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Abstract 
The potential to utilize the material properties of wettability of a surface, concerning 

the hydrophobic and hydrophilic characteristics are significant to cell adhesion on surfaces. 

The use of wettability properties correlated with geometric surface features is valuable 

particularly in applications where other factors are not as advantageous. The hydrophobicity 

of a surface can be affected by chemically active groups, as well as the geometric features at 

micron scale level. The material property of wettability affected by surface features of 

geometric characterization is an area of study this report aims to explore through treatment of 

biocompatible surfaces with various grits of sandpaper and correlations with cell surface 

adhesion. The adhesion of cells to surfaces is conventionally measured by the classical sense 

of adhesion with force per unit area holding the cell to the surface. The report aimed to count 

cell coverage of a surface when compared to other surfaces treated with different sandpaper 

grits, which would differentiate between adherent and non-adherent surfaces, rather than the 

adherent strength.  The direction aimed to find an optimal scale and multiscale surface 

measurement parameter to reproducibly control cell adhesion with sand paper for future 

studies. 
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1.0 Introduction 

1.1 Objective 
The objective of this project is optimization of surface roughness in a repeatable manner 

as it positively correlates to cell adhesion via hydrophilicity and negatively to 

superhydrophobicity. The larger scope is to use the correlation to assist in designing a 3D 

construct of stacked 2D cell laden patterns of adherent cells, where the patterns are formed by 

controlling the regional surface roughness. 

1.2 Rationale 
Cellular adhesion to surfaces is significant for many physiological events, including 

wound healing, blood clotting, immune response and acceptance of implanted biomedical 

materials. Applications include use of stents, biosensors, most implants, study of drug effects 

in vitro, drug delivery in vivo and pathology of many diseases (Bae, W.G., 2016). Cellular 

surface adhesion is a process that is influenced by many factors both intrinsically and 

extrinsically in relation to the cell. The proteins involved directly with cell surface adhesion, 

such as integrins and ligands, the pH of the microenvironment, the morphology of the cell 

and chemical as well as material properties of the surface are some of the main factors that 

influence surface adhesion of cells (Ranella, A., 2010).  

The potential of geometric characterizations of hydrophobicity could be of use in 

applications where chemical hydrophobicity presents variables that affect more than what is 

desired, like cell differentiation stability of cardiac myocytes (Shimizu, 2001) 
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Cells adhere to surfaces by protein recognition of proteins that are bound to a surface, 

such as ligands (Britland, S., 1996).The cell senses the protein which adsorbs to the surface 

and the cytoskeleton reacts to the bonds formed along with the extracellular matrix, which is 

the scaffolding of the cell’s environment. The protein quaternary and tertiary structure in part 

also determines if hydrophobic/phillic domains are exposed, to promote adhesion, which is in 

part dictated by the roughness of the fractal like pattern of a protein surface profile. Several 

environmental cues, like temperature, have been used to control cell adhesion to surfaces to 

make patterns (Shimizu, T., 2001). 

The protein adsorption to the surface is partially dependent on the hydrophobicity, 

which is in part, correlated with the roughness (Ishizaki, T., 2010). The surface that is already 

hydrophobic (chemically) can be made superhydrophobic with a certain roughness and 

geometrical topographic features at an optimal scale (Rosales-Leal, J.I., 2010). Cells favor 

hydrophilic surfaces for adhesion based upon the wettability alone, which arises from 

chemical and topographical features (Wang, Y., 2006). Proteins involved in cell adhesion are 

thermodynamically favored to adhere onto a hydrophobic surface (Wang, Y., 2006). 

Hydrophobicity of a surface can be conditioned through a process of roughening the surface 

if it is a chemically hydrophobic surface, to produce a superhydrophobic surface (Nilsson, 

M.A., 2010). Surfaces that are not hydrophobic by chemistry, can be treated to have a 

roughness with optimal wettability which can increase cell adhesion (Chang, H.I., 2011). The 

controllable aspect of a material roughness can be used to make patterns on a surface and 

therefore, direct cell adhesion into a desired pattern (Bae, W.G.,2015). 

The correlation between surface roughness of a hydrophobic material and cell 

adhesion is valuable because it can be used to condition a surface without additional 

chemicals to effect cell adhesion (Kim, J., Bae, W.G., 2016). The minimal addition of 

chemicals is significant when utilizing a living construct to avoid complications that may be 
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toxic to life, inconvenient for certain time scales and to decouple effects on the studied 

specimen that may arise from the chemical, aside the influence of the topography itself 

(Hahn, M.S., 2006). 

The translational possibilities of further investigating superhydrophobic surface 

correlations to roughness are applicable to protein purification optimization as well as 

potential cancer treatment as it applies to adhesion of metastasized cancer cells (Chen, W., 

2016). The roughness parameters applied to the surface and morphology of cells, could also 

be potentially used as an early diagnostic for breast cancer (Wang, Y., 2016). 

The wettability of a surface is relevant to cell adhesion due to the preference of 

cellular adhesion to hydrophilic surfaces (Chang, H.I., 2011). The relevance of cell adhesion 

to a surface that is a manufactured construct is applicable to the medical field for tissue 

interfaces of implantable materials, tissue constructs like tissue engineered blood vessels and 

diagnostics requiring devices that interact with tissues via direct contact (Shimizu, T., 2001). 

Indirectly, the subject of hydrophobic surfaces can also lend itself to the pharmaceutical 

industry for protein purification and drug delivery (Kaczor, A.A., 2012). 
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1.3 State-of-the-Art 

1.3.1 Surface Measurement and Analysis 

1.3.1.1 Topographical Geometric Characterization 
Scanning profilometry is used to measure surfaces and is a compilation of 2D profiles 

that can be put together for a 3D profile. Optical microscopy using light is also used to get a 

3D profile of surfaces and is limited in its precision by the 200nm limit of light wavelength. 

Atomic force microscopy (AFM) can also be used to measure a surface stiffness (Lydon, 

M.J., 1985).  The Sensofar 3D optical profiler will be used on the interferometric setting to 

measure the treated surfaces. The measurements then are analyzed using Mountains Maps 

software to characterize what the optimal roughness is as it correlates to cell adhesion 

(Rosales-Leal, J.I., 2010).  

1.3.1.2 Conventional Characterization of Surface 
 The correlation between cellular interaction and surface roughness is applied 

clinically in implants, such as dental or orthopedic applications, where bone ingrowth and 

osteoblast activity are involved with the integration of the implant. The topography of an 

implantable surface is traditionally characterized with surface texture , light reflective 

properties and with measurement parameters in 2D of Ra, Rt and Rz  as well as Sa, Sz, Sq, and 

St  in 3D (ASME B46.1), are used for biomedical applications involving isotropic surfaces 

(Seonwoo, H., 2016). Metal alloy, polymer and naturally derived materials are used for 

implants where other cell interactions with surface roughness, such as local immune 

response, can occur (Salthouse, T.N., 1984). Surface measurements of a biocompatible 

surface can be grouped into two main categories of cross sections of the surface in amplitude 

measurements and by 3D measurements of the surface with spatial parameters. The 

calculations used to characterize the materials treated, are Spk, Sa, and Sku. The parameters 
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used in this application of surface metrology are classified within roughness as being of 

height and functional parameters. The arithmetic mean height (Sa) and kurtosis (Sku) are 

height parameters of the surfaces and describe an average of heights as well as the 

distribution of their sharpness. The kurtosis of a surface, Sku, is the amount of height 

measurements beyond a statistical norm or average height measured. The presence of a 

kurtosis value larger than 3.0 suggests a significant height distribution above or below the 

surface average that can be interpreted as the sharpness of a surface; below a 3.0 would mean 

a skewed surface, with few high peaks or low valleys. The relevance to cell adhesion this 

parameter quantifies describes how a surface may interact with a cell and the focal adhesions 

formed as well as the potential intracellular reactions that such a topographical feature could 

illicit. ( Kim, J., Kim, Y.J., 2015). The mean height, Sa, describes quantitatively the absolute 

value of the heights measured that deviate from the mean plane, lending itself to describing 

the roughness a cell may encounter. The Spk, the reduced peak height, measures the height of 

the peaks and valleys above or below what is called the core roughness or average roughness 

which uses the peak to valley range of height measurements in its approximation of an 

average roughness. The Spk indicates heights beyond the average in the positive and negative 

Z direction, suggesting a potential point of high pressure on a cell or perhaps another 

potential focal adhesion outside the general trend of motile directionality a cell or group of 

cells may engage along a surface. The potential for the study of anomalous peaks in surfaces 

lends itself to understanding the reaction force within a cell to external stimuli and how the 

organization of cytoskeletal elements respond (Wójciak-Stothard, B.,1996). 

 Cell adhesion is an important part of implantation acceptance and surface roughness 

has been shown to be one important variable that effects cellular adhesion to biocompatible 

surfaces (Kim, J., Kim, Y.J., 2015). The potential to use surface roughness as a selective 

property to direct cell adhesion spatially is a result of surface roughness correlations. The 
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application could be useful in creating desired patterns of cells as a basic unit of larger 

constructs, such as two dimensional membranes or layers as would be found in dermal 

regeneration for wound healing of skin burn victims and further, three dimensional constructs 

to replace tissue components of organs or systems such as the connective tissue found in 

joints (Kim, J., Bae, W.G., 2017). Multiple scales of measured roughness have been shown to 

be significant in cellular adhesion, with most being in the nano- to micro- scale range 

(Seonwoo, H., 2016). 

 Currently, surface roughness itself is not used to create constructs. Optimal scales 

have been reported in literature, suggesting that it may be a viable and cost-effective method 

of directed cell adhesion (Kim, J., Kim, Y.J., 2015). 

 

1.3.1.3 Multiscale Analysis 
The literature supports, through the characterization of the topology and 

biomechanical interaction of the cellular reaction, the significance of using a multiscale 

approach to correlate surface roughness to the cell coverage. The cellular adhesion, by 

technical use of the word, deploys the use of force per square unit of area to hold the cell to s 

surface in this instance. However, cell coverage still lends itself to the study of relevant 

surface measures used to study adhesion, due to the physical nature of cell adhesion focal 

points on surfaces needed for coverage and additionally that adhesion potential of surfaces 

themselves can be studied through the discrete bonding model (DBM) ( Brown, C.A., 2001). 

The DMB attempts to describe the potential adhesive strength of a surface to the number of 

bonds that exist on it and given the relative area of a surface to the projected area, higher 

relative surface areas of rough substrates suggests a concurrent adhesive strength through 

bond density.  
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Cellular adhesion is needed for cell surface coverage as cells must interact with a 

surface, either directly or through some molecular medium, such as ligands or other proteins 

which require the availability of chemical bonds. The surface roughness has been shown to in 

fact correlate with increased cellular adhesion (Lydon, M.J., 1985). Further, chemistry is a 

collisional process and by proxy, the probability of a chemical reaction increases in 

proportion to chemical interaction physically through intermolecular collisions. 

Surfaces were measured with the Sensofar S Neox and then data filtered before multi scale 

analysis was used by leveling the surface and removing outliers, which the Mountains 

Software does quite aggressively when compared to other software, like Sfrax. The upper and 

lower limits of roughness to scale are demarked on the resulting graphs, however the scale 

that relates the surface measurement to the cellular reaction, which is most plausible based 

upon the cellular biology, corresponds to the size of the cells themselves. The cells used, NIH 

3T3 cell type, are roughly 15 microns in width with any motile or focal adhesion length being 

proportional. The scales at which roughness correlates with the sandpaper grit used, will be 

compared with the cellular coverage at scales within range of the cellular width, as 

pseudopod length may play an important role in the surface to cell reaction. 

SEM is not a measurement device, but images can be used to deduce location and possible 

sources of artifacts. A direct quantification of the surface characteristics is not possible with 

SEM. The significance is that cells may react differently to anomalous surface features and 

it’s important to look for the real source of the outliers to direct investigation for any 

correlations to surface to cell interaction if further investigation is needed. 
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1.3.2 Wettability  

1.3.2.1 Optimal Contact Angles 
Contact angle of profiled water droplets is a practical method to gather 

hydrophobicity measurements, although difficult to maintain precision in measurements as 

they are subjective to the observer. The literature has established some contact angles of the 

hydrophilic to superhydrophobic range which correlate to sandpaper grit (Nilsson, 2010). The 

literature shows that advancing and receding contact angles for 400, 320, 240 and 120 grit 

sandpaper are 140º /80º, 150º /19º, 150º /146º, 151º /134º respectively. The contact angles 

were also gathered from PTFE, which is a biocompatible material and one of the materials 

tested in this paper. The range of grits represents a maximum contact angle obtained, at 320 

grit and a low hysteresis value. The 240 grit represents a significant grit size as it had the 

lowest value for hysteresis. Distinction between groups correlated with angles to grits for this 

paper was assumed to be more likely then with the choice of these contact angles to grit 

correlations. 

1.3.3 Surface Coverage by Cells 

1.3.3.1 Microscopy 
The Sensofar S Neox under confocal setting is to be used to observe the surface coverage of 

each specimen within samples of each material under each treatment of sandpaper grit 

number. The lens used to visualize the cell coverage was to be the 20x, which would also 

allow for topographical measurements of the cells themselves for future studies involving a 

quantification of the morphological deviations between sample groups.  
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1.4 Approach 
The surface characteristics related to the topological features of biocompatible 

materials are studied using three different surface measurement parameters of Sa, Sku, and Spk 

in addition to multi scale measure of relative area. The choice related to both the significance 

to cell adhesion processes and for choosing the right geometry, state of the art, measurement 

as well as statistical significance. The correlation between the surface measurements and cell 

coverage over each treated surface was to be made by gathering cell coverage as a percentage 

of sampled surface the cells adhered to compared to no cell coverage. Optimal scale, 

treatment and geometric features to repeatably control cell adhesion were to be gleaned from 

the experiment. 

 

Complexity graphs and relative area graphs and surface measurement parameter 

tables containing corresponding sand paper treatment grit numbers, were used.  Relevant sand 

paper grit numbers were chosen based upon established literature relating them to contact 

angles for the type of surfaces treated (Nilsson, 2010). 

 
 
 
 
 

 

2.0 Methods 

2.1 Analytic Techniques 
Using scale sensitive fractal analysis for relative area compared to scale and 

complexity, the treated surfaces will be analyzed. The Sa, Spk, and Sku will be used as 

parameters to describe the surface topography in a way that is applicable to cell surface 

interaction. Filtering of data gathered with leveling and non-measured points with 
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interpolation curves will be used. The complexity would be used to determine the potentially 

correlative scales at which features that characterize the surfaces exist and to compare to the 

scale of the cell size of 15 microns.    

  

2.1.1 Surface Roughness 
 Microscale measurements of surfaces will be used as the limits of the equipment 

dictate that no less than 200 micrometers of precision. The scale at which can effect cell 

adhesion through hydrophobicity is at the micro scale, although some cellular processes can 

be effected at the nano-scale through topological ques (Ranella, A., 2010). 

Area scale and complexity to characterize surfaces and height as well as functional 

topographical geometric parameters to describe the topography. The surfaces were to be 

prepared using a repeatable method of applying sandpaper grit to the materials using a known 

force and orbital sander. 

 

 

Figure 1 Hard steel cylinder for 6 N force(top left), PVC sleeve (top right) and the two 
assembled (bottom) with sample on the end. 
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Figure 2 The sample treatment device assembled and secured, with the hard steel cylinder 
in the PVC sleeve, sample attached above the sander also secured with a vice. 
 
A hard steel metal cylinder was to be used to apply 6.0 N of force to the contact surface of 

the PS which will be glued stationary to the cylinder. The cylinder will be held in position 

laterally by a PVC tube, allowing downward movement parallel to gravity and normal to the 

sample surface. 

 
 
 
 
 

2.1.2 Surface Coverage by Cells 
 

Cell adhesion will be measured by cell density by light microscope observation to 

count cells, possibly with Imagej to save time by hand. The coverage of square units of each 

surface by cells, will be used to compare treatment and materials. The S Neox 3D profiler is 

chosen for its convenient reflected light mechanism to view the cells on the surface, even 

without staining. The opaque optical properties of the materials being measured would 

require more cumbersome culturing methods and less precise microscopy without the use of 

the S Neox, allowing for a more efficient experimental design as the device is also used for 

the measurement of the surface topography. 
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2.2 Analysis of Surface to Cell Reaction 

 
Figure 3: Plastic petri dish with treated specimens of PTFE, foam polystyrene, and clear polystyrene from left to 
right. Arranged from top to bottom down each column from left to right, representing the materials, are successive 
sandpaper grit number treatment specimens. The top of each column in the above orientation, corresponds to a 
grit number that descends in value going down the column. The farthest left column starts at top with 400 grit 
then down to 120 grit at the first element of the second column from the left. Two descending cycles of the grit 
number applied for each material are represented in succession.   
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2.3 Flow Chart 

 
Figure 4: A flow chart of the experimental process, according to plan. 

 

 

3.0 Results 

 
 
3.1 Analytic Techniques 

 
 
 
3.1.1 Surface Roughness 
Relative area plots can be an indicator of surface roughness and in the case of cellular 
adhesion, potentially yield scales correlated with both grit number and cellular adhesion. 

Treat Surfaces with 
Sandpaper Measure Surfaces Culture Cells on 

Surfaces

Record Cell 
Coverage of Surfaces

Correlate Coverage 
with Measured 

Topograhical 
Parameters
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Figure 5 : Relative area to scale graph of clear  polystyrene (PS)  treated with 120 (Blue), 240(Yellow), 
320(Green), and 400 (Red) grit sandpaper. 

 
Figure 6: Relative area to scale graph of foam polystyrene (Opaque PS)  treated with 120 (Blue), 240 (Yellow), 
320 (Green), and 400 (Red) grit sandpaper. 
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 The 240 Grit curve seems to be an outlier given the fact that the foam PS is one of the softer 

materials, the larger scale relative area would intuitively have a higher relative area. 

 
Figure 7 Relative area to scale graph ofclear  polytetraflouroethylene (PTFE) treated with 120 (Blue), 
240(Yellow), 320(Green), and 400 (Red) grit sandpaper. 

The 400 Grit curve seems to be match intuitively with a higher relative area at lower scales 

given the finer grit size. 
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Figure 8: Relative area to scale graph of clear polystyrene (yellow),polystyrene foam (blue), and 
polytetrafluoroethylene (green) all treated with 120 grit sandpaper. 

 
The foam PS could possibly be an outlier, or a result of inconsistent treatment conditions 

done by hand. 
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Figure 9: Relative area to scale graph of clear polystyrene (yellow),polystyrene foam (blue), and 
polytetrafluoroethylene (green) all treated with 240 grit sandpaper. 

 
Figure 10: Relative area to scale graph of clear polystyrene (Yellow),polystyrene foam (Blue), and 
polytetrafluoroethylene (Green) treated with 320 grit sandpaper. 



23 
 

The trend of a lower scale point of deviation of relative areas of each material (Figures 8-10), 

concurs with the increasing grit number, which should leave a smaller scale impact on 

relative area. 

 

 
Figure 11: Relative area to scale graph of clear polystyrene (Yellow),polystyrene foam (Blue), and 
polytetrafluoroethylene (Green) treated with 400 grit sandpaper. 

Close large-scale relative area similarity of all materials seems to contradict the trend of the 

previous graphs where the point of deviation from each other went down as the grit number 

went up. 

 

3.1.2 Surface Coverage by Cells 

3.2 Analysis of Surface to Cell Reaction 
 No speciman was observed to have cell coverage at all. The cell adhesion was a null 

result entirely due to a potentially diverse set of environmental factors which may have led to 
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cytotoxic conditions. Cells were to be counted by percent surface coverage using confocal 3D 

profiler to view the surface of the opaque samples and measure scale at which cells spread as 

well as give a quantitative value for morphology.  

Green fluorescent protein (GFP) labeled cells were to be obtained which aid in, 

although not required for, the visualization of cell coverage as well as morphology. The GFP 

labeled cells would also give insight into the biological component needed to assess the 

viability of the surface and the microenvironmental conditions with a Live-Dead assay, 

yielding a percentage of cells that sustained metabolic processes as it the assay indicates cell 

replication. 

Nuclear orientation needed to deduce cell alignment, indicative of topographical 

influence on cell adhesion in its concurrence with the lay of the features in a specific sample. 

The overall orientation of micropatterns can be isotropic, however in certain areas of small 

sample size, there can exist an overall trend of directionality due to the processing of the 

surface. The characterization of an entire surface of a material and surface treatment will not 

necessarily be an accurate characterization of the surface. The effect on the cells, however, 

can be decoupled in their local alignment with the lay and comparing the deviation of 

alignment with multiple samples from the same material.  
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3.2.1 Surface Roughness Correlation: Sa, Sku, and Spk with Grit 
 
 
 
 
 
 
 
 
 
 
 
 
 
                  PS Clear All Grits 

Parameter     120 G     240 G    320 G    400 G 
Sku   11.7 13.1 14.5 3.66 
Sa    µm 2.69 2.99 1.21 1.2 
Spk µm 7.49 11.8 2.8 1.76 

Table 1: Clear polystyrene  Sa, Sku, and Spk values for sandpaper grits 120, 240, 320, and 400. 

                    

 

PS Opaque ALL Grits  

Parameter     120 G     240 G    320 G    400 G 
Sku  204 202 83.9 115 
Sa   µm 0.272 0.247 0.545 0.12 
Spk µm 1.26 0.52 2.77 0.403 

Table 2: Foam polystyrene Sa, Sku, and Spk values for sandpaper grits 120, 240, 320, and 400. 

 

  PTFE All Grits 

Parameter     120 G     240 G    320 G    400 G 
Sku  3.36 10.9 28.1 23.8 
Sa   µm 1.24 1.67 0.97 2.37 
Spk µm 1.52 2.58 3.7 5.02 

Table 3: PTFE Sa, Sku, and Spk values for sandpaper grits 120, 240, 320, and 400. 
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Parameters for 120 G All Materials 

120 G Sku  Sa µm Spk µm 
PS Clear 11.7 2.69 7.49 
PS 
Opaque 

204 0.272 1.26 

PTFE 3.36 1.24 1.52 
Table 4: Sa, Sku, and Spk values for clear polystyrene (PS clear), foam polystyrene (PS Opaque), and PTFE 
treated with 120 grit sandpaper. 

 

 

 

 

 

 

 

 

Parameters for 240 G All Materials 

240 G Sku  Sa µm Spk µm 
PS Clear 13.1 2.99 11.8 
PS 
Opaque 

202 0.247 0.52 

PTFE 10.9 1.67 2.58 
Table 5: Sa, Sku, and Spk values for clear polystyrene (PS clear), foam polystyrene (PS Opaque), and PTFE 
treated with 240 grit sandpaper. 

Parameters for 320 G All Materials 

320 G Sku  Sa µm Spk µm 
PS Clear 14.5 1.21 2.8 
PS 
Opaque 

83.9 0.545 2.77 

PTFE 28.1 0.97 3.7 
Table 6: Sa, Sku, and Spk values for clear polystyrene (PS clear), foam polystyrene (PS Opaque), and PTFE 
treated with 320 grit sandpaper. 
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Parameters for 400 G All Materials 

 

400 G Sku  Sa µm Spk µm 
PS Clear 3.66 1.2 1.76 
PS 
Opaque 

115 0.12 0.403 

PTFE 23.8 2.37 5.02 
Table 7: Sa, Sku, and Spk values for clear polystyrene (PS clear), foam polystyrene (PS Opaque), and PTFE 
treated with 400 grit sandpaper. 

 

 

 

 

 

 

 
 

3.2.2 Relative Area Correlation: Complexity 
The complexity plots aim to provide potential insight into a scale where the most change in 
relative area occurs, suggesting a possible scale within which to investigate significant 
features. The scales which yield geometric features and relative area concurrent with 
complexity peak relative area changes, could then be correlated to cell adhesion or grit. 
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Figure 12: Complexity to scale graph of clear  polystyrene (PS)  treated with 120 (Blue), 240(Yellow), 
320(Green), and 400 (Red) grit sandpaper. 
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Figure 13: Complexity to scale graph of foam polystyrene (PS Opaque)  treated with 120 (Blue), 240(Yellow), 
320(Green), and 400 (Red) grit sandpaper. 
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Figure 14: Complexity to scale graph of polytetrafuoroethylene (PTFE)  treated with 120 (Blue), 240(Yellow), 
320(Green), and 400 (Red) grit sandpaper 

 
Figure 15: Complexity to scale graph of clear polystyrene (yellow),polystyrene foam (blue), and 
polytetrafluoroethylene (green) all treated with 120 grit sandpaper. 
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Figure 16: Complexity to scale graph of clear polystyrene (yellow),polystyrene foam (blue), and 
polytetrafluoroethylene (green) all treated with 240 grit sandpaper. 

 
Figure 17: Complexity to scale graph of clear polystyrene (yellow),polystyrene foam (blue), and 
polytetrafluoroethylene (green) all treated with 320 grit sandpaper. 
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Figure 18: Complexity to scale graph of clear polystyrene (yellow),polystyrene foam (blue), and 
polytetrafluoroethylene (green) all treated with 400 grit sandpaper. 

 

4.0 Discussion 
   

 

4.1 Analytic Techniques 
 

4.1.1 Surface Roughness 
 

The filtering of data before the multiscale analysis could have been afterward, as to 

not filter out potentially significant scales, as they would relate to both significant surface 

features as well as the cell adhesion correlation. The spatial analysis parameters may also 
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have lent more insight into the optimal distancing of features spatially as they correlated with 

cell adhesion and would have required more outlier filtering and non-measured areas to be 

filled with interpolation curves.  

The sample preparation was done by hand, instead of the proposed more repeatable 

method using a weight and sander to provide a known force with consistent application of 

sandpaper grit. The variability of pressure, duration and directionality of hand sanding all 

could have contributed to inconsistent group differentiation between materials and grits.  The 

limits of time and resources contributed to failure to execute the repeatable sample 

preparation. 

The lack of statistically significant samples was an oversight due to time constraints 

and the number of treatments, four sandpaper grits all together. A higher number of samples 

per material and treatment would have given a more averaged distribution of values for the 

roughness at scale than the few sample numbers used for each specimen. Several petri dish 

culturing sequences would also have helped the repeatability of the process to rule out the 

effect on cell adhesion by incubation variables, like CO2 concentration, temperature and heat 

conductance of the materials influencing the cell viability. 

 

 

4.1.2 Surface Coverage by Cells 
 The null result could plausibly have been influenced by factors outside topography, 

such as the fluid dynamics of the cell culture medium, inhibiting cell adhesion to the surfaces. 

The fact that the post height of the surfaces was above the cell culture dish bottom, created a 

high point for the cells to potentially settle onto in order to bond, which would have left the 

cells settling to the bottom of the culture dish, as it would have been the lowest possible 

point. The plastic petri dish had warped in the oven, which may have led to cells settling to 
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the bottom outer circumference of the dish due to the convex deformation curve with the 

peak in the center of the dish.  

 The posts placed for the surfaces to study cell adhesion could have been 

placed in positions below level with the bottom of the dish or perhaps in indentations on a 

raised surface of PDMS, allowing cells to settle at a low point with the surface samples at the 

bottom. A better method of allowing cell adhesion would have been to use a known count of 

cells per mL and then depositing 10 µL of medium on each surface to sit as a drop while in 

incubation chamber. The drop would be allowed to let the cells suspended in it to settle to the 

surface, after which time the rest of the cell culture medium would be gently added as to not 

wash away the cells, due to hydrostatic or shear forces. After enough time to allow 

confluency, the surfaces would then be analyzed using SEM imaging and DAPI staining to 

view nuclear alignment to observe coverage as well as orientation to the topographical 

features. Additionally, the metabolic state of the cells would be important to note, as the 

cytotoxicity of the surface effects relate to how viable it would be to potentially make a 

construct out of the 2D patterned surfaces. The metabolic state of the cells could be observed 

using Live-Dead assay in order to see whether adherent cells would be viable. 

 

4.2 Analysis of Surface to Cell Reaction 
 Future study could use the direction this paper offers to expend upon the 

topographical influence on cells in relation to its connection to wettability of biocompatible 

surfaces. Surfaces of other material types could also be investigated for their geometric 

characterization and distinctive variation between groups to see if grit number and materials 

could be statistically significant contributors to cell adhesion. Also, the cell type could also be 

investigated, as cell adhesion is a broad subject with many universal factors between cell 
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types, but there exist more unique conditions for each cell type considering applications of 

cell adhesion.  

SEM imaging could assist in investigating cell reaction by the morphological and 

cytoskeletal changes. Culturing techniques, such as inverting microscope slides in a cell 

suspension for culturing, could allow the use of phase contrast microscope to look at cellular 

surface coverage. Fluoroscopic imaging could also circumvent the need for different 

culturing conditions if it is uses emitted light images, rather than transmitted images that have 

to pass through an optically transudative material. Finally, use of software, like Imagej, could 

enable an automated and more repeatable method of quantifying cell coverage by a count of 

cells as well as alignment in conjunction with staining of the cells.  

 

 

 

5.0 Conclusion 
 The results were inconclusive for the cell coverage correlation to topographical 

features and multiscale analysis. Although there were null results for cell adhesion to surface 

roughness correlations and wettability comparisons, the potential for the future research with 

improved cell culture techniques and the translational potential within protein purification are 

interesting. Further, a repeatable method for treatment would also be interesting to investigate 

the effects of on the multiscale analysis and differentiation between groups of material 

treatments. The results could also be indicative of a very effective way of not allowing cell 

adhesion to a surface, which could be useful for patterning cell laden surfaces, as a negative 

print. 
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7.0 Appendices  

Appendix A 
Cell medium protocol  

Complete DMEM Dulbecco’s modified Eagle medium, high-glucose formulation (e.g., 

Invitrogen), containing: 5%, 10%, or 20% (v/v) FBS (optional; see recipe) 1% (v/v) 

nonessential amino acids 2 mM L-glutamine (see recipe) 100 U/ml penicillin 100 µg/ml 

streptomycin sulfate Filter sterilize and store ≤1 month at 4◦C. (Phelan, 2006) 

 
 

 

 

 

Appendix B 
Equations 

Sku= 1
𝑆𝑆𝑆𝑆4

[1
𝐴𝐴 ∫∫ 𝑍𝑍40

𝐴𝐴 (𝑥𝑥,𝑦𝑦)𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦 ] 

Kurtosis 

Sa=1
𝐴𝐴 ∫ ∫ |𝑍𝑍(𝑥𝑥,𝑦𝑦)|𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦0

𝐴𝐴  

Arithmetical mean height 
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Appendix C 
 

 

 

Mountains Measurements 

 

Figure 19: A sample of polystyrene treated surfaces from two specimen of the material with two sandpaper grit 
number treatments. 
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