

A Modular Model Checking Algorithm
for Cyclic Feature Compositions

by

Xiaoning Wang

A Thesis

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Master of Science

in

Computer Science

by

Xiaoning Wang
January 2005

APPROVED:

Professor Kathi Fisler, Thesis Advisor

Professor Dan Dougherty, Thesis Reader

Dr. Michael A. Gennert, Head of Department

 1

Abstract

Feature-oriented software architecture is a way of organizing code around the

features that the program provides instead of the program's objects and components. In

the development of a feature-oriented software system, the developers, supplied with a

set of features, select and organize features to construct the desired system. This

approach, by better aligning the implementation of a system with the external view of

users, is believed to have many potential benefits such as feature reuse and easy

maintenance. However, there are challenges in the formal verification of feature-oriented

systems: first, the product may grow very large and complicated. As a result, it's

intractable to apply the traditional formal verification techniques such as model checking

on such systems directly; second, since the number of feature-oriented products the

developers can build is exponential in the number of features available, there may be

redundant verification work if doing verification on each product. For example,

developers may have shared specifications on different products built from the same set

of features and hence doing verification on these features many times is really

unnecessary. All these drive the need for modular verifications for feature-oriented

architectures.

Assume-guarantee reasoning as a modular verification technique is believed to be an

effective solution. In this thesis, I compare two verification methods of this category on

feature-oriented systems and analyze the results. Based on their pros and cons, I propose

 2

a new modular model checking method to accomplish verification for sequential feature

compositions with cyclic connections between the features. This method first builds an

abstract finite state machine, which summarizes the information related to checking the

property/specification from the concrete feature design, and then applies a revised CTL

model checker to decide whether the system design can preserve the property or not.

Proofs of the soundness of my method are also given in this thesis.

Keywords: verification, model checking, assume-guarantee reasoning, feature-oriented

software development, modular verification.

 3

Acknowledgements

 I would like to thank my advisor, Prof. Kathi Fisler, for her support, advice, and

encouragement throughout my graduate studies. It is lucky for me to find an advisor

giving me freedom and trust to come up and develop the idea. It’s also a great

opportunity to escalate my knowledge level.

 My thanks also go to Prof. Dan Dougherty for being the reader of this thesis and

teaching me the knowledge of Automata Theory and Formal Logic.

 4

Table of Contents

Chapter 1: Introduction..1

1.1 A formal model of features ... 3

1.2 Challenges for feature-oriented software verification......................7
1.2.1 Model checking……..………………………………………………………. 8
1.2.2 Modular verification & assume-guarantee reasoning……..…………….10

Chapter 2: Comparison and analysis of two existing methods....... 14

2.1 Constraint-based open system verification for product Line 15

2.2 Assumption generation for software component verification 21

2.3 Analysis of the fundamental elements of the two methods............. 25
2.3.1 System models……………………………………………………………...25

 2.3.1.1 Different definition of “open” systems………………………………26
 2.3.1.2 State variables: support for persistence……………………………..27
 2.3.1.3 Drawbacks of the two models………………………………………...28

2.3.2 Properties……………………………………………………………...........32

2.4 Unifying the inputs & outputs of the two methods………………..34
 2.4.1 Unifying inputs of the two methods……………………………………….35

 2.4.2 Unifying outputs…………………………………………………………….37

2.5 Summary of case studies……………………………………………42

Chapter 3: An abstraction-based modular verification method..... 44

3.1 Formal models of the abstract Finite State Machines (FSM) 44

3.2 An abstraction-based model checker .. 47

Chapter 4: Soundness Proof ... 57

Chapter 5: Summary and Future work ... 69

Bibliography .. 72

 5

Appendix A: Case studies and Problems found............................... 74

Appendix B: The outputs of the 14 examples by the two tools 80

 6

List of Figures

Figure 1 - A feature-oriented system design example………………….........................2
Figure 2 - Feature example……………………………………………………………...3
Figure 3 - The base structure and its connection with other features………………..4
Figure 4 - How to build a product from features and the base……...………………..6
Figure 5 - How does CTL model checker work?..10
Figure 6 - Sequential composition VS. concurrent composition…………………….14
Figure 7 - An example system in Blundell's method…………………………………16
Figure 8 – Data environment under multiple paths………….....................................18
Figure 9 - Blundell's method can't handle circular feature composition…………...20
Figure 10 - A system in Giannakopoulou's method……………………......................23
Figure 11 - A property in Giannakopoulou's method………………………………...23
Figure 12 – The generated assumption automata in Giannakopoulou's method…..24
Figure 13 – A system to show the action priority problem…………………………..29
Figure 14 – A property to show the action priority problem………………………...30
Figure 15 - Composed automaton to show the action priority problem…………….31
Figure 16 - Unify the inputs of two methods………………………………………….36
Figure 17 – An email system example…………………………………………………38
Figure 18 - A property where all actions are external………………………………..38
Figure 19 - Composed automaton with all internal actions hidden…........................39
Figure 20 - Construction of a future FILTER………………………………………...41
Figure 21 - Example of my new method: system and property……………………...47
Figure 22 - An example of the constructed abstract FSM…………….......................53

 1

Chapter 1

Introduction

In recent years, there is growing research for software products built from features

[8][10][11][12]. Features are functional units that implement some customer requirements.

For instance, encryption, auto-reply, forwarding are all features in an email system and

they all implement some customer requirements of the system. The size of a feature can

be arbitrary: it can be as small as a single class that’s sufficient for the implementation of

a requirement and can be as large as thousands of lines of programs across distributed

systems.

In contrast to the traditional object-oriented and component-based software

development, in the feature-oriented approach, developers implement the system core

infrastructure into a special component called the base. Each feature is implemented as a

separate module. Then the developers build up the composed system called a product in a

product line manner by plugging features chosen from the series of features available into

the base [9]. Figure 1 shows an example of feature-oriented email system development.

This email product is composed of the base and two features, compose and encryption.

 2

Since features are extracted from the customers’ side, the feature-oriented software

architecture really aligns the software implementation with the external view of

customers instead of the traditional designs about objects and components from

programmers. Feature-oriented methodology is believed to have many potential benefits

such as feature reuse and easy maintenance [9]. For example, the encryption feature in

Figure 1 may be frequently used in the development of many systems such as Intrusion

Detection Systems, Web-based systems, and Network Management systems, etc.

Maintaining feature-oriented software by adding and removing features from a product is

also relatively easy.

 3

1.1 A formal model of features

In this section, I will define a formal model of the feature-oriented architecture for

my thesis.

Although the design and the implementation of a feature could be arbitrary, I assume

that all features can be described by Finite State Machines (FSM). Such FSM can either

be given by the designers [15] or be extracted from code [16]. There are also other

restrictions on the structures of the FSM in this thesis.

Definition 1: A feature is a finite state machine that satisfies the following structural

conditions:

1. Each FSM has a unique initial state to start up the system

2. No terminal state in the FSM has a successor.

3. Each state in the FSM can reach some terminal state by some number of steps.

Figure 2 shows a legal FSM of a feature in my thesis:

 4

The base is a special element in constructing a feature-oriented system that

implements the core functionalities (the basic email sending functionality in an email

system for example) of a system. The specialty of the base in my research comes from its

structure.

Definition 2: The base is a finite state machine that satisfies the following structural

conditions:

1. All structural requirements of the FSM of a feature

2. The initial state init is not reachable from any distinguished state init’ (to which

other features will have transitions), as shown in figure 3.

The purpose of the structural requirement in (2) is to avoid data leakage across

multiple runs of system, which will be discussed in Section 2.1.

 5

The state variables in the FSM of both features and the base are propositions

capturing either data or control. A data proposition represents some attribute of an object

that can persist in multiple system states and a control proposition refers to an external

user input or decision that drives the feature. For example, in an email system, the truth of

a data proposition encrypted describes the state of an email after it gets encrypted; at

some point of the email system execution, the system may wait for the user decision to

choose the next path to be executed, the proposition used to represent the user decision is

a control proposition.

Given a set of features and the base, they are combined into a product. Since both

features and the base can be expressed by FSM, from the architectural level, a product is

built by adding edges between some states of these FSM. How the features and the base

are connected is defined as follows:

Definition 3: Feature connections are the connection relationships between features

and the base where

1) There may be connections from the terminal state of any Fi to the initial state of

any Fj;

2) There may be connections from some state s1 in the base to the initial state of any

feature and from the terminal state of any feature to some state s2 in the base, but

the initial state of the base is not reachable from s2.

 6

Note that this definition allows all kinds of connections between features such as

linear chain, branches and cycles. More restrictively, this thesis requires that the features

and the base are hooked up by adding edges between the terminal states of a feature and

the initial states of its successors.

Definition 4: A product can be defined inductively as follows:

1. The base is a product

2. Connecting new features into the current product according to the rules in

Definition 3 also constructs a product.

Figure 4 gives an intuitive picture about how a product is constructed. The base is the

starting place and a set of features F1, F2…F5 are inserted into the product. F4, F5 and

the base are organized into a linear chain. F1 has two braches with one flowing into F2

and the other into F4. Circular connections are also possible, as reflected by the edges

between F2 and F4.

 7

1.2 Challenges for feature-oriented software verification

Formal verification, which establishes properties of system designs using formal

logic, rather than just incomplete testing, is believed to be a good approach to prove the

software systems are free of certain defects and behave as expected. Unfortunately the

traditional verification algorithms cannot be applied into feature-oriented software

development directly for two reasons: first, the product may grow very large and have

such a huge amount of states to be checked that makes the verification work intractable;

second, verifying each product individually may cause redundant verification work.

Remember that there may be an exponential number of products built in the number of

features [3]. As a result, it’s highly possible for users to share specifications on different

products built from the same set of features and hence doing verification on these features

many times is really unnecessary.

In order to solve these problems, we want a verification technique that [3][4]

1. analyzes individual features in isolation

2. does minimum checks on the whole product at the composition time

3. requires little user interactions

This goal and the problem context suggest a modular model checking method to

conquer the verification problems for feature-oriented architectures. While there is a

 8

preliminary approach that satisfies these goals [3], it doesn't support as rich a set of

feature-oriented designs as I would like.

1.2.1 Model checking

Model checking, as an efficient and practical verification method, has been used

widely [1]. This method can consume a finite state machine model and a temporal logic

formula and decide whether the formula is satisfied in the model. The temporal formula is

typically expressed in the logics CTL [1] or LTL [2].

The most popular model checker is based on CTL. In the CTL model checking

method, the system model is an FSM, in which each state s is originally labeled with a

state variable set to hold all propositions that are true at s. The property is written as a

CTL formula, which is the combination of atomic propositions, logical connectives and

temporal operators. The logical connectives refer to and, or and negation and the

temporal operators include AGf, AXf, AFf, A[f U f’], EGf, EXf, EFf, E[f U f’] where f and

f’ are both CTL formulas. The operators have the informal meanings described below; the

formal semantics appears in [1].

1. AGf means f should be true globally in all paths from the current state.

2. AXf means f should be true at all next states of the current state.

3. AFf means f should be true finally in all paths from the current state.

4. A[f U f’] means f should be true until f’ is true in all paths from the current state.

 9

5. EGf means f should be true globally in one of the paths from the current state.

6. EXf means f should be true at one of the next states of the current state.

7. EFf means f should be true finally in one of the paths from the current state.

8. E[f U f’] means f should be true until f’ is true in one of the paths from the current

state.

Here, the true and false value of a formula f, both atomic and non-atomic, describes

some state of system executions. For example, a formula AG (composed-> AF encrypted

^ EF sent) states that whenever an email gets composed, it should always be finally

encrypted for data protection and there exists a path in the system to send the email out.

Figure 5 outlines how a CTL model checker works. It first calls a function, denoted

here as TMC(FSM, f’), to label the FSM with each sub-formula f’ of the property f. This

process actually calls another function, denoted as TMC_help(s, f’), to label each state s

at which f’ is a true with (f’, true). These pairs (f’, true) are kept in a state label set and all

missing sub-formulas of f are then false at s. A CTL model checker processes the

sub-formulas from smallest to largest based on the semantics of the logical and temporal

operators, so that all pieces of a sub-formula are labeled before the states are labeled with

the sub-formula. Eventually CTL model checker can determine whether f is true at this

FSM by checking if f is labeled at the initial state. Note that a formula holds on the FSM

if it labels the initial state.

 10

1.2.2 Modular verification & assume-guarantee reasoning

Modular verification divides the software systems into small modules, proves

properties of each module then infers properties of the whole system from properties of

the modules. Depending on the interaction between the components, the traditional model

checking algorithm might not support modular verification. First, one module may not

contain sufficient information to reach an authoritative conclusion. For example, suppose

we want to verify a property "Whenever f1 is true, f2 is always true finally" (or AG (f1 ->

AF f2) in CTL) on a module labeled with f1 but not f2, we can't conclude this property is

 11

true until we find "f2 is always true finally" (or AF f2 in CTL) is satisfied in the other

modules. Second, even if one individual module can satisfy the properties, the whole

system after composition may still have the chance to violate them because modules may

share variables. A straightforward example is "f should always be globally true" (or AG f)

on a module where f is globally true and this module is composed with another module

where f is globally false. Hence, verifying individual modules against properties is

inconclusive. We therefore need to develop methodologies for verifying properties on

modules that are open (contain only partial information) and reaching a system-wide

conclusion without costly composition.

Since the modules are open due to the lack of complete information to verify the

properties, instead of solidly returning true or false, it's natural to partially analyze the

properties on them and push all remaining inconclusive tasks to other modules. In other

words, we want to annotate modules with constraints or assumptions that can guarantee

the property holds on one module, and then push those constraints to other modules for

further checking. If these constraints or assumptions can be satisfied by some other

modules that'll be composed with the current one, the property holds on this module.

Here’s a standard formula expression of such assume-guarantee reasoning:

 12

The notation Env |= f’ (read "Env satisfies f’") means that the property f’ is true of the

environment Env (such as determined by the model checker). Any property on the left

side of |= (as in Sys, f’ |= f) is taken as an assumption during the verification. The symbol

|| means parallel composition. Briefly, this formula says if the environment can satisfy a

formula f', and the system can satisfy f under the assumption of f', then the parallel

composition of the system and its environment can satisfy f. Put in the feature-oriented

context, the system would refer to the single feature under analysis, the environment is

made up of all other features in a product and the formula is the property to be verified.

Unfortunately, this formula doesn’t quite work for features because they are composed

sequentially.

The soundness of this formula has been proven [14] under parallel composition and

the key issue is how to find a proper f’. The problem of determining an f also exits in a

feature-based context. The majority of the current methods [5] [6] [7] expect the users to

supply an f’ and only a few [3][4] derive the assumptions automatically. The drawback of

relying on users for assumptions is fairly obvious: it’s hard for users to find such an f’ by

manual analysis and users are error-prone.

My thesis starts from investigating the current advances in modular verification

methods that generate assumptions automatically. Among the various methods available,

we are particularly interested in the constraint-based open system verification method

developed by Blundell, etc. [3] and the assumption generation method for software

 13

component verification by Giannakopoulou, etc. [4] because they are the main two that

derive the assumptions automatically. The former is targeted at verifying sequentially

composed features, while the latter aims at verifying components that are composed in

parallel. Blundell's method is based on model checking algorithm on state-based

automata, while Giannakopoulou's method adopts the composition of Labeled Transition

Systems (LTS) automata, an action-based model. Both approaches have automated

process to derive assumptions on components/features for assume-guarantee reasoning. I

will also investigate these two methods for their suitability for verifying realistic

feature-oriented systems.

After that, I will analyze the pros and cons of both methods and develop a method

that handles a richer set of feature-oriented designs than current approaches, while

drawing on the strengths of each of these techniques. Besides, I will outline the proof of

the soundness of my method.

Therefore, this thesis is organized as follows: Chapter 2 presents my comparison and

analysis of the two methods; Chapter 3 presents my own methods with examples; Chapter

4 presents the soundness proof of my method; Chapter 5 summarizes my thesis results

and points out the future work.

 14

Chapter 2

Comparison and analysis of two existing
methods

In this chapter, I will run case studies to compare Blundell’s and Giannakopoulou’s

methods for generating assumptions on components that preserve specific properties and

the two methods work on totally different domains with Blundell’s method for sequential

compositions and Giannakopoulou’s for concurrent world. The comparison is meaningful

because "sequential" can be viewed as a special case of "concurrent".

 15

Let’s consider the special case shown in Figure 6. Suppose we have a bunch of

components C1…Ci. They run in the following ways: C1 runs first and after termination,

it releases a signal to trigger C2 for execution. After that, C1 just waits for other

components to trigger it. So does C2…Ci-1. In this example, the sequentially composed

components run in a way that has the basic characteristic of concurrency.

Since "sequential" is a special case for "concurrent", I am interested in whether

Giannakopoulou's method gives us more functionalities than Blundell's and whether I can

uncover some new issues for verifying sequential systems from trying to reuse algorithms

from verifying parallel systems. Finding answers to them and proposing new ideas to

improve techniques for sequential cases motivate the case studies and analysis in this

chapter.

2.1 Constraint-Based Open System Verification for Product Line

Blundell’s method is designed specifically for feature-oriented software architectures.

His work in particular addresses the problem of reasoning about features when some of

the propositions needed for reasoning are defined in other features (this is the open

system issue referred to earlier).

 16

The simple system in Figure 7 is such an example: after the email system starts up at

the base, an email gets composed in the second state of F1, then encrypted in the second

state of F2 and finally mailed out in the base and the system then halts. Obviously, F1 is

open in terms of the property (denoted as pty in later discussion), because encrypted is

unknown to it.

Blundell’s method also defines the feature connections. The difference between his

definition and my definition 3 is that his doesn’t allow cyclic feature connections but

mine does. His method also defines another term data environment that indicates the

up-to-date values of data propositions that occur inside a feature. A data environment is

constructed for each terminal state of a feature.

Blundell’s method aims at analyzing individual features and then composing all

partial information to get results on the product. The first phase of his method analyzes

individual features to build up data environments and generates sufficient constraints for

property preservation based on such data environments. These constraints, including both

propositions for the preceding features and temporal formula for the following features,

 17

are parameterized over the information, i.e., those unknown propositions, that make

features open.

The data environment for the terminal state, denoted as st, of F1 in the Figure 7 is

{composed, true} and the constraints for the F1 again pty is (pty_st ^ (encrypted v

(!encrypted ^ (AF encrypted)_st))). The first part of the constraints comes from the

requirement that pty is expected to hold system-wide. The second part includes two

pieces: 1) encrypted and 2) !encrypted ^ AF encrypted. This comes from the fact that

encrypted is unknown to F1, so all of its possible valuations, together with corresponding

temporal formulas, are listed in the constraints. Here, the value of encrypted is the

propositional constraint for the preceding features and AF encrypted, when encrypted is

false, is the temporal constraint for the following features. The data environment for the

terminal state, denoted as st’, of F2 is {encrypted, true} and the constraint is (pty_st’),

because (AF encrypted) is true at st’ regardless the value of composed.

The second phase of Blundell’s method discharges the constraints upon composition

of features into a product to establish system-wide properties. At this phase, the set of

features and the order in which they are composed have been fixed. Then the values of

both kinds of constraints can be decided in this phase.

In order to discharge the propositional constraints, Blundell’s method first propagates

the data environments, in which a data environment of a feature will be integrated with

those data environments from the preceding features. If the current feature is not the first

 18

one in the composition, it will take over the data environment from the feature(s) right

before it; otherwise, it will inherit a data environment with all data propositions set to be

false as initial values. This is because data propositions are used to describe attributes of

objects, their default values should be false. For example, the proposition encrypted

should be false by default unless the email gets explicitly encrypted.

The propagation of data environment could be very complicated when there are

multiple paths. Figure 8 lists five possible cases for composing data environment under

multiple paths. For simplicity, the examples in this figure only have two paths.

Let’s denote the state where multiple paths converge as s. In case (1), since s assigns

false to
�

, then
�

should be false at s because it’s the up-to-date value; in case (2),

both paths pass the same value true of
�

to s, hence no matter which path gets executed,

�
 is always true at s; in case (3), the two paths pass different values of

�
 to s, so the

value of
�

at s depends on which path will be executed and I use a special symbol � to

 19

mean this value could be either true or false; in case (4) and (5), there exists a path in

which
�

is not assigned any value. Hence,
�

is regarded as false in that path.

Remember that although Figure 8 only talks about propagating propositions across

states, the same rules also work for propagation of data environment among features.

Assume we set F1 to be the first feature and F2 the second and the last in the

composition. Following these rules, the updated data environment for F1 is {(composed,

true), (encrypted, false)} and that for F2 is {(composed, true), (encrypted, true)}. At the

base, both composed and encrypted are also known to be true. As a result of propagating

data environments, all of the propositions that were unknown when the individual

features were analyzed now have known values. Thus the only remaining unknown ones

are temporal. The constraint for st in F1 becomes (pty_st ^ (AF encrypted)_st) and the

constraint for st’ in F2 remains unchanged.

Note that in Chapter 1, the definition of the base requires that its states where there

are edges coming from the features cannot transit to the initial state of the base. If this is

violated, then the data propositions that describe the attributes of the current object would

be propagated to the next run of the system to describe another object. That’s how data

leakage across multiple system runs happens. For example, if this problem happens and

the proposition encrypted is propagated to the initial state of the base, then when the

email system starts up again, an email would become encrypted before it actually gets

 20

encrypted, which is obviously a mistake.

For the temporal constraints, since all information about the product is available,

Blundell’s method is able to completely discharge these constraints to reach a

system-wide conclusion. The constraint (pty_st’) for F2 becomes true since F2 is the last

feature in composition and it preserves the property. As a result, the constraint (pty_st ^

(AF encrypted)_st) for F1 will be discharged by the values of pty_st and (AF

encrypted)_st from the initial state of F2.

A major shortcoming of this method is that it can’t handle circular feature

compositions. For example, in Figure 9, pty is a property in the form of AGf that expects f

to hold globally on all paths from the initial state of F1. Obviously, the value of pty can’t

be decided by F1 individually and F1 expects to get the value of pty from F2, the

remaining feature of the product. But in order to decide the value of pty, F2 must also

look at F1. As a result, neither F1 nor F2 are able to get the desired value of pty to make

conclusion. That’s why Blundell’s method avoids this situation by not allowing cycles.

 21

2.2 Assumption Generation for Software Component

Verification

Giannakopoulou's work is targeted at analyzing the behavioral properties of complex

systems at the architectural level. In this context, the software architecture of a system is

described by a set of components, the structure that interconnects these components and

the connectors that describe how components interact [4]. At the architectural level, the

components interact with one another via message communications and service

invocations. These messages and invocations are modeled as actions or events, and

component behavior, as well as the properties, is modeled in terms of these actions and

events.

Giannakopoulou’s method chooses Labeled Transition Systems (LTS) [4] to be the

description language for interactive components and the desired properties in a

concurrent system. The differences between LTS automata and Finite State Machines

come from the special characteristics of the former. In LTS automata:

1. Transitions occur on events (actions) and not on every step

2. Machines synchronize on common events

3. Each state in it is accepting

The actions in Giannakopoulou’s world are divided into external actions and internal

actions. External actions are those expected to drive the component from outside, such as

 22

user inputs and the signals/messages from other components; internal actions are actions

that the component itself takes and they may or may not be observable by other

components. Giannakopoulou’s method allows users to specify external actions and

internal actions by a special hiding operator “\”.

Basically, Giannakopoulou’s method first builds an automaton in LTS semantics for

the property and traps all missing transitions into an error state, which means any

unspecified event trace violates this property. Then she synchronizes the behaviors of the

component automaton and the property automaton according to the pre-defined

transitions based on the automata alphabet. She then eliminates the internal actions and

minimizes the resulting automaton to generate an assumption automaton, if there’s any,

which describes exactly those environments in which the component satisfies its required

property. The final assumption automaton is also a property with both desired and

undesired traces defined for the environment to follow.

Figures 10-12 are an example to show how this method works. Basically, in this

email system (figure 10), users can start composing an email, input the address where the

email will be sent and then set the subject of the email. Compose1, inputAddr and

setSubject are actions to denote these three steps. (Note that Compose1 is used to avoid

conflict with Compose, a reserved keyword in LTSA.)

 23

Figure 10: a system in Giannakopoulou's method where compose and setSubject are

internal and inputAddr external.

Figure 11: a property in Giannakopoulou's method where setSubject is internal and

inputAddr and mail external.

 24

This property automaton in Figure 11 requires the composed email system to follow

the action trace inputAddr -> setSubject -> mail. According to that, the environment

finishes the inputAddr action, then the system asks users for an email subject to

accomplish the setSubject action, and finally the environment mails out the email. Any

trace other than this one will be regards as violation of the desired property.

Figure 12 shows the final assumption automata generated for this example.

In Figure 12, all internal actions are already eliminated and there are only external

actions left in the generated assumption automata, because Giannakopoulou's method

only generates assumptions for the external environment. As Figure 12 shows, this

method eventually defines the cycle inputAddr->mail-> inputAddr as the legal traces for

the environment to follow, which means the environment has to produce the two actions

 25

with inputAddr before mail infinitely often to make the property hold on the composed

system. It’s worthwhile pointing out that this method, due to the use of automaton

determinization algorithm [2] in generating final assumption automata, has the potential

bottleneck of exponentially increasing complexity. Hence, this method may suffer from

the notorious “state explosion” problem.

2.3 Analysis of the fundamental elements of the two methods

 Software verification is simply applying verification methods to check systems

against properties. There are three elements involved: systems, properties to be verified

and the methodologies adopted. We analyze and compare Blundell’s and

Giannakopoulou's methods from these three aspects to build up the foundation for

comparison.

2.3.1 System models

Giannakopoulou's system models are concurrent event-based automata (called

Labeled Transition Systems) while Blundell's are sequentially composed FSM.

2.3.1.1 Different definition of “open” systems

Giannakopoulou's definition is based on the alphabet of external and internal actions

from the system and the property. Users can specify a series of internal actions that will

 26

be hidden and eliminated finally and every action that’s not specified is an external one.

Specifically, the external action set includes:

1) Each action in the system that doesn’t get hidden.

2) Each action in the property that the system doesn’t know about (it’s assumed that

all internal actions in the property should occur in the system).

The standard of deciding the “openness” of a system is if the external action set is not

empty. For a system with an empty set of external actions, the system is closed and her

method produces nothing for the environment.

As a comparison, Blundell’s definition is based on those propositions in the property

that are unknown to the system and the existence of future features. His method will take

the system as an ‘open’ one as long as at least one of the following holds:

1) There exists some proposition in the property that doesn’t show up in the current

feature.

2) The verification on the composed system is not finished and there are more

features to be checked after the current one. (Blundell’s method assumes the

system is composed of a series of features sequentially).

In Blundell’s method, users can specify whether the current feature is the last one in

the composed system. If it’s not, then it assumes there are other features to be composed

and hence Blundell’s method still takes the system as ‘open’, a different view with

Giannakopoulou’s.

 27

2.3.1.2 State variables: support for persistence

In state-based automata like Blundell’s, each state is labeled with a set of variables or

propositions. Given an arbitrary proposition, Blundell’s method allows users to specify

whether it’s a control proposition or a data proposition. The values of data propositions

persist until they get assigned new values again but the values of control propositions do

not persist (they are true only in states that explicitly designate them as true). Blundell’s

method maintains an external control list for each feature and sets every element in the

list false because of the sequential composition: since at any time instance, only one

feature can be in its execution phase and as a result, all controls for other features must be

false.

In contrast, Giannakopoulou’s method uses actions/events to characterize

information about system transitions and whenever an action is set true, all other actions

become false automatically. So, no action is persistent in her method.

2.3.1.3 Drawbacks of the two models

I have stated some structural requirement of features and the base in their definitions

in Chapter 1. In addition, Blundell's method also restricts the connections between

features to form a directed acyclic graph (DAG) of features (i.e. no cycles), but such a

restriction is outside the scope of Giannakopoulou’s model.

There’s also a drawback in Giannakopoulou’s system model. Her method assumes

 28

that an action can be released by either the system internally or the environment

externally but not both. Those actions that get specified as internal will be eventually

eliminated and those external actions will be left in the final assumption automaton, if

there’s any. However, this assumption is not practical and causes two problems.

First, in real software systems, both the system and its environment can release

actions based on their need for executions and they may be free to perform the same

actions. For example, if we want to verify the property (G (F mail)) on a system with two

branches, one of which has mail action in it, but the other not. In this case, we have to

specify mail action as internal and it won’t show up in the assumption automaton or we

may even get FALSE from Giannakopoulou’s tool. This is not correct. If the environment

after that branch without mail performs this action, the property still holds on the

composed system, but this cannot be captured by her method.

Second, since both the system and the environment can release actions based on their

executions, there may be conflicts arising: in the composed system, which action, from

the component or the environment, should the system accept and transit? Here’s an

example:

 29

Figure 13: A system to show the action priority problem. The actions here are both internal.

The email system in Figure 13 only performs two simple tasks, represented by two

actions compose1 and send as the transition guards, that allow the users to compose an

email first and then send it out.

The property automaton in Figure 14 requires that the two actions send and mail

must be performed as an infinite sequence send->mail->send…….

 30

Figure 14: property automaton to show the action priority problem. Here, send is internal

and mail external.

Figure 15: composed automaton to show the action priority problem.

 31

The automaton in Figure 15 is the composition of the system and the property

without eliminating the internal actions compose1 and send. It defines both legal and

illegal traces.

In the next step, in order to remove the traces that can’t be prevented by the

environment from transitioning to the error state (the state labeled with -1),

Giannakopoulou’s method will propagate the error state to the state 3 in Figure 14 and

that’s where the conflicts happen. If we follow Giannakopoulou’s method faithfully, we

have to identify state 2 and state 3 as the error state and finally, we get nothing as

assumptions. But as a matter of fact, the environment can make the property true on the

system by performing the action mail after seeing send from the system. The problem

here is at these two states, both the component and the environment release some actions,

and then which one should the composed automaton take? We need some priority for

them. This is a nontrivial problem, especially for concurrent systems.

2.3.2 Properties

There’s huge difference between the properties that can be handled by the two

methods respectively. In general, Giannakopoulou’s method can process any property that

has a corresponding error LTS automaton, while Blundell's method handles full CTL; the

two are incomparable.

 32

One major underlying assumption of Giannakopoulou’s method is that there exists an

error LTS automaton for the properties to be verified because her method relies on the

transitions to the error state. However, it is not always possible to do that for liveness

properties that require something expected must finally happen. A straightforward

example is (AG (AF f)) in CTL or (G (F f)) in LTL. There’s no way to build an error LTS

for it. This assumption limits Giannakopoulou’s method to handle mainly safety

properties and bounded liveness ones.

Secondly, all actions in Giannakopoulou’s method are exclusively true, i.e., only one

action can be true at any time instance and whenever an action is true, all others are set

false automatically. Since the properties in her method are expressed in terms of these

non-persistent actions, they are different with the common concept of properties from

other logics such as CTL, LTL, and CTL*. The differences we observed include:

1) Negation. There’s confusion arising if the property has negation of some action f

in it. The problem is when building the error LTS automaton, how to handle the

negation? One direct option is (!f = �-f) where � is the alphabet of the property

automaton, since the truth of any other action means the falsity of f. However

there may be some other actions from the system that are not in �. They can also

make f false, but are not known by the property automaton until composition.

There’s no way to take them into consideration in the error LTS automaton

construction.

2) And. Obviously, the exclusive characteristic of actions doesn’t allow the truth of

 33

more than one action simultaneously. As a result, we can’t express properties like

(action1 ^ action2). This difference is important in that it dramatically narrows

the scope of properties that can be handled by Giannakopoulou’s method.

Giannakopoulou and Magee admit this non-persistent issue makes the task of

expressing properties often unmanageable and proposed an elegant and uniform solution

[1]. However, they haven’t integrated this solution into their assumption generation

research yet and that’s why I can’t analyze and evaluate it in my thesis.

Giannakopoulou’s method suffers from non-persistent actions, but a persistent world

like Blundell’s also suffer from another problem, that’s his persistent world can’t express

repetition. In a real system or protocol, it’s practical to expect something could happen

several times. For example, we may expect an email to be encrypted twice. This can be

easily expressed by the number of occurrence of some action in Giannakopoulou’s

method, but impossible by Blundell’s persistent world unless the proposition is explicitly

checked for false in between repetitions. Persistence, in Blundell’s world, comes from

data proposition. Obviously, as long as an email is encrypted, this attribute persists to be

true, even after it’s encrypted again, but there’s no way to express that something

persistent repeats in CTL.

2.4 Unifying the inputs & outputs of the two methods

 34

In order to make a rigorous comparison, it’s ideal if we can

1) build equivalent systems

2) specify equivalent properties on the two systems

3) run the two methods

However, this is extremely hard, if possible. We can’t eliminate so many problems as

stated above especially in expressing properties. This is also partially because of the

current progress of Giannakopoulou’s method: she doesn’t have the solution to some

problems; for others, despite that she has some new progress, she hasn’t integrated them

yet. So, we can only do comparable case studies to learn these differences in the outputs

of the two methods. By “comparable”, I mean though we can’t ensure equivalent inputs

for the two methods, we can still build similar ones to discover the problems. But we

must make some important changes first.

2.4.1 Unifying inputs of the two methods

From previous sections, we know that Giannakopoulou’s and Blundell’s methods

adopt totally different automata to describe the input systems/features. Although the two

kinds of automata can be converted into each other, due to many subtleties such as the

characteristics of exclusive actions, finite and infinite executions and property

expressions as discussed before, we can’t use one model for both of them directly.

As a result, the first step for my comparison is to unify their input formats to

eliminate the gaps. Since “sequential” can be viewed as a special case of “concurrent” as

 35

discussed at the beginning of this chapter, I tried to map Blundell’s inputs into

Giannakopoulou’s input format without affecting the actual executions.

Definition 4: FSM Input Conversion algorithm

Given a feature F1 expressed by a Moore Machine M that’s consumed by Blundell’s

method and another feature F2 to be executed after F1, we take the following steps:

1) Convert M into a Mealy Machine M’ [17], which is closer to the event-style

machine in Giannakopoulou’s method

2) Create a new state dummy

3) Add a transition from dummy to the starting state of M’ with startF1 as the

guard

4) Add a transition from each terminal state of M’ to dummy with startF2 as the

guard (terminal states refer to those states without any transitions going out.)

Figure 16 summarizes the input-unifying process:

 36

Now we have an infinitely running system M’’ to input into Giannakopoulou’s

method for comparison. StartF1 and startF2 are indicators to start and terminate the

execution of M’. They don’t interfere with the actual execution of the automaton and

serve to make sure that at one time instance, no more than one feature is in its execution

phase. Besides, since they don’t provide useful information, they will be removed from

the final assumption automaton by being hidden as internal. startF1 and startF2 can also

have functionality: As we discussed in previous section about the drawbacks of actions,

Giannakopoulou’s method doesn’t work on a component if it has only internal actions.

The introduction of startF1 and startF2 can make her method handle more cases since

the two actions can serve as what the system uses for communication with the

environment.

 37

2.4.2 Unifying outputs

Theoretically, Giannakopoulou’s method has the benefit of rendering us with

constraints for all possible cases, i.e., from components that run before, after and

concurrently with the current one, while Blundell’s temporal constraints are only for the

future features. Our experiments also support this. Figure 17-19 is such an example.

The system in Figure 17 fulfills three actions: getUserReq that gets user request,

compose1 that allows users to compose an email and inputAddr that asks users for

mailing address.

Figure 17: An email system where getUserReq is external and all others internal

 38

Figure 18: a property where all actions are external

This property in Figure 18 requires the environment to finish send and mail actions in

a send->mail->send order. Here, send is the user decision to send an email out and mail

is the actual mailing function.

 39

Figure 19: composed automaton with all internal actions hidden. This automaton only has

external actions from the environment.

We can observe the following traces from the composed automaton in Figure 19:

1) getUserReq -> send -> mail, which means the current feature runs before the

features providing send and mail;

2) send -> getUserReq -> mail, which means the current feature runs in parallel

with the features providing send and mail;

3) send -> mail -> getUserReq, which means the current feature runs after the

features providing send and mail.

For comparison purpose, we must get only the assumption in (1) from the outputs of

Giannakopoulou’s method because that’s the only result comparable with Blundell’s. This

is achieved by adding into the system a new component named future FILTER, which is

 40

basically an error LTS automaton.

Definition 5: A future FILTER for a property is constructed as follows:

1) Given a property automaton, we can hide and eliminate all internal actions to get an

automaton P’ as Giannakopoulou’s method does

2) Create an automaton T with two states s1 and s2 where s1 transits to s2 on startf1

3) Compose the two automata, P’ and T, into a new one F in this way: first, add a

transition from s2 to the starting state of P’ with startf2 as the guard; second,

originally each terminal state of P’ has one or more transitions to the starting state, but

now change s1 to be the destination of all these transitions.

4) Make F complete by adding all missing transitions to a special error state.

 41

Figure 20 is the graphical flow of constructing a future FILTER. Note that the special

error state is not shown here for simplicity.

We can also use startF1 and startF2 as delimiters. Any action that happens before

startF1 is supposed to be from the previous features and any action that happens after

startF2 is supposed to be from the future features. Since a future FILTER places all other

external actions after startf2 and startf2 and takes all other possible orders of external

actions as violations, composing a future FILTER with the system and the property

automatons in Giannakopoulou’s method will get the assumptions for the future features

out.

Note that though so far it’s not clear how to build a minimal future FILTER, I believe

the solutions are not necessary at all. This is because the intention here is trying to do the

comparison, the performance issue of the comparison algorithm is not important.

2.5 Summary of case studies

A number of examples that cover all possible FSM structures (including branches &

cycles) and 14 possible property structures (different positions for internal and external

actions) have been done to compare and analyze the two methods. The outputs and the

detailed analysis are in the appendix. In this section, a table summarizes the major points

of the case studies and the expectation of my own method:

 42

Generating
interfaces
for
components

Giannakopoulou’s
method

Blundell’s method Expectation for my
new method

My reasons

Interfaces
for what
purpose?

Verify property for
concurrent systems

Verify property
for sequential
systems

Verify property for
sequential systems

Our motivation

How are the
interfaces
used?

LTS automata
composition
(Env||Assumption)

Discharging by
data environment

Doesn’t matter

What’s the
problem
domain?

Component -based SE
(CBSE)

Feature-Oriented
SE

Doesn’t matter, but
it should also be a
modular method

What’s the
input?

LTS automata Propositional &
CTL constraints

Propositional &
CTL constraints

Automata determination
may cause state
explosions

What’s the
output?

LTS automata Propositional &
CTL constraints

Propositional &
CTL constraints

Be uniform with the
input, if no other benefits

What’s the
composition
assumption?

Concurrent Sequential Sequential My thesis motivation

What is the
architecture
assumption?

The system model is
basically a cycle.

A terminal state
has no direct
descendent inside
a feature and no
cycles in feature
composition.

Allow circular
confections.

Obvious

What is the
system
model
assumption?

State transitions are
described by actions
that are non-persistent,
and only one of the
system and the
environment can release
an action

Variables/proposit
ions at each state.

Variables/propositio
ns at each state.

They’re persistent. Each
module is free to use a
proposition that’s also
used by others modules.
They provide a better
system model.

What is the
property
assumption?

Must has a
corresponding error
LTS automata

Can be expressed
by CTL.

Can be expressed by
CTL.

CTL matches well with
the system model with
state variables.

 43

The fourth column describes briefly how my method looks like from a high perspective

and the fifth column gives justifications for my decision. Obviously, this table indicates

that I should choose Blundell’s method as the foundation of mine.

 44

Chapter 3

An abstraction-based modular
verification method

The basic idea of my method is to build abstract states for each feature and the base,

compose them into an abstract FSM based on the original state/feature connections, and

then apply a variant of the traditional CTL model checker on this abstract FSM to verify

the property.

3.1 Formal models of the abstract Finite State Machines (FSM)

Before showing the details of the abstraction-based modular model checking method,

I give the formal definitions of the fundamental elements in this method.

My method also works for feature-oriented sequential systems and I reuse some of

Blundell’s work. My definitions of features, the base, the product and the data

environment given in Chapter 1 are the same as Blundell’s, but I have a different

definition for feature connection relationships (refer to Definition 3 in Chapter 1) because

my method allows cyclic feature compositions. In addition, I also define the following

new terms.

Definition 6: A Label Set (LS) is a set of CTL formulas including both atomic

 45

propositions and non-atomic formulas in the form of (fmla, val) where val is the value of

the formula fmla that may be one of the following three forms:

1. Boolean value

2. � that means either true or false

3. Non-atomic formula

Obviously, the major difference between my LS and the label set in the traditional

FSM comes from the possible value of fmla.

There will be one LS per abstract state, generated based on both the feature and the

property using the first phase of Blundell’s method that analyzes the property pty against

each feature by traversing from the starting state to each terminal state of a feature

separately. In this process, some sub-formula fmla of pty may be fully analyzed, i.e., their

values can be decided without information from neighboring features, while other

sub-formulas may be partially analyzed, i.e., only the value of some sub-formula f’ of f,

but not f itself, can be decided. For example, given f = (f’->EFsth) where f’ is true but sth

unknown in a path inside a feature, we get f’’ = EFsth as the partially analyzed result of f

on this path.

Definition 7: An Abstract State is a state annotated with a Label Set (LS).

Note that similar as the LS, abstract states are also built one per terminal state of the

feature. Abstract state and LS form corresponding pairs.

 46

As a matter of fact, the only difference between an abstract state and a state in

traditional FSM comes from the state labels: the former uses the LS while the latter uses

propositions and fully analyzed formulas.

Definition 8: An Abstract Finite State Machine (FSM) is a finite state machine

constructed by connecting abstract states via directed edges.

An abstract FSM is almost the same as the traditional FSM expect the different state

labels at their states.

In Chapter 1, I defined the feature and the base separately as different concepts, but

in my verification method, their difference is irrelevant and I treat the base just as a

feature with special structures. Thus I define the splitting algorithm to split the base into

two features so that my method can process the base and the features in a uniform way.

Definition 9: The splitting algorithm works as follows:

Let s0 be the initial state of the base, sbt be the state where there are edges coming

from other features into the base and sb be the state where there are edges coming from

the base into other features. Although actually there may be more than one sb, I assume

it’s unique for simple discussion. Let’s also assume the base is connected with a series of

F0…Fi via (sbt, sb). The base is then split into the following two features (FSM):

 47

1) F0: starting from s0 to sbt, put all reachable states, as well as their transitions, into

an FSM

2) Fi+1: starting from sb, put all reachable states, as well as their transitions, into an

FSM

3.2 An abstraction-based model checker

In this section, I will introduce my new model checking method on the abstract FSM

by going through an email system example. Figure 21 shows the system that I will use as

an example. The property to be verified is also indicated in this figure.

 48

Phase 1: Partially analyze the property on each feature to construct the Label Sets

The first phase of my method is almost the same as the first phase in Blundell's,

which does a partial analysis on each feature and labels each terminal state of a feature

with constraints and a data environment (DE). Let’s denote this process as Gen-Cons(F,

pty) where F is a feature and pty the property. In Figure 21, the data environments are {(f1,

true), (f2, true)} and {(f1, true), (f2, false)} for the two terminal states of F1 respectively,

{(f2, true)} for the terminal state of F2 and {(f1, false)} for that of F3. The constraints for

fi are what the adjacent features must guarantee for the property to hold on fi. The results

of Blundell’s constraint generation, denoted as the Constraint Sets (CS), for the three

features are:

1) (EGf3^ pty) for the terminal state of F1 where both f1 and f2 are true and (EFf2^

EGf3^ pty) for the other terminal state of F1 where f1 is true and f2 false

2) (((f1 ^ EGf3) v (!f1)) ^ pty) for the terminal state of F2 where f2 is true

3) pty for the terminal state of F3 where f1 is false

My method also applies the splitting algorithm to divide the base into two features F0

and F4 and generates constraints for them:

4) (((f1 ^ f2 ^ EFf3) v (f1 ^ !f2 ^ EFf2 ^ EFf3) v (!f1)) ^ pty) for the state that is directly

connected with F2 in the base.

5) (((f1 ^ (f2 v (!f2 ^ EFf2)) v (!f1)) ^ pty) for the state, denoted as sb, that is directly

connected with F2 in the base.

 49

The constraints in CS have both propositional parts for the preceding features, such as

f1 in the constraints for F2 and temporal parts like (EGf3^ pty) for the subsequent features.

My method put the pairs composed of the sub-formulas and their corresponding

constraints into the LS:

1) {(pty, (((f1 ^ f2 ^ EFf3) v (f1 ^ !f2 ^ EFf2 ^ EFf3) v (!f1)) ^ pty))} for the terminal

state in F0

2) {(pty, EGf3^ pty), (EFf2, true), (EGf3, EGf3)} and {(pty, EFf2^ EGf3^ pty), (EFf2,

EFf2), (EGf3, EGf3)} for the two terminal states of F1 respectively

3) {(pty, (f1 ^ (EGf3^ pty)) v (!f1 ^ pty)), (EFf2, true)} for the terminal state of F2

4) {(pty, pty)} for the terminal state of F3

5) {(pty, ((f1 ^ (f2 v (!f2 ^ EFf2)) v (!f1)) ^ pty)), (EGf3, true)) for sb of F4

Note that I only list some temporal sub-formulas here for simplicity. The non-atomic

sub-formulas with logical connectives as the outmost operators can be constructed from

these temporal ones fairly easily.

Phase 2: Propagating the data environment (DE) & removing the propositional

constraints in CS

The data propositions are expected to persist over multiple states but the above FSM

can't reflect that. So we need to propagate the data propositions from the DE of a

 50

predecessor feature to the DE of all its successor features starting from F1. The following

defines how to do that:

1) It's possible for a feature or the base to have multiple DE coming from its

predecessor features. In that case, I combine all these DE first to get a new DE'.

If different DE set a proposition to be different values, I store (prop, �) into DE',

which mean prop may be either true or false at different time instances

depending on the specific program executions. At the end there's only one

predecessor DE' for each feature to use. For the starting feature F0, we also

count a special DE, where all data propositions are initiated to be false, as a

predecessor DE to capture the fact that all data propositions are initially false

and remain false unless assigned true explicitly.

2) Update the DE at each feature and the base. Specifically, for any data

proposition occurring in the DE' but not the DE of the current feature, put a

copy of this proposition and its value into the DE; for those occurring in the DE,

keep their up-to-date values. Finally, delete DE'.

Example:

Following the above rules, we have DE01{(f1, false), (f2, false), (f3, false)}, DE11{(f1,

true), (f2, true), (f3, false)}, DE12{(f1, true), (f2, false), (f3, false)}, DE21 {(f1, �), (f2,

true), (f3, false)}, DE31{(f1, false), (f2, true), (f3, false)} and DE41 {(f1, �), (f2, true), (f3,

true)}. Now, all data propositions are known at every feature, despite their values may

 51

not be solid true or false. The fact that the value of a known proposition may be �

indicates that the value of such a data proposition at a state may be different if the system

is executed along different paths.

Remember that we generate temporal constraints based on the possible values of

those unknown propositions. Since in this propagation phase, the actual values of some

unknown propositions become known, we can also further analyze the constraints in the

LS according to what the actual values of the propositions are. Such constraints based on

true/false propositional assumptions after that has only temporal parts. For example, if we

have a constraint (f, (f ^ f’) v (!f ^ f)) and the propagated DE shows f is true, then the

constraint can be further analyzed as (f, f’).

In phase1, I listed the constraints for all features and keep them in the LS. At this

phase, they are updated as follows:

1) {(pty, pty)} for the terminal state in F0

2) {(pty, EGf3^ pty), (EFf2, true), (EGf3, EGf3)} and {(pty, EFf2^ EGf3^ pty), (EFf2,

EFf2), (EGf3, EGf3)} for the two terminal states of F1 respectively

3) {(pty, (f1 ^ (EGf3^ pty)) v (!f1 ^ pty)), (EFf2, true)} for the terminal state of F2

4) {(pty, pty)} for the terminal state of F3

5) {(pty, pty)), (EGf3, true)) for sb of F4

Phase 3: An abstract system model

The abstract system model is built as follows:

 52

1) Create a graph with one node per terminal state of each feature.

2) Add edges between nodes capturing transitions between these terminal states

within a feature.

3) For any two features fi and fj that are directly connected by some transitions, add

edges between their corresponding nodes capturing these transitions.

4) Name each node as sij, where i refers to a feature and j refers to a terminal state of

the feature.

5) Set the LS of each sij to be the one of the terminal state correspondent to sij.

6) Insert all data propositions and their values in the starting state of fi into the LS of

each sij. Note that the value of such a data proposition may be �, which means it

may be either true or false depending on the actual program executions.

Example:

Figure 22 is the diagram of the abstract FSM of my example after this phase:

 53

Phase 4: Model checking

The resulting system model is different with that for the traditional model checker. As

a result, I must define a new model-checking algorithm for my system model.

Let s0j be one of those abstract states for the starting feature F0. As can be seen from

the pseudo code defined below, my model checker starts from discharging (pty,

constraints) in the LS of s0j. Whenever the value of a previously undetermined formula

gets determined at some state, my model checker will update its value in the LS of that

state. When the entries for pty in all s0j get determined, we conclude that the composed

system can preserve pty only if pty is true in the LS of all s0j. In this example, the product

violates the property.

 54

The major differences between my Abstraction-based Model Checker (AMC) and the

Traditional Model Checker (TMC) include:

1. TMC uses Boolean logic, but since AMC have the � value, I must have a

three-valued logic [18][19] and all evaluation of propositional formulas must be

able to handle �, as shown in the Truth Table for AMC below.

2. If the LS has a value for a formula, AMC does not check its sub-formula, unlike

TMC which checks all sub-formulas.

3. Instead of checking the state propositions and labels as TMC does, AMC checks

the LS at each abstract state.

Note that AMC uses the same logic and resembles TMC greatly in the processing of

the logical connectives and temporal operators, as shown in the pseudo code.

The rest of this section presents the truth tables that underlie three valued model

checking and present the pseudo code for the model checker.

Truth table for AMC:

OR True False � F’
True True True True True
False True False � Val(f’)
� True � � � OR Val(f’)
f* True Val(f)* Val(f) OR � Val(f) OR Val(f’)
*f means a non-atomic formula and Val(f) means the value of f after being fully analyzed.

AND True False � F’
True True False � Val(f’)
False False False False False
� � False � � AND Val(f’)
f* Val(f) False Val(f) AND � Val(f) AND Val(f’)

 55

 NOT
True False
False True
� �
f* NOT(Val(f))

Pseudo Code for AMC

;; consume a state s and a formula/proposition f to return the value of f in the LS of s.
;; if the formula/proposition has an entry in the LS,
;; the return value maybe true, false, � or some constraint;
;; else, the formula doesn’t have an entry in the LS and the function returns N/A
function get-val(s, f)
{ return the value of f in the LS of s;}

;; consume a state and a formula, label this state with the value of the formula
function AMC_help(s, f)
{
 if get-val(s, f) returns a value val, return val;
 else {for each immediate sub-formula f ’ of f, AMC(sm, f’);}

 if the outmost operator of f is EX, EU, use the original TMC_help function to decide

the value of f based on the labels in the LS;
if the outmost operator of f is EG, for all desc-state-s, the descendent states of s, check

TMC_help(desc-state-s, EGf), f is true at s only if at least one of these
TMC_help(desc-state-s, EGf) functional calls returns true;

 else if the outmost operator of f is ^, v, or !, use the Truth table for abs_TMC as defined
later;

update the value of f in the LS; }

;; consume a finite state machine and a formula, label the formula
;; in the states of the FSM
function AMC(sm, f)
{ for each s � sm, AMC_help(s, f)}

;; consume a state s and a formula in the LS of s to fully analyze it

 56

function dischargeFmla(s, f)
{
 temp = get-val(s, f);
 if temp is true or false or �, return temp;
 else // f is a formula(or constraint)
 AMC(s, temp);}

;; consume an abstract FSM in which each state is labeled with an LS,
;; fully discharge the LS of the abstract states of the starting feature.
function MC_FSM (aFSM)
{

for each state s1i
 {
 val = dischargeFmla(s1i, pty);

if val == false, return false;
 else if val == �, return �;}
 return true;}

 57

Chapter 4

Soundness Proof

In this section, outline of the proof about the soundness of my model checker is given.

First of all, I give definitions of some terms used in this chapter.

The outline depends on a machine called the propagated product Ppg that is a version

of product P with data proposition values propagated.

Definition 10: Given a product and a formula to be verified, let Apg be the abstract

FSM built in the third step of my method.

Note that Apg is built based on not only the product but also the property. In other

words, if the property is changed, Apg should also be changed correspondingly.

My goal is to prove the following Core Theorem, in which I use the traditional model

checker as the standard to show the soundness of my method.

Core Theorem:

Let the traditional model checker be TMC(Ppg, pty) where Ppg is a propagated

 58

product and pty a formula. Then

1) TMC(Ppg, pty) returns true if MC_FSM(BuildAbsFSM(Ppg, pty)) returns true

2) TMC(Ppg, pty) returns false if MC_FSM(BuildAbsFSM(Ppg, pty)) returns false.

Here, function MC_FSM refers to my abstraction-based model checker and the

function BuildAbsFSM denotes the process of building an abstract FSM for a product

according to the desired property.

In order to prove the Core Theorem, I have to use the following two theorems from

Blundell.

Blundell’s Theorem 1:

Let F1 and F2 be features, s be a state in F1, and � a CTL formula. Let V be a data

environment coming into F1 and F1V be F1 augmented with V. Let c be the result of

CONSTRAIN(F1, f, s), the constraint generation function call. Let Cr be c with every

annotated formula fst replaced with the value of �(true, false, �) in the initial state of F2

with which st connects. Let � be the feature connection relationship that is sequential and

doesn’t permit cycles between features. Then

1) F1V � F2, s |= f if V satisfies Cr

2) F1V � F2, s |= !f if V doesn’t satisfy Cr

This theorem states that if the constraints can be satisfied by the incoming data

 59

environment and the formulas from the following features, then f, the desired property,

holds in the system composed by F1, F2 and V.

Blundell’s theorem 2*(Soundness):

Let P be the product, and P' be P augmented with the empty data environment (all

data propositions of the product set to false). Let SUBS be the function from initial states

and sub-formulas of f to the set {true, false, �} that stores the results of checking each

constraint under the composed data environments and the verified subsequent features.

Let f be the property to be verified and f1 be a sub-formula of f. Let Fi be a feature in P,

and s0 an initial state of Fi. Let � be the feature connection relationship that is sequential

and doesn’t contain cycles. Then:

1) Fi � Fi+1 �... � B, s0 |= f1 in the data environment of B � F1 �... � Fi-1

if SUBS[s0, f1] = True

2) Fi � Fi+1 �... � B, s0 |= !f1 in the data environment of B � F1 �... � Fi-1

if SUBS[s0, f1] = False

*: this theorem has been simplified here by removing some irrelevant terms

Basically, this theorem states that whenever SUBS returns true/false in checking a

sub-formula f1 of f (the property to be verified), TMC(f1, s0) on Ppg also returns

true/false.

 60

Since my method builds the abstract states with LS in isolation and connects these

states into a FSM, I must show that the values stored in the LS are still valid once features

are composed into a product.

Key Lemma:

If f is a fully analyzable formula in the LS of an abstract state, then its value at the

corresponding terminal state is still accurate after the features are composed into a

product.

Proof:

Let’s analyze all possible forms of such a fully analyzable formula f:

1) f is a Boolean proposition. In this case, obviously, the value of a proposition

won’t change after state composition.

2) f is a non-atomic formula with EX, EU or EG as the outmost operator. In this case,

since composing abstract states together doesn’t remove any existing edge, the

value of f won’t change.

3) f is a non-atomic formula with AX, AU or AG as the outmost operator. We know

that the architectural assumption of my method is all non-terminal states can

transit to a terminal state, denoted as st, by one or more steps and each terminal

state is the last state to be visited in all feature execution paths. This means f

doesn’t need the values of any non-atomic formulas at st, which doesn’t have any

 61

descendent states inside a feature. So, if f doesn’t need st to be fully analyzed,

composing states together won’t change its value; otherwise, � needs the Boolean

propositions at st to be fully analyzed and composing states together by adding

edges won’t change the values of propositions at st.

Therefore, Key Lemma holds.

In the following, I provide sketches of the proofs for the Core Theorem. My proof

outline starts with proving Theorem 1 first.

Theorem 1:

Core theorem holds when the product is composed of a set of features, denoted as

F1…Fi-1, and the base, which is split into F0 and Fi, the first and the last feature to be

executed in Ppg respectively, as defined in the construction of abstract FSM, and these

features are connected sequentially without any cycle in it.

Proof sketch:

Sequential connection means only one feature can be in its execution phase at any

time instance and a feature Fj starts execution only after its preceding feature Fi

terminates executions. According to this, a terminal state of Fi may be connected with

more than one initial state of other features and after the execution of Fi is done, one of

 62

these next features will be activated based on the execution of Fi. Hence there may exist

branches in feature connections.

I assume given a pty to be checked, its value in the LS of s0’, an abstract state of F0

in Afsm, is f. The argument is by induction on the structure of the formula.

Remember that from Key Lemma, we know that LS still accurately reflects the

values of fully analyzed formulas.

Bases cases:

1) If f is an atomic proposition, the TMC will check the state variables at the starting

state s0 of F0 and my MC_FSM will check the atomic propositions in the LS of

all starting states s0’ of Afsm. Theorem1 holds since the atomic proposition set in

each starting state of Afsm is exactly the same as that in all the starting state of

F1 by construction.

2) If f is a non-atomic formula and is fully analyzed at some starting state s0’ of

Afsm, then MC_FSM will fetch its value directly out of the LS of s0’. The

true/false value of each formula in s0’ is generated from F0 by Blundell’s

Gen-cons(F0, pty) method. Since this function just records the details within a

feature, whether there exits a cycle in feature connections is irrelevant to the

values of formulas it generates. There’s no distinction between the fully analyzed

formulas in Blundell’s method and the corresponding LS in mine. Based on

 63

Blundell’s theorem2, Theorem 1 holds.

Induction step: Assume this theorem holds for all f ’, those immediate sub-formulas

of f. Let’s analyze the possible forms of such a formula f:

The basic idea of my proof here is:

1) Prove that if MC_TMC assigns a value to f at s0’, then f is assigned the same

value at st, the terminal state of F0 that corresponds to s0’ in Ppg.

2) In MC_TMC, the value of pty is f in the LS of s0’. So, MC_TMC concludes pty

holds in Ppg if f is true at s0’ and pty is falsified otherwise.

3) According to Blundell’s Theorem1, if f true, pty holds; otherwise, pty doesn’t

hold on Ppg.

4) According to Blundell’s Theorem2 (Soundness), if pty holds, TMC also decides

that pty holds in Ppg; otherwise, TMC decides Ppg violates pty.

This means when MC_TMC decides pty is true in Ppg, TMC gets the same result and

therefore Theorem 1 holds.

Now, I must prove (1), which is defined as the following theorem.

Subsidiary Theorem:

Let s0’ be an abstract state of F0 in Afsm and f be the value of pty in the LS of s0’. If

 64

MC_TMC assigns true/false to f at s0’, then f is true/false at st, the terminal state of F0

that corresponds to s0’ in Ppg.

Proof sketch:

1) f is EXf’.

In this case, if MC_TMC assigns true to f, f ’ must be true at some next state si’. By

construction of Afsm, the transition from s0’ to si’ mimics a transition between st and si,

the starting state of Fi.

• If f ’ is an atomic proposition, then f ’ is a state variable at si that has the same value

as at si’ by construction;

• If f ’ is a fully-analyzed formula when the Afsm was constructed, it’s a state label at

si that has the same value as at si’ by construction;

• Otherwise, f ’ was not fully analyzed at the construction time and MC_TMC

updates its value. Since we assume this theorem holds for f ’, TMC would also take

f ’ as a state label for si with the same value as MC_TMC assigns.

Hence, f must be true at st in Ppg in all these cases. Therefore, Subsidiary Theorem

holds in this case.

2) f is EGf’.

In this case, if MC_TMC assigns true to f, f ’ must be true in all states in a path from

s0’ to si’. Obviously, si’ is either a state visited more than once (i.e. loops) or an abstract

state of the base where the product terminates. By construction of Afsm, the transitions

 65

from s0’ to si’ compose a series of features into a linear chain. We know that f summarizes

details inside features into abstract states, so if f is true at sj’, then f ’ is globally true at all

states in some path inside Fj. (Refer to the pseudo codes about how to processing EG.)

Since f is true in all sj’ in this linear chain, there must exist a path in Ppg that passes

through all these features and makes f ’ globally true. So, f must be true at st in Ppg.

Therefore, Subsidiary Theorem holds in this case.

3) f is E[f1’ U f2’].

In this case, if MC_TMC assigns true to f, there must exist a path from s0’ to si’ in

Afsm in which f1’ is always true from s0’ until f2’ is true at si’. I must show that in Ppg, f

must be true at st. This is done by contradiction. From the construction of Afsm, we know

that in Ppg there exists a path of concrete states from st for s0’…si’. Let’s assume the

corresponding path violated f and starting from st, the first violating state in this path is sj

in Fj. Since sj falsifies both f1’ and f2’ false, this implies that f is false at the starting state

of Fj and MC_TMC would conclude f is false when reaching this starting state. This

contradicts with the assumption that f is undetermined at Fj (and si’) and a further

checking of following features (states) is necessary. So, f must be true at st in Ppg.

Therefore, Subsidiary Theorem holds in this case.

4) f is !EXf’, !EGf’ or !E[f1’ U f2’].

Due to the architectural assumptions, Key Lemma tells us that the values of the fully

analyzable formulas won’t change after abstract state compositions and we can only add

new edges/transitions by connecting a terminal state of the current feature with the

 66

starting states of next features. Consequently, the proofs of these cases are similar with

the first three cases respectively. The difference is when deciding the value of f, both

TMC and MC_TMC check if the expected sub-formulas occur in ALL paths from st or

s0’. Subsidiary Theorem still holds in this case.

5) f is (f1’ ^ f2’) or (f1’ v f2’).

In these propositional cases, since we assume Theorem 1 holds for both f1’ and f2’,

it’s straightforward that Subsidiary Theorem holds in this case.

Therefore, Subsidiary Theorem and Theorem 1 hold.

Next, I outline the proof of the Theorem 2.

Theorem 2:

Core theorem holds when the product is composed of a set of features and the base,

which is split into F0 and Fi+1, the first and the last feature to be executed in Ppg

respectively, as defined in the construction of abstract FSM, and these features are

organized sequentially, denoted as F1…Fi, with cycles in it.

Proof sketch:

There can be only one type of cycles in the feature compositions: cycles that flow

from Fi to Fj where Fi is different with Fj. (Self-loop on a feature should be regarded as

 67

internal details instead of external connections.)

The proof is also done by induction on the structure of the formula:

Base cases: the base cases are the same as those in Theorem1, because in such cases,

pty can be fully analyzed on a single feature F0. They both just deal with the details

inside a feature and are irrelevant to the external feature connections.

Inductive step: The core part is still to prove Subsidiary Theorem. I only analyze

how the cycle may impact the process of deciding the value of f here for simplicity and

all other parts of the proof are identical with those in the Inductive step in proving

Theorem1. The following are proofs for the Subsidiary Theorem for this theorem:

1) f is EXf’.

In this case, the circular connections pose no impact. Cycles only matter with paths,

so EX shouldn’t get affected. Hence, Subsidiary Theorem holds in this case.

2) f is EGf’ or E[f1’ U f2’].

In this case, the path that has a cycle in Afsm mimics a concrete path in Ppg that has

a cycle going from a feature Fj back to a previous visited feature Fi. MC_TMC halts on

this path when hitting the visited state again and decides the value of f in the same way

(refer to function abs_TMC_help(s, f) in the pseudo codes in previous sections) as TMC

handles the concrete path in Ppg. So, the two corresponding paths in two methods still

 68

guarantee the same true/false results. Hence, Subsidiary Theorem holds in this case.

3) f is !EXf’, !EGf’ or !E[f1’ U f2’].

These cases are also based on the first three cases respectively. Due to the

architecture assumptions, based on Key Lemma, the only difference is still when deciding

the value of f, both TMC and MC_TMC check if the expected sub-formulas occur in ALL

path from st or s0’. Subsidiary Theorem still holds in this case.

4) f is f1’^ f2’ or f1’ v f2’.

The circular feature connections are irrelevant to this case, because both methods

only look at the current state (either an abstract state or a concrete one). By construction

of the LS, it’s straightforward that Subsidiary Theorem holds in this case

.

Therefore, both Subsidiary Theorem and Theorem 2 hold.

Finally, I prove Core Theorem based on Theorem 1 and Theorem 2.

The proof is immediate, since I have analyzed all possible forms of feature

connections and all possible structures of formulas. Core Theorem holds.

 69

Chapter 5

Summary and Future work

In previous section, I give a table to summarize the main points I get from examples

and analysis of the two methods and describe the expectation of my model checking

method. The table below is a summary about whether these expectations are

accomplished in my methods:

Generating interfaces for components Expectation for my new method Goal
achieved?

Interfaces for what purpose? Verify property for sequential
systems

Yes

How are the interfaces used? Doesn’t matter Yes
What’s the problem domain? Doesn’t matter, but it should also

be a modular method
Yes

What’s the input? Propositional & CTL constraints Yes
What’s the output? Propositional & CTL constraints Yes
What’s the composition assumption? Sequential Yes
What is the architecture assumption? Allow circular connections. Yes
What is the system model assumption? Variables/propositions at each

state.
Yes

What is the property assumption? Can be expressed by CTL. Yes

As can be observed from the above table, my model checker meets all expectations.

In this thesis, my contribution mainly includes

1. Did case studies on two software verification techniques that can automatically

generate constraints to compared and analyzed their power

 70

2. Developed a new modular model checking method for cyclically composed open

features

3. Proved the soundness of my method

My method still assumes that a terminal state has no direct descendent state except

itself inside a feature. This inherits the assumption in Blundell’s constraint generation

method, which takes terminal states as terminating points for constraint generation and

hence his method doesn’t check states after the terminal ones. Both methods also assume

all non-terminal states can transit to a terminal state by one or more steps.

The performance of my abstraction-based approach relies on the costs both in

applying the first phase of Blundell’s method to partially analyze individual features and

in applying the revised abstraction-based model checker on the abstract FSM. The former

is a light weight process and so is the latter because the number of states in the abstract

FSM is not supposed to be large. Hence, my method is expected to be generally efficient.

Despite of not having validated my method in real software system designs, I have

done examples on small designs and property structures and I have confidence in my

method. Our future work includes

1. The implementation of my method.

2. Doing more case studies of my method using telecommunication feature designs

 71

and systems [13].

3. Extend Blundell’s first phase to handle more system structures. This is the major

factor that limits the power of my method to handle more cases.

 72

Bibliography
[1] E.M.Clarke, E.A. Emerson, and A.P. Sistla. Automatic verification of finite-state
concurrent systems using temporal logic specifications. ACM Transactions on
Programming Languages and Systems, 8(2):244- 263, 1986.

[2] M.Y. Vardi. An automata-theoretic approach to linear temporal logic. In F. Moller
and G. Birtwistle, editors, Logics for Concurrency: Structure versus Automata, volume
1043 of Lecture Notes in Computer Science, pages 238-266. Springer-Verlag, Berlin,
1996.

[3] Colin Blundell, Kathi Fisler, Shriram Krishnamurthi, and Pascal Van Hentenryck.
Parameterized interfaces for open system verification of product lines. International
Conference on Automated Software Engineering(ASE), 2004.

[4] D. Giannakopoulou, C. Pasareanu, and H. Barringer. Assumption generation for
software component verification. Proc. of the 17th IEEE International Conference on
Automated Software Engineering (ASE 2002), 2002.

[5] Ken McMillan. Circular compositional reasoning about liveness. IFIP Conference on
Correct Hardware Design and Verification Methods, 342--354, 1999.

[6] Martin Abadi and Leslie Lamport. Conjoining specifications. ACM Transactions on
Programming Languages and Systems, 17(3):507--534, 1995.

[7] David E. Long. Model-checking, Abstraction, and Compositional Verification. PhD
thesis, Carnegie Mellon University, 1993.

[8] Aspect oriented programming(article series). Communications of the ACM, 44(10),
Oct. 2001.

[9] Don Batory, Clay Johnson, Bob MacDonald, and Dale von Heeder. Achieving
extensibility through product-lines and domain-specific languages: A case study. ACM
TOSEM, April 2002.

[10] C. Reid Turner, Alfonso Fuggetta, Luigi Lavazza, and Alexander L. Wolf. A
conceptual basis for feature engineering. International Conference on Automated
Software Engineering, 49(1):3--15, 1999.

[11] D. Batory. Product-line architecture. In smalltalk and Java Conference, Oct. 1998.

 73

[12] Christian Prehofer. Feature-oriented programming: A fresh look at object-oriented
programming. In European Conference on Object-Oriented Programming, number 1231
in Lecture Notes in Computer Science, Springer-Verlag, 1997.

[13] Pamela Zave. Calls considered harmful' and other observations: A tutorial on
telephony. Services and Visualization: Towards User-Friendly Design, Lecture Notes in
Computer Science 1385, Springer-Verlag, pages 8-27, 1998.

[14] H. Peng, S. Tahar A Survey on Compositional Verification. Technical Report,
Concordia University, Department of Electrical and Computer Engineering, December
1998.

[15] Don Batory, Bernie Lofaso, and Yannis Smaragdakis, JTS: Tools for Implementing
Domain-Specific Languages. 5th International Conference on Software Reuse, Victoria,
Canada, June 1998.

[16] John Hatcliff, Matthew B. Dwyer and Hongjun Zheng, Slicing Software for Model
Construction, Journal of Higher-order and Symbolic Computation, 13(4), Dec. 2000.

[17] Arto Salomaa, Theory of automata, Oxford, New York, Pergamon Press,1969

[18] M. Chechik, S. M. Easterbrook, and B. Devereux. Model checking with multivalued
temporal logics. In Proceedings of the International Symposium on Multiple Valued
Logics, 2001.

[19] G. Bruns and P. Godefroid. Model checking partial state spaces with 3-valued
temporal logics. In International Conference on Computer-Aided Verification, number
1633 in Lecture Notes in Computer Science, pages 274-287. Springer-Verlag, 1999.

 74

Appendix A: Case study & Problems found
In Section 2.4, I have done considerable amount of work to figure out how to make
preparations for comparison. This appendix is devoted to running examples of Blundell’s
and Giannakopoulou’s method to support my analysis. I documented the examples,
results and problems found here. Please refer to the output comparison table for details
about the examples and their outputs from the two methods.

Part 1: Example selection

I can’t guarantee the equivalence of the inputs to the two methods, for the problems
discussed in Section 2.3. I can only define properties of the same structure and look at
how the outputs differ. But the questions are
1. What kind of systems I should select as examples and
2. What kinds of properties I should select as examples.

It’s pretty easy to find answers to question 1. My examples cover all possible system
structures including linear chain, branches and cycles.

The answer to question 2 is based on the interleaving of system actions and environment
actions in the property. Let’s use S to denote actions from the system and E to denote
actions from its environment. Giannakopoulou’s method uses S and E to describe the
properties and the system. My selection of property examples is then based on the
positions of the actions from S and E in the property.

In the following, the examples are expressed by S and E. For example, SS means the
property is composed of two actions from the system and ESE means the first and the last
actions are from the environment and the action in the middle is from the system.
Moreover, SS-c means there exists cycles in the example system and a name without “-c”
refers to examples without cycles.

Part 1: When purely S or there exists an S happening before all E in the property

1. SS

PROBLEM FOUND: different definition of ‘open system’

ANALYSIS & REASON:

 75

In Giannakopoulou’s method, this is really a “HOLD-FOR-ALL” case, which means the
property holds on the component no matter what the environment does, and the final
assumption is empty after hiding startF1 and startF2. In this example, the external action
set is empty, hence the system is closed and her method generates nothing. But from
Blundell’s method, we get (AG f)_st. The difference lies in the different definition of
“open system”. Please refer to section2.1.1 for more explanation.

2. SE and SSE

PROBELM FOUND: no problem found

However, a further analysis of this example can help improve our understanding of the
capability of the two methods in generating constraints for the future.
1. The constraints from Blundell’s method are the combination of the data environment,

which keeps all data proposition values of preceding features, and the partially
analyzed constraints for the future features.

2. The final assumptions from Giannakopoulou’s method only include the trace for the
future component.

ANALYSIS & REASON

Blundell’s method utilizes the data environment to generate the partially analyzed
constraints. Since he adopts persistent data propositions, the generation of these partially
analyzed constraints is influenced: basically, Blundell’s method looks up the truth table of
all the unknown propositions, find those valuations that can possibly make the property
hold and generate corresponding temporal constraints. For example, (f1 -> AF f2) with f2
unknown will generate ((!f2 ^ AF f2) v f2) as partially analyzed constraints. The value of
f1 in previous features, despite not available at the first step, affects the generation of the
temporal part.

Giannakopoulou’s method can generate constraints from various environments freely. But
for the introduction of FILTER, the final assumptions only include strictly those for the
future.

3. SS-c

PROBLEM FOUND: Giannakopoulou’s method generates wrong outputs

For the different definitions of ‘open system’, Giannakopoulou’s method should have
taken this example as a ‘closed system’ and a “FAIL-FOR-ALL” case, which means no
matter what the environment does, the property fails on the component, but Blundell’s

 76

should take this as an ‘open system’.
1. In the ‘closed system’ by Giannakopoulou’s method, we get some assumption trace,

which actually is what we need from the environment to drive the running of the
branch that can preserve the property. Contradiction occurs here.

2. Blundell’s method succeeds in generating constraints based on what’s in each
branches.

ANALYSIS & REASON:

First of all, the final output of Giannakopoulou’s method is correct in terms of the
property. But there’s some implicit point about the property. Without violating the truth of
the property AG(S.busy -> AF S.fwd) or G(S.busy -> F S.fwd) in LTL, we can have as
many busy actions as possible before the fwd action. But in order to construct an error
LTS automaton, I assume the busy action can be release only once and after that we need
to see fwd action eventually.

Actually there are three branches totally in the system: one branch can preserve the
property, one violates it and the last one vacuously preserves it. For the first branch, since
no transitions to the error state happen in it, it will be left as the final assumption; For the
second one, since in Giannakopoulou’s method the system is running infinitely, busy
action will be released repeatedly and hence for the branch with busy but without fwd, it
will definitely be trapped into the error state; The third one never sees busy and it can’t be
synchronized with the property.

However, I claim even if there was an error LTS automaton that could faithfully express
the desired property, Giannakopoulou’s method would still fail. This is because, as stated
in section 2.1.3, we have to specify fwd as an internal action so that the external
environment can’t release it, then for the second branch, Giannakopoulou’s method takes
it as violation since fwd can never be set true. Therefore, this is really an alphabet
problem.

Besides, we also need to remember that Giannakopoulou’s method aims at verifying
property on open system, but the system in this example is closed with regards to the
property. We are just doing some “extreme” case here.

4. SE-c and SSE-c

PROBLEM FOUND: no

However, it’s noteworthy to state that there’s difference between the outputs of SE and
SE-c and SSE and SSE-c. Some constraints are missing in the complicated system design,
due to the existence of cycles. Despite that these cycles don’t have data propositions in

 77

them, they still can make the system fall into infinite loops and that’s why some
valuations of the unknown propositions can’t serve as constraints.

Part 2: When purely E or there exists an E happening before all S in the property

This part is devoted to the cases when some proposition in the property is expected to
happen before the current feature.

When there exists some unknown proposition in the property that’s before all system
actions, Blundell’s method would process all these cases in exactly the same way as
processing SE/SSE. The temporal part in the partially analyzed constraints is also
generated under assuming the possible valuations of the unknown proposition from
preceding features based on their truth table. This is different with Giannakopoulou’s
processing. Her outputs don’t refer to anything happening in the past, because the
non-persistent actions don’t impact the current component.

There may be questions arising since the constraints for the past have the same form as
those for the future. Since the data environment is just a linear list to contain the
up-to-date values of the data propositions, we may even suspect if this linear container is
sufficient to keep the temporal relationships or not. These questions must be solved in the
context of Blundell’s method: His method tries to work on individual features first to
generate constraints. Whether a proposition in the property is known or unknown depends
on which feature the method is working on. When there’s some unknown proposition
happening in one feature f, this also means there must be some features preceding this
one and take the unknown proposition as known. Hence, these preceding features take the
responsibility of checking the temporal relationships between the unknown propositions
in f and if there’s any violation of the property in some preceding feature f ’, f ’ will report
false and failure of holding on any feature means the property can’t be preserved in the
composed system. Therefore, we can safely push only the values of them into the data
environment and pass it to the following features.

5. EE
PROBLEMS FOUND: no

ANALYSIS&REASON
A property of EE structure means all propositions in the property are unknown to the
current component/feature. So, they are either before or after the current
component/feature.

1) For Blundell’s method. No matter whether both of the two propositions are
supposed to be from the past or the future features or not, the constraints are the
same. This comes from the persistent characteristic of the data propositions. If

 78

they are from the past, their temporal relationship has been checked in preceding
features and their valuations still impact the current feature; if they are from the
future, their temporal relationships are also generated, as constraints for the
following features, based on their valuation with false as default. The right values
of the data propositions will be decided in the composition time.

2) For Giannakopoulou’s method. If we don’t use the future filter, the final
assumptions have all possible cases, from the preceding, following and concurrent
features. Adding a future FILTER will get the assumptions for the future out and
similarly adding a past FILTER will get those for the past features out.

Comparing the two outputs, they provide the same information and both of them are
correct in their context.

6. ES

PROBLEM FOUND: no

ANALYSIS & REASON:
Compared with EE, this example will synchronize and eliminate the S action. Because of
the structure of this property, when the S action happens, checking E action is not needed.
Hence the outputs are about shifting the whole property to the following features because
this is an AG property and the component is open.

7. ESE

PROBLEM FOUND: no

ANALYSIS & REASON:
The S action gets synchronized with the component and eliminated. The two E actions
are preserved in the same way as processing EE.

8. ESS

PROBLEM FOUND: no

ANALYSIS & REASON:
Same as 6, the one for ES.

9. EE-c, ES-c, ESE-c, ESS-c

PROBLEM FOUND: no

ANALYSIS & REASON:

 79

Compared with the examples of EE, ES, ESE and ESS, the FSM of these four have cycles.
Cycles have the potential to make the system loop forever and affect the liveness property.
We can observe that some possible valuations of the data propositions, together with their
corresponding temporal constraints, are missing, compare with the examples without
cycles. This is because they, if possible, will be trapped into the infinite loop so that
something expected by the property won’t happen finally and the liveness can’t be
satisfied.

 80

Appendix B: The outputs of the 14 examples
by the two tools

The following table defines 14 examples. Examples 8-14 are the complicated cases with

branches and cycles.

 1

ID English Description CTL LTS NOTE &
problems

CTL output LTS output File
Name

1. 1) If the
system is busy,
then the incoming
call should be
forwarded finally
and the busy signal
should not come
more than once.

2) Never forward if
not
busy.

3) Busy is turned on
only
once.

AG(busy -> AF
fwd)

property P_CFBL =
P0,
P0 = (busy ->
forward -> P0).
(Implicit: Never
forward if not busy
&& Busy is turned
on only once)

A
‘HOLD-FOR-ALL’
case

AG(busy -> AF
fwd)_st

Startf1->startf2->startf1 SS.lts

2 1) If an email is sign,
then it’s
finally
mailed.

2) An email can be
signed only
once

3) An email
can’t be mailed
unless it’s signed.

AG(sign -> AF
mail)

property P_SIGN =
P0,
P0 = (sign -> mail
->P0).

(Implicit: An email
can be signed only
once && An email
can’t be mailed
unless it’s signed.)

 (!mail ^ (AF
mail)s3 ^ (AG
(sign -> (AF
mail)))s3
 v (mail ^ (AG
(sign -> (AF
mail)))s3)
(depending on
previous value of
mail)

Startf1->startf2
->mail->startf1

SE.lts

 2

3 If an email is
composed, then finally
1) It’s signed

and then
eventually mailed.

2) An email can
be signed
only once.

3) An email can
be composed
only once.

4) Don’t sign
until
composed.

5) Don’t mail
until signed.

AG(S.compose1 ->
AF (S.sign -> AF
E.mail))

property P_SIGN =
P0,
P0 = (compose ->
sign -> mail -> P0).
(Implicit: An email
can be signed only
once and can be
composed only
once)

 (!mail ^ (AF
mail)_s2 ^
(AG(compose ->
AF (sign -> AF
mail)))_s2)
v (mail ^
(AG(compose ->
AF (sign -> AF
mail)))_s2)
(Colin’s can
generate
redundancy in the
constraints)

Startf1->startf2
->mail->startf1

SSE.lts

4 1) If an email is
signed or
encrypted, it will
be mailed finally.

2) An email can
be
signed/encrypted
only once.

3) Never mail
unless either
encrypted or

AG((sign v
encrypt)

-> AF mail)

property P_TEST =
P0,
P0 = ({sign,
encrypt}-> mail ->
P0).
(Implicit: An email
can be
signed/encrypted
only once
&& Never mail
unless either

1. The construction
of the error LTS

and the negation of
some action(s)
bring so many
implicit things.

2 EE can be
before, after and

concurrent with the
current feature. I

take the ‘after’ one

((sign v encrypt) ^
(mail v (!mail ^
(AFmail)_s2)) ^
(AG f)_s2) v
(!(sign v encrypt)
^ (AG f)_s2)

Startf1->startf2
->{sign, encrypt}
-> mail

EE.lts

 3

signed encrypted or
signed)

5 1) If an email is
composed, it will
be finally mailed.

2) Do not mail
unless
composed.

3) An mail is
composed
only once

AG(
(compose -> AF
mail))

property P_SIGN =
P0,
P0= (compose
->mail->P0).
(Implicit: An mail
is composed only
once && Do not
mail unless
composed)

The same as 1.
The difference is
the first
proposition is from
Env

(AG(compose ->
AF mail))_st

Compose->startf1->startf2->compose ES.lts

6 1) If an email is
composed, it will
finally be signed.

2) If 1) happens,
the email will
finally be mailed.

3) Don’t sign
until
composed.

4) Don’t mail
until signed.

5) An email can
be composed only
once.

6) An email can
be signed

AG(
(compose ->
AF (sign -> AF
mail)))

property P_SIGN =
P0,
P0= (compose ->
sign -> mail ->
P0).
(Implicit: 3-6 in the
second column)

The construction of
the error LTS and
the negation of
some action(s)
bring so many
implicit things.

(!compose ^
(AGf)_s7)
v (compose ^
((mail ^
(AFmail)_s7 ^
(AGf)_s7) v
(!mail A
(AGf)_s7)))

Compose -> startf1 ->startf2 -> mail
-> compose

ESE.lts

 4

only once.

7 The same as 6 AG(compose ->
AF (sign -> AF
mail))

The same as 6 The difference is
that both
‘compose’ and
‘mail’ are from
Env.

AG((compose ->
AF sign) -> AF
mail)_s4

Compose -> startf1 -> startf2 ESS.lts

8 The same as 1 The same as 1 The same as 1 Exception!!
Expect
“FAIL-For-All”,
but get
assumptions. Will
also talk about
branches.

((!busy ^ ((!fwd ^
(AF fwd)_s5) v
fwd))
v(busy ^ ((!fwd ^
(AF fwd)_s6 ^
(AF fwd)_s5) v
fwd)))
^ (AG f)_s4 ^
(AG f)_s5 ^ (AG
f)_s6)

startf1->startf2->startf1
(FAIL! Since the system is closed to
Giannakopoulou’s and the property
should be false on it.)

SS-c.lts

9 Same Results As 2 (sign ^ mail ^ (AG
(sign -> AF
mail))_s4) v (!sign
^ (mail v (!mail ^
(AF mail)_s4)) ^
(AG (sign -> AF
mail))_s4)

Startf1->startf2
->mail->startf1

SE-c.lts

10 Same Results As 3 For the space
limitation, I don’t
write the complete
constraints down

Startf1->startf2
->mail->startf1

SSE-c.lts

 5

here, but they are
still based on all
the possible
valuations of the
three prop,
assuming they
have values
assigned in
preceding
features.

11 Same Results As 4(subset of 4) ((sign v encrypt) ^
mail ^ (AG f)_s2)
v (!(sign v
encrypt) ^ (AG
f)_s2)

Startf1->startf2
->{sign, encrypt}
-> mail

EE-c.lts

12 Same Results As 5(subset of 5) (!compose ^
AG(compose ->
AF mail)_s7) v
(compose ^ mail ^
(!(!mail)_s7)
^AG(compose ->
AF mail)_s7)

Compose->startf1
->startf2 ->compose

ES-c.lts

13 Same Results As 6(subset) (!compose ^
(AGf)_s7)
 v (compose ^
((mail ^

Compose -> startf1 ->startf2 -> mail
-> compose

ESE-c.lts

 6

(AFmail)_s7 ^
(AGf)_s7))

14 Same Results As 7 (!compose v
(compose ^ (!sign
v (sign ^ mail))))
^ (AG((compose
-> AF sign) -> AF
mail))s8

Compose -> startf1 -> startf2 ESS-c.lts

 Summary

 Some of these
properties are verified
on the same feature.
This is fine, since the
feature provides them
with the common
case, the branches and
the cycles

 1

