material, and get an estimate of
how much time it will take.

Scheduling early is the most important part of this. It is unfair to the lab staff to come in
last minute and expect them to drop what they’re doing to help you make your part. Plan
ahead and work with the lab staff from the beginning. Similarly, if you plan to have parts
printed in Foisie’s prototyping lab, expect a few days delay and check with lab staff to
see the expected wait time.

6. Test your design early

There is nothing more frustrating than having to redesign a part of assembly over and
over again because of a minor design flaw. In your CAD models, make sure to model
everything, including any hardware you may be using to attach components together.
While it might take more time initially, it can save you time in redesigns. The solidworks
toolbox can be a great resource for finding models of standard hardware.
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Design Considerations for Milled Parts:
Design Limitations for Milled Parts:
Square Internal Corners

It is not possible to create square internal corners using standard milling tools. . Internal
corner radii are required as shown in the figures below.

Square Internal Corners Rounded Internal Corners
4 3
\ .

Figure B-1: Square vs. Rounded Internal Corners

One important thing to note when adding radii to internal corners, is that the radius of
the corner should be greater than or equal to the radius of the tool used to create the
feature. Larger tools remove material more quickly and are much more rigid, but smaller
tools can make smaller radii. Some common diameters of tools available in Washburn
Shops are %7, /4", and '&”".

Fillets on Everything
While Fillets look nice, the machining process involved can be laborious . Each radius of
fillet needs a custom tool, meaning that a »4” fillet tool can only make 74’ fillets.

Chamfers are better alternatives, as one chamfer tool can make many different size and
depth chamfers, An image showing both fillets and chamfers can be seen below.
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Fillets Chamfers

Figure B-2: Fillets vs. Chamfers
If fillets are absolutely needed, please use standard size fillets like 1/8” or 1/4”.
Thin Walled Parts:

Structural integrity of the work piece is very important during machining operation.
Additionally, the machining process itself exerts a force on the workpiece that can cause
deflection. For this reason, It is often very difficult to machine thin walled features. The
depth of the feature can also affect the structural integrity, so a shallow pocket can
tolerate thinner walls than a deeper pocket.

Fixturing

An extremely important thing to remember when thinking about part design, is how your
part will be held in the machine. Often, each face that you have features on means that
you have to do an entirely new set up for the part. Since the tool used in a 3-axis mill,
like those in Washburn Shops, can only move in the Z direction, they won'’t be able to
reach features on all sides of the part. On a part like the one pictured below, there are
features on three sides of the part, meaning that there would need to be at least three
machining setups in order to make this part.
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Figure B-3: Part Fixturing

As you can see, this part would need to be fixtured three times in order to reach all of
the features. If the part could be redesigned to only have features on one of two sides,
that would greatly reduce the setup and machining time.

Another difficulty when it comes to fixturing is having unusual outside geometry. In order
to ensure that you have enough clamping pressure, You'll want your fixture to closely
match the shape of your part. If the fixture doesn’t closely match the shape of the part
you can risk your part becoming unfixtured. In the figure below, you can see an example
of a fixture (blue) closely matching the part geometry (red), and example of a fixture not
closely matching the part geometry

Fixture does not match part Fixture matches part

Figure B-4: Fixture Matching
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As you can see above, the fixture in blue is designed to match the features on the part
to ensure that the part has adequate clamping force. This adds an extra step to the
manufacturing process, and makes it more difficult to manufacture the part.

When possible, you should reduce the number of weirdly shaped outside features, to
make fixturing easier.

Hole Sizes and the Tap Drill Chart

One of the easiest ways to make life easier for yourself or the machinist you’re working
with is to size holes correctly for the hardware you want to use. Every piece of
hardware, like a screw, bolt, or pin, has a different size hole it's meant to go in.
Additionally, if you want your part to have threads, there are certain sizes of drilled holes
you need to make, so that the tap that will cut the threads has the right amount of
material. This information is widely available but | will share two great ways to find this
information, the tap drill chart, and the hole wizard.

The tap drill chart below shows the drill sizes that should be using when making tapped
features. An excerpt from a tap drill chart can be seen below.
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Tap Drill Clearance Drill
75% Thread for | 50% Thread for
Screw Size Major |Threads| Minor |Aluminum, Brass, |5Steel, Stainless, Close Fit Free Fit
Diameter | Per Inch | Diameter & Plastics & Iron
Drill @8 Decimal | Drill | Decimal | Drill  Decimal| Drll | Decimal
Size Equiv. Size Equiv. Size Equiv. Size Equiv.
0 0600 80 0447 /64 0469 55 0520 52 0635 50 L0700
64 .0538 53 0595 1116 0625
1 0730 48 L0760 46 L0810
72 .0560 53 0595 52 0635
56 0641 50 L0700 49 0730
Z 0860 43 .08%0 41 10960
04 0668 50 L0700 48 0760
48 0734 47 0783 44 0860
3 0990 37 L1040 35 L1100
56 0771 45 L0820 43 0890
40 0813 43 J08%0 41 0960
4 L1120 32 1160 30 L1285
48 0864 47 0935 40 L0980
40 0943 38 1015 7/64 1094
5 125 30 .1285 29 L1360
44 0871 37 L1040 35 L1100
32 0997 36 1065 32 1160
i} 138 27 L1440 25 .1495
40 1073 33 L1130 £y L1200
32 1257 9 L1360 27 1440
8 1640 18 1693 16 770
36 1299 9 L1360 26 1470 |
24 1389 25 1495 20 1610
10 . Q0 9 L1960 7 .2010
32 1517 ] .15%0 | 18 1695
24 1649 16 770 12 L1890
12 2160 28 AT22 14 L1820 10 1935 z L2210 1 .2280
32 A777 13 L1850 g L1960
20 1887 7 L2010 7i32 2188
174 .2500 28 2062 3 L2130 1 2280 F 2570 H 2660
32 2117 71132 .2188 1 .2280

Figure B-5: Tap Drill Chart

Let’'s say that you want to make a clearance hole for a 10-32 screw in a part.The first
step would be to find the correct row for a 10-32 screw by first looking in the screw size
column and then finding the row for 32 threads per inch (green arrows). Once you've
found the row you want, you would decide whether you want a close fit, or a free fit on
your clearance hole. A close fit will more closely match the outer diameter of your part,
but a free fit leaves more space and is good when the accuracy of the hole isn’'t as
important.

If you wanted to make a tapped 10-32 hole, you would look for the tap drill size instead
of the clearance drill size. The tap drill size will always be smaller than the clearance
hole. The first thing to know is the type of material you will be tapping into, as this will
control the percentage of thread you will be using. For softer materials, a higher
percentage of thread is better but on hard materials it's better to use a slightly larger drill
and smaller percentage of threads, so that tap doesn’t have to remove as much
material. Once you know what material and size you are using, all you need to do is find
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the correct drill size. For a 10-32 tapped hole in aluminum, we would use either a #21

drill or a 0.1590” drill (purple arrows).

G BB &€ W[I|

(@ Hole Specification
v X

:_l__‘_t Type rﬁ" Positions

Hole Type

8 i

Standard:
AMNSI Inch

Type:

Bottoming Tapped Hole
Hole Specifications

Size:

#10-32

] show custom sizing

End Condition

Through All

Thread:
Through All

Options

I T

@

When using the hole wizard in SolidWorks, the
program does all of the same steps that you
would do if you were using a tap drill chart. A
picture showing the hole wizard can be seen to
the left.

Under the hole type tab, you can see a lot of
common types of holes including, plain holes,
tapped holes, countersunk holes, and
counterbored holes. Select the type you want,
then move on to the “standard” drop down. This
is where you can select whether you want to use
standard english or metric sizes. You can then
adjust the type of hole if you want. If you are
using a non- tapped hole, you will have a lot of
options under the type drop down. Some of the
most useful ones are drill sizes, dowel sizes,

Type:

All Drill sizes A
All Drill sizes

Dowel Holes 5

Fractional Drill Sizes
Helicoil Tap Drills
Letter Dirill sizes
Mumber Drill Sizes
Pipe Tap Drills
Screw Clearances
Tap Drills

Figure B-6: SolidWorks Hole Wizard

screw clearances, and tap drills. A picture of the drop down can be seen below

Next, under the hole specifications tab, you can select the size of the hole you want to
make, or the screw that you are designing around. Once you’ve done this, all you have
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to tell the program is the end condition of your hole, whether your hole goes all the way
through of if it stops at a certain depth.

The last step, is to go the the positions tab at the top and tell the program where to
place your holes and you're done!

Why should use the hole wizard instead of extrude cutting the hole you want? First, by
using the hole wizard, you can ensure that the hole and the corresponding hardware
matches.. Second, the hole wizard makes it extremely easy to change hole sizes if you
need to change the hardware.. Third, by using the hole wizard you ensure that the hole
size you want to make actually matches a standard drill size. This is extremely
important because a drill will make a much more accurately sized hole than a milled
pocket, and will do so much more quickly.

More Common Tap Problems

Other common tapping problems you may run into are trying to make threads to the
very end of a blind hole. The problem with this, is that when a hole is tapped, you create
chips that build up underneath the tap, and when you get to the bottom of a hole, there’s
nowhere for those ships to go, so they exert a force on the tap and cause it to break.

Other common problems that can occur, is when you have to parts that you want to tap
together by putting threads in both of the parts. For a lot of reasons this is a bad idea.
First, in order for that to work, the end of threads from the first piece need to line up
perfectly with start of the threads of the second piece. Second, the holes need to be
perfectly coaxial, otherwise the screw will not go in, even if the threads happen to line
up. If you can manage to do both of those things, you also need to make sure that our
parts will never be taken apart, as you likely won’t be able to put them back together
accurately enough that your screw will go in. Instead, one of the parts can have a
clearance hole, and the other can have a tapped hole. This gives you much more
reliability and makes the manufacturing easier.

Internal Features

Internal features are features that are inside of other features and are often extremely
difficult or impossible to make. An example of an internal feature can be seen below.
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Figure B-7: Internal Part Features

The main problem with internal features is that it is extremely difficult or impossible to
get tooling inside of the larger pocket to be able to make this part.

Making One Complicated Part v. Making Several Easy Parts

Slightly contrary to what may be obvious, is that it is often much easier to make several
easy parts than to try and make one difficult part. If we wanted to make the part pictured
above in the internal features section, what we could do instead, is split the part into two
halves that fit together. A figure of what this might look like can be seen below

Figure B-8: Simple vs. Hard Parts
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Mixing English and Metric Units

The challenging thing about mixing english and metric parts is that particularly in shops
like Washburn, the vast majority of our tooling is in standard english sizes. We do have
a small amount of metric tooling, but not nearly the same variety and quantity that we
have of english tooling. The other problem with mixing english and metric units is that
the machines in Washburn Shops are american made HAAS machines and run, by
default, in english units.

Material Choices

Some materials are easier to work with than others. Some materials like aluminum,
brass, and steel are commonly used in machine shops like the one in Washburn. These
materials are easy to work with and can make functional parts. A list of good material
choices can be found below.

Good Material Choices for CNC machining:
e Most Aluminum Alloys
Some Steel Alloys
Most Brass Alloys
Some Copper Alloys
Some plastics (Delrin, ABS, Nylon 6/6, HDPE, Polycarbonate)

Bad Material Choices for CNC machining:

Extremely hard materials (Ex. Hardened steel)
Titanium

Fiberglass

Carbon Fiber

Pure Copper

Choosing and Buying Stock

Before trying to manufacture a part, you need to understand what type of stock you will
need in order to make your part. Stock is the material that you start from and machine
away to get your finished part. For smaller parts, stock can be ordered online from
places like MSC direct or McMaster Carr. For larger quantities or specialized materials,
it may be worth it to consult with Lab Staff so that they can help you find the right
distributor.
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Design Considerations for Turned Parts
Part Length

When making parts to be made in a lathe, overall length is a critical design consideration. Due
to the cutting forces that occur in a lathe, part diameter to part length should not exceed a 1:3
ratio for parts that will be unsupported, or a 1:5 ratio for parts that will be supported by with a
tailstock. Examples showing the difference between supported and unsupported cuts can be
seen below.

Unsupported Supported

Figure B-9: Unsupported vs. Supported Cuts

Stock Size

Each of the lathes in Washburn Shops has a maximum size of stock that it can accomodate.
The smaller lathes can accommodate stock up to about 2” in diameter, where the larger lathe
can accommodate up to about 10” in some situations.

Fixturing

While the lathes can accommodate a number of different sizes of stock, there are limitations to
the way in which the stock is held. If you plan to use a collet chuck, try to keep the outside
diameter of your stock to standard english fractional sizes (s, V4, etc.). If you plan to use a jaw
chuck, you can accommodate many intermediate sizes but there are additional steps required
during setup.
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Design Considerations for 3D Printed Parts

When considering designs for parts that are to be 3D Printed it is important to consider

many different things than would be considered for traditionally manufactured parts.

1.

Types of Additive Manufacturing:

There are many different types of additive manufacturing for plastic parts. For this
paper, we will be discussing the two maijor types of plastic 3D Printing which are material
extrusion and vat polymerization. Two types of vet polymerization are SLA and DLP
which both cure a resin and FDM which extrudes plastic one layer at a time. SLA 3D
Printing is known as stereolithography and uses a moving laser beam to cure a vat of
resin into the geometry specified by the software for the printer. DLP or Digital Light
Projection uses an LCD screen to project each layer onto the vat of uncured resin to
cure the layers faster than SLA. This process does not have the same resolution as SLA
printing as the pixel size of the LCD screen determines the resolution of the X and Y
dimensions of the part. FDM or Fused Deposition Modelling is the most commonly used
in hobbyist and professional 3D Printing. This method for 3D Printing uses a filament of
plastic which is passed through a heating element and heated to the glass transition
state of the plastic, allowing the heated plastic to bond with other plastic but not be
extruded as a liquid. This extruder builds up the model by extruding one layer at a time.
The rest of this informative paper will highlight printing using an FDM printer.

Material Choice:

Recently with advances in additive manufacturing, there are now even more
choices for materials. The two major types of filament used in FDM machines are PLA
and ABS. PLA is generally easier to print with and is a harder material while ABS has
more challenges when printing but is a much sturdier plastic (the same plastic used for
manufacturing LEGO bricks). Other materials that are gaining popularity are flexible
filaments, nylon, and composites. Each one comes with its own positives and
drawbacks, nylon has less friction between parts but like ABS is challenging to print,
flexible filaments allow for flexible parts but have difficulty extruding and adhering to the
build plate, and composite filaments are generally a mixture of PLA with other
particulates of either wood or metals.

Layer Lines:

For additive manufacturing, the way in which the lines are deposited for the
individual layer matters greatly. For FDM machines, all exposed surfaces are deposited
first at a slower speed to improve the surface quality. The internal structure that is printed
afterwards is either a hatching pattern or an infill pattern. This hatching pattern is printed
in a way to keep all parts of the layer at a consistent temperature to allow for the filament
to properly fuse to itself while preventing heat build up and melting.

Layer Thickness:

Layer thickness plays a major role in strength and resolution in 3D printed parts.
The smaller the individual layers, the higher the resolution. However, when the layer
lines are thinner the strength of the part is weaker because the weakest point of the part
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is between the layers. Each printer has a different acceptable range for layer heights
meaning that there is no one perfect layer height for prints.
5. Part Orientation:

Orienting the part on the bed can change the entire structural integrity of the part
and prevent the need for support structures or otherwise tricky geometries to print. In
general, to avoid overhangs any angle that the surface makes with the vertical over 45
degrees would require support structure. By reorienting the part, one can reduce the
amount of support material and save on plastic. In addition to this, the weakest part of
the print are where the layers are fused to each other, so by changing the orientation,
one can make the print as strong as possible in the proper ways. An example of how to
optimize orientations can be shown in the below picture.

Figure B-10: 3D Printing Orientation. (Reproduced as is from [83]).

6. Support:

Support material is generally required for any portions of the part that are in
midair. Support structures and properties can be changed in most slicer settings. These
changes allow the user to find the perfect balance between supports that easily come off
and also leave a good surface finish on the part. Certain 3D printers are able to print a
dissolvable support structure in addition to the main part material.

7. Overhangs:

Overhangs are when the part has a portion of it above the build surface and is
only connected to the main part by one side. As previously mentioned, overhangs need
support material when they are over 45 degrees from the vertical to reduce misprints. An
example of overhangs on a perfectly calibrated overhang bridge is shown.
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Figure B-11: 3D Printing Overhangs. (Reproduced as is from [83]).
8. Bridging:

Bridging is printing anything in a part that is supported by both sides but not the
bottom of the part. In order to print bridges without support sufficient cooling is needed.
Otherwise it is best to have supports on the bridge. Many 3D Printers and reviews of 3D
printers will state the maximum length of a bridge before support material is needed.
Below is shown a picture of what happens to the material as larger and larger bridges
are printed.

Figure B-12: 3D Printing Bridging. (Reproduced as is from [83]).
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9. Vertical Towers:
When printing parts, geometries matter not only to make challenging prints easier
but also to make sure that the parts have structural integrity. For vertical towers, a
chamfer or fillet is used to build up the layers gradually to reduce strain on the part
where the tower connects to the base. This is shown in the following diagram:

Mo supparts:
structure is fragile Supported Tower:

N/

' A

DN NNNNNNNNNNNNNNN

Buildplate

Figure B-13: 3D Printing Vertical Towers

10. Infill:

Infill is the percentage of plastic inside of the part. This is done so that parts that
do not need to be as strong do not need to waste extra plastic and time printing. Infill
should be between 20-70% to ensure a good print. When the Infill percentage is too low,
the top face of the part will be unsupported by the infill underneath it. When the infill
percentage is above 70% there is a good chance that the part will cool too fast between
layers preventing proper layer adhesion. Most slicer software allows for changing the
infill pattern to give the part structure in specific dimensions.

Figure B-14: 3D Printing Infill. (Reproduced as is from [83]).
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11.

12.

13.

14.

Wall thickness:

Wall or shell thickness is the thickness of the outer wall of the part which
determines print quality and structure. Wall thickness is something that can be changed
in the slicer software and it is recommended that the user selects a size thickness that is
at least two extruder widths across. This ensures that the outer geometry of the part
actually gets printed as some slicer softwares disregard geometries that are smaller than
the extruder diameter.

Warping:

Certain materials, like ABS, when 3D printing are very prone to warping. Warping
happens when the part cools unevenly. The way to reduce warping is to enclose the print
area and to have a heated build surface. After the print finishes, the user must allow the
print to cool in a slow and controlled manner.

Bed Adhesion:

There are many different types of beds for 3D printing, the most common types
are slightly textured material and glass plates. The best FDM build plates are heated top
allow for better adhesion to the bed. Some tricks for better adhesion when the heated
bed is not enough is to use hairspray or a glue stick for glass beds and blue painters
tape for some of the textured surfaces.

Tolerances:

Tolerancing 3D prints is completely dependent on the printer involved. Bed
leveling and initial layer height are also very important as the first layer can be oversized
due to the squishing between the extruder and the build plate. In 3D printing
communities, this term is known as “elephant’s foot”. For solving tolerance issues it is
best to go onto a forum or other community of users of the same or similar printers to
find what is best for the user’s 3D printer.
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Appendix C: Arduino Scripts

Signal_Conductor_5.ino

/*

* Signal_Conductor_5.ino - Code for controlling RC Car with a receiver or Raspberry Pi
* Created by Mitchell Curbelo, March 16, 2019.

*

* Code for Remote Controller modeled by Circuit Basics

* Link: http://www.circuitbasics.com/arduino-ir-remote-receiver-tutorial/

*/

// Include LED, Servo, and Remote Libraries
#include "LEDController.h"

#include <Servo.h>

#include <IRremote.h>

// Declare servos
Servo servol; // Motor
Servo servo2; // Turning Servo

//Master comman (true - connect and write to servos)
// True - connect and write to servos

// False - don't connect and write to servos
boolean execute = true;

// Output and Input Signal Data -> {Pins, Signal Calibration (min, steady, max), measued/output value, signal step, lastvalue}
float motorReceiver[] = {22, 5.52, 9.355, 12.80, 9.355, 0.03, 9.355}; // Signal from the motor channel of the receiver

float turnReceiver[] = {23, 6.12, 9.245, 12.78, 9.25, 0.06, 9.25}; // Signal from the turning channel of the receiver

float motorTransmitter[] = {4, 55, 90, 125, 90, 2, 90}; // Signal to the motor

float turnTransmitter[] = {5, 47, 90, 133, 90, 2, 90}; // Signal to the turing servo

// Variables to prevent noise in the input signal from the receiver into steps (not currently in use)

// NumberOfSamples = The number of samples before resetting the samples array

// SwitchMinimum = The number of samples at the same value that need to be taken before updating the input value
// When the SwitchMinimum is meet, the samples array is reset

// Sample Count = Number of samples taken

// DegreeStep = the number of degrees between each step

// motorDegreeStep is constant but turnDegreeStep can be changed while running the program

// Samples = An array that contains the number of times each type of sample has been measured.

// Motor Variables

int motorNumberOfSamples = 2;

int motorSwitchMinimum = 1;

int motorSampleCount = 0;

float motorDegreeStep;

int * motorSamples;

// Turning Servo Variables

int turnNumberOfSamples = 2;

int turnSwitchMinimum = 1;
int turnSampleCount = 0;
float turnDegreeStep;

int * turnSamples;

long iterationStart = ©; // Set at the start of each loop to tracks the time to execute each iteration
int iterationsCounter = @; // Iterations counter, sent to Raspberry Pi during training to determine if there are any skipped commands

// Variables for input from Raspberry Pi

String inputString = ""; // String read to from Raspberry Pi

bool stringComplete = false; // Boolean to determine if the entire instruction was receiverd
int INPUT_SIZE = 2; // Number of inputs that are supposed to be recieved from the Raspberry

// Variables for the LEDs that indicate the pins, output types and output details
LEDController * ledController;

const int numberOfLEDs = 3; // Number of LEDs being controlled by the LEDController Library
const int ledPins[] = {24, 25, 26}; // Pins: {Yellow, Blue, Red}

// Set types of outputs that will be used by the LEDs

const int outputTypeZeroDetails[] = {1}; // Output Type: None, Details: {arraySize}

const int outputTypeOneDetails[] = {2, 1000}; // Output Type: Pulse, Details: {arraySize, highDelay}

const int outputTypeTwoDetails[] = {3, 200, 200}; // Output Type: Blink, Details: Details {arraySize, highDelay, lowDelay}
const int outputTypeFourDetails[] = {6, 3, @, 300, 200, 1000}; // Output Type: Numbered Blink Before Delay and Repeat, Details:
{arraySize, blinkNumber, blinkCount, blinkNumberHighDelay, blinkNumberLowDelay, lowDelayBetweenNumberedBlinks}
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// Varaibles controlled by the Remote Controller

int channel = ©; // Channel @ = collect training data, Channel 1 = recieve cc ds from Raspberry Pi, Channel 3 = set the number of
turning steps

int level = 0;

boolean play = false; // Run or stop the car

const int RECV_PIN = 27; // Pin that recieves data from the remote controller
IRrecv irrecv(RECV_PIN);

decode_results results; // Decodded resultes from the remotecontroller
unsigned long lastKeyValue = ©; // Last balue set from the remote controller
int turnSteps = 7; // Initial number of turning steps

int motorSteps = 7; // Initial number of motor speed steps

Setup varables and libraries with inital values

*

*

* 1. Receiver input pins

* 2. Initial Values

* 3. Attach motor and turning servos
* 4, Setup LEDs

* 5. Setup Remote controller

void setup() {
// Open serial connection for communication with Raspberry Pi or debugging
Serial.begin(9600);

// Set both receiver input pins as inputs
pinMode(motorReceiver[0], INPUT);
pinMode(turnReceiver[0], INPUT);

iterationsCounter = 0;

// Calculate the initial degree steps
motorDegreeStep = (float)(motorTransmitter[3] - motorTransmitter[1] + 1) / (float)motorSteps;
turnDegreeStep = (float)(turnTransmitter[3] - turnTransmitter[1] + 1) / (float)turnSteps;

// Initialize motor and turn sample arrays

motorSamples = new int[motorNumberOfSamples];

for (int counter = @; counter < motorNumberOfSamples; counter++) {
motorSamples[counter] = 0;

}

turnSamples = new int[17];
for (int counter = 0; counter < 17; counter++) {
turnSamples[counter] = 0;

}

// Initilize inputString
inputString.reserve(200);

Serial.println("Initialize");

// Attach servos

if (execute) {
servol.attach((int)(motorTransmitter[©])); // Motor
servo2.attach((int)(turnTransmitter[@])); // Turn

}

// LED Setup
{
// Set Constructor Variables
long lastChangeTime[] = {0, @, 0}; // Set the last time each LEDs were set to zero
int outputType[] = {@, 1, 1}; // Set the initial output types of the LEDs, Yellow = None, Blue = Pulse, Red = Pulse
boolean state[] = {false, false, false}; // Set the initial state of the LEDs, true = on, false = off

// Set Initial LED Output Details
int *outputTypeDetails[] = {outputTypeZeroDetails, outputTypeOneDetails, outputTypeOneDetails};

// Convert Constructor Variables to Pointers

int * ledPinsPointer = ledPins;

long * lastChangeTimePointer = lastChangeTime;

int * ledOutputTypePointer = outputType;

boolean * ledStatePointer = state;

int ** outputTypeDetailsPointer = outputTypeDetails;

// Construct LEDController
ledController = new LEDController(numberOfLEDs, ledPinsPointer, lastChangeTimePointer, ledOutputTypePointer, ledStatePointer,
outputTypeDetailsPointer);
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ledController->setLED(channel, HIGH); // Set the LED that indicates inicating the initial channel
}

// Setup Remote Control
irrecv.enableIRIn();
irrecv.blink13(true);

/*
* Repeat the code within this function indefinitely
*
* Loop Steps
* 1. Get the input from the remote controller
* 2. Run receiver code if channel is @ and AI code if channel is 1
* 3. Update LEDs
* 4, Output ", (millis() - iterationStart), turnSteps\n" if channel != 2 or "(millis() - iterationStart), turnSteps\n" if channel ==
*/
void loop() {
iterationStart = millis(); // Note time at start of loop

remoteControls(); // Get input from remote controller (< @ms)

// Determine channel
if (channel == 0) {
receiverControl(); // Get input from Receiver (~80ms)
} else if (channel == 1) {
AIControl(); // Get input from Raspberry Pi (~8@ms)
}

ledController->updateLEDs(); // Update LEDs (< @ms)

// Serial.println(" Channel: " + String(channel) + " Level:
determine the programs state
if (channel != 2) {
Serial.print(",");

+ String(level) + " Play: + String(play)); // Debugging code, used to

}

// Print loop duration, the number of turning steps, and a '\n'

Serial.println(String(millis() - iterationStart) + "," + String(turnSteps));
}

// AI Functions

/*
* Code for Raspberry Pi (channel = 1)
* Reads input from the Raspberry Pi through a serial connection, sets the servo values, and sends the servo values back to the Raspberry
Pi
*
* If stringComplete is false then no input was read from the raspberry pi then don't set the servo values or sends values to the
Raspberry Pi
* If execute is false then the commands from the Raspberry Pi are not send to the servos
* If execute and play are true then the commands from the Raspberry Pi is send to the servos
* If execute is true and play is false then the turning servo is set from the Raspberry Commands but the motor servo is not. The motor
servo is set to 9@ (stop)
*
* OQutput (Received by Raspberry Pi or Debugger)
* "motorTransmitter[4], turnTransmitter[4]"
*/
void AIControl() {
serialEvent();
if (stringComplete) {

char input[inputString.length()];

motorTransmitter[4] = (int) atoi(inputString.substring(@, 3).c_str()); //sets the value to be the integer form of the first 3
characters of the incoming string

turnTransmitter[4] = (int) atoi(inputString.substring(4, 7).c_str()); //sets the value to be the integer form of the last 3 characters
of the incoming string

//reset incoming string information
inputString = "";
stringComplete = false;

if (execute) {
servo2.write(turnTransmitter[4]);
if (play) {
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servol.write(motorTransmitter[4]);
} else {
servol.write(90);
}
}

// Send back the commands that were received
Serial.print(motorTransmitter[4]);
Serial.print(",");
Serial.print(turnTransmitter[4]);

Get input from the Raspberry Pi Serial connection

If the serial connection is not avalible then leave stringComplete = false
If the serial connection is avalible then leave read the sent charaters into inputString
If no newline is read before the serial connection becomes unavalible then leave stringComplete = false
If a newline is read before the serial connection then leave set stringComplete equal to true
/
id serialEvent() {
while (Serial.available()) {
// get the new byte:
char inChar = (char)Serial.read();
// add it to the inputString:

if (inChar == '\n') {
stringComplete = true;
return;

}

inputString += inChar;
// if the incoming character is a newline, set a flag so the main loop can
// do something about it:]

Receiver Functions

Code for Receiver (channel = @)
Reads input from the receiver, sets the servo values, and sends the new servo values to the raspberry pi

If execute or play are false then the servos are not set

Output (Received by Raspberry Pi or Debugger)

If execute is true then the output "iterationsCounter, motorTransmitter[4]) + + String(turnTransmitter[4])"
If execute is false then the output "motorTransmitter[4]) + "," + String(turnTransmitter[4])"

/

id receiverControl() {

iterationsCounter++; // increment the number of iterations that have occured

>

// Get the input from the reciever
getSignal(motorReceiver);
getSignal(turnReceiver);

// Convert the data from PMW to degrees
scale(motorReceiver, motorTransmitter);
scale(turnReceiver, turnTransmitter);

// Remove noise from input signals

signalNoiseFilter(motorTransmitter, motorDegreeStep, motorSteps, motorSwitchMinimum, motorNumberOfSamples, motorSamples,
otorSampleCount);

signalNoiseFilter(turnTransmitter, turnDegreeStep, turnSteps, turnSwitchMinimum, turnNumberOfSamples, turnSamples, &turnSampleCount);

// Send the commands from the Reciever to the servos if execute and play are true
// Print the iteration count
if (execute) {
if (play) {
servol.write((int)round(motorTransmitter[4])); // Motor
servo2.write((int)round(turnTransmitter[4])); // Turn

}

Serial.print(iterationsCounter);
Serial.print(",");
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// Print the commands sent to the servos (Received by Raspberry Pi or Debugger)

Serial.print(String(motorTransmitter[4]) + "," + String(turnTransmitter[4]));

}

/*
* Reads the input from the Receiver using the getDutyCycle(float* input) function
* Parameters
* float* input = detailed information about the input signal: {Pins, Signal Calibration (min, steady, max), measued/output value, signal
step, lastvalue}
*
* If the input from the pin is not within the signal bounds specified in input (input[1] < x < input[3]) then the new input value
(input[4]) is set to the signals steady state value (input[3])
* If the input from the pin is within the signal bounds specified in input (input[1] < x < input[3]) then the new input value (input[4])
is set to the measured duty cycle
*/
void getSignal(float* input) {
float signalvValue = getDutyCycle(input[@]);

//Check Signal Bounds

if (signalvalue < 1) {

signalvalue = input[1];

else if (signalvalue < input[1]) {
signalvalue = input[1];

else if (signalvalue > input[3]) {
signalvalue = input[3];

- W

input[4] = signalvalue;

/*

* Removes noise from the Receiver input

* float* input = detailed information about the input signal: {Pins, Signal Calibration (min, steady, max), measued/output value, signal
step, lastvalue}

* float degreeStep = the number of degrees between each step

* int steps, int switchMinimum = The number of samples at the same value that need to be taken before updating the input value
int numberOfSamples = The number of samples before resetting the samples array
int* samples = An array that contains the number of times each type of sample has been measured.
int * sampleCount = Number of samples already taken

Return
int the "new" input value (input[4])

L

*

If the minimum number of samples has been met then the input (input[4]) is set to the new value, the last input value (input[6]) is set
to the new value, the sampleCount is set to @, and the values in the samples array are set to @

* If the minimum number of samples has not been met the "new" input value (input[4]) is set to the last input value that was set
(input[6])

* If the minimum number of samples has not been met and numberOfSamples >= sampleCount then values in the samples array are set to @

*/

int signalNoiseFilter(float* input, float degreeStep, int steps, int switchMinimum, int numberOfSamples, int* samples, int * sampleCount)
{
int steppedInput = (int)((float)(input[4] - input[1]) / (float)degreeStep); // Convert the input into a stepped input

samples[steppedInput]++; // Increment samples at that input

if (samples[steppedInput] == switchMinimum) {
*sampleCount = numberOfSamples; // Ensure sampleCount is reset
input[4] = (int)((float)steppedInput * ((float)(input[3] - input[1]) / (float)(steps - 1))) + input[1]; // Set new input value
input[6] = input[4]; // Set last input value

} else {

input[4] = input[6]; // Set input value to last input value
}
(*sampleCount)++;

// Reset values in samples array to zero if sampleCount is >= numberOfSamples
if (*sampleCount >= numberOfSamples) {
for (int counter = @; counter < steps; counter++) {
samples[counter] = 0;
*sampleCount = 0;

}

return input[4];

/*
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* Get the the duty cycle of a signal from a pin by measuring the low time and high time
* Parameters

* int pin - the pin that the duty cycle is being read from

*

* Returned Value

* float dutyCycle = the duty cycle of the signal with the range of @ to 100

*

* RunTime ~ 4@ms (two duty cycles)

*

*/

float getDutyCycle(int pin) {
long startTime = millis();
float dutyCycle = 0;
long timePeriod = 0;
int low = 0;
int high = 0;

if (digitalRead(pin)) {
low = pulseIn(pin, LOW, 25000);
bool timeout = false;

while (high == 0@ && !timeout && ((millis() - startTime) < 100)) {
if (!digitalRead(pin)) {
high = pulseIn(pin, HIGH, 25000);
timeout = true;
}
}
else {
high = pulseIn(pin, HIGH, 25000);
bool timeout = false;

-

while (low == © && !timeout && ((millis() - startTime) < 100)) {
if (digitalRead(pin)) {
low = pulseIn(pin, LOW, 25000);
timeout = true;
}
}
}

if (high != @ & low != 8) {
timePeriod = high + low;
// Serial.print(String(timePeriod) + ",");
dutyCycle = 100 * (float)high / (float)timePeriod;
}

if (dutyCycle <= 100) {
return dutyCycle;

} else {
return 0;

}

/*
* Scale the input from the input range to the ouput in the ouput range
* float* input = detailed information about the input signal: {Pins, Signal Calibration (min, steady, max), measued/output value, signal
step, lastvalue}
* float* output = detailed information about the output signal: {Pins, Signal Calibration (min, steady, max), measued/output value,
signal step, lastvalue}
* RunTime ~ 40@ms
*/
void scale(float* input, float* output) {
if (input[4] > input[2]) {
double inputDelta = input[4] - input[2];
double inputScale = input[3] - input[2];
double inputRatio = inputDelta / inputScale;

double outputScale = output[3] - output[2];

output[4] = output[2] + (float)(outputScale * inputRatio);
else if (input[4] < input[2]) {

double inputDelta = input[4] - input[2];

double inputScale = input[2] - input[1];

double inputRatio = inputDelta / inputScale;

-

double outputScale = output[2] - output[1];

output[4] = output[2] + (float)(outputScale * inputRatio);
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} else {
output[4] = output[2];
}

if (output[4] > output[3] - output[5]) {
output[4] = output[3];

} else if (output[4] < output[1] + output[5]) {
output[4] = output[1];
} else if (((output[4] - output[5] <= output[2]) && (output[4] >= output[2])) || ((output[4] + output[5] >= output[2]) && (output[4] <=

output[2]))) {
output[4] = output[2];
}
}

// Remote Controller Functions

/*
* Get signal from remote controller and set channel, level, and play
* Button actions...
* CH+: Increment channel or wrap to channel @ if channel = 2, update the LED output types and details , set play = false, and set level =
]
* CH-: Decrement channel or wrap to channel 2 if channel = @, update the LED output types and details , set play = false, and set level =
o
* 5| : play = !play, update the LED output types and details
* + : Increment level, if channel = 3 then turnSteps += 2, update LED output types, and details
* - : Dencrement level, if channel = 3 then turnSteps -= 2, update LED output types, and details
*/
void remoteControls() {
if (irrecv.decode(&results)) {
if (results.value == OXFFFFFFFF) {
results.value = lastKeyValue;
} else {
switch (results.value) {
case OxFFA25D: // CH-

if (channel == 0) {
channel = 2;

} else {
channel--;

for (int counter = @; counter < numberOfLEDs; counter++) {

ledController->setOutputType(counter, 0, outputTypeOneDetails);

if (counter != channel) {
ledController->setOutputType(counter, @, outputTypeOneDetails);
ledController->setLED(counter, LOW);

} else {
ledController->setOutputType(counter, 0, outputTypeZeroDetails);
ledController->setLED(counter, HIGH);

}
}
level = 0;
play = false;
break;

case OxFF629D: // CH

break;
case OxFFE21D: // CH+

if (channel == 2) {
channel =

} else {
channel++;

}

// Update LED output types and led output details
for (int counter = @; counter < numberOfLEDs; counter++) {
ledController->setOutputType(counter, 0, outputTypeOneDetails);
if (counter != channel) {
ledController->setOutputType(counter, @, outputTypeOneDetails);
ledController->setLED(counter, LOW);
} else {
ledController->setOutputType(counter, @, outputTypeZeroDetails);
ledController->setLED(counter, HIGH);
}
}
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level = 0;
play = false;

break;
case OxFF220D: // »>|

break;
case OxFFO2FD: // >>|

break ;
case OxFFC23D: // >|
play = !play;
if (play) {
if (channel != 2) {
ledController->setOutputType(channel, 2, outputTypeTwoDetails);
else {
int * outputTypeDetails = new int[outputTypeFourDetails[0]];
ledController->copyArray(outputTypeFourDetails, outputTypeDetails, outputTypeFourDetails[@]);
outputTypeDetails[1] = (int)(turnSteps / 2);
ledController->setOutputType(channel, 4, outputTypeDetails);
}
} else {
ledController->setOutputType(channel, @, outputTypeZeroDetails);
ledController->setLED(channel, HIGH);
}
break ;
case OxFFEQ1F: // -
if (channel != 2) {
if (level != @) {
level--;
}
} else {
if (play) {
if (turnSteps != 3) {
turnSteps -= 2;
turnDegreeStep = (float)(turnTransmitter[3] - turnTransmitter[1] + 1) / (float)turnSteps;
int * outputTypeDetails = new int[outputTypeFourDetails[@]];
ledController->copyArray(outputTypeFourDetails, outputTypeDetails, outputTypeFourDetails[@]);
outputTypeDetails[1] = (int)(turnSteps / 2);
ledController->setOutputType(channel, 4, outputTypeDetails);

—~

}
}
}
break ;
case OxFFA857: // +
if (channel != 2) {
level++;
} else {
if (play) {
if (turnSteps != 17) {
turnSteps += 2;
turnDegreeStep = (float)(turnTransmitter[3] - turnTransmitter[1] + 1) / (float)turnSteps;
int * outputTypeDetails = new int[outputTypeFourDetails[0]];
ledController->copyArray(outputTypeFourDetails, outputTypeDetails, outputTypeFourDetails[@]);
outputTypeDetails[1] = (int)(turnSteps / 2);
ledController->setOutputType(channel, 4, outputTypeDetails);
}
}
}
break ;
case OxFF906F: // EQ

break ;
case OxFF6897: // @

break ;
case OxFF9867: // 100+

break ;
case OxFFBOAF: // 200+

break ;
case OxFF30CF: // 1

break ;
case OxFF18E7: // 2
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break ;
case OxFF7A85: // 3

break ;
case OxFF1QEF: // 4

break ;
case OxFF38C7: // 5

break ;
case OxFF5AA5: // 6

break ;
case OxFF42BD: // 7

break ;
case OxFF4AB5: // 8

break ;
case OxFF52AD: // 9

break ;

// Serial.println(" Channel: " + String(channel) + " Level:

lastKeyValue = results.value;
irrecv.resume();

}

LEDController.h

~
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LEDController.h - Library for controlling LED outputs.
Created by Mitchell Curbelo, March 16, 2019.

Variables...

int _numberOfLEDs; // Number of LEDs being controlled

int * _pins; // Array of LED pins

long * _lastChangeTimes; // Last time the LEDs were updated
int * _outputTypes; // Array of LED output types

boolean * _states; // Array of current state of LEDs

int ** _outputTypeDetails; // Array of LED output details

Output Types...

0: None, Details: {arraySize}

1: Pulse, Details: {arraySize, highDelay};

2: Blink, Details: {arraySize, highDelay, lowDelay}

3: Blink with Delay Cycle, Details: {arraySize, startIndex,
delayOne, delayTwo, delayThree, ...}

+ String(level) + " Play:

4: Numbered Blink Before Delay and Repeat, Details: {arraySize, blinkNumber,

blinkCount, blinkNumberHighDelay, blinkNumberLowDelay,
lowDelayBetweenNumberedBlinks}
Else: Print error

fndef LEDController_h
efine LEDController_h
nclude "Arduino.h"

ass LEDController {
public:

+ String(play));

LEDController(int numberOfLEDs, int * pins, long * lastChangeTimes, int * outputTypes, boolean * states, int ** theOutputTypeDetails);

void updateLEDs();
void setLED(int pinIndex, boolean state);

boolean* getStates();
int getOutputType(int index);

void setOutputType(int index, int value, int * theOutputTypeDetails);

void copyArray(int* src, int* dst, int len);
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#e

void copyArray(long* src, long* dst, int len);
void copyArray(boolean* src, boolean* dst, int len);

void printLEDStates();
void printLEDs();

private:
int _numberOfLEDs;
int * _pins;
long * _lastChangeTimes;
int * _outputTypes;
boolean * _states;
int ** _outputTypeDetails;

void setupLEDPins();
String LEDController::stringAppendSpaces(String theString, int theLength, char theChar);

String LEDController::stringReplaceBeginning(String originalString, String replaceingString);

ndif

LEDController.c

#i
#i

LE
th

~
*

L O

*

VO

nclude "Arduino.h"
nclude "LEDController.h"

Constructor

int numberOfLEDs = Number of LEDs being controlled

int * pins = Array of LED pins

long * lastChangeTimes = Last time the LEDs were updated
int * outputTypes = Array of LED output types

boolean * states = Array of current state of LEDs

int ** theOutputTypeDetails = Array of LED output details

DController::LEDController(int numberOfLEDs, int * pins, long * lastChangeTimes, int * outputTypes, boolean * states, int **
eOutputTypeDetails) {
_numberOfLEDs = numberOfLEDs;

// Create arrays

_pins = new int[numberOfLEDs];
_lastChangeTimes = new long[numberOfLEDs];
_outputTypes = new int[numberOfLEDs];
_states = new boolean[numberOfLEDs];
_outputTypeDetails = new int*[numberOfLEDs];

//Copy Arrays

copyArray(pins, _pins, numberOfLEDs);
copyArray(lastChangeTimes, _lastChangeTimes, numberOfLEDs);
copyArray(outputTypes, _outputTypes, numberOfLEDs);
copyArray(states, _states, numberOfLEDs);

for (int counter = ©; counter < numberOfLEDs; counter++) {
_outputTypeDetails[counter] = new int[theOutputTypeDetails[counter][0]];
copyArray(theOutputTypeDetails[counter], _outputTypeDetails[counter], theOutputTypeDetails[counter][0]);
}

//Setup LEDs
setupLEDPins();

Update LEDs based on the last time they were updated, their output types and their details
Output Types...
0: None, Details: {arraySize}
1: Pulse, Details: {arraySize, highDelay};
2: Blink, Details: {arraySize, highDelay, lowDelay}
3: Blink with Delay Cycle, Details: {arraySize, startIndex,
delayOne, delayTwo, delayThree, ...}
4: Numbered Blink Before Delay and Repeat, Details: {arraySize, blinkNumber, blinkCount, blinkNumberHighDelay,
blinkNumberLowDelay, lowDelayBetweenNumberedBlinks}
Else: Print error
/
id LEDController::updateLEDs() {
for (int counter = @; counter < _numberOfLEDs; counter++) {
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// Update LEDs based on their output type
switch (_outputTypes[counter]) {
case @: // None - Details {arraySize};
break;
case 1: // // Pulse - Details {arraySize, highDelay};
if (_states[counter]) {
if (millis() - _lastChangeTimes[counter] > _outputTypeDetails[counter][1]) {
setLED(counter, LOW);
_lastChangeTimes[counter] = millis();
}
}
break;
case 2: // Blink - Details {arraySize, highDelay, lowDelay};
if (_states[counter]) {
if (millis() - _lastChangeTimes[counter] > _outputTypeDetails[counter][1]) {
setLED(counter, LOW);
_lastChangeTimes[counter] = millis();
}
} else {
if (millis() - _lastChangeTimes[counter] > _outputTypeDetails[counter][2]) {
setLED(counter, HIGH);
_lastChangeTimes[counter] = millis();
}
}

break;
case 3: // Blink with Delay Cycle - Details {arraySize, startIndex, delayOne, delayTwo, delayThree, ...};
if (_outputTypeDetails[counter][1] < 2) {
_outputTypeDetails[counter][1] = 2;
}

// Serial.println(_outputTypeDetails[counter][_outputTypeDetails[counter][1]]);

if (millis() - _lastChangeTimes[counter] > _outputTypeDetails[counter][_outputTypeDetails[counter][1]]) {
setLED(counter, !_states[counter]);

_lastChangeTimes[counter] = millis();

if (_outputTypeDetails[counter][1] + 1 >= _outputTypeDetails[counter][0]) {
_outputTypeDetails[counter][1] = 2;
} else {
_outputTypeDetails[counter][1] = _outputTypeDetails[counter][1] + 1;
}
}

break;
case 4: // Numbered Blink Before Delay and Repeat - Details {arraySize, blinkNumber, blinkCount, blinkNumberHighDelay,

// blinkNumberLowDelay, lowDelayBetweenNumberedBlinks}
if (_outputTypeDetails[counter][2] < @) {
_outputTypeDetails[counter][2] = 0;

}

if (_outputTypeDetails[counter][2] < _outputTypeDetails[counter][1]) {
if (_states[counter]) {
if (millis() - _lastChangeTimes[counter] > _outputTypeDetails[counter][3]) {
setLED(counter, LOW);
_lastChangeTimes[counter] = millis();
}
} else {
if (millis() - _lastChangeTimes[counter] > _outputTypeDetails[counter][4]) {
_outputTypeDetails[counter][2]++;
_lastChangeTimes[counter] = millis();

if (_outputTypeDetails[counter][2] == _outputTypeDetails[counter][1]) {
setLED(counter, LOW);
} else {
setLED(counter, HIGH);
}
}
}
} else {
if (millis() - _lastChangeTimes[counter] > _outputTypeDetails[counter][5]) {
setLED(counter, HIGH);
_outputTypeDetails[counter][2] = ©;
}
}

break;
default: // Print error for unknown case
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Serial.println("Error -> Invalid LED update case for LED: " + String(counter) +

break;

/*

with case: " + _outputTypes[counter]);

* Set the state of an LED at a specified index and updates the last change time of the LED

* int pinIndex = index of the LED being changed

* boolean state = the new state of the LED

*/

void LEDController::setLED(int pinIndex, boolean state) {
digitalWrite(_pins[pinIndex], state);
_states[pinIndex] = state;
_lastChangeTimes[pinIndex] = millis();

}

/*
* Set all the pinModes of the pins specified in the pins array OUTPUT
*/
void LEDController::setupLEDPins() {
for (int counter = @; counter < _numberOfLEDs; counter++) {
pinMode(_pins[counter], OUTPUT);
}
}

* Copy a source int array to a destination int array

* int* src = source boolean array

* int* dst = destination int array

* int len = lenth of src and dst arrays

*/

void LEDController::copyArray(int* src, int* dst, int len) {
for (int counter = 0; counter < len; counter++) {

memcpy(dst++, src++, sizeof(src[@]));

}

}

* Copy a source long array to a destination long array

* long* src = source long array

* long* dst = destination long array

* int len = lenth of src and dst arrays

*/

void LEDController::copyArray(long* src, long* dst, int len) {
for (int counter = @; counter < len; counter++) {

memcpy(dst++, src++, sizeof(src[0]));

}

}

/*
* Copy a boolean array from a source array to a destination array
* boolean* src = source boolean array
* boolean* dst = destination boolean array
* int len = lenth of src and dst arrays
*/
void LEDController::copyArray(boolean* src, boolean* dst, int len) {
for (int counter = 0; counter < len; counter++) {
memcpy(dst++, src++, sizeof(src[@]));
}
}

* Print LED information

* Format...

* LEDController:

* pin Type State Last Change Type Details
*

*

*

Tabulated Values
void LEDController::printLEDs() {
String lineSpacer = "\n";

String outputString = "LEDController:" + lineSpacer;

outputString += stringAppendSpaces("Pin", 6, ' ');
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}

/*

outputString += stringAppendSpaces("Type", 6, ' ');
outputString += stringAppendSpaces("State", 7, ' ');
outputString += stringAppendSpaces("Last Change", 13, ' ');
outputString += stringAppendSpaces("Type Details", 20, ' ');
outputString += lineSpacer;

for (int counter = @; counter < _numberOfLEDs; counter++) {
outputString += stringAppendSpaces(String(_pins[counter]), 6, ' ');
outputString += stringAppendSpaces(String(_outputTypes[counter]), 6, ' ');
outputString += stringAppendSpaces(String(_states[counter]), 7, ' ');
outputString += stringAppendSpaces(String(_lastChangeTimes[counter]), 13, ' ');

String detailsString = "{";
for (int detailsCounter = ©; detailsCounter < _outputTypeDetails[counter][@]; detailsCounter++) {
if (detailsCounter == 0) {
detailsString += _outputTypeDetails[counter][detailsCounter];
} else {
detailsString +=
}
}
detailsString += "}";
outputString += stringAppendSpaces(detailsString, 20, ' ');

>

+ String( _outputTypeDetails[counter][detailsCounter]);

outputString += lineSpacer;

Serial.println(outputString);

Add a char to the end of the string to get a string with a specific length

* String theString = the string with the chars being added onto the end

*
*

St

¥

~
*

N

*

St

re

}

/*
*
*

int theLength = length of the returned string
char theChar = character being added to the end of theString
/
ring LEDController::stringAppendSpaces(String theString, int theLength, char theChar) {
String orignialString = "";
for (int counter = @; counter < theLength; counter++) {
orignialString += theChar;

}
return stringReplaceBeginning(orignialString, theString);
Replaces the beginning part of a string with another string
Parameters
String originalString = The string that is having the beginning replaced
String replaceingString = the string that is replacing the beginning of originalString
Exceptions
replaceingString Length < replaceingString length
/
ring LEDController::stringReplaceBeginning(String originalString, String replaceingString) {
String returnedString = "";
if (replaceingString.length() < originalString.length()) {

returnedString = replaceingString + originalString.substring(replaceingString.length(), originalString.length());
} else {

Serial.println("Error -> LEDController::stringReplaceBeginning(String originalString, String replaceingString);
placeingString.length()=" + String(replaceingString.length()) + " > originalString.length()= " + String(originalString.length()));
}
return returnedString;

Returns the states of the LEDs
/

boolean* LEDController::getStates() {
return _states;
}
/*
* Returns the output type of the LED at the specified index
*/
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int LEDController::getOutputType(int index) {
return _outputTypes[index];

}

/*

* Change the output type and output details of an LED
* index - index of LED in arrays

* value - the new output type of the LED

* theOutputTypeDetails - the new outputDetails of the LED

*/

void LEDController::setOutputType(int index, int value, int * theOutputTypeDetails) {
_outputTypes[index] = value;
_outputTypeDetails[index] = new int[theOutputTypeDetails[@]];
copyArray(theOutputTypeDetails, _outputTypeDetails[index], theOutputTypeDetails[0]);

}

/*
* Print the current states of the LEDs
*/
void LEDController::printLEDStates() {
for (int counter = @; counter < _numberOfLEDs; counter++) {
Serial.print(_states[counter]);
if (counter != _numberOfLEDs - 1) {
Serial.print(",");
} else {
Serial.println();

}
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Appendix C: Bond Graph State Equations and Derivations
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Suspension
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Appendix D: Arduino script: Multiple DHT22 Temperature Sensors

3TempSensor_KM

/ MQP Temperature System
// - Krishna Madhurkar
// - 12/2/2018

//Libraries Used
#include <DHT.h>;

//Constants

#define DHT1PIN 7
#define DHT2PIN 6
#define DHT3PIN 5

// Temperature sensor 1
// Temperature sensor 2
// Temperature sensor 3

#define DHTTYPE DHT22  // DHT 22 (AM23082)

DHT dht1(DHT1PIN, DHTTYPE); // Initialize DHT sensor for normal 16mhz Arduino
DHT dht2(DHT2PIN, DHTTYPE);

DHT dht3(DHT3PIN, DHTTYPE);

//Nariables

float huml; //Stores humidity value

float templ; //Stores temperature value

float hum2;

float temp2;

float hum3;

float temp3;

float avgTemp; //Stores average temperature value

void setup()

{
Serial.begin(9600);
Serial.println("Temperature detection™);
dht1.beginQ);
dht2.beginQ);
dht3.begin(Q);

void loop()

delay(2000);

//Read and Store data

huml = dhtl.readHumidity();

templ = dhtl.readTemperature();

hum2 = dht2.readHumidityQ);

temp2 = dht2.readTemperature(Q);

hum3 = dht3.readHumidityQ);

temp3 = dht3.readTemperature(Q;

avgTemp = ( templ + temp2 + temp3 )/3 ;

//Print temp and humidity values to serial monitor
//Check if nan -> not a number

if (isnanCtempl) || isnanChuml)) {
Serial.println("Failed to read from DHT #1");

else {

Serial.print("Humidity: ");

Serial.printChuml);

Serial.print(" %, Temp: ");

Serial.print(templ);

Serial.println(" Celsius");

—

if (isnan(temp2) || isnanChum2)) {
Serial.println("Failed to read from DHT #2");
else {
Serial.print("Humidity: ");
Serial.printChum2);
Serial.print(" %, Temp: ");
Serial.print(temp2);
Serial.println(" Celsius");

-

if (isnanCtemp3) || isnanChum3)) {
Serial.println("Failed to read from DHT #3");
else {

Serial.print("Humidity: ");
Serial.printChum3);
Serial.print(" %, Temp: ");
Serial.print(temp3);
Serial.println(" Celsius");

w

if (isnanCavgTemp) |lisnan(templ) || isnan(temp2) || isnan(temp3) ) {
Serial.println("Average invalid: Failed to read from 1/3 DHT");

} else {
Serial.print(" Average Temp: ");
Serial.printCavgTemp);
Serial.println(" Celsius™);
delay(2000); //Delay 2 sec.

}

1

//End

Figure D-1: Temperature Sensor Arduino Code
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Appendix E: Arduino script: IMU

#include <Wire.h>
#include <LSM303.h>

LSM303 compass;

void setup() {
Serial.begin(9600);
Wire.beginQ);
compass.initQ);
compass. enableDefault();

k.m_min = (LSM303: :vector<intl6_t>){-32767, -32767, -32767};
compass.m_max = (LSM30@3::vector<intl6_t>){+32767, +32767, +32
}

void loopQ) {
compass.read();
float heading = compass.heading();

Serial.println(heading);
delay(100);

En - * . i S
gyro_minimu § gyro_x = gyro_x G;Dt, {/ Multiply the angular rate by the time interval
gyro_y = gyro_y*G_Dt;

gyro_z = gyro_z*G_Dt;

#include <Wire.h> gyro_x +=gyro_xold; // add the displacment(rotation) to the cumulative displacment
#include <L3G.h> gyro_y += gyro_yold;
gyro_z += gyro_zold;

L3G gyro; gyro_xold=gyro_x ; // Set the old gyro angle to the current gyro angle
gyro_yold=gyro_y ;
gyro_zold=gyro_z ;

float G_Dt=0.005; // Integration time (DCM algorith

// We will run the integration loop at 50Hz if possibl

: . . 1f((millis()-timer1)>=108@) // prints the gyro value once per second
long t}mer:ﬂ, //general purpose timer i
long timerl=0; timerl=millisQ);

. R Serial.print("G ");
float G_gain=.00875; // gyros gain factor for 250deg/s serial.print("x: ");

float gyro_x; //gyro x val serial.print(gyro.;

? Serial.print(" Y: ");
float gyro_y; //gyro x val Serial.print(gyro_y);
float gyro_z; //gyro x val serial.print(" Z: "3;

float gyro_xold; //gyro cummulative x value sertal.println(gyro-2);

float gyro_yold; //gyro cummulative y value

float gyro_zold; //gyro cummulative z value '
float gerrx; // Gyro x error

float gerry; // Gyro y error

float gerrz; // Gyro 7 error

void setupQ {
Serial.begin(9600);
Wire.beginQ); // i2c begin

if (!gyro.initQ)) // gyro init
{

Serial.println("Failed to autodetect gyro type!");
while (1);

timer=millisQ); // init timer for first reading
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gyro.enableDefault(); // gyro init. default 25@/deg/s
delay(1000);// allow time for gyro to settle

for(int i =@;i<100;i++){ // takes 100 samples of the gyro
gyro.read(Q);

gerrx+=gyro.g.x;

gerry+=gyro.g.y;

gerrz+=gyro.g.z;

delay(25);

t

gerrx = gerrx/100; // average reading to obtain an error/offset
gerry = gerry/100;
gerrz = gerrz/100;

Serial.println(gerrx); // print error vals
Serial.println(gerry);
Serial.println(gerrz);

}

void loopQ) {
if((millisQ-timer)>=5) // reads imu every 5ms

{

gyro.read(); // read gyro

timer=millisQ); //reset timer
gyro_x=(float)(gyro.g.x-gerrx)*G_gain; // offset by error then m
gyro_y=(float)(gyro.g.y-gerry)*G_gain;
gyro_z=(float)(gyro.g.z-gerrz)*G_gain;

gyro_x = gyro_x*G_Dt; // Multiply the angular rate by the time i

gyro_y = gyro_y*G_Dt;
ayro_z = ayro_z*G_Dt:

Calibrate §

#include <Wire.h>
#include <LSM3@3.h>

LSM303 compass;
LSM303: :vector<intl6_t> running_min = {32767, 32767, 327
running_max = {-32768, -32768, -32768};

char report[80];

void setupQ) {
Serial.begin(9600@);
Wire.beginQ);
compass.init(Q);
compass.enableDefault(Q);

}

void loopQ) {
compass. read();

running_min.x = minCrunning_min.x, compass.m.x);
running_min.y = minCrunning_min.y, compass.m.y);
running_min.z = minCrunning_min.z, compass.m.z);

running_max.x = max(running_max.x, compass.m.Xx);
running_max.y = max(running_max.y, compass.m.y);
running_max.z = max(running_max.z, compass.m.z);

snprintf(report, sizeof(report), "min: {%+6d, %+6d, %+
running_min.x, running_min.y, running_min.z,
running_max.x, running_max.y, running_max.z);
Serial.println(report);

delay(100);
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Complimentfilter

include <Wire.h>
include <L3G.h>
include <LSM303.h>
3G gyro;

SM303 accel;

loat G_Dt=0.020; // Integration time (DCM algorithm) We will

ong timer=@; //general purpose timer
ong timerl=0;
ong timer2-0;

loat G_gain=.00875; // gyros gain factor for 250deg/sec
loat gyro_x; //gyro x val

loat gyro_y; //gyro x val

loat gyro_z; //gyro x val

loat gyro_xold; //gyro cummulative x value

loat gyro_yold; //gyro cummulative y value

loat gyro_zold; //gyro cummulative z value

loat gerrx; // Gyro x error

loat gerry; // Gyro y error

loat gerrz; // Gyro 7 error

loat A_gain=.00875; // gyros gain factor for 250deg/sec
loat accel_x; //gyro x val

loat accel_y; //gyro x val

loat accel_z; //gyro x val

loat accel_xold; //gyro cummulative x value

loat accel_yold; //gyro cummulative y value

loat accel_zold; //gyro cummulative z value

loat aerrx; // Accel x error

loat aerry; // Accel y error

loat aerrz; // Accel 7 error

“void gyrozZeroQ){
// takes 200 samples of the gyro
for(int 1 =0;1<200;i++){
gyro.read();
gerrx+=gyro.g.x;
gerry+=gyro.g.y;
gerrz+=gyro.g.z;
delay(20);

gerrx = gerrx/20@; // average reading to cobtain an error/offset
gerry = gerry/200;
gerrz = gerrz/200;

Serial.println(gerrx); // print error vals
Serial.println{gerry);
Serial.println{gerrz);

}

void readGyro(Q{
gyro.read(); // read gyro
timer=millis(); //reset timer
gyro_x=(float)(gyro.g.x-gerrx)*G_gain; // offset by error then multiply by gyro
gyro_y=(float)(gyro.g.y-gerry)*G_gain;
gyro_z=(float)(gyro.g.z-gerrz)*G_gain;

gyro_x = gyro_x*G_Dt; // Multiply the angular rate by the time interval

gyro_y = gyro_y*G_Dt;

gyro_z = gyro_z*G_Dt;

gyro_x +=gyro_xold; // add the displacment(rotation) to the cumulative displacm

gyro_y gyro_yold;
gyro_z += gyro_zold;

gyro_xold=gyro_x ; // Set the old gyro angle to the current gyro angle
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gyro_yold=gyro_y ;
gyro_zold=gyro_z ;

void printGyro(Q{
timer2=millisQ;

// The gyro_axis variable keeps track of roll, pitch,yaw based on the com
Serial.print(" GX: ");
Serial.print(gyro_x);
Serial.print(" GY: ");
Serial.print(gyro_y);
Serial.print(" GZ: ");
Serial.print(gyro_z);

Serial.print(" Ax = ");
Serial.print(accel_x);
Serial.print(" Ay = ");
Serial.print(accel_y);
Serial.print(" Az = ");
Serial.println(accel_z);

}
void Accel_InitQ)

accel.initQ;

accel.enableDefault(Q);
Serial.print("Accel Device ID");
Serial.println(accel.getDeviceType());
switch (accel.getDeviceType())

case LSM303::device D:
accel.writeReg(LSM303::CTRL2, @x18); // 8 g full scale: AFS = 011

break;
case LSM303::device _DLHC:
accel.writeReg(LSM303::CTRL_REG4_A, @x28); // 8 g full scale:
break;
default: // DLM, DLH
accel.writeReg(LSM303::CTRL_REG4_A, @x30); // 8 g full scale:

oid accelZero(D{

//1 found this to be more problematic than it was worth.
//not implemented

// takes 100 samples of the accel

for(int i =0;1<100;i++){

gyro.read();

aerrx+=accel.a.x >> 4;

aerry+=accel.a.y >> 4;

aerrz+=accel.a.z >> 4;

delay(10);

}

aerrx = gerrx/10@; // average reading to obtain an error/offset
aerry = gerry/100;

aerrz = gerrz/100;

Serial.println("accel starting values");
Serial.printlnaerrx); // print error vals
Serial.println(aerry);

Serial.println(aerrz);

/ Reads x,y and z accelerometer registers
oid readAccel()

accel.readAccQ);
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accel_x = accel.a.x >> 4; // shift left 4 bits to use 12-bit repres
accel_y = accel.a.y >> 4;
accel_z = accel.a.z >> 4;

// accelerations in G

accel_x = (accel_x/256);
accel_y = (accel_y/256);
accel_z = (accel_z/256);

}

oid complimentaryFilter(Q{

readGyroQ);

readAccel();

loat x_Acc,y_Acc;

loat magnitudeofAccel= (abs(accel_x)+abs(accel_y)+abs(accel_z));
f (magnitudeofAccel > 6 &R magnitudeofAccel < 1.2)

x_Acc = atan?(accel_y,accel_z)*180/ PI;
gyro_x = gyro_x * .98 + x_Acc * 0.02;

y_Acc = atan2(accel_x,accel_z)* 189/PI;
gyro_y = gyro_y * @.98 + y_Acc * 0.02;

oid setupQ) {
| Serial.begin(9600@);
| Wire.begin(Q); // i2c begin

if (lgyro.init(QQ){ // gyro init
Serial.println("Failed to autodetect gyro type!™);
while (1);

}

timer=millis(); // init timer for first reading

gyro.enableDefault(); // gyro init. default 25@/deg/

delay(10@@);// allow time for gyro to settle
Serial.println("starting calibration™);

gyroZero(Q);

Accel_InitQ;

oid loop() {
// reads imu every 20ms
if((millisQ)-timer)>=20)
{

//complimentaryFilter();
readGyro(Q);
}

// prints the gyro value once per second
if((millisO-timer2)>=1000)
{

printGyroQ);
}

Figure D-2: IMU Arduino Code
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Appendix F: Bill of Materials

Table F-1: Bill of Materials

Item Quantity Material Manufacturing Process
Bumper 1 PLA 3D Printed
Wheels 4 Rubber / Plastic Bought
Wheel Adaptor 2 Delrin Turned
3M Screws 2 Steel Bought
FS Top Link 2 Aluminum Milled
MSHXNUTO0.13832 2 Steel Bought
FS Wheel Mount Bracket 2 PLA 3D Printed
FS Bottom Link 2 PLA 3D Printed
FS Mounting Plate 1 Aluminum Milled
Steering Frame Mount 1 Aluminum Milled
Shock Spacer 2 PLA 3D Printed
Nylon Bearing 2 Nylon Bought
Wheel Mount 2 PLA 3D Printed
Camera One Steering Mount 1 PLA 3D Printed
Steering Bar 1 PLA 3D Printed
Pivot Post with Arm Mount 1 PLA 3D Printed
Pivot Post without Arm Mount 1 PLA 3D Printed
Link 1 PLA 3D Printed
Pivot Post Support 1 PLA 3D Printed
Steering Arm 1 PLA 3D Printed
Servo Control Horns 1 Plastic Bought
Servo 1 N.A. Bought
Servo Housing 1 PLA 3D Printed
Fan 1 N.A. 3D Printed
Receiver 1 N.A. Bought
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ESC N.A. Bought
ESC and Receiver Mount PLA 3D Printed
Battery N.A. Bought
Battery and IMU Mount PLA 3D Printed
IMU N.A. Bought
Motor Temperature Mount PLA 3D Printed
Temperature Sensor N.A. Bought
Circuit Box 1 PLA 3D Printed
Circuit Box 2 PLA 3D Printed
Motor N.A. Bought
Motor Mounting Plate Delrin Milled
Gearbox Spacer PLA 3D Printed
Center Plate Delrin Milled
Outer Plate’ Delrin Milled
1-8_in_low_friction_brush_bearing Nylon Bought
1-4_in_low_friction_thrust_bearing Nylon Bought
1-4in_External Self -Locking Retaining Ring Steel Bought
1-4 in teflon sleeve brushing teflon Bought
Compound Gear Axle Aluminum Turned
Outer Shaft Aluminum Turned
48P30Tgear Steel Bought
7880K170_12T Steel Bought
Pin cross head ai Steel Bought
B18.3.4M -3 x 0.5 x 5 SBHCS --N Steel Bought
RS Mount To Base Plate PLA 3D Printed
Rear SuspensionTower PLA 3D Printed
LinkNoCurves PLA 3D Printed
MounToRearAxle_Right PLA 3D Printed

207



MounToRearAxle_Left 1 PLA 3D Printed
Rear Diff Housing_Bottom 1 PLA 3D Printed
Rear Diff Housing_Top 1 PLA 3D Printed
Rear Diff Aluminum Plate 4 Aluminum Milled
Differential_Large Gear 1 Steel Bought
Differential_Small Gear 1 Steel Bought
Universal Joints 2 Plastic Bought
10-32 Bolts 2 Steel Bought
8-32 Bolts 32 Steel Bought
10-32 Nuts 2 Steel Bought
8-32 Nuts 32 Steel Bought
Pins 6 Steel Bought
Arduino Mega 2 N.A. Bought
Raspberry Pi 3 B+ 2 N.A. Bought
Circuit Board 2 N.A. Bought
Shock Absorbers 4 N.A. Bought
Base Plate 1 PLA 3D Printed
Rear Axle 2 PLA 3D Printed
Tachometer 1 N.A. Bought
LEDs 4 N.A. Bought
Resistors 8 N.A. Bought

208



Appendix G: Arduino Script: Sensor System

/[Temperature Sensor Includes
#include <DHT.h>

/[Constants

const int DHT1PIN = 7;  // Temperature sensor 1

const int DHT2PIN = 6; // Temperature sensor 2

const int DHT3PIN = 5; // Temperature sensor 3

const int FAN_CONTROL_PIN = 9; // Fan PWM (4th wire)

#define DHTTYPE DHT22 // DHT 22 (AM2302)
DHT dht1(DHT1PIN, DHTTYPE); // Initialize DHT sensor for normal 16mhz Arduino
DHT dht2(DHT2PIN, DHTTYPE);

DHT dht3(DHT3PIN, DHTTYPE);

/IVariables

float hum1; //Stores humidity value

float temp1; //Stores temperature value

float hum2;

float temp2;

float hum3;

float temp3;

float avgTemp; //Stores average temperature value

/[Fan Controller Includes

int FAN_RPM = A3;

int analogPin = 3; /l Temp data connected to analog pin 3
int fanSpeed = 0; /I variable to store the read value

int fanRpm = 0;

inti=0;

/IMU Includes

//Written by Joe St. Germain 10/1/16

/I Simply keeps track of the gyro reading from an minimu9

/I'l reccommend going one step further with a

/I complimentary filter with the accelerometer for greater accuracy over longer periods of time.

/I http://www.pieter-jan.com/node/11 Is the work that | based this project off and its a good refrence.

/I This filter should be tested and adjusted to work for your purpose.

/IGyros and Accelerometers are MEMS (Miniature elcrto mechanical systems) devices. They are actual physical
//mechanical systems with electrical sensors attached to them inside the IC.

/IFor this reason each module is slightly diffrent. Also you may find increasing the time constant and or
/lthe gyro rate and accelerometer sensitivty may increase performance.

//If you would like to suggest changes to this code based on your results notify the TA.

/[Thank you and have a great term. -Joe

#include <Wire.h>
#include <L3G.h>
#include <LSM303.h>
L3G gyro;

LSM303 accel;

float G_Dt = 0.020; // Integration time (DCM algorithm) We will run the integration loop at 50Hz if possible

long timer = 0; //general purpose timer
long timer1 = 0;
long timer2 = 0;

float G_gain = .00875; // gyros gain factor for 250deg/sec
float gyro_x; //gyro x val

float gyro_y; //gyro x val

float gyro_z; //gyro x val

float gyro_xold; //gyro cummulative x value

float gyro_yold; //gyro cummulative y value

float gyro_zold; /gyro cummulative z value

float gerrx; // Gyro x error

float gerry; // Gyro y error

float gerrz; // Gyro 7 error

float A_gain = .00875; // gyros gain factor for 250deg/sec
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float accel_x; //gyro x val

float accel_y; //gyro x val

float accel_z; //gyro x val

float accel_xold; //gyro cummulative x value
float accel_yold; //gyro cummulative y value
float accel_zold; //gyro cummulative z value
float aerrx; // Accel x error

float aerry; // Accel y error

float aerrz; // Accel 7 error

volatile byte revolutions;
float rpm;
unsigned long timeon;

void setup() {
/I put your setup code here, to run once:
Serial.begin(9600);
dht1.begin(); //Temperature Sensor 1
dht2.begin(); //Temperature Sensor 2
dht3.begin(); //Temperature Sensor 3
pinMode(FAN_CONTROL_PIN, OUTPUT); // Fan Output
pinMode(FAN_RPM, INPUT); // Fan Input

Wire.begin(); // i2c begin

if (Igyro.init()) { // gyro init
/ISerial.printin("Failed to autodetect gyro type!");
while (1);

}

timer = millis(); // init timer for first reading
gyro.enableDefault(); // gyro init. default 250/deg/s
delay(1000);// allow time for gyro to settle
/ISerial.printin("starting calibration");

gyroZero();

Accel_Init();

/I Attachinterrupt automatically updates values

/I DigitalPinTolnterrupt selects pin to external peripheral (Hall Effect Sensor)

/I Is triggered per each rising edge case (logic goes from low to high)

attachInterrupt(digitalPinTolnterrupt(2), revolution_counter, RISING); // for Arduino Mega we can use pins 2, 3, 18, 19, 20, 21

Il Initialize Values
revolutions = 0;
rpm = 0;

timeon = 0;

}

void loop() {
delay(500);

if (revolutions > 2) {
/I Calculate RPM
rpm = revolutions * 60000 / (millis() - timeon);
/I Reset Parameters To Get Next Accurate Reading
timeon = millis();
revolutions = 0;
/I Serial.printin(rpm);

}

if ((millis() - timer) >= 20)

{
/lcomplimentaryFilter();
readGyro();
getHumidities();
setFanSpeed();

}

/I prints the gyro value once per second
if ((millis() - timer2) >= 1000)
{
String tToP = printTemperatures();
/I printAllSensors();
String gyroToP = printGyroData();
Serial.printin(gyroToP + "," + tToP + "," + String(fanSpeed) + "," + String(rpm));
}
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String printGyroData() {
timer2 = millis();

String gyroToPrint = String(gyro_x) + "," + String(gyro_y) + "," + String(gyro_z);
return gyroToPrint;

}

String printTemperatures() {
/I Serial.print(String(temp1) + "," +String(temp2) + "," + String(temp3));
String tempToPrint = String(temp1) + "," + String(temp2) + "," + String(temp3);
return tempToPrint;

}

void setFanSpeed() {
if (avgTemp < 15) {
fanSpeed = 85; // one third the PWM val (255)
} else if (avgTemp < 20) {
fanSpeed = 127; // half the PWM 255
} else if (avgTemp < 25) {
fanSpeed = 170;
}else {
fanSpeed = 255; // 100% PWM duty
}
analogWrite(FAN_CONTROL_PIN, fanSpeed);

}

void getHumidities() {
hum1 = dht1.readHumidity();
temp1 = dht1.readTemperature();
hum2 = dht2.readHumidity();
temp2 = dht2.readTemperature();
hum3 = dht3.readHumidity();
temp3 = dht3.readTemperature();
temp3 = 21;
avgTemp = (temp1 + temp2 + temp3 )/ 3;

void gyroZero() {
/I takes 200 samples of the gyro
for (inti=0;i<200; i++) {
gyro.read();
gerrx += gyro.g.x;
gerry += gyro.g.y;
gerrz += gyro.g.z;
delay(20);
}
gerrx = gerrx / 200; // average reading to obtain an error/offset
gerry = gerry / 200;
gerrz = gerrz / 200;

//Serial.printin(gerrx); // print error vals
/ISerial.printin(gerry);
//Serial.printin(gerrz);

}

void readGyro() {
gyro.read(); // read gyro
timer = millis(); //reset timer
gyro_x = (float)(gyro.g.x - gerrx) * G_gain; // offset by error then multiply by gyro gain factor
gyro_y = (float)(gyro.g.y - gerry) * G_gain;
gyro_z = (float)(gyro.g.z - gerrz) * G_gain;

gyro_x = gyro_x * G_Dt; // Multiply the angular rate by the time interval
gyro_y =gyro_y * G_Dt;
gyro_z = gyro_z * G_Dt;

gyro_x += gyro_xold; // add the displacment(rotation) to the cumulative displacment

gyro_y += gyro_yold;
gyro_z += gyro_zold;

gyro_xold = gyro_x ; // Set the old gyro angle to the current gyro angle

gyro_yold = gyro_y ;
gyro_zold = gyro_z ;
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}

void printGyro() {
timer2 = millis();

/I The gyro_axis variable keeps track of roll, pitch,yaw based on the complimentary filter
Serial.print(" GX: ");
Serial.print(gyro_x);
Serial.print(" GY: ");
Serial.print(gyro_y);
Serial.print(" GZ: ");
Serial.print(gyro_z);

Serial.print
Serial.print
Serial.print(" Ay = ");
Serial.print(accel_y);

Serial.print(" Az=");
Serial.printin(accel_z);

}

" AXE ");
accel_x);

void Accel_lnit()
{
accel.init();
accel.enableDefault();
/ISerial.print("Accel Device ID");
/ISerial.printin(accel.getDevice Type());
switch (accel.getDeviceType())
{
case LSM303::device_D:
accel.writeReg(LSM303::CTRL2, 0x18); // 8 g full scale: AFS = 011
break;
case LSM303::device_DLHC:
accel.writeReg(LSM303::CTRL_REG4_A, 0x28); // 8 g full scale: FS = 10; high resolution output mode
break;
default: / DLM, DLH
accel.writeReg(LSM303::CTRL_REG4_A, 0x30); // 8 g full scale: FS = 11
}
}

void accelZero() {
//I found this to be more problematic than it was worth.
/Inot implemented
/I takes 100 samples of the accel
for (inti=0;i<100; i++) {
gyro.read();
aerrx += accel.a.x >> 4;
aerry += accel.a.y >> 4;
aerrz += accel.a.z >> 4;
delay(10);
}
aerrx = gerrx / 100; // average reading to obtain an error/offset
aerry = gerry / 100;
aerrz = gerrz / 100;
//Serial.printin("accel starting values");
/ISerial.printin(aerrx); // print error vals
//Serial.printin(aerry);
/[Serial.printin(aerrz);

/I Reads x,y and z accelerometer registers
void readAccel()

{

accel.readAcc();

accel_x = accel.a.x >> 4; // shift left 4 bits to use 12-bit representation (1 g = 256)
accel_y = accel.a.y >> 4;
accel_z = accel.a.z >> 4;

I accelerations in G

accel_x = (accel_x / 256);
accel_y = (accel_y / 256);
accel_z = (accel_z / 256);

}

void complimentaryFilter() {
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readGyro();
readAccel();
float x_Acc, y_Acc;
float magnitudeofAccel = (abs(accel_x) + abs(accel_y) + abs(accel_z));
if (magnitudeofAccel > 6 && magnitudeofAccel < 1.2)
{
x_Acc = atan2(accel_y, accel_z) * 180 / PI;
gyro_x = gyro_x * 0.98 + x_Acc * 0.02;

y_Acc = atan2(accel_x, accel_z) * 180 / PI;
gyro_y =gyro_y *0.98 +y_Acc * 0.02;
}

}

void revolution_counter(){
/I Increment revolutions by one per every rising edge of hall effect sensor
revolutions++;

}
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Appendix H: Dynamical Analysis of Steering Assembly

Dynamic analysis of Steering

Assumptions:
e Rigid Links
e Alllinks are assumed to be 3D printed of PLA
e 2D because forces in third dimension are negligible
e Frictionless and massless joints
¢ Links and masses are small and can be considered point masses

Loop 1 (EGI)):
Velocities:
tre + T +1; + 1 =0
Vg + Vg + 7y =0
—Wpg X T + gy X Tgp + Wy X175 =0

(— wpe(Tegs) + wer(rer,) + mu(?“uz))f = (—CUDG(TEG:() + wer (Terx) + wu(?’ux))f =0

Accelerations:
dgg + g +dy =0
—dpg X Tgg — Wpg X (—Wpg X Tge) + dgy X Tgy + Wy X (@ X Tg) + &y X 77y + iy
X (@ x 7)) =0
—dpg X (Tggzl + Tigef) — Gpg X (_EDG X (Tgezt + TEfo)) + dgp X (rguzl + 1615f) + Wigy
X ((Ticr X (rgpzt + mef)) + &u X (?'uzf"‘ Tuxf) + EU’U
X (GU x (1,0 + r”xj)) =0
—(apc(Tec)] — Ape (Teex)D) — (Wpe(WpaTEGx)] + @pe(WpeTEe2)D)
+ (agi(161)] — @1 (D) + (W (@erTend] — wer(weier)D)
+ (g (1172)] = ey (r1y2)2) + (@i (w1y711)] = @iy (wyyriy)E) = 0
i—apg (Tggx) + g1 (rg12) + aU(TUx) = wpe(WpeTecs) — wer(werrer,) — Wyj (wu?"uz)
i —apg(Teez) + A (i) + Gfu(?"uz) = wpe(@WpaTeex) — Wer(WeiTgix) — Wy (wr}ﬁjx)

—

Using similar expansions, the other equations were solved.
Loop 2 (FHKL):
Velocities:
(—wry ez — Wk (i) + @gr () ) — (—wrr (e — Oak (i) + 0k (k) )T = 0

Accelerations:
I —apy (Tpax) — @k (Mkx) + @k (TkLx) = 0pp (WrRTEHZ) + Ok (WHKTHKZ) — WrL(@KLTRLZ)
Jr—arn(rnz) — aux (Tukz) + @k (krz) = Opp(©enTrhe) + Opr(@prToke) — O (OrLTxEx)

Loop 3 (ABDG);
Velocities:
(—wap(1apz) — @pp (Yapz) — Wpe(TpE2))] + (@ap(Tany) + ©ap (Teps) + @pe(Thex) )i =0

Accelerations:
U —asp(Tapx) — @pp(Tepx) — Ape (Mppx) = Wap(WapTaps) + Wep(WepTaps) + Wpe(WpeTpEz)
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J:—@a(Tapz) — ap (Tepz) — Ap6 (ThEz) = Wap(WapTapx) + @pp(WEpTEpx) + Wpe(WpeTEX)

Loop 4 (ABCF):
Velocities:
(_CUAB (rapz) — wpp (rpcz) — Wcr (Tr:f-‘z))f AR (wAB (rapx) + wpp (raex) + Wer (?‘.:‘Fx))f =0

Accelerations:
I —aap (Tapx) — agp (Tpex) — cp(Tepx) = Wap(WapTapz) + wpp (WppTaez) + Wep(WerpTers)
J:—aup(rapz) — app (pez) — acr(rerz) = ®@ap(@WapTapsx) + Wpp(@WpTaex) + Wer(WerTerx)

Loop 5 (FHGE):
Velocities:
(_UJFH(Tmz) — wye(Tez) — wDG(rGEz))j ot (wFH (rerx) + @pe(Thgs) + wpe (?”cEx))f =0

Accelerations:
& —apy (ppx) — @y (Thex) — @pe (TGex)

= Wy (WpyTrHz) + Wye (WHETHEZ) + Wpe(WpeTeE2)
Ji=@ry (rrz) — Qe (Tez) — Ape (MEz)

= Wpy(WpyTrux) + Oy (@ueTaex) + ©pe (WpeTeex)

Published MATLAB Document:

Static and Dynamic analysis of Steering
Dylan McKillip

S AICS W TOTUIRE wuvvwwsumasussaussssssisssmes o8 s ooy 53 00s 73 VS 03007870 0 3 SR SR SRRV WA SRV AR PR A S

D Y AT S ECIUIRTIOINSS s st witviomiausinsissosins stk 8o o v B Eads s s S A A B S A i

Angular Velocities:

%solves velocities of Tinks

loopli = [0, O, O, O, -3.13, 0, O, O, O, 0O];
loop1j = [0, O, O, .75, 0, -1.5, 0, O, O, 0];
loop2i = [0, 0, O, O, O, G, O, O, -3.13, 0];
loop2j = [0, 0, O, O, O, O, .75, 0, 0, -1.5];
loop3i = [0,2.57,0,0,0,0,0,0,0,0];

loop3j = [-.621,.811,0,.56,0,0,0,0,0,0];
loop4i = [0,1.57,0,0,0,0,0,0,0,0];

loop4j = [-.621,.741,.63,0,0,0,0,0,0,0];
loop5i = [0,0,0,0,0,0,0,1,0,0];

loop5j = [0,0,0,.75,0,0,-.75,0,0,0];

rell = [0,0,0,1,0,0,-1,0,0,0];
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rel2 = [0,0,0,0,1,0,0,0,1,0];
rel3 = [0,0,0,0,0,1,0,0,0,-11;
input = [1, 0, O, O, O, O, O, O, O, 0];

A = [loopli;looplj;loop2i;loop2j;loop3i;loop3j;...
loop4i ;loop4];loop5i;loop5j;rell;rel2;rel3;...
input];

in = 19.04; %servo speed in rads/s

B = [0;0;0;0;0;0;0;0;0;0;0;0;0;in];

sol = Tinsolve(A,B)

sol

19.0400

0.0000
18.7680
21.1140

10.5570
21.1140

10.5570

Angular Accel:
solves angular accel of loops

[-167.18;0;-167.18;0;-24.523;0;3.21068;0;0;0;0;0;0];
[-Toopli;looplj;-loop2i;loop2j;-loop3i;loop3j;...
-lToop4i;loopdj;-loop5i;loop5jirell;rel2;rel3];

asol = linsolve(a,b)

warning: Rank deficient, rank = 9, tol = 9.484908e-15.

asol =

§.3490
6.3930
0.7103
0.0000
-44.3569
0.0000

0

n
0

-44.3569
0.0000
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Statics w/Torque:

%solves statics eqgns with input torque on servo motor
f,o0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ;
abx = [1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ;
aby = [0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0];

ax =

bedx
bedy
cy
cfx
cfy

(o,o0,1,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,01;
(o,0,0,1,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]1;
[(o,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ;
[o,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,01;
[(o,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,01;

degx = [0,0,0,0,0,0,1,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0];
degy = [0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0];
gx = [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0];

gix

giy =

ijx

ijy =

hkx
hky
ghx
ghy
m_ab
m_bd
m_dg
m_gh
m_th
m_hk
m_gi

n

[0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,01;
[0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,01;
ro,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0];
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0];
[o,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,01;
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,01;
[0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,01;
[0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0];
[0,0,0,0.621,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1];
[o,0,0,0.811,-1,-0.07,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,01;
[0,0,0,0,0,0,0,0.56,0,0,0,0,0,0.75,0,0,0,0,0,0,0,0,0];
[0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0];
ro,o,0,0,0,0,0,0,0,0,0,0,0,0,0,0.75,0,0,0,0,0,0,01;
[o,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3.13,0,01;
[o,0,0,0,0,0,0,0,0,0,0,0,3.13,0,0,0,0,0,0,0,0,0,01;

t = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,17;

ins = [0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;19

sa = [ax;abx;aby;bcdx;bcdy;cy;cfx;cfy;degx;degy;gix;giy;...

stat

ijx;ijy;hkx;hky;gx;ghx;ghy;m_ab;m_bd;m_dg;m_gh;m_fh;...
m_hk;m_gi;t];

linsolve(sa,ins)

warning: Rank deficient, rank = 22, tol = 2.306160e-14.

stat

0.0000

16.1563

.04];
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13.2986
-2.7966
0.0000
-7.8021
-0.0000
4.9933
0.0000
7.8021
-0.0000
-7.8021
0.0000
-4.9933
14.5365

Dynamics Equations:

%Using accels at coM and angular accels and mass solves dynamics matrix

dynin = [0;0;0.009087469;0;0;0;0;0.000795698;0;0;0;...
-1.226521477;0;0;0;-1.226521477;0;0;0;0.029267212; ...
0.097253824;0;0;0;-0.783719793;-0.783719793;19.04];

dynamics Tlinsolve(sa,dynin)

warning: Rank deficient, rank = 22, tol = 2.306160e-14.
dynamics =

0.0000
16.1406
-0.0000

-16.1315
-13.3754

2.7923
13.3754
10.5468

-13.1658
0
13.3754
-2.7916
-0.2096
-7.7901
0.2290
4.9857
0.2096
6.5636
0.2096
-6.5636
-0.2484
-6.2122
14.5435
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Excel Tables:

Joint Z(in) X(in)

A 0 0

B -0.621 0

5 0.12 -1.57

D 0.19 -2.57

E 0.75 -2.57

F 0.75 -1.57

G 1.5 -2.57

H 1.5 -1.57

I 1.615 -5.7

J 2.4 -5.7

K 1.615 -1.52

L 2.4 1.52 PLA (Ib/in"3)
0.045159

Segment z X length  Mass

AB 0.621 0 0.621 0.003505

BC 0.741 1.57 1736082  0.0098

BD 0.811 2.57 2.694925 0.015213

DE 0.56 0 0.56 0.003161

DG 1.69 0 1.69 0.00954

EG 0.75 0 0.75 0.004234

Gl 3.13 0 3.13 0.017668

] 1.5 0 1.5 0.008467

FH 0.75 0 0.75 0.004234

HK 3.13 0 3.13 0.017668

KL 15 0 1.5 0.008467

CF 0.63 0 0.63 0.003556

GH 0 1 1 0.005645
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Matrix

sol rad/s*
19.04]
18.768
21.114]
10.557
21.114
10.557
220

8.349
6.393
0.7103
-44.3569
-44.3569

w_BD
w_CF
w_DG
w_Gl
w_1J
w_FH
w_HG
w_HK
w_KL

sol: rad/s?2
w_AB

a_AB
a_BD
a_CF
a_DG
a_Gl

a_ll

a_FH
a_HG
a_HK

w_KL

19.04

Input

-167.18

-167.18

-24.523
15
0

input

0f 3.21068

0
15

0
Jw kL

[w KL
-3.13
[w_HK
-3.13

la_HK
0

0
IW_HG

313
[a_He
-0.75

0.75

-0.75
0.75
[w_FH

la_FH
15
0

aa  [aw
075 3.3 15
0
-0.56 0
0
-0.75 0
[wbes Jwa  Jwu
-0.75 3.13
-0.56 0
-0.75

0
0

[a_ps
0

0
0

o}
-0.63

-0.63

[a_cr
[w_cF

[a_BD
-0.811
2.57
-0.741
157
[w BD
257
-0.811
1.57
-0.741

-0.621

-0.621

0
-0.621
-0.621
0

a_AB
w_AB

Dynamics Matrix
M
Az
Abz
Abx
BCDz

BCDx

o ox oo mogzx=T

] 2982 r¥p 8 Z |232880 288 xn s 2885
Zr88 v o228 B85EED 21422885 BEE=ExE55 e ot
CCEEGGHUHnumM_M,M,M,M,M,M_TM,r 2IZYEO0R8060 EXT55s5555s

Angular Accelerations:

M_HK
M_GI
T

Loopli
Looplj
Loop2i
Loop2j
Loop3i
Loop3j
Loopd i
Loopd j
Loop5i
Loop5j
rel wdg_f
rel wgi_hl
rel wkl_ij

Angular Velocity
rel wdg_f|

rel wgi_h

Loopli
Loopl j
Loop2i
Loop2 j
Loop3i
Loop3j
Loop4 i
Loop4 j
Loop5 i
Loop5 j
rel wkl_ij
input




Moment of Inertia:

AB
BD
CF
DG
Gl
HK
FH
I
KL
GH

0.000338
0
0.000353
0.000775
0
0
0.010369
0.004763
0.004763
0

in/s2

Accel COMNz
a_AB
a_BD
a CF
a_DG
a_Gl
all
a_FH
a_HG
a_HK
a_KL

X total
0 2.592365 2.592365
0 0 0
0 0.223745 0.223745
0 0 0
-69.4185 0 69.41855
0 0 0
0 0 0
0 0 0
-69.4185 0 69.41855
0 0 0
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