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ABSTRACT

Prevalent mental health conditions, major depressive disorder (MDD), and post-

traumatic stress disorder (PTSD) have severe physical and social impacts. Detection

is difficult and expensive, requiring substantial time from trained mental profession-

als. To counteract this issue, recent research has explored the diagnostic potential of

deep learning models trained on modalities extracted from virtual agent-conducted

clinical interview videos. However, deep learning models are challenging to train

due to long sequences and the small number of participants that are common in

the mental health community. In this thesis, a solution to combat these challenges

is developed by leveraging a multi-task learning framework that uses temporal

facial features as input to screen for MDD and PTSD. The multi-task framework is

based on a bidirectional GRU model with self-attention. This thesis evaluates the

multi-task model on temporal facial features extracted from the responses to 15

clinical interview questions conducted by a virtual agent. The results suggest that

multi-task learning increases the generalization performance compared to single-

task learning. For MDD screening, multi-task learning improved the balanced

accuracy over single-task learning for 11 of the 15 datasets. The multi-learning

model increased the MDD screening ability by 25 percent to a balanced accuracy

of 0.87 in some scenarios. This work provides valuable findings for the future of

mental screening applications leveraging temporal facial features. 1

1This thesis is adapted from my paper in collaboration with Dr. Ricardo Flores from Sanofi, A. Shrestha*, R.
Flores*, M. Tlachac and E. A. Rundensteiner, “Multi-Task Learning Using Facial Features for Mental Health
Screening,” 2023 IEEE International Conference on Big Data (BigData), Sorrento, Italy, 2023, pp. 4881-4890,
doi: 10.1109/BigData59044.2023.10386191, where Dr. Flores and I shared equal contributions towards the
paper and has been featured in his dissertation as well.
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1 INTRODUCTION

1.1 BACKGROUND

Major depressive disorder (MDD) and post-traumatic stress disorder (PTSD) are mental illnesses

experienced by millions of individuals annually in the U.S. (1; 2). Individuals with MDD and/or

PTSD have a reduced quality of life (3; 4), as the mental illnesses have negative impacts on physical,

social, and financial health (5; 6). MDD and PTSD are both associated with suicidal behavior (6),

particularly when the mental illnesses are undertreated (7). While prevalence is slightly higher among

U.S. veterans (8), PTSD is a disability that can impact anyone who experiences trauma (2; 6).

MDD and PTSD have high comorbidity, with approximately 50% of people who screen positive

for PTSD also screening positive for MDD (9). Having both mental illnesses notably increases the

likelihood of developing physical health disorders, with simultaneous MDD and PTSD increasing the

likelihood of disability by three in veterans (10). Both mental illnesses can go unnoticed among the

general population due to the lack of awareness regarding symptoms (11) and mental health stigma

(12). However, early treatment can greatly reduce the symptoms of MDD and PTSD, and even result

in depression remission (13) and PTSD recovery (2).

Clinicians play a vital role in diagnosing MDD and PTSD, as these mental illnesses can present

themselves with different symptom profiles for different people (14). Further, the symptoms can be

easily attributed to other health conditions (15), as patients often may not recognize and communicate

more subtle or stigmatized symptoms (11; 16). As a result of the COVID-19 pandemic, the prevalence

of MDD and PTSD has increased (17; 18). This has caused further strain on the already limited mental

health resources (19; 20). The shortage of clinicians has a devastating effect on community health,

especially following trauma exposure from catastrophic events (21) like the COVID-19 pandemic.

1.2 MOTIVATING EXAMPLE

Traditional methods of diagnosing MDD and PTSD usually involve the administration of screening

questionnaires (22; 23) and lengthy clinical interviews. Given the comorbidity between MDD and

PTSD, clinicians also need to be able to distinguish between them, as they require differing treatment

plans (24; 25). This requirement for differential diagnosis can result in even lengthier clinical

interviews. With the limited availability of mental health professionals (19; 20), conducting lengthy

clinical interviews can be costly and have long wait times, resulting in delays in care that often have

disastrous impacts on patients’ health (26; 13). Differential diagnoses are one of the psychiatric tasks

that could most benefit from the application of machine learning (27).
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Virtual agent-conducted clinical interviews can be used to expedite mental health screening. When

integrated with mental health screening models, they present an inexpensive and efficient alternative

to the traditional interview process, which allows for the interview to be conducted asynchronously

of clinician availability. The goal of the virtual agent in this setting is to encourage the patients to

disclose sufficient information for the screening models by asking a series of questions to simulate

conversation (28). Data collected during the clinical interview can be used by screening models and

provided to the clinician for review.

Facial features represent a particularly promising mental illness screening modality as they maintain

patient privacy, are language agnostic, and do not require computationally prohibitive models. Further,

recent research has found that temporal facial features (29) were much more robust at depression

screening than audio or transcripts across multiple video datasets (30). As such, the patient’s facial

features can be recorded during the clinical interview and subsequently used by deep learning models

to screen for mental illnesses.

1.3 PROBLEM DEFINITION AND CHALLENGES

Given a set of temporal facial features extracted while patients answer questions and the corresponding

MDD and PTSD screening labels, the goal of this thesis is to simultaneously predict whether each

participant has MDD and/or PTSD. Additionally, this thesis aims to identify which clinical interview

questions are most useful to ask, as evaluated by the use of the resulting temporal facial features in

the MDD and PTSD screening models.

Training a deep learning model on temporal facial features for mental illness screening poses certain

challenges. The temporal facial features must span enough time to hold predictive signal, but deep

learning models can suffer from the vanishing problem (31) when the input sequences are too long.

In particular, long sequences have a high computational cost for training, especially if leveraging

large architectures, such as transformer-based models (32; 33; 34). Further, most visual-mental health

datasets are composed of data from a relatively limited number of participants (35). Consequently,

deep learning models trained to screen for depression on such datasets tend to report low evaluation

metrics (36; 37).

1.4 THE DEEP LEARNING APPROACH

In this thesis, the aim is to improve the MDD and PTSD screening capabilities of facial features

extracted from clinical interviews conducted by a virtual agent. To achieve this, a multi-task learning

approach leverages temporal facial features as displayed in Fig. 1. Notably, by incorporating three

different types of facial features, landmark, eye gaze, and action unit. The aforementioned challenge
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Figure 1: Multi-task learning. A virtual interviewer asks questions to a patient. The clinical
interview facial features are leveraged for a multi-task learning model with a shared layer and two
final layers for major depressive disorder (MDD) and post-traumatic stress disorder (PTSD) screening.

of long sequences is addressed through the use of self-attention (32) in the models (38). To address the

small sample size, the thesis incorporates multi-task regularization techniques (39). As the screening

model is designed to use facial features rather than raw videos, this approach also preserves patient

privacy.

To corroborate the approach, the single and multi-task models are trained on the facial features in

the popular Distress Analysis Interview Corpus Wizard-of-Oz (DAIC-WOZ) dataset. In addition

to the MDD screening labels in DAIC-WOZ, this thesis also leverages the PTSD screening labels

for the clinical interviews from the Extended Distress Analysis Interview Corpus (E-DAIC) (40).

The clinical interviews are divided into sub-interviews based on a set of core questions, to determine

which questions are most useful for MDD and PTSD screening. This thesis is significant in that it

provides knowledge into how to leverage temporal facial features and multi-task learning in general

and applied to temporal facial features in particular to improve the development of the next generation

of mental health screening applications. The developed approach is general, and could also be

evaluated on other modalities like audio or textual responses. This thesis contributes:

1. A multi-task learning approach to classify temporal facial features, allowing simultaneous

screening for major depressive disorder (MDD) and post-traumatic stress disorder (PTSD).

2. Comparison of the ability of single and multi-task models to screen for MDD and PTSD.

3. Assessment of which specific clinical interview questions are most useful for MDD and

PTSD screening.
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2 RELATED WORK

2.1 SINGLE-TASK LEARNING FOR MENTAL HEALTH ASSESSMENT

There is a substantial amount of work applying traditional single-task learning models to mental

illness screening with digital data ranging from location (41) to videos (42). Much of the depression

screening research on video modalities has been conducted with the Distress Analysis Interview

Corpus Wizard-of-Oz (DAIC-WOZ) dataset (43), given that it featured in the Audio/Visual Emotion

Challenge and Workshop (AVEC) (44). Single-task learning models have been used for depression

screening with audio (45; 46; 47; 48; 36; 49), transcripts (50; 51; 52; 53), facial features (29), and

multiple modalities (47; 54; 30) extracted from the DAIC-WOZ clinical interviews.

The most successful of the depression screening models (47) were computationally expensive,

language-dependent, and posed a privacy risk as they require raw data. In contrast, facial features

extracted from videos do not share these limitations. Facial features that were extracted in this manner

have been leveraged for health applications such as depression screening (55; 56; 29), suicide risk

assessment (57), and autism identification (58).

2.2 MULTI-TASK LEARNING FOR MENTAL HEALTH ASSESSMENT

The concept of multi-task learning was first introduced by the observation of the knowledge transfer

that occurs naturally in human communication and education (59). The same can be said for

machine learning models, as the knowledge transfer between related tasks often allows the model to

robustly learn data which allows better generalization performance over the data. Multi-task learning

allows eavesdropping of information between tasks to increase performance and generalization (60).

Health researchers have used this transfer of knowledge among tasks to explore research in tumor

segmentation and response prediction (61), construction of personalized brain-computer interfaces

(62), Alzheimer’s disease screening (63; 64; 65), and survival analysis (66).

Multi-task learning has also been used with social media text (67; 68) and sensor data from mobile

phones and wearable devices (69) to improve mental health screening. Prior mental illness screening

research (67) found that multi-task learning can greatly improve upon the performance of their single-

task counterparts. Using multi-task learning for mental health screening mirrors the clinical decision-

making process as multiple assessments are performed simultaneously by mental health professionals

during clinical interviews (70). Overall, multi-task learning can be used to help diagnostic models

implicitly capture comorbidities in their hidden layers. As such, multi-task learning is particularly

beneficial for small datasets (39), which are common in healthcare research (35).
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2.3 FACIAL FEATURES FOR MENTAL HEALTH ASSESSMENT

There are multiple types of facial features. Eye gaze is the most common in digital health research,

having been used for depression screening (55; 29), suicide risk assessment (57), and autism iden-

tification (58). Head pose (56), landmark (29), and action unit (29) facial features have also been

used for depression screening. Additionally, the facial features have been used to train multi-modal

models for depression screening (71; 72; 73; 30). Only a limited number of these studies model the

facial features temporally (58; 29; 30).

In this thesis, three types of facial features are leveraged to train a deep learning sequential model that

can simultaneously output MDD and PTSD screening predictions. The strong comorbidity between

the two mental illnesses (9) is favorable for multi-task learning as there can be information transfer

between the two classification tasks (59). Further, the single-task models provide unique insights into

the ability of temporal facial features to screen for PTSD.
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3 DATA

3.1 DISTRESS ANALYSIS INTERVIEW CORPUS

This thesis trains models leveraging the Extended Distress Analysis Interview Corpus (E-DAIC)

(43; 40), which encompasses the Distress Analysis Interview Corpus Wizard-of-Oz (DAIC-WOZ)

dataset (43; 28). Featured in the 2016 AVEC workshop (44), the DAIC-WOZ dataset was intended to

support the digital screening and diagnosis of major depressive disorder (MDD) by providing data in

which to identify verbal and nonverbal indicators of mental illness (43; 28). The DAIC-WOZ dataset

consists of data from clinical interviews with 189 unique participants, which were conducted by a

virtual agent named Ellie (28). For the WOZ subset, Ellie was animated by a researcher (known as a

wizard) in a different room, a fact unknown to the participants being interviewed(43; 28).

The clinical interview data that was made available as part of the DAIC-WOZ dataset include audio

recordings, transcripts, and facial features. The three types of facial features, extracted from clinical

interview videos by the OpenFace Software (74), include landmark, eye gaze, and action unit. The

interview data was labeled with MDD screening scores, permitting supervised modeling of the data.

The interviews ranged from 7 to 33 minutes (with an average of 16 minutes), demonstrating great

variability in the quantity of data depending on the participant being interviewed.

E-DAIC similarly contains data from clinical interview recordings (40; 43), including the DAIC-

WOZ clinical interview data. Notably, E-DAIC was designed to support the diagnosis of multiple

mental illnesses and is therefore more broad than DAIC-WOZ in that regard. In addition to MDD

labels, E-DAIC contains PTSD labels for the clinical interviews. Further, E-DAIC contains clinical

interviews with more participants than DAIC-WOZ. However, these additional interviews were

conducted with different setups for Ellie such as having Ellie act completely autonomously (43; 28).

The E-DAIC train set (of 163 participants) and development (of 56 participants) set are intermixed

with clinical interviews conducted by Ellie under the WOZ and autonomous settings, though the test

set (of 56 participants) is comprised entirely of autonomously conducted interviews.

This thesis specifically leverages the 189 clinical interviews that comprise the DAIC-WOZ dataset.

In addition to the MDD screening labels made available in the DAIC-WOZ dataset, the thesis also

makes use of the PTSD screening labels for the WOZ interviews that were made available only

as part of the E-DAIC release. Due to the differences in the collection procedures, the 86 clinical

interviews that are only available as part of the E-DAIC release are not utilized. In other words, the

thesis assesses the ability to screen for mental illnesses with the interviews conducted by Ellie under

the WOZ setting rather than under the fully autonomous setting.
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3.2 MENTAL ILLNESS SCREENING SCORES

The major depressive disorder (MDD) screening scores in the DAIC-WOZ dataset were acquired

through the administration of the Patient Health Questionnaire (PHQ-8) (22) and the post-traumatic

stress disorder (PTSD) labels in the E-DAIC dataset were acquired through the administration of the

PTSD Checklist-Civilian version (PCL-C) scores (23). Both of these screening instruments consist

of a series of questions that correspond to key symptoms of the mental illness, the scores of which

are totaled for interpretation.

The PHQ-8 (22) consists of 8 questions that ask about symptom frequency in the past two weeks

on a scale that ranges from ‘0: Not at all’ to ‘3: Nearly every day’. Thus, the PHQ-8 score ranges

from 0 to 24. Scores of 5, 10, and 15 are the cutoffs used to screen for mild depression, moderate

depression, and moderately severe depression. For this thesis, the cutoff of 10 for screening positive

for depression is adopted as it is commonly used as the threshold for MDD screening.

The PCL-C (23) is a longer questionnaire than the PHQ-8, consisting of 17 questions. The PCL-C

questions ask about how often a symptom has been a problem in the last month on a scale that ranges

from ’1: Not at all’ to ’5: Extremely’, resulting in a PCL-C score that ranges from 17 to 85. Based on

prior research (75), the cutoff of 44 is utilized, where scores of and above this threshold were labeled

as positive for PTSD.

3.3 QUESTION DATASETS

During the DAIC-WOZ clinical interviews (43; 28), each participant was asked a series of core

and follow-up questions. The follow-up questions were asked to mimic a realistic conversation and

increase self-disclosure (28; 76). As such, the clinical interviews can be divided into subsets based

on the core questions, with the follow-up questions ensuring the responses contain sufficient data

for modeling purposes. Thus, the responses to each core question as separate datasets, following the

proposed data set construction first introduced by Toto et al. (47).

To form question datasets, the interview transcripts are first parsed to identify core questions based on

their bag-of-words representation. Then the data is separated based on these core questions and this

transformation is applied to the facial features using the transcript timestamps. Notably, a response to

a core question extends until the next core question is asked. As such, the responses to the follow-up

questions are concatenated with the response to the preceding core question.

Each DAIC-WOZ participant is asked a different series of core questions based on their responses to

prior core questions (28; 43). There were 15 core questions that were answered by at least 90 of the

DAIC-WOZ participants. As such, individual question datasets are created for these 15 questions,
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Table 1: Question dataset descriptions with an example of question, and number of instances

Dataset Question Example Instances
D1 What advice would you give to yourself ten years ago? 102
D2 Is there anything you regret? 94
D3 When was the last time you argued with someone? 103
D4 How are you at controlling your temper? 100
D5 Have you been diagnosed with depression? 94
D6 Have you ever been diagnosed with PTSD? 92
D7 How are you doing today? 105
D8 What’s your dream job? 95
D9 How easy is it for you to get a good night’s sleep? 98
D10 How have you been feeling lately? 92
D11 How would your best friend describe you? 96
D12 When was the last time you felt really happy? 99
D13 What are you most proud of in your life? 99
D14 What’d you study at school? 95
D15 Do you travel a lot? 94

which are summarized in Table 1. The table includes the dataset name, an example of the question

wording, and the number of participants who answered the question. As the largest of these individual

question datasets contains 105 participants, the datasets are all relatively similar in size.

Table 2: Question datasets with corresponding the ratio of participants who screened positive for
MDD and PTSD, and correlation (Corr.) of the PHQ-8 and PCL-C scores.

Dataset MDD Ratio PTSD Ratio Corr.
D1 28.4% 31.4% 0.83
D2 29.8% 30.8% 0.86
D3 29.1% 32.0% 0.83
D4 30.0% 33.0% 0.84
D5 21.3% 25.5% 0.78
D6 27.2% 29.3% 0.86
D7 28.6% 31.4% 0.83
D8 30.5% 31.6% 0.83
D9 27.6% 28.6% 0.84
D10 29.4% 32.6% 0.82
D11 26.0% 31.3% 0.84
D12 28.3% 31.3% 0.83
D13 28.3% 31.0% 0.83
D14 30.5% 31.6% 0.85
D15 27.7% 29.8% 0.84

Table 2 includes the average MDD and PTSD ratio for each question as well as the correlation

between the PHQ-8 and PCL-C scores. Around a third of the participants screened positive for MDD

and PTSD. In other words, the question datasets are somewhat unbalanced for both the MDD and the

PTSD screening tasks. The average Pearson correlation coefficient between the PHQ-8 and PCL-C

scores is 0.83. This confirms that there is a high positive correlation between the two main tasks,

which was expected given the literature that states PTSD is comorbid with MDD (9).

According to literature, multi-task learning is known to perform well when the tasks are strongly

correlated (59). This means that optimizing for such correlated tasks jointly tends to improve the

12



Figure 2: An example of the correlation between the scores of the two main tasks: PHQ-8 and PCL-C
scores for the D11 dataset, with a high correlation coefficient of 0.84.

performances of each of the individual tasks. As an example, the correlation of PHQ8 and PCL-

C scores for the D11 dataset is explored and displays the best-fit line depicted in red in Fig. 2,

highlighting the high positive correlation of mental illness screening scores.

3.4 TEMPORAL FACIAL FEATURES

The DAIC-WOZ dataset contains processed facial features instead of original images to protect

participant privacy. The facial features were generated by applying the OpenFace software (74) to the

video recordings of the clinical interviews for each participant. The 162 facial features constitute

three types of facial features: landmark, eye gaze, and action unit. The features are normalized

between −1 and 1.

The temporal nature of these facial features is represented in Fig. 3. In this thesis, the temporal facial

features are modeled as a multivariate time series. The landmark time series has 136 dimensions,

the eye gaze time series has 12 dimensions, and the action unit time series has 14 dimensions. The

multivariate time series of the three facial feature types are concatenated. Further, the sub-sequence

of facial features is set for one second and then the facial feature information contained within that

second is aggregated, as depicted in Fig. 3.
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Figure 3: Landmark, eye gaze, and facial action unit are types of temporal facial features represented
as multi-variate time series of dimensions 136, 12, and 14 respectively. The information contained
within a second is aggregated.

The screening potential of the facial features in the DAIC-WOZ dataset is understudied, with a limited

number of previous studies (29; 30) considering their temporal aspects for modeling purposes. The

DAIC-WOZ audio and transcripts are decidedly more popular (45; 46; 47; 48; 36; 49; 50; 51; 52; 53;

77). Notably, Lau et al. (77) leveraged both speech and transcript data from the DAIC-WOZ corpus

to improve depression assessment of a multi-task multi-modal framework. This thesis in comparison

leverages facial features as a singular modality to conduct both MDD and PTSD screening. Despite

their privacy advantages, no such prior multi-task research has worked with temporal facial features.
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4 METHODOLOGY

4.1 SINGLE-TASK FRAMEWORK

The three types of temporal facial features– landmark, eye gaze, and action unit — are concatenated

into a vector fi of size p containing all facial feature types; i.e., fi = (fi,1, fi,2, · · · fi,p). Each patient

is modeled by a time series of n sub-clips of facial features S = (f1, f2, ..., fn). Consequently, S

corresponds to a matrix of size n× p such as:

S =


f1,1 f1,2 · · · f1,p

f2,1 f2,2 · · · f2,p
...

...
. . .

...

fn,1 fn,2 · · · fn,p

 . (1)

As the time series data is multivariate, the thesis leverages a GRU model for MDD and PTSD

screening. GRU is known to be useful for depression screening (78; 79; 80). Further, it is more

computationally efficient (81) than its predecessor, long short-term memory (LSTM) (82). This is

beneficial in clinical settings where computational resources may be scarce.

The relationship between facial features is learned through a bidirectional gated recurrent unit

(biGRU) (83) network with input size p. The GRU can be described as

zt = σ(Wzft + Uzht−1 + bz), (2)

rt = σ(Wrft + Urht−1 + br), (3)

ĥt = ϕ(Whft + Uh(rt ⊙ ht−1) + bh), (4)

ht = (1− zt)⊙ ht−1 + zt ⊙ ĥt. (5)

where zt, rt, ĥt, and ht are the update gate, reset gate, candidate activation gate, and hidden output

vectors, respectively. Further, W,U, and b are parameters to estimate, and σ and ϕ are the Sigmoid

and Tanh activation functions, respectively.

At each time step t, the hidden state (ht) is processed by the biGRU. This hidden state changes based

on the direction of information. For example, features can go from left to right (forward direction) or

from right to left (backward direction). Thus, the forward hidden state (
−→
h t) and the backward hidden

state (
←−
h t) set as ht = [

−→
h t;
←−
h t] to correspond to the concatenation of the forward and backward

hidden states. H is the set of all hidden states of the biGRU, such that H = (h1, ..., hn).
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Like the prior studies (47; 30), this thesis applies a self-attention mechanism (32) to the single-

task GRU models. This helps the model prioritize meaningful embeddings, along with preventing

vanishing problems (38) from long sequences. The vanishing problem results when the gradient of a

neural network is too small, and the learning process stops, as a result (84). Further, an addition of a

self-attention mechanism A is done to the previous deep learning architectures such that,

A = softmax(Ws2tanh(Ws1(H)T )), (6)

where H represents all hidden states from the GRU. The weight matrix Ws1 and Ws2 are both learned

during training. The attention A is multiplied with the hidden state H to generate the embeddings e,

such as:

e = A×H, (7)

ŷ = FCL(e). (8)

where the embedding e is used as input for a fully connected layer (FCL) for the binary prediction

label (ŷ). For comparison, the single-task framework described above for each of the MDD and

PTSD screening tasks is trained separately.

4.2 MULTI-TASK FRAMEWORK

The multi-task learning framework consists of two primary tasks, MDD and PTSD screening. In

addition to the aforementioned tasks, there is also the addition of an auxiliary reconstruction task.

The model design is depicted in Fig. 4. In the framework, the input facial features are passed through

a shared bidirectional GRU module and then through attention layers. After which, the outputted

shared embedding from the shared component is then passed through the task-specific layers. For the

primary classification tasks, the model simply passes the shared embeddings through additional fully

connected layers.

To model the reconstruction task, the encoder compresses the shared embeddings to a latent variable

(85). This is then passed to a decoder that reconstructs the embedding back into the reconstructed

input. This is supervised by the loss function minimizing the difference between the feature input

and reconstructed feature output of this encoder-decoder model. The intuition behind adding the

reconstruction task as an auxiliary task is that providing the multi-task model with a simple yet

unrelated task would help the multi-task model learn more information about the features (86; 87),

and thus could potentially avoid common multi-task learning pitfalls such as negative transfer (60).
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Figure 4: The multi-task learning framework, where the temporal facial features (S) are fed into a
bidirectional GRU (biGRU) with self-attentions (Att) to train for two main tasks, MDD screening
and PTSD screening, and an auxiliary task (reconstruction, Ŝ).

As Table 1 and Fig. 2 depict, the two primary tasks are highly correlated. Similar to the single-task

framework, all the facial features in the matrix S of size n × p are leveraged for the multi-task

framework. S is the input for the bidirectional GRU (biGRU) which outputs the hidden states Hmt.

In this context, Hmt is the shared layer, which learns the common knowledge of all tasks. Same as

before, there is an addition self-attention to Hmt to create an embedding such as,

Amt = softmax(Wmt
s2 tanh(Wmt

s1 (Hmt)T )), (9)

emt = Amt ×Hmt, (10)

where Wmt
s1 and Wmt

s2 are weights to estimate. Finally, the shared embeddings emt are utilized as

input for the task-specific layers, using a fully connected layer (FCL) for each task:
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ŷmdd = FCLmdd(e
mt), (11)

ŷptsd = FCLptsd(e
mt). (12)

For training, both the losses from MDD and PTSD prediction labels are leveraged such that,

Lossmdd = CE(ymdd, ŷmdd), (13)

Lossptsd = CE(yptsd, ŷptsd). (14)

Additionally, the model also utilize the loss of the auxiliary reconstruction task consuming the same

features:

Lossauxiliary = CE(S, Ŝ). (15)

Here, CE is the cross-entropy loss commonly used for classification purposes. For backpropagation,

the summation of the three losses is calculated and leveraged. Doing so allows the model to equally

prioritize each task. Thus, the model not only learns the data concerning the MDD and PTSD labels

but also learns a better representation of the feature space (87).
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Table 3: Balanced accuracy of single-task (ST) and multi-task (MT) models for MDD and PTSD
screening, with task Gain (MT-ST). The higher value between MT and ST as well as positive gain are
in bold.

MDD PTSD
Dataset Single-task Multi-task Gain Single-task Multi-task Gain
D1 0.73± 0.01 0.77± 0.03 +0.04 0.71± 0.03 0.72± 0.03 +0.01
D2 0.74± 0.03 0.76± 0.03 +0.02 0.72± 0.06 0.74± 0.03 +0.02
D3 0.72± 0.03 0.72± 0.03 0.00 0.75± 0.00 0.73± 0.03 −0.02
D4 0.65± 0.00 0.68± 0.03 +0.03 0.72± 0.03 0.75± 0.00 +0.03
D5 0.73± 0.03 0.87± 0.03 +0.14 0.75± 0.05 0.68± 0.03 −0.07
D6 0.75± 0.02 0.72± 0.01 −0.03 0.73± 0.05 0.69± 0.03 −0.04
D7 0.65± 0.05 0.72± 0.03 +0.07 0.65± 0.00 0.57± 0.08 −0.08
D8 0.74± 0.01 0.75± 0.00 +0.01 0.67± 0.05 0.71± 0.04 +0.04
D9 0.59± 0.00 0.57± 0.00 −0.02 0.58± 0.03 0.58± 0.06 0.00
D10 0.76± 0.03 0.71± 0.03 −0.05 0.66± 0.04 0.62± 0.05 −0.04
D11 0.69± 0.12 0.73± 0.00 +0.04 0.78± 0.04 0.78± 0.03 0.00
D12 0.64± 0.04 0.76± 0.06 +0.12 0.78± 0.03 0.78± 0.06 0.00
D13 0.74± 0.01 0.82± 0.03 +0.08 0.79± 0.01 0.81± 0.03 +0.02
D14 0.69± 0.01 0.74± 0.01 +0.05 0.62± 0.02 0.69± 0.05 +0.07
D15 0.64± 0.03 0.68± 0.00 +0.04 0.63± 0.01 0.68± 0.00 +0.05
Avg. 0.69 0.73 +0.04 0.70 0.70 0.00
Max. 0.76 0.87 +0.11 0.79 0.81 +0.02

5 EXPERIMENTAL RESULTS

5.1 CLASSIFICATION EVALUATION

Accuracy, a common metric to evaluate classification tasks, is not suitable for unbalanced data.

Therefore, the model is evaluated using balanced accuracy (BA) and F1 defined in Equations 16

and 17 respectively. Both utilize the number of true positive (TP ), true negative (TN ), false positive

(FP ), and false negative (FN ) predictions. The average of sensitivity and specificity, BA is well

suited to evaluate diagnostic models. Meanwhile, the high emphasis that F1 places on true positive

predictions makes it appropriate for evaluating unbalanced data commonly found in healthcare.

BA =
1

2
(

TP

TP + FN
+

TN

TN + FP
) (16)

F1 =
TP

TP + 1
2 (FP + FN)

(17)

For model evaluation, the formed test sets contain 20% of each dataset by selecting a random stratified

sample. As this is a multi-task problem, the training data is upsampled until the upsampled training

set is approximately balanced for both the MDD and the PTSD labels. Each model was repeated

ten times with randomly initialized weights. The results reported are the average of the five highest

values. To prevent overfitting, early stopping, and dropout layers were employed during training.
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Table 4: F1-Score of single-task (ST) and multi-task (MT) models for MDD and PTSD screening,
with task Gain (MT-ST). The higher value between MT and ST as well as positive gain are in bold.

MDD PTSD
Dataset Single-task Multi-task Gain Single-task Multi-task Gain
D1 0.70± 0.00 0.75± 0.02 +0.05 0.71± 0.02 0.70± 0.04 −0.01
D2 0.70± 0.06 0.74± 0.01 +0.04 0.70± 0.01 0.69± 0.02 −0.01
D3 0.70± 0.04 0.74± 0.01 +0.04 0.76± 0.00 0.74± 0.02 −0.02
D4 0.69± 0.03 0.71± 0.02 +0.02 0.74± 0.02 0.72± 0.02 −0.02
D5 0.65± 0.03 0.81± 0.02 +0.16 0.66± 0.06 0.59± 0.02 −0.07
D6 0.72± 0.05 0.69± 0.04 −0.03 0.69± 0.07 0.66± 0.07 −0.03
D7 0.70± 0.02 0.74± 0.02 +0.04 0.67± 0.01 0.67± 0.00 0.00
D8 0.76± 0.00 0.75± 0.03 −0.01 0.73± 0.03 0.68± 0.04 −0.05
D9 0.61± 0.02 0.60± 0.04 −0.01 0.54± 0.02 0.58± 0.10 +0.03
D10 0.75± 0.04 0.72± 0.02 −0.03 0.60± 0.04 0.64± 0.02 +0.04
D11 0.68± 0.11 0.68± 0.02 0.00 0.77± 0.04 0.77± 0.01 0.00
D12 0.67± 0.00 0.76± 0.04 +0.09 0.75± 0.02 0.76± 0.02 +0.01
D13 0.76± 0.02 0.83± 0.02 +0.07 0.78± 0.03 0.81± 0.03 +0.03
D14 0.71± 0.02 0.79± 0.01 +0.08 0.66± 0.05 0.72± 0.03 +0.06
D15 0.60± 0.02 0.61± 0.02 +0.01 0.65± 0.03 0.64± 0.02 −0.01
Avg. 0.69 0.73 +0.04 0.69 0.69 0.00
Max. 0.76 0.83 +0.07 0.78 0.81 +0.03

5.2 SINGLE-TASK VS MULTI-TASK

The average BA and average F1 scores from the experiments are displayed in Tables 3 and 3,

respectively. For MDD screening, the highest average balanced accuracy of 0.87 (on D5) and the

highest average F1 of 0.83 (on D13) was achieved by the developed multi-task framework. Likewise,

the multi-task framework also achieved the highest average balanced accuracy and F1 of 0.81 (on

D13) for PTSD screening. When compared to single-task learning, multi-task learning improved the

maximum balanced accuracy by 0.11 for MDD screening and 0.02 for PTSD screening as well as the

maximum F1 score by 0.07 for MDD screening and 0.03 for PTSD screening.

On average, across the 15 datasets, the multi-task framework outperforms its single-task counterpart

for MDD screening, with an average balanced accuracy and F1 of 0.73. In comparison, the single-task

framework only achieves an average balanced accuracy and F1 of 0.69 across all datasets. Thus,

multi-task learning has a relative gain of 0.04 over single-task learning. Additionally, the multi-task

framework achieves a higher balanced accuracy score for 11 out of 15 datasets and a higher F1 score

for 10 out of 15 datasets. The largest gains in balanced accuracy were for D5 (+0.14), D12 (+0.12),

D13 (+0.08), and D7 (+0.07) and the greatest gains in F1 were in D5 (+0.16), D12 (+0.09), D13

(+0.08), and D14 (+0.08).

As for the PTSD screening task, across the datasets, both single-task and multi-task models achieve

an average balanced accuracy of 0.70. The single-task models have balanced accuracy scores ranging

from 0.58 to 0.79 whereas the multi-task models have balanced accuracy scores ranging from 0.57

to 0.81. Likewise, the single-task models have F1 scores ranging from 0.54 to 0.77 whereas the
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multi-task models have F1 scores ranging from 0.58 to 0.81. Thus, the multi-task models have slightly

higher minimum and maximum scores across the datasets than the single-task models. Overall, for

PTSD screening, the multi-task framework achieves a higher BA score for 7 out of 15 datasets and

a higher F1 score for 5 out of 15 datasets. The largest gain in both balanced accuracy and F1 was

achieved for D14.

The results overall demonstrate that multi-task learning improved MDD screening. While PTSD

screening did not observe the same benefit as MDD from multi-task learning, it still maintained equal

performance in comparison to its single-task counterpart while aiding the ability to screen for MDD.

By providing the model with multiple tasks, the model is made to learn a more robust representation

of the hidden embeddings. It is thus able to better perform over the dataset for one of the primary

tasks, in this case, MDD screening.

5.3 QUESTION ANALYSIS

Understanding the screening value of each clinical interview question allows for the prioritization

of certain questions to be deployed during shorter screening sessions. For MDD screening with

temporal facial features, both D5 and D13 have average BA and F1 scores over 0.80 obtained with

multi-task learning. Notably, when screening for MDD with D5, the multi-task framework improved

the balanced accuracy by 19% (0.14) and the F1 by 25% (0.16) over the single-task framework.

Meanwhile, for single-task learning with temporal facial features, D10 was the only dataset with

both average BS and F1 scores of at least 0.75 for MDD screening.

For PTSD screening with temporal facial features, both single-task and multi-task learning models

achieved the highest average BA and F1 scores on D13. The multi-task framework with D13 was

the only PTSD screening model to obtain a BA and F1 over 0.80. D11 and D12 were the other two

most useful questions for MDD screening, with both the single and multi-task models obtaining BA

scores of 0.78 and F1 scores of at least 0.75.

From the results, the recommendation drawn is to include the question represented as D13 in multi-

task models that simultaneously perform MDD and PTSD screening with temporal facial features.

The other datasets that performed above average for both screening tasks in the multi-task framework

are D1, D2, D8, D12, and D14.
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6 DISCUSSION

6.1 BENEFITS OF FACIAL FEATURES FOR MENTAL HEALTH ASSESSMENT

There are ethical concerns regarding screening for mental illnesses with data that can be collected

by bad agents outside of clinical settings. It is generally considered that the benefits of screening

outweigh the risk of misuse. Out of the modalities extracted from videos, temporal facial features

protect privacy more than alternatives such as voice recordings and transcript content. The facial

features could be extracted from a video stream or recording. Either way, the video does not need to be

retained. As the facial features extracted from the OpenFace software (74), present a non-identifiable

screening modality that retains signal for screening applications.

Both the single-task and multi-task models evaluated in this thesis uses temporal facial features as

input for MDD and PTSD screening, thus making them language-agnostic. The usage of transcripts

for mental illness research (54; 47; 51; 52; 88; 89; 90) is quite common as this modality allows the

usage of large pre-trained models for optimal performance. However, these models are often trained

on large corpora that depend on specific languages, making them not generalize well across different

languages. Thus, they would require that a separate model be trained for every language in a dataset,

increasing computational costs. Since the models focus on non-verbal information, these models can

be deployed and adapted in multilingual settings.

6.2 BENEFITS OF GRU FOR MENTAL HEALTH ASSESSMENT

As previously mentioned, the GRU models implemented in this research do not have high computation

costs (81). While they function similarly, GRU models are more efficient than LSTM models (81).

Unlike the majority of large language models, GRU models also do not require a graphics processing

unit (GPU) for training and therefore would be easier to implement in mobile applications and/or

clinical settings. As such, models that screen with temporal facial features would be more accessible

for economically disadvantaged groups who are more likely to be affected by mental illnesses (91).

The GRU models do not sacrifice MDD screening ability for computational efficiency. Previously,

an LSTM with self-attention achieved the highest balanced accuracy of 0.69 on D13 (proud, life)

(30), which is notably lower than both the single-task and multi-task GRU models, which achieved

BA scores of 0.74 and 0.82, respectively. Likewise, another dataset with a question similar to D11

(friend, describe) achieved BA scores of 0.63 and 0.53 with deep transfer audio and text models,

respectively. In comparison, the models were able to achieve higher BA scores of 0.69 and 0.73 using

temporal features in the single-task and multi-task GRU models, respectively.
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6.3 LIMITATIONS AND FUTURE WORK

In this thesis, a multi-task learning approach was designed to improve mental illness screening.

To do so, a sequential GRU model was implemented with self-attention, which is efficient and

works well for MDD screening. The simplicity of the self-attention layer could be considered a

limitation. Further, multi-task learning was shown to be more beneficial for MDD screening than

PTSD screening. A possible explanation is the simple regularization loss function, where the design

of the loss optimization simply sums the three loss values to tally a total loss for backpropagation. A

more advanced approach would be to assign learnable weights to each loss, allowing the model to

prioritize information gained for backpropagation. Additionally, the benchmark dataset leveraged

in this thesis has a relatively small number of participants and lacks demographic attributes for all

participants – thus this thesis cannot provide any insights into the effectiveness of the model for

particular demographics.

Future work on multi-task learning involves exploring new modeling strategies and datasets. As

mentioned, the datasets leveraged in this research were relatively small. Leveraging larger datasets

such as datasets that are publicly available on social media platforms such as Facebook (92) is

something that can be done to further this work. Additionally, the relation between performance

and dataset size was not explored. This work can be further expanded by involving an evaluation of

performance over the size of data input to the model. The subsequent work based on this research

can also incorporate time series transformers, multi-head attention (32), and other loss regularization

techniques. This research can also be extended to a variety of other digital modalities, such as

transcripts and audio recordings, and diagnostic screening tasks, such as suicidal ideation or anxiety.
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7 CONCLUSION

This thesis provides an assessment of the performance of a multi-task learning architecture that

leverages three types of temporal facial features to screen for MDD and PTSD across 15 datasets.

Based on balanced accuracy results, multi-task learning outperforms single-task learning on 11

datasets for MDD screening and 7 datasets for PTSD screening. The highest average balanced

accuracy for MDD screening was obtained by the multi-task model for the D5 dataset with a score of

0.87, an increase of 25% over the single-task model. The results indicate that temporal facial features

and multi-task learning are a promising combination for future mental health screening applications.
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[74] T. Baltrušaitis, P. Robinson, and L. Morency, “Openface: an open source facial behavior analysis toolkit,”

in IEEE WACV, 2016, pp. 1–10.

[75] E. B. Blanchard et al., “Psychometric properties of the ptsd checklist (pcl),” Behaviour research and

therapy, vol. 34, no. 8, pp. 669–73, 1996.

[76] T. Bickmore, A. Gruber, and R. Picard, “Establishing the computer–patient working alliance in automated

health behavior change interventions,” Patient Education & Counseling, vol. 59, no. 1, pp. 21–30, 2005.

[77] C. Lau, W.-Y. Chan, and X. Zhu, “Improving depression assessment with multi-task learning from speech

and text information,” in 55th Asilomar Conf. on Signals, Systems, and Computers. IEEE, 2021, pp.

449–53.

[78] M. Tlachac et al., “Deprest-cat: Retrospective smartphone call and text logs collected during the covid-19

pandemic to screen for mental illnesses,” ACM IMWUT, vol. 6, no. 2, pp. 1–32, 2022.

[79] Y. Cao et al., “Depression prediction based on biattention-gru,” J. of Ambient Intelligence and Humanized

Computing, vol. 13, no. 11, 2022.

29



[80] S. Teng et al., “A transformer-based multimodal network for audiovisual depression prediction,” in 11th

IEEE GCCE, 2022, pp. 761–764.
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