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Abstract
Machine Learning has long been used for classification tasks. We show

how applying a link prediction algorithm to a social network formed by co-
authorship can be used to predict future collaboration in the Information
Systems (IS) education community. We performed link prediction using
Logistic Regression, Support Vector Machine, and Random Forest models.

1 Introduction
While a group of researchers will often be able to produce better work than that
of an individual researcher, finding suitable collaborators can be challenging.
Though there may be a large number of researchers in a given community, trying
to predict which potential collaboration will be effective can be a difficult task. In
communities such as Information Systems Education, collaboration often spans
across different geographic locations, which can further increase the difficulty of
the task.

By extracting publicly available co-authorship data from prominent organiza-
tions in Information Systems Education and applying various machine learning
techniques, we can form predictions of future co-authorship. These predictions
may then serve as recommendations for suitable authors to collaborate within
the community.

2 Related Work
Logistic Regression and Support Vector Machines have been used to predict
co-authorship among authors who are researching Coronary Artery Disease
(Yu et al., 2014). In another study, a similar technique was performed on a
collection of Computer Science papers published between 1990 and 2003, in
which many models were used for link prediction on both an unweighted and
weighted co-authorship network. It found that, out of many models, a decision
tree classifier achieved the highest precision in predicting future co-authorship;
however, it was inconclusive whether assigning weights to edges based on author
contribution yielded improved results (Sa & Prudencio, 2010). On a study
of link prediction on the co-authorship network formed from the Institute of
Electronics Information and Communications Engineers (IEICE), a fitted SVM
assigned low weights to the shortest path, Jaccard’s coefficient, PageRank, and
SimRank measures. This suggests that they may not be a good indicator of
future co-authorship. Conversely, higher weights were assigned to the Katz and
preferential attachment measures (Pavlov & Ichise, 2007).
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3 Methodology
3.1 Supervised Learning for Link Prediction
A supervised learning model is built to map an input of similarity measures
to probability of future collaboration. A data set of papers is split into three
consecutive time frames, and, for each time frame, a network graph is formed.
Each author is represented as a node, with edges connecting authors that have
collaborated in that time frame. A training set is then created by selecting pairs
of authors within the first time frame, computing the below similarity measures,
and labeling whether or not the pair collaborate in the next time frame. A
cross-validation set is created with the same method using the second and third
time-frame. Finally, we fit a model to the training set and measure its accuracy
on the cross-validation set.

3.2 Similarity Measures
While many similarity measures can be computed for a pair of nodes in a network
graph, we selected the metrics listed in (Sa & Prudencio, 2010) with the addition
of the Resource Allocation Algorithm, because it may be a better measure for
link prediction (Zhou, Lü, & Zhang, 2009). These measures were computed with
the help of NetworkX 2.2 (Hagberg, Swart, & S Chult, 2008).

3.2.1 Common Neighbors

Common neighbors are the number of coauthors that each author share. The
number of common neighbors between authors u and v can be written as:

|N(u) ∩N(v)|

Where N(u) denotes the set of all neighbors of node u.

3.2.2 Jaccard Coefficient

The Jaccard Coefficient, originally coefficient de communauté (Jaccard, 1908),
measures the similarity between two sets by dividing the size of their intersection
by the size of their union. We can compute the Jaccard Coefficient of the
neighbors of authors u and v like so:

|N(u) ∩N(v)|
|N(u) ∪N(v)|

Two authors that share no common neighbors will have a coefficient of 0, while
two authors that share the same set of neighbors will have a coefficient of 1.
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3.2.3 Resource Allocation Algorithm

First introduced in (Zhou et al., 2009), the Resource Allocation Algorithm is
defined as:

∑
w∈N(u)∩N(v)

1
|N(w)|

If many of the common neighbors between u and v have a low number of
neighbors themselves, any “resources” sent from u have a high likelihood of
making their way to v and vice versa. In other words, the algorithm puts a
weight on how important the two authors are to the authors that they share.

3.2.4 Preferential Attachment

Preferential attachment is the product of the size of each node’s neighbor set:

|N(u)||N(v)|

Two authors that both have a large number of collaborators will have a large
preferential attachment, which may indicate a higher probability of future
collaboration (Pavlov & Ichise, 2007)

3.3 Learning Methods
With a dataset labeled with the above features, we built a classification model
to predict the probability of future collaboration between two authors. Logistic
Regression is the most widely used for classification problems. Support Vector
Machines (SVM) may perform differently because it finds the optimal hyperplane
separating the classes (Cortes & Vapnik, 1995). A decision tree has also shown
to work well for link prediction (Sa & Prudencio, 2010), so we chose to also use
a Random Forest model, an ensemble of decision trees.

3.3.1 Logistic Regression

Since author pairs are classified as either future coauthors or not we use a
binomial model. Given label y, features x and parameters θ, we write out
hypothesis function like so:

hθ(x) = 1
1 + e−θT x

The model can then be fit by minimizing cross-entropy loss function J :
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J(θ) = − 1
m

m∑
i=1

[y(i) log(hθ(x(i))) + (1− y(i)) log(1− hθ(x(i)))] + λ

2m
∑

j
θ2
j

J(θ) can be minimized via gradient descent. Parameters θ can then be viewed to
obtain feature importance. A comparatively large positive parameter indicates
that its corresponding feature is more important in predicting a positive label.
Conversely, a small parameter indicates that its corresponding feature is less
important in predicting future collaboration. λ is used for regularization to
address any multicollinearity.

3.3.2 Support Vector Machines

SVM function in a similar way to Logistic Regression, however, the hypothesis
function is written as:

hθ(x) =
{

1 if θTx ≥ 0
0 otherwise

The model is then fit by minimizing the hinge loss function J(θ) with gradient
descent:

J(θ) = C
∑

i
max(0, 1− y(i)θTx(i)) + 1

2
∑

j
θ2
j

Unlike the cross-entropy loss function, the hinge loss function penalizes even a
correct classification if its prediction does not exceed the classification by some
margin. The result of minimizing the hinge loss is a hyperplane that separates
the classes of data with an optimal margin (Cortes & Vapnik, 1995). Similar to
λ in the cross-entropy loss function, C is used for regularization.

3.3.2.1 The Kernel Trick

In some cases, samples cannot be linearly separated. A solution to this is by
applying kernels to the data, which maps the data into a higher-dimensional space.
This transformation allows the data to be separated with a linear hyperplane,
improving the classification ability of the model. For our model, we will be using
the Radial Basis Function kernel, which maps data into an infinite-dimensional
space, and is commonly used with SVMs (Chang, Hsieh, Chang, Ringgaard, &
Lin, 2010).
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3.3.3 Random Forest

Sa et al. showed that decision trees can be used for link prediction with higher
accuracy than other models (Sa & Prudencio, 2010). As a single decision tree
can easily overfit training data, we use a Random Forest model instead. Each
tree is formed with a bootstrapped sample of the training set, so each tree is fit
to a different subset of the data. By building many “de-correlated” trees, and
then averaging the predictions, models generally perform with higher accuracy
and lower variance (Hastie, Tibshirani, Friedman, & Franklin, 2005).

With a fitted random forest, feature importance can be obtained using mean
decrease impurity; that is how much each feature’s splits increase the purity of
the classification. We use the Random Forest classifier implemented in scikit-
learn 0.20.3 (Pedregosa et al., 2011), which uses the Gini Index as a measure of
purity.

4 Data
To obtain a dataset of authors in the IS education communities, we collected
papers and authors from the following journals and conferences: Information
Systems Education Conference (ISECON), EDSIG Conference on Information
Systems and Computing Education (EDSIGCON), Journal of Information Sys-
tems Education (JISE), and Information Systems Education Journal (ISEDJ).

4.1 Collection
For each organization, we developed a web scraping tool to extract author names,
paper names, and year from the organizations’ website. Since each organization
has a differently structured website (some changing in structure over different
years), special care was taken to ensure that the data was extracted correctly. It
is worth noting, however, that some authors were listed with different spellings
of their names in different organizations, resulting in multiple authors being
extracted instead of one. The following URLs were used as a starting point for
the web scraper:

Table 1: Data sources for each organization.

Organization URL
ISECON 2000-2009 http://proc.edsig.org/xref/title.html
ISECON 2010-2014 http://proc.edsig.org/{year}/index.html
ISECON 2015-2018 http://proceedings.isecon.org/dt-row-data
EDSIGCON 2015-2018 http://proc.iscap.info/{year}/
JISE http://jise.org/archives.html
ISEDJ http://isedj.org/archives.html
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In the case of ISECON from 2000 to 2014 and EDSIGCON 2015-2018, paper
titles were extracted from the “Titles” page of the respective year, and then
corresponding authors were extracted from the “Authors” page. ISECON paper
metadata from 2015 to 2018 was downloaded as a single JSON document from
the above URL. JISE and ISEDJ required programmatically navigating through
each journals’ volumes, and then each paper within the volumes to extract
the relevant information. After all of the titles, authors, and years of each
organization’s papers were extracted, the data was stored in an SQLite database.
A total of 3522 papers from years 2000 to 2018 along with 3076 unique authors
were extracted. Although some papers from conferences and their corresponding
journals may contain duplicates, we did not assign any weight to the number
of times two coauthors collaborated, so the resulting network graph was not
affected.

4.2 Visualization
Once the data was collected, we began to analyze the social network graph
formed by co-authorship. To promote a better understanding of this social
network, we built a web application that allowed querying of the dataset and
interactive exploration of the network graph, which can be seen in Figure 1.

Figure 1: Screenshot of application.
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4.3 Preprocessing
In order to fit our collaboration prediction models, our dataset was split into
three time frames of equal length: T1 = [2000− 2005], T2 = [2006− 2011], and
T3 = [2012− 2017]. A training set was formed consisting of author pairs who
were active in both T1 and T2, did not collaborate in T1, and did collaborate in
T2. These pairs were labeled positive. Additionly, an equal number of author
pairs who were active in both T1 and T2, but did not collaborate in either T1
or T2 were randomly sampled and labelled negative. The same procedure was
followed to create a cross-validation set over T2 and T3. The resulting training
set consisted of 370 samples, while the cross-validation set contained 106 pairs.

The above-listed similarity measures were then computed for each pair over
the network graphs formed in T1 and T2 for the training set and validation set,
respectively. It is recommended to standardize input features before training
(Hastie et al., 2005), which was done by subtracting the mean, then dividing by
the standard deviation for each feature.

5 Results
The training set was then fit to Logistic Regression, Support Vector Machine,
and Random Forest models, with accuracy measured on the cross-validation set.
We also measured each model’s receiver operator characteristic (ROC) curve,
which shows the relationship of true positives vs. false positives as the decision
threshold is varied. The area under this curve (AUC) is then used to compare
the different models’ classification ability.

Table 2: Accuracy and AUC for each learning method.

Model Accuracy AUC
LR 0.806 0.870
SVM 0.827 0.871
RF 0.827 0.844

We found the SVM and RF models to have the highest accuracy, being able
to predict future collaboration with an 82.7% accuracy (compared to 50%
randomly guessing). To see which similarity measures are more indicative of
future collaboration, we plotted the feature importance of both the LR and RF
models, seen in Figure 3.

6 Discussion
All three models were able to predict future co-authorship quite well, using
only topological features from the co-authorship network. As has been shown
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Figure 2: ROC curves for each model.

Figure 3: Feature importance for LR and RF models.
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in past literature (Pavlov & Ichise, 2007), preferential attachment is a strong
indicator of future co-authorship. That is, in a relatively small community such
as that of Information System Education, the greater the number of coauthors
two individuals have, the more likely they are to work together in the future.

7 Conclusion
Such a model may be used as a recommendation system to suggest future
coauthors for an individual by listing the authors in which he or she has the
highest probability of working with. Results may be improved by adding more
features such as commonality of keywords or language used in papers.
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