

Shotoku’s Defense: Physics Based Combat

Using Motion Controls in Virtual Reality

Jose Antonio Li Quiel, Lisa Liao, William Lucca, Evan Plevinsky

October 11, 2019

A Major Qualifying Project Report

submitted to the Faculty of

WORCESTER POLYTECHNIC INSTITUTE

in collaboration with

RITSUMEIKAN UNIVERSITY

for partial fulfillment of the requirements for the

Degree of Bachelor of Interactive Media and Game Development

and Degree of Bachelor of Computer Science

Project Advisers:

Professor Ralph Sutter

Professor Joshua Cuneo

Shotoku’s Defense: Physics Based Combat Using Motion Controls in Virtual Reality 2

Abstract
Shotoku’s Defense is a virtual reality physics-based action game developed for the HTC

Vive. The player must survive against enemies across five different locations in a stylized and

abstract traditional Japanese temple. Using motion controls, players must harness the power of

earth-based elemental attacks to create various rock formations. The combat system is based on

physics, causing faster movement to do greater damage. Development occurred across three

months at Ritsumeikan University’s Biwako-Kusatsu Campus in Japan. This paper details the

design and implementation of the game.

Shotoku’s Defense: Physics Based Combat Using Motion Controls in Virtual Reality 3

Acknowledgements
We would like to thank Professor Thawonmas Ruck and Professor Hideyuki Takada for

generously welcoming us into their labs and providing us with equipment necessary for this

project. We also would like to thank Professor Haruo Noma for his hospitality during our stay in

Japan. Additionally, we would like to thank our advisers Professor Ralph Sutter and Professor

Joshua Cuneo for their guidance. Finally, we are thankful to Worcester Polytechnic Institute for

sending us to Japan to work on this project.

Shotoku’s Defense: Physics Based Combat Using Motion Controls in Virtual Reality 4

Our Team
Shotoku’s Defense was developed by four senior students from Worcester Polytechnic

Institute. The team consists of Jose Antonio Li Quiel (Computer Science), Lisa Liao (Interactive

Media and Game Development), William Lucca (Computer Science and Interactive Media and

Game Development), and Evan Plevinsky (Computer Science). Jose programmed the game’s

enemy pathing and menus. Lisa designed and created assets. Will programmed the enemy

behavior and created audio assets. Evan programmed the player mechanics and user interface.

Shotoku’s Defense: Physics Based Combat Using Motion Controls in Virtual Reality 5

Table of Contents

Abstract ... 2
Acknowledgements ... 3
Our Team .. 4
Table of Contents .. 5
List of Figures ... 8
1. Introduction ... 10
2. Background and Inspiration .. 12

2.1 History... 12
2.2 Inspiration ... 13

2.2.1 Historical Reference ... 13
2.2.2 Video Games and Other Media.. 15

3. Technology ... 17
3.1 Lab Environment .. 17
3.2 Hardware ... 17
3.3 Software .. 17

3.3.1 Engine .. 18
3.3.2 Source-Code Editors .. 18
3.3.3 Art .. 19
3.3.4 Audio.. 19

3.4 Project Management ... 20
3.4.1 Files .. 20
3.4.2 Communication .. 20
3.4.3 Version Control .. 20

4. Art ... 22
4.1 Vision for Arena ... 22
4.2 Arena ... 23

4.2.1 Iterations .. 23
4.2.2 Architecture.. 25
4.2.3 Foliage and Pathways .. 27

4.3 Lighting ... 28
4.3.1 Time of Day ... 29
4.3.2 Point Lighting and Fireflies ... 30

4.4 Particle Effects .. 31
4.5 Enemies ... 33

4.5.1 Heavy Enemy ... 33
4.5.2 Light Enemy... 34
4.5.3 Medium Enemy .. 35

4.6 Animation ... 36
4.6.1 Heavy Enemy Animation ... 36
4.6.2 Light Enemy Animation .. 37
4.6.3 Medium Enemy Animation.. 37

4.7 Technical Challenges .. 37
4.7.1 Animating Characters with Minimal Geometry .. 38
4.7.2 Arena Ground Lighting .. 39

Shotoku’s Defense: Physics Based Combat Using Motion Controls in Virtual Reality 6

5. Design ... 40
5.1 Health, Energy, and User Interfacing ... 40
5.2 Player Controls and Abilities .. 41

5.2.1 Ability Creation ... 42
5.2.2 Ability Power-Ups ... 44
5.2.3 Healing ... 45

5.3 Enemy Behavior.. 46
5.3.1 Heavy Enemy ... 46
5.3.2 Light Enemy... 48
5.3.3 Medium Enemy .. 49
5.3.4 Enemy Groups ... 51

5.4 Wave Spawning System ... 51
5.5 Level Design ... 52

5.5.1 Arena Decorations ... 52
5.5.2 Tutorial ... 52
5.5.3 Locations .. 53

6. Programming... 58
6.1 Abilities ... 58

6.1.1 Ability Arc ... 58
6.1.2 Activating Abilities .. 59
6.1.3 Using Abilities ... 60
6.1.4 Controlling Power-ups ... 62

6.2 Enemy Implementation ... 63
6.2.1 Movement .. 63
6.2.2 Finite State Machines ... 65
6.2.3 Melee.. 66
6.2.4 Climbing .. 68
6.2.5 Strafing and shooting ... 69
6.2.6 Ragdoll, Get Up Animations, and Death Particles .. 70

6.3 Wave System .. 71
6.4 Tutorial .. 72

7. Sound .. 74
7.1 Audio Design .. 74
7.2 Sound Asset Creation .. 75
7.3 Ambience and Music .. 76
7.4 Audio Implementation in Game.. 77

7.4.1 Audio Sources .. 77
7.4.2 Enemy Spawn Audio Cues .. 78

8. Playtesting ... 80
8.1 Pre-Alpha .. 80

8.1.1 Testing Setup ... 80
8.1.2 Results and Conclusions .. 81

8.2 Alpha Testing .. 82
8.2.1 Testing Setup ... 82
8.2.2 Results and Conclusions .. 83

8.3 Beta Testing .. 84

Shotoku’s Defense: Physics Based Combat Using Motion Controls in Virtual Reality 7

8.3.1 Testing Setup ... 84
8.3.2 Results and Conclusions .. 85

9. Post Mortem .. 87
9.1 What went right... 87
9.2 What went wrong .. 88
9.3 Future Development.. 88

10. Conclusion .. 91
References ... 92
Appendix A: Asset lists .. 94
Appendix B: Wave Spawns .. 102
Appendix C: Playtesting Screening Questions ... 104
Appendix D: Playtesting Surveys ... 105

Pre-Alpha .. 105
Alpha ... 108
Beta ... 112

Appendix E: Playtesting Changes Priority Log .. 117
Appendix F: Ritsumeikan and WPI Collaboration ... 124

User Interface .. 124
Hardware ... 125
Software .. 126
Conclusion .. 127

Shotoku’s Defense: Physics Based Combat Using Motion Controls in Virtual Reality 8

List of Figures
Figure 1. Bishamonten statue at Todai-ji in Nara ... 12
Figure 2. Shitenno-ji (Google Maps) .. 13
Figure 3. Wall and garden at Nijo-jo. ... 14
Figure 4. Mononobe warrior armor (McBride, 2011) on the left and kabuto (Reading, 2012) on

the right ... 14
Figure 5. Tekkō on the left (Shimbukan Association) and chokutō (Kakidai) on the right 15
Figure 6. Toph from Avatar: The Last Airbender using wide movements while earthbending ... 15
Figure 7. Middle Ages Mine (Laryushin, 2017) ... 16
Figure 8. Low poly samurai asset pack (Synty Studios) ... 16
Figure 9. Man depicted with various levels of detail (Pontypants, 2017) 16
Figure 10. Shitenno-ji buildings in our game (left) and reference photograph (Soramimi, 2014)

(right) .. 22
Figure 11. Complementary color schemes (Belenko) ... 23
Figure 12. Aerial views of Shitenno-ji (Google Maps) (left) and the game arena (right) 24
Figure 13. First arena design ... 24
Figure 14. Second version of arena, twice the size of the first ... 25
Figure 15. Lightning rod on pagoda (left) and roof horns on temple (right) 26
Figure 16. Boardwalk above pond (Mueller, 2005) (left) and in-game boardwalk (right) 26
Figure 17. Stepping stones leading to an entrance .. 27
Figure 18. Trees around, but not in front of, player’s view of entrance 27
Figure 19. Foliage (Rad-Coders) and rock (SnowFiend Studios) assets from the Unity asset store

... 28
Figure 20. Arrangement of trees, bushes, grass, rocks, flowers, and mushrooms 28
Figure 21. Trees where enemies can hide ... 29
Figure 22. Texture for top of skybox .. 29
Figure 23. From left to right: tōrō in Osaka and in-game tōrō ... 30
Figure 24. Fireflies in the dark areas in our map .. 31
Figure 25. Small rocks appearing in the ground as wall rises .. 31
Figure 26. Quicksand’s particle effects before appearing .. 32
Figure 27. Tōrō’s flame particle effects .. 32
Figure 28. Early designs of the three enemy types ... 33
Figure 29. From left to right: Mononobe warriors’ armor (Mcbride, 2011) and heavy enemy 34
Figure 30. From left to right: Mononobe tekkō and heavy enemy tekkō (Ryukyu Kobudo

Shimbukan, 2014) ... 34
Figure 31. Light enemy shooting in action ... 35
Figure 32. From left to right: Japanese chokutō (Kakidai, 2018) and medium enemy sword...... 35
Figure 33. Medium enemy with bow (left) and with sword (right) .. 36
Figure 34. First iteration of the enemy models (from left to right: heavy, medium, light) 38
Figure 35. Normal maps creating the illusion that a smooth base mesh is faceted 38
Figure 36. Arena ground box (left) and one of the mesh slices used for light baking (right) 39
Figure 37. The normal Minecraft UI (left) attached to the bottom of the screen versus a VR

Minecraft UI (right) floating in the world (Minecraft, 2008) ... 40
Figure 38. The UI and power-up icons used in-game ... 41
Figure 39. The Player Ability Ring surrounding the player with one valid Ability Arc 42

Shotoku’s Defense: Physics Based Combat Using Motion Controls in Virtual Reality 9

Figure 40. The player holding a small rock and a fully resized rock .. 43
Figure 41. A single spike from a small area vs multiple spikes from a larger area 43
Figure 42. A pile of quicksand after finished being created ... 44
Figure 43. A wall as it is being created ... 44
Figure 44. A line of spikes created from the spike power-up ... 45
Figure 45. Rock bouncing off heavy enemy if not powerful enough ... 46
Figure 46. Heavy enemy finite state machine ... 47
Figure 47. Light enemy is out of player’s range ... 48
Figure 48. Light enemy state machine .. 49
Figure 49. Medium enemy climbing player’s rock wall ... 50
Figure 50. Medium enemy state machine ... 50
Figure 51. The tutorial area (left) and a single section in the rock tutorial (right) 53
Figure 52. Final arena layout blueprint ... 54
Figure 53. Location 1’s view from gate .. 55
Figure 54. Location 2’s view from above (left) and player’s view (right) 55
Figure 55. Location 3’s view from above (left) and player’s view (right) 56
Figure 56. Location 4’side view (left) and player’s view (right) .. 56
Figure 57. Location 5’s above view (left) and player’s view (right) ... 57
Figure 58. The three states of the ability arc, from left to right: valid, interactive, invalid 59
Figure 59. Location 4 different area weights .. 63
Figure 60. Unity editor’s NavMesh Surface component .. 64
Figure 61. Unity editor’s NavMesh Agent component ... 64
Figure 62. Enemies remove NavMesh area when attacking (top) for others to path around

(bottom)... 67
Figure 63. NavMesh Link connecting the top of the wall to the floor.. 68
Figure 64. Man playing Ōdaiko drum (Prasanth, 2005) ... 74
Figure 65. Hyōshigi (Miya, 2005) .. 74
Figure 66. Creation of the wall raise loop sound in Reaper.. 75
Figure 67. Four audio sources surrounding the player ... 76
Figure 68. One audio source per object (left) vs. one audio source per sound (right) 78
Figure 69. Component that sets drumlings to use when spawning waves 79
Figure 70. Original map used for playtesting where player is placed next to Target one 81
Figure 71. The images provided to the player prior to playing the game 83
Figure 72. User interface with five different heart scenarios .. 124
Figure 73. Final proposed design for heart simulation ... 125
Figure 74. Reference model with all variables for the heart simulation 127
Figure 75. Final heart physical model... 127

Shotoku’s Defense: Physics Based Combat Using Motion Controls in Virtual Reality 10

1. Introduction
 Shotoku’s Defense is a virtual reality (VR) physics-based action game where the player

must defeat multiple groups of enemies across five different locations in a stylized and abstract

traditional Japanese temple. Using motion controllers, players must harness the power of earth-

based elemental attacks to create boulders, spikes, quicksand, and walls to defeat the enemies.

 The game takes place in the Japanese temple of Shitenno-ji around 600 AD, immediately

following the Soga-Mononobe battle at Mount Shigi. Prince Shotoku from the Soga clan

warriors prayed to Bishamonten, god of war and earth, to win the battle and defeat the

Mononobe. To honor Bishamonten for this victory, Prince Shotoku built Shitenno-ji, further

angering the Mononobe and causing another battle to erupt. To reward Prince Shotoku’s loyalty,

Bishamonten grants him the ability to manipulate the earth to fight back the returning Mononobe

warriors. The player of our game plays as Prince Shotoku utilizing these new abilities to defeat

groups of enemies that invade the temple.

 The first goal for our game was to provide the player with an immersive experience that

would make them feel that the actions in the game reflects the actions that they are performing in

real life. This led us to the idea of manipulating the earth through an assortment of abilities

differentiated by player movements. Another goal was to take advantage of our travels in Japan

by pulling from real events and locations to create a setting that would align itself with

traditional Japanese culture. This prompted us to research different temples around Kyoto and

Osaka as well as various historical events that could fit our description for the game, ultimately

leading us to Prince Shotoku’s story.

 Our game was created in the Unity game engine due to its extensive VR support and

documentation. It is also easy to learn for programmers since the base language is C# as opposed

to an engine-specific language. Both of these factors proved to be vital for completing

development given the 12-week development time. We worked out of two labs at Ritsumeikan

University where we were provided with the HTC Vive to develop for. The game was built using

the Steam VR library as it was simple to implement, provided base functionality for many

different hand and player interactions, and was easily extensible and customizable.

 Throughout the development of our game, we held three different playtesting sessions,

each marking a different milestone for our goals: pre-alpha, alpha, and beta. Pre-alpha was

Shotoku’s Defense: Physics Based Combat Using Motion Controls in Virtual Reality 11

focused on the earth manipulation abilities and ensuring that the player was provided with

powers that felt natural and fun to use. Alpha testing was focused on the enemies and the combat

between them and the player. Finally, Beta testing prioritized the cohesiveness of the game, how

well the gameplay fits the setting, and how capable the game was at providing an enjoyable

experience for the users.

Shotoku’s Defense: Physics Based Combat Using Motion Controls in Virtual Reality 12

2. Background and Inspiration
 The story for our game is inspired by real locations and events that provide a cohesive

setting for the game. Additionally, we referred to different forms of inspiration to develop our

game with a solid foundation. This chapter provides an overview of the history, culture, and

popular references that our game draws from.

2.1 History

 In the years preceding the Asuka Period (538-710) in

Japan, the country was heavily plagued with religious

conflicts surrounding the introduction of Buddhism. This

caused a power struggle between two noble families: the

Soga clan and the Mononobe clan. The Soga were supporters

of widespread Buddhism in Japan while the Mononobe

believed worshipping Buddha was disrespectful to the

Japanese deities they had worshipped for centuries. While the

two clans clashed many times due to this disagreement, one

specific encounter solidified the Soga clan’s superiority.

In July of 587 AD, a decisive battle for power

occurred at Mt. Shigi in Nara, approximately 30 kilometers

from Osaka (Umehara, 1980). The story goes that the Soga

were losing the battle, and Prince Shotoku prayed to

Bishamonten (Figure 1) for help with the promise that he would

build a temple in Bishamonten’s name if they won. The Soga successfully overcame the

Mononobe at the battle and subsequently mitigated Mononobe influence in Japan prompting

Shitenno-ji, or “Temple of Shitenno”, to be established in 593 AD. Shitenno refers to the four

heavenly kings of Buddhism, of which Bishamonten is the most prominent.

The structures of the temple have burned down in several fires and natural disasters. Most

of the current temple is a faithful reconstruction of the original architecture. Today, it houses

records, historical artifacts, and grounds for ceremony and celebration.

Figure 1. Bishamonten
statue at Todai-ji in Nara

Shotoku’s Defense: Physics Based Combat Using Motion Controls in Virtual Reality 13

2.2 Inspiration

 We looked to Japanese culture and historical sites as inspiration for the design of our

game to keep our game’s audio and visuals culturally accurate. Aspects of popular American

culture found their way into our game while we gathered inspiration from outside sources as

well, both in the form of television shows and video games.

2.2.1 Historical Reference

 Prior to the development of the in-game arena, we visited Shitenno-ji (Figure 2) in Osaka

to take photographs and experience the scale of the temple in real life. This trip proved to be

incredibly helpful for creating the arena and architecture for the game as it gave us a basic design

to work off and make into our own. Shitenno-ji is comprised of a rectangular courtyard with two

temples and a pagoda. There is an entrance on each of the East, West, and South sides. The

North wall is occupied by the large temple which houses Buddha statues and paintings. The large

temple in the middle of the courtyard houses statues of the four heavenly kings and historical

scrolls. The five story pagoda to the south of the large temple is the most symbolic of structures

at Shitenno-ji, housing small Buddhist statues and golden tags surrounding a winding staircase.

The entire courtyard is covered in gravel and has an enclosed roofed walkway along the edges.

Figure 2. Shitenno-ji (Google Maps)

Shotoku’s Defense: Physics Based Combat Using Motion Controls in Virtual Reality 14

To gather additional architectural details and inspiration, we visited the Nijo Castle (Nijo-

jo) in Kyoto. Nijo-jo was built in 1603 and served as housing for Tokugawa Ieyasu, the first

shogun of the Edo period. The style of the castle’s walls, gardens, and ponds (Figure 3) were

exactly the traditional Japanese elements we were looking for, so we incorporated them in our

game.

Since the basis of our game involves battling the Mononobe warriors, we sampled

Mononobe’s outfits for our enemy designs. The Mononobe were adept at battle and wore armor

like the ones seen in Figure 4. We incorporate the kabuto (Figure 5)—a helmet with an antler-

like decorative piece on the forehead (Bryant, 1991)—as a representation of an enemy’s strength

and boldness.

Figure 4. Mononobe warrior armor (McBride, 2011) on the left and
kabuto (Reading, 2012) on the right

Figure 3. Wall and garden at Nijo-jo.

Shotoku’s Defense: Physics Based Combat Using Motion Controls in Virtual Reality 15

We sampled ancient Japanese weapons from our game’s time period, but there is too little

documentation to know that the Mononobe themselves used them. One of the weapons our

enemies use is the tekkō, a semicircle that wraps around the knuckles and is used for punching

(Figure 6). Another enemy uses a weapon called the chokutō, an ancient Japanese straight sword

derived from similar swords found in China (Green, 2018) (Figure 7).

2.2.2 Video Games and Other Media

 Humans having the inherent ability to manipulate the earth has been depicted in many

different forms of media. One of the most popular occurrences of this is in the animated series

Avatar: The Last Airbender. Characters in the show use the four elements of water, fire, earth,

and air to engage in combat (Nickelodeon, 2008). While using these elemental abilities, a great

deal of physical movement is used (Figure 8), and the action they perform changes the resulting

attack. The movements in the show are much more complex than anything motion control

tracking can mimic, but we took inspiration from the show’s usage of wide, exaggerated

movements in order to create different abilities.

Figure 5. Tekkō on the left (Shimbukan Association) and chokutō (Kakidai) on the right

Figure 6. Toph from Avatar: The Last Airbender using wide movements while earthbending

Shotoku’s Defense: Physics Based Combat Using Motion Controls in Virtual Reality 16

For our game’s visual style, we took inspiration from artwork such as “Middle Ages

Mine” by Vladislav Laryushin (Figure 7). We admired the level of simplicity that the artist was

able to achieve whilst still conveying a story and background. We also liked the matte finish on

the models that made the world look almost like it was made of paper.

We wanted the characters to have exaggerated features and behaviors. The enemies each

have a simple and recognizable silhouette as well as different colored clothing. The characters

also take on the environment’s abstract and faceted qualities. The enemies’ abstraction comes in

part from their lack of faces. The lack of facial expressions allows the character’s body and

actions to dictate personality. We decided to focus on those features because facial expressions

require extensive fine-tuning to look believable and natural. We took inspiration from low poly

art creators such as Synty Studios (Figure 8) and Pontypants (Figure 9).

Figure 7. Middle Ages Mine (Laryushin, 2017)

Figure 8. Low poly samurai asset pack (Synty
Studios)

Figure 9. Man depicted with various
levels of detail (Pontypants, 2017)

Shotoku’s Defense: Physics Based Combat Using Motion Controls in Virtual Reality 17

3. Technology
Across our development time, we utilized as many resources as we could to simplify as

many aspects of our project as possible. In this section, we describe our work environment as

well as the different hardware and software that were utilized to create our game.

3.1 Lab Environment

 Our team worked in the Creation Core building of Ritsumeikan University’s Biwako-

Kusatsu Campus. This building is primarily used for labs and offices for the College of

Information Science and Engineering and houses a number of labs run by professors on campus.

Our team was split between two independent labs where we were provided a workspace and, in

one of the labs, desktop computers. The lab professors and assistant professors were available for

us if we needed any equipment. We generally collaborated with each other in the larger lab space

as needed.

3.2 Hardware

 Across both of our labs on campus, we had access to two HTC Vive headsets, one of

which being an early developer build version while the other was the first release version.

The HTC Vive is a VR headset developed by Valve Corporation and HTC. Some of the headset

specifications include a dual 1080p AMOLED display with a refresh rate of 90 Hz and a field of

view of 110 degrees. Additionally, the system includes two base station cameras for tracking and

two motion controllers (“VIVE Virtual Reality System”, n.d.). Along with these, we had access

to two laptops that were powerful enough to run our VR environment, one brought by a team

member and one provided by a lab. Having access to this equipment was vital to our project’s

development as there were many features requiring frequent testing and tweaking through the

player’s input. The desktop computers provided by one of the labs were useful for intensive and

lengthy lighting computations. One of the labs also provided us with a drawing tablet that

allowed us to create more precise and original artwork.

3.3 Software

 To develop our game, we needed to use an assortment of applications and frameworks

that all worked together to structure our final product. This section discusses how we set up the

Shotoku’s Defense: Physics Based Combat Using Motion Controls in Virtual Reality 18

game engine, source-code editors, and asset creation software that we used for our game and

why we used them.

3.3.1 Engine

The first major decision we needed to make was in regards to the game engine we would

develop our game using. While our team knew of a few viable candidates, we ultimately decided

on Unity 2019 version 1.11f since it has a reputation for being easy to develop for programmers

who have never used a game engine before which was the case for all of our members (Unity,

2019). Additionally, Unity provides good support for VR development. Finally, coding for

games developed using Unity is done in C# which some of our members were comfortable using.

When we first began work on our project in Unity, we set it up to use the Lightweight

Render Pipeline (LWRP), because we needed to maximize performance and did not need high

definition render quality. The LWRP is a render pipeline optimized for mobile and web browser

performance. The LWRP allowed us to create a VR game without having to make big

optimizations to maintain the necessary 90Hz framerate, allowing us to put more time into

developing the game itself.

However, this decision, while ultimately necessary, did come with some unforeseen

drawbacks. Unity implemented this render pipeline to allow for up to 16 lights on camera at any

time. Our scene is full of torches called tо̄rо̄ that both serve to set the scene and provide much

needed illumination. Therefore, this method of rendering the scene caused some lights directly in

the player’s view to flicker on and off depending on which way the player was looking.

To simplify the development of the player system and the methods in which the player

interacts with the world, we utilized the Steam VR library through the Unity asset store. This

comes equipped with an extensive set of scripts that control the player and manage all of their

interactions including picking up and throwing objects, tracking hand velocity, and structuring

the collision area for the player. The scripts provided can be customized to add or remove

functionality as needed making the library extremely extensible.

3.3.2 Source-Code Editors

We utilized two different source-code editing programs across the team: Visual Studio

Code and JetBrains Rider. The choice between the two came down to the preferences of the

Shotoku’s Defense: Physics Based Combat Using Motion Controls in Virtual Reality 19

individual group members. In both cases, we were able to link the editor with Unity so they

would automatically open when a script was selected in the Unity editor.

Setting up Visual Studio Code required the installation of a few extensions to the

program. First, C# is not inherently supported by the software, so C# for Visual Studio Code was

a necessary extension to include. To make the program ideal and easier to use, we installed

additional extensions to add IntelliSense (code auto completion and auto correction), debugging,

automatic commenting, quick formatting, and version control management. Finally, we installed

Unity-specific extensions, which added Unity script recognition, IntelliSense features for the

Unity scripts, and debugging for Unity programs as they run.

The other development environment we used, JetBrains Rider, comes packaged with

Unity compatibility, eliminating the need for steps like the ones taken for setting up Visual

Studio Code. JetBrains was made to work well with Git, C#, and Unity; it only falls short in its

inability to edit and re-compile scripts as the game is running.

3.3.3 Art

For modeling and texturing game assets, we utilized Pixologic ZBrush and Autodesk

3dsMAX. These two programs complement each other to create assets that can be both freeform

and calculated. Although our game does not feature high poly, detailed human models, ZBrush’s

sculpting tools were useful for creating early concept and prototype characters. We also used

Mixamo’s auto-rigging tool to create skeletons and download animations for our characters. We

created 2D assets such as particle effect billboards, skybox textures, and background mountains

in Adobe Photoshop, Adobe Illustrator, and Autodesk Sketchbook.

3.3.4 Audio

 Finally, we created audio assets with the digital audio workstation (DAW) Cockos

Reaper, and we found audio samples on freesound.org. We were previously familiar with

Reaper, and the poor quality and selection of audio on an online soundbank required us to make

many modifications, layered sounds, loops, and effects in the DAW to suit our game’s needs.

This workflow was used for all of our sounds (except for our music track, which we used as is)

and proved simple and effective due to Reaper being a simple yet powerful program.

Shotoku’s Defense: Physics Based Combat Using Motion Controls in Virtual Reality 20

3.4 Project Management

 Our team worked closely throughout the project and collaborated primarily in person on a

day-to-day basis. This section discusses our methods of file keeping, communication, and

version control.

3.4.1 Files

We maintained records of our work through a shared Google Drive folder. For keeping

track of assets, we updated a spreadsheet of Art, Audio, and Tech asset lists throughout

development (See Appendix A). We had additional subfolders where we kept daily progress

logs, playtesting notes, priority checklists, and meeting agendas. To maintain development pace

and budget time, we created a calendar in Google Sheets that we updated throughout

development as well. Although the methods we used for keeping files was not sophisticated, they

worked well for our purposes because the files are easily accessible from any of the computers

we were using, and all of us were familiar with the resource beforehand.

3.4.2 Communication

 Our primary methods of communication were the cloud-based collaboration tool Slack

and email through a group alias. We had a Slack workspace set up for messaging and exchanging

files between team members. This is another source for tracking work and files informally. Our

advisers were members of the workspace as well and could access it at any point. However, our

main communication and updates with advisers were through email. We had a video meeting via

Google Hangouts and email update every week to provide updates, discuss changes, and share

plans for future work throughout project development time.

3.4.3 Version Control

 Having the teamwork across multiple different machines and many different tasks at a

time made it necessary for us to utilize a version control program to keep track of our changes

and assure everything works together. For this purpose, we chose to use Git. Additionally, we are

more familiar with Git than other version control programs. Saving our changes to the remote

Shotoku’s Defense: Physics Based Combat Using Motion Controls in Virtual Reality 21

repository was achieved through both the git bash and GitHub Desktop applications varying by

what each person was most comfortable with.

Shotoku’s Defense: Physics Based Combat Using Motion Controls in Virtual Reality 22

4. Art
Our vision for the game was to create a setting that accurately depicts Japan. We also

wanted our characters to be distinguishable and stylized. We were able to accomplish this

through online research, daily life in Japan, and in-person visits to cultural and historical sites.

This chapter discusses the creation and implementation of architecture, foliage, enemies, and

lighting of our game.

4.1 Vision for Arena

We wanted the environment of our game to be stylized and abstract. With this in mind,

we decided to create objects with faceted surfaces and simple textures. Stylized and faceted

geometry fits rock objects well, and the player’s abilities all involve rock and sand objects. To be

consistent with the theme of our game, we wanted the color scheme to lean toward reds and

yellows that traditional Japanese architecture regularly utilize. The structures of Shitenno-ji are

primarily red with purple-gray accents (Figure 10), which we maintained for the structures in our

game.

Figure 10. Shitenno-ji buildings in our game (left) and reference photograph
(Soramimi, 2014) (right)

Shotoku’s Defense: Physics Based Combat Using Motion Controls in Virtual Reality 23

The dirt and rocks occupy a large portion of the ground surface and are mostly yellow,

brown, or gray. To break up the large portions of dull colors, we added contrast through the

usage of bright green plants and decorated the scene with colorful flowers and mushrooms. The

overall design of the game is consistent with the square color scheme shown in Figure 11.

4.2 Arena

Being in Japan for this project, we had the advantage of visiting cultural sights in person.

Having seen some Japanese style architecture and design early on, we decided to create an

environment that combines the aspects of a Japanese garden with that of a Japanese temple.

4.2.1 Iterations

After finding the story of Shotoku and Bishamonten, we decided that Shitenno-ji would

be an ideal location to base our game off due to the simplicity of the temple space. A physical

place in the world makes it easier to ground the game in reality compared to a generic Japanese

garden. Shitenno-ji has two freestanding temples, three entrances, and one temple on the North

side connected to the surrounding walls (Figure 12). We maintained the rectangular arena shape

of Shitenno-ji surrounded by walls but replaced the large temple in the wall with a large entrance

instead.

Figure 11. Complementary color schemes (Belenko)

Shotoku’s Defense: Physics Based Combat Using Motion Controls in Virtual Reality 24

As shown in Figure 13, the first design we had was an arena enclosed by walls that frame

a temple on the North side. In this arena, there is a rock garden, a pond with a bridge, some

sakura trees, and stone paths to guide the flow of enemies. At this phase, we did not fully

understand the principles of virtual reality design, but we later learned that flat surfaces do not

work well in a virtual world since the player is viewing the large platform at a relatively low

angle, making the world appear flatter than it is. After visiting Shitenno-ji, we realized the actual

temple was much larger than we expected. We expanded the arena to twice its original size,

added fluctuations to the ground, and placed trees (Figure 14).

Figure 12. Aerial views of Shitenno-ji (Google Maps) (left) and the game arena (right)

Figure 13. First arena design

Shotoku’s Defense: Physics Based Combat Using Motion Controls in Virtual Reality 25

The fluctuation we added to the ground only reduced the flatness minimally, so we

decided to add tiers to the map, with each tier being 0.25 meters higher or lower than the one

next to it. The arena, after several iterations, incorporates offset temples, tiered ground, and

thriving foliage. The temples are offset for better viewing angles and the foliage creates natural

pathways and divides the area into multiple regions.

 We created the terrain based on each location’s needs. The first location was designed to

introduce combat, so the map is staged in a way that the player can focus on a single enemy

entrance and not worry about any other sources of threat. Other locations with more complex

combat called for changes such as wider spaces to allow enemies to surround the player or

structures that would hinder abilities. In each location, the player stands on a raised platform of

approximately three to five meters in radius to get a better perspective of the map and

approaching enemies.

4.2.2 Architecture

The architecture of the game incorporates Japanese architecture from Shitenno-ji and

Nijo-jo. The two buildings—the temple and pagoda—maintain the overall shape and colors of

Shitenno-ji’s large temple and pagoda. These two buildings fit our needs because they are

distinct in both shape and design, which is what we aim for in our architecture and enemy

designs. The lightning rod on the pagoda and roof horns on the temple are basic characteristics

that make the buildings unique (Figure 15). The buildings both have wide bases with stairs that

enemies can walk on for high ground and the multi-layered roofing that Shitenno-ji has. We

Figure 14. Second version of arena, twice the size of the first

Shotoku’s Defense: Physics Based Combat Using Motion Controls in Virtual Reality 26

incorporated the Japanese Buddhist style curved roof (Figure #, same as above) in each of the

buildings to break up straight geometry. This style of roof is believed to deter evil spirits that

travel in straight lines. To further reduce structures that look too straight and artificial,

architecture in the game is stylized in a manner that mimics aged material.

In addition to buildings and walls, we created a boardwalk, gazebo, and bell tower in the

arena. The boardwalk occupies the pond, providing enemies with paths to reach the player.

Traditional Japanese boardwalks (Figure 16) inspired this boardwalk. A gazebo was added in

order to create dimensional interest to the relatively flat boardwalk and pond surface. The bell

tower’s main purpose was to fill an empty corner of the arena since bell towers are often seen

near entrances to temples. The bell tower and walls of the temple were inspired by bells and

walls found at Nijo castle.

Figure 16. Boardwalk above pond (Mueller, 2005) (left) and in-game boardwalk (right)

Figure 15. Lightning rod on pagoda (left) and roof horns on temple (right)

Shotoku’s Defense: Physics Based Combat Using Motion Controls in Virtual Reality 27

4.2.3 Foliage and Pathways

The foliage and pathways in each location were designed

to lead player’s eyes to entrances where enemies may emerge.

Throughout the entire arena, there are stepping-stones leading

from doors to the player’s platform (Figure 17).

These are not necessarily the paths that enemies will take,

but give the player a hint of the location of major walkways.

Large trees aim to frame the player’s view of entrances, divide

barren wide angle views where desired, and fill in empty space

around corners of the map where enemies are unlikely to enter

(Figure 18).

The trees themselves added some medium height geometry to our arena, but we needed

bushes, grass, and plants to construct a more realistic ground surface. We used multiple versions

of each type of foliage from the Unity Asset Store (Figure 19) to create diverse vegetation for

our scene. We placed the foliage in a way that emulates real life. For instance, more grass and

Figure 17. Stepping stones
leading to an entrance

Figure 18. Trees around, but not in front of, player’s view of entrance

Shotoku’s Defense: Physics Based Combat Using Motion Controls in Virtual Reality 28

rocks underneath trees and near bushes, mushrooms in corners and near bases of larger plants,

and cattails and lilies around ponds (Figure 20).

Another benefit of low-level foliage is blending the changes in elevation where the

lighting either creates a sharp edge or makes it difficult to locate the ledge. Lining buildings with

bushes also helps to ease the 90-degree angle between the ground and walls. Grass and small

pebbles serve to add depth to the flat ground and fill empty surfaces. The pruned bushes by

entrances to the arena and temples serve to both decorate the flat walls and mimic the pruned

bushes of Japanese gardens. We selected these bushes and other plants such as cattails because

they appear often in Japanese scenery.

4.3 Lighting

 Scene lighting strongly dictates the mood of the game and influences the environment

colors. Our game utilizes nighttime, torchlight, and changing light intensity to create interesting

lighting effects.

Figure 19. Foliage (Rad-Coders) and rock (SnowFiend Studios) assets from the
Unity asset store

Figure 20. Arrangement of trees, bushes, grass, rocks, flowers, and mushrooms

Shotoku’s Defense: Physics Based Combat Using Motion Controls in Virtual Reality 29

4.3.1 Time of Day

The overarching lighting theme in the game is deep night under a bright moon. Nighttime

allows for darker regions of the map that

would otherwise be too bright and empty in

the daytime. However, since the entirety of

the game’s setting is outdoors, the moon

allows enough lighting to see the enemies

and abilities well. The lighting levels, tint,

and direction were all fine-tuned throughout

development to create ideal scenes in each

location. An ideal scene would have well lit

entrances and some dark regions in view. A

well-lit entrance helps the player see the incoming enemy and better strategize and prepare for

combat. Dark spaces under trees or next to buildings creates areas where the player cannot see

the enemy’s movement perfectly (Figure 21). The combination of well-lit entrances and separate

dark regions adds difficulty to combat because the player can anticipate the enemy’s overarching

movement and combat styles but not always their moment-to-moment behavior.

Initially, the game was set to occur during sunset. Sunset lighting typically provides more

interest than regular daylight due to the low angle

and warm tint of the light source. The decision to

switch to nighttime was largely due to the color of

the map. Most of the arena is occupied with warm

colors and lights, so the warm sunset lighting

further saturated those colors toward yellow.

Tinting the light source to a cool blue helped

balance the arena’s colors and helped the red and

purple temples stand out more because their

darkness makes them less influenced by colored

lighting. Nighttime also allowed for a starry sky

and low poly moon, shown in Figure 22. To add

Figure 21. Trees where enemies can hide

Figure 22. Texture for top of skybox

Shotoku’s Defense: Physics Based Combat Using Motion Controls in Virtual Reality 30

geometry to the sky and break up the large surface, we added clouds that move across the map at

a slow and steady rate.

4.3.2 Point Lighting and Fireflies

In addition to the sky light, our game lights the arena using point lights—a type of light

that emanates rays outward from a single point when illuminating objects. The light sources are

designed to be standing tōrō, traditional Japanese lanterns commonly made with stone (Figure

23). Tōrō are used in Japan to line and illuminate pathways, allowing us to use them in this

manner as well. The lanterns not only decorate the scene, but also illuminate enemies since they

utilize real time lighting. We added interest to the tōrō through flickering lighting and flame

particle effects. The point light pulses at a pleasant rate while blending between two flame

colors, creating the illusion of a flame.

Figure 23. From left to right: tōrō in Osaka and in-game tōrō

 To add variation to the shadows, we added fireflies and lanterns. Our fireflies gather in

the dark shadows of dense trees. This simple addition makes still forests much more interesting

and dynamic. The fireflies are non-interactive and do not emit any light, but they break up the

darkness and stillness in some parts of the map (Figure 24). The lanterns line the edges of roofs

Shotoku’s Defense: Physics Based Combat Using Motion Controls in Virtual Reality 31

and add to the vertical geometry of the scene. Although they are only emissive and do not have

point lights, they create artificial light in darker areas.

Figure 24. Fireflies in the dark areas in our map

4.4 Particle Effects

 In an effort to add weight to our abilities, we created particle effects for the creation,

destruction, and movement of assorted world objects. We felt that it was unrealistic for the

ground to remain completely still and unturned while the player pulls out physical stone from it.

The particles serve to mimic dust, dirt, and small rocks that are moved around as the earth is

being manipulated. When the player picks up a rock, pebbles pop out of the ground to create the

illusion that the ground has been broken. For both the spike and wall, cube particles vibrate at the

base as the rock formation is being pulled out of the ground (Figure 25).

Figure 25. Small rocks appearing in the ground as wall rises

This mimics ground vibration and emerging dust. When rocks, walls, and spikes

disappear, they break into particles of small rocks that fall outward, which look like the

Shotoku’s Defense: Physics Based Combat Using Motion Controls in Virtual Reality 32

formation is breaking up instead of disappearing into thin air. The quicksand evokes sandy

particles that emerge from the earth toward the center of the quicksand to create the effect of

gathering sand into a pile (Figure 26).

Figure 26. Quicksand’s particle effects before appearing

 In addition to the abilities, particle effects are applied on enemy death. The tōrō have

particle effects for their flames as well to make them appear as if the light is coming from a real

fire (Figure 27). Finally, we the fireflies in our scene were pre-made particle effects from the

Unity asset store. All of these effects work together to make the world appear to be dynamic and

natural.

Figure 27. Tōrō’s flame particle effects

Shotoku’s Defense: Physics Based Combat Using Motion Controls in Virtual Reality 33

4.5 Enemies

The three warriors in our game are designed to be distinct but complementary in

appearance. The heavy enemy is bulky, bold, and wears red like some Mononobe warriors; the

medium enemy is fit, agile, and wears blue to contrast with the heavy enemy; and the light

enemy is slim, cunning, and wears black to blend in with shadows. The concept art in Figure 28

shows early designs including weapons and enemy types. Some of these have since changed, but

the overall appearance and behavior of enemies remain the same.

Figure 28. Early designs of the three enemy types

4.5.1 Heavy Enemy

 The heavy enemy most closely resembles a Mononobe warrior (Figure 29) since they are

wearing armor, boots, and a kabuto. The heavy enemy is designed to be a bold character that

stands in their opponent’s way. The large frame of the model helps convey the enemy’s

boldness, and since their body is “V” shaped—broad-shouldered with a narrow waist—they look

larger up close. The body armor is red-brown in color and not incredibly metallic or sturdy. The

skirt-like waist armor, an important characteristic of Mononobe warriors, behaves like a hard

cloth so that it fits around the enemy’s legs during motion.

Shotoku’s Defense: Physics Based Combat Using Motion Controls in Virtual Reality 34

Figure 29. From left to right: Mononobe warriors’ armor (Mcbride, 2011) and heavy enemy

The heavy enemy wields the handheld tekkō (Figure 30) and goes straight for the player.

The heavy enemy holds this short weapon to prevent adding any length to their already long

arms. Since the weapons are small relative to the world, they are not detailed or heavily stylized.

The heavy enemy holds the tekkō at all times, and the weapon acts as part of their fist.

Figure 30. From left to right: Mononobe tekkō and heavy enemy tekkō (Ryukyu Kobudo
Shimbukan, 2014)

4.5.2 Light Enemy

 The light enemy is the opposite of the heavy enemy. The light enemy is a cunning

character that hunts enemies from the shadows. They are designed to be slim with long limbs in

order to walk fast and crouch low, especially because they have long distances to cover. The

Shotoku’s Defense: Physics Based Combat Using Motion Controls in Virtual Reality 35

disproportionately long limbs also add to the character’s odd persona. The light enemy wears

primarily dark clothing to blend into dark shadows between trees and does not wear shoes in

order to walk silently. The white cloth body wraps add depth to their clothing. The red

headbands are a stylistic choice to add character (Figure 31).

Figure 31. Light enemy shooting in action

4.5.3 Medium Enemy

 The medium enemy’s build is between the heavy and light enemies’ in terms of volume.

The medium enemy is designed to be fit and agile, and able to adjust to situations quickly. The

enemy is characterized by an “A” shape, with a small head and wide pants. The enemy’s pants

are dark blue to contrast with the reddish tones of the heavy enemy. The character’s haircut seen

in Figure # reflect Japanese apparel and style but not the Mononobe specifically. The appearance

of the medium enemy, while done in reference to Mononobe warriors, was primarily designed in

a stylistic fashion.

Figure 32. From left to right: Japanese chokutō (Kakidai, 2018) and medium enemy sword

Shotoku’s Defense: Physics Based Combat Using Motion Controls in Virtual Reality 36

 The medium enemy’s bow and arrow are the same as those of the light enemy. The

medium enemy wields an additional weapon, the chokutō (Figure 32). Although the medium

enemy uses the same bow as the light enemy, they wield the weapon differently. The medium

enemy stands taller and has a wider range of motion compared to the light enemy (Figure 33).

Figure 33. Medium enemy with bow (left) and with sword (right)

4.6 Animation

 Animations bring an incredible amount of characterization to a model. Creating or

selecting animations becomes an important consideration in conveying the character’s role in the

game and interactions with the player. Our workflow consisted of modeling characters, rigging

them automatically in Mixamo, making a list of what types of animations the enemy would need

for in-game functionality, and selecting animations for that list based on the design of the enemy

and their role in the game’s combat. In the next three sections, we provide some examples of

how this thought process affected the final animations of the game’s characters.

4.6.1 Heavy Enemy Animation

 The heavy enemy was made to be large and stocky: a big target with minimal

maneuverability. They were also modeled with exaggerated proportions, so that they have a

large, intimidating upper body and short legs. Because of this, the gait of the walking animation

we selected appears sturdy and top-heavy with a short stride. We wanted this enemy to look

strong and powerful while still being clumsy enough to be completely swept off their feet when

hit with rocks.

 The combat animations carry a similar characterization. They have two punch animations

that carry all of their body weight in the swings of their fists. From these animations, it is readily

apparent that this enemy deals plenty of damage, without even needing to be hit once.

Shotoku’s Defense: Physics Based Combat Using Motion Controls in Virtual Reality 37

4.6.2 Light Enemy Animation

 The light enemy is the polar opposite of the heavy enemy in form, function, and

animation. We selected their sidestepping animations to reflect their careful, calculated

movements. They stay in a crouched position at all times, sneaking around the player and

making themselves hard to hit. While sturdy, this enemy does not exude the same intimidating

qualities as the heavy, so this animation does not give the impression that they would stand their

ground if approached. This suits their function in the game, as they always remain in the

background to shoot the player from a safe distance.

4.6.3 Medium Enemy Animation

Despite attacking from afar like the light enemy, the medium enemy’s animations do not

give off the same stealthy quality. The medium enemy is more mobile and confident in their

attacks, so we selected a sidestepping animation where they stand upright, making the character

appear prepared to take a hit and advance to the player.

Their sword swinging animations are consistent with this portrayal of their character.

Their movements include quick footwork that moves them toward the player with swift slashes.

These smooth and dynamic motions express their ease in performing both ranged and sword

attacks, making their versatility on the battlefield readily apparent.

Finally, their climbing animations were selected to further express their high

maneuverability. They quickly enter the climbing animation that takes them up an entire wall in

a few steps. They then leap off the wall and resume sidestepping in one bound. Their swift and

smooth motions here portray their ease in nullifying the player’s walls when the player attempts

to block them, adding to their character’s urgent and overzealous nature.

4.7 Technical Challenges

During our process of developing assets, we encountered some technical issues in the

game engine. Limitations in Unity’s LWRP and Mixamo’s auto-rigging system required us to

find some creative solutions as a team when implementing some 3D models in our game.

Shotoku’s Defense: Physics Based Combat Using Motion Controls in Virtual Reality 38

4.7.1 Animating Characters with Minimal Geometry

The first iteration of enemies was our first

attempt at stylized human models. We tried to

create enemies that resemble rocks, which

resulted in the enemies shown in Figure 34.

These enemies did not have enough

polygons to support animated joints, so their

geometry overlapped during animations causing

their body to appear malformed. To maintain the

desired style, we experimented with dense base

meshes that used normal maps created from

stylized models. Conventionally, normal maps are

used on optimized models — models with as few

polygons as possible — to create the illusion that

it has more detail than is actually there. Our

attempt to mimic simple geometry while

maintaining fluid joints worked, but our models

looked neither realistic nor stylized (Figure 35).

After extensive experimentation with

surface geometry, our final designs have few

enough polygons to meet our expectations but

enough polygons for proper animation.

Figure 35. Normal maps creating the
illusion that a smooth base mesh is faceted

Figure 34. First iteration of the enemy
models (from left to right: heavy,

medium, light)

Shotoku’s Defense: Physics Based Combat Using Motion Controls in Virtual Reality 39

4.7.2 Arena Ground Lighting

The arena ground was initially created as one large mesh shown in Figure #. However,

we had to change this when we began experimenting with lighting. The Unity render pipeline we

used can only accommodate four real time lights per mesh, which is too few for the entire arena.

Our solution was to slice the arena ground mesh into sections of one square meter each, with

each section similar to the one shown in Figure 36. This allowed each section of the ground to be

sufficiently lit during gameplay.

Before the mesh is ready to be put in the game, it has to be unwrapped -- the process of

mapping a 3D object to a 2D surface for texturing purposes. Slicing the mesh into squares was a

detriment to the unwrapping and lighting process since it was difficult to hide the obvious seams

along the squares. To account for this naturally, we adjusted the lights in a way that minimized

color changes along edges and covered seams with foliage as needed.

For the ground collider, we decided to apply a mesh collider to the unsliced version of the

ground. A single mesh collider is better than a couple hundred of meshes, but the lighting did not

allow for the single mesh. Our result was using sliced planes for the render mesh and an invisible

mesh with the same surface deformations right underneath the plane for the collider. The surface

mesh was chamfered along the edges to ease the right angles for better lighting.

Figure 36. Arena ground box (left) and one of the mesh slices used for light baking (right)

Shotoku’s Defense: Physics Based Combat Using Motion Controls in Virtual Reality 40

5. Design
 Being an arcade style game, the combat had to be fast-paced and satisfying, the enemies

had to be simple yet threatening, and the art had to be easy to look at and captivating. Therefore,

we put a great deal of forethought into each of these areas to give the player the best experience

possible. This chapter goes in depth regarding why the design decisions made for the game were

the best for the player’s experience.

5.1 Health, Energy, and User Interfacing

 Before any form of combat was put into place, we needed to decide on the main goal and

rules of our game. The goal would be to survive attacks, and limitations would involve a tradeoff

for using abilities. This prompted us to implement a health and energy bar based system, where

the player has a maximum amount of health and energy that drain as they take damage and use

abilities, respectively. To regain health, we made a healing skill that costs energy in exchange for

health. We wanted the player to be able to heal at any time they wanted while incurring a small

penalty to prevent the game from being too easy. To regain energy, the player must not use their

abilities for a short time, providing the player with a tradeoff for rapidly using their abilities.

Since managing the health and energy levels are necessary for the player’s success, we

were presented with the challenge of creating a comprehensive user interface (UI). In VR, it is

not possible to attach images and text to the player’s screen like you can for all other forms of

gaming (Pan, 2017). Doing so causes the perspective of the player to constantly switch between

Figure 37. The normal Minecraft UI (left) attached to the bottom of the screen versus a VR
Minecraft UI (right) floating in the world (Minecraft, 2008)

Shotoku’s Defense: Physics Based Combat Using Motion Controls in Virtual Reality 41

viewing the close objects on their screen and the far objects in the

world, often causing the player’s eyes to hurt. To avoid this issue,

in-world UI objects are created and attached to physical objects.

An example of this difference can be seen with Minecraft, as seen

in figure 37. While there are many ways that developers for VR

attempt to accomplish this, our team decided to create a UI that is

attached to the back of the player’s hands, allowing the player to

refer to them at any point during the game. Additionally, we have

icons that indicate the power-up bars for our abilities on both

sides of the energy bar (Figure 38).

 In traditional video games, menus are also part of the UI

that get attached to the player’s screen. For the reason described

above, VR does not allow for this method of interaction. Instead,

when the player pauses the game, we create a physical world

object a set distance from the player that can be interacted with

through a laser pointer coming from the player’s right hand. This menu is automatically oriented

toward the direction the player is looking to ensure that it is in the player’s line of sight.

5.2 Player Controls and Abilities

 Given VR’s focus on physical player interaction with the world combined with the low

number of input methods provided by the Vive controllers, the controls and abilities needed to

utilize motion controls as much as possible. Furthermore, we wanted the player to feel as if the

movements they were doing affected the earth as if they actually had these powers in the real

world. As a result, our team implemented a system that minimizes the amount of button inputs

and maximizes the player’s physical control.

 From a gameplay perspective, we wanted to have a diverse set of moves for the player to

utilize. This gives them the power to figure out unique strategies for fighting off enemies and

prevents the game from becoming stale. To accomplish this, our team developed four abilities for

the player to utilize at any point during the game: rocks, spikes, quicksand, and walls.

Additionally, the player is provided with a healing ability separate from these four core abilities.

Figure 38. The UI and
power-up icons used in-

game

Shotoku’s Defense: Physics Based Combat Using Motion Controls in Virtual Reality 42

5.2.1 Ability Creation

 The player interacts with the world through an arc coming from their hand called the

“Ability Arc”. This arc curves toward the ground ending in a ring on the surface of the ground

that identifies the ability’s creation area. Both of the player’s hands have an Ability Arc so that

they can use their abilities simultaneously. Due to the player’s powers being limited to

interacting with the earth, abilities can only be created on ground that has a clear path for usage.

Valid ability creation areas are marked with a green circle while invalid ones are marked with a

red circle with an ‘X’ through it. Other objects in the world that interact with the Ability Arc

show a yellow highlight around the object instead of a ring.

Each of the abilities drain the player’s energy as they are created with varying energy

costs based on the type of ability that was used and its size. The player’s energy is replenished

gradually after not using abilities for a short time. Abilities can only be created if the player has

sufficient energy to do so. This functionality was put in place to challenge the player by

preventing them from always using the most powerful abilities, ultimately adding to their

experience.

In alignment with our minimum input philosophy, each of the abilities rely on the player

using the controller’s trigger button. This presented the challenge of differentiating between each

ability. Additionally, spikes, quicksand, and walls are physical world objects that the player

should not be able to walk through which cannot be prevented if the player creates a spike

directly under themselves. To avoid both of these issues, we implemented a visible ring around

the player that we refer to as the “Player Ability Ring.” Within this ring, the player can create

rocks that emerge from the ground and fly into their hand. Outside of the ring, the player can

Figure 39. The Player Ability Ring surrounding the player with one valid Ability Arc

Shotoku’s Defense: Physics Based Combat Using Motion Controls in Virtual Reality 43

create a resizable ability outline that creates spikes when they move their hand upwards and

quicksand when they push their hands downwards. In both cases, the player only needs to press

and hold the trigger to activate the ability and let go of the trigger to use it, with the rest of the

interaction being through motion controls. The wall is also usable outside of the Player Ability

Ring but requires one additional input. The Ability Arc and Player Ability Ring can be seen in

figure 39.

When rocks are created, they are small and

deal little damage to enemies. To increase damage

from rocks, the player is able to resize them by

holding a rock in one hand and pulling the rock

outward with the other hand. Both the smallest

and largest rocks can be seen in Figure 40. The

player uses an increasing amount of energy, as the

rocks get larger, with the smallest rock not costing

energy and the largest rock costing 20% of their

energy to create a tradeoff for utilizing this action. To incentivize movement by the player, the

rocks deal increasing damage the faster they are thrown at an enemy. This is the cheapest of the

four abilities and the primary source of damage. They can also be used to punch with by holding

the rock and swinging at nearby enemies, also dealing higher damage at greater speeds.

Similar to the rocks, the size of the area where

spikes are created and the energy it uses increases as

the player moves their hand upwards. As the size of

the area increases, the number of spikes within the

area increases as well (Figure 41). Upon releasing the

trigger, spikes raise from the ground at a speed based

on the player’s hand speed. The spikes deal damage

in relation to the speed of the spike, further

incentivizing faster movement. While the spike can

be an expensive way to spend energy, it does devastating damage to even the strongest of

enemies. Moreover, spikes cannot have abilities created inside of them while they are active and

are only active for a few seconds before being destroyed.

Figure 40. The player holding a small
rock and a fully resized rock

Figure 41. A single spike from a
small area vs multiple spikes from a

larger area

Shotoku’s Defense: Physics Based Combat Using Motion Controls in Virtual Reality 44

Unlike the previous two abilities, the

quicksand (Figure 42) does no damage but instead

slows the enemy by a significant amount. The size

of the quicksand’s creation area increases as the

player pushes their hand down and at twice the

rate of the spike’s area for the same cost. This

gives the player a reason to strategically place

their quicksand in a place that allows for

maximum growth with the most enemies affected.

As to not obstruct the player and provide a greater benefit for using the quicksand, all abilities

can be used from within its area.

The primary uses for the wall are to block the paths

of enemies and prevent ranged attacks from hitting you. This

is the only ability that requires both hands to use, and for this

reason, the team decided to add an additional, one-time

input. To enter the mode where the player can draw their

wall, the player must press both trackpads simultaneously.

During this time, an outline of the wall is created which can

be moved, resized, and rotated based on the location of the

player’s Ability Arcs. Upon pressing both triggers, the

outline disappears and the player can raise their hands to pull the real wall out of the ground

(Figure 43) ending at any height the player decides below a displayed maximum size. The energy

drained by the wall is proportional to the length of the base and height of the wall. Walls that are

obstructive to the player can be deleted at any time by pressing either grip button while aiming

the Ability Arc at the wall.

5.2.2 Ability Power-Ups

 While the abilities give many options for the player to work with, we wanted to give

them a sense of progression with their abilities as well as additional temporary mechanics for

them to take advantage of. For this reason, we created stronger versions of each of the four

abilities. We also wanted to avoid overcomplicating the controls of the game, and as a result,

Figure 42. A pile of quicksand after
finished being created

Figure 43. A wall as it is
being created

Shotoku’s Defense: Physics Based Combat Using Motion Controls in Virtual Reality 45

each of the power-ups are used in the same way as their base ability aside from a small addition

to the wall. None of the abilities cost any additional energy to use.

 The rock power-up creates four additional rocks when it is thrown, with each slightly

veering off from the original in a random direction. These rocks mimic the properties of the

original in both size and speed.

With the spike power-up, the

ability creation area increases in number

instead of size, which adds a line of

additional ability creation areas with its

length proportional to the distance the

player raised their hand. Using the spikes

causes each player creation area to spawn a

chain of spikes that continue in the

direction opposite the player until they hit

something, with each chain acting independently from each other (Figure 44).

The quicksand power-up creates an earthquake within the area of the quicksand that

causes enemies to fall over. Any enemy outside the radius of the quicksand suffers a movement

penalty proportional to how close they are to the quicksand for a short time.

The wall power-up pushes the wall in a given direction that, as stated prior, adds an

additional action for the player to perform. Before completing the wall creation, the player

pushes their hands in any direction they chose, causing the wall to move in that direction at a

speed proportional to the speed of the player’s hand at the time they release the trigger. The wall

stops moving when it hits a stationary object.

5.2.3 Healing

 To counteract the damage that the player would be taking from enemies throughout the

game, we added a healing skill that regenerates health in exchange for energy. To use this skill,

the player moves their hands close together without using any abilities and holds both grip

buttons simultaneously. The team decided to require the hands being close together to force the

player to focus on healing, providing an extra challenge that they need to account for. Both grip

buttons were utilized, as it was a unique input that the player would be able to associate with

Figure 44. A line of spikes created from the
spike power-up

Shotoku’s Defense: Physics Based Combat Using Motion Controls in Virtual Reality 46

healing as well. Finally, players cannot heal while using abilities to force the player to plan their

healing between attacks and create a strategy that allows for that period of vulnerability. The

health they gain while healing is equal to the amount of energy they spend and occurs over time.

5.3 Enemy Behavior

 After determining the abilities that our players would have at their disposal, we needed

different enemy types to encourage them to use all of the abilities in combat. The different

enemy types each have strengths and weaknesses in their statistics and behavioral patterns. These

properties work together to create a variety of complex situations that force the player to think

about how to defeat them effectively without being overwhelmed.

5.3.1 Heavy Enemy

 The heavy enemies are highly aggressive and utilize only melee attacks (close-quarter

combat), wielding spiked metal tekkō, ancient Japanese weapons akin to brass knuckles (Rich,

2015). We created this enemy in such a way

that made the spike and quicksand abilities

very effective, to encourage their usage

when players are mostly using walls. Walls

do not interfere with the heavy enemies for

very long as they can easily walk around

them, and rocks often do not deal enough

damage to knock the enemies over (Figure

45). Quicksand and spikes, however, are

easy to cast on nearby enemies, since they

must approach the player. Spikes can also deal exceptional amounts of damage when clustered

together on the enemies’ large body, as each spike deals damage.

The heavy enemies walk slowly and deal a large amount of damage in a single punch

with their tekkō once in range. They also have the most health out of any enemy, making them

difficult to eliminate quickly. This means that players have the opportunity to ignore them until

they are close, but leaving them completely unchecked might result in the player’s quick death.

Figure 45. Rock bouncing off heavy enemy if not
powerful enough

Shotoku’s Defense: Physics Based Combat Using Motion Controls in Virtual Reality 47

We designed the heavy enemies in this way to give the player choices when planning their

attacks and to pressure them to make said choices quickly. This leads to more engaging

gameplay and strategies.

The game uses finite state machines to control all of the enemies. The heavy enemy’s

behavior is dictated according to the following machine (Figure 46):

In the Advance and Retreat states, the heavy enemy paths directly towards or away from

the player, respectively. Within a certain radius, they stop walking and enter the melee state

where they attack with their fists at a regular interval. This allows the player to move in the real

world and have the enemies dynamically reposition themselves for attacking by advancing and

retreating. When attacking, they enter the Swing state, in which they can damage the player with

their tekkō. Their Ragdoll state disables their animations and lets the physics simulation control

their limbs, causing them to go limp and flow freely until they finally settle on the ground. This

leads directly into the GetupFront and GetupBack states, depending on how their bodies

are resting when they try to get up.

Figure 46. Heavy enemy finite state machine

Shotoku’s Defense: Physics Based Combat Using Motion Controls in Virtual Reality 48

5.3.2 Light Enemy

While the heavy enemies are very aggressive,

the light enemies are the most defensive. The light

enemy type is physically the weakest, but they

compensate for it with fast, ranged attacks while

keeping a safe distance from the player. We designed

these enemies to stay just outside the radius where the

player can create a spike or quicksand to force the

player to resort to their other two abilities: rocks and

walls (Figure 47). We decided to give them a small

amount of health to compensate for the difficulty in

attacking distant targets. This means that only one

good hit from a rock is needed, creating a sensible

level of difficulty.

These enemies’ attack pattern is also ineffective against the player’s walls as their only

attack uses a projectile that is easily deflected. Our initial plan was to make them more mobile by

having them climb the walls created by the player. Eventually, after seeing their behavior in the

game, we decided it would not be useful to them. The player’s walls act as a perfect defense

against light enemies when they attack from afar, and the player is not able to create walls far

enough away. This means that the light enemies would never have the opportunity to climb.

However, even if they did, this ability would change what techniques work well against the

enemy, unbalancing their strengths and weaknesses. This kind of complication would naturally

be frustrating for players developing strategies to fight the light enemies.

A light enemy’s behavior is dictated by the following finite state machine (Figure 48):

Figure 47. Light enemy is out of
player’s range

Shotoku’s Defense: Physics Based Combat Using Motion Controls in Virtual Reality 49

 In the Run state, the enemies follow the best path to the player before switching to the

Strafe state once they are within a set radius. The Strafe state is defined as when enemies move

sideways while facing the player. In the Strafe state, they shoot their bows at regular intervals

and at a high velocity. This gives the player less time to react to incoming arrows, making the

enemies more engaging and difficult to counter during battle. Lastly, like the heavy enemy, the

Ragdoll state lets the physics simulation control their limp body before transitioning into

whichever Getup state is more appropriate, finishing by returning to the Run state once again.

5.3.3 Medium Enemy

 The medium enemies find a balance between the heavy and light enemies by wielding a

bow for ranged attacks and a chokutō for close combat. They possess superior mobility among

the three types of enemies, as they can walk side-to-side, approach the player, and even climb the

player’s walls (Figure 49). We moved this ability to the medium enemies because their steadily

approaching movement pattern was more suited to it then the light enemy. In addition, the

combination of strafing and approaching made the medium enemies just as susceptible to

quicksand and spike attacks as the heavy enemy, only without the health and armor to hold their

Figure 48. Light enemy state machine

Shotoku’s Defense: Physics Based Combat Using Motion Controls in Virtual Reality 50

ground, so they needed additional power to

prevent them from becoming trivial. This

additional pathfinding option affords new routes

to traverse and requires more complex decision-

making for the player when it comes to placing

walls to block enemies physically.

 To distinguish the medium and light

enemies even further, we made their shooting

arc behave slightly differently. To circumvent

the player’s walls yet again, the medium enemy

shoots arrows in a large arc that will soar over

most walls. This means that players will have

more time to react to these arrows but will have

to dodge or punch them, rather than block them

with walls. While executed differently, all of these motions are easy to switch between, allowing

players to get into a more interesting and challenging rhythm in the moment-to-moment

gameplay.

 The medium enemy’s behavior is dictated by the following state machine (Figure 50):

 Figure 50. Medium enemy state machine

Figure 49. Medium enemy climbing player’s
rock wall

Shotoku’s Defense: Physics Based Combat Using Motion Controls in Virtual Reality 51

 Run, Strafe, Advance, Retreat, and Melee all function the same as they do in the heavy

and light enemies, only they approach the player as they strafe, taking them close enough to

advance for melee attacks. Medium enemies can climb a wall when strafing, causing them to

enter the Climb state, followed by the AboveWall state, and finally returning to the strafe state,

allowing them to climb back down. Melee and Swing states also function just like their heavy

counterparts. They recover from the Ragdoll state into a Getup state like any other enemy, finally

transitioning it to the Run state to resume fighting.

5.3.4 Enemy Groups

Each type of enemy is easy to fight on its own by design, but together, they bring out

much more intricate gameplay. The heavy and light enemies work well to complement each

other’s fighting styles, while the medium enemy exists to blur the line between them. The

heavies are always marching forward like a tank, while the lights provide consistent damage

from behind, and mediums add a little more confusion into the player’s plans. The player must

always figure out for himself or herself how to divide their attention between these different

types of enemies to maximize their survivability. This pressure, together with the required snap

decision-making, creates a gameplay loop in which players must utilize all their abilities in

succession. This is why the enemies needed such distinct designs and attack patterns.

5.4 Wave Spawning System

 Our goal during gameplay was for the player to get the feeling of being swarmed by an

endless wave of enemies as they progress through the temple. To accomplish this goal, the team

put a great deal of forethought into the design of our wave system, which is structured as

follows.

 First, each location around the map corresponds to individual information regarding the

spawning patterns of enemies. Within a location, there can be any number of enemy waves. A

wave can be defined as a grouping of enemies that spawn in succession without the player being

given a break. During each wave, any number of enemies can be spawned from any of the four

gates around the map based on the amount of time that has passed since the wave began. If the

player eliminates all enemies on the map before the next group of enemies spawns during that

wave, that group is spawned immediately. Once all enemies are defeated within a wave, the

Shotoku’s Defense: Physics Based Combat Using Motion Controls in Virtual Reality 52

player is provided with a short break before the next wave begins. Upon completion of all of the

waves in a location, the player can take as much time as they need before teleporting to the next

location and beginning another set of waves.

 The wave system was designed in this way to allow for a highly extensible system for

creating groups of enemies to fight at each location. The files that support this system are easy to

update, allowing us to make quick and simple changes whenever there needs to be changes made

to the spawning patterns of enemies.

5.5 Level Design

The goal for the game setting was to have a large arena with multiple locations where the

player can fight. We used the same overall setting throughout the game to create cohesion while

the change in locations allowed for more variety in both gameplay and visuals.

5.5.1 Arena Decorations

While laying out the map, we had to keep in mind that adding decorations such as foliage

would minimize both where enemies can walk as well as where players can use their abilities.

Since player abilities collide with large foliage, the foliage adds a level of difficulty by providing

cover for enemies. However, they must not overly hinder player action or cause dead spots

where the player has no way of attacking an enemy as this breaks the flow of the game. The

decorations also take into account the player’s wall ability. Certain walkways are narrow enough

for the player to wall off temporarily, while other walkways are too wide to block entirely. In the

latter case, walls are more useful for blocking projectiles than inhibiting enemy movement.

5.5.2 Tutorial

 Due to the variety of abilities available to the player, we found it necessary to introduce

each ability through a tutorial. At the beginning of the tutorial, the player starts with active

Ability Arcs and a floating star that says, “Click me,” teaching the user how to interact with

world object interactives throughout the game. Next, the player gains abilities one at a time in the

following order: rock, spike, quicksand, and finally walls. For each ability, there are a series of

videos showing basic in-game footage of how to use the ability as well as instructional controller

images showing the user which button to press to perform the action. Each ability tutorial

Shotoku’s Defense: Physics Based Combat Using Motion Controls in Virtual Reality 53

contains a section for power-ups as well, temporarily enabling the power-up for practice (Figure

51)

 After all of the actions for a given ability have been taught to the player, they are

presented with the options to do target practice, show the tutorial videos again, or start a wave to

fight a single heavy enemy and practice their skills in real combat. At any point during the wave,

the player can return to the tutorial area to review the instructions and restart the wave they are

ready. Once the tutorial is complete, they are presented with another star that prompts the user to

teleport, thus starting the game.

5.5.3 Locations

The philosophy for the final arena was to create a sense of progression by starting the

player at the front the arena at location one and ending on the other end at location five as seen in

Figure 52.

Each location in Shotoku’s Defense introduces new types of enemies and wave structures.

Additionally, the game difficulty increases linearly as the player progresses from location to

location. Each area was designed to be completed in around two to four minutes per location.

Figure 51. The tutorial area (left) and a single section in the rock tutorial (right)

Shotoku’s Defense: Physics Based Combat Using Motion Controls in Virtual Reality 54

Different locations encourage or discourage different abilities to challenge the player to

strategize on how to use their different abilities.

Players will have to complete all the waves at each location to progress through the game.

Each wave is subdivided into a number of rounds. Enemies spawn at different time intervals in

each level. To promote fast-paced gameplay, if the player does not eliminate enemies in a

reasonable amount of time, a new group of enemies will start spawning to overwhelm the player

further.

The first location is primarily used for teaching the user how to use their abilities through

the tutorial as described above. At this point, only heavy enemies are introduced to the player, as

they are the slowest and easiest to deal with on their own. Additionally, the heavy enemies only

spawn from a single location. Figure 53 shows aerial and perspective views of the first location.

Figure 52. Final arena layout blueprint

Shotoku’s Defense: Physics Based Combat Using Motion Controls in Virtual Reality 55

Figure 53. Location 1’s view from gate

Location two stations the player in a corridor between the arena walls and the South

temple. Enemies will emerge from the South gate and East gate. This location introduces enemy

spawning from multiple gates and attacking from multiple directions. The location starts with

only one enemy spawning from the West gate to create a safe environment before easing the

player in to paying attention to all gates and building the habit of checking surroundings.

The player also encounters the light enemy for the first time at this location. Light

enemies strafe around the player in a circular path while shooting arrows at the player that can be

blocked with walls and rocks. Light enemies combined with this location’s small area aim to

incite the player to use walls to block the enemies’ line of sight, movement, and projectiles.

Figure 54 shows aerial and perspective views of the second location.

Figure 54. Location 2’s view from above (left) and player’s view (right)

Shotoku’s Defense: Physics Based Combat Using Motion Controls in Virtual Reality 56

Location three places the player in an open space at the center of the arena. The player

can be approached from every gate, making blocking enemy paths more difficult and forcing the

player to look around frequently. The medium enemy appears for the first time in location three.

The location’s lack of obstacles combined with the climbing ability of medium enemies make

walls weaker compared to location two to promote varied gameplay. Moreover, the team

intended to use the shooting ability of medium and light enemies to help cover the weakness of

the heavy enemy by distracting the player with projectiles while heavy enemies approach. Figure

55 shows aerial and perspective views of the third location.

Figure 55. Location 3’s view from above (left) and player’s view (right)

Location four is located next to the large pond between the North and West gate. Enemies

spawn from the North, West, and East gates. The pond has a boardwalk on which enemies may

travel to reach the player. The boardwalk limits the player’s space to create walls and disallows

the creation of spikes, walls, and quicksand on top of itself. This encourages the player to be

more accurate with rocks, shield arrows with rocks, and evade attacks to maintain health. Players

may knock enemies off the boardwalk with a rock and then follow up with other abilities. Figure

56 shows aerial and perspective views of the fourth location.

Figure 56. Location 4’side view (left) and player’s view (right)

Shotoku’s Defense: Physics Based Combat Using Motion Controls in Virtual Reality 57

Location five is the final and most difficult level of the game. Enemies here spawn from

the North, West, and East gate. The player is located close to the North gate, allowing enemies to

reach the player faster. Similar to location three, the location is an open area where the player

can be attacked from every direction. Timeouts between rounds are short to overwhelm the

player by quickly spawning enemies one after each other. Figure 57 shows aerial and perspective

views of the fifth location.

Figure 57. Location 5’s above view (left) and player’s view (right)

Shotoku’s Defense: Physics Based Combat Using Motion Controls in Virtual Reality 58

6. Programming
This chapter goes in depth on how the design of our game was ultimately implemented.

The following sections detail the implementation of the player’s abilities, the logic that the

enemies follow, the enemy wave spawning system, and the tutorial at the beginning of the game.

6.1 Abilities

 The player abilities serve as the primary form of interaction that a player has with the

game. Development, creation, and use of the abilities changed as time progressed and as the

desires of our players became clearer. This section details how we implemented the major ability

mechanics, how we changed this over time, and why we made these changes.

6.1.1 Ability Arc

 Before any of the abilities could be worked on, the player needed a way to interact with

the world. The most natural implementation for world interactions in VR is through picking up

and interacting with objects in the same way that you would in the physical world. However, this

method was not applicable to our game since the actions the player would be performing are

done from a distance. This lead us to finding other ways in which the player could accomplish

that intractability in a way that still feels as natural as grabbing an object.

 The next place we looked for a solution was the teleporting functionality that most VR

games use to circumvent the limitations of small play spaces (Unity, 2019). In many cases,

teleporting is done by creating an arc from the player’s hand that lands on the ground showing a

place where they are eligible to teleport to. This provides the functionality for interacting with

the world from a distance that we were looking for, thus causing us to use similar techniques to

activate our abilities.

 The ability arc that we use in game is heavily derived from SteamVR’s implementation

of the teleportation arc. While the arc is active, it draws a dotted, curved line from the player’s

hand down to the ground, ending in a ring that turns green when valid and red when invalid.

When the arc hits an object, a series of conditions are checked to assure that the object can be

interacted with prompting the change in validity. From here, our implementation begins to differ

with that of the teleportation arc. We started by changing the conditions to be that the object the

arc hit was marked to be a valid ability usage area. This condition prevents the player from using

Shotoku’s Defense: Physics Based Combat Using Motion Controls in Virtual Reality 59

abilities where they should not be able to, such as on trees or under the bridge. At first, this was

the only requirement that needed to be met.

Further into development, we needed to incorporate other ways to interact with the world,

including picking up previously created rocks, destroying walls, and activating UI interactives.

This caused us to expand on the conditions for a valid arc, as well as add a third state for the arc

to show the player that they were interacting with an interactive object. The three states of the

ability arc can be seen in Figure 58. Additionally, we needed extra information that a teleport

feature had no use for, such as getting the end point’s distance from the player, further prompting

expansion of the system which gets utilized by the ability system.

6.1.2 Activating Abilities

 The creation and manipulation of abilities is managed through the PlayerAbility

script. This script is applied to both of the player’s hands to allow them to use each hand

independently. For each update loop of the game, the script checks for input from the user before

performing any actions. If the trigger is pressed, the script attempts to use a new ability. If both

trackpads are pressed, the script attempts to activate or deactivate the wall drawing mode.

Finally, if the grip button is pressed, one of the following may occur: if the player’s ability arc is

touching a wall, they destroy the wall; if the player has an active ability, they cancel it; if the

player is pressing both grip buttons, they heal.

 On trigger press, the script checks for whether the ability arc is interacting with a UI

interactive or attempting to create an ability. For the former, the ability creation scripts are

skipped and the action dictated by the interactive is followed instead.

 When attempting to create abilities, aside from checking for the movement criteria from

the motion control, the distance of the ability arc to the player is taken into account. Within a

certain range, rocks are the only abilities that can be created to prevent the player from entering

Figure 58. The three states of the ability arc, from left to right: valid, interactive, invalid

Shotoku’s Defense: Physics Based Combat Using Motion Controls in Virtual Reality 60

world objects as stated in previous chapters. This area of effect is marked with a white ring

surrounding the player.

6.1.3 Using Abilities

 Each of the abilities are separated into their own singleton scripts, with spikes and

quicksand sharing a script due to the nature of their similar motion controls, making the abilities

simple to manage and update iteratively. Each of these scripts interact with the

PlayerAbility script in three major ways: creating, updating, and using the ability.

The rock ability can be created in one of two ways: by pulling the trigger while pointing

the ability arc to the ground nearest to you or by picking up a previously existing rock. For newly

created rocks, they either are pulled from a pre-populated list of rock game objects or are newly

instantiated if that list is empty. Rapidly instantiating game objects at runtime can cause

significant lag. By having a pre-populated list of game objects, we can avoid this issue entirely.

The new rock gets attached to the player’s hand through the Steam VR library and updates with

the hand as it moves allowing for minor offsets from its original position before snapping back to

it, thus giving the player the ability to punch close enemies. The location of object attachment to

the hand that we chose is slightly in front of the player’s knuckles. While this may not seem like

the proper position for throwing, the way that location interacts with the pivot point on the

player’s wrists makes the rock fly in a much more natural way while throwing.

Once the rock is created, no regular updates occur until the player chooses to resize it,

where it scales its energy cost and mass for damage calculations based on the size of the rock.

When the rock gets thrown, the velocity gets scaled up to allow the player to throw farther and

harder, and the game begins a five second countdown before the rock gets removed from the

world and returned to the list of rock game objects. While the rock power-up is active, four

additional rocks equal to the original are created with random directional velocities applied to

them, splitting them apart at slightly different angles.

Activating the spike and quicksand abilities create a transparent blue ring showing the

area of effect for those abilities. The size of this area of effect is based on the distance your hand

travels while it is active: the greater the distance, the larger the size, but also the greater the

energy cost. This adds a tradeoff to prevent the player from only using massive spike and

quicksand areas. At the time of the trigger’s release, spikes are created if there was an upward

Shotoku’s Defense: Physics Based Combat Using Motion Controls in Virtual Reality 61

movement in the hand, and quicksand is created with a downward movement. This combination

not only allows the player to use two abilities with one action, it also gives them the opportunity

to change tactics quickly when needed.

The formation of the spikes is based on the size of the ring the player selects and a

predefined minimum size for each spike. In a majority of cases, a recursive function gets called

to generate a list of positions in a hexagonal shape around a given point while checking that the

point is both within the area of the ring and not already marked for the creation of a spike. Given

a ring of a small enough size that is also larger than a single spike, a preset triangle of spikes is

created instead. In both cases, any additional, unused space in the ring is used to resize the spikes

to fill the entire radius. This not only adds visual interest to a more powerful spike attack, it also

increases the power of the attack by increasing the number of spikes hitting an enemy at once.

While the spike power-up is active, these algorithms are replaced by a series of co-

routines that create spikes in a line. These lines adjust to the height of the ground and stop

creating spikes when one of a few conditions are met: the line collides with an object, the

number of spikes in the chain exceeds the maximum amount, or if the spike chain cannot locate

the position of the ground. In all cases, the spikes are taken from a list of pre-populated game

objects the same way that rocks are, further minimizing performance issues. The new spike

begins by moving directly beneath the ground, and it then moves toward a position two meters

above it at a speed based on your hand’s movement speed. Two seconds after reaching its final

position, the spike disappears and returns to the list of spike game objects. This makes spikes

short lived, heavy hitting attacks that should be used sparingly due to their high-energy cost.

Quicksand starts under the ground on creation as well but takes a fixed amount of time to

rise allowing its particle effect to play properly and look more natural. At any point during its

lifetime, objects that collide with the quicksand get their velocity drastically reduced. When

enemies leave the quicksand area, their speed is reset to what it was before entering the

quicksand, resulting in a smooth transition out. While the earthquake power-up is enabled,

enemies caught within the quicksand are immediately sent into a ragdoll state, while all enemies

in a preset area around the quicksand get their movement speed reduced. For both normal

quicksand and the earthquake, the slowing effect is applied to enemies in the area for up to thirty

seconds before the quicksand is destroyed. This prevents the player from covering the entire

arena in quicksand rendering every enemy immobile.

Shotoku’s Defense: Physics Based Combat Using Motion Controls in Virtual Reality 62

Unlike the other three abilities, the wall is equipped with two sets of create, update, and

use functions: one for the drawing of the wall and one for the physical wall. The player first

enters the wall drawing mode by pressing both trackpads simultaneously. This causes a

transparent wall to be created that has its center position as the midpoint of the player’s ability

arcs and a height correction to assure it begins on the ground. The wall also follows the rotation

of the ability arcs, allowing the user to customize the position, size, and orientation of the wall.

Pressing the triggers prompts the set of actions for the physical wall to begin, starting

with the creation function, which removes the outline of the wall and replaces it with a solid

version below the ground. During the update of the wall, the height is increased proportionally

with the height of the player’s hands, reaching maximum height after raising their hands by one

meter. Once pulled out of the ground, the player cannot return it to the ground as their energy

was already used to perform the action. Additionally, any enemies that interact with it

immediately begin to ragdoll. The wall is a static object that enemies will avoid unless the wall

power-up is enabled. During this time, the wall will move in the direction of the player’s hands

at the time of release, ultimately stopping on collision with an object.

The wall in both cases lasts for 30 seconds before being automatically destroyed,

preventing the player from permanently blocking enemies. The player can also press either grip

button while the ability arc is pointing at the wall to destroy it manually. This was a highly

requested action from our first round of playtesting.

For the spike, quicksand, and wall outline areas that are shown to the user during the

creation state of the ability, the color of the rings dynamically changes, showing updates to the

type of ability being used and the validity of that ability’s area for usage. By default, the spike

outline is shown in green, the quicksand outline is shown in yellow, and the wall outline is

shown in blue. At any point, if the ability usage area collides with illegal items, the area will turn

red. Some of these invalid areas include trees, the temple, tōrō, and the arena walls. Additionally,

the ability area will turn red when overlapping the white ring that surrounds the player,

disallowing the user from resizing abilities to within the play area.

6.1.4 Controlling Power-ups

 The player entity in our game contains a PowerupController script that handles all

activation and deactivation of power-ups. In any script of our program, the

Shotoku’s Defense: Physics Based Combat Using Motion Controls in Virtual Reality 63

PowerupController can be called to increment a counter for each power-up by any amount.

As the counter increases, a bar on the player’s right hand that represents each power-up increases

to fill a representative image for the ability. Once that value surpasses a preset threshold, the

power-up activates for a given amount of time and the power-up image emanates a cyan color.

The power-up is then handled by a coroutine that decreases the fill of the bar over time, causing

it to flash when it is nearly drained, and ultimately resetting the counter and bar once time

expires. With its current implementation, the rock and spike counters increase based on damage

while the quicksand and wall counters increase based on energy usage.

6.2 Enemy Implementation

The enemy’s main abilities consist of movement, melee, climb, strafe, and shoot. Some

of the technical challenges with animation include shooting while strafing and ragdolling.

Moreover, this section describes the general implementation of the finite state machines.

6.2.1 Movement

To implement movement for enemies, the team decided to use Unity’s built-in navigation

system, the NavMesh Surface Component, due to its ease of implementation and extensive

documentation. According to Unity’s documentation

website, a NavMesh describes the walkable surfaces of

the world, allowing an agent to path from one location

to another. This component is built automatically based

on the level geometry (Unity, 2019). An important

feature of the NavMesh component is the ability to

assign different weights or movement costs to areas on

the map. Through the weighting of areas, the team was

able to encourage enemies to walk in particular ways,

such as across the bridge at location four (Figure 59),

on top of building platforms, and around pond areas.

In addition to area costs, foliage serves as a means to define enemy paths. Since obstacles

dictate enemy movement, larger foliage such as trees and bushes are strategically placed in a way

that creates interesting walking behaviors as opposed to straight paths.

Figure 59. Location 4 different area
weights

Shotoku’s Defense: Physics Based Combat Using Motion Controls in Virtual Reality 64

Since the game has three different types of enemies with different sizes and movement

patterns, the team implemented three different NavMesh Surfaces (Figure 60). Each NavMesh

Surface needs a specific NavMesh Agent to traverse it. Therefore, we also designed one

NavMesh Agent per enemy type.

Figure 60. Unity editor’s NavMesh Surface component

The NavMesh Agent is a built-in component that allows enemies to reach their

destination through the NavMesh while avoiding obstacles and other enemies in their path. This

agent component allowed the team to create varied enemy types easily by modifying parameters

such as movement speed, and player avoidance radius (Figure 61). The paths agents can follow

on the NavMesh can be different by setting different parameters on each agent.

Figure 61. Unity editor’s NavMesh Agent component

Shotoku’s Defense: Physics Based Combat Using Motion Controls in Virtual Reality 65

Unity also contains a NavMesh Obstacle component that describes objects that the

NavMesh Agents should avoid while navigating the world. This component allowed the enemies

to avoid obstacles in the map such as walls, tōrō, and stationary enemies in melee state.

6.2.2 Finite State Machines

 Artificial intelligence for games can be handled with a variety of solutions, but for the

simple behaviors of our three classes of enemies, we decided to use a finite state machine

implementation. This way, we could create behaviors that change and respond to stimuli by

changing states that could be written in a modular fashion. Our general structure for each enemy

machine contains four methods:

● Action(): This runs every frame and performs the specified action described by the

state (Run, Strafe, Melee, etc.)

● Transition(): This runs immediately after Action and checks if the machine can

transition to another state

● Enter()/Exit(): These methods are called immediately after switching into/out of

the given state to run setup functions for the state

Every enemy prefab contains a derived class of the EnemyProperties class, which

builds a finite state machine with the states and properties necessary to define the behaviors of

the enemies. For instance, the light and medium enemies both have a Strafe state that gets

constructed on creation, but the LightEnemyProperties class defines its strafe speed as 1.6

meters per second (m/s), while the MediumEnemyProperties class define its strafe speed as

2.5 m/s. This method reuses code for common states such as strafe, melee, and ragdoll while still

permitting us to tweak the properties for the enemies from the single classes that define each.

Since each state contains a reference to the “Properties” class of its enemy, it can access

functions shared by all enemies, which are defined in the parent EnemyProperties class.

Some of these include a function that rotates the enemy to face the player when in melee or strafe

state and another function to calculate square distance (a common helper function used to

determine distance).

Shotoku’s Defense: Physics Based Combat Using Motion Controls in Virtual Reality 66

6.2.3 Melee

 The melee combat abilities of the medium and heavy enemies required four special states

in their state machines: Advance, Retreat, Melee, and Swing. The enemies enter Advance and

Retreat states if the enemy is too far or too close to the player, respectively. We included this

functionality because the player is able to maneuver their avatar in the game world by moving

their body in real life. Having enemies keep a specific distance from the player specified by us

ensures that their attack animations are always at the right distance to hit players. The enemy

performs advancing and retreating by setting pathfinding destinations at the player’s location or

directly away from the player so that they can still maneuver on the terrain in these states.

 When in the correct distance margin for a melee attack, the team needed a way to allow

more enemies to approach and attempt to melee attack. The NavMesh Agent prevents enemies

from passing through each other, but it does not force other NavMesh Agents to find a path

around each other. This caused groups of enemies to become stuck in front of the player when

those in the back could not find a path around those in front. Our solution to this issue was to

have enemies disable their NavMesh Agents when attacking with melee weapons and have them

put up a NavMesh Obstacle that carves a hole in the NavMesh, ensuring that other enemies path

around them (Figure 62). This way, enemies intelligently see one enemy take up a position to

fight the player and then path around that enemy to find an opening on a different side of the

player.

Shotoku’s Defense: Physics Based Combat Using Motion Controls in Virtual Reality 67

When in the Melee state, enemies attack at a regular interval, causing them to enter the

Swing state. The enemy then plays an attack animation, and if any of their melee weapons

collide with the player during this animation, the player takes damage. We encountered an issue

with the player registering multiple hits if the enemy’s weapon enters and exits the player’s body

multiple times in one swing. During testing, both our team and our testers found that this felt

unpredictable and unfair. To solve this, we made each weapon only register one collision per

attack animation. This meant that the heavy enemy, wielding two weapons, still has the chance to

hit twice if the player is not careful. Therefore, this fix solves the issue of receiving melee

damage while still maintaining the heavy enemy as a powerful melee fighter.

Figure 62. Enemies remove NavMesh area when attacking
(top) for others to path around (bottom)

Shotoku’s Defense: Physics Based Combat Using Motion Controls in Virtual Reality 68

6.2.4 Climbing

To implement the climbing ability for the medium enemy, the team decided to use the

NavMesh Link component. This built-in Unity component allows a NavMesh Agent to traverse

between two different NavMeshes. Our plan was to

create a wall, then re-bake the NavMesh to include the

top of the wall. Baking the NavMesh means recalculating

the walkable paths for the enemies. Afterward, we would

instantiate the NavMesh Links to connect the NavMesh

on top of the wall and the floor (Figure 63). This method

prevents the team from having to manually make the

agent jump or climb using physics.

While implementing this method, the team

encountered two challenges. First, when the player

finishes instantiating a wall, the wall would re-bake the

whole NavMesh at runtime causing efficiency issues.

Second, NavMesh Links are usually baked before run

time; therefore, we had to figure out how to instantiate

the links on runtime at the correct coordinates from the

wall. Furthermore, wall height needed to be calculated since it varies depending on arena height.

To address these problems, we first made the three enemy NavMesh surfaces ignore

walls and then created a separate NavMesh Surface that only bakes on top of walls.

Recalculating only this NavMesh at runtime is fast and does not slow down the program. The

instantiated wall also has a NavMesh Obstacle component to indicate the enemies to move

around the wall without the need to re-bake the other three NavMesh surfaces for the heavy,

medium, and light enemies. Second, to gather the coordinates to instantiate the NavMesh Links,

we used the wall’s transform coordinates and raycasting. The wall coordinates, in addition to an

offset, allowed us to get a position on the front, back, and top of the walls in which the links will

start and end. By raycasting a ray downwards from the top of the wall, the link will know what

the height of the wall is at any position in the arena.

Fortunately, NavMesh Agents have a method isOnOffMeshLink() which tells the

program if an agent is traversing the link which facilitated the implementation of climbing

Figure 63. NavMesh Link
connecting the top of the wall

to the floor

Shotoku’s Defense: Physics Based Combat Using Motion Controls in Virtual Reality 69

animations. One of the challenges the team faced was prohibiting the agent from climbing

through NavMesh Links in quick succession. Climbing right away allowed enemies to move

back and forth rapidly, which made the enemies appear to glitch across the wall. To solve this

issue, we implemented a climbing state and an above wall state in the finite state machine. These

two states keep track of how many times the agent has traversed a NavMesh link. Once the agent

traverses two links, the agent is not allowed to use the links until two seconds later. The team

also implemented a timer on the top of the wall that prevents the agent from moving while

animations complete.

6.2.5 Strafing and shooting

Light and medium enemies strafe and shoot around the player to be harder targets to hit.

The team decided to use the NavMesh agent component to facilitate their movement. A

NavMesh agent can only take one destination at a time, so our challenge was to help the agent

move in a circular manner. We decided to get the points of a circle around the player using the

player’s location as the center and a radius that we could determine programmatically. When the

enemy reaches strafe distance, the enemy will calculate the points of a circle around the player

and move towards the closest point. Once a point location is reached, the enemy recalculates a

new set of circle points with a new reduced radius. In this way, the enemy can close their

distance between the player while still moving in a circular manner. We made this radius as a

public variable in our program for easy access through the Unity editor. Light enemies have a

radius reduction of zero, meaning they always stay at maximum strafe distance. On the other

hand, when spawned each medium enemy has a different radius reduction to make them harder

to hit.

Light and medium enemies are capable of shooting arrows when at a distance. These

enemies use a raycast that shoots a ray towards the player. If the ray registers a hit with the

player collider, then the enemy is permitted to shoot. On the contrary, if the enemy’s ray is

blocked with walls or obstacles, they will not shoot the player.

To make projectiles easier to block and evade, arrows move in an arc motion. Arrows

were designed to move slowly enough so that the player could react to the arrow. Using

projectile motion formulas, the program calculates the necessary velocity in the y-axis of the

Shotoku’s Defense: Physics Based Combat Using Motion Controls in Virtual Reality 70

arrow to move at a given velocity in the x-axis. A white trail that follows behind the arrow was

also created, making the arrow significantly easier for the player to spot.

The animations in this state proved to be particularly troublesome. The enemy is always

facing the player when strafing and shooting, yet their behavior allows them to move in any

direction. To solve this, the team created a two-dimensional blend of strafe animations in four

cardinal directions, and then synchronized the feet up to the ground by making the playback rate

of the animation proportional to the speed of the enemy itself. The enemies then needed to be

able to shoot at the same time as this animation, necessitating an additional layer in the

animation controllers. We assigned the light and medium enemies a layer that only blends into

the upper body of their skeletons and, when they begin to fire an arrow, plays only the shooting

animation. Finally, we noticed that this animation does not affect their hips, making them rotate

slightly to the side of where they are trying to shoot. This is something we fixed by adding a

simple offset to their rotation function as necessary.

6.2.6 Ragdoll, Get-Up Animations, and Death Particles

To give the player a sense of satisfaction, the enemy will ragdoll when hit with enough

force. In order to implement ragdolling, the team first had to understand that ragdolling is not an

animation and thus is not controlled by Unity’s animation controller. Ragdolling is to leave the

enemy’s body fall to Unity’s physics system without an animation. To follow Unity’s physics

system, each limb of the enemy has a rigid body and a capsule collider. Afterwards, our

ragdollController sets each rigid body in the enemy to be kinematic, meaning they do not

follow physics for movement and instead follow the animator controller. Once enemies are hit,

the ragdollController disables the animator and then sets each limb to be not kinematic.

When enemies are ready to stop ragdolling, enemies will either die if their health reaches

zero or enter the getUpState. When the enemy dies, the program first takes a snapshot of the

enemy mesh and saves it to a variable. Subsequently, this mesh’s transform, rotation, and shape

are used to instantiate the death particles. These death particles mimic how the enemy looked

when they were ragdolling, and then they disappear into the air. If the enemy does not die, the

animator is reactivated and all the limbs are made kinematic again. The position of the hips is

then checked to determine if the enemy should do a get up animation from the back or the front.

Shotoku’s Defense: Physics Based Combat Using Motion Controls in Virtual Reality 71

Once the animation is done, the enemy translates from the getUpState to the enemy’s

respective resetState.

6.3 Wave System

The wave system in our game depends on the game controller, enemy producer, and a

series of queues for the locations. The team created an assortment of classes to organize the

required information for each location.

First, time-based spawn information such as the types of enemies to spawn, quantity of

each enemy, and location for spawning are organized together in a class called SpawnInfo. All

the SpawnInfo are located in five different JSON files, each file representing a location of the

arena. The JSON files for each location can be found in Appendix B. Each SpawnInfo is then

stored in a Wave class which consists of a dictionary data structure. This dictionary uses a float

representing the time for spawning as its key and a SpawnInfo as its value. The use of a

dictionary allowed for quick retrieval of specific SpawnInfo based on time, as opposed to

iterating through a list.

Next is our class LocationWaves which contains a queue of Wave. This queue

represents the multiple waves of enemies at one location. Finally, our gameController script

stores a queue of LocationWaves, each one representing a different location in the game.

The main logic loop of the game is handled by our game controller script. Upon

launching the game, the queue of LocationWaves is initialized, then the first location and the

first wave within that location are de-queued, and the wave timer is set to zero. The wave timer

gets updated every frame, followed by a check to see if there is a wave available in the queue at

that time. If there is an available wave, the program checks if there is a SpawnInfo at the

current time. If a SpawnInfo matches the current time, the enemy producer spawns the

corresponding new set of enemies. However, if there is no SpawnInfo at the current time, the

loop restarts and updates the time.

The game controller also contains the function OnDeathEnemyClear, which is called

every time an enemy is destroyed. If all enemies have been eliminated, the next SpawnInfo is

spawned early. If there are no more SpawnInfo, this means the wave is finished, resulting in

the start of a new wave in the current location. If there are no more waves left, the location is

Shotoku’s Defense: Physics Based Combat Using Motion Controls in Virtual Reality 72

completed and the player is prompted to teleport to a new location. If all locations are completed,

the player has won the game, and they are provided with an option to return to the main menu.

 The game controller also has a boolean variable called pauseWaveSystem. This

variable cancels spawning from the update function. TogglePauseWaveSystem is a method

that sets the value of pauseWaveSystem to the opposite of its current boolean value. This

function is called inside an Invoke method with a timer to give the player a small break before

starting each wave.

In addition to the game controller, there is an enemy producer script that handles all the

enemy spawning with the help of a queue of EnemyInfo. EnemyInfo is a struct that contains

a reference to the type of enemy to spawn and its spawn location. This queue is in charge of

keeping track of enemies that could not be spawned in the game due to the scene already having

the maximum number of enemies allowed.

6.4 Tutorial

The tutorial interweaves itself within the first location’s wave system and is controlled by

a singleton script called the TutorialController. At the beginning of each tutorial section,

the TutorialController sets the wave system to be paused. This allows the player to view

the tutorial as many times as they need before starting the real wave. Additionally, the player has

a “Return to Tutorial” button, which resets the wave, returns to the previously opened tutorial,

and pauses the wave system.

Our original design used buttons and a laser pointer to click through the tutorial.

However, this was not a good way to learn for the user as found in our playtesting sessions.

Therefore, the tutorial now appears the same as a normal UI menu but utilizes interactive world

objects, thus allowing the player to keep their ability arc active and continue using their abilities.

The activation of these interactive world objects begins within the PlayerAbility script. If

this script detects that it is hovering over a UI object, control is transferred from the

PlayerAbility script to another script that initiates the defined action.

 The tutorial starts with only the rock ability active, preventing any of the other abilities

from being created. As the player completes the tutorial waves, they are introduced to each

ability one at a time. Once all abilities have been learned, the player moves to location two to

Shotoku’s Defense: Physics Based Combat Using Motion Controls in Virtual Reality 73

begin the real waves. The activation and deactivation of abilities is handled through the

PlayerAbility script as well. This script contains a static variable for each ability that

indicates the activation status of that ability, assuring that each instance of the

PlayerAbility script follow the same rules.

During each tutorial section, there is also a portion that teaches about each ability's

power-up. At this time, the TutorialController manually activates the power-up

temporarily while also changing the color of the power-up icon to show it as enabled.

Shotoku’s Defense: Physics Based Combat Using Motion Controls in Virtual Reality 74

7. Sound
 We began work on audio elements and asset creation during the final weeks of

development and continued implementing it right up until the end of our work on the game. This

chapter addresses our methods for developing and implementing sounds. It goes into detail on a

few example sound effects and examines challenges we faced with unique cases and differences

in VR.

7.1 Audio Design

Our main sound design goal was to emphasize the physical weight of our game objects

and reflect real life actions in the game. This served to enhance the feeling of power that we

hoped to achieve when designing the rock ability and motion control systems. The best solution

to make the player feel powerful while using rock abilities was to create rumbles and crashes that

emulate real-world stone. This meant that abstract sound cues, which have no simple real world

sound that we could mimic, such as UI interaction and power-up timers, needed a realistic aspect

to it as well in order to not sound out of place. We decided on using samples from Japanese

instruments like Ōdaiko—a big drum with wooden beaters (Figure 64)—and Hyōshigi—wooden

clappers like claves (Figure 65)—to reinforce the Japanese style of the game world.

 Figure 64. Man playing Ōdaiko drum (Prasanth,
2005)

Figure 65. Hyōshigi (Miya, 2005)

Shotoku’s Defense: Physics Based Combat Using Motion Controls in Virtual Reality 75

7.2 Sound Asset Creation

 Every sound in our game was found for free online, most often from freesound.org, then

modified or tweaked in some way in our audio editor, Reaper. Our workflow for a single sound

effect usually included discovering one or more audio files online that approximated a sound we

were trying to create. For example, when the player pulls a wall up from the ground, the sound

that plays contains three layered sounds originating from users on freesound.org. These tracks

were modified with EQ — the process of changing the balance of different frequency

components in an audio signal (Hahn, 2019) — to make each occupy different frequency ranges

in the resulting waveform. This assures that each track is distinct and that the result is not busy-

sounding.

First, a rumbling “earthquake” sound effect gives the wall a sense of weight and size as it

slides, matching the massive stone that the player is controlling. On top of this are the sounds of

sand settling in the highest register and pebbles falling in mid- and high-range frequencies. These

effects mimic the fluid motion of the rock particles that the player sees emerging from the base

as it breaks out of the earth. Finally, we made the tracks into a loop so that we can play it

indefinitely (Figure 66).

Figure 66. Creation of the wall raise loop sound in Reaper

Shotoku’s Defense: Physics Based Combat Using Motion Controls in Virtual Reality 76

Aside from the looping aspect, this process was repeated for nearly every sound in the

game, then exported at 44.1kHz and 16-bit depth. We exported sounds that would exist in 3D

space in mono so that Unity’s audio engine could perform audio localization calculations itself.

Conversely, we exported UI sounds, background music, and other sounds that should not exist in

the world space in stereo to be fed directly to the player’s ears without additional processing by

the engine.

7.3 Ambience and Music

 Virtual reality games have the unique property of requiring players to rotate their

physical head and body in the real world. Games that do not use VR typically implement

ambient soundscapes created in stereo and played constantly in the background as the game runs.

Background sounds like music are non-diegetic—they do not come from a physical source in the

game world—so this method is acceptable in VR as well. However, this does not work for

diegetic ambient loops like crickets and cicadas in the grass, because they should realistically be

emanating from a real 3-dimensional point in the game world (ustwo Games, 2015).

Our solution to this was to use four audio

sources that constantly follow the player’s head

while remaining oriented in the same cardinal

directions in the world (Figure 67). Each plays a

different ambient soundscape in mono, and the

engine makes them sound like they are originating

from real locations within the world.

 The soundscapes themselves are composed

of layered sounds of various wildlife that we have

all heard on summer nights during our time spent in

Japan. Surrounding the player are the sounds of

crickets and the cawing of crows. The sound of min-

min-zemi, a species of cicada whose sound is iconic of summertime in Japan, stand out

particularly well in the soundscape.

Figure 67. Four audio sources
surrounding the player

Shotoku’s Defense: Physics Based Combat Using Motion Controls in Virtual Reality 77

 Finally, our music, being non-diegetic, is played directly in the player’s headphones with

no directional audio. It was selected purely based on its style and instrumentation, which sound

undoubtedly Japanese, in line with our visual style.

7.4 Audio Implementation in Game

 The process of how audio was implemented into the game itself had changed over the

course of its development. Initially, we found it simplest to use one audio source per object that

makes sound. Then, the scripts operating within this object could call for any one shot audio clip

to play from the audio source. We later discovered that this method had multiple limitations.

When playing a one shot from an audio source, the sound uses the settings from the audio source

but cannot be controlled in the same way as one playing with the Play function. It can neither

change its pitch and volume nor play and stop playing programmatically. This is important,

especially for sounds with effects like the pitching up and down of rocks of different sizes.

7.4.1 Audio Sources

 Our solution to this going forward was to give each audio clip we had its own source

prefab. In other words, if a spike has four sounds it needs to play, we give the object four audio

sources that can each be controlled individually to affect the sound that they are playing. This

proved to be more clean and modular. With each sound as its own prefab, the volume and pitch

of this sound for the whole project could be adjusted in one place, while individual instances can

still have total control over starting, stopping, pausing, pitch-shifting, and more in the code,

which the one shot audio clips simply could not (Figure 68). This allowed us to master every

sound together in the editor using the audio source options in each prefab.

Shotoku’s Defense: Physics Based Combat Using Motion Controls in Virtual Reality 78

7.4.2 Enemy Spawn Audio Cues

 We knew ahead of time that we would need a sound effect of some sort to play when

enemies spawn so the player can have their attention directed towards them without looking.

How this should be done became a topic of discussion for the whole team. We knew we wanted

the sound of drums to reverberate from the enemies’ location, as this would give the impression

of an intimidating army. However, enemies can spawn rapidly, slowly, continuously, and with

big breaks in between, depending on what wave the player is fighting. This meant that our initial

plan of playing one sound from the gates at the beginning of the wave would not be enough.

After recording two bars of drumming on Ōdaiko, we split it into smaller chunks to

control the duration of the track. This created eight one-beat-long clips we have called

Figure 68. One audio source per object (left) vs. one audio source per sound (right)

Shotoku’s Defense: Physics Based Combat Using Motion Controls in Virtual Reality 79

drumlings. With these tracks, we were able to create a script that plays a given number of

drumlings in a random sequence (Figure 69). This way, when an enemy spawns, we can play a

drum cue for a very specific duration that is created on-the-fly to sound different every time,

without one cue running over or interrupting another.

 Figure 69. Component that sets drumlings to use when spawning waves

Shotoku’s Defense: Physics Based Combat Using Motion Controls in Virtual Reality 80

8. Playtesting
 Across our 12 weeks in Japan, we performed three separate playtesting sessions: pre-

alpha, alpha, and beta. When performing playtesting, we had the opportunity to test both in our

hosting lab as well as in a dedicated room for VR usage. Both places provided ample space for

the player to move around safely, and the room we chose during each playtest was strictly based

on whichever was unoccupied for our allotted time slot.

Our goal was to iteratively receive feedback from potential players of our game to

determine what they were looking for and align those ideas with our own vision for the game.

For each session, we took notes as the tester played the game, and we asked the tester to

complete an anonymous survey following the session to gather data for later analysis. This

section details the purpose of each playtesting session and the information we gleaned from

them. Our IRB approved screening questions and surveys can be seen in Appendix C and D,

respectively, while the list of changes from each session can be seen in Appendix E.

8.1 Pre-Alpha

 Our testing for pre-alpha primarily focused on the abilities that the player would be using

throughout the game to fight off enemies. These abilities were the basic rock, spike, quicksand,

and wall abilities, not including power-ups as they had not been implemented at the time. With

the motion controls being the mechanic that the player uses to interact with the world, it was

important that they were made to be enjoyable and feel comfortable to perform. Therefore, one

of our goals for this playtest was to get the player’s feedback on how it felt to use the motion

controls for each of the abilities. Another goal was to gauge how far away the enemies could be

from the player to make them difficult to hit, but not impossible.

8.1.1 Testing Setup

 We acquired five people to participate in this round of testing. This group consisted of

students that attend Ritsumeikan University as well as members of another MQP team. Two of

the participants had never used VR equipment before while the other three were proficient with

it, providing our testing with a variety of the types of users that might play our game.

We created a scene in Unity specifically for this playtest that consisted of a large

platform with four prototype enemies at varying distances that we used as targets. One enemy

Shotoku’s Defense: Physics Based Combat Using Motion Controls in Virtual Reality 81

was within punching distance, one was just out of punching distance, one was at the edge of the

range in which players could create abilities, and the last was far past the edge for creating

abilities. Before playing, we provided verbal instruction to the player along with a reference to

the controller to teach them how to use the abilities before helping them put on the headset and

take the controllers.

 For each tester, we first let them experiment with the different abilities without any

instruction to see what they would figure out on their own and how they would interpret the

different abilities. We then instructed them to use any abilities that they had not used on their

own after a few minutes had passed. Finally, we told the tester to throw rocks of varying sizes at

each of the targets, starting with the closest target and ending with the farthest to see how

difficult it was for players to hit enemies as they got farther away. The layout of the playtest map

can be seen in figure 70.

8.1.2 Results and Conclusions

 For most of the abilities, each of the testers said that the motion controls were

comfortable and made sense for the action being performed. The major piece of feedback we

received regarding the controls concerned the creation of walls. Testers consistently reported that

there were too many inputs occurring simultaneously: both trackpads and triggers had to be held

to create the wall while also performing the motion control. The solution was to toggle the wall

drawing mode by clicking the trackpads as opposed to holding them, reducing the number of

inputs at any given time.

Figure 70. Original map used for playtesting where player is placed next to Target one

Shotoku’s Defense: Physics Based Combat Using Motion Controls in Virtual Reality 82

 Regarding hitting distant targets, players were satisfied with how it felt to throw the

rocks. Some reported that it felt as if they were throwing an object in real life, while others who

had used VR before said that the throwing functionality felt more natural than most other games

they have played. This led each tester to have an easier time hitting each of the targets, with most

of them only having difficulty on the final target. This showed us that enemies could be far from

the player while still being able to eliminate them, and we used this information when calculating

the movement paths for the ranged enemies.

 Aside from information gathered about our playtesting goals, we were also able to

acquire additional information about the abilities. One of the most common pieces of feedback

that we received was that the spikes were too fat and short, causing them to feel as if they were

not threatening. This led the player to use the creation of walls in ways that we intended the

spike to be used for. Another important piece of feedback we got came from two different

testers, both saying that they were hoping for some way to destroy walls manually as they could

become obstructive.

8.2 Alpha Testing

 At this point of development, most of the basic functionality was in the game: the

abilities and power-ups were complete with the changes made from pre-alpha, the basic arena

was set up with proper lighting and simple color on objects, and the 3 enemies could spawn and

attack the player in their own ways. Since we had a basic gameplay loop, the focus of this

playtesting session was to get a feel for what players thought about the combat system, both in

regards to the effectiveness of the abilities and the quality of the enemies.

8.2.1 Testing Setup

We acquired eight people to participate in this round of testing. Five of these individuals

participated in the first round of testing while three of the participants were new and had never

used VR equipment before.

The scene we used for this session was the complete map until that point with the five

different locations. Each location had a set of predetermined waves of enemies for the players to

defeat before they could move on to the next area. Rather than verbally explaining how to use the

controls as we had done during the first playtest, we drew basic images depicting the actions the

Shotoku’s Defense: Physics Based Combat Using Motion Controls in Virtual Reality 83

player needed to perform to use their abilities that can be seen in figure 70. The purpose of this

was to prepare for the implementation of our tutorial by using a different method to see what the

player responded more positively towards.

 For each tester, we gave them a minute to

play with their abilities before the waves began

and they had to fight real enemies. After that, they

had up to ten minutes to make it as far as they

could through the map. If the tester had any

questions about using the abilities, we would

address them and help them figure it out, but

otherwise left them on their own during the waves.

Upon completing a location, we instructed them to

click a button in the pause menu to teleport to the

next location.

8.2.2 Results and Conclusions

 Even though we were testing for the combat system, the most valuable takeaways from

this playtest were regarding the necessity of a tutorial and audio. The players struggled to

remember the visuals we had provided them during combat, and it took them a while to fully

grasp how the combat system worked which was something we didn’t think to account for.

Additionally, some of our testers spoke very little English and could not understand our

instructions. This showed us that we needed a comprehensive tutorial for the user to learn their

abilities through that utilized as little text as possible. These findings ultimately resulted in the

tutorial implemented in the final version of our game.

 Even once the player figured out how to use their abilities, they struggled to determine

where enemies were coming from, how many enemies were around them, how full their energy

was, and when they were low on health. This caused progressing through the game to be

extremely difficult for most players, pushing us to put an immediate focus on the audio system in

an attempt to avoid this issue for the next play session.

 Similar to an audio cue for being low on health, players suggested that there be a visual

indication for receiving damage as well. Unless the player was looking at their health bar on their

Figure 71. The images provided to the
player prior to playing the game

Shotoku’s Defense: Physics Based Combat Using Motion Controls in Virtual Reality 84

hand, it was impossible to tell when the player took damage. This meant that the testers were

losing without ever knowing why or from where they were taking damage.

 In terms of gameplay, one of the most consistent responses was that quicksand was not

useful or unenjoyable to use. At the time, no abilities could be activated from inside a pile of

quicksand, which players reported took away from any benefit that the quicksand might be able

to provide. Another major concern by the testers was that the heavy enemy moved too quickly

for the amount of damage they dealt to the player with every attack. If these enemies are to be as

powerful as they are intended to be, the player needs to be given sufficient time to deal with

them.

8.3 Beta Testing

 This final round of testing included every feature that we had planned for the game in

addition to a majority of the changes and bug fixes implemented since the previous playtesting

sessions. We had three major goals for this round of playtesting to assure that our game was in a

completed state. First, the tutorial had to be easy to understand and make it quick for the user to

learn the mechanics of the game so there was no confusion while fighting enemies. Next, enemy

spawning needed to be reduced enough to prevent enemies from overwhelming the player while

still providing a challenge. Finally, the art and sound had to be cohesive and add to the game in a

way that did not detract from the gameplay experience.

8.3.1 Testing Setup

 For this final round of playtesting, we were able to acquire 20 testers, with the eight

participants from alpha testing returning. This time, the playtest occurred across three different

days to allow each of our participants to find a time that worked for them.

The map for this playtest was the same as the one from the previous playtest complete

with all of the decorations, proper lighting, and mesh textures. The five locations remained the

same from the previous test, but the waves were rebalanced to provide a better progression for

the user. This was achieved by introducing each enemy type one at a time, increasing the number

of enemies the player faces in each wave as the game progresses, and having a theme for each

wave with respect to the frequency of each type of enemy that appears. Once the player was

Shotoku’s Defense: Physics Based Combat Using Motion Controls in Virtual Reality 85

situated, the game started with the tutorial. The team answered any questions the tester had but

provided as little instruction as possible to see if the game was self-explanatory.

 Each tester received thirty minutes to play the game. This time included making it

through the tutorial and completing as many locations as possible. If the tester took too long on

any given tutorial section, we instructed them to continue through the game so they could see as

many locations as possible.

8.3.2 Results and Conclusions

 The main takeaway that we had from this round of playtesting was that the tutorial was

not intuitive for the players. People had difficulty understanding the level of importance for

motion control, making abilities such as the spikes ineffective. Additionally, the tutorial videos

were not always obvious about the actions the player needed to perform causing a great deal of

confusion for using the abilities. A common piece of feedback we received was that the

controller inputs were not stressed enough. While the in-game video did help the user, the testers

reported that a more in-depth video showing how to use the controller would have greatly

benefitted the learning experience.

Another common criticism we got was that there was not enough text during the tutorial.

Our team created the tutorial with the intention of keeping the word count small to avoid any

translation issues for our non-English speaking players. However, most players expressed that

they would have liked more text to add further clarification the abilities. Our final point of

criticism was that there was too much information given to the user at once. The testers agreed

that splitting up the tutorial to not all occur at once would have helped them to remember the

abilities better as they played.

 In terms of the wave system and enemy spawning, our testers were happy that the tutorial

only included the heavy enemies as their slow speed made them easy to deal with on their own.

For the first time a light enemy spawned in location two, many testers stated that they were

caught off guard and would have liked there to be an explicit way to indicate to the player that a

new type of enemy was spawning. While most testers did not have time to progress further than

location two, those that did reported that the difficulty increases too rapidly. While introducing

the player to new enemy types, the difficulty of those waves should not increase by very much to

give the player time to adapt to the new challenge.

Shotoku’s Defense: Physics Based Combat Using Motion Controls in Virtual Reality 86

 The art and audio from our game received the highest amount of praise. Every tester

stated that they enjoyed the atmosphere and that the art and audio worked together to make them

feel as if they were really in Japan. For how it affected gameplay, most players said that the

decorations did not inhibit their ability to play and added a perfect amount of difficulty.

However, many people wished that there were more sounds and indications for when enemies

were approaching them and from which direction. Additionally, the UI was easy for people to

understand, but most people expressed that they would have liked to have seen their health and

energy bars at all times.

Shotoku’s Defense: Physics Based Combat Using Motion Controls in Virtual Reality 87

9. Post Mortem
 In this chapter, we reflect on the development of our game across 12 weeks in Japan. We

primarily focus on what we did most successfully, what we could have improved on, and what

we would like to add in the future.

9.1 What went right

 Following the completion of the development of our game, our team was very happy with

what we were able to produce. This was a game that we not only had fun playing but enjoyed

creating as well. We were especially happy with the reactions of our testers. According to our

testers, the world felt immersive and consistent, making the player “feel” like they were in Japan.

A tester mentioned that although it was an American team, the game expressed the Japanese

style well. Additionally, several players reported that they would have loved to play the game

again if we had additional time allowing for it.

The team also believed that the game mechanics worked well together from a design

perspective. Abilities felt powerful and rewarding, especially when the player obtains a power

up. Each ability can be used in various ways allowing for creativity on how to approach each

round. For example, rocks can be used as projectiles as well as shields. However, a rock shield

does not allow the player to regenerate energy, so a different player could simply opt to move to

evade projectiles or use cost-effective walls.

The different types of enemies also work well together. For example, heavy enemies are

weak by themselves due to their slow movement. However, combining the heavy enemies with

an enemy with projectiles significantly increases their effectiveness. This creates challenging

gameplay that the player has to adapt to constantly. Moreover, the implementation of the wave

system and queue of enemies makes our game feel fast-paced and exciting.

From a developing perspective, the team made it a priority to have a realistic and

achievable scope for what we could accomplish across 12 weeks. Furthermore, the game’s

design and goals stayed consistent throughout development. For these reasons, the game’s

production went without any severe drawbacks or need to discard completed work. We also

believe that the work we planned to complete was properly distributed amongst the members of

our team. Everyone had tasks to complete throughout the entirety of development that suited the

Shotoku’s Defense: Physics Based Combat Using Motion Controls in Virtual Reality 88

strengths of that person. This led to quick and efficient development for most of the functionality

included in the final game.

 Finally, we excelled at our ability to work together and communicate with each other

effectively. At the beginning of each day, we would all quickly discuss what it was we would

work on throughout the day and periodically provide updates throughout and at the end of the

day. If anyone needed assistance for difficult implementations, we went to each other and

worked together to get past the problems. Following each playtesting session, our team got

together to discuss the quality of the playtest, determine what needed to be fixed as a result of

watching others play our game, and come up with a plan to get us to our next deadline.

9.2 What went wrong

 While there were many places where our team excelled, there were two main areas our

team identified where we could have improved: better prioritizations before playtesting sessions

and better planning for functionality that was saved for later in the development time.

 Prior to each round of playtesting, our team continued development until hours before the

first tester was scheduled. This led us to have an insufficient amount of time for testing the game,

and, in one case, resulted in game-breaking bugs being in the playtesting build that required

hotfixes between testers. If we had the opportunity to change this, we would create our

playtesting build of the game the day prior to playtesting. This would give us plenty of time to

test for and fix any obvious bugs ahead of time, giving our players a better experience.

 The other major area for our team that needed improvement was with the planning for

functionality that was started later into development such as the tutorial and audio

implementations. For both of these areas, we underestimated the amount of time and effort that

would be required to complete and polish them. While the tutorial and audio were functionally

complete, our testers’ main complaints had to do with both the tutorial and audio needing

additional work. Knowing what we do now, we would have started working on the

implementation of these components sooner into development while saving other less important

aspects for closer to the deadline.

9.3 Future Development

While we were able to fulfill all of our goals during our time in Japan, we still have many

other ideas for improving the game that we would like to implement after our project term. Of

Shotoku’s Defense: Physics Based Combat Using Motion Controls in Virtual Reality 89

the existing features, the tutorial needs the most work, as it currently relies too heavily on the

player watching rather than interacting. Our testers most often struggled with how they should

move their arms and hands to make the ideal motions, as the videos could only show the hands

from another person’s point of view. An improved version would use animated objects that exist

in the virtual world to guide the player’s hands in the entire range of motion we want them to

use. For example, the spike input is more effective when the player’s arm swings in a large fast

arc. We would create a translucent Vive controller, placed on a long translucent rail, animating

from bottom to top and forming a translucent spike in front of it. This would quickly and

nonverbally show the player not only how to move but how the attack should appear when

executed correctly.

In addition to revamping the tutorial, we compiled our own hopes and tester suggestions

to guide our future development.

 While these features were never planned or in scope originally, they each could improve

the game in their own way. The score system is a highly requested feature since testers could not

identify a clear goal to the game other than eliminating enemies. Rewards for speed, amount of

damage, types of attacks, etc. would provide a concrete goal and invite repeated improvement. A

story mode or boss fight would also contribute to the game’s storyline and progression. Both

options would add gameplay time and make completing the game more rewarding.

 The current power-up system, while working as intended, appears nebulous to testers and

even to more experienced players. The power-up UI elements are not plainly visible and detract

from gameplay since the player must look at their hands. Collectible power-ups that appear as

rewards for defeating enemies would be simpler for players to understand and could even have

additional functions, such as infinite energy or health. This would remove the need for a UI

element, thus simplifying the power-up system.

 Additionally, many testers had a hard time getting past the tutorial or first location, while

others found the last levels only mildly challenging, so the option to select difficulty would

greatly expand our target audience. To further appeal to all skill levels in our target audience, we

would add an endless mode where the game scales in difficulty endlessly as they progress

through waves until the player dies.

Even with varying experience, all testers agreed that melee abilities and more types of

enemies would make the game more interesting. We particularly want to improve close range

Shotoku’s Defense: Physics Based Combat Using Motion Controls in Virtual Reality 90

combat as all of our current abilities are geared toward preventing enemies from getting close to

the player, so the player is far less powerful against close enemies.

During early planning stages, we also conceptualized a randomly generated arena with

varying terrain and obstacles each game. Obstacle randomization in the future would increase

replay value, since the arena, play locations, and waves are currently fixed.

Finally, we hope to rig and animate the characters ourselves in the future. Auto rigging

programs are usually not as precise as manual work, so our enemy movements and physical

deformations are not ideal in their current state.

Shotoku’s Defense: Physics Based Combat Using Motion Controls in Virtual Reality 91

10. Conclusion
Our team members unanimously enjoyed working on Shotoku’s Defense, as we have

been successful overall in turning our simple vision into something our players have found

entertaining. When we first began this project, no members of the team had worked with Unity,

and some had not even worked on a game project before. Based on our progress, we believe that

implementing all of the changes we proposed could bring this game to a professional level. We

plan to build on what we have learned during the 12 weeks we spent on development to bring the

consistency, polish, and additional features the game needs to create the best possible gameplay

experience.

Shotoku’s Defense: Physics Based Combat Using Motion Controls in Virtual Reality 92

References
Belenko, D. (n.d.). How to Use Complementary Colors in Photography. Retrieved from

https://expertphotography.com/complementary-colors-photography/

Bryant, A. J. (1991). Early Samurai 200-1500 A.D. Oxford: Osprey.

Green, A. (2018, February 19). Sword Spotlight: The Chokutō. Retrieved from
https://www.martialartswords.com/blogs/articles/sword-spotlight-the-chokuto.

Google (2019). Shitennoji. Retrieved from https://goo.gl/maps/GXC2CymeS7R8xguEA

Hahn, M. (2019, February 22). EQ 101: Everything Musicians Need to Know About EQ.
Retrieved from https://blog.landr.com/eq-basics-everything-musicians-need-know-eq/.

Kakidai. (2018, September). File:Chokuto Sword - Suiryu ken.jpg. Retrieved from
https://upload.wikimedia.org/wikipedia/commons/4/49/Chokuto_Sword_-
_Suiryu_ken.jpg

Laryushin, V. (2017, October 20). Middle Ages Mine. Retrieved from https://sketchfab.com/3d-
models/middle-ages-mine-0c74a90dd8674835b2a13a855663d0b3

Mcbride A. (2011, Jun 1). Historical Warrior Illustration Series Part Xll. Retrieved from
https://thelosttreasurechest.wordpress.com/2011/06/01/historical-warrior-illustration-
series-part-xll/#jp-carousel-1637

Minecraft [Computer Software]. (2011). Mojang.

Miya (Photographer). (2005). Hyoshigi01 [Digital Image]. Retrieved from
https://commons.wikimedia.org/wiki/File:Hyoshigi01.jpg.

Movement in VR. (n.d.). Retrieved from https://unity3d.com/es/learn/tutorials/topics/virtual-
reality/movement-vr.

Mueller, J.B (Photographer). (2005, October 12). Pondbridge [Digital Image]. Retrieved from
https://www.flickr.com/photos/johnmueller/52617869

Nickelodeon. (2005). Avatar: The Last Airbender.

Pan, S. X., Gillies, M. (n.d.) Challenges in VR Interaction and User Interfaces in VR [Video
file]. coursera. Retrieved from https://www.coursera.org/lecture/3d-interaction-design-
virtual-reality/introduction-to-graphical-user-interfaces-in-vr-bPoWX.

Pontypants. (2018, August 18 Published). How to Make Low Poly Look Good. Retrieved from
URL https://sundaysundae.co/how-to-make-low-poly-look-good/.

Pontypants. (2019, March 24). Low Poly Character Design. Retrieved from
https://sundaysundae.co/how-to-make-low-poly-characters/.

Shotoku’s Defense: Physics Based Combat Using Motion Controls in Virtual Reality 93

Prasanth (Photographer). (2005, December 5). Odaiko - A Japanese Drum [Digital Image].
Retrieved from http://piccy.blogspot.com/2005/12/odaiko-japanese-drum.html.

Programming in Unity: For programmers new to Unity. (2019). Retrieved from
https://unity3d.com/programming-in-unity.

Rad-Coders. (2017, September 16). Low Poly: Foliage. Retrieved from
https://assetstore.unity.com/packages/3d/vegetation/low-poly-foliage-66638.

Reading, N. (2012, March 19). Moustache…… [Digital Image]. Retrieved from
https://www.flickr.com/photos/nathanreading/6851599794/.

Rich. (2015, August 7). The Unique Weapons of Ancient Japan. Retrieved from
http://www.tofugu.com/japan/ancient-japanese-weapons/.

Ryukyu Kobudo Shimbukan. (n.d.). Tekko/Horseshoe. Retrieved from http://ryukyu-
kobudo.com/tekko/

SnowFiend Studios. (2019, Jan 28). LowPoly Rocks. Retrieved from
https://assetstore.unity.com/packages/3d/environments/lowpoly-rocks-137970

Soramimi (Photographer) (2014, March). Retrieved from
https://commons.wikimedia.org/wiki/File:Kondo_and_Gojunoto_Tower_of_Shitennoji_T
emple_2.JPG

Synty Studios. (n.d.). POLYGON - Samurai Pack. Retrieved from
https://syntystore.com/products/polygon-samurai-pack.

Unity Technologies (n.d.). Navigation System in Unity. Retrieved from
https://docs.unity3d.com/Manual/nav-NavigationSystem.html.

Umehara, T. (1980). 仏教の勝利. Tokyo, Japan: Shogakkan, 291-292.

ustwo Games. (2015, December 22). Designing Sound for Virtual Reality. Retrieved from
https://medium.com/@ustwogames/designing-sound-for-virtual-reality-a37a40e80463.

VIVE Virtual Reality System. (n.d.). Retrieved from https://www.vive.com/us/product/vive-
virtual-reality-system/.

Shotoku’s Defense: Physics Based Combat Using Motion Controls in Virtual Reality 94

Appendix A: Asset lists
Art Category Type Item (Expected) Completion

Date

3D Earth Quicksand Complete 8/19

Rocks

Spikes

Wall

Enemies Light Mononobe Complete 9/5

Medium Mononobe Complete 9/3

Heavy Mononobe Complete 9/5

Weapons Bow and Arrow (Light, Medium) Complete 9/20

Sword (Medium) Complete 9/5

Tekko: Brass knuckle like weapon (Heavy) Complete 9/5

Arena Temple 1 (North, tall) Complete 9/23

Temple 2 (South, wide) Complete 9/23

Entrances x4 Complete 9/24

Tileable straight arena walls Complete 9/23

Tileable corner arena walls Complete 9/23

Area Base with pond cutout Complete 8/20

Gazebo (pond) Complete 9/6

Bell Tower Complete 9/24

Trees Complete 9/24

Foliage Complete 9/22

Boardwalk Complete 9/27

Toro Complete 9/6

Lanterns Complete 10/5

Arena Graybox Complete 8/7

Mountain and tree parallax Completed 9/24

Skybox Completed 9/26

Shotoku’s Defense: Physics Based Combat Using Motion Controls in Virtual Reality 95

Final Arena Complete 10/1

Lighting Complete 10/9

2D Power-up icons Earthquake Complete 8/27

Multiple rocks Complete 8/27

Spike chain Complete 8/27

Wall push Complete 8/27

Particles Sand Complete 9/5

Fire Complete 9/5

Hole Complete 9/5

Misc. Skybox top with stars Complete 9/26

Animation Heavy T pose Complete 9/5

run forward Complete 9/5

walk forward Complete 9/5

idle Complete 9/5

punch 1 Complete 9/5

punch 2 Complete 9/5

getup stomach Complete 9/5

getup back Complete 9/5

Medium T pose Complete 9/5

Run forward Complete 9/5

strafe forward Complete 9/5

strafe back Complete 9/5

strafe right Complete 9/5

strafe left Complete 9/5

idle Complete 9/5

sword swing 1 Complete 9/5

sword swing 2 Complete 9/5

sheath Complete 9/5

unsheath Complete 9/5

Shotoku’s Defense: Physics Based Combat Using Motion Controls in Virtual Reality 96

bow1 Complete 9/5

bow2 Complete 9/5

climb Complete 9/5

jump in place Complete 9/5

getup stomach Complete 9/5

getup back Complete 9/5

Light T pose Complete 9/6

run forward Complete 9/6

strafe forward Complete 9/6

strafe back Complete 9/6

strafe right Complete 9/6

strafe left Complete 9/6

idle Complete 9/6

bow draw & release Complete 9/6

getup stomach Complete 9/6

getup back Complete 9/6

Tech
Category

Type Item
(Expected)
Completion Date

Player

Rock throw
Spawn rock Complete 8/23

Throwable physics object Complete 7/26

Ground cursor
Find world position with hand tracking cursor Complete 7/30

Arc UI Complete 7/30

Spike Spawn spike with velocity based on player's hand Complete 8/23

Quicksand
Motion controls (swipe down) Complete 7/31

Slow enemies Complete 8/26

Wall
Motion controls (pick location, drag out, drag up) Complete 8/23

Launch enemies Complete 8/7

Heal Motion Controls Complete 7/28

Shotoku’s Defense: Physics Based Combat Using Motion Controls in Virtual Reality 97

Health and Energy
Bars

 Complete 7/27

Player Ability
Area

Show a ring around the player to show where you can
use rocks vs everything else

Complete 8/25

Pathfinding

NavMesh
generation

Generate with static props Complete 7/29

Generate dynamically as player creates walls, spikes,
quicksand

Complete 8/14

Climbing /
Jumping

Generate nav links at runtime Complete 8/20

Basic Functionality Done / light enemies are able to
climb walls

Complete 8/26

NavMesh link on corners of wall Complete 9/6

Enemy Heavy

Animation

Walking Complete 8/13

Slashing Complete 9/5

Getup Complete 10/3

Controller Complete 8/14

Attacking
Attack range Complete 8/14

FSM Complete 8/29

Ragdoll Ragdoll Complete 8/9

Medium
Enemy

Animation

Walking Complete 9/2

Shooting Complete 9/5

Melee Complete 9/2

Climbing Complete 9/26

Getup Complete 10/3

Controller Complete 9/2

Attacking

Melee or ranged Complete 9/1

Visibility check Complete 9/2

FSM Complete 9/3

Ragdoll Ragdoll Complete 9/5

Light Enemy Animation

Walking Complete 9/16

Shooting Complete 9/16

Getup Complete 10/3

Shotoku’s Defense: Physics Based Combat Using Motion Controls in Virtual Reality 98

Controller Complete 9/16

FSM Complete 9/6

Shooting Ability Complete 9/6

Ragdoll Ragdoll Complete 9/6

Powerups

Energy Unlimited Energy Complete 8/19

Abilities

Chain Spike Complete 9/20

Burst Rock Complete 8/20

Wall Push Complete 8/23

Earthquake Complete 8/26

Enemy waves
Pre-made

Location 1 Complete 9/25

Location 2 Complete 9/25

Location 3 Complete 9/25

Location 4 Complete 9/25

Location 5 Complete 9/25

Enemy spawners Spawner prefab Complete 7/26

UI

Laser Pointer Laser Pointer Interaction Script? Complete 8/13

Healthbars
Tracking enemy Complete 8/12

Rotate to player Complete 9/17

Pause Menu

Laser Pointer

Complete 8/15
Pause game logic

Instantiation of menu

Button logic

Game over + pause menu logic Complete 8/29

Tutorial
Videos the player can watch to learn how to play the
game

Complete 9/25

Game Over Screen
Script Logic Complete 8/22

Testing Complete 8/29

Particles Abilities

Rock creation (swirl) Complete 9/3

Rock creation (pull sand) Complete 9/3

Rock destruction Complete 9/3

Shotoku’s Defense: Physics Based Combat Using Motion Controls in Virtual Reality 99

Spike creation (rocks) Complete 9/1

Spike creation (moving earth) Complete 9/3

Spike destruction Complete 9/2

Quicksand creation Complete 9/1

Quicksand destruction Complete 9/2

Wall creation (moving earth) Complete 9/1

Wall destruction Complete 9/2

Enemies Death particles Complete 9/5

Ambient
Flames Complete 9/5

Fireflies Complete 9/22

Category Type Item Components Completion Date

Enemy

Light

Bow
Strong Draw Complete 10/9

Strong Release Complete 10/9

Hurt

Small Complete 10/9

Medium Complete 10/9

Large Complete 10/9

Death Death Complete 10/9

Medium

Bow
Weak Draw Complete 10/9

Weak Release Complete 10/9

Footstep
Ground (x5) Complete 10/9

Quicksand (x4) Complete 10/9

Hurt

Small Complete 10/9

Medium Complete 10/9

Large Complete 10/9

Sword Hit (x2) Complete 10/9

Death Death (x2) Complete 10/9

Heavy

Footstep
Ground (x5) Complete 10/9

Quicksand (x4) Complete 10/9

Hurt

Small Complete 10/9

Medium Complete 10/9

Large Complete 10/9

Tekko Hit (x2) Complete 10/9

Death Death Complete 10/9

Arrow Fly Loop Complete 10/3

Shotoku’s Defense: Physics Based Combat Using Motion Controls in Virtual Reality 100

Hit

Player Complete 10/3

Solid (x3) Complete 10/3

Foliage (x3) Complete 10/3

Environment

Wave Cues - Taiko Beat (x8) Complete 9/24

Ambient
Soundscape

North Complete 9/27

West Complete 9/27

South Complete 9/27

East Complete 9/27

Ears Complete 9/23

Tourou Loop Complete 10/2

Player

Abilities

Heal
Loop Complete 10/2

Full Complete 10/2

Effectiveness
Nice Complete 10/9

Excellent Complete 10/9

Rock

Emerge (x3) Complete 10/9

Grow Start Complete 10/9

Grow Loop Complete 10/9

Grow End Complete 10/9

Throw Small Complete 10/9

Throw Medium Complete 10/9

Throw Large Complete 10/9

Hit Solid (x5) Complete 10/9

Hit Foliage (x3) Complete 10/9

Spike

Select Start Complete 10/9

Rise Start Complete 10/9

Rise End Complete 10/9

Quicksand Rise Complete 10/9

Wall

Toggle On Complete 10/9

Toggle Off Complete 10/9

Drag Loop Complete 10/9

Health and Energy

Health Low Complete 9/26

Energy
Usage Loop (Pitches up) Complete 9/28

No Energy Complete 9/28

Powerups

Rock Burst
Trigger Complete 9/28

Rock Split Complete 10/9

Chain Spike Trigger Complete 9/28

Wall Push
Trigger Complete 9/28

Release Complete 10/9

Earthquake Trigger Complete 9/28

Shotoku’s Defense: Physics Based Combat Using Motion Controls in Virtual Reality 101

Quake Complete 10/9

Timer
Loop Complete 9/25

End Complete 9/27

UI Menu / tutorial
Menu

Show Complete 9/22

Hide Complete 9/22

Click Complete 9/22

Misclick Complete 9/22

- Start tutorial wave Complete 9/22

Music Background Instrumental - Complete 9/24

Shotoku’s Defense: Physics Based Combat Using Motion Controls in Virtual Reality 102

Appendix B: Wave Spawns
Location #1

Time Location Light Medium Heavy

0 South 0 0 1

0 South 0 0 1

0 South 0 0 1

0 South 0 0 1

Location #2

Time Location Light Medium Heavy

0 West 1 0 0

30 South 2 0 0

50 West 1 0 1

60 South 1 0 0

Location #3

Time Location Light Medium Heavy

0 East 1 0 0

15 West 0 1 1

30 South 2 0 1

45 West 0 1 0

46 East 1 1 1

Shotoku’s Defense: Physics Based Combat Using Motion Controls in Virtual Reality 103

Location #4

Time Location Light Medium Heavy

0 North 2 0 0

15 West 0 2 0

20 West 0 0 1

25 East 1 1 1

35 North 2 0 1

70 North 0 2 2

80 East 2 0 0

86 West 1 2 2

Location #5

Time Location Light Medium Heavy

0 North 2 0 1

10 East 1 2 1

25 West 2 0 0

30 North 0 2 0

55 North 0 0 2

60 East 1 0 0

65 West 0 1 0

68 West 0 0 1

Shotoku’s Defense: Physics Based Combat Using Motion Controls in Virtual Reality 104

Appendix C: Playtesting Screening Questions
Wellness

● Are you prone to getting motion sick?

● Do you feel dizzy, lightheaded, or nauseous?

● Are you feeling excessively tired?

● Are you feeling sick?

● Have you had excessive coffee or energy drinks today?

● Are you prone to having seizures?

● Have you had migraines, headaches or earaches recently?

● Do you have a history of low blood pressure or fainting?

● Do you have a history of vertigo?

● Are your shoes comfortable?

Do not use the headset when you are: tired, under stress, suffering from cold, flu,

headaches, migraines, or earaches, as this can increase your susceptibility to adverse

symptoms.

Virtual Reality

● Have you used Virtual Reality (VR) equipment before?

● Are you comfortable with VR equipment?

Shotoku’s Defense: Physics Based Combat Using Motion Controls in Virtual Reality 105

Appendix D: Playtesting Surveys

Pre-Alpha

1. How natural did it feel to throw the rocks?

 1 2 3 4

2. How hard was it to hit target 2?

1 2 3 4

3. How hard was it to hit target 3?

1 2 3 4

4. How hard was it to hit target 4?

1 2 3 4

5. How easy was it to use the motion controls to

regrow the rocks in your hand?

1 2 3 4

6. Did the controls for regrowing the rocks make

sense?

Yes

No

It was nothing like throwing a real
object

It felt like I was really throwing
an object

Extremely Difficult Extremely Easy

Extremely Difficult Extremely Easy

Extremely Difficult Extremely Easy

Extremely Difficult Extremely Easy

Shotoku’s Defense: Physics Based Combat Using Motion Controls in Virtual Reality 106

7. If you have any additional feedback or disliked
any of the functionality about the rocks, please
share below.

8. Please check all that you agree with:

 Agree Disagree

The spikes are too tall

The spikes are too short

The spikes are too wide

The spikes are too skinny

9. How easy was it to use the motion controls to create spikes?

 1 2 3 4

10. Did the motion controls for creating spikes make sense?

 Yes

 No

11. If you have any additional feedback or disliked any of the
functionality about the spikes, please share below.

12. How easy was it to use the motion controls to create quicksand?

 1 2 3 4

13. Did the motion controls for creating quicksand make sense?

 Yes

 No

14. If you have any additional feedback or disliked any of the
functionality about the quicksand, please share below.

Extremely Difficult Extremely Easy

Extremely Difficult Extremely Easy

Shotoku’s Defense: Physics Based Combat Using Motion Controls in Virtual Reality 107

15. How easy was it to draw the base of the wall by pressing both track pads?

1 2 3 4

16. Did the controls for drawing the base of the wall make sense?

 Yes

 No

17. How easy was it to use the motion controls to create walls by pressing and
releasing the triggers?

1 2 3 4

18. Did the motion controls for creating walls make sense?

 Yes

 No

19. If you have any additional feedback or disliked any of the functionality about
the walls, please share below.

20. Please rate the abilities by how much you enjoyed using them

21. Please rate the abilities by how frequently you think you would use them in a combat

situation

Extremely Difficult Extremely Easy

Strongly Disliked Disliked Liked Strongly Liked

Rocks
Spikes
Quicksand
Walls

Very infrequently Infrequently Frequently Very frequently

Rocks
Spikes
Quicksand
Walls

Extremely Difficult Extremely Easy

Shotoku’s Defense: Physics Based Combat Using Motion Controls in Virtual Reality 108

22. If there is an ability you wish you had while playing the game, please describe what this
ability might look like.

23. If you have any additional comments, please share below.

Alpha
1. Which ability was your favorite to use?

 Rocks

 Spikes

 Walls

 Quicksand

2. Which ability was your least favorite to use?
 Rocks

 Spikes

 Walls

 Quicksand

3 How often did you use the following abilities?

4. How fast do you feel the energy meter regenerated?

1 2 3 4 5

Very infrequently Infrequently Frequently Very Frequently

Rock of default size
Resized rock, not maximum size
Maximum sized rock
Single spike
Multiple spikes
Small quicksand
Large quicksand
Narrow wall
Wide wall

Way too Slow Way too Fast

Shotoku’s Defense: Physics Based Combat Using Motion Controls in Virtual Reality 109

5. How long did it take for the energy meter to start regenerating energy?

1 2 3 4 5

6. How much energy did it cost to use each of the following abilities?

7. How much damage did each of the following abilities do?

8 How effective were the following abilities at slowing or stopping enemies?

9. How effective were the following power-ups in comparison to their

original ability

Way too Long Way too Short

Way too
much

Slightly too
much

Just
enough

Slightly too
little

Way too
little

I didn't use this
ability

Rocks
Spikes
Walls
Quicksand
Healing

Way too
much

Slightly too
much

Just
enough

Slightly
too little

Way too
little

I didn't use
this ability

Default sized rocks
Resized rock, not
maximum size
Maximum sized rock
Single spike
Multiple spikes

Way too
effective

Slightly too
effective

Perfectly
effective

Slightly not
effective

Not
effective

I didn't use
this ability

Small quicksand
Large quicksand
Narrow wall
Wide wall

Extremely more
effective

Slightly more
effective

Just as
effective

Slightly less
effective

Extremely less
effective

Cluster of rocks
Chain of spikes
Moving rock wall
Quicksand
earthquake

Shotoku’s Defense: Physics Based Combat Using Motion Controls in Virtual Reality 110

10. How powerful were the following power-ups?

11. If there is an ability you wish you had while playing the game, please describe what this ability
might look like.

12 If you have any additional comments on the abilities or power-ups, please share below.

13. How much damage did each of the following enemies take from rocks?

 Way too Perfect Way too
 Slightly too Slightly too

14. How much damage did each of the following enemies take from spikes?

 Way too Perfect Way too
 Slightly too Slightly too

Way too
powerful

Slightly over-
powerful

Perfectly
powerful

Slightly under-
powered

Extremely under-
powered

Cluster of rocks
Chain of spikes
Moving rock wall
Quicksand
earthquake

much
damage much damage amount of

damage little damage little
damage

Light enemies
) (Archers

Medium enemies
Short Swordsman) (

Heavy enemies
(Broad
Swordsman)

much
damage much damage amount of

damage little damage little
damage

Light enemies
) (Archers

Medium enemies
Short Swordsman) (

Heavy enemies
(Broad
Swordsman)

Shotoku’s Defense: Physics Based Combat Using Motion Controls in Virtual Reality 111

15. How many enemies did you feel were around you?

 1 2 3 4 5

16. How difficult was it to see the incoming arrows shot by the light and medium

enemies?

 1 2 3 4

17 How difficult was it to dodge or deflect the incoming arrows shot by the light and medium enemies?

 1 2 3 4

18. How difficult was it to attack light enemies at a distance?

1 2 3 4

19. How quickly did the medium enemies approach you?

1 2 3 4 5

20. How quickly did the heavy enemies approach you?

1 2 3 4 5

21. If you have any additional comments on the enemies, please share below.

Way too many enemies Way too little enemies

Extremely difficult Extremely easy

Extremely difficult Extremely easy

Extremely Difficult Extremely Easy

Way too quickly Way too slowly

Way too quickly Way too slowly

Shotoku’s Defense: Physics Based Combat Using Motion Controls in Virtual Reality 112

Beta
1. Overall, how helpful was the tutorial in learning how to use the abilities?

Not helpful at all

Only a little helpful Moderately

helpful

Extremely helpful

2. Which ability was the easiest to learn how to use?
 Rocks

 Spikes

 Walls

 Quicksand

3 What made this ability the easiest to learn?

4. Which ability was the most difficult to learn how to use?

 Rocks

 Spikes

 Walls

 Quicksand

5. What made this ability the most difficult to learn?

6. How helpful were the practice waves in learning how to use the abilities?
 Not helpful at all

 Only a little helpful Moderately

helpful

 Extremely helpful

7. If there is anything else you would like to say about the tutorial, please share below.

Shotoku’s Defense: Physics Based Combat Using Motion Controls in Virtual Reality 113

8. How difficult was it to complete each of the following groupings of enemies?

 Slightly Way
 Way too Perfectly Slightly I didn't make it to this

9. If you answered "Way too difficult" to any of the above groupings, what made it difficult?

Shotoku’s Defense: Physics Based Combat Using Motion Controls in Virtual Reality 114

10 How many enemies did you feel there were in each of the following groupings of enemies?

 Way too Slightly A perfect Slightly Way too I didn't make it

11. Overall, how do you feel about the increase in difficulty between each grouping of enemies?
 The difficulty increased way too quickly

 The difficulty increased slightly too quickly

 The difficulty increased at the perfect rate

 The difficulty increased slightly too slowly

 The difficulty increased way too slowly

12. If there is anything else you would like to say about the difficulty of the enemy groupings, please
share below.

13. Was the design of the world enjoyable?
 Yes

 No

14 Was the design of the world consistent?
 Yes

 No

15. Was the setting of each location you were in diverse?
 Yes

 No

16. If no, which locations were not diverse and what made them not diverse.

many
enemies

too many
enemies

number of
enemies

too little
enemies

little
enemies

to this group of
enemies

Enemy groups
following the
tutorials in front
of the gate
Enemy groups
between the wall
and the building
Enemy groups at
the middle of the
arena
Enemy groups
next to the pond
Enemy groups in
front of the large
gate

Shotoku’s Defense: Physics Based Combat Using Motion Controls in Virtual Reality 115

17. How did you feel about the brightness of the game?
 Way too dark

 Slightly too dark

 Perfectly dark

 Slightly too light

 Way too light

18. How do you feel about the amount of decorations in the level? (bushes, trees, lights, etc.)

 Way too many decorations

 Slightly too many decorations

 Perfect amount of decoration

 Slightly too little decoration

 Way too little decoration

19. How intrusive were the decorations in the level to the game play? (bushes, trees, lights, etc.)

 Way too intrusive: very negatively impact game play

 Slightly too intrusive: negatively impact game play

 Not intrusive: impacted game play perfectly

 Slightly not intrusive enough: had very little impact on game play

 Way too not instrusive: had absolutely no impact on game play

20 Did the audio positively affect your game play experience?
 Yes

 No

21. Did the audio feel consistent throughout the game?
 Yes

 No

22. Were you able to tell where enemies were coming from based on the audio?
 Yes

 No

23. Were you able to tell when you were low on health without looking at your health bar?
 Yes

 No

Shotoku’s Defense: Physics Based Combat Using Motion Controls in Virtual Reality 116

24. Were you able to tell when you were low on energy without looking at your energy bar?

 Yes

 No

25. Was the User Interface easy to understand?
 Yes

 No

26. If no, what made the User Interface not easy to understand?

27. Were there any performance issues while you were playing the game?
 Yes

 No

28 If you have any additional comments about the art style and design of the game, please share
below.

29. How enjoyable was your game play experience?

Mark only one oval.

 Not enjoyable at all

 Slightly enjoyable

 Moderately enjoyable

 Extremely enjoyable

30. If there are any changes you would like to see to the currently existing game, please share below.

31. If there are any additional features you would like to see in the future, please share below.

32. The current name of the game is "Shotoku's Defense". If you have any ideas for a better name,

please share below.

33 If you have any final comments about the game, please share them below.

Shotoku’s Defense: Physics Based Combat Using Motion Controls in Virtual Reality 117

Appendix E: Playtesting Changes Priority Log
Priority scale:
1: least impact on mechanics/playability (cosmetic things, unnecessary extra features, etc.) /
might not be in the final game
2: Might not be done after beta playtesting but it might be in the final game
3: Done before beta playtesting
4: Do as soon as possible.
5: Do now. high impact on mechanics/playability (game changing mechanics, game breaking
bugs, etc.)

Pre-Alpha Change/Feature Reason Priority
(1-5)

Complete?

Spike chain should increase the
number of chains by size

 5 X

Spike chain should continue
infinitely until it hits something

 5 X

Energy usage has a bug on wall
create

● Rock didn't fly away when it had a wall
come up from below

● Certain walls did not disappeared

5 X

Don’t allow wall drawing while
using another ability

● This just doesn’t make sense 5 X

Change Wall controls ● Two trackpads at the same time to
toggle draw mode

● Two triggers to go up
● No abilities allowed in draw mode
● While in draw mode, you can exit with

two trackpad press or with grip button

5 X

Be able to destroy walls 5 X

Wall should break when it collides
with the player area collider

 4 X

Parrying / Blocking attacks with
melee

 4 X

Overlapping outlines should mean
no performable action is valid

 4 X

Make walls have a constant max
height

 4 X

Increase and randomize height of
spike

 4 X

Shotoku’s Defense: Physics Based Combat Using Motion Controls in Virtual Reality 118

Width of quicksand should increase ● It’s useless at the size it currently is 3 X

Walls should slide through
quicksand

 3 X

Make player head collider smaller 3 X

Grab rock from far away and apply
hover

 3 X

Enemies explode into polygons on
death

 3 X

Decrease wall movement speed 3 X

Add rumble to rock resizing /
throwing

 3 X

Keep track of spike velocity across
last 5 frames

● Spikes don’t always release how/when
you want them too

3.5 X

Zero the velocity of rocks when
dropping if not in hand yet

● When spawning rocks, didn’t hold so
rock just flew away

○ Time ease in and check

2.5 X

Visual feedback for overlapping
rocks with hand

● Some people thought they grabbed the
rock when they didn’t

● When picking up and when resizing

1

Fall Damage 1

Cluster rocks vs rocks collision 1

Alpha Changes Description Priority Complete?

Tutorial 5 X

Restarting function should delete all
objects

 5 X

Game Over Lock bug Cancel abilities and change pointers 5 X

Audio 5 X

Taking damage should have a visual cue Edges of view flashes red 4 X

Increase wall movements threshold Walls are getting created by accident
(when players do not pull up and just
trigger)

4 X

Increase spike and quicksand movement
threshold

Prevents players from accidentally creating
spikes or quicksand
Minimum size quicksand is too small

4 X

Shotoku’s Defense: Physics Based Combat Using Motion Controls in Virtual Reality 119

thanks to a bug

Energy and Health bar color for player It’s white right now, and hard to visualize 4 X

Enemy Queue Limit amount of enemies at once 4 X

Enemies need to stand on the ground Enemies currently float 4 X

Enemies get stuck on buildings’ rooftops
and trees

- Make building frictionless
- Rooftops should not be part of the

NavMesh
- When wake up of ragdoll, check if near

NavMesh
- Check that agent is near agent before

leaving ragdoll state

4 X

Enemies disappear sometimes when they
are hit

 4 X

Climbing glitches out Disable climbing in retreat state
Not sure if this will fix it

4 X

Climbing Animations Look passable enough! Needs little
tweaking

4 X

Check arrow hitbox so it hits walls and
trees and spikes

 4 X

Chain spike does no damage Chain Spike currently move enemies
instead of hitting them

4 X

There is a red circle inside the player area 3 X

Replenish energy while drawing wall 3 X

Quicksand should not impede wall and
spike creation

 3 X

Make arrow glow / have a trail Arrow should be more obvious 3 X

Increase default rock damage (increase
default rock radius)

Default rocks do too little damage.
Max rocks felt like they did too little
damage too but can probably fix w tutorial

3 X

Don't allow ability usage if the arc area is
invalid

 3 X

Add Arrow mesh and check rotations 3 X

Turn up ragdoll sensitivity If enemies are punched, ragdoll all the time 2 X

Fix highlight shader 1 X

Show player health visuals Green and red drain animation 2

Quicksand earthquake trips those in full 2

Shotoku’s Defense: Physics Based Combat Using Motion Controls in Virtual Reality 120

radius of quake

Power-up ready visual cue Can’t tell when power-ups are going to
happen in place of regular ability

2

Headband looks funny 2

Add Fall Damage 2

Wider temple base Enemies don’t fit well 1

Walking through quicksand makes
enemies sweat and animate faster but walk
slower

Not obvious that quicksand slows enemies 1

Red highlight for rocks that can't be
picked up

 1

Merge the ability outline rings when close 1

Medium enemy didn’t aim with the sword
(if people squat they don’t get hit)

 1

Make particles explode more when
enemies die

 1

Make a minimum size for walls 1

Enemies take damage from stationary wall remove this 1

Directional thumb button to activate
power-ups

Currently power-ups just happen when
they are charged

1

Climbing bottom of temple So enemies don’t have to walk all the way
around

1

Beta Changes Description Priority Complete?

Master all sounds Quieter bug sounds 5 X

Wave testing Design what waves are we going to
have

5 X

Rocks are considered part of the player and
causes them to take damage when deflecting
rocks

 5 X

Remove the trees by location #2 and location #1 Obstructs the player’s ability to
eliminate enemies

5 X

NavMesh Testing Go through locations and check
behavior

5 X

Shotoku’s Defense: Physics Based Combat Using Motion Controls in Virtual Reality 121

Fix Pause Menu Buttons Set better height for spawning 5 X

Enemies shouldn’t double hit for damage 5 X

Enemies de-spawn when the player dies in
tutorial

 5 X

Enemies get stuck in the east gate needs more playtesting 5 X

Disable NavMesh on roofs, trees, bushes 5 X

Caption text in tutorial slides 5 X

Fix arrow and shooter rotation 5 X

Water shader 4 X

Texture heavy enemy 4 X

Teleport star needs to be closer to player 4 X

Rock damage needs to be fixed sometimes, hit won't damage at all 4 X

Put Quit Game in death menu 4 X

Medium guys don’t take damage with rocks very
often

 4 X

Make the ability usage ring red when interacting
with the player radius

 4 X

Invisible trees and bushes LOD materials are wrong 4 X

Grass culling 4 X

Get up animation Climbing, shooting animations 4 X

Don’t let rocks on the ground prevent doing
abilities

 4 X

Disable the trackpad during the tutorial before
walls are introduced

 4 X

Wind zone on rock particles needs to be turned
off

 3 X

Spike particles not showing up on destroy 3 X

Spawn areas need to be smaller (closer to gates) Enemies take a while to leave the
spawn area, long pause after drums

3 X

Reset temporary energy on death 3 X

Make tutorial buttons be world objects and not
UI buttons

Players want to make abilities during
tutorial slide

3 X

Shotoku’s Defense: Physics Based Combat Using Motion Controls in Virtual Reality 122

Make light enemy not walk through player enemy is encouraged not to walk
through player

3 X

Let the player know when they win and restart
the game from the spawn room

 3 X

In power-up tutorial slide, turn on power-up and
show image of power-up from hand

End when player goes to next slide 3 X

Fix flickering grass Turn off 2 sided 3 X

Temple Doors 2 X

Ragdoll on enough punch damage, less than
normal ragdoll

 2 X

Make bridge as wide as two heavies side by side Shrink enemy avoidance radius 2 X

Increase performance of NavMesh agents 2 X

Clouds 2 X

Change “Game Over” to “You Died” 2 X

Water sound 2

Polygonal particles instead of round dust
bunnies

 2

Lanterns 2

Headbands waggle around 2

Environment soft is too hard Set to very soft but things bounce off
like hard

2

Encourage enemies to take stepping stone paths 2

Bow color Not gray - maybe bamboo
Not using rig so can replace with
own mesh

2

Arc color change 2

Tutorial start pillar: no text, show arrow after
timer

 1

Steam VR Action Boolean Bug 1

Spawn enemy sound played during tutorial 1

Rock melee tutorial slide after resize slide Make obvious that rock is still in
hand after hitting enemy

1

Put tutorial in the pause menu 1

Shotoku’s Defense: Physics Based Combat Using Motion Controls in Virtual Reality 123

Put Main Menu / Start from Beginning in death
menu

 1

Pillars should fall into the ground on exit and
David’s stars dissipate into particles

 1

In spike tutorial, spike area shouldn’t get bigger
on descent

 1

Hurt circle more transparent 1

Highlight rock when other hand is intersecting 1

Higher gravity for arrows 1

Fall damage 1

Enemy in water physics / animation 1

Directional damage marker Preset 8 directions (4 sides 4 corners)
images

1

Create a non-tutorial location 1 wave(s) And in skip tutorial, go to first wave
after tutorial at loc1

1

Audio cue for headshots 1

Arrow UI for telling player to look at hands Power and low health 1

Shotoku’s Defense: Physics Based Combat Using Motion Controls in Virtual Reality 124

Appendix F: Ritsumeikan and WPI Collaboration
 In addition to our game project, our host school in Japan, Ritsumeikan University, tasked

our team with a project of their own. We, along with the other WPI students and some students

from Ritsumeikan, collaborated on creating a physical model of a heart simulation created by a

Ritsumeikan Lab. The existing program used a very technical graphical user interface (GUI),

making it impossible for someone to read it without understanding the process behind it all. The

goal of our model was to make the results of the simulation clear to a person without any

knowledge of the underlying biological systems at play. This way, our abstraction of the heart

simulation could be used for educational purposes.

User Interface

For the user interface, the user can select between five different scenarios which represent

different conditions of the heart. Our scenarios are composed of:

● Rest

● Old

● Exercising

● Cold

● Warm

Rest is our default

scenario, where all the

input values represent a

healthy person in a resting

state. Old scenario,

representing the heart of an

old person, means that

compliance and resistance are

higher, therefore aortic pressure is increased. Exercising refers to an increase in heart rate, as

well as an increase in pressure from the lungs producing a higher aortic pressure. Cold scenario

sets a high resistance that also causes high aortic pressure, because coldness constricts blood

vessels. Warm scenario indicates a lower resistance that causes lower aortic pressure.

Figure 72. User interface with five different heart
scenarios

Shotoku’s Defense: Physics Based Combat Using Motion Controls in Virtual Reality 125

 Additionally, the user interface has two bar graphs to represent blood flow into the

ventricles and into the body. The red circle displays changes in the volume of the left ventricle.

Figure 72 displays our final user interface design.

Hardware

We attached all of our hardware components to an Arduino Mega 2560 programmable

microcontroller. This board runs all of our code and controls all of the electrical components. To

show the blood flow and blood pressure, we utilized NeoPixel individually addressable light

emitting diode (LED) strips. Each strip has the ability to set any of its lights to any color with 24-

bit color depth. We attached two LED strips to our model—one representing the simulated blood

flowing into the left ventricle and another representing that flowing into the body—to show the

pressure and flow rate in the vessels we needed to visualize.

In addition to the LEDs, we used an air compressor with two solenoid valves—valves

that can be switched open or closed using an electrical current—to inflate and deflate a balloon.

We tied the balloon shut and dangled it inside a two-liter plastic bottle. When the air compressor

feeds air into the sealed bottle

at a high pressure, the balloon

then deflates due to the

increase in pressure outside of

it. We then used the Arduino

board and solenoid valves to

toggle between filling the

bottle with the air compressor

and draining the built-up

pressure back into the world.

Finally, we used a seven segment display and a buzzer to show additional information

that is not calculated in the simulation. The number display is used for feedback from our GUI,

showing what scenario the user has selected. The buzzer beeps once every heartbeat cycle after

starting the simulation. While not corresponding to anything concrete about the state of the

heart’s pressure and volume, this beep provides a familiar, “electrocardiogram-like” sound to

Figure 73. Final proposed design for heart simulation

Shotoku’s Defense: Physics Based Combat Using Motion Controls in Virtual Reality 126

inform the user of the heart rate. Figure 73, shows our final design for the hardware component

of the project.

Software

The team’s goal was to demonstrate the diastole and systole processes of the heart. For

simplicity, the simulation only calculates information about one of the four chambers of the

heart: the left ventricle. Diastole is when the heart fills with blood and systole is when the heart

contracts sending the blood to the body. Through the simulation, the model is able to calculate

the following variables that represent these two processes of the heart:

● Flow rate into the heart (fv)

● Flow rate into the body (f1)

● Pressure from lungs (Pv)

● Aortic Pressure (Pa)

● Pressure in the left ventricle (Plv)

● Volume in the left ventricle (Vlv)

Pressure from lungs and aortic pressure are represented through the colors of the LED

lights, blue meaning low pressure and red being high pressure. Flow rate into the heart and into

the body, is represented through the speed the LED lights move. This functionality is handled by

an animation function which displays a sine wave with the lights in the specified color. The

offset of the sine wave is updated every step with a value directly proportional to the flow rate of

the specific blood vessel in the simulation, making the crests appear to move. Also, a certain

portion of the trough section of the sine wave sets the light intensity to zero, creating more

separated segments of moving light.

Since pressure and volume in the left ventricle in our simulation are correlated, we

decided to use volume in the left ventricle as the trigger for the air compressor. When volume in

the left ventricle starts decreasing, the air compressor fills the bottle with more air, increasing its

pressure and deflating the heart balloon. On the other hand, when it increases, excess air is

released from the bottle, inflating the heart balloon. Figure 74, displays our variables and what

they represent for the heart model.

Shotoku’s Defense: Physics Based Combat Using Motion Controls in Virtual Reality 127

Conclusion

Through this project, our team was able to successfully complete a functional physical

model of the heart (Figure 75). This model demonstrated volume change inside the heart through

the use of air pressure and a balloon. Additionally, we approximated our input parameters to

recreate five different heart scenarios. Finally, we developed a simulation program that calculates

heart conditions and controls LEDs, valve switches, and a buzzer to replicate the results in an

understandable, physical format.

Figure 75. Final heart physical model

Figure 74. Reference model with all variables for the heart simulation

