
Improving Employer Outcomes: Supervised
Learning to Predict Hiring Success

A Major Qualifying Project by:

Emily Bigwood
Owen Chace
Ranier Gran

Stephanie Martin

Submitted in partial fulfillment
of the requirements for the degree of:

Bachelor of Science

Mathematical Sciences
Worcester Polytechnic Institute

March 17, 2018

Approved by:

Professor Randy C. Paffenroth

1

Abstract

The Career Development Center (CDC) at Worcester Polytechnic Insti-
tute (WPI) is an office which provides students with resources and services
to assist students in finding a career path after graduation, which includes
connecting employers and students. As such, they wish to understand what
activities are most influential to a company’s success in hiring talent from
WPI. Our team analyzed data provided by the CDC about online job post-
ings, on-campus interviews, information sessions, and career fair attendance
along with information about student outcomes after graduation to determine
what contributed most significantly to employers’ success. Because we wanted
to be "fair" to companies in our predictions, we decided to minimize mean
squared relative (percent) error, rather than traditional mean squared error.
This required us to develop a regression tree completely from scratch to then
use in random forest regression.

1

Acknowledgements
First, we would like to thank our sponsor and Director of Corporate Relations at
the Worcester Polytechnic Institute Career Development Center (CDC), Dave Or-
tendahl. Throughout this project, Dave was incredibly helpful. His initial questions
were instrumental in helping us define the scope of our project. In addition, he pro-
vided us with feedback during important stages of the project and offered valuable
insights.

We would also like to thank Allyson Bernard, Senior Recruiting Coordinator at
the CDC. Allyson was one of our main points of contact. She took on the tremendous
task of cleaning, organizing, and providing us with relevant CDC datasets. We
greatly appreciate her willingness meet with us to answer our questions, especially
during the beginning of our project.

This research was performed using computational resources supported by the
Academic & Research Computing group at Worcester Polytechnic Institute. The
authors would also like to acknowledge the Academic & Research Computing group
for providing coding support that contributed to the results reported within this pa-
per. Namely, Spencer Pruitt and James Kingsley from WPI’s Academic Technology
Center (ATC) provided us with essential support in this area, meeting with us on
multiple occasions to offer their experience using the ACE Cluster.

Finally, we would like to thank our MQP advisor Professor Randy Paffenroth.
Professor Paffenroth provided us with invaluable advice and ensured our project
stayed on task. He helped us overcome a number of obstacles throughout the course
of our MQP. His guidance, optimism, and enthusiasm were essential to the success
of our project.

2

Contents
1 Introduction 12

1.1 Measuring Outcomes . 12

2 Literature Review 13
2.1 Cost Sensitive Ensembles . 13
2.2 Cost Sensitive Decision Trees . 14

3 Project Outline 14
3.1 Test Dataset . 15
3.2 Data Pre-Processing . 15
3.3 The Curse of Dimensionality . 15

3.3.1 Singular Value Decomposition (SVD) 16
3.3.2 Principle Component Analysis (PCA) 16

4 Machine Learning Techniques 17
4.1 K-Nearest Neighbors Regression . 17
4.2 Linear Regression . 19
4.3 Support Vector Machines . 20
4.4 Trees . 22
4.5 Random Forest Regression . 23

5 Methodology 23
5.1 Practice Data Testing . 24
5.2 Career Development Center Datasets 24

5.2.1 Data Clean Up . 24
5.2.2 Merging Datasets . 25
5.2.3 Further Categorization . 25
5.2.4 Final Predictors and Target Variable 26

5.3 Initial Analysis . 26
5.3.1 Company Correlation . 26
5.3.2 SVD and PCA of CDC Data 28

6 Building Our Own Decision Tree 31
6.1 Relative Error . 32
6.2 Implementing Random Forest Regression with Our Tree 33
6.3 Ace Cluster Implementation . 34

7 Overview and Parameters 34
7.1 Linear Regression . 34
7.2 KNN . 35
7.3 SVM . 35
7.4 Original Random Forest . 36
7.5 Modified Random Forest . 38

3

8 Method Results 48
8.1 Linear Regression . 48
8.2 KNN . 49
8.3 SVM . 49
8.4 Original Random Forest . 49
8.5 Modified Random Forest . 50
8.6 Feature Importance . 50

8.6.1 Linear Regression . 50
8.6.2 Original Random Forest . 52
8.6.3 Modified Random Forest . 53

8.7 Data Observations . 56
8.7.1 Employer Location . 56
8.7.2 Employer Size . 58
8.7.3 Internship Hires . 62

9 Discussion 63
9.1 Model Accuracy . 63
9.2 Predictors of Hiring Success . 64

10 Limitations and Recommendations 65
10.1 Project Limitations . 65
10.2 Recommendations for Future Projects 66

Appendices 67

A Major Groups 67

B Group Contents 68

C Predictor Variables 70

4

List of Figures
1 Dimensionality Vs Performance of Common Models (taken from [21])-

This generally describes the trade-off of common model performance
for added features of data. 16

2 Percent of Variance in Data Explained Vs Number of Principle Components-
In one of our first steps in exploring a similar dataset to our own, we
analyzed the principle components of a sample student dataset and
the variance explained by each component. 17

3 An example of K-Nearest Neighbors Classification. The green and
red points represent different classes and the yellow star represents
the unknown point to be classified. Adapted from [23]. 18

4 An example of Simple Linear Regression. The x-axis represents the
predictor variables, and the y-axis represents the response variables.
As is shown, there is a clear linear relationship between the two. . . . 19

5 This is an example of a Support Vector Machine. The red and blue
data points represent two different classes of data. The two classes of
data are separated by a linear boundary, which in this figure is the
solid black line. The two dotted black lines are support vectors. The
space between the solid black lines and dotted lines are the margins.
[15]. 21

6 This is an example of a decision tree that makes three cuts using three
predictors. 22

7 Correlation Matrix of Predictors- To begin our analysis of compa-
nies we generated two correlation matrices, this one to identify the
correlation of the predictors to one another. 27

8 Initial Correlation Matrix of Companies- After analyzing the predic-
tors we try to identify how the different companies correlate to one
another using another correlation matrix. However, we see that there
are several companies which stand alone, sharing no correlation to
their neighbors. 27

9 Final Correlation Matrix of Companies- After weeding out ill-measured
companies we were able to generate an interesting correlation matrix
depicting a fair amount of uniqueness amongst the companies 28

10 PCA Graph of Predictors- Here we ran principle component analysis
on our predictors, demonstrating the fact that the majority of the
variance in the predictors can be explained using the first few principle
components. This is probably due to the distribution of the hires for
our companies. 29

11 PCA Graph of Companies (63 Components)- Our principle compo-
nent analysis on our companies, demonstrated a similar phenomenon
as the majority of the variance in the companies could be explained
using the first few principle components. 29

12 PCA Graph of Companies (First 8 Components)- To dive deeper, we
zoom into the first eight points on the previous graph, proving to us
that in fact, most of the variance in our data can be explained using
only eight principle components. 30

5

13 First two principle components graphed against each other, color and
size by number of total hires- This plot, using Bokeh gave us a dy-
namic look at our data as we can see how our companies cluster in
the principle component space, specifically the first two components
as they accounted for the most variance. 30

14 Features the highlighting ability of the bokeh plotting tool- Using the
highlighting capabilities of bokeh, we were able to identify individual
companies to possibly develop ideas for analysis based on the intrinsic
information of the companies themselves. 31

15 Cross-validation for KNN - number of neighbors from 1 to 50 35
16 Cross-validation for SVM - Zoomed in to show error for C values

between 0.01 and 0.10 . 36
17 Cross-validation for SVM - showing error for gamma values between

0.01 and 10 . 36
18 Cross-validation for Original Random Forest - number of learners

(trees) in the forest . 37
19 Cross-validation for Original Random Forest - minimum samples in

a leaf . 37
20 Cross-validation for Original Random Forest - maximum tree depth . 38
21 Training Accuracy of Each Tree Generated- We explored the training

accuracies of all of the trees sorted by their error that we generated. . 39
22 Training Accuracy of Each Tree Generated Without Outliers- We

removed the outlier trees entirely as their high inaccuracies would
lead to poor results regardless of our cross-validation methods. 39

23 Example of Threshold Methodology for Cross-Validation- Using this
example, we showed how our cross validation method was imple-
mented. Any trees to the right of the upper bound (red, right) was
rejected, and any trees to the left of the lower bound (red, left) were
also rejected, leaving a range of accepted trees in between which our
model will compute with. 40

24 Upper Bound Threshold Methodology for Cross-Validation- Our cross-
validation for the upper bound began at 30 percent error with a lower
bound of 0 percent error, then progresses the upper bound to the right
(indicated by arrow). 41

25 Upper Bound Threshold Methodology for Cross-Validation- Our cross-
validation for the upper bound ended at 100 percent error with a lower
bound of 0 percent error, represented by these bounds. 41

26 Cross-validation for Modified Random Forest upper bound- We cross-
validated our model on the lower bound, starting with at lower bound
at zero percent error and finishing at 45 percent error. 42

27 Lower Bound Threshold Methodology for Cross-Validation- Our cross-
validation for the lower bound began at zero percent error with an
upper bound of 45 percent error, then progresses the lower bound to
the right (indicated by arrow). 42

28 Lower Bound Threshold Methodology for Cross-Validation- Our cross-
validation for the lower bound ended at 45 percent error with the up-
per bound of 45 percent error, represented by these bounds (contains
only one tree at this point). 43

6

29 Cross-validation for Modified Random Forest lower bound- We cross-
validated our model on the lower bound, starting with at lower bound
at zero percent error and finishing at 45 percent error. 43

30 Cross-validation for Modified Random Forest simultaneous upper and
lower bound- To thoroughly evaluate our model using this method,
we cross-validated on both thresholds simultaneously. 44

31 Cross-validation for Modified Random Forest plotly- We used the
plotly tool to generate this dynamic representation of our cross-validation
method. 44

32 Callout Markers to Explore Specific Thresholds- We picked a few, dis-
tributed points to observe more closely. Callout 1 represents a thresh-
old that results in exceptionally high mean relative error. Callout 2
represents a threshold that results in a middle of the pack relative
error. Callout 3 represents the threshold that corresponds the lowest
mean relative error. 45

33 Callout 1 Threshold Methodology for Cross-Validation- At this spe-
cific point in our cross-validation, we have a lower threshold of 45
percent error and an upper threshold of 82 percent error. This corre-
sponds to an overall 46 percent testing error for our forest. 46

34 Callout 2 Threshold Methodology for Cross-Validation- At this spe-
cific point in our cross-validation, we have a lower threshold of 30
percent error and an upper threshold of 79 percent error. This corre-
sponds to an overall 39 percent testing error for our forest. 46

35 Callout 3 Threshold Methodology for Cross-Validation- At this spe-
cific point in our cross-validation, we have a lower threshold of 24
percent error and an upper threshold of 50 percent error. This corre-
sponds to an overall 31 percent testing error for our forest. 47

36 Cross-validation for Modified Random Forest number of learners- We
cross-validated our model on the number of trees given to the forest
while maintaining a constant, finalized value for our thresholds from
the previous cross-validation method. This allowed us to identify how
many trees should be fed into our forest and gave us our final model
results. 48

37 Global map of WPI student employer locations 57
38 Map of employer locations in New England 58
39 Number of employers based on size 60
40 Number of hires based on employer size. Red indicates the number of

companies with 1+ hires, blue the number without a hire, and green
the total number of hires for that size. 61

41 Interns vs. full-time hires by company size 62

7

List of Tables
1 Test errors of each model . 10
2 Top predictors of hiring success . 11
3 Predictions versus the true value for the best SVM model 49
4 Linear Regression feature importance - best features 51
5 CV Linear Regression feature importance - best and worst features . 52
6 Original Random Forest feature importance - best and worst features 53
7 The 13 most frequently used predictors by Modified Random Forest . 54
8 The 5 least frequently used predictors by Modified Random Forest . . 54
9 Modified Random Forest "feature importance" - lowest to highest

average errors from trees w/ given feature 56
10 Top 4 countries for employers . 57
11 Top 5 states in the U.S. for employers 58
12 Top 5 cities in the U.S. for employers 58
13 Top 10 employers and their sizes . 59
14 Percentage of companies with hires by size 61
15 Percentage of total hires by company size 62
16 Percentage of total internship hires by company size 63
17 Test error comparison of each model 63
18 Predictors appearing in the top 10 for multiple models 64

8

Executive Summary
One of the most important outcomes of a student’s college education is internship
and post-graduate job prospects. Employment and internship opportunities are a
priority of the Worcester Polytechnic Institute (WPI) Career Development Center
(CDC). WPI’s Career Development Center works with companies of varying sizes
and backgrounds to help students obtain both internships and fulfilling, high-paying
jobs after graduation. These companies engage in a number of activities at WPI,
ranging from on-campus interviews to information sessions to annual career fairs.
However, while the CDC records a company’s presence on campus, there has not yet
been a dedicated effort to analyze company data in depth using supervised machine
learning methods. Although the CDC can summarize a company’s presence in a
given year, additional questions exist regarding steps a company can take in order
to most effectively recruit and hire students.

The goal of this project was to analyze data from the 2015-16 school year,
provided by the CDC, using supervised machine learning methods. This included
datasets with information about student internships, full- and part-time hires, and
employer activities (such as attendance at career fairs and preferences in their job
posts). First, we had to appropriately encode, merge, and clean these datasets so
that we could subsequently consider and test several possible regression methods to
fit the data. After doing so, we concluded that decision trees (used in random forest
regression) would best suit our purposes. This method produced a greater error
than support vector machine (SVM) regression in our tests with built-in scikit-learn
functions, but we decided to use it because it allows us to interpret the importance
of different features much more easily than we could SVM.

After some consideration, we decided that we did not want our tree to minimize
mean-squared error (MSE) as is the convention but mean-squared relative error
(MSRE) i.e. squared percent error (the square being important for differentiabil-
ity). This is because there is a fairly large range in the number of graduates that
companies hire. While most companies that hire WPI graduates hire 1 or 2 stu-
dents, there are many that hire at least 10, and one company with over 25 hires for
the 2016 data. For this reason, minimizing raw error would be in a way ‘unfair’ for
companies with fewer hires. For example, if our model adhered to the convention
of using MSE, an estimate of 22 for a company with 20 hires would be considered
as big an error as estimating 3 for a company that hired only 1 graduate. Clearly,
in this context the former is a relatively minor error, while the latter seems drastic.
While our modified random forest regression model was built using MSRE, our final
error metric remained mean relative error (MRE) as this is much easier to interpret
and is simply the root of our minimizing metric. A method with an MRE of 0.3 or
30 percent error would predict values of 1.3 for companies who hired a single em-
ployee and predict 13 for a company hiring 10 employees, providing a "fair" metric
for companies of all sizes.

Changing the error function over which to minimize a regression tree is not a
trivial task, and we were unable to find any existing implementations of a regression
tree which minimizes MSRE. For example, the only two error metric options pre-
sented in the scikit-learn regression tree are MSE and mean absolute error (MAE).
[11] Thus, in order to use MSRE, we needed to write and implement our own re-
gression tree and random forest completely from scratch in Python. This required

9

several helper functions to be written to perform each of the important steps in
creating a tree. One of the most important functions, the one which determined an
appropriate estimate for a node/leaf in order to minimize MSRE, was dependent on
a derivation that had to be performed by hand first (shown in subsection 6.1). In
order to overcome time constraints and reduce runtime with a sufficient amount of
data, we made use of WPI’s Ace Cluster. The Ace Cluster is a high-performance
computing system with multiprocessing capabilities. With the help of WPI staff
working for the Academic Technology Center (ATC), we were able to simultane-
ously run several copies of our existing Jupyter notebook non-interactively on the
cluster. Additional code was added before running to write important results from
each run to csv files.

After running our code using WPI’s Ace Cluster, we cross-validated the results
to find the best number of learners (trees) to use in our forest. Additionally, we
cross-validated to determine ideal values for minimum and maximum thresholds of
error. Trees with more than the maximal threshold were thrown out due to their
inaccuracy, and trees with less than the minimum threshold for error on the training
data were rejected for overfitting. From this, we concluded that we should accept
trees with a training error of at least 24 percent and at most 50 percent. The ideal
number of learners was determined to be 116 trees with a 0.3066 mean relative
error. However, this is likely only due to our limited amount of data —because of
computational time, we only generated 140 trees and did not see a ’spike’ in the
graph of number of learners vs. error after 116.

The mean relative errors of the models that we considered in this project ranged
from 0.2617 for SVM to 0.7407 for Linear Regression, as shown in Table 1 below. We
attempted to predict both the unstandardized and standardized number of hires, but
the errors when predicting the standardized hires were much higher. Thus, when
comparing the models, we looked at the errors for predicting the unstandardized
hires.

Model MRE (unstandardized) MRE (standardized)
Linear Regression 0.7407 2.526
RFECV with Linear Reg. 0.6977 1.422
SVM 0.2617 1.456
KNN 0.5156 1.461
Original Random Forest 0.5575 1.782
Modified Random Forest 0.3066 2.153

Table 1: Test errors of each model

While SVM had the lowest mean relative error, it was not easily interpretable.
Instead we analyzed the results from both recursive feature elimination with cross
validation (RFECV) models and both Random Forest models to find the best and
worst predictors of hiring success. The first RFECV Linear Regression model had
three predictors, Job: Degree Level Master of Physics for Educ, Job: Degree Level
Master of Mathematics for Educ, and Job: Total Student Views, but we considered
the ten predictors leading up to the final model in our feature importance analysis.
The second RFECV model had 12 predictors total, and we considered all twelve as
equally important in our analysis.

One predictor, OCI Interviews, stood out as the most important in the original

10

Random Forest model. The predictor had a feature importance score of 0.389172,
while the second most important feature, 10000+ Emp, had a score of 0.0655776.
The feature importance scores for all the predictors summed to 1.00 for perspective.
Despite this large gap in scores, we still considered the top ten predictors from
the model in our feature importance analysis. As for the Modified Random Forest
model, we averaged the mean relative errors of the trees using each predictor and
considered the ten predictors with the lowest average mean relative errors.

After gathering the top predictors from each model, we found six predictors that
were in the top ten for at least two models, shown in Table 2. Two of them, OCI
Interviews and 10,000+ Emp, were in the top ten for three of the models. We also
observed a strong positive correlation between employer size and number of hires
when analyzing the raw data. Companies with 10,000+ employees hired 38.73% of
all WPI students hired in 2016 and 45.85% of the students that reported having
an internship that year. Location also played a large role in which companies hired
students, as more than half of the companies that hired at least one student had an
office in Massachusetts.

Predictor Top 10
Appearances

OCI Interviews 3
10000+ Emp 3
Job Posts 2
2015 Fall 2
Job: Resume Submission Method Accumulate in WPI Job Finder 2
Job: Degree Level Doctor of Philosophy 2

Table 2: Top predictors of hiring success

For future projects, we have a few recommendations. First, in order to allow
for easier analysis, the CDC should work towards improving their data collection
and data storage methods, such as having consolidated data profiles for each em-
ployer and keeping employer names and identifiers consistent between spreadsheets.
Second, it would be helpful to have internship/summer plans data that is as com-
prehensive as the post-graduate survey data to find better predictors of internship
hires. Third, we recommend a similar analysis be performed on both previous and
future data sets. Previous data sets could confirm our findings, while future data
sets could be used to analyze the use of Handshake over Job Finder. Finally, we
recommend simplifying some of the features used in this project, such as eliminat-
ing the major-specific features in order to better analyze the importance of degree
level. Doing so would allow for cleaner and potentially more accurate results/feature
importance analysis.

11

1 Introduction
For many college students, the number one goal upon graduating is getting a job.
Students spend their senior year researching companies, going to career fairs, and
scouring job boards for entry-level positions. What makes a student more likely to
apply to certain companies and what do employers do to get the most hires each
year? In this project, we use data analysis and machine learning techniques to find
how active employers should be at Worcester Polytechnic Institute (WPI), and in
which particular areas, in order to maximize the number of talented students they
hire from the university.

Throughout the year, WPI’s Career Development Center (CDC) collects post-
graduation and hiring data from students and alumni through various online and
paper surveys. Information gathered from these forms ranges from internship, co-
op, and full-time employment to graduate school and other post-graduation plans.
The CDC also keeps track of which employers go to career fairs, hold information
sessions, set up tables in the Campus Center, and post jobs on the university’s job
board/career website, Handshake (formerly Jobfinder). We compiled this informa-
tion into one main dataset for use in this project.

Between the dataset with employer activity and the post-graduation outcomes
data, we had more than 1,500 employers to analyze with machine learning tech-
niques, including a modified random regression forest we wrote ourselves. Using
feature importance on these techniques, we were able to give the Career Develop-
ment Center key information about what employers do to attract the most potential
hires to their companies. The CDC can then pass this information along to employ-
ers to help them hire the most WPI students possible in the future.

1.1 Measuring Outcomes

This section is about our sponsor, the Career Development Center at WPI, and what
they do for the university. It also provides an explanation of where the datasets
used come from, and how they relate to the goals of this project. Details on data
management and cleaning are further explained in later sections.

The CDC is the main hub for both employers and students at WPI, providing sev-
eral opportunities for the two groups to interact, including career fairs, information
sessions, on-campus interviews, and Handshake. They track how often employers
and students interact with each other through these resources, as well as obtaining
self-reported data from students and alumni about full-time, internship, co-op, and
research opportunities [22].

Each year the CDC publishes the Post-Graduation Report for the most recent
graduating class, which contains detailed information on what students are doing
after graduation. In this project, we focus on the report for the graduating class of
2016 [16]. WPI successfully granted degrees to 1646 bachelor’s, master’s, and PhD
students in 2016, with an overall success rate of 92.7%, meaning 92.7% of graduates
were either employed, going to graduate school, enlisting in the military, or joining
a volunteer service after graduation [16]. The knowledge rate for the report was
91.8% overall, as around 135 of the 1646 total graduates did not report their post-
graduation plans [16]. If you omit the graduates continuing their education, there
were 1,147 students reporting an employer or organization.

12

The CDC also recorded data on employers’ activity at WPI for the 2015-2016
school year, with 1840 employers seeking out students through career fairs, in-
formation sessions, resume books, on campus interviews, sponsoring events, job
posts, resume searches, educational programs, and sponsoring the CDC. The most
common method used to reach out to students was job posts, with almost 5,000
posts recorded, followed by attending an on-campus career fair. These datasets
include information for employers seeking students of all class levels, while the Post-
Graduation Report only includes information from recent graduates.

These reports and datasets give us a basis for setting our overall project goals.
While 92.7% of students had an employer or a graduate school upon graduation,
7.3% did not fulfill the CDC’s definition of success [16]. In addition, there were
at least 1,840 employers visible to WPI students in one shape or form, but only
1,147 students reported having an employer upon graduation, meaning hundreds
of employers were unsuccessful at hiring WPI students. When accounting for the
employers who hire multiple students, the number of successful employers decreases
even more.

This information leads to the core questions we strive to answer with this project:
What do the employers who hire the most students from WPI do to be so successful,
and how can employers who do not hire students become successful? Answering
these questions will help the CDC widen the line of communication between students
and employers, while also potentially lowering the number of students still seeking
employment six months after graduation.

2 Literature Review
In the following section we provide a brief review of the existing literature on machine
learning techniques to deal with imbalanced data sets using cost sensitive ensembles.
A review of the existing literature did not provide any pre-existing methods for using
cost sensitive ensembles with regression, all of examples given were of classification.
Yong Zhang and Dapeng Wang from the School of Computer and Information Tech-
nology at Liaoning Normal University describe a cost-sensitive ensemble method
for class-imbalanced data sets.[25] Bartosz Krawczyk and Michał Woźniak discuss a
cost-sensitive algorithm for malware detection.[17] Although Krawczyk and Woźniak
present an ensemble based on cost-sensitive decision trees, neither study addresses
regression trees.

2.1 Cost Sensitive Ensembles

Cost-sensitive ensembles have been used to solve imbalanced classification problems.
Class-imbalanced data problems exist in a variety of fields, including medical diag-
nosis, fraud detection, and a variety of science and engineering problems. When
working with imbalanced data, standard classification techniques tend to fail. [13]
Most standard techniques tend focus on the larger majority classes in the data and
ignore the smaller, minority classes.

When dealing with the class-imbalanced classification problem, it is important
to select the appropriate training data. One method for doing so is resampling:
a technique for adjusting the size of the training sets. By oversampling minority
classes, undersampling majority classes, or using a combination of the two methods,

13

resampling methods can reduce the extent of the data imbalance. Resampling tech-
niques can be used with a number of methods, including support vector machines
(SVM) and Bayes Classifiers.[1] Modified learning algorithms are another solution
to deal with imbalanced data effectively. Modified learning algorithms are created
by changing existing machine learning algorithms in a way that better suits the
data.[25]

Cost-sensitive learning is one such solution, along with feature selection and
single-class learning. Cost-sensitive learning is considered an important type of
method to handle class imbalance. It addresses the problem of class imbalance
by incurring different costs for various classes. However, one difficulty with cost-
sensitive learning is that the costs of miscalculation are often unknown. Zhang and
Wang create a cost-sensitive ensemble method. This method trains subclassifiers
according to the ratio of imbalanced samples. The sub-classifiers are then integrated
into a classifier, and cost-sensitive SMV is used to train selected data [25].

2.2 Cost Sensitive Decision Trees

Krawczyk and Woźniak present an ensemble for malware detection based on cost-
sensitive decision trees.[17] In this presented solution, individual classifiers are con-
structed according to an established cost matrix. These classifiers are then trained
on random feature subspaces to ensure that they are mutually complimentary. The
parameters for the cost matrix are derived using ROC analysis.

One major contribution this paper presents is a new ensemble pruning method
that is based on the combination of decision trees trained on different sets of features.
[17] Cost-sensitive decision trees were chosen as a base classifier. Decision tree
induction is based on misclassification cost rate. At each node of the tree, a local
sequential search is performed. This local search assigns a greater cost to a situation
when an object of a minority class is misclassified. Thus, the recognition rate of the
majority class is boosted.

A random subspace approach is used to create a representative pool of classifiers.
In a random subspace approach, the feature space is randomly divided into several
subspaces, and individual classifiers are trained in each subspace. [14] This method
ensures that the representative pool of classifiers is diverse, and that it contains
heterogeneous as opposed to homogeneous classifiers. Krawczyk and Woźniak em-
ploy an evolutionary algorithm to select individual classifiers for the ensemble.[17]
In this algorithm, each individual data point in the population represents a classifier
ensemble Ch = [W]. Each component W represents the weights assigned to each of
the base classifiers W = [W1,W2, ...,WL] and is a vector with values in [0; 1].

Using experimental analysis on a large malware dataset, Krawczyk and Woźniak
prove that cost-sensitive decision trees are capable of outperforming other traditional
methods. Thus, cost-sensitive decision trees are an effective solution to dealing with
imbalanced malware detection [17].

3 Project Outline
As the previous year’s Major Qualifying Project with the Career Development Cen-
ter focused on analyzing indicators of success among students, the goal of our project

14

was to use the data provided to us to assess the factors that most influence the suc-
cess of employers looking to hire talent from WPI. This was achieved through the
following steps. First, we used a sample data set to practice relevant data analysis
techniques in Python. For this purpose, we used a publicly available student per-
formance data set from the University of California, Irvine [8]. After obtaining the
necessary data from the CDC, our next task was to prepare the datasets for analy-
sis. This required cleaning the relevant datasets in Excel, combining them together
using Excel and Google Sheets, and finally cleaning the new merged dataset. Once
our master dataset was prepared, we applied the methods learned during our first
step to the datasets from the CDC to gain the desired insights.

3.1 Test Dataset

Before we received the data collected by the CDC, we began using an openly available
dataset on student performance at a Portuguese secondary school to learn concepts
that would become important to our project [8]. We used this time to familiarize
ourselves with software (e.g. Anaconda, Jupyter notebooks) [10] and Python pro-
gramming concepts and libraries (pandas, scikit-learn, etc.) [19] [20] that we would
use throughout the rest of our project. We began by performing exploratory data
analysis, comparing different features of the data. We then encoded the data so that
we could run desired algorithms on it. This involved converting categorical data into
numerical data so that the relevant functions could make sense of the values. Fi-
nally, we used matplotlib to graph the percentage of variance of the data that was
explained using different numbers of principle components found through principle
component analysis. Because the CDC provided us with their data so early on in
our project, further techniques were tested on copies of their data.

3.2 Data Pre-Processing

After the data was provided to us, a considerable amount of time had to be spent
cleaning, manipulating, and encoding the different datasets. This involved using
Microsoft Excel to locate and delete columns and rows without any meaningful data
(including some which were entirely empty), convert binary data values into ones
and zeros, and expand certain columns with multiple pieces of information per entry
into several distinct binary columns. After this, we combined the manipulated data
sets into one large set with all of the data, using the column with names of employers
as our common key across the different sets. Due to the fact that some company
names were written slightly differently from one dataset to another, there were many
instances of one company containing two or three different rows in the merged set.
Consequently, we used Google Sheets to allow each of us to work combining duplicate
rows. Finally, after loading the data into Python, we replaced blank, or NaN, values
with zeros wherever we knew that an absence of information meant that a company
had not performed the given action.

3.3 The Curse of Dimensionality

The curse of dimensionality is a well-known concept in data science. As one considers
data in higher and higher dimensions, the space this data lives in increases to the

15

point that the data points become sparse in their dimensional space. In fact, it is
found that, as the number of dimensions, n, increases, the required data to make
accurate predictions grows by an exponential factor (Nn). Without additional data,
this sparsity causes methods that require any real statistical significance to behave
very poorly, as shown in Figure 1 below [21].

Figure 1: Dimensionality Vs Performance of Common Models (taken from [21])- This
generally describes the trade-off of common model performance for added features
of data.

As we continue to delve into our data from the CDC we must consider this
concept to ensure we develop meaningful results from our numerical techniques.
Below we describe dimension reduction techniques to reduce the effect of the curse
of dimensionality.

3.3.1 Singular Value Decomposition (SVD)

If A ∈ Rm×n, the singular value decomposition of A is a factorization such that:

A = UΣV T

where U ∈ Rm×m is the matrix consisting of the normalized eigenvectors of AAT ,
V ∈ Rn×n is the matrix consisting of the normalized eigenvectors of ATA, and Σ
∈ Rm×n is the matrix with the singular values of A along its main diagonal in
descending order, and zeros everywhere else. A singular value of matrix A refers to
the square root of the corresponding eigenvalue of ATA. Also, in SVD, U and V T

are always both unitary. This simply means that UUT = I, the identity matrix in
the same dimension as U, and similarly for V. [2] For our purposes, we use SVD to
run future principle component analysis on our data.

3.3.2 Principle Component Analysis (PCA)

Principal component analysis (PCA) is a multivariate technique that analyzes a data
table in which observations are described by several inter-correlated quantitative
dependent variables. Its goal is to extract the important information from the table,
to represent it as a set of new orthogonal variables called principal components, and

16

to display the pattern of similarity of the observations and of the variables as points
in maps. [2]

For our project, we use principle component analysis as our initial method of
dimension reduction. By first running singular value decomposition on a data set,
we can extract the principle components of our data by taking the dot product
of U and the diagonal of Σ, found using SVD. Then, by examining the explained
variance of the principle components through Σ, as seen in Figure 2 from the test
data set, we hope to see that the majority of the variance of our data is explained
by a small amount of principle components. If this is the case, our data should be
very predictable by appropriate modeling techniques.

Figure 2: Percent of Variance in Data Explained Vs Number of Principle
Components- In one of our first steps in exploring a similar dataset to our own,
we analyzed the principle components of a sample student dataset and the variance
explained by each component.

Furthermore, we can then use these "most important" components as our new
data, thus avoiding the curse of dimensionality.

4 Machine Learning Techniques
In this section, we provide brief descriptions of several supervised machine learning
techniques which were considered during the course of our project. As our response
variable (number of hires) is continuous, we focus here on regression techniques.
Finally, we provide reasoning for whether we decided to use each method.

4.1 K-Nearest Neighbors Regression

K-Nearest Neighbors regression is a non-parametric method that is used to predict a
numerical target [23]. Non-parametric methods do not make any assumptions about
the data distribution. Thus, it is a helpful method when there is little knowledge
about how the data is distributed, as is often the case when working with real data.
There are two main types of K-Nearest Neighbors, classification and regression. We

17

will mostly explain KNN Regression, as this is what we used in our data. However,
for clarity we will provide an example using KNN classification.

Figure 3: An example of K-Nearest Neighbors Classification. The green and red
points represent different classes and the yellow star represents the unknown point
to be classified. Adapted from [23].

Figure 3 above shows an example of K-Nearest Neighbors classification with a
K value of 3. The red and green data points signify two separate groups, or classes
in the data, and the star represents a point whose class is unknown. The 3 nearest
points with known values are used to determine which class the unknown data point
belongs to. Since all 3 of these points are green, we can assume that the star most
likely belongs to the pass group, and not the fail group.

Occasionally, a tie can occur. In our example, this would be an issue if the four
nearest points were used to determine which class the data point belongs to, and
two were red while the other were green. When a tie occurs, there are a number
of tie breaking methods including tie breaking by indices and Stone’s tie breaking.
In the tie breaking by indices method, if x is equidistant to Xi and Xj, then x is
determined closed to Xi if i < j. [5] In Stone’s Tie Breaking, the number of nearest
neighbors in increased until the tie is broken. [12]

Like KNN Classification, KNN regression identifies K number of training obser-
vations that are closest to a prediction point, x0. The predicted value of a point is
calculated by finding the average of these K closest training observations using the
following equation, where N0 denotes the K training observations that are closest
to x0, and Yi is the corresponding value (Pass, Fail, etc.):

Pr(Y = j|X = x0) = 1
k

∑
i∈N0

I(yi = j)

Choosing the correct value of K is important. In general, a small value of K provides
the most flexible fit with a low bias, however the variance is high. In contrast, a
large K value will have less variance and a smoother fit, but is more likely to be
biased. This is called the bias-variance trade-off. For most datasets, the optimal K
value is ten or more.

18

When the dataset is large, K-Nearest Neighbors is a highly accurate method that
is simple to implement and is not sensitive to outliers. It also has a quick training
phase and is versatile. However, K-Nearest Neighbors is not ideal for large datasets.
All of the training data is stored, and for this reason it is computationally expensive
and has a high memory requirement. Based on the size of our dataset, we decided
that K-Nearest Neighbors would not be the best option due to runtime concerns.

4.2 Linear Regression

There are two types of linear regression, simple linear regression and multiple linear
regression. In simple linear regression, a single predictor variable X is used to
predict a quantitative response Y. There is an assumption of an approximately
linear relationship between X and Y. This relationship is written as:

Y ≈ β0 + β1X

where β0 and β1 are the model parameters [23]. They are both unknown constants
that represent intercept and slope respectively, and can be estimated using the
data. Figure 4 is an example of simple linear regression, where there is a clear linear
relationship between the predictor and response variables.

Figure 4: An example of Simple Linear Regression. The x-axis represents the pre-
dictor variables, and the y-axis represents the response variables. As is shown, there
is a clear linear relationship between the two.

The accuracy of a simple linear regression model can be assessed using residual
standard error. Residual standard error is the average amount that the response
differs from the actual regression line. The value of the residual standard error will
always be between 0 and 1. If the residual standard error is close to 0, the model
predictions are very close to the actual values. Thus, the model fits the data well. If
the residual standard error is close to 1, the model predictions differ from the actual

19

values and the model is not a good fit for the data. [3] Residual standard error is
calculated using the following formula:

RSE =

√
1

n−2

n∑
i=1

(yi − ŷi)2

The second type of linear regression, multiple linear regression, is used when
there is more than one predictor variable. This was the case with our dataset.
Multiple linear regression is similar to simple linear regression, but each predictor
has a separate slope coefficient. The multiple linear regression model is represented
using the following equation:

Y ≈ β0 + β1X1 + β2X2 + ...+ βpXp + ε

Where Xj is the jth predictor. βj represents the average effect on Y of an increase
by one unit of Xj.

Linear regression models have the ability to determine the influence of one or
more predictor variables to the response variable. This type of modeling is also able
to identity outliers in the data. However, linear regression models assume that there
is a linear relationship between the predictor and response variables. Based on our
principle component analysis of the CDC data, it was clear early on that the data
does not have a linear relationship. For this reason, we decided not to use a linear
regression model, as it would not be able to provide us with accurate predictions.

4.3 Support Vector Machines

Support vector machines are a type of supervised learning model with associated
learning algorithms. They can be used for both classification and regression. The
SVM model is an extension of the support vector classifier. The support vector
classifier is a classification approach used in two-class settings, when the two classes
have a linear boundary. [23] The support vector classifier is computed as the inner
product of two observations, and can be represented by the following formula:

f(x) = β0 +
n∑
i=1

αi〈x, xi〉

There are n parameters, αi, i = 1, ..., n, or one parameter per training observation,
represented by xi [23].

The support vector machine is initially provided with a set of vectors and their
respective labels. In its basic form, SVM is a hyperplane. Each vector has p features
represented as X1, X2, . . . Xp. Each p-dimensional vector can be separated by a
(p−1)-dimensional hyperplane. The hyperplane can be represented by the following
equation:

β0 + β1X1 + β2X2 + ...+ βpXp = 0,

where β1...βp are parameters and X = (X1, X2, ..., XP)T represents a point in p-
dimensional space. A numerical optimization procedure can be used to search for
the values of β1...βp.

20

The goal is to find the hyperplane in which the data is separated by a maximal
margin. The margin is defined as the perpendicular distance between the plane and
the closest data points. The larger the margin, the lower the generalization error,
and the more accurate the prediction tends to be. Therefore, the best separation
is achieved by the hyperplane that is the greatest distance from the surrounding
points.

Figure 5 shows what the SVM algorithm is designed to do [15]. In this image,
there are two classes: red and blue. In this case, a hyperplane exists that can
separate the data into two classes, as is shown by the solid black line in Figure
5. The space between the solid black line and dotted lines are the margins, or
the distances of the closest examples from the hyperplane. An infinite number of
hyperplanes can exist, however a maximal marginal hyperplane is chosen so that
the hyperplane is farthest away from the training data [7].

Figure 5: This is an example of a Support Vector Machine. The red and blue data
points represent two different classes of data. The two classes of data are separated
by a linear boundary, which in this figure is the solid black line. The two dotted
black lines are support vectors. The space between the solid black lines and dotted
lines are the margins. [15].

However, the support vector classifier performs poorly if the boundary between
classes is non-linear. One method of accounting for non-linear class boundaries is to
use kernels. A kernel is a function that quantifies the similarity between two different
observations. There are various kernel forms including linear and polynomial. The
following is an example of one of the simplest forms of a kernel equation:

K(xi, xi′) =

p∑
j=1

xijxi′j

This is an example of a linear kernel equation. The linear kernel equation uses the
Pearson correlation to quantify the similarity between a pair of observations. As
you can see, K(xi, xi′) decreases as xi′ becomes further away from xi. The following
equation represents the polynomial form of a kernel:

21

K(xi, xi′) = (1 +

p∑
j=1

xijxi′j)
d [23]

Although SVM can be used for both classification and regression problems, it
generally preforms best in situations of binary classification. In particular, the
practice of separating hyperplanes does not work in situations with more than two
classes. Also, while SVM works well on small datasets, the training time for large
datasets tends to be high. Since our data is large and we used a regression technique,
we decided it would not be ideal to use SVM in our situation. SVM is difficult to
interpret as well, especially in comparison to other techniques such as decision trees.

4.4 Trees

A decision tree is a supervised learning algorithm that makes predictions on a target
variable based on splits in the predictor space. There are two types of decision trees
that are defined based on the type of target variable. If the target variable is cat-
egorical, classification trees are used. However, if the target variable is continuous,
regression trees are used. In classification trees, the terminal value or node is the
mode of the values that fall into a certain predictor space, and the tree eventually
guesses a class. In regression trees, this value is the mean response and the tree
eventually guesses a number [23]. For our datasets, we used regression trees since
we are looking to find the number of hires from a given company’s activities with
WPI’s CDC.

Decision trees begin with the root node, or entire data set. The root node is
then split into two or more decision nodes based on which variable creates the best
homogeneous sets. Decision nodes are subsets that will split into further subsets
recursively. Splitting continues until leaves/terminal nodes, or nodes that do not
split, are reached. Splits are made based on the split that minimizes the chosen error
metric. The lines that connect the leaves and decision nodes are called branches.

Figure 6 is an example of how a decision tree makes splits. This example shows
three splits, however in reality a tree can make many different numbers of splits.

Figure 6: This is an example of a decision tree that makes three cuts using three
predictors.

Decision trees are helpful because they are easy to understand. In particular,
their graphical representation is intuitive even to people who do not have a mathe-

22

matical background. It also requires less data cleaning than some other methods, as
it tends not to be heavily influenced by missing values and outliers. As mentioned
above, decision trees can be used to interpret different types of data as well. How-
ever, decision trees can sometimes lose information when categorizing information
for continuous variables. There is also the problem of over-fitting, which can be
fixed by pruning, the process of removing leaves from the decision tree, or by setting
constraints on model parameters.

4.5 Random Forest Regression

Once one has a working decision tree algorithm, random forest regression can be im-
plemented using the tree. This technique reduces variance by making use of a tweak
that decorrelates different trees generated by bootstrapping. [23] Bootstrapping is
a method of generating many datasets from one by repeatedly sampling random
observations from the original dataset with replacement. In other words, a single
data point may be selected to appear in a particular bootstrapped sample twice.
Each tree only considers splits along a randomly chosen subset of predictors. If p
represents the total number of predictors and m the number of predictors consid-
ered by the individual trees, the general rule is that m ≈√p. A regression forest’s
prediction is then the average of the predictions of all of its trees.

5 Methodology
Our project followed a structured methodology to maintain organization and under-
standing as we continued to come to more and more conclusions from our findings.
As with any project using real data, we began with a substantial amount of pre-
processing of our data. The data provided to us from the CDC was substantial
but not all was pertinent and much of the data was in the form of text or other
categorical data which we could not use for most analysis techniques. We removed
frivolous columns like the contact email addresses for companies and broke up large
lists of majors that were searched for by companies into different sets of boolean
values (e.g.: a value of one if a company is looking for majors in the math field,
zero if not, etc.). Our data also came from many different sources from the CDC,
so another step in our pre-processing became consolidating the data by company
name. After pre-processing the data we were able to sift through the information
to get an idea of how different companies correlate.

With a much better understanding of our data, we moved into the implemen-
tation of different modeling techniques. However, at this point, our data contained
around 2098 different companies and 67 different predictors, or variables (shown in
Appendix C). Having 67 different predictors may sound useful as we would have
more data for a given company, but this left us subject to a concept called the curse
of dimensionality, discussed in an earlier section. We addressed this by running
PCA on the data using SVD. This practice allowed us to use the most important
principle components we find to make predictions and build models.

Using our data broken into its principle components, we attempted several dif-
ferent modeling techniques, including linear regression and random forest regression.
After accessing these models we can find our next steps in the analysis of our data
for the CDC to provide our best possible insights.

23

5.1 Practice Data Testing

Before receiving data from the CDC, we started learning and practicing the imple-
mentation of important concepts and methods on an openly-available dataset. The
data, provided by UCI, pertained to student performance at a Portuguese secondary
school [8]. We used this time to familiarize ourselves with software (e.g. Anaconda,
Jupyter notebooks) [10] and Python programming concepts and libraries (pandas,
scikit-learn, etc.)[19][20] that we would use throughout the rest of our project. We
began by using the pandas library to do exploratory data analysis, comparing differ-
ent features of the data. We then encoded the data so that we could run Principle
Component Analysis (PCA) on it. This involved converting categorical data into
numerical data so that the relevant functions could make sense of the values. Fi-
nally, we used matplotlib to graph the percentage of variance of the data that was
explained using different numbers of principle components as shown in section 3.3.2.

Fortunately, the data to be analyzed for our project was provided to us early
on. This meant that some further techniques could be practiced on copies of that
data, rather than the aforementioned test dataset, before being fully implemented.
These techniques included performing PCA by using Singular Value Decomposition
(SVD) rather than using scikit-learn’s built-in PCA function, familiarizing ourselves
with the Bokeh library for Python to visualize the results of our analysis, and using
cross-validation in conjunction with different estimators (e.g. linear regression, forest
regression, etc. also explained in later sections) to determine which model would
give the best estimate of the data.

5.2 Career Development Center Datasets

After we received the relevant datasets from the CDC, we proceeded through the
steps outlined in this section to begin analyzing the data. These steps include
cleaning up the data, merging datasets based on their intersections, and encoding
the data to prepare it for statistical techniques.

5.2.1 Data Clean Up

Data cleaning is a necessary step in order to make sense of the data. In order for
data to be “clean,” it needs to be checked for duplicates, inconsistencies, and errors.
Irrelevant data needs to be deleted and inaccuracies must be addressed. One of the
things we noticed early on was the number of duplicate company names. Because
our datasets are drawn from manual entry, they initially included a large amount
of human error. Many of the individual company names were misspelled or typed
a slightly different way in different datasets, resulting in the same company listed
multiple times with slightly different names in our merged dataset. We manually
checked each company name in order to avoid errors and redundancy. In addition to
combining spelling and formatting differences, we combined companies with various
locations. For example, we consolidated Blue Cross Blue Shield of Massachusetts
and Blue Cross Blue Shield of New Hampshire as simply Blue Cross Blue Shield.
There were also some job postings for which the company name field contained a
randomly generated identification string. Because we were unable to obtain a key
to tell us what company was associated with each of these postings, we decided not
to include them in our analysis.

24

Next, we combined and renamed some of our categories. We differentiated be-
tween majors that are offered at both the graduate and undergraduate level. To
decrease our number of columns, we consolidated some of the majors into broader
categories. For example, we included computer science and electrical and computer
engineering majors in the same category. We also deleted columns that did not have
enough information and irrelevant columns. For example, no companies recruited
students pursuing a Humanities and Arts master’s degree, so we decided to eliminate
that column.

We then pulled out only the companies that hired WPI students, or that were
actively involved in recruiting students at WPI from 2015-2016. We drew these
companies from the Employer Activity, Info Sessions, Job Posts, On Campus In-
terviews, and Final 2016 Post Grad Outcomes datasets. When we initially merged
these datasets, we were left with a large number of unknown values. However, after
consulting the Career Development Center we determined that any companies which
they did not have data for did not use the corresponding WPI resources. Conse-
quently, we were able to replace many of our unknown values with zeros. After this
step, we were left with all of the companies that actively recruited students at WPI,
and all associated data from the various datasets. We then needed to decide which
categories from the data were useful and relevant, and which were not.

As our project progressed, we decided to add another variable to our dataset,
company size. We had to collect the data ourselves as it was not provided to us,
but is a very big influence on a company’s hiring capacity. The data was mainly
sourced from the websites Handshake, LinkedIn, and Glassdoor. Six categories were
used to describe size when collecting the data: 1-50 employees, 51-200 employees,
201-1000 employees, 1001-5000 employees, 5001-10000 employees, and 10000+ em-
ployees. These categories are a common way to classify employers by size, and are
used by LinkedIn and Glassdoor.

5.2.2 Merging Datasets

In order to perform any type of data analysis, the data needed to be in one Excel
spreadsheet. After identifying the most relevant data to the project from the avail-
able datasets, the cleaned spreadsheets containing employer activity on campus, job
posts on Jobfinder, and which employers hired students were merged together. Un-
fortunately, employer IDs were not provided in each of the spreadsheets from the
CDC, so the sheets were merged based on employer name. If the employer names
did not perfectly match across spreadsheets, multiple entries were created for the
same employer. Manually sifting through the employer list and combining duplicate
rows solved the problem but took additional time.

The process of merging the data was as followed. Each worksheet containing
relevant data from their respective workbooks was copied over to the master work-
book. Each worksheet had the same layout with headers for each column and no
blank rows or columns. A fourth worksheet, referred to as the master worksheet,
was created to hold the new merged data and was completely blank.

5.2.3 Further Categorization

When looking at columns such as "Job: Position Type", "Job: Majors/Concentrations",
"Job: Class Level", "Job: Degree Level", "Job: Resume Submission Method", the

25

data provided is completely text based. We can see though, that these fields are
in the form of different lists. This made it easy enough to separate the elements
of the given list into their own boolean columns. For instance in the "Job: Class
Level" column, we split this into columns for each class year listed by the employers
(Alumni <1 yr graduated, Alumni >1 yr graduated, First Year, Sophomore, Junior,
Senior and Graduate Student) and assign a 1 (one) if the employer is looking for that
particular class level and a 0 (zero) if they are not looking for someone in that class
level. We then repeat this process for "Job: Position Type", Job: Degree Level",
and "Job: Resume Submission Method".

However when looking at the "Job: Majors/ Concentrations" column, we find
that the list of majors included is considerably long. This would create many new
features for our data. In order to avoid this, and to therefore reduce the dimension
of our data, we devise a way to group these majors by more general fields, as shown
in Appendix A.

Each major/concentration group is split into both bachelors and masters (B and
M) with the exception of humanities due to the fact that no company was looking for
any humanities graduate students at WPI anyway. The different majors searched
for by companies are then filtered into these groups, shown in Appendix B.

5.2.4 Final Predictors and Target Variable

After merging our findings from five datasets into one single dataset, we were left
with 67 predictor variables and one target variable, being number of hires. The
vast majority of our predictor variables were numerical, looking at factors such as
the number of job postings and the number of on campus interviews a company
conducted. One variable, compensation type was categorical and thus had to be
encoded before a model could understand it. Three variables were one-hot-encoded,
meaning we used either 1 or 0 for yes or no answers, respectively. [24] A list explain-
ing each variable, as well as our methods for encoding when relevant are shown in
Appendix C.

5.3 Initial Analysis

Upon the completion of the pre-processing of the CDC data, we were able to truly
dive into the analysis of the information at hand. We began by looking at the corre-
lation of our data through use of correlation matrices, then moved to singular value
decomposition and principle component analysis and finally we began to analyze
our data using some common regression methods.

5.3.1 Company Correlation

To begin our analysis we decided to look at our data as a whole. We began by looking
at the predictors and how they may correlate. Using the built in corr function in
Python we created a correlation matrix from our data and used matplotlib to create
a fairly simple and easy to read visual representation of the matrix. After our pre-
processing of the data we should see that there is little completely direct correlation
between any two predictors as each of our predictors should be unique in nature and
each hold use on their own. From the figure below we can see that we were successful
in this respect but can still see some blips of similarities from our predictors.

26

Figure 7: Correlation Matrix of Predictors- To begin our analysis of companies
we generated two correlation matrices, this one to identify the correlation of the
predictors to one another.

From here we considered a more statistically interesting comparison, the cor-
relation of the companies themselves. Having already compared the predictors for
the companies, we now used the transpose of our data to develop a new correlation
matrix using the same functions. However, upon initial review we see that there are
many blank spaces in our matrix where the companies cannot be correlated at all
as seen below.

Figure 8: Initial Correlation Matrix of Companies- After analyzing the predictors
we try to identify how the different companies correlate to one another using another
correlation matrix. However, we see that there are several companies which stand
alone, sharing no correlation to their neighbors.

Upon further inspection, we see that these missing sections of the correlation ma-
trix are due to the lack of information in the "Hires" column for many companies.
To avoid this confusion in our initial analysis and create a meaningful correlation
matrix we used panda’s "dropna" function to remove possible correlations which
only contain NaN (Not a Number) or blank values. NaN’s can occur as a result of
reading in data from an Excel sheet with blank cells or attempting an impossible
mathematical operation, such as dividing by zero. These correlations are meaning-

27

less to us in these steps of our work but their data is preserved for use in further
steps. This brings us to a very exciting correlation matrix as seen below.

After adding company size as a feature in our dataset, there were no longer
any NaN values to remove, meaning company size allowed each company to have
some form of correlation regardless of missing "Hires" information. The resulting
correlation matrix, shown in Figure 9, has no white space, indicating a lack of NaN
values.

Figure 9: Final Correlation Matrix of Companies- After weeding out ill-measured
companies we were able to generate an interesting correlation matrix depicting a
fair amount of uniqueness amongst the companies

Given this matrix we can see some interesting and encouraging patterns in our
data. While it seems that a large percentage of our data lies around the middle
in correlation, we can see that some companies are stark opposites and others still
share many similarities with their competitors. This provides insight and fuel to
continue further in our analysis of this data.

5.3.2 SVD and PCA of CDC Data

After discovering some interesting insights from our correlation matrices we then
looked to further prove our data’s potential by using singular value decomposition
to run principle component analysis on our data.

Just as we did with the correlation of our data, we began with our predictors.
SVD is quite simple to run on our correlation matrix using the numpy.linalg function,
"svd". Much like on our test dataset, we were able to plot a graph of the explained
variance in our data vs the number of principle components, shown in Figure 10.

28

Figure 10: PCA Graph of Predictors- Here we ran principle component analysis on
our predictors, demonstrating the fact that the majority of the variance in the pre-
dictors can be explained using the first few principle components. This is probably
due to the distribution of the hires for our companies.

As we expected, we can see that the majority of the variance from the predictors
can be explained using far less than 67 principle components.

We then moved on to our company data. Using the same methods as above, we
obtained a similar graph, displayed in Figure 11 this time seeing that even less of the
acquired PCA components are necessary the explain the majority of the variance of
our data.

Figure 11: PCA Graph of Companies (63 Components)- Our principle component
analysis on our companies, demonstrated a similar phenomenon as the majority
of the variance in the companies could be explained using the first few principle
components.

Reducing the scale of the graph to just the first ten components, as shown in
Figure 12 we can see that even as few as eight PCA components can explain the
majority of the variance in our data.

29

Figure 12: PCA Graph of Companies (First 8 Components)- To dive deeper, we
zoom into the first eight points on the previous graph, proving to us that in fact, most
of the variance in our data can be explained using only eight principle components.

This is encouraging as this analysis shows that our data should be very pre-
dictable and, using these first eight PCA components, we can avoid the curse of
dimensionality when modeling our data for insight.

To explore our data further, we decide to graph the first two principle components
against each other (those which explain the most variance) using the bokeh plotting
tools. This graph is shown below in Figure 13

Figure 13: First two principle components graphed against each other, color and
size by number of total hires- This plot, using Bokeh gave us a dynamic look at
our data as we can see how our companies cluster in the principle component space,
specifically the first two components as they accounted for the most variance.

This gives us the ability to make a dynamic graph to show how our data looks in
the principle component space while also being able to identify individual companies
by mousing over individual points (shown in Figure 14). Each point on the graph

30

represents a company. The size of the point reflects the number of hires a company
has, with a larger circle indicating more hires. The color of the point reflects the
size of the company. The scale follows the order of the rainbow, i.e. red, orange,
yellow, green, blue, and violet, with red being the largest (10,000+ employees) and
violet being the smallest (1-50 employees).

Figure 14: Features the highlighting ability of the bokeh plotting tool- Using the
highlighting capabilities of bokeh, we were able to identify individual companies to
possibly develop ideas for analysis based on the intrinsic information of the compa-
nies themselves.

Through the use of this bokeh plot we can identify individual companies such as
UTC, pictured in Figure 14, which has the largest number of WPI hires and 10,000+
employees, and how these companies may relate both in the real world and in the
principle component space.

From this graph we can obtain insights on how we can best model our data based
on its shape.

6 Building Our Own Decision Tree
When using decision trees to analyze our data, we wanted to use our own error
metric that could take the number of hires into account. For instance, a prediction
error of one employee impacts a company with two hires much more than a company
with 100 hires. The error metric options presented in the scikit-learn regression tree
function did not meet our needs, as the only two options provided were mean squared
error and mean absolute error. Consequently, we decided to write our own decision
tree from scratch in order to use our own error metric that accounts for company
size. This article by Jason Brownlee was very helpful in guiding us through the
process of creating our own tree from scratch. [6]

We first separate the dataset into two lists of rows based on two components.
The first is the index of an attribute. The second is a split value for that attribute.
We can then use our error metric (relative squared error) to evaluate the cost of the

31

split. The tree will make the split that has the lowest cost. Our code does this by
going through each row of the data and comparing the attribute value to the split
value. If the attribute is below the split value, it is assigned to the left group. If it
is above the split value, we assign it to the right group.

We then find the best split we can make, or the split with the lowest cost. We
do this by going through the data and checking every value on each attribute. The
final best split is returned after all of the checks are made and used as a node in our
decision tree. Our name for this function is "cut()".

We build a tree by calling the "cut()" function for the entire data set. We can
divide the tree building process into three parts: terminal nodes, recursive splitting,
and building a tree. The first, terminal nodes, allows us to decide when to stop
growing a tree by setting a maximum tree depth. This limits the number of layers,
or nodes from the root, that a tree can have. Setting a maximum tree depth can
help prevent overfitting.

The second, recursive splitting, is an essential part of building a tree. After a
node is created, further nodes (called child nodes) can be created by splitting the
parent node recursively. Each node can have up to two child nodes. First, the node
is split into two groups of data. We then check if either group is empty or if we have
reached the maximum tree depth. If either of the previous statements are true, we
create a terminal node. Otherwise, we process the left child. If the group of rows is
too small, we create a terminal node, but if not we continue to make splits until the
maximum depth is reached. We then process the right side in the same way.

Finally, building the tree involves creating the root node and then making splits
recursively. We provide the tree-building function with our dataset, the maximum
tree depth, and the minimum tree size. We first use the cut() function to find the
root node. Then, we call the split() function to make splits recursively. After the
decision tree is built, it can be used to make predictions with the data.

6.1 Relative Error

Because our data for number of hires varied from 1 to 29, we wanted to minimize
our relative, or percent, error rather than the squared error or absolute error met-
rics, which are more common in random forest regression (particularly the former).
Searching for an existing implementation of such a tree yielded no useful results,
and one cannot simply pass a new criterion (error function to minimize over) to the
existing scikit-learn functions in order to achieve this. Therefore, we had to write
and implement our own tree from scratch in Python.

In order to decide on what value, α, to assign to a group after making a cut, we
wanted a value that would minimize mean squared relative error. Similarly to the
reasons behind common use of MSE, we used the square of relative error because it
is a smooth differentiable function and more heavily "punishes" outliers. Thus, we
had:

min
α

n−1∑
i=0

(α− xi)2

x2i

Where xi is the number of hires for data point i, and n is our total number of data
points. Notice that if we were to expand each term in this sum, our α2 term would
have a coefficient of 1

x2i
. Because our data for hires are obviously nonnegative, the

32

equation that we wish to find the minimum for is simply the equation of an upward-
facing parabola. Therefore, to find said minimum, we just need to set its derivative
equal to zero and solve. So,

n−1∑
i=0

2(α− xi)
x2i

= 0 =⇒ α− x0
x20

+
α− x1
x21

+ · · ·+ α− xn−1
x2n−1

= 0

Multiplying by x20x21 . . . x2n−1, we obtain:

(α− x0)
n−1∏
i=1

x2i + (α− x1)
n−1∏
i=0
i 6=1

x2i + · · ·+ (α− xn−1)
n−2∏
i=0

x2i = 0

Finally, by distributing the (α − xi) terms and factoring the resulting α terms, we
obtain:

α

n−1∑
i=0

n−1∏
j=0
j 6=i

x2j

− n−1∑
i=0

xi n−1∏
j=0
j 6=i

x2j

 = 0 =⇒ α =

n−1∑
i=0

xi n−1∏
j=0
j 6=i

x2j

n−1∑
i=0

n−1∏
j=0
j 6=i

x2j

6.2 Implementing Random Forest Regression with Our Tree

To implement random forest regression using our own tree, we generate a boot-
strapped training set for each decision tree within the forest. Each tree is also given
a random sample of predictors over which splits are considered. The convention is
that, given a total of p predictors, one should use random predictor samples of size
m ≈√p. In our case, because we had 67 total predictors, we used a random sam-
ple size of 8. This made sense intuitively, as our principal component analysis had
previously implied that our data could be well-represented by 8 features (i.e. the
additional variance explained by principal components beyond 8 was very small).

We then build a forest using our own decision tree from above, given the relevant
data, number of trees to be created, size of bootstrapped samples, maximum depth
of the trees, and minimum size of leaves in the trees. While building the forest, we
use a series of lists to keep track of what predictors each tree was built upon, the
bootstrapped set of data points that each tree used to learn and the trees themselves
which were generated by the forest. Namely, our manager, oracle and forest, held
the set of predictors, data points and trees respectively. Next, for each tree in the
forest, we compare the actual number of hires for each data point given to the tree
to learn, (kept in our oracle) to the predicted values of tree, and compute the mean
relative error for each individual tree. This will be used later to identify feature
importance and in our cross validation methods to construct the ideal ensemble
of trees. Finally, we determine the mean relative errors of all trees in the forest.
Ultimately, our forest was run with bootstrapped samples of size 260, and we were
able to produce 140 trees for our analysis.

Unfortunately, due to time limitations and our limited knowledge of how to
optimize computational efficiency in our code, our modified tree had a notably long

33

runtime. This was particularly noticeable as we had thus far been running code on
our own personal computers. This obviously led to an unreasonable runtime when
trying to use the tree for random forest regression (approximately four hours to
run a forest with only 10 trees of 260 data points each). We first tried to address
the issue using the Numba’s JIT Compiler [9], which attempts to "Compile the
decorated function on-the-fly to produce efficient machine code." Unfortunately,
when we attempted this method, we received errors that we were unable to resolve.
As a result, we had to make use of WPI’s Ace Cluster (a high-performance computing
system) in order to run our code.

6.3 Ace Cluster Implementation

After gaining access to WPI’s Ace Cluster, we looked to utilize its multiprocessing
capabilities to run multiple iterations of our forest function simultaneously. We
began by attempting to simply run multiple copies of our code at the same time,
generating 10 trees per run. For future analysis, we collected the relevant results for
each forest (predictors, predictions on testing and training data points, and mean
relative errors of each tree in the forest) into several csv files and compiled them
into a single forest after a given run.

However, this method did not properly use the cluster to its full potential and
only barely increased our runtime. From there, we sought out help from Spencer
and James of WPI’s Academic Technology Center (ATC). With their help, we were
able to create a script which ran our forests on 10 separate CPUs, decreasing our
run time exponentially. Even still, we were limited to generating forests of only
seven trees each totaling an approximate 40 hour run time. After completing this
process twice, we were able to muster our 140 total trees for our ensemble learning
methods.

7 Overview and Parameters
In this section we give an overview of each method we used to model the data and the
parameters we set for each to achieve our results. For all the methods listed below,
except for our modified random forest, we used the functions from scikit-learn.

7.1 Linear Regression

Our first attempt with linear regression used the PCA components as predictors.
Cross-validation did not seem useful for error reduction due to the nature of PCA
components and how high the MRE was compared to other methods. Instead, we
attempted cross-validation using the recursive feature elimination cross-validation
(RFECV) function in scikit-learn with all 68 predictors. The method uses recursive
feature elimination, but also utilizes cross-validation selection to determine the best
number of features. The only parameter chosen was the cv parameter, which was set
to 5, representing 5-fold cross-validation. All other parameters were the scikit-learn
defaults. We first ran the method using standardized data with the exception of
the Hires data, i.e. the Hires column in the data was the raw number of hires for
a company, but all other columns were z-transformed numbers. Having the data in

34

that format yielded the lowest MRE. For feature importance comparison, we also
ran the method with unstandardized data.

7.2 KNN

The best number of neighbors for the K-nearest neighbors method, chosen through
cross-validation, was 37 (Figure 15). The number of neighbors tested ranged from 1
to 50, with mean relative error (MRE) as the accuracy metric. All other parameters
were the default values set by scikit-learn. The data used for the KNN model was
the same as for the RFECV model, as it also yielded the lowest MRE for KNN.

Figure 15: Cross-validation for KNN - number of neighbors from 1 to 50

7.3 SVM

The support vector machine kernel that provided the best fit for the data was the
Radial Basis Function kernel, using the PCA components as predictors. Once we de-
termined this, we used cross-validation to find the optimal values for C and gamma.

To find the best value for C, we tested values ranging from 0.01 to 10. Figure
16 shows the MRE’s for the different values of C when gamma was set to the scikit-
learn default of 0.1. The error dropped as the value of C decreased, but stopped
decreasing by significant values after 0.01, so we chose that as the optimal C value.

35

Figure 16: Cross-validation for SVM - Zoomed in to show error for C values between
0.01 and 0.10

Using the newfound value for C, we then used cross-validation to find the best
value for gamma, testing values ranging from 0.01 to 10. Figure 17 shows an in-
teresting pattern. The MRE peaked at 0.09, and decreased in both directions from
that point until reaching a minimum at about 3.8. Lowering the gamma value led
to an even lower MRE, but at the cost of higher variation in the model. In order to
avoid over fitting, we chose 0.01 as our optimal gamma instead of 3.8, but they did
both lead to similar MRE’s.

Figure 17: Cross-validation for SVM - showing error for gamma values between 0.01
and 10

7.4 Original Random Forest

For the built-in random forest regression, we used cross-validation to choose the
best number of learners, maximum tree length, and minimum leaf size. The random

36

state of the tree was set to zero. The accuracy metric to find the best parameters
was mean relative error. We used the default setting for the maximum features per
tree, which was all 68 predictors. There was no guarantee all predictors would be
used in a tree, nor the forest as a whole. The data used to build the forest was not
standardized, as standardizing led to a higher MRE.

Figure 18: Cross-validation for Original Random Forest - number of learners (trees)
in the forest

To find the optimal number of learners for the forest, we tested values between 1
and 500. Figure 18 shows the MRE’s for 360 to 375 learners, as that was minimum
of the full cross-validation run was fell within that range. Based on the graph, we
chose 367 as the number of learners for the model.

Figure 19: Cross-validation for Original Random Forest - minimum samples in a
leaf

To optimize the minimum number of sample per leaf, we cross-validated using
values between 1 and 50. As shown in Figure 19, having 3 samples per leaf at
minimum resulted in the lowest MRE. The same was done to find the optimal

37

maximum depth for a tree, and based on Figure 20 the depth that minimized the
MRE was 5.

Figure 20: Cross-validation for Original Random Forest - maximum tree depth

7.5 Modified Random Forest

As with the built-in random forest, we used cross-validation to find the best number
of learners. However, due to our computational limitations, we were not able to
cross-validate on the maximum tree depth and minimum leaf size. Instead, we
used a base maximum depth of 25 with a minimum leaf size of 5 and found that this
assumption was accurate enough for our purposes. From there, we developed a forest
pruning method, similar to a global threshold pruning where the optimal subforest
is calculated by pruning subtrees [4]. In our case, we selected the "best" trees for
our model by implementing a threshold on the training errors of individual trees.
In its simplest sense, if a tree in our forest was highly inaccurate on the training
data, then we would throw it away and just the same, if a tree was too accurate
on the training set, it would be considered over-fitting and would be thrown away.
This allowed us to cross-validate on these two threshold values (the upper and lower
bound) to see how removing ill fitting trees affected the overall testing error of our
forest.

Let us first take a look at the training errors for all of our trees that we were
able to generate.

38

Figure 21: Training Accuracy of Each Tree Generated- We explored the training
accuracies of all of the trees sorted by their error that we generated.

We can see from Figure 21 that the majority of our trees have a mean relative
error of below one while only a few have exceptionally high errors, for our purposes
we will completely disregard those far-right outliers.

Figure 22: Training Accuracy of Each Tree Generated Without Outliers- We re-
moved the outlier trees entirely as their high inaccuracies would lead to poor results
regardless of our cross-validation methods.

In Figure 22 we can more easily discern the distribution of the relative error for
our trees. Now, with a graphical representation of our trees’ error metric, we may
implement our threshold process.

39

Figure 23: Example of Threshold Methodology for Cross-Validation- Using this
example, we showed how our cross validation method was implemented. Any trees
to the right of the upper bound (red, right) was rejected, and any trees to the left
of the lower bound (red, left) were also rejected, leaving a range of accepted trees
in between which our model will compute with.

Figure 23 demonstrates an example bounds which we may put on our trees. In
this example, our bounds are from 30 percent relative error to 90 percent relative
error (shown in orange). These bounds are represented by the thick red line on the
trees’ themselves. By our cross-validation method, we will disregard any trees which
do not fall within these bounds (Rejected) and only evaluate our model using those
trees which satisfy this bound (Accepted).

We began our process by first cross-validating on the upper bound of our thresh-
old. These were the trees that would be deemed too inaccurate and would not be
included in our final model. This would be represented in Figure 23 by moving the
right red line. For this test we kept our lower bound of the threshold at 0 percent
error, allowing trees that are completely over-fitting to be included in the model.
From here we compared the overall testing error of the forest with an upper bound
of training errors for each tree from 30 to 100 percent error as seen in Figures 24
and 25.

40

Figure 24: Upper Bound Threshold Methodology for Cross-Validation- Our cross-
validation for the upper bound began at 30 percent error with a lower bound of 0
percent error, then progresses the upper bound to the right (indicated by arrow).

Figure 25: Upper Bound Threshold Methodology for Cross-Validation- Our cross-
validation for the upper bound ended at 100 percent error with a lower bound of 0
percent error, represented by these bounds.

41

Figure 26: Cross-validation for Modified Random Forest upper bound- We cross-
validated our model on the lower bound, starting with at lower bound at zero percent
error and finishing at 45 percent error.

From the graph in Figure 26 we can see that by removing as many of the "worst"
trees as possible, we can reduce our testing error substantially for our model.

From here we then cross-validate on the lower bound of our threshold, the "over-
fitting" trees. Through this process we looked to eliminate trees who’s training
error is too low and thus may have been over-fitting to the training data, giving
poor testing results. Here, we kept the upper bound of the threshold at 45 percent
error, as we deemed from our previous graph this was a reasonable cutoff point for
inaccurate trees. We then compared the testing error of the forest with a lower
bound of training errors for each tree from 0 to 45 percent error. The result is
illustrated in Figures 27 and 28.

Figure 27: Lower Bound Threshold Methodology for Cross-Validation- Our cross-
validation for the lower bound began at zero percent error with an upper bound of
45 percent error, then progresses the lower bound to the right (indicated by arrow).

42

Figure 28: Lower Bound Threshold Methodology for Cross-Validation- Our cross-
validation for the lower bound ended at 45 percent error with the upper bound of
45 percent error, represented by these bounds (contains only one tree at this point).

Figure 29: Cross-validation for Modified Random Forest lower bound- We cross-
validated our model on the lower bound, starting with at lower bound at zero percent
error and finishing at 45 percent error.

In Figure 29 we can see that our testing results are actually best when allowing
as many accurate trees as possible in our model. It seems that, based off of this,
none of our trees are completely over-fitting as we see the straight line starting at
0 and ending at 24 percent error. This means that the lowest error tree we had
generated still had a training error of 24 percent and is far from over-fitting.

To test this further, we cross-validated both of these values simultaneously, shift-
ing the lower bound iteratively for each time that we shifted the upper bound. For
our lower bound, we tested values from 24 (our most accurate tree) to 50 percent
error and for our upper bound we tested from 50 to 100 percent error. This gave us a
much better idea of how these thresholds interacted and, given the graph generated
in Figure 30, we are better able to select the inputs for our final model.

43

Figure 30: Cross-validation for Modified Random Forest simultaneous upper and
lower bound- To thoroughly evaluate our model using this method, we cross-
validated on both thresholds simultaneously.

To add to this analysis, we imported plotly to duplicate this 3D plot and color
scale our resultant forest testing error. Plotly also enabled us to rotate and zoom
on the graph to gain a better understanding of how our thresholds were affecting
the results as seen in Figure 31.

Figure 31: Cross-validation for Modified Random Forest plotly- We used the plotly
tool to generate this dynamic representation of our cross-validation method.

From this graph and the color bar on the side, those bounds which result in
darker blue colored points correlate to the lowest testing error for our forest while
those in the darker red region correlate to higher testing error for our final model.

44

Figure 32: Callout Markers to Explore Specific Thresholds- We picked a few, dis-
tributed points to observe more closely. Callout 1 represents a threshold that results
in exceptionally high mean relative error. Callout 2 represents a threshold that re-
sults in a middle of the pack relative error. Callout 3 represents the threshold that
corresponds the lowest mean relative error.

To explore further still, we can look at the thresholds at some of these individual
points. Here we sampled a few instances from Figure 32 to identify the thresholds
each are using.

45

Figure 33: Callout 1 Threshold Methodology for Cross-Validation- At this specific
point in our cross-validation, we have a lower threshold of 45 percent error and
an upper threshold of 82 percent error. This corresponds to an overall 46 percent
testing error for our forest.

Figure 34: Callout 2 Threshold Methodology for Cross-Validation- At this specific
point in our cross-validation, we have a lower threshold of 30 percent error and
an upper threshold of 79 percent error. This corresponds to an overall 39 percent
testing error for our forest.

46

Figure 35: Callout 3 Threshold Methodology for Cross-Validation- At this specific
point in our cross-validation, we have a lower threshold of 24 percent error and
an upper threshold of 50 percent error. This corresponds to an overall 31 percent
testing error for our forest.

After observing some of the results from our cross-validation in Figures 33, 34,
and 35 We were able to determine an optimal threshold for our trees’ training
error to fall under. Selecting the point with the lowest error from Figure 31, which
corresponds to the thresholds in the callout 3, Figure 35, we see that our threshold
will accept trees who’s training accuracies fall between 24 and 50 percent, yielding
a 31 percent relative error.

To finalize our methods, we cross validated on the number of learners, or trees in
our forest. For this, we began with a meager 10 trees and tested up to our maximum
140, each pulled at random, without replacement and maintained our thresholds
from the previous method, generating the cross-validation graph in Figure 36.

47

Figure 36: Cross-validation for Modified Random Forest number of learners- We
cross-validated our model on the number of trees given to the forest while maintain-
ing a constant, finalized value for our thresholds from the previous cross-validation
method. This allowed us to identify how many trees should be fed into our forest
and gave us our final model results.

Given these results we can see that our best accuracy comes when using 116 trees
of our 140 with a resultant 0.3066 mean relative error. While we would expect this
graph to be more variable in its results, we assume that, given more computational
time to generate more trees, we would see a graph more close to that of figure 18,
as the original random forest was able to generate up to 500 trees.

Regardless of our computational difficulties, based off of our cross validation
results, our final model would accept trees of training error inside of our threshold:
[0.24, 0.5] and use 116 of our generated trees resulting in our final mean relative
error of 0.3066 or 30.66 percent. As this is a relative error, our final model would,
in theory, be able to predict within 30 percent of company hires for both large and
small companies, culminating in a model that is fair for companies of all sizes.

8 Method Results

8.1 Linear Regression

The RFECV linear regression model with the lowest MRE had only three predic-
tors, Job: Degree Level Master of Physics for Education, Job: Degree Level Master
of Mathematics for Education, and Job: Total Student Views. The MRE for the
method was 0.6977 when estimating the unstandardized number of hires. The high-
est possible prediction produced from the model was 6.3017 hires for the company
with 21 hires. While this may seem like the model was off by a lot, in reality it
results in a relative error of 0.699. In comparison, the model predicted 1.7248 for
the majority of companies with one hire, which is a 0.7248 relative error.

In addition to the most accurate linear regression model, we also analyzed a
model with a total of 12 predictors produced using the RFECV method on the un-
standardized data. The MRE for the method was 0.7748, which is higher than the

48

one-variable model, but offers more insight on feature importance. The model pre-
dicted 11.4257 for the company with 21 hires, and 1.1011 for many of the one hire
companies. While these results seem good, both models faltered in predicting com-
panies of all sizes leading to larger MREs when compared to the other models used.
However, the linear regression models seemed to differentiate between companies
with one hire and companies with more than one hire, especially the 12 predictor
model, leading us to consider these models in our feature importance analysis below.

8.2 KNN

The final K-Nearest Neighbors model had an MRE of 0.5156 when estimating the
unstandardized number of hires. The model predicted 4.2432 for the company with
21 hires, while the predictions for companies with one hire mainly fell between
1.0811 and 1.2973. The prediction of 4.2432 was the largest for the model, while all
other predictions fell below 3. This means the model was able to cluster some of
the companies with more hires together, but not all, as some of the predictions for
companies with more than one hire but less than 21 hires did not show the same
trend.

8.3 SVM

The final Support Vector Machine model had an MRE of 0.2617 when predicting
the unstandardized number of hires. Table 3 shows some of the test predictions and
the actual number of hires for the corresponding companies, e.g. (prediction, actual
number of hires). The model predicted every company as having between 1.0999
and 1.1349 hires, meaning it did not predict hires for companies with more than
one hire accurately. Instead, the model achieved such a low MRE by predicting the
majority every time, with the majority being one hire.

Prediction True
Value Prediction True

Value Prediction True
Value

1.1003 1 1.1006 2 1.1318 2
1.1007 1 1.0999 2 1.1001 1
1.1229 2 1.0982 1 1.0999 1
1.1113 3 1.1003 1 1.1022 1
1.1323 1 1.0999 1 1.1001 1
1.1003 3 1.1004 2 1.1142 5
1.1009 2 1.1008 1 1.1349 21
1.1065 14 1.1321 13 1.1190 1

Table 3: Predictions versus the true value for the best SVM model

8.4 Original Random Forest

The final original Random Forest model had an MRE of 0.5575 when estimating
the unstandardized number of hires. In terms of the scope of the project, this
is the MRE we aimed to reduce using our modified Random Forest model. The
model predicted 12.8538 for the company with 21 hires, while the majority of the

49

predictions for companies with one hire ranged between 1.2275 and 1.5879. The
model also predicted 10.0339 for one of the companies with 14 hires but 2.0639 for
the other company with 14 hires. Despite having low relative errors for predicting
companies with one and 21 hires, the model is clearly not consistent in its success.
The relative error for predicting companies with one hire was also higher than all
but one other model.

8.5 Modified Random Forest

The final modified Random Forest model had an MRE of 0.3066 when estimating
the unstandardized number of hires. The model predicted 1.0475 for almost every
company with one hire, which was the most consistent and accurate of any of the
models we used. The model did struggle to produce higher-valued predictions, but
the highest predictions still mainly corresponded to the companies with the most
hires. This indicates that the model was able to predict both when a company only
hired one student and when a company hired multiple students.

8.6 Feature Importance

Feature importance provides insight on the features that predict a company’s number
of hires the best. Linear regression and random forest are both interpretable methods
that allow for the implementation of feature importance. Here we provide the results
of feature importance for Linear Regression, the original Random Forest, and our
modified Random Forest.

8.6.1 Linear Regression

Even though the Linear Regression model with the lowest MRE only had three
predictors, the feature selection ranking generated from the RFECV method, shown
in Table 4, could still provide some insight on predicting hires. It is important to
note this ranking does not mean that the best predictor of hires is if a company is
looking for students with a Master of Physics Education degree. Instead we consider
the top 10 features from the model to compare with the top features selected by the
other models. In the tables below, a predictor with rank 1 indicates it was used in
the model. The predictor with the lowest rating was the first to be removed from
the model by the RFECV method, while the predictor with rank 2 was the last
predictor to be removed from the model before RFECV found the best model.

50

Predictor Importance
Rating

Job: Degree Level Master of Physics for Educ 1
Job: Degree Level Master of Mathematics for Educ 1
Job: Total Student Views 1
Job: Unique Student Views 2
Job: Degree Level Master of Engineering 3
Job: Degree Level Graduate Student 4
Job: Compensation Type 5
Job Posts 6
OCI Interviews 7
Job: Class Level Junior 8

Table 4: Linear Regression feature importance - best features

In order to achieve a more relevant feature importance list, we analyzed the
predictors of the Linear Regression model trained with the unstandardized data.
The model had 12 predictors total, as shown in Table 5. None of the features with
rank 1 are more important than the others of the same rank. Going to the career
fairs, being a silver, event, and/or office sponsor, and having 10,000+ employees
seemed to be the major themes in the 12 predictors used in the model.

51

Predictor Importance
Rating

Job: Position Type General/Non-Professional Job 1
Job: Majors/Concentrations HumanitiesB 1
2015 Fall 1
Silver Sponsor (F) 1
2016 Life Sciences 1
2016 Spring 1
Silver Sponsor (S) 1
Info Sessions 1
Educational programs 1
Count of Event Sponsor 1
Count of Office Sponsor 1
10000+ Emp 1
Job: Position Type Contract Professional 2
Resume Book 3
Job: Position Type Summer Internship 4
Job: Degree Level Bachelor of Science 5
Job: Position Type Full Time-Professional 6
........
5000-1000 Emp 47
Job: Majors/Concentrations ChemM 48
Job: Unique Student Views 49
Job: Total Student Views 50
Job: Resume Submission Method Other (enter below) 51
Job: Student Favorite Count 52
51-200 Emp 53
Bronze Sponsor (S) 54
Bronze Sponsor (F) 55
Job: Class Level Alumni (< 1 yr graduated) 56

Table 5: CV Linear Regression feature importance - best and worst features

8.6.2 Original Random Forest

To perform feature importance on the original Random Forest model we used scikit-
learn’s RandomForestRegressor feature importance attribute. The method uses a
"mean decrease impurity" to rank the features, calculated as the average decrease
in node impurity over all the trees in the forest (Further explained in [18]). The
decrease in node impurity is weighted by the probability of reaching that node.
The probability is approximated by totaling all the samples directed to a decision
node associated with a feature and dividing that by the total number of samples
in the training set. Essentially, a feature used to make an early split will involve
more samples and will likely have a higher importance weight, and the lower the
decrease in impurity, the less important the feature is to the model. Table 6 shows a
normalized (sum of ranks equals 1) ranking of the predictors produced using scikit-
learn.

52

Predictor Importance
Rating

OCI Interviews 0.3891720
10000+ Emp 0.0655776
Job: Majors/Concentrations CS/ECEB 0.0475571
2015 Fall 0.0374671
Job: Majors/Concentrations MathB 0.0364330
Job: Resume Submission Method Accumulate in WPI Job Finder 0.0363132
Job: Student Favorite Count 0.0319309
Job Posts 0.0252511
Job: Degree Level Doctor of Philosophy 0.0172753
Job: Class Level First Year (Undergraduate) 0.0169964
Job: Class Level Graduate Student 0.0152993
Info Sessions 0.0148919
Job: Degree Level Master of Science 0.0146426
Job: Majors/Concentrations EngineeringB 0.0129859
Job: Position Type Full Time-Professional 0.0124963
Job: Class Level Junior 0.0124112
2016 Spring 0.0109016
Job: Unique Student Views 0.0107605
Job: Class Level Senior 0.0101961
........
Job: Majors/Concentrations ChemM 0.000652621
Resume Book 0.000410857
51-200 Emp 0.000392524
2016 Life Sciences 9.56791e-05
1-50 Emp 3.19474e-06
Job: Position Type General/Non-Professional Job 0
Job: Position Type Contract Professional 0
Silver Sponsor (F) 0
Silver Sponsor (S) 0
Count of Event Sponsor 0

Table 6: Original Random Forest feature importance - best and worst features

Only one feature had an importance rating above 0.1 (OCI Interviews), which is
a commonly used cut-off for feature importance using this ranking system. However,
due to the large number of predictors in our model, we shifted the cut-off to 0.01.
Any feature with a rating of 0 was not used by any tree in the forest, meaning even
when a tree was given it as one of the 8 randomly selected predictors, the tree itself
did not use it to make a cut. With 367 trees in the forest, it is very unlikely that
the predictors with 0 rating were never seen by a tree.

8.6.3 Modified Random Forest

Due to time limitations, we were unable to properly develop a feature importance
metric analogous to the those of the built in scikit-learn functions. However, we
were able to analyze the features of each of our ensembled trees and their relative
"importance". Two aspects were considered when determining the top predictors of

53

hiring success, number of occurrences and accuracy.
We first observed the number of trees that used each predictor. For this consid-

eration, only decision trees with mean relative error greater than 0.24 and less than
or equal to 0.50 were considered. This cutoff was used in order to eliminate trees
with extremely high rates of relative error, so we were not looking at predictors used
in the most inaccurate trees. Table 7 lists the top 13 most frequent predictors (not
including number of hires) used in decision trees with mean relative errors between
0.24 ad 0.50, as well as the number of trees in which each occurred:

Top 13 Most Frequently Used Predictors Number of
Occurrences

1-50 Emp 11
Job: Degree Level Doctor of Philosophy 11
CivilB 11
Job: Majors/Concentrations HumanitiesB 10
Job: Position Type Intern/Co-op (4-8 months) 10
Resume Searches 9
Job: Resume Submission Method Accumulate in Job Finder 9
Job: Position Type General/Non-Professional Job 9
Resume Book 8
Silver Sponsor (S) 8
Job: Class Level Graduate Student 8
Job: Majors/Concentrations All Majors 8
Job: Majors/Concentrations BUS/MNGM 8
Job: Position Type Summer Internship 8

Table 7: The 13 most frequently used predictors by Modified Random Forest

As is listed in the above table, the top three most frequently used predictors were
companies of size 1-50 employees, the number of postings on Job Finder accepting
students with a Doctorate degree of Philosophy, and number of jobs per company
open to students pursing their Bachelors degree in Civil Engineering. Table 8 shows
the 5 least frequently used predictors:

5 Least Used Predictors Number of
Occurrences

Job: Class Level Junior 1
Job: Majors/Concentrations BioB 2
Job: Degree Level Master of Business Administration 3
2016 Spring 3
51-200 Emp 3

Table 8: The 5 least frequently used predictors by Modified Random Forest

As is shown in the above table, the number of job postings for undergraduate
juniors was the least used predictor, as it was only used in 1 decision tree. Other
predictors used in three or less trees were the number of job postings for biology
majors pursuing a bachelor’s degree, the number of job postings for students pursing
a master’s degree in Business Administration, if a company attended the 2016 Spring
Career Fair, and if a company was of size 51-200 employees.

54

Although it was helpful to get an idea of the most and least frequently used pre-
dictors, this method for determining feature importance has a number of drawbacks.
The predictors were chosen randomly, thus it is possible that some predictors were
selected more than others simply based on luck. Also, while features used in deci-
sion trees with a mean relative error greater than 0.50 were not considered, simply
considering the number of occurrences of each feature does not take into account
the mean relative error of each tree in which the features are used. For example,
a feature that appears 8 times on trees with an average mean relative error of 0.49
is considered equally successful as a feature that appeared 8 times on trees with an
average mean relative error of 0.30. For this reason, the average mean relative error
rates of the trees with each predictor were calculated. As we collected the error of
each tree that we generated, and the predictors used to build each, we were able
to compute the mean error relating to each predictor. To do this, we identified the
mean relative error (MRE) for each tree that a given predictor was used in and
took the mean of these instances to find the average overall MRE for each predictor.
Table 9 shows the predictors ordered from lowest to highest overall MRE.

55

Predictor Average MRE
Job: Resume Submission Method Accumulate in WPI Job Finder 0.4403236
OCI Interviews 0.4619576
1-50 Emp 0.5138745
CivilB 0.5450084
Job: Majors/Concentrations ChemB 0.5457903
Resume Book 0.5523481
Job: Degree Level Doctor of Philosophy 0.5603279
Bronze Sponsor (S) 0.5793731
Job: Majors/Concentrations BioB 0.5809165
10000+ Emp 0.5810108
Job: Position Type Intern/Co-op (4-8 months) 0.5830088
Job: Class Level Senior 0.6077643
Job: Degree Level Master of Physics for Educ 0.6079236
Job: Position Type Contract Professional 0.6119266
Job: Onestop Job 0.6184994
Job: Majors/Concentrations BUS/MNGM 0.6453953
Job: Position Type Summer Internship 0.6572316
Job: Position Type General/Non-Professional Job 0.6591620
........
2016 Spring 0.7938544
Count of Office Sponsor 0.7969152
Job: Majors/Concentrations CS/ECEM 0.8137167
Job: Unique Student Views 0.8184280
Job: Degree Level Master of Engineering 0.8194426
1001-5000 Emp 0.8301961
Job: Class Level First Year (Undergraduate) 0.8553419
Job: Degree Level Bachelor of Science 0.8828907
201-1000 Emp 0.9180624
Job: Class Level Junior 1.2208132

Table 9: Modified Random Forest "feature importance" - lowest to highest average
errors from trees w/ given feature

8.7 Data Observations

8.7.1 Employer Location

Based on the data received from the CDC, WPI students in the class of 2016 were
hired in at least 35 states in the U.S. and at least 13 other countries. Figure 37 shows
a detailed view of the locations based on the number of students hired. The location
data does not include students hired for internships or co-ops unless specified.

56

Figure 37: Global map of WPI student employer locations

There were four countries with more than one student hired, as is shown in Table
10. The United States was by far the most popular country for WPI students to seek
employment. It is also important to note that not all students reported an employer
location, so it is possible the true number of both national and international hires
is different from what is reported below.

Country Hires
United States 977
Saudi Arabia 5
China 4
Singapore 2

Table 10: Top 4 countries for employers

The area of the United States with highest concentration of hires was New Eng-
land, as shown in Figure 38. More than half of the hiring locations were in Mas-
sachusetts alone.

57

Figure 38: Map of employer locations in New England

As seen in Table 11, California was the only state in the top five for hires not on
the east coast.

State Hires
Massachusetts 563
Connecticut 126
California 55
New Hampshire 46
New York 37

Table 11: Top 5 states in the U.S. for employers

As for cities, Boston reigned supreme, and East Hartford was the only city outside
of Massachusetts to make the top five. Some notable west coast cities not shown in
Table 12 were Seattle, WA with 12 hires and Mountain View, CA with 14 hires.

City Hires
Boston 101
Worcester 52
Cambridge 35
Waltham 33
East Hartford 23

Table 12: Top 5 cities in the U.S. for employers

8.7.2 Employer Size

The size of a company can play a significant role in hiring capacity. A larger company
is more likely to have several available jobs as opposed to a smaller company that
may only need to hire a couple people a year. Based on this logic, we collected
the size of each employer in our dataset and used it to help predict the number
of students an employer hires from WPI. Table 13 shows the 10 most successful

58

employers, and 8 out of 10 have over 10,000 employees, and all of them have at
least 1,000. The numbers below also include summer employment data, such as
internships, co-ops, and research programs, alongside full-time employment data.
Of WPI’s 24 hires listed below, only five were post-grad jobs; the rest were mainly
for research programs over the summer.

Employer Size Hires
United Technologies Corporation (UTC) 10001+ 29
Pratt and Whitney 10001+ 25
Worcester Polytechnic Institute 5001-10000 24
General Electric 10001+ 21
Wayfair 1001-5000 19
Raytheon 10001+ 17
National Grid 10001+ 15
UnitedHealth Group 10001+ 15
Analog Devices 10001+ 14
Cimpress (formerly Vistaprint) 10001+ 14

Table 13: Top 10 employers and their sizes

Companies of a variety of sizes interacted with WPI and the CDC, as shown in
Figure 39. Small companies were the most prevalent, and the number of companies
decreased as size increased, except for companies with more than 10,000 employees.
Overall, this trend matches the way businesses work; there are more small businesses
than there are large ones as it takes time and success to grow into a large corporation.
Companies with more than 10,000 employees often have multiple office locations,
allowing them to reach a wider range of students. They also tend to be more
well known, increasing their chances of having a presence in categories such as job
postings and career fairs.

59

Figure 39: Number of employers based on size

Looking further into the effect of company size on the number of hires reveals
two notable trends, which can be seen in Figure 40 below. The red bar in the graph
represents the number of companies that hired at least one WPI student, the blue
bar represents the companies where we do not have a number of hires, and the green
bar represents the total number of students hired by companies of the specified size.
As the company size increased, the percentage that hired students rose in proportion
to the total number of companies of the same size. Also, companies with more than
10,000 employees hired significantly more students overall.

60

Figure 40: Number of hires based on employer size. Red indicates the number
of companies with 1+ hires, blue the number without a hire, and green the total
number of hires for that size.

Table 14 shows the percentage of companies of a certain size that hired at least
one student. Approximately 19.39% of companies with 1-50 employees hired at least
one WPI student, while 47.79% of companies with more than 10,000 employees hired
at least one WPI student. This indicates that almost half of the largest companies
recruiting WPI students ended up hiring one, and the turnout for larger companies
was more than for smaller companies.

Company Size Percentage with Hires
1-50 Emp 19.39%
51-200 Emp 21.46%
201-1000 Emp 31.25%
1001-5000 Emp 31.19%
5001-10000 Emp 41.07%
10000+ Emp 47.79%

Table 14: Percentage of companies with hires by size

As shown in Table 15, companies with more than 10,000 employees hired 38.73%
of all WPI students that reported getting hired. Meanwhile, the percent of total
hires for companies with 1-50, 51-200, 1,001-5,000, and 5,001-10,000 employees fell
between 10% and 12%. This suggests that not only did a higher proportion of
companies with 10,000 or more employees hire students, but they also hired more

61

students than smaller companies. Also, as company size increased, the average num-
ber of students hired by a company increased, with companies with 1-50 employees
hiring 1.19 students on average versus companies with more than 10,000 employees
hiring 3.39 students on average.

Company Size Percentage of
Total Hires

Ave. Number of
Hires per Company

1-50 Emp 11.03% 1.19
51-200 Emp 11.84% 1.35
201-1000 Emp 16.02% 1.73
1001-5000 Emp 10.79% 1.97
5001-10000 Emp 11.59% 3.13
10000+ Emp 38.73% 3.39

Table 15: Percentage of total hires by company size

8.7.3 Internship Hires

Many companies of differing sizes recruit seasonal interns as well as full-time hires.
As shown in Figure 41, as company size increased the number of interns hired tended
to increase as well.

Figure 41: Interns vs. full-time hires by company size

According to the reported data, companies with 10,000 employees or more hired
just over 45% of interns from WPI, which was by far the largest amount (see Table

62

16). Companies with 5001-10000 employees hired the second largest amount of
interns from WPI, at 18.58%. Meanwhile, the percentage of total internship hires
for companies with 1001-5000, 201-1000, 51-200, and 1-50 employees ranged from
11.46% to 3.95%. It is important to note that while there were more companies with
1-50 employees that interacted with WPI than companies of any other size category,
companies with 1-50 employees hired the least amount of interns from WPI.

Company Size Percentage of
Internship Hires

1-50 Emp 3.95%
51-200 Emp 8.30%
201-1000 Emp 11.46%
1001-5000 Emp 11.06%
5001-10000 Emp 18.58%
10000+ Emp 45.85%

Table 16: Percentage of total internship hires by company size

9 Discussion

9.1 Model Accuracy

The mean relative errors of the models used in this project ranged from 0.2617
for SVM to 0.7407 for Linear Regression, as shown in Table 17. We attempted to
predict both the unstandardized and standardized number of hires, but the errors
when predicting the standardized hires were much higher. Thus, when comparing
the models we looked at the errors for predicting the unstandardized hires.

Model MRE (unstandardized) MRE (standardized)
Linear Regression 0.7407 2.526
RFECV with Linear Reg. 0.6977 1.422
SVM 0.2617 1.456
KNN 0.5156 1.461
Original Random Forest 0.5575 1.782
Modified Random Forest 0.3066 2.153

Table 17: Test error comparison of each model

The model with the lowest MRE was SVM at 0.2617, meaning the model was
off by an average of 26.17% for its predictions. The model with the highest MRE of
0.7407 was Linear Regression using all 68 predictors, listed as just Linear Regression
in the table. Our modified Random Forest model had the second lowest MRE at
0.3066, and was 15% lower than the traditional Random Forest’s MRE (0.5575).

Although SVM achieved the lowest MRE, it was only through predicting one hire
for every company. SVM was also not easy to interpret when trying to find which
predictors were the most significant, which led us to put more emphasis on optimiz-
ing the Random Forest Regression model instead. Both Random Forest models had
their strengths and weaknesses; the original Random Forest had a lower MRE when

63

making predictions for companies with a larger numbers of hires, while our modified
Random Forest had a lower MRE when making predictions for companies with a
smaller number of hires. However, both were successful in distinguishing between
companies with one hire and multiple hires.

9.2 Predictors of Hiring Success

In order to determine the most important predictors of hiring success, we ana-
lyzed the features used in four different models: two linear regression models us-
ing RFECV, the original Random Forest model, and our modified Random Forest
model. In order to compare the predictors determined to be most important by each
model, we looked at the top 10 and bottom 10 predictors from each model, with the
exception of the Linear Regression model which used 12 predictors.

Predictor Top 10
Appearances

OCI Interviews 3
10000+ Emp 3
Job Posts 2
2015 Fall 2
Job: Resume Submission Method Accumulate in WPI Job Finder 2
Job: Degree Level Doctor of Philosophy 2

Table 18: Predictors appearing in the top 10 for multiple models

Two predictors, OCI Interviews and 10000+ Emp were in the top 10 predictors
for 3 out of 4 of the models. This indicates that companies who conduct on-campus
interviews and/or have 10,000+ employees are likely to hire WPI students. Four
predictors overlapped in the original and modified Random Forests’ top 10 features:
OCI Interviews, 10,000+ Emp, Job: Resume Submission Method Accumulate in
WPI Job Finder, and Job: Degree Level Doctor of Philosophy. In addition, none of
the six predictors listed in Table 18 were in the bottom 10 predictors of any model,
indicating a higher probability in truly being good predictors of hiring success.

Three predictors were in the bottom 10 predictors for multiple models: Job:
Majors/Concentrations ChemM, 51-200 Emp, and Job: Unique Student Views. One
of those, Job: Unique Student Views, was in the top 10 list for the Linear Regression
model with three parameters, so we could not necessarily rule it as a good or bad
predictor. Other predictors that were in the bottom 10 of a model that were not
also in the top 10 of a model include Job: Resume Submission Method Other (enter
below), Bronze Sponsor (F), Job: Class Level Alumni (< 1 yr graduated), Job:
Position Type Contract Professional, Job: Majors/Concentrations CS/ECEM, 1001-
5000 Emp, and 201-1000 Emp.

The Linear Regression model with 12 predictors and the original Random Forest
model disagreed on which predictors were most important, as 5 of the predictors in
the Linear Regression model were in the bottom 10 of the Random Forest model.
Four predictors, Silver Sponsor (F), Silver Sponsor (S), Count of Event Sponsor, and
Job: Position Type General/Non-Professional Job, were not used by the Random
Forest at all, while the other one, 2016 Life Sciences, had a very low rating. In
addition, one of the predictors in the bottom 10 of the Linear Regression model,

64

Job: Student Favorite Count, was in the top 10 for the Random Forest model.
Given the higher accuracy of the Random Forest model, we put more weight on
that model’s feature importance results, making it less likely that those predictors
were good indicators of hiring success.

Overall, the best predictors of hiring success were OCI Interviews, 10,000+ Emp,
Job: Resume Submission Method Accumulate in WPI Job Finder, Job Posts, 2015
Fall (career fair) and Job: Degree Level Doctor of Philosophy. The worst predic-
tors were Job: Majors/Concentrations ChemM and 51-200 Emp. In addition, we
observed hiring trends in both employer location and size. More than half of WPI
students hired in 2016 ended up at companies with offices in Massachusetts, with
companies in Boston hiring the most at 101 students. Companies with 10,000+ em-
ployees hired 38.73% of all WPI students hired in 2016 and 45.85% of the students
that reported having an internship. Also, 47.79% of companies that size involved
in recruiting on campus hired at least one student, further supporting the feature
importance results.

10 Limitations and Recommendations

10.1 Project Limitations

The main roadblocks of the project were time, data quality and quantity, unbalanced
data, and computing power. The timeline for the project was set at three academic
terms since the beginning, requiring us to set our project goals according to what
can be feasibly completed in the timeframe. Rather than to try answering all of the
CDC’s questions, we prioritized the most important and mathematically significant
questions over the others. The main goal of the project was to find out how involved
employers that hire WPI students are on campus, so we put predicting an employer’s
number of hire based on campus involvement at the top of the list. However, while
collecting the data used in our analysis, we were able to look into some of the
smaller questions, such as how the location and size of the employers plays a role in
the number of WPI students hired.

While the data we received from the CDC was plentiful, there were many holes
we needed to fill in order to get a working dataset. Data consolidation and cleaning
took a large amount of time, including verifying if employers listed by students in
the Final Outcomes survey actually existed. As we progressed with the project we
also realized the size of an employer could be an important factor when determining
how many students are hired. We were not given this data and had to gather it
ourselves using sources such as Handshake and LinkedIn. Even with the additional
data, our project was limited to the data we were given and/or collected. If all
students reported their post-graduation status, our hire predictions would be much
more conclusive. There were some students who reported a full or part-time job, but
did not state any employer information, rendering the data points useless. There
could also be other factors that play into the number of students a company hires,
such as number of alumni currently working for a company or the number of interns
hired from WPI.

Having unbalanced data created multiple hurdles for the project. The first issue
was poor prediction accuracy, as discussed above, which we solved by creating a new
error metric to calculate the relative error when building trees/forests. However, the

65

new error metric required us to write our own Random Forest Regression code, which
turned out to be a big detour for the project and led to another issue, inefficiency.

A lack of computing power was the biggest limitation for the project. Since
we had to write our own Random Forest Regression code, it was significantly less
efficient than using the scikit-learn packages. Creating a regression tree with just
50% of the data (approximately 250 observations) took over an hour to run on
our code, while creating an entire random forest with scikit-learn took seconds. Our
temporary fix was to limit the training set to just 20% of the data, but that sacrificed
accuracy of the model.

Unfortunately, due to the limited amount of time that we had, we were unable
to implement a full analysis of feature importance. Although, as detailed above, we
were still able to produce an ad hoc analysis using our regression forest.

10.2 Recommendations for Future Projects

The data used in the project was from the class of 2016, so future studies could
use data from subsequent years. In particular, WPI switched from Job Finder to
Handshake in the academic year of 2016-2017. Thus, it would be valuable to use
data from the class of 2017 in order to determine the effectiveness of Handshake
as opposed to Job Finder. It would be in the CDC’s best interest to complete
comparative studies of data from different years, as covering multiple class years
would offer additional insights.

It would also be in the best interest of the CDC to further improve its data clean
up and survey gathering methods. The most time-consuming part of the project
was cleaning and merging various datasets. In particular, data cleaning would be a
much faster process if the CDC took steps to ensure that data from various years
is recorded in a consistent form. It would also be helpful if the CDC took measures
to increase the number of students that provide information about their summer
internships. While the CDC received information regarding post-graduation plans
from over 95% of students in the class of 2016, internship information is reported at
a much lower rate. Internship information would be helpful to have, especially for
companies that use their resources primarily to recruit and hire interns.

Our feature importance showed that on-campus interviews were a top predictor
for the Class of 2016 Dataset. In the future, the CDC could keep track of the number
of on-campus interviews a company holds in each term, to determine if there is a
specific time of the year that on-campus interviews are most effective. The CDC
currently has a similar practice in place for keeping track of career fairs, as it notes
which companies attend career fair in the spring and the fall instead of just listing
career fairs as one general category.

Finally, we recommend that future teams reduce the number of subcategories in
order to have cleaner runs. For example, any major-specific features such as Job:
Majors/Concentrations MathB and Job: Majors/Concentrations CS/ECEB can be
eliminated, leaving only the broader degree level features such as Job: Degree Level
Bachelor of Science. As is previously mentioned, we had 67 predictor variables.
Decreasing this amount could produce cleaner, more accurate results.

66

Appendices
A Major Groups

1. Job: Majors/Concentrations MathB

2. Job: Majors/Concentrations MathM

3. Job: Majors/Concentrations EngineeringB

4. Job: Majors/Concentrations EngineeringM

5. Job: Majors/Concentrations CivilB

6. Job: Majors/Concentrations CivilM

7. Job: Majors/Concentrations BioB

8. Job: Majors/Concentrations BioM

9. Job: Majors/Concentrations ChemB

10. Job: Majors/Concentrations ChemM

11. Job: Majors/Concentrations CS/ECEB

12. Job: Majors/Concentrations CS/ECEM

13. Job: Majors/Concentrations BUS/MGB

14. Job: Majors/Concentrations BUS/MGM

15. Job: Majors/Concentrations HumanitiesB

16. Job: Majors/Concentrations All Majors

67

B Group Contents
• MathB

– Actuarial Mathematics

– Mathematical Science

– Physics

• MathM

– Applied Mathematics

– Data Science

– Applied Statistics

– Financial Mathematics

– Industrial Mathematics

– Mathematics for Educators

• EngineeringB

– Aerospace Engineering

– Electrical Engineering

– Engineering Physics

– Industrial Engineering

– Mechanical Engineering

– Robotics Engineering

• EngineeringM

– Manufacturing Engineering

– Materials Process Engineering

– Materials Science & Engineering

– Power Systems Engineering

– Systems Engineering

• CivilB

– Architectural Engineering

– Civil Engineering

– Construction Project Management

– Environmental & Sustainable Studies

– Environmental Engineering

• CivilM

– Fire Protection Engineering

68

• BioB

– Biochemistry

– Biomedical Engineering

• BioM

– Bioinformatics & Computational Biology

– Biology & Biotechnology

• ChemB

– Chemical Engineering

– Chemistry

• ChemM

– Materials Process Engineering

– Materials Science & Engineering

• CS/ECEB

– Computer Science

– Computers with Applications

– Electrical & Computer Engineering

– Interactive Media & Game Development

• CS/ECEM

– Information Technology

– Data Science

• BUS/MNGB

– Economic Science

– Management Engineering

– Management Information Systems

– Management Science & Engr.

• BUS/MNGM

– Business Administration

– Financial Mathematics

– MBA

– Management

– Marketing & Innovation

– Operations Analytics & Management

– Power Systems Management

69

– System Dynamics & Innovation Management

– Learning Sciences & Technology

• HumanitiesB

– Humanities & Arts

– Interdisciplinary

– International Studies

– Liberal Arts & Engineering

– Professional Writing

– Psychological Science

– Society, Technology & Policy

• All Majors

– Companies That Listed All Majors

C Predictor Variables
1. Job: Position Type Summer Internship: This predictor showed the number of

summer internship positions a company posted.

2. Job: Position Type Intern/Co-op (4-8 months): This predictor showed the
number of 4-8 month internship positions and co-ops a company posted.

3. Job: Position Type Full Time-Professional: This predictor showed the number
of full time positions a company posted.

4. Job: Position Type General/Non-Professional Job: This predictor showed the
number of non-professional positions a company posted.

5. Job: Position Type Part Time Job: This predictor showed the number of part
time positions a company posted.

6. Job: Position Type Contract Professional: This predictor showed the number
of contract professional positions a company posted.

7. Job: Majors/Concentrations MathB: This predictor showed the number of po-
sitions a company posted that were open to Math Majors pursuing a bachelor’s
degree. The majors that went into this category were Actuarial Mathematics
and Mathematical Sciences.

8. Job: Majors/Concentrations MathM: This predictor showed the number of po-
sitions a company posted that were open to Math Majors pursuing a master’s
degree. The majors that went into this category were Applied Mathematics,
Applied Statistics, Data Science, Financial Mathematics, Industrial Mathe-
matics, and Mathematics for Educators.

70

9. Job: Majors/Concentrations EngineeringB: This predictor showed the number
of positions a company posted that were open to engineering majors pursuing
a bachelor’s degree. The majors that went into this category were Aerospace
Engineering, Biomedical Engineering, Chemical Engineering, Industrial Engi-
neering and Robotics Engineering.

10. Job: Majors/Concentrations EngineeringM: This predictor showed the number
of positions a company posted that were open to engineering majors pursuing
a master’s degree. The majors that went into this category were Aerospace
Engineering, Biomedical Engineering, Chemical Engineering, Fire Protection
Engineering, Manufacturing Engineering, Materials Process Engineering, Ma-
terials Science and Engineering, Power Systems Engineering, Robotics Engi-
neering, and Systems Engineering.

11. Job: Majors/Concentrations CivilB: This predictor showed the number of
positions a company posted that were open to civil engineering and environ-
mental engineering majors pursuing a bachelor’s degree. We grouped these
two majors together because they are offered in the same department at WPI.

12. Job: Majors/Concentrations CivilM: This predictor showed the number of
positions a company posted that were open to civil and environmental en-
gineering majors pursuing a master’s degree. We grouped these two majors
together because they are offered in the same department at WPI.

13. Job: Majors/Concentrations BioB: This predictor showed the number of po-
sitions a company posted that were open to Biology and Biotechnology and
Bioinformatics and Computational Biology majors pursuing a bachelor’s de-
gree.

14. Job: Majors/Concentrations BioM: This predictor showed the number of po-
sitions a company posted that were open to Biology and Biotechnology and
Bioinformatics and Computational Biology majors pursuing a master’s degree.

15. Job: Majors/Concentrations ChemB: This predictor showed the number of
positions a company posted that were open to Chemistry and Biochemistry
majors pursuing a bachelor’s degree. We grouped these two majors together
because they are offered in the same department at WPI.

16. Job: Majors/Concentrations ChemM: This predictor showed the number of
positions a company posted that were open to Chemistry and Biochemistry
majors pursuing a master’s degree. We grouped these two majors together
because they are offered in the same department at WPI.

17. Job: Majors/Concentrations CS/ECEB: This predictor showed the number of
positions a company posted that were open to Computer Science, Electrical
and Computer Engineering, and Interactive Media and Game Development
Majors pursuing a bachelor’s degree.

18. Job: Majors/Concentrations CS/ECEM: This predictor showed the number
of positions a company posted that were open to Computer Science, Electrical
and Computer Engineering, Computer Security, Information Technology, and
Systems Modeling majors pursuing a master’s degree.

71

19. Job: Majors/Concentrations BUS/MGB: This predictor showed the number
of positions a company posted that were open to Business, Management Engi-
neering, and Management Information Systems majors pursuing a bachelor’s
degree.

20. Job: Majors/Concentrations BUS/MGM: This predictor showed the number
of positions a company posted that were open to Business Administration,
Construction Project Management, Management, Marketing and Innovation,
Operations Analytics and Management, Power Systems Management, Sup-
ply Chain Management, and System Dynamics and Innovation Management
majors pursuing a master’s degree.

21. Job: Majors/Concentrations HumanitiesB: This predictor showed the number
of positions a company posted that were open to Humanities Majors pursuing a
bachelor’s degree. The majors that went into this category were Environmental
and Sustainability Studies, Humanities and Arts, International and Global
Studies, and Society, Technology, and Policy.

22. Job: Majors/Concentrations All Majors: This predictor showed the number
of positions a company posted that were open to all majors.

23. Job: Class Level First Year (Undergraduate): This predictor showed the num-
ber of positions a company posted that were open to undergraduate first year
students.

24. Job: Class Level Sophomore: This predictor showed the number of positions
a company posted that were open to undergraduate sophomore year students.

25. Job: Class Level Junior: This predictor showed the number of positions a
company posted that were open to undergraduate junior year students.

26. Job: Class Level Senior: This predictor showed the number of positions a
company posted that were open to senior first year students.

27. Job: Class Level Graduate Student: This predictor showed the number of
positions a company posted that were open to graduate students.

28. Job: Class Level Alumni (< 1 yr graduated): This predictor showed the
number of positions a company posted that were open to alumni of less than
one year.

29. Job: Class Level First Year (Undergraduate): This predictor showed the num-
ber of positions a company posted that were open to alumni of one year or
more.

30. Job: Degree Level Bachelor of Arts: This predictor showed the number of
positions a company posted that were open to students pursuing a Bachelor
of Arts degree.

31. Job: Degree Level Bachelor of Science: This predictor showed the number of
positions a company posted that were open to students pursuing a Bachelor
of Science degree.

72

32. Job: Degree Level Doctor of Philosophy: This predictor showed the number of
positions a company posted that were open to students pursuing a Doctorate
of Philosophy degree.

33. Job: Degree Level Master of Business Administration: This predictor showed
the number of positions a company posted that were open to students pursuing
a Master’s of Business Administration.

34. Job: Degree Level Master of Engineering: This predictor showed the number
of positions a company posted that were open to students pursuing a Master’s
of Engineering.

35. Job: Degree Level Master of Mathematics for Edu: This predictor showed the
number of positions a company posted that were open to students pursuing a
Master’s of Mathematics for Education.

36. Job: Degree Level Master of Physics for Edu: This predictor showed the
number of positions a company posted that were open to students pursuing a
Master’s of Physics for Education.

37. Job: Degree Level Master of Science: This predictor showed the number of
positions a company posted that were open to students pursuing a Master’s
of Science.

38. Job: Degree Level Post Doc: This predictor showed the number of positions a
company posted that were open to students pursuing a Post Doctorate Degree.

39. *Job: Resume Submission Method E-mail: This predictor showed the number
of positions a company posted that accepted resume submissions by email.

40. Job: Resume Submission Method Accumulate in WPI Job Finder: This pre-
dictor showed the number of positions a company posted that accumulated
resumes in WPI’s Job Finder.

41. Job: Resume Submission Method Other: This predictor showed the number of
positions a company posted that accepted resume submissions by some form
other than the two listed above.

42. Job: Onestop Job: This predictor showed the number of positions a company
posted that were Onestop Jobs.

43. Compensation Type: Indicates the number of positions a company posted that
were paid

44. Job: Student Favorite Count: This predictor showed the number of times a
student favorited one of the jobs a company posted.

45. Job: Unique Student Views: This predictor showed the number of unique
student views one of the jobs posted by a company received.

46. Job: Total Student Views: This predictor showed the number of total student
views one of the jobs posted by a company received.

73

47. 2015 Fall: Indicates whether a company attended the 2015 Fall Career Fair

48. Silver Sponsor (F): This predictor showed if a company was or was not a Silver
Sponsor of the Fall 2015 Career Fair

49. Bronze Sponsor (F): This predictor showed if a company was or was not a
Bronze Sponsor of the Fall 2015 Career Fair

50. 2016 Life Sciences: Indicates whether a company attended the 2016 Life Sci-
ences Career Fair

51. 2016 Spring: Indicates whether a company attended the 2016 Spring Career
Fair

52. Silver Sponsor (S): This predictor showed if a company was or was not a Silver
Sponsor of the Spring 2016 Career Fair

53. Bronze Sponsor (S): This predictor showed if a company was or was not a
Bronze Sponsor of the Spring 2016 Career Fair

54. Info Sessions: This predictor showed the number of on campus information
sessions a company held.

55. Resume Book: This predictor showed the number of positions for which a
company accepted resumes through resume book submissions.

56. Educational Programs: This predictor showed the number of educational pro-
grams that a company ran.

57. Job Posts: This predictor showed the number of job posts that a company
placed using Job Finder.

58. Resume Searches: This predictor showed the number of resume searches that
a company conducted.

59. Event Sponsor: Indicates whether a company sponsored an event other than
a career fair

60. Office Sponsor: Indicates whether a company was a sponsor of the CDC office
for the ’15-’16 academic year

61. OCI Interviews: This predictor showed the number of on campus interviews
than a company conducted.

62. 10000+ Emp: Indicates a company with more than 10,000 employees

63. 5001-10000 Emp: Indicates a company with 5,001-10,000 employees

64. 1001-5000 Emp: Indicates a company with 1,001-5,000 employees

65. 201-1000 Emp: Indicates a company with 201-1,000 employees

66. 51-200 Emp: Indicates a company with 51-200 employees

67. 1-50 Emp: Indicates a company with 1-50 employees

74

References
[1] V. García A. I. Marqués and J. S. Sánchez. On the suitability of resampling

techniques for the class imbalance problem in credit scoring. Journal of the
Operational Research Society, 64:1060–1070, 2013.

[2] Hervé Abdi and Lynne J. Williams. Principal component analysis. Wiley
Interdisciplinary Reviews: Computational Statistics, 2(4):433–459, 2010.

[3] George Seber Allen Lee. Linear Regression Analysis. John Wiley and Sons,
Hoboken, New Jersey, 2003.

[4] J. Serra B Ravi Kiran. Cost-compleixty pruning with out-of-bag samples.
https://beedotkiran.github.io/forest.html, 2017.

[5] Gleb Beliakov and Gang Li. Improving the speed and stability of the k-nearest
neighbors method. Pattern Recognition Letters, 33:1296–1301, 2012.

[6] Jason Brownlee. How to implement the decision tree algorithm
from scratch in python. https://machinelearningmastery.com/
implement-decision-tree-algorithm-scratch-python/, 2016.

[7] Corinna Cortes and Vladimir Vapnik. Machine Learning. Springer. Kluwer
Academic Publishers, New York, 1995.

[8] Paulo Cortez and Alice Silva. Using data mining to predict secondary school
student performance. In Antonio Brito and J. Teixeira, editors, Proceedings of
5th FUture BUsiness TEChnology Conference, pages 5–12, April 2008.

[9] Numba Developers. 1.3. compiling python code with @jit. http://numba.
pydata.org/numba-doc/0.37.0/user/jit.html, 2012.

[10] Plotly Developers. Jupyter notebook tutorial in python. https://plot.ly/
python/ipython-notebook-tutorial/, 2015.

[11] Scikit-Learn Developers. 1.10. decision trees. http://scikit-learn.org/
stable/modules/tree.html, 2017.

[12] Luc Devroye and Laszlo Gyorfi. On the strong universal consistency of nearest
neighbor regression function estimates. The Annals of Statistics, 22(3):1371–
1385, 1994.

[13] Haibo He and Edwardo Garcia. Learning from imbalanced data. IEEE Trans-
actions on Knowledge, 21:1263–1284, 2009.

[14] Tin Kam Ho. The random subspace method for constructing decision forests.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 20:832–844,
1998.

[15] Laura Kahn. Machine learning for beginners-support vector machine. https:
//thedatalass.com/2018/02/26/support-vector-machine/, 2018.

[16] Steve Koppi. Post-graduation report class of 2016. Technical report, WPI,
2016.

75

https://beedotkiran.github.io/forest.html
https://machinelearningmastery.com/implement-decision-tree-algorithm-scratch-python/
https://machinelearningmastery.com/implement-decision-tree-algorithm-scratch-python/
http://numba.pydata.org/numba-doc/0.37.0/user/jit.html
http://numba.pydata.org/numba-doc/0.37.0/user/jit.html
https://plot.ly/python/ipython-notebook-tutorial/
https://plot.ly/python/ipython-notebook-tutorial/
http://scikit-learn.org/stable/modules/tree.html
http://scikit-learn.org/stable/modules/tree.html
https://thedatalass.com/2018/02/26/support-vector-machine/
https://thedatalass.com/2018/02/26/support-vector-machine/

[17] Bartosz Krawczyk and Michał Woźniak. Evolutionary cost-sensitive ensem-
ble for malware detection. International Joint Conference SOCO’14-CISIS’14-
ICEUTE’14, 14(978):433–442, 2014.

[18] Richard A. Olshen Leo Breiman, Jerome H. Friedman and Charles J. Stone.
Classification and Regression Trees. Brooks/Cole Publishing, Monterey, 1984.

[19] Wes McKinney. pandas: Python data analysis library. http://pandas.
pydata.org/, 2017.

[20] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Ma-
chine learning in Python. Journal of Machine Learning Research, 12:2825–2830,
2011.

[21] Vincent Spruyt. About the curse of dimensional-
ity. https://www.datasciencecentral.com/profiles/blogs/
about-the-curse-of-dimensionality, 2014.

[22] The WPI Career Development Center Staff. About the cdc.
http://wp.wpi.edu/cdc/about/, 2018.

[23] Daniela Witten Trevor Hastie, Gareth James and Robert Tibshirani. An In-
troduction to Statistical Learning. Springer Texts in Statistics. Springer, New
York, 2013.

[24] Rakshith Vasudev. What is one hot encoding? why and
when do you have to use it? https://hackernoon.com/
what-is-one-hot-encoding-why-and-when-do-you-have-to-use-it-e3c6186d008f,
2017.

[25] Young Zhang and Dapeng Wang. A cost-sensitive ensemble method for class-
imbalanced datasets. Abstract and Applied Analysis, 2013(196256):1–6, 2013.

76

http://pandas.pydata.org/
http://pandas.pydata.org/
https://www.datasciencecentral.com/profiles/blogs/about-the-curse-of-dimensionality
https://www.datasciencecentral.com/profiles/blogs/about-the-curse-of-dimensionality
https://hackernoon.com/what-is-one-hot-encoding-why-and-when-do-you-have-to-use-it-e3c6186d008f
https://hackernoon.com/what-is-one-hot-encoding-why-and-when-do-you-have-to-use-it-e3c6186d008f

	Introduction
	Measuring Outcomes

	Literature Review
	Cost Sensitive Ensembles
	Cost Sensitive Decision Trees

	Project Outline
	Test Dataset
	Data Pre-Processing
	The Curse of Dimensionality
	Singular Value Decomposition (SVD)
	Principle Component Analysis (PCA)

	Machine Learning Techniques
	K-Nearest Neighbors Regression
	Linear Regression
	Support Vector Machines
	Trees
	Random Forest Regression

	Methodology
	Practice Data Testing
	Career Development Center Datasets
	Data Clean Up
	Merging Datasets
	Further Categorization
	Final Predictors and Target Variable

	Initial Analysis
	Company Correlation
	SVD and PCA of CDC Data

	Building Our Own Decision Tree
	Relative Error
	Implementing Random Forest Regression with Our Tree
	Ace Cluster Implementation

	Overview and Parameters
	Linear Regression
	KNN
	SVM
	Original Random Forest
	Modified Random Forest

	Method Results
	Linear Regression
	KNN
	SVM
	Original Random Forest
	Modified Random Forest
	Feature Importance
	Linear Regression
	Original Random Forest
	Modified Random Forest

	Data Observations
	Employer Location
	Employer Size
	Internship Hires

	Discussion
	Model Accuracy
	Predictors of Hiring Success

	Limitations and Recommendations
	Project Limitations
	Recommendations for Future Projects

	Appendices
	Major Groups
	Group Contents
	Predictor Variables

