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Abstract 

With the electronics industry advancing rapidly, the demand for lithium-ion batteries is 

rising globally, creating a need for a reliable lithium recycling method. One such method is the 

electrochemical extraction of lithium from a source solution to a recovery solution using an ion 

exchange membrane and lithiated and de-lithiated LiMn2O4-coated electrodes. This method 

passes an electric current through the electrodes which are submerged in 0.1 mol/L LiCl and 0.05 

mol/L KCl solutions for two hours, which is then repeated after the electrodes are swapped 

between the solutions. Using this method, we have investigated the effects of varying levels of 

de-lithiation, as well as the method’s lithium extraction capability and applicability to a real 

battery solution of LiNH4OHSO4Na. From our testing, both the KCl and the battery solution 

were found to extract lithium from the source solution, confirming the effectiveness of this 

electrochemical method.  
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Background 

 With the electronics industry growing rapidly, the demand for Lithium-ion batteries as a 

power source is rising globally. Lithium-ion batteries are at the forefront of energy storage due to 

their high capacity and long lifespan compared to previous battery types (Scrosati, 2011). As a 

result, lithium-ion batteries have found a home in common devices such as laptop computers and 

cell phones, and they are currently being developed for further use in the automotive industry, 

which could prove to reshape personal transportation in the coming future (Scrosati & Garche, 

2009). Lithium-ion batteries can be constructed using a number of different cathode materials, 

with one prominent material being lithium manganese oxide (LiMn2O4). LiMn2O4 exhibits high 

thermal stability while being at a relatively low cost and of a high abundance, which makes it a 

good candidate as a battery cathode material (Lee et al., 2014).  

Considering the high demand for Lithium-ion batteries, there is an inherent need for a 

dependable, effective recycling method. Simply discarding these batteries is not environmentally 

friendly, since these batteries contain toxic chemicals that can leak into and contaminate the soil 

(Campion et al., 2004). Even more drastically, if these disposed lithium ion batteries are not 

completely drained, they can combust or explode if exposed to certain harsh conditions 

(“Lithium Battery Disposal,” n.d.; Ribière et al., 2012). On another hand, the sourcing of new 

lithium from natural deposits is not a very viable option either, considering how scarcely it is 

found in the world. There are no lithium deposits in North America, making Chile the closest 

natural source of lithium (Meshram, Pandey, & Mankhand, 2013; Zhou et al., 2017). 

Additionally, the price of lithium obtained from these sources is increasing yearly and is 

projected to keep increasing for the foreseeable future (Grosjean et al., 2012). Moreover, given 

the emergence of Lithium-ion batteries as a popular energy source in the past decade and the 
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approximated use life of these batteries being 10 years, a recycling method is becoming highly 

necessary (Scrosati & Garche, 2009).  

One promising method for the recycling of lithium involves the electrochemical 

extraction of lithium from liquid solutions. This process involves the use of both a Li-containing 

Source solution, a recovery solution, a lithium cathode powder coated electrode, and a de-

lithiated cathode powder coated electrode. In the interest of clearer lithium exchange results, the 

recovery solution would preferably not consist of any lithium before testing. In this system, the 

non-de-lithiated electrode is submerged in the recovery solution and the de-lithiated electrode is 

submerged in the source solution. An ion exchange membrane separates the two solutions. The 

electrochemical testing is done by applying a voltage to the system through the electrodes, which 

makes Li+ ions transfer from the source solution to the recovery solution for a period of two 

hours. The electrodes are then swapped with the opposite electrode, and the voltage is applied to 

the system once again for the same amount of time (Zhou et al., 2017). A schematic of the 

electrochemical testing setup can be seen in Figure 1. After the testing, the lithium concentration 

of the source solution should decrease while the recovery solution’s lithium concentration should 

increase, indicating that the voltage applied to the system successfully transferred lithium to the 

intended solution.  

 
Figure 1: Schematic of an Electrochemical Method Test Setup (Zhou et al., 2017)  
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Methodology 

Cathode Preparation 

 The cathodes used for the experiments were prepared by casting a lithium slurry on to a 

piece of carbon paper. Originally this slurry was a mixture of 0.35g of LiMn2O4 (for the positive 

electrode) or de-lithiated LiMn2O4 (for the negative electrode), 0.1g of PTFE to bind the lithium 

to the carbon paper, and 0.05g of conductive carbon black. An amount of ethanol was then added 

to make the mixture a slurry that could be cast on to the carbon paper. A casting tool, shown in 

Figure 4, was used to create an even spread of the slurry on the carbon paper that was laid on a 

sheet of glass to create a smooth surface to cast on. Once both sides of the electrodes were cast 

upon, they were dried in an oven. After the electrodes were dry, a silver conductive epoxy was 

used to attach pieces of nickel foil to the electrodes. This was to allow equipment to be attached 

and pass a voltage through the experiment. The PTFE was then switched out for a different 

binder, PVDF, due to its better bonding abilities. 0.1g of PVDF was used to substitute the PTFE 

to keep a 7-2-1 weight ratio for the slurry components. It was later decided to change this ratio to 

8-1-1, where 0.40g of LiMn2O4/de-lithiated LiMn2O4, 0.05g (1mL) of PVDF binder, and 0.05g 

of conductive carbon black were used to create the electrode slurry. 1mL of 1-Methyl-2-

pyrrolidinone were added to make the mixture more of a slurry to ease the casting process. 
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Figure 2: Mixture of LiMn2O4 and Conductive Carbon Black 

 

Figure 3: Mixture of LiMn2O4, Conductive Carbon Black, and PVDF 
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Figure 4: Tool Used to Cast the Slurry on to the Carbon Paper 

  

Figure 5: Finished Electrodes with Nickel Foil Attached to the Top 

Solution Preparation 

Liquid solutions of 0.05mol/L KCl, 0.1 mol/L LiCl, and a battery solution were necessary 

to perform the electrochemical testing. To prepare the KCl solution, 1.8637g of KCl was 
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dissolved in 500mL of deionized water. The LiCl solution had 2.1195g of lithium chloride 

dissolved into 500mL of deionized water.  

The battery solution was provided by Bin Chen and was prepared by the earlier steps of a 

different lithium-ion battery recycling process. This process is started by shredding the spent 

battery first, which results in a powder. After sieving, the remaining powder mainly consists of 

cathode powder, graphite, and some other metals, like Fe, Cu, and Al. This powder mixture is 

then leached with acid to remove the graphite and other undissolved substances. As a result, the 

solution changes to a transition metal sulfate. Ammonia water and sodium hydroxide is then 

added to deposit the Ni, Mn, and Co. The solution that is left is the battery solution used in the 

electrochemical testing, and contains Li, NH4, OH, SO4, and Na.  

 

Experiment Setup and Testing Variables 

 Electrochemical testing was carried out using 250mL of the 0.1 mol/L LiCl liquid 

solutions as a source solution and 250mL of either the 0.05 mol/L KCl liquid solution or the 

battery solution as the recovery solution. Experiments were carried out with the positive 

LiMn2O4 cathode submerged in the recovery solution and with the negative Li1-xMn2O4 cathode 

submerged in the source solution, as seen in Figure 6. A voltage of 1V would be applied to the 

system for two hours using a BioLogic VMP3 potentiostat/galvanostat, with which a graph of the 

current over time would be recorded. Afterward, the cathodes were washed and dried to avoid 

mixing the contents of the separate solutions. The cathodes were then submerged in the opposite 

solutions, and 1V of electricity was applied to the system for another two hours. During both 

stages of the testing, a graph of the changing current over time was recorded digitally. This graph 
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was used both to verify the state of the reactions taking place and to calculate the capacity of the 

electrodes in mAh/g.  

 

Figure 6: Electrochemical Test Setup Used for Experiments 

De-Lithiation and XRD Testing 

 The de-lithiation process was carried out by first creating a mixture of 400mL DI water, 

19.4g of sodium persulfate (Na2S2O8), and 4g of LiMn2O4. After the complete dissolving of the 

sodium persulfate and LiMn2O4 in the DI water with a magnetic stirrer, the mixture was placed 

in an 80°C oven for either 3 hours or 6 hours. By heating the mixture for a longer period of time, 

more lithium comes out from the LiMn2O4 structure. After the heating, the mixture was then put 

through a pressurized filter, leaving only the resulting Li1-xMn2O4 powder. To verify the integrity 

of the structure, both the 3 hour and 6 hour de-lithiated powder were examined using an XRD. 

Both powders were found to be structurally intact relative to the original LiMn2O4 powder, 

meaning that they would be viable for electrochemical testing. 
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Figure 7: Compression Filter Setup for De-lithiation Process 

 

Figure 8: De-lithiated Li1-xMn2O4 Powder (Left) and LiMn2O4 Powder (Right) 
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Figure 9: XRD Machine 

Coin Cell Making 

Coin cells were created similarly to how the electrodes were prepared. There were coin 

cells created using the original LiMn2O4 powder, the 3-hour de-lithiated LiMn2O4 powder, and 

the 6-hour de-lithiated LiMn2O4 powder to test the capacity of each. A lithium slurry was cast on 

the rough side of aluminum foil strips as shown below in Figure 10. Once an even coating was 

applied using the casting tool, the foil was dried in the oven. Once dry, a hole punch was used to 

create ten 14mm diameter cathodes coated in the slurry of each powder. Each cathode was 

weighed individually then dried in a vacuum oven. Once dry, the cathodes were moved into the 

vacuum glove-box so that they do not react with the moisture in the air. The cathodes were 
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placed into the shell of a coin cell and pressed shut. The capacity of these coin cells was found 

using the capacity testing machine shown in Figure 13. 

 

Figure 10: Lithium Slurry Cast on Aluminum Foil After Hole Punching 

 

Figure 11: Vacuum Glove Box Used to Create Coin Cells 
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Figure 12: Coin Cell Made with LiMn2O4 Cathode 

 

Figure 13: Capacity Testing Machine 

ICP Testing 

After the second two-hour cycle of the electrochemical experiment concluded, samples 

were taken of both the source solution (LiCl solution) and the recovery solution (KCl solution or 

the battery solution) for later ICP analysis. This would be compared with baseline samples taken 
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from before the beginning of the experiment. For the increased accuracy of the ICP results, 

samples had to have fit within a 20 - 200 parts per billion (ppb) range. Therefore, to fit within 

this range, all KCl solution samples were diluted 100x, all LiCl solution samples 10,000x, and all 

battery solution samples 50,000x. Results from ICP tests were given in terms of ppb 

concentrations and were analyzed as a difference between the original, untested solutions and the 

post-test solutions to examine the change in lithium concentration for each solution as a result of 

the electrochemical testing.  
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Results 

Coin Cell Testing 

 The coin cells were tested in a charge/discharge apparatus to obtain a capacity value for 

each of the cathodes used: 3-hour de-lithiated, 6-hour de-lithiated, and original. As seen in 

Figures 14 and 16, both the original and 6-hour de-lithiated cathode coin cells displayed the 

expected charge/discharge behavior, while the 3-hour cathode coin cell did not. This was a result 

of the 3-hour cathode powder used for the coin cell testing not being successful and therefore 

having a significantly degraded structure. However, the 3-hour de-lithiated powder used in the 

electrochemical testing was from a different de-lithiation trial which was verified by XRD to be 

structurally intact. Nonetheless, from the charge/discharge testing, the capacity of the original 

and 6-hour cathode coin cell was found to be 106 and 83 mAh/g, respectively. These values 

would then later be compared to capacity values obtained from the current-time graphs obtained 

from the electrochemical testing.  
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Figure 14: Charge/Discharge graph for LiMn2O4 Coin Cell 
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Figure 15: Charge/Discharge graph for 3-Hour De-Lithiated Li1-xMn2O4 Coin Cell 
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Figure 16: Charge/Discharge graph for 6-Hour De-Lithiated Li1-xMn2O4 Coin Cell 
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XRD Results of De-Lithiated Powders 

 Following the de-lithiation of the lithium manganese oxide powder, both the 3-hour 

powder and 6-hour powder were analyzed using an XRD to determine whether the de-lithiated 

structure was consistent with the original powder. Upon examination, both the 3-hour powder 

and the 6-hour powder were found to be consistent with the original lithium manganese oxide. 

As seen in Figure 17, the de-lithiated structure (D-LMO) has all of the same peaks as the original 

structure (O-LMO), just with a small phase shift that demonstrates the lesser lithium content of 

the de-lithiated structure. Since the structure was found to be consistent with the original, the de-

lithiated powders were deemed usable for the later electrochemical testing. 

 

Figure 17: XRD Graph of Original and De-Lithiated LiMn2O4 Powder 

Electrochemical Capacity Calculations 

 During each electrochemical test, current-time graphs were obtained over the course of 

both two-hour trials, which could be used for capacity calculations. Three of the most relevant 

current-time graphs can be seen in Figures 18, 19, and 20, which utilized combinations of the 
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KCl recovery solution, battery solution, and the 3-hour and 6-hour de-lithiated electrodes. All of 

these graphs come from the second two-hour trial of each of their tests. As each graph 

demonstrates, the current starts off at a relatively high value in mA, then steadily drops off to 

close to 0 by the end of the two hours. This indicates the large rate of reaction that happens 

initially as the voltage is applied to the system, followed by the decreased rate of reaction that 

occurs over the course of the rest of the time as the reactions and lithium transfer reach their 

limits.  

 

Figure 18: Current-Time Graph of Test Using KCl and 6-Hour De-Lithiated Powder 
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Figure 19: Current-Time Graph of Test Using Battery Solution and 6-Hour De-Lithiated Powder  

 

Figure 20: Current-Time Graph of Test Using KCl and 3-Hour De-Lithiated Powder 

 

To obtain a capacity value from each of these three tests, the area under the graph was 

taken in mAh, which was then divided by the amount of active material cast onto the electrodes 

used in the test. To obtain a value for the amount of active material on the electrodes, each 

carbon paper electrode was weighed before and after the slurry casting process, and the 

difference of the masses (in grams) was then multiplied by 0.8, the proportion of lithium 
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manganese oxide in the slurry. The highest capacity was obtained from the KCl recovery 

solution with the 6-hour de-lithiated electrode, which was a value of 49.6 mAh/g. This test 

capacity was then compared to the results obtained from the coin cell tests, which serve as a 

theoretical or optimal value. A summary of this comparison can be found in Table 1.  

Table 1: Test Capacity vs. Coin Cell Capacity 

Powder Type Capacity (mAh/g) Efficiency 

Original 106 47% 

6h de-lithiated 83 60% 

 

 Compared to the coin cell with the original cathode and the coin cell with the 6-hour de-

lithiated cathode, the efficiency of the 49.6 mAh/g testing capacity is about 47% and 60%, 

respectively. This relatively low efficiency is likely a result of electrical impedance within the 

electrochemical testing setup or a result of degradation of the electrodes while being submerged 

in the solutions and subjected to hours of voltage.  

ICP Results 

To determine the amount of lithium transfer from the LiCl source solution to the KCl 

recovery solution or battery solution, samples taken from before and after the testing were 

analyzed by ICP. The results of the testing in terms can be found in Table 2. 
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Table 2: Results of ICP Testing 

Solution Original (ppb) Post-experiment (ppb) Change 

LiCl 816ppb 781ppb -4.29% 

KCl 1ppb 148ppb N/A 

Battery Solution 2877ppb 1858ppb -35.41% 

 

 As seen in Table 2, the electrochemical testing resulted in a 4.29% decrease in lithium 

content from the LiCl source solution, while the KCl recovery solution experienced a 147-ppb 

increase. Since the KCl solution should not have contained any lithium before the testing, which 

is reflected by the 1 ppb value, this difference is not given in terms of a percent change. For the 

battery solution, the lithium content was observed to have decreased by 35.41% despite it being 

used as a recovery solution alongside the LiCl source solution. A possible reason for this 

peculiarity is the presence of lithium within the battery solution. Since the battery solution 

already contained lithium before the electrochemical testing, it is difficult to obtain a definite 

amount of lithium transfer. It is also possible that lithium from the battery solution also 

transferred to the LiCl solution during the electrochemical testing.  
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Discussion, Conclusions, and Recommendations 

As shown above in Figure 6, the apparatus that was used to carry out electrochemical 

testing was two identical L-shaped glass tubes joined by a clamp with an ion exchange 

membrane between them.  One side of the apparatus was then filled with recovery solution and 

the other was filled with source solution. The electrodes had nickel foam attached to them with 

silver epoxy so that alligator clips could connect the electrodes to the equipment providing the 

current. The electrodes were then suspended in the solutions and a 1V current was applied. A 

number of variables that possibly altered the results could have risen from this experiment setup.  

The area where the two tubes were clamped together was also prone to leaking solution 

over time. This leak caused there to be less solution within the apparatus to transfer/receive 

lithium ions through the exchange membrane. 

One possible point of interest is the ion exchange membrane that was clamped between 

the two halves of the apparatus. This membrane had a tendency to allow lithium ions to transfer 

between the halves even when a current was not present, which was proven by leaving LiCl and 

KCl in the apparatus for a week without any electrical current and covering both open ends of 

the tubes. The result of this was the lithium ion concentration of the KCl increased by 60.549 

ppb, meaning that the membrane was not functioning correctly. If the membrane was not 

functioning correctly it means that the solutions could have been contaminated with excess ions 

during the testing process. 

The electrical equipment that was used during electrochemical testing could have 

introduced some error into the data as well. This is because the connection between the 



29 

equipment and the electrodes was made using alligator clips, which could have been corroded or 

not fully connected to the nickel foil on the electrodes. By having a variable connection, the 

capacity and current of the experiment may have been taken incorrectly and thus given incorrect 

data. 

Another possible source of contamination could be the silver epoxy used to bond the 

carbon paper to the nickel foil. This is because if the electrodes were placed too far into the 

solution of if the solution soaked up to the top of the electrode, where it would be level with the 

epoxy, it could lead to the solution becoming contaminated with ions from the conductive epoxy, 

thus giving inaccurate results from the ICP testing. 

In between the first and second trials during a test, the electrodes are switched from one 

solution to the other. This switch can cause contamination as the electrodes have soaked up some 

of the solution from the first trial while they were submerged, and the solution can concentrate 

the other side with ions from the other. This can lead to inaccuracies in the ICP test results. To 

combat this, the electrodes were rinsed off with deionized water and then dried between trials. 

 When the LiMn2O4 powder was put through the de-lithiation process it was heated to 

80°C for either three or six hours in order to remove the lithium ions from the powder. This may 

have caused degradation of the properties of the LiMn2O4 because it starts to degrade at 

temperatures above 60°C. This possible degradation could be the cause of the difference in 

theoretical and experimental results for the capacity of the electrodes. 

 A possible point of further experimentation concerns the slurry ratio used to create the 

electrodes. Although a 7:2:1 (cathode powder : binder : carbon) ratio was used in the early stages 

of testing, an 8:1:1 ratio was eventually the chosen ratio to include more of the active cathode 

material. This was done to increase the amount of reactions occurring during the electrochemical 
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testing, which was intended to increase the amount of lithium transfer. However, slurry ratios 

that include other proportions of the cathode powder could be tested to either increase the 

amount of active material on the electrode or to increase the amount of the slurry that is able to 

bind to the electrode, since a higher proportion of the binder increases the ability of the slurry to 

stick to the carbon paper.  

Future Work 

Overall, based on the ICP results, the electrochemical testing was successful in 

transferring lithium from the LiCl source solution to the KCl recovery solution. This 

demonstrates that this electrochemical system can work as intended to recover lithium from 

relatively simple solutions and can be effective on a small scale. However, since the application 

of this system to the battery solution yielded unfavorable results, more research and testing 

would need to be done to make this system effective for solutions with more complex 

chemistries. It is also important to note that since the battery solution already contained Li before 

testing, it was already not an ideal candidate for a recovery solution. Therefore, major changes to 

the experimental setup may be necessary to account for solutions such as the battery solution. 

Alongside the ICP lithium transfer results, the efficiency of the test capacity was 

relatively low. This may have been due to electrical impedance from the experimental setup, 

considering that the electrical connections consisted of connecting leads from the potentiostat, 

alligator clips, nickel foil, conductive epoxy, and finally the electrodes themselves to get the 

voltage to the solutions. A more direct way to connect the potentiostat to the electrodes may 

improve the efficiency of the reactions. However, the capacity value obtained from the current-

time graphs may inevitably be lower than the coin cell testing, considering that the electrodes 
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used in the electrochemical testing are submerged in liquid solutions and subjected to a voltage 

for a total of four hours. These testing factors may lead to the degradation of the electrodes over 

the course of the testing, which would likely lead to inefficiencies regarding the capacity 

calculations.   
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