
Project Number: MQP.TP1.WND2

Design and Realization of an Intelligent Portable
Aerial Surveillance System

(IPASS)
A Major Qualifying Project Report

submitted to the faculty of WORCESTER POLYTECHNIC INSTITUTE
in partial fulfillment of the requirements for the degree of Bachelor of Science

Submitted by:

Adam Blumenau
Robotics Engineering

Alec Ishak
Robotics Engineering

Brett Limone
Robotics Engineering

Zachary Mintz
Robotics Engineering

Corey Russell
Robotics Engineering

Adrian Sudol
Robotics Engineering

Advisors:
Professor Taskin Padir

Robotics Engineering and Electrical and Computer Engineering

Professor Lifeng Lai
Electrical and Computer Engineering

On
March 12th, 2013

This material is based on research sponsored by Air Force Research Laboratory under agreement FA8650-09-2-
7929. The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes not
withstanding any copyright notation thereon. The views and conclusions contained herein are those of the authors
and should not be interpreted as necessarily representing the official policies or endorsement, either expressed or
implied, of Air Force Research Laboratory, the U.S. Government, or OAI.

ii

Abstract
Intelligence, Surveillance, and Reconnaissance (ISR) are critical to military operations.

To meet this need, the armed forces have developed a variety of unmanned aerial vehicles
(UAV). While UAVs differ wildly in form, cost, and function, they are generally expensive,
require several people to setup, operate, and maintain them, and are designed for long range
surveillance. This report presents the design and development of a UAV that is inexpensive, one-
man operable, and capable of short range surveillance. Based on the requirements provided by
the Air Force Research Laboratory, the team established a set of design specifications to guide
the design of the UAV. The UAV design is lightweight, durable, has a small form factor when
disassembled, displays image data from multiple cameras, and is tele-operated. The system
includes an integrated propulsion system, electronics box, and ground station providing a
foundation for further advancement in man-portable aerial surveillance systems.

iii

Table of Contents
Abstract ... ii

Table of Figures .. v

Table of Tables ... x

1. Introduction ... 1

1.1 Background ... 1

1.1.1 UAV History... 2

1.1.2 Limitations of Current UAVs ... 5

1.1.3 Current Solutions .. 6

1.2 Societal Impact .. 8

1.3 Project Description .. 9

1.4 Design Specifications .. 10

1.5 Team Organization .. 11

2. System Design and Development ... 15

2.1 Proposed Solution ... 15

2.2 Propulsion Considerations... 16

2.2.1 WSU Considerations .. 16

2.2.2 Propulsion Design Considerations.. 16

2.2.3 Descent Considerations .. 18

2.2.4 Implementation: Propulsion ... 22

2.3 Chassis ... 23

2.3.1 Chassis Design .. 23

2.3.2 Electronics Box... 37

2.4 Power System .. 45

2.5 Embedded Computing ... 45

2.5.1 Consideration: Arduino Pro Micro ... 46

2.5.2 Consideration: Raspberry Pi ... 46

2.5.3 Consideration: Gumstix .. 47

2.5.4 Inter-processor Communication ... 48

2.6 Vision System ... 48

iv

2.6.1 Consideration: C329 Camera Module .. 50

2.6.2 Consideration: Caspa FS Camera ... 51

2.6.3 Implementation: SB101C USB CMOC Board ... 52

2.7 On-board Sensing .. 53

2.7.1 Consideration: Global Positioning System Receiver.. 53

2.7.2 Consideration: Inertial Measurement Unit ... 55

2.8 Data Transfer ... 56

2.8.1 Ground Station Communication ... 56

2.8.2 Image Transfer .. 57

2.9 Software .. 57

2.9.1 Image Processing .. 57

2.9.2 Ground Station Software .. 70

2.9.3 Embedded Software .. 75

2.10 Ground station ... 76

3. Results ... 78

3.1 Summary of Accomplishments ... 78

3.2 Discussion ... 80

4. Conclusion and Recommendations ... 82

4.1 Future Work .. 82

5. Project Expenses ... 84

6. Acknowledgements ... 85

7. Authorship... 86

8. Bibliography ... 87

9. Appendix ... 90

v

Table of Figures
Figure 1: MQ-9 Reaper [6] ... 3
Figure 2: RQ-4 Global Hawk [7] .. 3
Figure 3: RQ-11 UAV [9] ... 4
Figure 4: Honeywell T-Hawk [10] ... 4
Figure 5: The RQ-11 Raven being assembled before flight. Note the second soldier on top of the
jeep setting up the receiver [9]. ... 5
Figure 6: MIT’s bounce imaging device [29] ... 6
Figure 7: The eBee 3D mapping UAV [30] .. 7
Figure 8: The PD 100 prs in the field [33] .. 7
Figure 9: Fumiyuki Sato's Flying Ball [29] .. 8
Figure 10: Lite Machines Voyeur UAV [28] .. 8
Figure 11: Final design of the IPASS and realized UAV ... 15
Figure 12: WSU pneumatic launcher design [11] ... 16
Figure 13: MATLAB simulation of thrust .. 17
Figure 14: Model Rocket Engine [12] .. 18
Figure 15: Lockheed Martin Samurai [34] ... 19
Figure 16: Images of a maple seed falling [15] ... 20
Figure 17: Simulation of IPASS flight in one direction ... 21
Figure 18: Simulation of IPASS in two dimensions where imbalance is discovered 21
Figure 19: IPASS 3D simulation in which rotation is applied to stabilize flight 22
Figure 20: Propeller pair used in the IPASS ... 23
Figure 21: Original proposed IPASS control system .. 25
Figure 22: IPASS motor mounting scheme .. 26
Figure 23: Details of chassis damage after drop test .. 27
Figure 24: Coroplast [17] .. 27
Figure 25: Original IPASS prototype design .. 28
Figure 26: Passive stabilization if the IPASS ... 29
Figure 27: IPASS prototype before drop test .. 29
Figure 28: Close up of damage after impact, notice the cracked plastic in the circle 30
Figure 29: Updated outer frame with added propeller protection ... 30
Figure 30: The center of mass of the system demonstrated by the CM symbol (units in inches) 31
Figure 31: Design of the IPASS for a smaller moment of inertia (units in inches) 32
Figure 32: Carbon fiber springs added for shock absorption .. 32
Figure 33: Honeywell T-Hawk ... 33
Figure 34: Comparison of differences in cross sectional area .. 33
Figure 35: Surface area above and below the center of mass ... 34
Figure 36: Force applied by wind ... 34
Figure 37: Propeller protection ring (circled) ... 35
Figure 38: Side view of the IPASS ... 36

vi

Figure 39: Final design and completed system (units in inches) .. 37
Figure 40: Original electronics box prototype (units in inches) ... 38
Figure 41: Original mounting for the Raspberry Pi (circled) ... 38
Figure 42: Delrin electronics box sides .. 39
Figure 43: Battery location (indicated with arrow) ... 40
Figure 44: Jameco prototyping board ... 40
Figure 45: Final electronics box component layout (units in inches) ... 41
Figure 46: Top cone of the electronics box .. 42
Figure 47: Four camera layout design .. 42
Figure 48: Camera mounting viewed internally ... 43
Figure 49: Initial camera mount attached to electronics box .. 43
Figure 50: Three-camera mount design viewed externally ... 44
Figure 51: Three-camera mount design viewed internally ... 44
Figure 52: Three-camera mount with Delrin protection piece .. 44
Figure 53: Quarter frame mounting solution. The red circle highlights a clevis pin. The blue
circle highlights a Delrin tab. .. 45
Figure 54: Alcatraz development board [19] .. 47
Figure 55: Electronics box Delrin panel, Tobi board, and Alcatraz size comparison. 48
Figure 56: Images of a human at 100ft. From left to right, the resolutions are 640 by 480, 800 by
480, and 1024 by 768 pixels. These images have been scaled down. .. 49
Figure 57: The C329 camera module [21] .. 50
Figure 58: The Caspa camera module [22] ... 51
Figure 59: The SB101C USB camera module [28] .. 53
Figure 60: GPS receiver test data captured while team member was, from left to right, walking,
jogging, and sprinting. .. 55
Figure 61: Effect of a running average filter on IMU data ... 55
Figure 62: Final block diagram for the IPASS ... 56
Figure 63: Example automatic image stitching pipeline [36] ... 58
Figure 64: SIFT Matches [35]... 59
Figure 65: Outliers removed using RANSAC [35]... 59
Figure 66: Resulting stitched image [35] .. 59
Figure 67: Images stitched using SIFT [37] ... 60
Figure 68: Images stitched using SURF [37] .. 60
Figure 69: Stitching methods considered .. 61
Figure 70: Hugin screenshot stitching 3 images (boxed) .. 61
Figure 71: 4 images to be stitched .. 62
Figure 72: 4 images stitched using Hugin (missing imagery circled) .. 62
Figure 73: An example of JavaCV auto-stitching. The two images on the left were stitched to
make the one on the right. ... 63

vii

Figure 74: Images with enough overlap but not enough matching features for the default
OpenCV stitcher [25] .. 64
Figure 75: Example of image rotation and calibration in software counterclockwise 90⁰ 65
Figure 76: Points for creation of transformation matrices .. 66
Figure 77: Image stitching process ... 67
Figure 78: Different types of radial distortion [43] .. 68
Figure 79: Image before calibration .. 69
Figure 80: Image after calibration ... 69
Figure 81: Image before calibration .. 69
Figure 82: Image after calibration ... 70
Figure 83: Startup Screen of the IPASS GUI on an Ubuntu computer .. 70
Figure 84: Ground Station Software Flow .. 71
Figure 85: Image browsing functionality. Team members farthest away and circled. 72
Figure 86: Image browsing functionality. Team members closer. ... 72
Figure 87: Image browsing functionality. Team members closest. .. 73
Figure 88: Image browsing functionality. Team members closest. .. 73
Figure 89: Image browsing functionality. Team members farther away. 74
Figure 90: Image browsing functionality. Team members farthest away. 74
Figure 91: GPS data format .. 74
Figure 92: GPS data loaded into GUI ... 75
Figure 93: Change in GUI when a connection to the IPASS is established. 75
Figure 94: Flow chart for the embedded computing software .. 76
Figure 95: Pelican case with stored IPASS... 80
Figure 96: Stitching offset caused by camera lens movement. ... 81
Figure 97: Human pictured at100ft in a 640x480 pixel image ... 95
Figure 98: Human pictured at100ft in an 800x480 pixel image ... 96
Figure 99: Human pictured at100ft in a 1024x768 pixel image. This image has been scaled
down to fit on the page.. 97
Figure 100: Human pictured at150ft in a 640x480 pixel image. .. 98
Figure 101: Human pictured at150ft in an 8000x480 pixel image. .. 99
Figure 102: Human pictured at150ft in a 1024x768 pixel image. This image has been scaled
down to fit on the page.. 100
Figure 103: Chassis used in the drop test.. 101
Figure 104: Chassis dropping location ... 102
Figure 105: Damage sustained from the drop test .. 103
Figure 106: GPS tracking when walking slowly .. 104
Figure 107: GPS tracking when jogging ... 105
Figure 108: GPS tracking when sprinting ... 105
Figure 109: Three unstitched images captured by each camera. .. 107
Figure 110: Resultant stitched image. ... 107

viii

Figure 111: Stitched Image data captured from two stories (about 20 ft.) up. 108
Figure 112: Stitched image data captured from three stories (about 30 ft.) up. 108
Figure 113: Stitched image data captured from the same location at night. 109
Figure 114: Stitched image data captured while the electronics box was in motion 109
Figure 115: Stitched image from simulation of IPASS operation. Notice that people are clearly
visible in the image. .. 110
Figure 116: Stitched image data in which two of the cameras produced blue tinted images. 111
Figure 117: Stitched image data in which the leftmost camera was disconnected. 111
Figure 118: The IPASS launching in an ideal model ... 112
Figure 119: MATLAB simulation for IPASS flight in one dimension 114
Figure 120: Model of the tiling behavior displayed by the IPASS ... 114
Figure 121: MATLAB simulation for IPASS flight in two dimensions 116
Figure 122: Model IPASS flight with rotations induced .. 117
Figure 123: MATLAB simulation of IPASS flight in three dimensions 119
Figure 124: Thrust test setup... 123
Figure 125: First launch test ... 124
Figure 126: Second launch test ... 124
Figure 127: Third launch test .. 125
Figure 128: Fourth flight test .. 125
Figure 129: Fifth flight test ... 126
Figure 130: Image of the WPI Recreational Center captured while airborne 126
Figure 131: Final flight test... 127
Figure 132: Damage sustained between the motor mount and propeller protection ring 128
Figure 133: Damage to the propeller protection ring .. 128
Figure 134: Landing site of the IPASS ... 129
Figure 135: Close up of where the Delrin tabs came disconnected .. 129
Figure 136: Broken battery mount inside the electronics box .. 130
Figure 137: The cmake GUI build options ... 140
Figure 138: The cmake GUI before adding additional build options ... 142
Figure 139: The cmake GUI after adding additional build options .. 144
Figure 140: Attaching a carbon fiber tube to a quarter panel ... 145
Figure 141: Exploded view of the electronics box. Electrical components have been hidden ... 147
Figure 142: Inner view of the camera mount. ... 148
Figure 143: Reference view for camera placement and orientation. .. 148
Figure 144: Affixing the panels to the electronic box with clevis pins 149
Figure 145: Affixing the motor mounting in place ... 149
Figure 146: Detailed view of the motor mount ... 150
Figure 147: Affixing the zip ties to the chassis for the carbon fiber rods 150
Figure 148: Exploded side view of the chassis ... 151
Figure 149: Exploded top view of the chassis .. 151

ix

Figure 150: Completed chassis ... 152

x

Table of Tables
Table 1: Project Budget .. 10
Table 2: IPASS member responsibility... 11
Table 3: Previous team’s design solutions analysis .. 17
Table 4: Design iterations ... 24
Table 5: Power requirements of the IPASS components .. 45
Table 6: IPASS Camera Pugh Chart ... 49
Table 7: Comparison chart of GPS receiver selection .. 54
Table 8: Table of results ... 78
Table 9: Expenditure by subsystem .. 84
Table 10: Tested resolutions ... 94
Table 11: Tested distances .. 94
Table 12: Lenovo Thinkpad W530 specifications .. 131
Table 13: Cost of each component to construct an IPASS ... 132
Table 14: Total Expenses for thes IPASS Project .. 133
Table 15: Connections in the IPASS electronics box ... 146

1

1. Introduction
There is currently the need for an inexpensive and lightweight Unmanned Aerial Vehicle

(UAV). This need stems from a high demand for Intelligence, Surveillance, and Reconnaissance
(ISR) and the rising cost of UAV systems. The technology is now available to provide ample
surveillance in a short time frame; however, this technology is prohibitively expensive for most
applications.

An inexpensive solution to this problem would open small scale UAV use and
development to a variety of consumers. Inexpensive small scale UAVs could be applied for use
in military, law enforcement, rescue operations, and civilian purposes.

The Air Force Research Laboratory (AFRL) is working to address this issue. It is
currently funding two project teams to create a solution to this problem. The work of these two
teams builds on previous work performed at Wright State University (WSU). The team at
Worcester Polytechnic Institute (WPI) has worked towards a solution to this need by utilizing the
principles of robotics engineering to develop an inexpensive surveillance UAV with the
capability to operate quickly and intelligently.

 This report details the work that occurred in order to solve this problem. The report will
begin by detailing relevant background information regarding UAVs in military and civilian
applications. Problem and design specifications are defined in order to establish the
considerations that are addressed in this project. System design and development are then
described by detailing the considerations and implementations in development of the systems
and components in the IPASS. The results of full system testing are detailed followed by a
conclusion of the work done and future work that can be accomplished to further develop the
IPASS technology.

1.1 Background
Intelligence gathering is critical to successful military operations. Information about an

area as well as ally and enemy locations allows for better and more accurate decisions to be
made, increasing survivability of warfighters. One of the primary methods of gathering
intelligence is through visual surveillance of an area. The Department of Defense (DoD) defines
intelligence as "information and knowledge obtained through observation, investigation,
analysis, or understanding." Surveillance; one of the primary methods of obtaining intelligence,
is a systematic observation of a subject where as much data as possible is gathered [1].

The DoD is currently working to transform the armed forces into a force suitable to
confront 21st century adversaries. The DoD has stated that ISR is a key component to this
transformation [1]. One of the newest and most revolutionary ways to conduct surveillance in the
21st century is through the use of UAVs. Implementing a robotic element in surveillance allows
personnel to remain in a safer environment while more dangerous scouting operations are
conducted by UAVs.

UAVs have revolutionized the field of military aviation in recent years. Many say that
unmanned aircraft are the most significant development to happen in the field since the invention
of stealth technology. Military UAVs have a vast array of uses and come in all shapes and sizes
[2]. The roles that UAVs play are quickly expanding and range from primitive practice targets to

2

reconnaissance, combat, logistics, research, and even commercial civilian purposes. The use of
UAVs in military reconnaissance, however, has perhaps the widest variation.

In addition to military uses, UAVs have many applications in search and rescue. It is
crucially important to be prepared for natural disasters when they occur to minimize the number
of human casualties. Often after natural disasters the area’s infrastructure and roads are so
damaged or the weather conditions are so treacherous that they inhibit any search and rescue
efforts by traditional means. In a disaster situation, UAVs can be used for information gathering
and relaying data to emergency personnel. They can also be used to deliver relief supplies,
medical equipment, or communication equipment to people isolated by disasters [3].

UAVs are also useful for law enforcement officials. The UAV provides a much lower
cost alternative to manned helicopters. Small UAVs that can fit in a police cruiser can also be
deployed faster than a helicopter, allowing for a search effort to be established more rapidly.
UAVs can also be used in investigating traffic accidents. The UAVs could map the scene with
photos faster than humans on foot without interfering with evidence. In the case of a hazardous
materials spill, UAVs can help investigate and respond without putting people in harm’s way. A
hovering UAV can provide law enforcement with a tactical bird’s eye view of any scenario
involving a standoff with dangerous suspects. In the ongoing war on drugs UAVs can be used to
search for illegal narcotics operations [4].

1.1.1 UAV History
The United States Army, Marine Corps, and Air Force all have their own tiers for

classifying their UAVs. These tiers are broken up by size, speed, flight ceiling, and capabilities.
The Army’s tier 1 is reserved for small, low endurance, low altitude, and possibly hand launched
UAVs such as the RQ-11A/B Raven. Tier 2 is for short range, low to medium altitude, long
endurance, tactical UAVs such as the RQ-7A/B. The Army’s tier 3 encompasses medium to high
altitude, long endurance, tactical UAVs like the RQ-5A. The US Marine Corps has a similar set
of tiers, but includes an N/A tier comprised of micro UAVs, often called Micro Air Vehicles
(MAV).

 The classification that the US Air Force uses is slightly different due to the different
duties that the Air Force has compared to the Army and Marine Corps. The Air Force tier N/A is
for small and micro UAVs. Tier 1 contains low altitude long endurance UAVs. Tier 2 has
medium altitude, long endurance UAVs. Tier 2+ is reserved for high altitude, long endurance
conventional UAVs. Tier 3 is Air Force exclusive and is reserved for high altitude, long
endurance, and low observable UAVs such as the X-47B [5]. Both the United States Navy and
Coast Guard currently use UAVs for reconnaissance as well, but have not implemented a
classification system. These reconnaissance UAVs vary in their size, weight, communication
capabilities, and amount of infrastructure and personnel required to use and maintain.

The higher tiers of reconnaissance UAVs require full runways and can be controlled from
across the world using satellite communication infrastructure. The RQ-4 Global Hawk weighs
around 15,000 pounds and has a 47 foot wingspan. The UAV requires a crew to maintain and
pilot it. It requires a launch recovery element pilot, a mission control element pilot, and a sensor
operator [7]. Even mid-size tactical UAVs such as the RQ/MQ-1 Predator and MQ-9 Reaper
require a full runway and crew to operate. Currently, the Predator and Reaper drones are
launched from forward operating bases, and controlled from the continental United States by a

3

pilot and a sensor operator [6]. The higher tier UAVs are much more expensive than the lower
tier. The RQ-4, as seen in figure 7, costs around 35 million per unit [9]. The MQ-9 Reaper, as
seen in figure 6, costs around 37 million dollars per unit [6]. While these UAVs may provide
large area ISR, they aren’t particularly well suited for transmitting the intelligence directly to the
infantry.

Figure 1: MQ-9 Reaper [6]

Figure 2: RQ-4 Global Hawk [7]

The low tier UAVs can be carried and deployed on a squad level, often thrown by hand.
These small UAVs are controlled by a personal computer based system. The RQ-11 Raven
series, for example, weighs 4.2 pounds, has a 4.5 foot wingspan, can fly for around 80 minutes,
and has an effective range of about 6 miles. The UAV is hand launched like a model plane and
can either be remote controlled or navigate autonomously by way of set GPS waypoints. The
controls are handled by the Ground Control Unit which streams real time video and picture data
from the UAV. This class of UAV is useful for ISR in a variety of situations, but can still be
relatively expensive. The entire RQ-11 system, as seen in figure 8, costs around $250,000, with
each Raven UAV costing around $35,000 [9].

4

Figure 3: RQ-11 UAV [9]

Currently there are a few MAVs that can be used for squad level ISR that take a different
approach than the tier 1 UAVs. The Honeywell T-Hawk MAV is a small squad portable Vertical
Take-Off and Landing (VTOL) UAV as seen in figure 9. It has the ability to navigate waypoints
and flight plans but also has the unique ability to “hover and stare” [10]. With a range of 6 miles
combined with VTOL, the T-Hawk is better suited for urban areas than the small plane like
UAVs, but is more expensive.

Figure 4: Honeywell T-Hawk [10]

It is apparent that UAVs of all shapes and sizes are being used by militaries all over the
world, especially in the United States. In summary, there are different scales or classes of UAVs
for military ISR. There are niches for large world roaming UAVs, mid-size tactical UAVs, and
smaller squad deployable UAVs. Currently the smallest VTOL UAV is too large for one person

5

to carry. That is why there is a need for an even smaller and, more importantly, low cost
intelligent portable aerial surveillance system.

1.1.2 Limitations of Current UAVs
There is a variety of different UAVs designed for many different tasks. While most have

been designed by the United States military for combat reconnaissance purposes, there are still
many factors in which they vary. UAVs can range in size from a few feet to having over ten foot
wingspans. They are also designed to run for times ranging from a few hours to two weeks.
There are, however, a few commonalities. UAVs are very expensive, with complex drones
costing upwards of millions of dollars (not accounting for operating costs or resources). Most
established UAVs are also too large to take into the field; they must instead be launched from a
runway at a base capable of maintaining them.

Small UAVs are not much more inexpensive than their full sized counterparts and are not
designed for squad based operations. For example, the AeroVironment RQ-11 Raven, which is
used by not only the United States but more than ten other countries, costs $35,000 for a single
unit and $250,000 for a total system. While the UAV can be launched by hand and weighs 1.9
Kg it is not very portable. As can be seen in figure 10, the UAV requires two suitcases to hold its
components in addition to another suitcase sized receiver. The RQ-11 Raven is also designed for
flights from one to one and a half hours, making it unsuitable for short reconnaissance missions.

Figure 5: The RQ-11 Raven being assembled before flight.
Note the second soldier on top of the jeep setting up the receiver [9].

When looking at the current UAV technology a clear need for an inexpensive man-
portable UAV system arises. The large UAV systems, which can cost millions of dollars, can
weigh several tons and are only useful for high level reconnaissance missions, not in close
quarters. These large systems are not man portable and require a team to operate. Most small
UAV systems still take several men to transport and cost thousands of dollars. Making a small
UAV system would create many benefits; it would reduce the amount of gear that soldiers would
need to carry, be less noticeable to enemy units, and the system could be easily stored for
transport. If the system was made small enough for one solider to carry, more than one system

6

could be transported by a squad to increase the range and decrease the time it takes to obtain
surveillance data. The small UAV size would also me more suitable for short range missions; the
reason for this is because the smaller size would have a less powerful battery therefore reducing
the time the drone could be in flight. Overall, a smaller UAV form factor would be ideal for most
urban military missions.

The UAV drones that are used today generally cost thousands to millions of dollars. If
that cost could be reduced it would be beneficial to the military. Low cost UAV systems could be
more widely deployed for more surveillance coverage on the battle field because the military
could afford to deploy more drones. If the cost of a drone could be reduced enough, the drone
could be considered disposable. The benefit of a disposable system is that if the UAV were to
crash or land in an inhospitable location the UAV could be left behind because it is easy to
replace. Making an inexpensive UAV system would also allow for the millions of dollars being
spent on UAVs to be allocated to more pressing divisions of the military.

1.1.3 Current Solutions
 A number of different small scale aerial imaging devices have emerged with relation to
this problem. The Massachusetts Institute of Technology (MIT) has created a device, as seen in
figure 11, for “bounce imaging” that captures surveillance data without the aid of flight [29].
While low cost, this device must be physically thrown at the location image data is intended to
be captured from, limiting the possibilities for surveillance.

Figure 6: MIT’s bounce imaging device [29]

 The senseFly company has developed a small scale UAV designed for quick and easy
deployment in order to collect surveillance data of the surrounding area as seen in figure 12. The
eBee UAV can intelligently plan flight paths before flight and return to the user at the end of its
flight, but is prohibitively expensive [30].

7

Figure 7: The eBee 3D mapping UAV [30]

 Prox Dynamics has developed a small scale surveillance UAV for military applications.
The PD 100 PRS UAV is single man portable and man operable as seen in figure 13. While this
UAV’s small form factor makes it easily portable, a set of 160 units costs £20 million (about $30
million) at a minimum [33].

Figure 8: The PD 100 PRS in the field [33]

 Fumiyuki Sato has invented a flying sphere, as seen in figure 14, for 110,000 yen ($1390)
that is capable of performing complex aerial maneuvers. The sphere has an approximate eight
minute flight time and in the event of a loss of power or unexpected collision it is protected by its
spherical outer frame [29].

8

Figure 9: Fumiyuki Sato's Flying Ball [29]

 Lite Machines has developed an unconventional UAV design that utilizes coaxial rotors
to reduce complexity. The UAV, as seen in figure 15, is designed to be portable and easily
launchable [28].

Figure 10: Lite Machines Voyeur UAV [28]

1.2 Societal Impact
 Access to lightweight and inexpensive aerial surveillance systems has the potential to
change the way mapping and navigation is accomplished. An inexpensive series of UAVs would
give civilians access to technology that, as of now, is primarily used in military applications.
Scientists could use small, short-range UAVs to capture visual data in a variety of different
environments which could provide useful information in the fields of geology, biology,
meteorology, and environmental sciences. Civil engineers and architects could use small scale
UAVs to survey an area before construction and check the safety of the site while the building is
undergoing construction.

 Inexpensive UAVs have significant potential in rescue operations. In areas where the
environment may be unsafe or unstable, such as a forest fire or hurricane, having a low-cost
UAV that is optionally-recoverable would be highly beneficial. The UAV would be able to

9

achieve its goal of launching into the air and providing visual data and if it was lost during
operation there would be no significant strain on resources to purchase another.

 In the event of extensive proliferation of inexpensive and disposable UAVs, the
environmental and societal impact must be considered. The components used in the IPASS are
potentially hazardous and could cause negative environmental changes should a number of
systems remain unrecovered. To combat this potential danger, a GPS receiver has been
implemented, but not integrated, in order to provide location data of the IPASS so that it can be
more easily recovered. The privacy issues inherent in wide scale availability of inexpensive
surveillance technology are also of concern both in the professional and amateur field. However,
this is not a novel concern with preexisting technologies such as Google Earth, cell phone GPS
tracking, and personal information security with regards to social networks. The IPASS is
designed for the protection of war fighters and to provide useful surveillance data for beneficial
applications. While effort has been made to minimize the negative impact of this technology, it is
the users who can determine if its application is safe and beneficial.

1.3 Project Description
The AFRL is working on developing a surveillance ordinance to improve upon current

un-manned surveillance methods. The project team believes that a robotic solution is capable of
fulfilling various surveillance requirements while remaining inexpensive and compact. The
AFRL Sensors Directorate has previously conducted this project with a student team at WSU as
part of its AFRL Student Challenge. This challenge was developed to address issues in the
disciplines of aerospace, mechanical, electrical, computer, and software engineering and allow
students the opportunity to work with the AFRL. This student challenge serves to tackle
“specific technical challenges to AFRL” while meeting college senior capstone requirements
[31].

This project was developed simultaneously by two teams; one team represented WPI
while the second represented WSU. The two teams communicated and collaborated but
developed two designs independently. The main goal of the WPI team is to design, develop, and
test an unmanned aerial vehicle to serve as a surveillance unit for a user on the ground. The
design focuses on integrating features that are believed to be important for vertical flight and
aerial surveillance. Based on AFRL’s goals for the surveillance ordinance, it was possible to
separate the goals into three main categories.

1. Takeoff and landing
2. Gathering and sending image data
3. Gathering and sending location data

To assist in the research and development associated with implementing this solution, the
AFRL funded the IPASS project through the Ohio Aerospace Institute (OAI). The team drew up
a preliminary outline of expected expenses prior to doing any spending on the project. Table 1
shows the estimated costs associated with developing a solution to meet these requirements.

10

Table 1: Project Budget

Item Cost
Ground Station Laptop $800
Mechanical Systems including materials and
manufacturing.

$2000

Cameras and Lenses $600
Computing System $500
Sensors $500
Batteries and Charger $300
Communication System $400
Travel cost for demonstration $2000
Miscellaneous $900
Total $8000

1.4 Design Specifications
The AFRL was broad in its design requirements and was willing to allow the team to

make adjustments based on feasibility and relation to robotic applications. Because of this
flexibility, the team added several additional design requirements to better address the team’s
goals for the project. The first five requirements in the following list were specified by the AFRL
while the rest were the team’s initial design goals.

1. The system must reach heights of at least 100 ft.
2. The system must survive a fall of 30 ft. unassisted
3. The system must be lighter than 20 lbs.
4. The system must have a device to retard its fall.
5. The system must have a vision system to provide a wide field of view of the surrounding

area while airborne.
6. The system must be able to sense its location.
7. The system must have an embedded computing system for image processing, sensor

fusion, actuation, communications and control.
8. The system must be able to transmit visual and location data while airborne to a user on

the ground.
9. The system must be able to transmit data wirelessly to a ground station with a downlink

rage of up to 200 ft.
10. The system must be user friendly and easy to operate.

The 100 ft. minimum flight height is a design requirement for two main reasons. The
AFRL felt that the system should be able to take useful pictures from 100 ft. in the air. Secondly,
100 ft. is a sufficient height to clear most obstacles that would normally block vision.

The system should be able to survive a 30 ft. drop as a fail-safe. In the event of a system
failure the user should still be able to retrieve the system for reuse. In order to ensure consistent
survivability, the system should be able to slow its descent.

In order for the system to be transported and launched easily, the system should be
lightweight. If the user of the system is already carrying another load, carrying this system
should not impact the user significantly.

11

The on-board vision system should be able to take several series of pictures and transmit
them to the user during the system’s operation. Once the images are sent to the user the ground
station will stitch the pictures together into a single image. These images ware saved to the
ground station and displayed. In additional to visual data, the team decided that location data is
also useful to the user. On-board sensors will transmit location data to the user.

The range of the wireless communications should be larger than the minimum flight
height of the system. This greater range will ensure constant connectivity with the system and
allow for lateral movement of the IPASS and user during operation.

While there was no specified cost requirement, the goal of the project is to create an
inexpensive system. A low production cost will allow for each individual system to be easily
replaced as necessary.

1.5 Team Organization
 The six member project team was subdivided to better accomplish the IPASS design
requirements. On the highest level, team members were divided to work on the body design,
launch and descent or embedded computing, vision system, sensing, and software. As the project
progressed however, there was a much greater overlap in member responsibilities. Table 3 shows
what aspects of the project each team member was accountable for. All team members were
expected to have at least a basic a running knowledge about every aspect of the IPASS while
only a few needed an in depth knowledge.

Table 2: IPASS member responsibility

Responsibility Primarily
Responsible

Secondarily
Responsible Knowledgeable

Chassis Design Limone Blumenau Ishak, Mintz, Russell,
Sudol

Propulsion System
Design Blumenau Mintz Ishak, Limone, Russell,

Sudol

Launch Testing Mintz Blumenau Ishak, Limone, Russell,
Sudol

Vision System Design Ishak Sudol Blumenau, Limone, Mintz,
Russell

Image Processing Limone Russell Blumenau, Ishak, Mintz,
Sudol

Embedded Computing Sudol Ishak Blumenau, Limone, Mintz,
Russell

Location Sensing Blumenau Russell Ishak, Limone, Mintz,
Sudol

Communication
Implementation Sudol Russell Blumenau, Ishak, Limone,

Mintz

Ground Station GUI Russell Sudol Blumenau, Ishak, Limone,
Mintz

12

1.6 Project Timeline

 The following weeks detail project milestones that were accomplished over the course of
twenty one weeks. Each date coincides with a weekly meeting that occurred with the project
sponsor, Richard Van Hook. The project spanned from to August 23, 2012 to March 12, 2013.
Key milestones are indicated in bold.

Weeks 1-5
1. Operational SCP server
2. Document templates designed
3. Primary camera choice : TTL serial JPEG with NTSC video
4. Raspberry Pi and Arduino selected as controllers
5. Primary mechanical design made

Week 6
1. Began IMU research
2. Began GPS research
3. Determined bandwidth properties
4. Found motors and propellers to test
5. Materials applied to mechanical design

Week 7
1. Prototype chassis cut from laser cutter
2. Xbee speed tests complete
3. Rotors, motors, IMUs, and ESCs received in mail, testing to begin
4. Begin writing formal project paper

Week 8
1. Retrieving IMU data
2. GPS received in mail
3. Progress on paper
4. Testing with parts received last week

Week 9
1. Began work on final paper: introduction, background, design requirements, and

specifications
2. Interfacing cameras
3. Retrieving data from IMU
4. Retrieving data from GPS
5. Controller PPM signal operational
6. Second prototype designed

Week 10
1. IMU data filtered
2. second prototype design fabricated

13

3. GPS tested

Week 11
1. First launch test
2. Electronics box manufactured
3. GPS data parsed

Week 12
1. Third iteration designed
2. USB camera and SPI camera images received
3. Image stitched with JavaCV

Weeks 13 & 14
1. Multiple thrust tests completed
2. New propellers and motors acquired and installed
3. IPASS design updated
4. Communication with cameras
5. Mid project evaluation presentation
6. WSU team + sponsor visit
7. WSU team collaboration

Week 15
1. Drop tests to evaluate design
2. Thrust tests

Week 16
1. Subsequent launch tests
2. Pictures from Caspa cameras

Week 17
1. Camera change to USB cameras, tested and functional
2. Data transfer to and from Gumstix
3. Wireless communications established
4. GUI front end complete
5. Launch tests

Week 18
1. Image data wirelessly transmitted
2. Message protocol established
3. Fourth prototype designed
4. Begin system integration

Week 19
1. Launch tests
2. System integration progress

14

Week 20
1. Electronics box assembled, debugging to be done
2. Full wireless communications established between system and ground station
3. Image stitching approved
4. Pelican case ordered to store IPASS

Week 21
1. Full system tests: image capture, launch, and drop tests

15

2. System Design and Development
This chapter details the design considerations and implementations made in the

development of the IPASS. The proposed solution is described in order to frame the design
choices made with regards to the propulsion, chassis, power system, embedded computing,
vision system, onboard sensing, data transfer, software, and ground station of the IPASS. Each
subsection details the design considerations and implementation of the relevant subsystem.

2.1 Proposed Solution
 In order to meet the project goals the team developed an Intelligent Portable Aerial
Surveillance System (IPASS). To satisfy this acronym, the IPASS is designed to intelligently
travel to a 100 foot elevation, to be single man portable, to send aerial image data to the user for
surveillance purposes. This system is broken into three major components: chassis, electronics
box, and ground station. The system is designed to be transported into a dangerous environment,
assembled quickly, and launched vertically. While airborne, images are captured and sent to a
ground station. This ground station presents all relevant data to the user. Figure 16 presents the
final design of the IPASS.

Figure 11: Final design of the IPASS and realized UAV

 The final IPASS design contains two brushless DC motor driven propellers mounted
coaxially, a propeller protection ring, four quarter frames to mount the carbon fiber landing gear,
and an electronics box. The electronics box contains a LiFePo battery, two electronic speed
controllers, an Arduino Pro Micro, a Gumstix Overo, a radio receiver, and three USB cameras
connected to a USB hub.

16

2.2 Propulsion Considerations
 There are many different options for propelling the IPASS into the air, including
cannons, catapults, balloons, rockets, and propellers. Each option can be evaluated based on
various specifications including cost, mobility, safety, complexity, and overall feasibility as part
of meeting the system requirements. Previous work conducted by the WSU team was considered
in the decision making process regarding the propulsion system.

2.2.1 WSU Considerations
The previous WSU team that attempted this project researched pneumatic launcher

cannons, as seen in figure 17, to launch the device into the air. This required a large launcher
made of PVC pipe fashioned with a pressure tank and a barrel. The pressure tank would need to
be filled with compressed air from another source such as a large air compressor. These are
commonly used for supplying air to pneumatic tools. With this system, the WSU team
determined through testing that it would require too much pressure to be feasible to launch the
device. This system would also be too large and heavy to be man portable and would require a
power source to prime the pressure chamber with air in the field [11].

Figure 12: WSU pneumatic launcher design [11]

The WSU team researched the use of an elastic catapult. This was fashioned as a large
upward facing slingshot that used bungee cords to provide a spring force intended to launch the
device vertically. The WSU team determined that this method would be feasible to launch the
device vertically to the desired elevation, but the amount of force required to pull back the
slingshot was too great for humans to apply quickly in the field. During testing, a tractor was
needed to pull the catapult to full potential energy. This method also would require the use of a
large catapult which means that the entire system is no longer single man portable [11].

The third option that the previous team had considered was using a large weather balloon
to lift the device into the air. The team considered the weight of the device and the required
tethers to determine how large a balloon would be needed. It was determined that a 10 foot
diameter weather balloon would be needed to attain the desired elevation. This required a large
can of helium to fill the balloon. The materials and effort needed to launch this balloon make this
unsuitable for a man portable system [11].

2.2.2 Propulsion Design Considerations
After taking into account the efforts of the previous team, it was apparent that none of

these aforementioned methods would be feasible for the system. As seen in Table 4, the ease of

17

use, set up time, complexity, cost, and portability of the previous team’s design solutions were
evaluated for their feasibility.

Table 3: Previous team’s design solutions analysis

 Pneumatic Cannon Elastic Catapult Weather Balloon
Can this method
achieve the desired
elevation?

Yes Yes Yes

Is this method single
man Portable?

No (with compressed
air source)

No No (when inflated)

Does this method
have a low cost per
use?

Yes Yes No

Can this method be
deployed quickly?

Yes No No

Consideration: Rockets
A common method of small scale propulsion is model rocketry. The engines, as seen in

figure 19, for model rockets come in a variety of sizes, thrust levels, and are relatively
inexpensive. Research was done into the kinds of rockets available based on their specifications.
Newtonian physics allows approximations on how high the rocket could launch a given object.
The height was approximated by taking the average thrust in Newtons, the mass of the object in
Kg, and the burn time of the motor. The basic Matlab feasibility calculation can be viewed in
figure 18. Using this simulation it was determined that rocket engines would be a feasible
method for providing the force required to launch the IPASS.

%%inputs
mass=3;%in kg
avgthrust=34;%% avg thrust of motor in N, form datasheet
burntime=1.7;%% in s

yburn=.5*(avgthrust/mass)*(burntime)^2;
vburn=(avgthrust/mass)*burntime;

%output in meters
maxheight=-.5*9.8*(vburn/9.8)^2+vburn*(vburn/9.8)+yburn;

Figure 13: MATLAB simulation of thrust

Rocket motors typically use some kind of electronic ignition and require a launch pad
with a vertical guide rod. This setup may make this no longer a man portable system. For a
rocket to work, it needs to be aerodynamic, and have a small form factor which limits component
choice.

Another downside to this technology is that the large rocket engines needed to lift the
system are regulated at a federal level. Hobby rockets expel hot gasses from burning solid fuel
making them dangerous to use in urban environments. The high heat output and flammable
nature of the rocket motors pose a danger to the internal components.

18

Figure 14: Model Rocket Engine [12]

Consideration: Electric Motors
The feasibility of using a brushless dc motor can be evidenced by approximating the

thrust generated when attached to a propeller, and comparing it to what the system might weigh
based on the required components. The static thrust of a brushless dc motor and propeller can be
approximated the using Equation 1: Brushless dc motor thrust approximation [13]:

𝑇ℎ𝑟𝑢𝑠𝑡 = [(η ∗ 𝑃)2 ∗ 2𝜋𝑅2 ∗ 𝜌]1/3

Equation 1: Brushless dc motor thrust approximation

Where η is the propeller hover efficiency which depends on the pitch and width of the propeller,
P is the shaft power, R is the radius of the propeller in meters, and 𝜌 is the density of the air.

Thrust is approximated for an 800 watt brushless dc motor below. Standard propeller
hover efficiency is 0.8 for hobby propellers and a 10 inch diameter (0.127m radius) is a standard
propeller size. The density of air is approximately 1.22 kg/m^3. If these values are input into
Equation 1: Brushless dc motor thrust approximation the output thrust generated in Newtons or
Kilogram force can be useful in approximating the acceleration of the IPASS.

𝑇ℎ𝑟𝑢𝑠𝑡 = �(. 8 ∗ 800𝑊)2 ∗ 2𝜋(. 127)2 ∗ 1.22 �
𝑘𝑔
𝑚3� �

1/3

≅ 37𝑁 ≅ 3.8 𝐾𝑔𝐹

If two motors are used, then this thrust should double and the system will output approximately
7.6 KgF or 74.5N of downward thrust. If the IPASS weighs 2Kg, or 19.6 N, then:

�𝐹 = 𝑚𝐴 = 74.5 − 19.6 = 55𝑁

Thus the IPASS would accelerate upward at 27m/s2. This approximation proved that using
brushless dc motors and propellers was a feasible option.

2.2.3 Descent Considerations
Using many of the above methods the system can achieve the upward force required to

launch the IPASS; unfortunately most of these methods would require a separate means for
retarding the descent of the system. Ideally, this landing will not end in a crash where the core

19

components of the system are damaged and non-recoverable. A robust descent mechanism is
critical to preventing a damaging crash. Multiple descent methods were researched including
parachutes, a rotary wing, and propellers.

Consideration: Parachute
A parachute allows the system to slow its descent by using a large, usually round, canopy

attached to the chassis using string or rope. The parachute could remain folded inside or on the
chassis until it is deployed either using a secondary charge of a rocket or some kind of
electromechanical actuation. A problem with using a parachute is that it takes up a significant
amount of space and weight, even when folded up. Another limitation is that when the system is
descending, there will be sway due to the wind which may affect the quality of the images
collected [18].

Consideration: Rotary Wing
The possibility of using a rotary wing design, much like a maple seed, as seen in figure

21, was researched. In this design the rotation of a single wing craft could propel the system
upward and control its descent. This would be similar to the Lockheed Martin Samurai flyer,
which can be seen in figure 20 [34].

Figure 15: Lockheed Martin Samurai [34]

The team decided against this idea due to its complexity. This would require extensive vision
processing to stabilize the resulting images as well as a more complex overall design. With
regards to descent, NASA’s Jet Propulsion Laboratory conducted research on using droppable
maple seed sensors that would act as miniature autogyros which use autorotation to slow descent
[15].

20

Figure 16: Images of a maple seed falling
[15]

Consideration: Propellers
Another option was to design the IPASS such that it uses passive rotation of propellers to

slow its descent. This could be done using a fan like rotor with enough surface area and a
shallow pitch to auto-rotate. Autorotation is when the rotation of the rotor caused by air passing
through it causes lift [29]. It is commonly used with helicopters in emergency situations as well
as in auto-gyros. This method could possibly slow down the descent of the IPASS, but inducing
a rotation to the system could affect image quality due to the amount of time it takes for the
sensor to capture an image.

 The final option considered was to use powered propellers to slow the descent of the
IPASS. If the system was launched using the propellers to provide thrust, the thrust could be
reduced at the apex of its trajectory to enable the system to descend. By using brushless dc
motors to both launch and control the fall of the chassis, required space, and complexity can be
reduced. The team decided to use powered propellers for both launch and descent because of the
safety, simplicity, and ease of implementation. Later during the design process, the team used a
Matlab simulation to aid in diagnosing launch issues. In this simulation the IPASS flight path
was simulated in one, two, and three dimensions. Simulating the flight path in one dimension (up
and down) showed that based on the thrust calculations and weight of the system the IPASS
would launch normally as can be seen in figure 22. In simulating two dimensions (up and down,
and pitch) it was shown that based on the weight distribution and resultant center of mass of the
system would not ascend directly upward as can be seen in figure 23. When simulating the
IPASS in three dimensions (up and down, pitch, and rotation) the flight of the system could be
stabilized by applying a rotation about the axis of the propellers as can be seen in figure 24. This
rotation would later be applied in the system by running the motors in a co-rotating fashion. Full
details of this simulation can be seen in Appendix G.

21

Figure 17: Simulation of IPASS flight in one dimension

Figure 18: Simulation of IPASS in two dimensions where imbalance is discovered

22

Figure 19: IPASS 3D simulation in which rotation is applied to stabilize flight

2.2.4 Implementation: Propulsion
 The following design decisions are the final implementations in the IPASS. These
implementations were made based on research and experimentation performed with the
previously described propulsion systems.

Motors
The selection of motors was one of the most critical decisions for the propulsion system.

The first motors that were selected for use in powering the IPASS's propulsion were the NTM
Prop Drive Series 35-30A 1400kV. These motors draw up to 35A at full power and run at a
voltage of 13.2 V. It was determined that for the propellers that were selected the static thrust
should be 1.5kg for a motor-propeller pair. During thrust tests of the IPASS it was determined
that the motors did not generate enough lift to get the system airborne. After more research was
done, the NTM motors were replaced with the E-Flite Power 25 Brushless Outrunner Motors.
These motors are capable of drawing 58A burst current and run at 1250kV. The E-Flite motors
generate sufficient lift for the IPASS to launch itself off the ground.

Electronic Speed Controllers
The ESCs were a critical component for the IPASS as they are responsible driving the

motors. The ESCs that are used on the IPASS are the Turnigy Thrust 55A SBEC Brushless
Speed Controllers. These ESCs were chosen in order to meet the requirements of the motors.
These ESCs can handle up to 55A of sustained current and also provided a battery elimination
circuit (BEC) which provides 5V power to other components on the IPASS. These specific ESCs
were chosen because they have the appropriate capability for driving the selected motors.

23

Propellers
The propellers for the IPASS are important in that they provide the means to convert the

motors’ rotations into thrust. To meet IPASS design requirements, the propellers needed to be
lightweight and disposable. The propellers that were chosen for the IPASS are the APC 1047
Slow Flyer Props. These propellers come as a counter rotating pair. The APC propellers seen in
figure 25 are ten inches in diameter with a 4.7 inch pitch.

Figure 20: Propeller pair used in the IPASS

Radio Control
 The IPASS’s motors are radio controlled (RC). The RC control is used because the
Federal Aviation Administration (FAA) guidelines state that there must always be a human in the
loop when operating a UAV [32]. The motor speed is controlled by a human operator to maintain
safety during operation. The human operator controls the system by adjusting motor speed using
a joystick.

2.3 Chassis
 The mechanical design of the IPASS is developed to meet the functional requirements of
the project. Some aspects of the design were influenced by existing UAVs and vertical takeoff
and landing aircraft such as a disposable outer chassis for shock absorption, a low center of mass
for stability, and coaxial propellers. These existing craft included model rockets, military
vehicles, existing military UAVs, civilian UAVs and hobby craft. Effort iss made to use
commercial off-the-shelf parts and materials where possible to keep the cost low.

2.3.1 Chassis Design
 The IPASS is designed to be stored inside a man portable case until needed. The chassis
is designed to be assembled and disassembled in the field without the need for tools. This means
using different fastening methods such as pins and tie wraps as opposed to nuts, bolts, and
screws. The chassis is required to survive a 30 foot drop. It was decided that the IPASS would be
designed such that the outer chassis would be made of a low cost material. A low cost outer shell
allows for an optionally recoverable chassis. The box that holds and protects the electronics is
designed to be recoverable to allow the system to remain cost effective.

24

 There were four major revisions of the chassis design throughout the project.

Table 4: Design iterations

The first design was developed as a proof of
concept, and a drop test platform.

The second design was developed mostly for
testing the chassis material choices, and overall
feasibility of the motor mount, electronic box,
and outer frame design.

The third design was intended to be lighter,
just as resistant to drops, and easier to rotate in
the air.

The fourth design was intended to fly vertically
in a more stable manner, and to perform better
at protecting the propellers.

25

Motor Mounting
 After deciding to use brushless dc motors and propellers for propulsion a chassis was
designed to properly mount the motors and propellers. The chassis is designed to protect the core
electronics, cameras, sensors, and to keep the IPASS traveling in a straight trajectory. The two
rotors are contra-rotating such that the torques induced from kinetic energy will cancel each
other out, arresting rotation as can be seen in figure 27. If an outside disturbance causes a
rotation it can be controlled while in flight by differentially adjusting the speeds of each rotor.
The motors will be mounted on the same plate so that the axles are collinear. This phenomenon
can be proved using the formula for rotational kinetic energy seen in Equation 2: Rotational
kinetic energy.

𝐸𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 =
1
2
𝐼𝜔2

Equation 2: Rotational kinetic energy

Where the value I is the moment of inertia of the propeller plus the moment of inertia of the
brushless dc motor housing, and ω is the angular velocity of the motor. If I and ω are equal then
the kinetic energy about the common axis of rotation would be zero, assuming that the moments
of inertia of the propellers and motors are identical with respect to their mutual axis.

�𝐸
𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙

=
1
2
𝐼𝜔12 −

1
2
𝐼𝜔2

2 = 0

Theoretically, the rotation of the IPASS in the air about its axis of rotation can be controlled by
varying the ω of one or both of the motors. The yaw velocity control system for this method is
modeled in figure 26.

Figure 21: IPASS yaw velocity control system

The motors are mounted on a laser cut piece of Delrin plastic, chosen for its durability.
After attempting to use acrylic, it was discovered that the torque produced when one of the
propellers collided with an object caused the acrylic to shatter.

26

Figure 22: IPASS motor mounting scheme

Frame Material Choice
The material for the IPASS frame had to be light and durable so as to not inhibit takeoff

or landing. The choice of material largely depends on the propulsion design choice and available
manufacturing methods. When considering a propeller driven option, tough plastic materials
were researched. The plastic needs to be durable enough so that the chassis can withstand a 30 ft.
drop without damaging the internal electronic components.

The team’s primary means of manufacturing plastic components is a laser cutter. The
laser cutter is capable of accurately cutting many plastic components. Acrylic was first
considered because of the team’s familiarity with its material properties. Acrylic, however, is too
brittle and not suitable for withstanding impact. Polycarbonates, which are less brittle than
acrylic, cannot be cut with the laser cutter. The team came to the conclusion that the laser cut
solid sheets of plastic might be too heavy to be lifted by means of electric motors.

After researching solid plastics, a low cost corrugated plastic called Coroplast, as seen in
figure 29, made of a polypropylene copolymer was discovered. This material can be laser cut and
is lightweight due to corrugation. Testing, detailed in Appendix D, shows that the material is
durable, but when too much force is applied it tends to crumple and compress. Results of this
these tests can be seen in figure 28 in which the Coroplast material sustained only minor
abrasions from a 30 ft. drop. This is ideal for the chassis because the crumpling reduces the
impulse from impact to protect the core electronics components. This is similar to how bumpers
of modern automobiles are designed to prevent the passengers from absorbing the impact of a
collision.

27

Figure 23: Details of chassis damage after drop test

Figure 24: Coroplast [17]

The material was low cost enough that having a disposable chassis would be cost
effective. An interesting phenomenon caused by the corrugation allows the design to take
advantage of the way the material resists bending in certain directions. By choosing the
orientation in which the parts are cut, the ability of the chassis to resist impact can be optimized.

 For intricate parts such as the mounting components and aerodynamic elements of the
electronics box, another manufacturing method was required. For complex three dimensional
parts a rapid prototyping machine was to be used. The ABS plastic material which comes out of
the printer is durable and lightweight because of its porosity. This material is suitable for
aerodynamic components and camera mounts. A more durable plastic is used to protect the parts
of the system that are intended for reuse.

28

Outer Frame Design
The outer frame protects an electronics box which contains the embedded computing

system, cameras, sensors, and the power system. The design iss inspired by Fumiyuki Sato’s
flying ball UAV shown in Figure 14. While the IPASS does not perform like the flying ball, it
has an outer chassis to protect the rotors and electronics on impact which influenced the design
of the IPASS. The Light Machines Voyeur UAV, shown in Figure 15, also influenced the design
of the IPASS. It uses contra rotating rotors to control the elevation and rotation of the IPASS,
and features a center of mass below the mounted propellers.

Iteration One
The original chassis layout, as seen in figure 30, was designed as a motor mounting plate

and an electronics box that would be joined using a protective outer frame. The electronics box
must be durable to secure and protect the embedded computing, sensors, cameras, and power
system. The size of the original electronics box was chosen to fit a standard Lithium Polymer
(Li-Po) battery and a Raspberry Pi, which were the original components. Additional outer frame
material that extends below the electronics box protects the cameras from direct impact. The
outer frame members which attach to the electronics box are designed to act as shock absorbers
when the chassis impacts the ground, suspending the electronics box and absorbing shock and
vibration.

In this design the point at which the motors and propellers apply the force to the IPASS
was at the motor mounting plate directly above the electronics box. This was chosen so that the
IPASS remains upright as it launches. There is an aerodynamic cone on the top of the electronics
box to deflect the air.

Figure 25: Original IPASS prototype design

The center of mass of the IPASS is designed to be inside the electronics box below the
point where the force is applied. This design was developed and verified using SolidWorks. This
allows the system to stabilize passively using gravity. If the chassis tips then a component of the
force due to gravity will cause rotation so that the thrust applied by the motors is in the vertical

29

direction. The angle of attack determines how much force is applied perpendicular to the force
applied by the motors to rotate the system. The angle of attack increases proportionally with the
component of gravitational force perpendicular to the motor force as shown in figure 31.

Figure 26: Passive stabilization if the IPASS

The choice of material and basic design were tested by constructing an early prototype
chassis, as seen in figure 32, and dropping it from approximately 30 feet. The results showed
that the outer chassis sustained some damage including cracks and deformities in the plastic,
crumpling on impact absorbing the impulse. This damage can be seen in figure 33. This outer
chassis protected the electronics box which sustained minor abrasions. The decision to use the
Coroplast for the outer frame of the IPASS was validated by this test. Full results of this test can
be found in Appendix D: IPASS Drop Tests.

Figure 27: IPASS prototype before drop test

30

Figure 28: Close up of damage after impact, notice the cracked plastic in the circle

Iteration Two
The next iteration of the design was updated with additional propeller protection. The

chassis was updated and cut in a different orientation because it was determined that the
Coroplast was better at absorbing impact when the force is directed along the corrugation. It was
also determined that Coroplast is too flexible when cut thin and that the acrylic support mounts
add too much weight and complexity to the system. The updated design is shown in figure 34
and its mass properties in figure 35.

Figure 29: Updated outer frame with added propeller protection

31

Figure 30: The center of mass of the system demonstrated by the CM symbol (units in inches)

After conducting launch tests with this prototype it was determined that the IPASS was
too heavy to lift off using the brushless motors that were being tested. This chassis prototype
weighed a little over 2.4 Kg, and the thrust generated by the Turnigy motors was below that. It
was also observed that the kinetic energy from the propellers did not generate adequate torque to
rotate the IPASS due to the large surface area of each quarter piece. The moment of inertia was
too large due to the mass of the quarter pieces having a relatively large radius from the center
axis of the chassis. This is demonstrated in Equation 3: Moment of Inertia.

𝑰 = �𝒎𝒊𝒓𝒊𝟐
𝑵

𝒊=𝟏

Equation 3: Moment of Inertia

Where mi is the point mass a distance ri from the axis of rotation. It is clear that the moment of
inertia depends largely on the radius from the point mass to the center of rotation due to the fact
that the radius is squared. This concern was addressed in the next iteration of the frame design by
pulling the quarter frame piece closer to the central axis.

Iteration Three
The next design was a departure from the previous design which was based on the

original prototype. At this point it was determined that the IPASS needed a slightly wider
electronics box to fit all of the components. The frame quarter pieces were designed to be much
smaller and were mounted directly to the sides of the electronics box using clevis pins and Delrin
tabs. This allows for a much lighter, thinner chassis which is more conducive to rotation about its
central axis while airborne. The thinner chassis can be seen in figure 36.

32

Figure 31: Design of the IPASS for a smaller moment of inertia (units in inches)

 This design however does not use a spring-like attachment to the electronics box which
was utilized in the previous design. The new prototype used the spring of the lower legs as shock
absorbers. If there is enough force, however, the bottom of the electronics box may hit the
ground, thus it was required to increase the distance of the electronics box from the ground.

In the next iteration, four carbon fiber tubes were attached to the frame quarters which
absorbed shock. These tubes were one foot long each and attached to the chassis quarters using
Zip Ties. These tubes absorb the impact of the fall and direct it around the core components. The
part of the Coroplast frame quarter that is held flush to the Delrin sides of the electronics box
will expand on the lower side and compress on the upper side as seen in figure 37. This flexion
absorbs the impact of the collision so that the internal components are protected. This design was
partially influenced by the Honeywell T-Hawk, shown in figure 38, which uses large rounded
landing gear designed to absorb shock.

Figure 32: Carbon fiber springs to assist in shock absorption

33

Figure 33: Honeywell T-Hawk

 After some initial testing including drops from a few feet it became apparent that the
quarter frames needed to be stronger. To adress this, the pieces were cut so that the corrugation
was more favorable to inhibit flexion. This is due to the area of the cross section where the flex
occurs as can be seen in figure 39. Below, the image on the left will have more area in its cross
section, which makes it resist flex.

Figure 34: Comparison of differences in cross sectional area

 This version of the quarter frame was designed in such a way that the surface area of the
chassis when viewed from the side above the center of mass and below the center of mass is
approximately equal as shown in figure 40. This allows the system to be less prone to rotation
caused by external forces. If the IPASS encounters wind, the chassis will be more likely to
translate rather than rotate, which is shown in figure 41.

http://images.google.com/url?sa=i&rct=j&q=honeywell+t-hawk&source=images&cd=&cad=rja&docid=qQfr5OV1MrqULM&tbnid=th9k7yVfjkB47M:&ved=0CAUQjRw&url=http://en.wikipedia.org/wiki/Honeywell_RQ-16_T-Hawk&ei=V3szUfqXE4XKqgGSlYCgBA&bvm=bv.43148975,d.aWc&psig=AFQjCNEgXdoVs5V2ivOZOMywhI_fzeDUvw&ust=1362414802710491
http://images.google.com/url?sa=i&rct=j&q=honeywell+t-hawk&source=images&cd=&cad=rja&docid=qQfr5OV1MrqULM&tbnid=th9k7yVfjkB47M:&ved=0CAUQjRw&url=http://en.wikipedia.org/wiki/Honeywell_RQ-16_T-Hawk&ei=V3szUfqXE4XKqgGSlYCgBA&bvm=bv.43148975,d.aWc&psig=AFQjCNEgXdoVs5V2ivOZOMywhI_fzeDUvw&ust=1362414802710491
http://images.google.com/url?sa=i&rct=j&q=honeywell+t-hawk&source=images&cd=&cad=rja&docid=qQfr5OV1MrqULM&tbnid=th9k7yVfjkB47M:&ved=0CAUQjRw&url=http://en.wikipedia.org/wiki/Honeywell_RQ-16_T-Hawk&ei=V3szUfqXE4XKqgGSlYCgBA&bvm=bv.43148975,d.aWc&psig=AFQjCNEgXdoVs5V2ivOZOMywhI_fzeDUvw&ust=1362414802710491
http://images.google.com/url?sa=i&rct=j&q=honeywell+t-hawk&source=images&cd=&cad=rja&docid=qQfr5OV1MrqULM&tbnid=th9k7yVfjkB47M:&ved=0CAUQjRw&url=http://en.wikipedia.org/wiki/Honeywell_RQ-16_T-Hawk&ei=V3szUfqXE4XKqgGSlYCgBA&bvm=bv.43148975,d.aWc&psig=AFQjCNEgXdoVs5V2ivOZOMywhI_fzeDUvw&ust=1362414802710491

34

Figure 35: Surface area above and below the center of mass

Figure 36: Force applied by wind

The formula for finding the force caused by wind is defined in Equation 4 where A is defined as
the cross sectional area of the item, P is the wind pressure, and Cd is the coefficient of drag,

35

which is defined as 2 for flat plates, such as the flat quarter frames of the chassis or the sides of
the electronics box [18].

𝐹𝑜𝑟𝑐𝑒 = 𝐴 ∗ 𝑃 ∗ 𝐶𝑑

Equation 4: Force caused by wind

P is the wind pressure and is defined in Equation 5: Wind pressure. V indicates the wind speed in
miles per hour.

𝑊𝑖𝑛𝑑 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 (𝑃𝑠𝑓) = .00256 ∗ 𝑉2

Equation 5: Wind pressure

After observing the design during testing, it became apparent that the propellers were
vulnerable to damage in the event of improper landing. To address this issue a propeller
protection ring was added to the design. This ring had slots that would mate perpendicularly with
slots on the quarter frames to protect the propellers from colliding with the ground. This
protective ring can be seen in figure 42 and figure 43.

Figure 37: Propeller protection ring (circled)

36

Figure 38: Third iteration of IPASS chassis design

Iteration Four
After attempting multiple launch tests it was discovered that stabilizing fins were

required to allow the system to behave more like a propeller powered rocket. With this in mind,
the lower part of the frame quarters were expanded outward in an attempt to increase stability
and straighten the trajectory. This also adds strength to the frame during an impact. This final
design can be seen in figure 44.

37

Figure 39: Final design and completed system (units in inches)

2.3.2 Electronics Box
The electronics box serves as a mounting solution and protection shell for the core

electronics including embedded computing, sensors, cameras, and the power system. Originally
the electronics box was sized to fit a standard size Li-Po battery along with a Raspberry Pi. The
battery was intended to be stored inside the electronics box along with the embedded computing,
the ESCs, sensors, and the cameras. The first iteration was made of solid laser cut acrylic with
holes for wire routing to the motors. At this stage of the design a Raspberry Pi fulfilled the
embedded computing requirement. The Raspberry Pi does not have any means of mounting, thus
clips were designed to be 3D printed to secure the Raspberry Pi to the side of the electronics box.
The original electronics box design can be seen in figure 45 and the mounting method can be
seen in figure 46.

38

Figure 40: Original electronics box prototype (units in inches)

Figure 41: Original mounting for the Raspberry Pi (circled)

Electronics Box Material
 The electronics box needed to be manufactured from a very durable material in order to
protect the internal components. The overall system must be low cost so a light, inexpensive, and
durable material was required. It would be possible to 3D print the electronics box but this would
not be cost effective given the high price of printing large parts. Since the team had access to a
laser cutter, plastics that could be laser cut were researched. Such materials included acrylic and
Delrin.

Delrin was chosen for the electronic box due to its toughness. Delrin has a flexural
modulus of around 8 GPa where acrylic has a flexural modulus of around 3 GPa [27, 28] . This
makes the material less brittle than acrylic and tough enough to flex on impact in order to absorb
energy from impact without breaking. Delrin of a 3/16 inch thickness was chosen due to its
strength and ability to be laser cut. Thicker Delrin will deform when laser cut as its increased

39

thickness requires additional heat. If the Delrin is too thin then it will not provide adequate
protection. The sides of the electronics box have triangles cut out to reduce weight, include
mounting holes for the 3D printed parts, and chassis mounting tabs. The entire electronics box
uses two pairs of interlocking tabs and slots on each side. These Delrin sides are shown in figure
47. This reduces the total number of different parts required. These holes will be covered to
reduce drag using a plastic film or adhesive backed tape.

Figure 42: Delrin electronics box sides

The team knew that the battery was going to be the heaviest component in the system and
therefore it was mounted in the center of the electronics box for the purpose of aligning the
center of mass as seen in figure 48. The battery is held using two Coroplast supports. These
supports also work as shock absorbing cushions should the IPASS land on its side. The bottom
of the battery is supported by the camera mount assembly which also protects the cameras from
being damaged in the event of a downward crash. The Coroplast supports also have recessions
for clearing the electronic components, wire routing, and mounting the Wi-Fi antennas.

40

Figure 43: Battery location (indicated with arrow)

The electronics have been mounted on the inside surfaces of the four sides of the
electronics box. On one side, the Jameco circuit prototyping board, as seen in figure 49, which
holds the microcontroller that controls the motors, is mounted. This board is mounted using
standoffs and screws for a secure and durable mount. On the same side is the radio receiver used
to read signals from the radio controller. Opposite of this side is the main computing for the
IPASS, which is wired to the cameras, as well as the motor controlling computer.

Figure 44: Jameco prototyping board

After switching to the Gumstix computer with the Tobi breakout board, the design was updated
to mount the board directly to the side of the electronics box using standoffs and screws. On the
remaining two sides are the electronic speed controllers, used for transferring power from the

41

battery to the motors as well as control signals from the motor controller. This setup can be seen
in figure 50.

Figure 45: Final electronics box component layout (units in inches)

Top Cone
 On top of the electronics box sits the aerodynamic top cone. This cone is designed to
guide the flow of air from the propellers around the electronics box decreasing parasitic drag
induced by the cross section of the electronics box. The force due to drag is defined in Equation
6: Drag equation.

𝐹𝑑 = 𝐶𝑑 ∗
1
2
∗ 𝜌 ∗ 𝑉2 ∗ 𝐴

Equation 6: Drag equation

Where Cd is the drag coefficient, ρ is the density of the fluid (air), V is the flow velocity, and A
is the characteristic front area of the body. The drag coefficient can be approximated by
comparing the shapes from known coefficients to the shape of the nose cone. It is known that a
hollow half sphere has a drag coefficient of around 0.38 and a streamlined body has a drag
coefficient of around 0.04 [18].The design of the nose cone is an intermediary between these two
shapes, but much closer to the hollow half sphere, so the drag coefficient is approximated to be
0.25.

42

Figure 46: Top cone of the electronics box

This part, seen in figure 51, was made using WPI’s Dimension 3D printer which extrudes
Acrylonitrile Butadiene Styrene (ABS) plastic in layers to create a part. It has three density
settings that change how the inside of the part is filled with plastic. For this component, the
lowest density setting was chosen to reduce weight. On each mating point between the cone and
the Delrin sides there is a recessed hole designed to fit a 4-40 hexagonal nut which will prevent
the rotation of the nut during assembly.

Camera Mount
 On the bottom of the electronics box is the camera mount as seen in Figure 52. The
camera mount is designed to hold four cameras in a fixed position as well as to prevent the
battery from damaging the cameras during landing. The original design required the use of four
cameras. The mount was designed to hold the cameras in a pyramid formation with overlapping
fields of view shown in figure 52. Additional view of the camera mount can be seen in figure 53
and figure 54. This pyramidal design allowed for a wide field of view which was intended to
provide usable image data. On the downside, however, there was significant overlap and
therefore redundant image data.

Figure 47: Four camera layout design

43

Figure 48: Camera mounting viewed internally

Figure 49: Initial camera mount attached to electronics box

 Due to a change in camera model during design, the camera mount was modified to hold
three cameras. This design can be seen in figure 55 and figure 56. These cameras were slightly
larger than the previous cameras. These cameras are mounted in a way such that the images are
stitched three in a row to make a wider field of view. This part uses three raised camera lens
mount holders that tightly hold the camera lenses and are designed to mitigate motion. This
design uses a separate Delrin plate to protect the cameras from the battery as can be seen in
figure 57.

44

Figure 50: Three-camera mount design viewed externally

Figure 51: Three-camera mount design viewed internally

Figure 52: Three-camera mount with Delrin protection piece

45

The electronics box is attached to the quarter frames by Delrin tabs and clevis pins. The
Delrin tabs are press fit into the electronics box. The tabs lock the chassis quarters in place using
3/16 inch clevis pins held in place with cotter pins as can be seen in figure 58. By using clevis
pins and tie wraps, the IPASS can be broken down and stored as well as assembled in the field
without tools.

Figure 53: Quarter frame mounting solution. The red circle highlights a clevis pin.
The blue circle highlights a Delrin tab.

2.4 Power System
 Table 5 details the power requirements for the components intended for use in the final
IPASS design.

Table 5: Power requirements of the IPASS components

To power the IPASS, a Lithium Iron Phosphate (LiFePo) battery was chosen. LiFePo
batteries feature similar power ratings to a Li-Po battery but are more stable. This makes them
ideal for aerial systems with high power requirements. The ESCs connect directly to the LiFePo
battery, supplying the motors with the required 12V. The 5V BEC from the ESCs provide power
to the embedded computing and sensor systems.

2.5 Embedded Computing
To satisfy the IPASS requirements the on-board embedded computing system needs to be

capable of the following:

46

 1. Transfer data wirelessly
 2. Interface with multiple devices
 3. Be small and lightweight

The team explored three embedded computing systems for use on the IPASS: The Raspberry Pi
and Arduino Pro Micro were originally chosen. A Gumstix Overo FE COM later replaced the
Raspberry Pi in the design process.

2.5.1 Consideration: Arduino Pro Micro
The IPASS has two Pulse Period Modulation (PPM) controlled brushless DC motors. The

PPM protocol is a very time intensive task and the team decided that a smaller secondary
processor would be responsible for controlling the motors. This processor is also responsible for
receiving pose data of the IPASS. The Arduino Pro Micro was chosen due to its low cost, small
size, and the team’s familiarity with the Arduino environment. The Arduino Pro micro includes
four channels of 10-bit ADC, five Pulse Width Modulation pins, twelve DIOs, and hardware
serial connections Rx and Tx. The Pro Micro also has a voltage regulator, allowing it to accept
voltages up to 12V. Although the team chose to use an Arduino Pro Micro, any Arduino model
would be capable of fulfilling this requirement due to the capabilities of all Arduino models.

2.5.2 Consideration: Raspberry Pi
The team initially chose the Raspberry Pi due to its low cost, ease of integration, high

processing speed and market popularity. The Raspberry Pi contains a 700 MHz Advanced RISC
Machines (ARM) 11 processor and is capable of connecting to other devices via Ethernet, USB,
I2C, SPI and UART. The Raspberry Pi runs a full Linux environment booted from an SD card.
The Raspberry Pi model B is inexpensive and costs $35.

Since the IPASS needs to transfer data wirelessly, a USB Wi-Fi device was obtained on
recommendation of compatibility with the Raspberry Pi. This allows the IPASS to communicate
over the 802.11 wireless standard. The IPASS is also required to gather information on its
orientation and position using external sensors. Initial designs include a Global Positioning
System (GPS) receiver and an Inertial Measurement Unit (IMU). The GPS receiver was
connected to the Raspberry Pi via USB and the IMU was connected to the Arduino Pro Micro to
be accessed via the UART.

Since the Raspberry Pi runs in a Linux environment, development was simplified as the
team was able to design programs in ANSI C rather than in a specialized microcontroller
environment. The Linux environment made the peripherals more accessible as drivers were
already developed by the Raspberry Pi Foundation.

During development, issues were identified relating to the Serial Peripheral Interface
(SPI) communication with the Raspberry Pi in which the first bit of a transmission was
consistently dropped. The initial cameras communicated with the Raspberry Pi through SPI.
Despite functional cameras, these complications resulted in unusable incoming SPI data to the
Raspberry Pi from the cameras. In order to solve this problem the team investigated additional
computing solutions.

47

2.5.3 Consideration: Gumstix
The team purchased a Gumstix Overo FE COM for the embedded computing to replace

the Raspberry Pi based on its better documentation and more robust computing system. The
Gumstix, like the Raspberry Pi, has a native Linux environment and the ANSI C code originally
developed could be readily ported to the Gumstix.

The Gumstix has a powerful processor for an embedded computer but has a limited
selection of peripherals including a Wi-Fi receiver, Bluetooth receiver, camera connector for
proprietary cameras, and two 70 pin AVX connectors . Each Gumstix model can be mounted
onto an expansion board featuring a variety of peripherals.

IPASS design requirements call for wireless data transmission in a variety of
environments. Testing was conducted in Worcester, Massachusetts where temperatures typically
drop below freezing. The Gumstix Overo FE COM was purchased because it is the only Gumstix
model capable of operating in freezing conditions. This particular model had an on board Wi-Fi
card and comes with one antenna for 802.11 and one for Bluetooth.

The team purchased two different development boards for the Gumstix. The Alcatraz, as
seen in figure 59, is a full break-out board giving access to all 140 I/O pins on the Gumstix. This
would give the team the most developmental capabilities. However, with a size of 4 x 5 in., it
was decided that the Alcatraz was too large to be integrated within the IPASS given the small
size of the electronics box.

Figure 54: Alcatraz development board [19]

 The Tobi expansion board features 100 fewer breakout pins, one USB port, one HDMI
port, one Ethernet port, and is 4 1/8” x 1 ½”. The Tobi board was chosen because it still fulfilled
all IPASS design requirements while having a small form factor as can be seen in figure 60.
Later in the development process, a USB hub was integrated to facilitate connection with
additional sensors.

48

Figure 55: Electronics box Delrin panel, Tobi board, and Alcatraz size comparison.

2.5.4 Inter-processor Communication
 The IPASS was initially designed with the intention of using a Raspberry Pi as the
primary embedded computing system and was required to communicate with an Arduino Pro
Micro. A Gumstix Overo was selected for use in the final design of the IPASS to communicate
with the Arduino.

 Consideration: Raspberry Pi to Arduino
Because of the team’s choice to have multiple processors on the IPASS, a

communications medium was developed. A serial connection via UARTs of the Raspberry Pi
and Arudino with a maximum transfer speed of 115.2 Kb/s was chosen due to its simplicity. This
would allow the Raspberry Pi to request position and orientation data from the Arduino.

Implementation: Gumstix to Arduino
 The Tobi board gives access to 40 GPIO pins on the Gumstix. These pins are used to
send data to the Arduino Pro Micro. During this stage of the design, the Gumstix did not need to
receive information from the Arduino. The Gumstix only needs to relay three commands to the
Arduino: Launch, Land, and Abort. These are discussed in depth in 2.9 Software.

2.6 Vision System
When choosing cameras for the IPASS there was several design requirements to be taken

into consideration. Cameras are needed that are small and lightweight to ensure a light load on
the IPASS. Because images are not being streamed rapidly to the ground station, a high fps is not
necessary. The power consumption of the cameras is not a design concern. The design calls for a
multiple camera system therefore the cost of each sensor needs to be minimized.

49

The team determined useable image data as images in which a human can easily be
identified at 100 ft. A test was conducted to determine the individual image resolution required
of each camera. A team member was photographed at different resolutions and varying distances
using several cameras the team had available. A comparison of some of these images can be seen
in figure 61 while full details of this test are documented in Appendix C. The team determined
that a human at a distance of 100ft from the camera could be easily distinguished in a 640 by 480
pixel image. Therefore, only cameras capable of this resolution were considered.

Figure 56: Images of a human at 100ft. From left to right, the resolutions are
640 by 480, 800 by 480, and 1024 by 768 pixels. These images have been scaled down.

The speed at which cameras could take and send images was an important attribute. The
IPASS needed to be capable of taking and sending multiple images to the embedded system
during operation. Cameras with only a serial connection were not investigated because serial
connections were determined to be too slow. SPI and USB connections were determined to be
the most feasible due to their speed and ease of use. Table 6: IPASS Camera Pugh Chart shows a
Pugh chart created to help analyze camera options.

Table 6: IPASS Camera Pugh Chart

Camera C329
board

CMOS
Camera

SPI High Speed
JPEG Camera

USB
Cameras Criteria Weight

Size and Weight 1 5 5 5 4
Max Res 2 5 5 5 5
Max FPS 1 5 5 5 5

Ease of Interface 3 3 3 3 4
Speed of Interface 4 4 2 4 4

Availability 3 5 5 5 5
Power 1 5 5 5 5
Cost 2 2 5 3 4
Total 69 67 71 75

50

The sensor used for the imaging of the camera affects how quickly the camera are able to
capture a picture. The two major sensor types are CCD and CMOS. CCD sensors take a picture
by exposing all imaging pixels at once to capture image data. CMOS sensors take a picture by
exposing sets of imaging pixels rapidly. CCD is marginally preferable for use on the IPASS
because they take a picture faster than CMOS sensors.

The ground sampling distance (GSD) of the cameras also needs to be considered. The
GSD of a system relates to how much real-world space one pixel of a sensor captures in a single
image. The GSD determines how many pixels in a picture will represent an object. Equation 7
was used to calculate the GSD.

𝐺𝑆𝐷 = 𝑝𝑖𝑥𝑒𝑙 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑠𝑖𝑧𝑒 ∗ ℎ𝑒𝑖𝑔ℎ𝑡 𝑎𝑏𝑜𝑣𝑒 𝑔𝑟𝑜𝑢𝑛𝑑 / 𝑓𝑜𝑐𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ

Equation 7: GSD calculation

GSD is important for all aerial imaging applications. For example, an unacceptable GSD
at 100 feet would result in a human appearing indistinguishable in the resulting image. The focal
length is the distance from the lens to where the image converges and us the easiest factor to
change in the GSD calculation. The pixel element size would change based off of camera choice.

Assuming an average human is 70 in. tall and 35 in. wide, a 2 in. GSD at 100 ft. would
represent this human in 595 pixels. In Figure 61 above, the human in the 640 by 480 pixel image
is represented by a total 525 pixels. Therefore, an acceptable GSD for the IPASS would be about
2 in.

2.6.1 Consideration: C329 Camera Module
The first camera module selected by the team was the C329 board as seen in figure 62.

This was a CMOS sensor mounted to a circuit board interfaced through SPI. This model was
chosen over USB because SPI communications would be faster. In addition to the typical power,
ground, clock, MOSI, MISO, clock select, and slave select pins associated with SPI, the C329
SPI connection also featured a hold pin. This pin acts as a ready pin to notify the computer when
the camera is able to receive commands. Because the CMOS sensor did not come with a lens, a
3.6mm lens was purchased with this module. This lens resulted in a GSD of 1.93 in. at 100 ft.

Figure 57: The C329 camera module [21]

Four C329 modules would be used on a single IPASS to provide a significantly large
image of the ground. At 100ft, each camera would be imaging 100 by 75 ft. of ground. Each
camera would be mounted so that there was overlap in images to allow for a higher quality

51

stitched image. For a detailed description about the C329 camera mounting design, please see
2.3.2 Electronics Box.

 The C329 is able to send and receive commands successfully with an Arduino Mega.
This established that the SPI communication between the camera module and an embedded
system were functional. The C329 was then moved to be tested on the Raspberry Pi. It was found
that the Raspberry Pi was capable of sending commands to the C329 during testing, but was
unable to receive useful data. One bit of data was consistently dropped resulting in unusable
data. The team verified this problem as a system malfunction by observing the C329 and
Raspberry Pi communication on an oscilloscope. The C329 board was confirmed to be sending
accurate commands but the Raspberry Pi was not reading in the data correctly. After further
research the team found that it is a common occurrence for the SPI line to malfunction on a
Raspberry Pi. The team reevaluated the current design and selected a new embedded computing
system and cameras due to these errors in communication.

 No images were ever successfully taken with the C329 module. During development, the
team contacted the distributer and found that the specification sheet provided online was
inaccurate and requested example code. The example code provided was designed for a specific
subset of microprocessors not associated with the Raspberry Pi and deemed not useful.

2.6.2 Consideration: Caspa FS Camera
Due to the faults associated with SPI communication between the C329 and Raspberry

Pi, alternative camera options were explored in addition to a new embedded computing system
for the IPASS. The Gumstix was chosen not only because of its computational advantages over
the Raspberry Pi, but because there is a camera module designed specifically to be interfaced
with the Gumstix. The team purchased a full-spectrum Caspa camera, as seen in figure 63, to use
on the Gumstix. The camera module comes with a 3.6mm lens and has a GSD of 1.93 in. at 100
feet.

Figure 58: The Caspa camera module [22]

The Caspa interfaces with the Gumstix through a proprietary 27-pin parallel connection.
The video capturing program MPlayer was used to take video and images with the Caspa though
the Linux terminal. Images were then sent via Secure Copy Protocol (SCP) to the team’s storage
server where they could be viewed. A detailed description on how to take pictures with MPlayer

52

can be found on the Gumstix wiki. To stream video from the Gumstix, the following command
can be used:

mplayer tv:// -tv driver=v4l2:device=/dev/video0

To take a picture, the mplayer command is called with different modifiers. An example of how to
take a picture and send it is shown below. The image called “0000001.jpg” would be sent to the
user “ipass” at IP address “10.42.43.2” and put into the home directory.

mplayer tv:// -vo jpg -ss 1 -frames 1 -loop 1 –tv
driver=v4l2:device=/dev/video0
scp 00000001.jpg ipass@10.42.43.2:/home

Pictures were taken with the Caspa at about a 1.5 sec. rate. The team was also able to
stream video data to a monitor connected to the Gumstix. All images and video captured with the
Caspa had a resolution of 640 by 480 pixels. To focus the Caspa, a set-screw in the lens was
loosened during a video stream. The lens was then manually focused until the picture on-screen
became clear and the set-screw was put back in place.

The Caspa was significantly easier to interface than the C329 board. Instead of locating
and initializing SPI communications, the Caspa featured a simple plug-in connection. However,
only one Caspa can be connected to a Gumstix as each board only features one 27-pin
connection. Because a single camera would not provide enough ground coverage, the Caspa
camera was not chosen for the IPASS.

2.6.3 Implementation: SB101C USB CMOC Board
The SB101C camera module, as seen in figure 64, was obtained as the final camera

solution for the IPASS. These modules have a GSD 1.93 in. at 100 feet. At 100ft., a single
camera would image a 100ft. 75ft. plot of ground. These cameras are about 1.25in.3 in volume
which makes them easy to integrate within the IPASS and are comparatively inexpensive to the
previous camera solutions used. The USB interface also allows for easy integration with multiple
systems.

53

Figure 59: The SB101C USB camera module [28]

Out-of-the-box, these cameras come with a 5 pin to USB-B connection. However, the
team wanted to use USB-A connections which are more common and allow for easier expansion
of the system. Custom USB-B to USB-A connections were made for these cameras during
development. A four port USB hub was needed in conjunction with these cameras because the
Gumstix Tobi expansion board only has one USB port. In system level testing, the SB101C
camera connections were soldered directly to the USB hub to ensure a secure connection. Three
SB101C modules were used on the IPASS. For a detailed description about the SB101C
mounting, please see 2.3.2 Electronics Box.

There is no method of holding the SB101C lens in place other than with the threading on
the lens. The SB101C was focused in the same way as the Caspa except that once in focus, the
lens was hot-glued in place to prevent errant lens movement.

Images from the SB101C module are taken with the MPlayer program. Using a script,
pictures can be taken from all three cameras using the MPlayer software and sent to the ground
station via SCP. The time taken to save an image from the SB101B camera and the Caspa FS
proved to be almost identical. This is because the actual transfer time of the image data itself is
miniscule when compared to the time it takes to save the image to the Gumstix memory.

2.7 On-board Sensing
Onboard sensors are required in order to track the position of the IPASS during flight and

recovery. The team explored two sensor options in order to track position: an IMU and GPS
receiver.

2.7.1 Consideration: Global Positioning System Receiver
GPS technology was explored as a GPS receiver can track position and elevation with

acceptable accuracy. GPS receivers manufactured by Globalsat were investigated due to their
low cost and variety of specifications. The team chose to the use the ND-100S USB receiver for
its ease of use and small size. The GPS receiver is connected to the Gumstix through the four
port USB hub. While the GPS receiver was intended to operate in tandem with the camera
system on the IPASS, difficulties in which the GPS receiver and cameras would draw too much
power from the Gumstix led the receiver to not be included when field testing the IPASS

 The factors taken into account when choosing a GPS receiver were price, size,
and startup time. Price needed to be minimized in order to keep the overall cost of the IPASS
low. Size needed to be considered in order to ensure that the electrical components fit within the
electronics box. Startup time was considered as the IPASS needs to be quick to set up and
deploy. A fast startup time will ensure that the IPASS can be deployed within a reasonable time
frame. A comparison of the GPS receivers analyzed can be found in
Table 7. GPS receivers from the Globalsat company were analyzed due to the low cost of
Globalsat’s products and the ease of integration (all their receivers connected via USB). As many
of their GPS receiver models had only small differences in their specifications, the smallest
model was chosen.

54

Table 7: Comparison chart of GPS receiver selection

Criteria Weight GlobalSat ND-
100S USB Dongle

GPS Receiver

GlobalSat BU-
353 Cable GPS

with USB
interface (SiRF

Star III)

GlobalSat BU-353S4
Cable GPS with USB
interface (SiRF Star

IV)

Image

Price ($) 1 2 1 3
Size (mm) 5 3 2 1

Hot Start (sec) 2 3 3 1
Warm Start (sec) 3 3 3 2
Cold Start (sec) 4 2 2 3

Total 40 34 28

Once the GPS receives a satellite connection, its position and elevation data can be
written to a .txt file. This data is stored in the National Marine Electronics Association (NMEA)
format which is capable of storing multiple types of data. These data types include bearing,
geographic position, latitude, longitude, heading, altitude, and more. To meet IPASS design
requirements only latitude, longitude, and elevation data were needed and thus were parsed out
of the NMEA data using a Linux script. A second script then sends this data to the ground station
where the data is displayed on the GUI.

In order to evaluate the capabilities and accuracy of the GPS unit the team performed
three tests. These tests involved one team member moving the GPS receiver across the WPI
football field while walking, jogging, and sprinting. The GPS data collected during these tests
was then parsed, plotted on Google Maps, and then compared to the path actually followed. The
results of these tests can be seen below in figure 65. These tests demonstrated that the GPS was
accurate to six meters horizontally and half a meter vertically. Specific details of this test can be
reviewed in Appendix F.

55

Figure 60: GPS receiver test data captured while team member was, from left to right,
 walking, jogging, and sprinting.

2.7.2 Consideration: Inertial Measurement Unit
The integration of an IMU is discussed here for completeness and future expansion. A 9-

Degree Of Freedom (DOF) IMU was to be integrated in order to track the pose of the IPASS.
IMUs vary greatly in price and performance levels and typically feature a linear relationship
between price and performance. The team set a price limit of $100 for the IMU in order to
maintain reliable data and low cost. The RoBoard RM-G146 was chosen because it was below
the price limit and featured the best precision compared to other IMUs. While other options were
available, the similarity in specifications made comparison between different models
unnecessary.

The RoBoard IMU communicates via I2C protocols. Arduino code was developed to
capture all nine data values from the three sensors with one command. IMUs typically display
noisy data over long periods of operation. To resolve the noisy and potentially inaccurate data a
running average filter was implemented in code. The effects of this filter can be seen in figure
66.

Figure 61: Effect of a running average filter on IMU data

56

The implementation of this filter caused the polling to run marginally slower, bringing the total
read speed from approximately 330Hz to 300Hz. Test data was sampled from the accelerometer
as it featured the highest levels of variation: up to 250 counts in either direction. As a result of
the filter, the maximum variation of the accelerometer was brought to 50 counts, which is
approximately equal to .06 m/s2 and is sufficiently accurate for the design requirements of
IPASS.

IMU communication and PPM signal generation were handled by an Arduino Pro Micro.
Because of a conflict in which the Arduino Pro Micro used the same pins for I2C, the IMU was
never integrated into the system as it was deemed less important than motor control. In future
designs, a different Arduino would be able to handle both the IMU and motor control.

2.8 Data Transfer
Communications and system integration are a major aspect in designing the IPASS.

figure 67 shows the major components of the IPASS and their methods of interacting with each
other. For example, the red arrow indicates a USB protocol connection while a black arrow
indicates a wireless protocol connection and an orange arrow indicates a PPM protocol
connection. The individual blocks are also color coded based on their sub system: green for User
Interface, blue for embedded computing, purple for sensing, and orange for propulsion.

Figure 62: Final block diagram for the IPASS

2.8.1 Ground Station Communication
The Raspberry Pi and the Gumstix are designed to be the main communications hub

within the IPASS. The Raspberry Pi has an external wireless card, while the Gumstix has a built
in wireless card. The team chose to communicate to the ground station via Transmission Control
Protocol (TCP) packets because of its reliability and ubiquity among all internet applications.

Since the IPASS and ground station are connected over a Wi-Fi link, two methods were
established to create the connection. Firstly, the IPASS and ground station connects to a wireless
network hosted by a wireless router. The IPASS then sends the images to the ground station. The

57

router’s higher output power allows for a greater distance between the IPASS and ground station
but would require external power for the router.

The second method of connection is through an ad-hoc network. The IPASS connects to
an ad-hoc network hosted on the ground station. This allows the IPASS to send images directly
to the ground station without the need for a wireless router.

Both of these methods require a first time setup. However, once the connection is
established it does not need to be set up again. The IPASS and ground station will automatically
connect to each other. The team decided to use the ad-hoc setup because it does not require a
router to be used in conjunction with the IPASS.

A messaging protocol was developed to send command and data messages to and from
the IPASS. This protocol utilizes an identifying command token, declared packet size, checksum
value, and acknowledgements to ensure that the messages are received and decoded properly.
This messaging protocol is demonstrated in detail in Appendix H. All communications outside of
image transfers are conducted over this protocol as these messages are designed to be short and
light weight. Image transfers are handled by a separate system as they are too large to be handled
by the messaging protocol.

2.8.2 Image Transfer
The team decided to transfer the images via SCP since the IPASS was running a full

Linux environment. SCP allows for a secure connection between two computers and would
ensure a safe and encrypted file transfer.

2.9 Software
 This chapter details the software used and developed for the IPASS. The software
detailed includes programs used for image processing, ground station GUI, and the embedded
computing.

2.9.1 Image Processing
 Due to the computation involved in image processing, preexisting image processing
libraries are utilized. The background of these libraries and other relevant software is discussed
to provide an understanding of the calculations involved in image processing.

Camera Focus
The cameras that were selected have an adjustable focus via a threaded lens. The cameras

are mounted with intersecting fields of view so that the image result will have a wider field of
view. The selected camera does not have autofocus, so it is required that the lens be focused
before the images are captured. The focus was determined manually for the IPASS design
requirements of 100 ft. altitude. This was performed by streaming the camera image to the screen
of a PC, then aiming the camera at an object 100 feet away and manually rotating the lens in its
mount until the image is focused on the object.

Image Stitching
 The information stored in the multiple images captured from the multiple cameras on the
IPASS will be more difficult for the user to decipher if they are presented alone. A more useful
option is to have the images stitched together so as to allow the user one larger image that

58

removes the common areas in the images and shows all the data from the multiple images in one
image.

 There are multiple ways to perform image stitching which range in accuracy and
computational effort. On one end of the spectrum is simple stitching based on a pre-computed
homography for each image. On the other end of the spectrum is homography estimation based
on matching features. These features could be common ridges or blobs of pixels in each image
[35]. A relatively complicated image stitching pipeline is shown in figure 68 [36].

Figure 63: Example automatic image stitching pipeline [36]

 One possible way to perform automatic image stitching is through using feature detection
and homography estimation. Feature detection can be performed using a scale invariant feature
transform (SIFT), which detects features using a difference Gaussian function. The results of this
algorithm can be seen in figure 69 [35]. Since there is only one row of images, this is considered
1D stitching. 2D stitching is a more difficult problem, involving multiple rows of images [35].

59

Figure 64: SIFT Matches [35]

After finding the matches, a probabilistic model using a random sample consensus (RANSAC) is
used to remove the outlying features in each image that do not have corresponding matches,
resulting in features that are shared between images. These matches that are shared between
images can be seen in figure 70 [35].

Figure 65: Outliers removed using RANSAC [35]

These features are then used to estimate a homography, or transformation matrix, between
images. This transformation can be applied to result in a stitched image. The resulting image can
be seen in figure 71 [35].

Figure 66: Resulting stitched image [35]

60

Another common method for feature detection is called speeded-up robust features
(SURF). This method uses a different method for identifying features but will not take into
account rotation like SIFT will. SURF is faster than SIFT and just as reliable when using images
that are not rotated [37]. figure 72 shows images stitched using SIFT matching and figure 73
shows the same images stitched using SURF [37].

Figure 67: Images stitched using SIFT [37]

Figure 68: Images stitched using SURF [37]

For use in the IPASS, this complicated automatic stitching algorithm is not the best
option due to the fact the cameras are always in a fixed position relative to each other and the
requirement to perform stitching in real time. It would be inefficient to automatically generate
matches and a homography estimation for every set of images captured. This would also result in
a lower frame rate when compared to a pre-computed homography based stitching method. The
simplified pipelines can be compared in figure 74

61

Figure 69: Stitching methods considered

Hugin: Panorama photo stitcher
Hugin was the initial proposed software to be used for image stitching. The ground

station would save the images and then use Hugin to stitch them. Hugin is advertised as an easy
to use cross-platform panoramic imaging toolchain [38]. The software includes automating
features including calibration, automatic stitching, and batch processing. The software is
scriptable and allows calling Hugin functionality from Python scripts. There is also the capability
of calling Python functionality from within Hugin [39]. These features made Hugin an option
considered for the IPASS image stitching subsystem.

Figure 70: Hugin screenshot stitching 3 images (boxed)

62

 During testing, while using the Hugin software package to stitch multiple images, as seen
in figure 75 it was discovered that the automatic stitch routines would lose image data in areas
that contained few noticeable details. This can be shown in figure 77, where the 4 images shown
in figure 76 were stitched using the automatic stitching feature of Hugin. This example
demonstrates 2D stitching, which takes more computational effort than 1D stitching. The layout
of the camera on the IPASS at the time required 2D stitching, so this test was useful in
determining the feasibility of using Hugin.

Figure 71: 4 images to be stitched

Figure 72: 4 images stitched using Hugin (missing imagery circled)

63

It can be observed that there is missing image data where there is a scarcity of features such as
ridges and objects on the grass field in the image. The automatic stitching routines were also
slow. Performing this stitching took approximately 10 seconds on a test laptop. This would have
bottlenecked the IPASS image transfer and stitch pipeline if compared to the 1-2Hz desire frame
rate. Additionally, it was discovered that the advertised python scripting interface was
undocumented and deprecated. Without automation features it was clear that another option
would be needed for the image stitching for the IPASS.

JavaCV
 A popular software library for image processing is OpenCV. OpenCV includes all
necessary functions that the IPASS image processing subsystem would require, including
calibration, image transformation, and automatic stitching among others. OpenCV is written in
C++, but wrappers exist for C, Python, Matlab, and Java API’s as well. Since the ground station
software was programmed in Java for cross platform development purposes, it was decided to
use the JavaCV wrapper for OpenCV to perform image stitching.

 JavaCV includes a library that can automatically generate stitched images much like
Hugin. This stitching class uses a matching algorithm to determine where the images overlap.
From there the stitching class will create a stitched image from the source images. This process
is slower than pre-computed homography based stitching and only works if the source images
have enough distinct features to generate a homography. For example, if solid images are cut in
software, the algorithm will match the parts perfectly and stitch the cut image back together as
long as there are enough matching features. The automatic stitcher in JavaCV requires nearly
40% overlap, along with multiple matching features. This is shown in figure 78.

Figure 73: An example of JavaCV auto-stitching. The two images on the left were
stitched to make the one on the right.

64

If there isn’t enough detail in the images, the stitcher will fail to stitch the images. The images in
figure 79 have the required 40% overlap but the stitcher could not find enough matching features
to generate a homography.

Figure 74: Images with enough overlap but not enough matching features for the default
OpenCV stitcher [25]

This automatic stitching will not be suited for the system because its success depends on
capturing distinct image data. A more consistent and faster option would be to use stitching
based on perspective transforms. A perspective transform uses a transformation matrix to remap
the points in an image. This transformation matrix can be generated based on a set of four
corresponding points that match between images [41]. OpenCV can generate the perspective
transform matrix from four pairs of corresponding points to satisfy Equation 8.

�
tixi′

tiyi′
ti
� = M ∗ �

xi
yi
1
�

Equation 8: Image transformation

Where M is the 3x3 homography matrix that maps the destination points xi’,yi’ and the source
points are xi,yi for a set of i=0,1,2,3 [41].

This method of image stitching works for rotating images as well. If the source points are
selected to be the four corners of the image and the destination points are the new corners with
the inverse of the aspect ratio of the source image than the image will rotate 90 degrees. The
original image and the result can be seen in figure 80.

65

Figure 75: Example of image rotation and calibration in software counterclockwise 90⁰

A grid with colored corners is used to generate the homographies. The four corners act as
anchor points to create the transformation matrices used for image stitching. Choosing the circled
points in figure 81, yields the homography:

𝑀 = �
0.275664 0.05499276 762.5588

−0.23756132 0.9942623 23.65323
−7.6214166E − 4 5.8408088E − 5 1.0

�

Between the right and center image, and:

𝑀 = �
1.8367479 −0.122695476 4.7196693
0.3799376 1.2086297 −67.19927

0.0011132342 −2.5864175E − 4 1.0
�

Between the left and center image.

66

Figure 76: Points for creation of transformation matrices

 The overall stitching process used in the IPASS system takes four steps. First, the three
images are calibrated, removing the radial distortion caused by the lens. Next, all the calibrated
images are rotated 90 degrees to match the orientation of the cameras on the electronics box.
Next, a blank image is created that is an appropriate resolution for the stitched image and the
center image is translated into the middle of the new blank image. Lastly, the side images are
warped onto the stitched image using previously generated transformation matrices. This process
can be observed in figure 82.

67

Figure 77: Image stitching process

Camera Calibration
 The IPASS cameras are inexpensive CMOS sensors with lenses. These lenses radially
distort the image near the edges. Two types of radial distortion can be seen in figure 83. Radial
distortion can be addressed in software by applying a transformation matrix to remap the pixels
of the image, resulting in an undistorted image. This transformation matrix can be generated and
applied using OpenCV [42].

68

Figure 78: Different types of radial distortion [43]

OpenCV can also take into account the tangential distortion of an image. This
phenomenon commonly occurs in low cost cameras when the lens used is not parallel to the
plane of the CMOS. OpenCV uses these formulas to adjust for this effect [42]:

𝑋𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = 𝑋𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 ∗ (1 + 𝑘1𝑟2 + 𝑘2𝑟4 + 𝑘3𝑟6)

𝑌𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = 𝑌𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 ∗ (1 + 𝑘1𝑟2 + 𝑘2𝑟4 + 𝑘3𝑟6)

OpenCV uses the following formulas for camera calibration [42]:

𝑋𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = 𝑋𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 + [2 ∗ 𝑃1 ∗ 𝑋𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 ∗ 𝑌𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 + 𝑃2(𝑟2 + 2 ∗ 𝑋𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙2)]

𝑌𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = 𝑌𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 + [2 ∗ 𝑃2 ∗ 𝑋𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 ∗ 𝑌𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 + 𝑃1(𝑟2 + 2 ∗ 𝑌𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙2)]

In these equations the distortion coefficients are k1, k2, p1, p2, and k3, which depend on the lens
and focal length. R is the radius of the pixel from the center of the image. OpenCV transforms
the image using this matrix multiplication:

�
𝑥
𝑦
𝑤
� = �

𝑓𝑥 0 𝑐𝑥
0 𝑓𝑦 𝑐𝑦
0 0 1

� �
𝑋
𝑌
𝑍
�

Where fx and fy are the focal lengths of the lenses and cx and cy are the center location of the
images [42]. To calibrate the camera the transformation was applied to a captured image of a
standard grid. The calibration parameters were adjusted manually. The effect of calibration can
be seen in the before and after images figure 84 and figure 85, as well as figure 86 and figure 87.
Notice that the lines are straighter after the calibration.

69

Figure 79: Image before calibration

Figure 80: Image after calibration

Figure 81: Image before calibration

70

Figure 82: Image after calibration

2.9.2 Ground Station Software
The ground station laptop shows a Graphical User Interface (GUI), as seen in figure 88,

designed to operate in cooperation with IPASS device. This GUI is developed in Java using
JRE1.6 because of the versatility of the Java programming language and its high portability to
other systems. The ground station software connects to the IPASS via Wi-Fi and is responsible
for sending commands to the device as well as handling image stitching and display.

Figure 83: Startup Screen of the IPASS GUI on an Ubuntu computer

71

The center of the GUI is populated by a single window. This window displays stitched
image data captured from the IPASS device. The device will send three individual images to the
ground station using the SCP protocol and then send a packet notifying the ground station of new
image arrival. Upon receiving an image notification packet a routine is triggered in software to
stitch, save, and display these images. Each image is loaded into memory, stitched together, and
then saved into a backup folder. The stitched image is saved into a folder for end-result pictures
and then the software displays the most recent stitched image. This process can be seen in figure
89. For more information on image stitching, see 2.9.1 Image Processing.

Figure 84: Ground Station Software Flow

The GUI features three buttons on the bottom of the screen; a green Launch button, a
yellow Land button, and a Red abort button. When pressed, the Launch button will send the
“Launch” packet to the IPASS. When the Land button is pressed, a similar “Land” packet is sent
to the IPASS. The Abort button acts as a kill switch for the system, sending the “Abort” packet
to the IPASS. Detailed information on the packet protocol is included in Appendix H: Message
Protocol..

These three buttons act as the primary control for the IPASS during operation. Upon
receiving a “Launch” packet, the IPASS will begin capturing images and enable RC. The “Land”
packet will allow the device to continue streaming images, but disables RC. While landing, the
motors are forced to half throttle, allowing the device to slow its descent. The “Abort” packet
stops all functionality on the device, forcing the motors to brake and stopping image capture.
These buttons have been implemented, tested, and proven to operate as described. Every test that
captured image data was conducted using this software.

In addition to the three control buttons, there are two buttons labeled “Prev” and “Next”.
These buttons will change the currently displayed image by the GUI by moving forward and
backward in chronological order of images captured by the device. This process is demonstrated
in figure 90, figure 91, and figure 92 where team members can be seen approaching the device.

72

Figure 85: Image browsing functionality. Team members farthest away and circled.

Figure 86: Image browsing functionality. Team members closer.

73

Figure 87: Image browsing functionality. Team members closest.

In figure 93, figure 94, and figure 95, the images are browsed in reverse order, and the team
members are seen moving away from the device.

Figure 88: Image browsing functionality. Team members closest.

74

Figure 89: Image browsing functionality. Team members farther away.

Figure 90: Image browsing functionality. Team members farthest away.

 Above the displayed image in the GUI, three text fields are populated with the latitude,
longitude, and altitude data gathered from the GPS. These fields are implemented so that they
update whenever a GPS packet is received from the device. The GPS data is stored as a .txt file
and delivered to the ground station via SCP. The format for a GPS file is shown in figure 96

Figure 91: GPS data format

75

 This GPS data file is opened in software, and each variable separated by commas is
stored in memory. The corresponding fields for latitude, longitude, and altitude are then
displayed in the respective fields. This can be seen in figure 97.

Figure 92: GPS data loaded into GUI

To the right of the altitude field is a connection status indicator which will either be red
or green. While red, no connection is present. The indicator turns green to notify the user of a
successful connection between the IPASS device and the ground station. This effect can be seen
in figure 98.

Figure 93: Change in GUI when a connection to the IPASS is established.

2.9.3 Embedded Software
The IPASS control software is designed to operate in cooperation with the ground station.

The IPASS is connected to the ground station over a standard Wi-Fi link and is equipped to send
and receive the commands outlined in the message transfer protocol. The messages include
notifying the ground station that pictures are ready as well as the launch, land and abort
commands. The software is designed in ANSI C and is able to be ported to other computers for
testing or for other IPASS iterations. This software is responsible for sending and receiving
commands to and from the ground station, gathering image data from the on board cameras, and
sending thrust control information to the Arduino. The software also contains generated
Doxygen documentation to expedite familiarity.

 Once in operation, the software follows the flow chart in figure 99. First the software
waits until it is able to establish a connection from the ground station. Once the connection has
been created the IPASS will start transmitting GPS data to the ground station. The IPASS
software will not gather image data until the operator has instructed the IPASS to launch. When
the software receives the Launch command it enables the picture taking and transmitting
subroutines while also enabling the Arduino which begins powering the propulsion system. The
software remains in this state until the operator tells the IPASS to land or abort. When a land
procedure is initiated the software continues to gather and transmit image data but instructs the
Arduino to slow the propulsion so that the IPASS will land. If an abort procedure is initiated the
software will cease gathering image data and the Arduino will stop controlling the propulsion
system.

76

Figure 94: Flow chart for the embedded computing software

 During image gathering the IPASS takes three pictures from its onboard cameras, then
sends the images to the ground station via the SCP command and finally it notifies the ground
station that it has sent the images. During GPS transmission the IPASS gathers GPS information
from the GPS receiver sends the information via SCP to the ground station and then notifies the
ground station that the GPS information has been sent.

2.10 Ground station
 A key part of the IPASS’s operation is the process of stitching camera data and
displaying the resultant image to the user. This process is accomplished by a ground station that
receives the camera data wirelessly transmitted from the IPASS. In order to ensure an ease of use
and quick update of surveillance data a dedicated ground station is required. Specific
requirements included an anti-glare screen, at least 2.0 GHz of processing power, and a solid
state drive.

 The Toughbook brand of laptops fits many, if not all, of these requirements. As
Toughbooks are already used in a variety of military applications, the team researched their
potential for use with the IPASS. The fully ruggedized and semi-ruggedized Toughbook models
fit the requirements for the ground station but were prohibitively expensive. With prices ranging
from two to three thousand dollars, the ground station could cost more than triple the
manufacturing cost of the IPASS.

The Lenovo Thinkpad W530 was chosen as a ground station for the IPASS because it has
comparable capabilities to the Toughbook models at approximately half the cost. The Thinkpad
costs approximately sixteen hundred dollars, which, while still double the cost of the IPASS, was
well within the project’s budget. The Thinkpad also has the potential to be used in future

77

projects. Specifications for the Thinkpad can be seen in Appendix L: Lenovo Thinkpad
Specifications.

78

3. Results
 In this section the team’s accomplishments are evaluated with regards to the IPASS
design requirements. The degree to which these design requirements are accomplished is
analyzed to provide an analysis of the effectiveness of the IPASS.

 3.1 Summary of Accomplishments
 The final IPASS design is capable of receiving commands from the ground station and
sending the ground station data packets. After receiving a launch command, the IPASS is
controlled remotely for launch. During flight, the IPASS flew about 15 ft. high before crashing.
Upon crashing, the internal systems maintained functionality and continued to send data to the
ground station.

 The IPASS is able to receive commands telling it when to start taking pictures from the
three cameras. Once this command is received, the IPASS continually sends pictures to the
ground station for stitching and display. A new stitched image appears on the ground station
once every 3-5 seconds. The electronics box is capable of sending and receiving data
independently from the IPASS chassis and has the potential to be used in other applications.

 As described in 1.4 Design Specifications, the IPASS needs to meet several requirements.
Table 8 details which IPASS design requirements were met, not met, or conditionally met.

Table 8: Table of results

Design Requirement Degree of Success
Reach height of 100 ft. Not Met
Survive a fall of 30 ft. Met
Weigh less than 20 lbs. Met
Method to retard fall Not Met
Capture of useful image data Conditionally Met
Location sensing Conditionally Met
Functional embedded computing Met
Transmit visual and location data Conditionally Met
Transmit wirelessly with 200 ft. range Conditionally Met
User friendly Met

Reach a height of 100 ft.
The IPASS never achieved a height of 100 ft. during a launch test. The IPASS flew

approximately 15 ft. maximally. The IPASS was unable to achieve this height due imbalances in
the system and vulnerability to wind.

Survive a fall of 30 ft.
 A fully operational IPASS was dropped from 30ft. two consecutive times and the ground
station still continued to receive images from the cameras. The IPASS chassis itself sustained
some minor structural damage. The internal components of the electronics box remained
undamaged but the Gumstix became unseated, causing a loss in connection to the ground station.
Full details of this free-fall test can be found in Appendix K: IPASS Survivability Test.

79

Weigh less than 20 lbs.
 The final IPASS deice weight is 4.4lbs. and is well under the maximum weight
requirement.

Method to retard fall
 The team has implemented methods for the IPASS to slow itself during descent. This
requirement has not been met because the IPASS slow-fall routine remains untested.

Capture useful image data
 During electronic box testing, the IPASS was able to capture, send, stitch, and display
images with a resolution of 1440 pixels x 640 pixels in 3-5 seconds. In these pictures, humans
are clearly visible at distances up to 100ft. Images from various electronics box tests can be
found in Appendix F: Electronics Box test. Because the full system test only resulted in a flight
height of about 5ft, the image data gathered proved not to be useful.

Location sensing
 The requirement to sense location data was to be fulfilled by a GPS receiver and IMU.
The GPS receiver was successful in transmitting location data to the ground station from the
IPASS. However, due to power problems, the cameras and GPS could not both be used on the
IPASS at the same time. The Gumstix could not produce enough amperage to provide sufficient
power for three cameras and for the GPS receiver. The team decided that the cameras were a
more important aspect of the project and the GPS was not implemented during full system
testing. In a similar fashion a pin conflict was discovered during testing that prevented the
Arduino Pro Micro from generating motor control signals and communicating with the IMU
simultaneously. Maintaining motor control was more important to the operation of the IPASS
than the integration of an IMU so the IMU was not implemented.

Functional embedded computing
 The Gumstix and Arduino Pro micro are successful in gathering image and location data,
communicating information to and from the ground station, and controlling when the user could
operate the motors.

Transmit visual and location data
 As stated previously in this section, the IPASS can capture both useful image data and
location data. While both sets of data cannot be transmitted simultaneously or sequentially due to
power restrictions, they can both be transmitted individually.

Transmit wirelessly with a 200 ft. range
 The 200ft. wireless range was chosen as a somewhat arbitrary distance for transmitting
data. During electronics box testing, the team discovered that the range of the ad-hoc network
between the Gumstix and the ground station has a range of approximately 120ft. with a
noticeable drop in bandwidth at about 75ft. The team deemed this range sufficient for operation
and did not further pursue a 200ft. wireless range. Details of this test can be found in Appendix I.

80

User friendly
 The IPASS is designed to be easy to use so that operations could be carried out in high-
stress environments. First-time setup of the IPASS is non-trivial but need not be done in the
field. This set up process along with instructions for operation of the IPASS can be found in
Appendix O: IPASS Instruction Manual. Construction of the IPASS chassis can be done quickly
with no tools. In-field operation requires only three terminal commands: launch, land, and abort.
Operation of the user interface is intuitive due to easy to understand buttons and simple
operation.

The team also purchased a Pelican 1560LFC Overnight Laptop case for the storage and
transport of the IPASS. The Pelican 1560LFC was chosen because it is watertight, crushproof
and its 1.64 cu ft. of storage space has enough room for the entire system including the ground
station laptop. The Pelican 1560LFC ensures that no accidental damage will occur to the IPASS
during transport and storage. The IPASS can be seen deconstructed and stored in the case in
figure 100.

Figure 95: Pelican case with stored IPASS

3.2 Discussion
The maximum height reached by the IPASS during flight was about 15ft. The IPASS was

unable to fly any higher due to being off-balance and vulnerable to wind. To help mitigate this
issue, the team experimented with contra and co-rotating propeller setups. Contra-rotating
propellers provide more lift to the IPASS but make it too off-balance to leave the ground; the
motors would be set to maximum thrust and the IPASS would just fall over.

 Co-rotating propellers provide less overall lift, but make the system more balanced. In
this configuration, the propellers would induce spin on the IPASS causing it to rotate as it
launched, centering its mass and making the overall system more stable. The team discovered

81

that because the system was so light, the additional lift from contra-rotating motors was not
needed and instead opted for more stable flight rather than additional thrust.

Taking a picture from a single SB101C camera module using MPlayer took
approximately 1.5 sec. For the Gumstix to take, save, and send three pictures it took 3-5 seconds.
The ground station saved and stitched the three images in less than a half a second. Sending each
image took less than a tenth of a second at ranges from 0 to 70 feet.

Saving the images to the Gumstix proved to be the bottleneck in the system. To mitigate
this, the team attempted to take multiple images with the Gumstix concurrently. The team
discovered that the Gumstix’s video drivers are not capable of doing this and will respond by
only capturing one image correctly and then sending the correct image and nothing for the other
two.

Since the image stitching was done with homographies, any camera movement during
operation would cause the stitched images to appear slightly off. This hurt the overall system
reusability. After a landing, the cameras would move and if the system was tested again, the
resulting images would appear offset. An example of this offset can be seen in figure 101.

Figure 96: Stitching offset caused by camera lens movement.

82

4. Conclusion and Recommendations
IPASS has established itself as a proof of concept as a surveillance system. The IPASS

never achieved a self-propelled flight high enough to provide useful image data. Chassis
imbalances prevented the IPASS from stable flight, though liftoff was achieved on multiple
occasions. IPASS control systems have been established but further research into lightweight
propulsion mechanisms and stability control is required for optimal performance.

Despite shortcomings in propulsion, the team has made significant strides towards a fully
integrated standalone visual sensor package. The electronics box is self-powered, can retrieve
and send visual data, and is modular featuring optional GPS and IMU integration. With
modifications to the power system and the embedded computing additional sensors may be
integrated for use in other applications.

IPASS consists of two primary components: the aerial chassis and the ground station. The
ground station laptop features an intuitive GUI capable of receiving, storing, and displaying data
received from the system. IPASS has integrated a propulsion system, electronics box, and ground
station providing a foundation for further advancement in man-portable aerial surveillance
systems.

4.1 Future Work
 A primary goal of future development should be focused on the propulsion system. The
current system was unable to reach the goal of 100ft due to imbalance issues and vulnerability to
wind. Future systems should improve stability to allow sustained flight and be robust enough to
maintain flight with gusts of wind.

 To improve IPASS stability, controlled fins on the IPASS could redirect thrust from the
propellers to stabilize and steer the system during operation. This could be implemented in
conjunction with an IMU so that the IPASS would be able to detect its pose in the air and then
autonomously actuate its fins to self-stabilize. In order to make the IPASS less vulnerable to
wind, the chassis could be made of a heavier but equally protective material. This would make
the IPASS physically more difficult to be blown around during operation. However, this may
also require stronger motors to provide adequate lift to the system.

 Future systems should improve frame rate of the system; the current system displays one
image every three to five seconds, far below the design goal of one fps. At the current frame rate,
motion of the device causes visual distortion in images that may cause confusion during
operation. Future work should remove the bottleneck of saving images to the Gumstix. The
suggested approach would be to use ANSI C to gather image data from the cameras directly.
Newer implementations should not save images locally to the Gumstix. The process could be
further improved by threading the image taking process and creating three child threads to take
pictures from each camera concurrently while the main process would be responsible for
maintaining communications.

 A faster vision system would allow for the IPASS to utilize co-rotating propellers without
affecting image quality. In a system where the IPASS rotated during flight, the slow process of
taking pictures causes the pictures to appear disjointed when stitched. Being able to take all three
pictures at once would allow for the system to move and rotate in the air without degrading
picture quality.

83

As discussed previously, changes could be made to the power system and the embedded
computing to allow for full integration for the GPS receiver and IMU in conjunction with the
three cameras and motor control. The integration of sensors, stable flight, and higher frame rate
will fulfill the initial design goals and bring completion to the project.

84

5. Project Expenses
For the design and realization of IPASS, the team was provided a proposed budget of

$8,000 by the AFRL through OAI. The team reserved $2,000 of this total budget for travel to
WSU to present the IPASS, allowing for $6,000 to be spent on development.

The team’s expenditures for each major subsystem are detailed in Table 9: Expenditure
by subsystem. See Appendix N: Full Expense Report for a full expense list and Appendix M:
IPASS Cost Breakdown for a detailed cost of the IPASS used in testing. Multiple parts were
purchased in the event of component failure.

Table 9: Expenditure by subsystem

System Cost
Propulsion System $751.39
Mechanical System $1,125.20
Embedded Computing $1,231.52
Sensing $707.66
Ground Station $1,878.00
Pelican Case $ 274.68
Total Spent $5,968.45
Total Remaining $2,031.55

Propulsion costs included motors, propellers, batteries, wires, and connectors for these
components. The mechanical costs included Delrin, Coroplast, acrylic, carbon fiber rods,
assembly materials, and 3D printing of the top cones and camera mounts. Embedded computing
costs covered the Raspberry Pi and its wireless adapter, Arduinos, Gumstix and its expansion
boards, and the SD cards. Sensor costs included cameras, IMUs, and the GPS receivers. The
ground station consisted of one Lenovo Thinkpad laptop. The project was under budget by
$306.23 after estimated travel costs.

85

6. Acknowledgements
The IPASS project team would like to give thanks to the following people and organizations.

We would like to thank Richard van Hook, AFRL, and OAI for providing us with the
opportunity to work on this project. We would like to thank Professor Padir and Professor Lai for
advising our project and for their endless support. Thanks to Professor Looft for granting us the
space to work in his lab and to RJ Linton and Velin Dimitrov for help with the cameras,
Gumstix, and everything else Linux. We would like to thank Ruixiang Du for his advice and his
Matlab expertise. We would also like to thank Tracey Coetzee for fielding our numerous part
orders and the WPI Robotics Department for preparing us to work on this project.

This material is based on research sponsored by Air Force Research Laboratory under
agreement FA8650-09-2-7929. The U.S. Government is authorized to reproduce and distribute
reprints for Governmental purposes not withstanding any copyright notation thereon. The views
and conclusions contained herein are those of the authors and should not be interpreted as
necessarily representing the official policies or endorsement, either expressed or implied, of Air
Force Research Laboratory, the U.S. Government, or OAI.

86

7. Authorship
1. Introduction: Written by Adam Blumenau, Alec Ishak, Brett Limone, Zachary Mintz,

Corey Russell, Adrian Sudol
2. System Development: Written by Adam Blumenau, Alec Ishak, Brett Limone, Zachary

Mintz, Corey Russell, Adrian Sudol
3. Project Expenses: Written by Adam Blumenau, Alec Ishak, Corey Russell
4. Results: Witten by Adam Blumenau, Alec Ishak, Corey Russel
5. Conclusions and Recommendations: Written by Alec Ishak, Corey Russel, and Adrian

Sudol

Appendix A: Written by Zachary Mintz
Appendix B: Written by Brett Limone, Corey Russell
Appendix C: Written by Alec Ishak, Zachary Mintz, Adrian Sudol
Appendix D: Written by Brett Limone, Zachary Mintz
Appendix E Written by Adam Blumenau, Alec Ishak
Appendix F: Written by Adam Blumenau, Alec Ishak
Appendix G: Written by Adam blumenau, Corey Russel, Adrian Sudol
Appendix H: Written by Brett Limone
Appendix I:Written by Alec Ishak, Corey Russell
Appendix J Written by Adam Blumenau, Alec Ishak
Appendix K: Written by Alec Ishak
Appendix L: Written by Adam Blumenau, Alec Ishak
Appendix M: Written by Alec Ishak
Appendix N Written by Adam Blumenau, Alec Ishak, Brett Limone, Zachary Mintz, Corey
Russell, Adrian Sudol
Appendix O: Written by Alec Ishak, Corey Russell

87

8. Bibliography

[1] J. G. Chizek, "Military transformation: Intelligence, surveillance and reconnaissance,"
Congressional Research Service, The Library of Congress, 2003.

[2] J. Pappalardo. “The future for UAVs in the U.S. air force,” Popular Mechanics. 2010.

[3] S. Tadokoro, “Rescue Robotics: DDT Project on Robots and Systems for Urban Search
and Rescue,” London: Springer-Verlag, 2009.

[4] D. Wyllie. “Police UAVs: Nearly limitless potential,” 2012

[5] “UAV platform categories,” UAV business review. 2012

[6] “MQ-9 reaper,” U.S. Air Force, 2012

[7] “$143M for global hawk cost overruns,” Defense Industry Daily, 2012

[8] “Analysis of the fiscal year 2012 Pentagon Spending Request,” Cost of War 2012

[9] “RQ-11 Raven Unmanned Aerial Vehicle, United States of America,” army-
technology.com 2012

[10] “Honeywell: T-hawk Micro Air Vehicle (MAV), United States of America,” army-
technology.com 2012

[11] R. Wheeler, J. Pate, M. Junkerman, C. Beyer, A. Smith, A. Szabo, V. Bhattacherjee and
B. Walker, "PALODE – PORTABLE AERIAL LAYERED-SENSING ORDINANCE Final
Project Report,"

[12] “Estes Model Rocket A8-5 Engine,” Hobbylinc 2013

[13] “The Best Brushless Motors,” Sky High Hobby 2013

[14] J. Dickey, “Static Thrust Calculation,” Quad Copter Project 2013

[15] E. Strickland, “How a Maple Seed Twirls and Whirls and Stays Aloft,” Discover 2013

[16] “Physical properties of Acrylite FF Acrylic Sheet,” AcryliteFFDataSheet.pdf., Cyro
Industries, 2012

[17] “Material Safety Data Shee,” Coroplast,
http://www.coroplast.com/technicalinfo/msds.htm. 2012

[18] “The Drag Coefficient,” National Aeronautics and Space Administration, 2013

88

[19] "Gumstix Alcatraz,"
https://www.gumstix.com/store/product_info.php?products_id=281, Gumstix, 2013

[20] "Gumstix Tobi," https://www.gumstix.com/store/product_info.php?products_id=230,
Gumstix, 2013

[21] “C329-SPI-board JPEG Compression VGA Camera Module (no lens),”
http://www.electronics123.com/s.nl/it.A/id.3011/.f, Electronics123.com Inc., 2013

[22] "Gumstix Caspa FS,"
https://www.gumstix.com/store/product_info.php?products_id=254, Gumstix, 2013

[23] “SB101C USB CMOS Board Camera Module,”
http://www.electronics123.com/s.nl/it.A/id.3263/.f, Electronics123.com Inc., 2013

[24] “Geometric image Transformations,” opencv v2.1 documentation, 2013

[25] “Camera calibration With OpenCV,” OpenCV 2.4.4.0 documentation 2013

[26] “Radial Distortion Correction,” http://www.uni-koeln.de/~al001/radcor_files/hs100.htm,
2013

[27] J. Meyers, “Japan’s Amazing Flying Sphere Can Be Used At Disaster Sites And In Anti-
Terrorism Operations”, Business Insider, 2011

[28] J. Mayness, “Voyeur: Challenging the Imagination”, Unmanned System, 2007

[29] R. Metx, “Bouncing Gets into Dangerous Places So People Don’t Have To”, MIT
Technology Review, 2012

[30] B. Coxworth, “senseFly set to release eBee industrial UAV”, Gizmag, 2013

[31] “AFRL Student Challenge”, http://www.afrlstudentchallenge.org/

[32] “Unmanned Aircraft Systems (UAS): Regulations & Policies”, Federal Aviation
Administration, 2012

[33] “UK deploys toy-sized spy drones in Afghanistan,” RT, 2013

[34] B. Coxworth, “Lockheed Martin’s Samurai monocopter – you won’t believe how this
thing flies,” Gizmag, 2011

[35] Luo Juan and Oubong Gwun. “SURF applied in panorama image stitching,” presented at
Image Processing Theory Tools and Applications (IPTA), 2010 2nd International Conference
2010

https://www.gumstix.com/store/product_info.php?products_id=281
https://www.gumstix.com/store/product_info.php?products_id=230
http://www.electronics123.com/s.nl/it.A/id.3011/.f
https://www.gumstix.com/store/product_info.php?products_id=254
http://www.electronics123.com/s.nl/it.A/id.3263/.f
http://www.uni-koeln.de/~al001/radcor_files/hs100.htm

89

[36] “Hugin - Panorama Photo Stitcher,” Sourceforge.net, 2013

[37] “Hugin Scripting Interface,” PanoTools: Next Generation 2012

[38] “JavaCV stitcher.stitch method throws assertion failure,” javacv java interface to
OpenCV and more 2013

[39] “Geometric Image Transformations,” opencv v2.1 documentation 2013

90

9. Appendix

Contents
Appendix A: Safety Manual of IPASS ... 91

Appendix B: Matlab Rocket Feasibility Script ... 93

Appendix C: Camera Resolution Test .. 94

Appendix D: IPASS Drop Tests ... 101

Appendix E: GPS Precision Test .. 104

Appendix F: Electronics Box test ... 107

Appendix G: Matlab Simulation of IPASS Launch .. 112

Appendix H: Message Protocol .. 120

Appendix I: Ad-hoc Network Test ... 122

Appendix J: IPASS Flight Tests ... 123

Appendix K: IPASS Survivability Test .. 128

Appendix L: Lenovo Thinkpad Specifications ... 131

Appendix M: IPASS Cost Breakdown ... 132

Appendix N: Full Expense Report .. 133

Appendix O: IPASS Instruction Manual .. 135

Appendix P: List of Acronyms ... 155

91

Appendix A: Safety Manual of IPASS
In the event of an Emergency call: 911

 This manual has been developed to ensure the safe testing and handling of team IPASS'
Unmanned Aerial Vehicle (UAV) system. UAVs are inherently dangerous and should be
handled with care. The UAV used by team IPASS is powered by electric motors that have
enough power to cause serious injuries to those who are not careful around the drone. However,
if the proper safety and handling of the UAV is partaken by the members of team IPASS and all
observing parties, safety can be maximized. The details for safe handling of the drone are
outlined in this document.

 Every member of team IPASS must read and understand the guidelines outlined in this
document before any tests or demos are performed with the drone.

UAV State definitions
These are the different states that the robot will go through during testing.

Name System State Personnel Allowed near
Drone

Notes

Cold None: Battery
Disconnected

Anyone Used for maintenance

Warm Battery Connected, Initial
system power up

Only members of team IPASS No signal to the motors
but still keep hands clear

Hot Fully powered system and
transmitter turned on

Only the flight Controller No hands or personnel
near the drone

Safety Procedures for drone testing
1. Before the test the flight controller, who is in charge for the duration of the test, needs to

go over all the details of the test will all participating parties, including observers, so that
everyone know what is to be tested and where they should be during the test.

2. After everyone has been briefed the drone should be assembled as needed and tethered, if
necessary, to prevent the drone from going too far out of control. During this setup the
drone is to remain in a COLD state because personal will be close to the drone.

3. Once the drone is fully constructed the flight controller should clear the area near the
drone of all unnecessary personnel. The persons that are not needed near the drone should
move to a safe distance away from the drone as to prevent injury.

4. Once the drone is clear of unnecessary personnel the battery should be connected
bringing the drone to a WARM state.

5. After the drone is in the WARM state no personnel should enter the immediate area
above or around the vicinity of the drone. At this point the flight controller should focus
only on the drone as to prevent any potential injures.

6. When the flight controller deems the area to be safe and clear he or she may then turn on
the drones RC transmitter and bring the drone to the HOT state.

7. With the drone in the HOT state the necessary tests that are needed to be done may be
performed by the flight controller. If at any time the flight controller feels that the drone

92

is not performing as expected or something fails he or she should cut the power to the
drone’s transmitter thereby cutting the control signal to the drone and disabling it.

8. After the tests are completed the flight controller should turn off the transmitter and bring
the drone back to the WARM state. Once the drone is fully in the WARM state the flight
controller should disconnect the battery bring the done down to the COLD state.

9. Once the flight controller has fully disabled the drone all personnel are allowed back near
the robot for clear up and data analysis.

93

Appendix B: Matlab Rocket Feasibility Script

%%inputs
mass=3;%in kg
avgthrust=34;%% avg thrust of motor in N, form datasheet
burntime=1.7;%% in s

yburn=.5*(avgthrust/mass)*(burntime)^2;
vburn=(avgthrust/mass)*burntime;

%output in meters
maxheight=-.5*9.8*(vburn/9.8)^2+vburn*(vburn/9.8)+yburn;

94

Appendix C: Camera Resolution Test

Objective
The purpose of this test was to determine at what distance a human can be identified

using different camera resolutions. IPASS requirements state that the system needs to be able to
send useful data to the user. It was determined that useful data would include being able to
identify a human at about 100 feet. The goal was to find the smallest resolution at which a
human could be identified at 100 feet.

Methods

To conduct this test, one team member stood 50 yards away while another team member
stood at various distances away. At each distance, a picture was taken at different resolutions. A
complete list tested resolutions can be found in

Table 10. The distances that were used are in Table 11.

Table 10: Tested resolutions

Resolution
640x480
800x480
1024x768
1600x960
1600x1200
2048x1536

Table 11: Tested distances

Distances
100 ft
150 ft
200 ft
300 ft

Once all the photographs were taken, they were sorted by distance. At each distance, it was
determined whether or not the human in each photograph could be identified.

Images Captured
 Only images of the subject at 100 and 150 ft. are reported. All other images were used as
reference images and did not aid in selecting a resolution. Images above a 1024x768 resolution
are not shown as they are too large to fit on the page and would need to be scaled down and
therefore would provide no new information.

95

Figure 97: Human pictured at100ft in a 640x480 pixel image

96

Figure 98: Human pictured at100ft in an 800x480 pixel image

97

Figure 99: Human pictured at100ft in a 1024x768 pixel image.

This image has been scaled down to fit on the page.

98

Figure 100: Human pictured at150ft in a 640x480 pixel image.

99

Figure 101: Human pictured at150ft in an 8000x480 pixel image.

100

Figure 102: Human pictured at150ft in a 1024x768 pixel image.

This image has been scaled down to fit on the page.

Results
 The team visually inspected each series of pictures taken at each distance. To keep the
total amount of data that would need to be handled by the IPASS low, the smallest resolution
where the human was visible would be acceptable for the IPASS. In the 640 by 480 pixel image,
the human in the picture was easily distinguishable at 100 ft. Therefore, cameras capable of
taking 640 by 480 resolution images would be used on the IPASS.

101

Appendix D: IPASS Drop Tests

Introduction
This test was performed to determine whether the material called Coroplast (corrugated

polyethylene) would be feasible for use in the construction of the chassis of the IPASS.

Figure 103: Chassis used in the drop test

Assumptions
For this test it is assumed the final IPASS would withstand multiple drops. One

requirement of the project is for the robot to survive a 30 ft. drop without having any of the
critical components damaged or broken. Most electronic components can easily withstand high
accelerations and, provided they do not impact the ground directly, should survive. Component
mass was simulated for this test.

Goals
 The level of damage sustained by chassis will determine the success of this test. If
damage comprises structural integrity, the material will not be used. If there are no breakages or
minimal damage then the result is a success.

Measurements
The team was measuring the condition of the materials before and after dropping. Any

cracks, breaks or deformations found after dropping would be noted.

1. Weight (quantitative)
a. System weight: 0.68lbs
b. Simulated component Weight: 1.05g

102

2. Height (quantitative)
a. Drop height: 30 feet

3. Damage (qualitative)
a. Visual inspection and interpretation of damage

Methods
1. Attach the frame to the end of a fishing pole for retrieval.
2. Put the desired weight onto the frame to simulate the weight of the entire system.
3. Drop the system off of the roof and record the drop via video camera.
4. Retrieve the system and record any damage
5. Repeat the wanted for the desired number of trails

Figure 104: Chassis dropping location

Results
1. The frame of the robot held together through all three drops of the robot.
2. During the first drop, the robot flipped in the air and landed upside-down. No damage was

sustained.
3. For the second drop, the frame flipped and landed upside-down. There was a crack on one of

the sides of the frame
4. On the third drop, the extra weight that was attached to the frame was moved to the bottom

of the electronics box. On this test the frame fell down without flipping. No noticeable
damage was taken from the fall.

103

Figure 105: Damage sustained from the drop test

This test provided excellent evidence that corrugated plastic was a proper choice of
material for IPASS’s frame. The damage to one of the wings was in a weak location due to a
series of holes designed to reduce weight. The weight reduced due to these holes is a minimal
amount and this part of the chassis can be easily strengthened.

104

Appendix E: GPS Precision Test
In order to evaluate the capabilities and accuracy of the GPS unit the team performed

three tests. Each test consisted of a team member moving in a zig-zag pattern across the WPI
football field with the GPS unit while it was recording data. This path was tracked three times
with the team member walking slowly in the first test, jogging in the second test, and sprinting in
the third test. Each unique latitude/longitude point recorded by the GPS was then plotted using
Google Maps to indicate the accuracy of the GPS.

Results
When the team member was walking slowly, the GPS had trouble tracking his

movements as seen in Figure 111: GPS tracking when walking slowly.

Figure 106: GPS tracking when walking slowly

While the team member was jogging and sprinting, the GPS was able to adequately track his
position as seen in Figure 112 and Figure 113.

105

Figure 107: GPS tracking when jogging

Figure 108: GPS tracking when sprinting

106

While the team member was sprinting, the GPS became less accurate but was still able to
adequately track his movements. These three tests adequately evaluated the accuracy of the GPS.
In its worst conditions (when the team member was walking) the GPS was off by a length of six
meters. At its best condition (when the team member was jogging) the GPS was off by a length
of one meter. While the height of the GPS did not vary wildly in this test, by tracking the
deviations in altitude compared to the actual height it was carried at it was determined the GPS
can track elevation to an accuracy of one half meters.

107

Appendix F: Electronics Box test
The camera setup in the electronics box was tested multiple times in a variety of

environmental conditions to evaluate its capabilities. To simulate altitude from flight, the
electronics box was pointed out the third and fourth story windows of buildings on WPI’s
campus. To simulate motion that would occur while airborne, the electronics box was also
carried by a team member and walked around campus. The electronics box was also pointed out
a window to capture image data at night to evaluate its capabilities with low or no light

Figure 109: Three unstitched images captured by each camera.

Figure 110: Resultant stitched image.

108

Figure 111: Stitched Image data captured from two stories (about 20 ft.) up.

Figure 112: Stitched image data captured from three stories (about 30 ft.) up.

109

Figure 113: Stitched image data captured from the same location at night.

 While the electronics box was in motion, it was common for there to be some amount of
redundancy and distortion in the images. Figure 119 shows a scenario where both the electronics
box and the subjects being photographed are moving independently of each other.

Figure 114: Stitched image data captured while the electronics box was in motion

 To simulate IPASS operation, the electronics box was attached to a fishing line and
lowered out of a fourth story window. One team member pulled the electronics box up allowing
for the ground station to receive image data while the electronics box was raised. One stitched

110

image from this simulation can be seen in

Figure 120.The repeated images seen on the left and middle images are resultant of electronics
box motion.

Figure 115: Stitched image from simulation of IPASS operation.
Notice that people are clearly visible in the image.

While image stitching functioned satisfactorily, two errors occurred in image capture
during testing. The first was that individual cameras would sometimes produce blue tinted
images as seen in Figure 121. This blue tint was attributed to the auto-gain of the camera model
that was exacerbated by uneven lightning conditions and thus was significantly reduced outside.
The second error was when no image data was received from a camera as seen in Figure 122.
This error was caused by loose connection in the camera’s board and was solved by bypassing
the pin connection and soldering wires directly to the camera.

111

Figure 116: Stitched image data in which two of the cameras produced blue tinted images.

Figure 117: Stitched image data in which the leftmost camera was disconnected.

112

Appendix G: Matlab Simulation of IPASS Launch
 To assist the team in diagnosing launch issues, a graduate student working on a similar
project developed a Matlab simulation of the IPASS that takes into account the forces applied by
the propellers and the mass of the system. The simulation developed proved that in an ideal
system where the center of mass is directly below and coaxial with the forces applied by the
thrust of the propellers, the chassis would launch vertically as shown below in Figure 123.

Figure 118: The IPASS launching in an ideal model

%------------------------- simulation control ---------------------------%
% Simulation for Ipass
% Ruixiang 01/27/2013
%--%

%clear
clear;
close all;
clc;

%Desired system state
height=50;
yaw=45/180*pi;

%Solve the ordinary differential equation for x
totalTime=500;
tspan=0:1:totalTime;
x0=zeros(4,1);
[t,x]=ode45(@(t,x) ipass(t,x,height,yaw),tspan,x0);
%[t,x]=ode113(@(t,x) quadrotor(t,x,flightMode,totalTime),tspan,x0);

%----------------------------- Animation --------------------------------%
% ATTENTION: If you don't have 3D Animation Toolbox installed in

113

% Matlab, you need to disable this part of code to run the simulation

%Rotation Matrix
% --phi----rotation angle about x axis
% --theta--rotation angle about y axis
% --psi----rotation angle about z axis
syms phi theta psi

Rxyz=[cos(psi)*cos(theta) -sin(psi)*cos(phi)+cos(psi)*sin(theta)*sin(phi)
sin(psi)*sin(phi)+cos(psi)*sin(theta)*cos(phi);
 sin(psi)*cos(theta) cos(psi)*cos(phi)+sin(psi)*sin(theta)*sin(phi) -
cos(psi)*sin(phi)+sin(psi)*sin(theta)*cos(phi);
 -sin(theta) cos(theta)*sin(phi) cos(theta)*cos(phi)];

world=vrworld('aircraft.wrl');
open(world);
fig=vrfigure(world);

xsize=size(x);
N=xsize(1);
set(world,'RecordMode','scheduled');
set(world,'RecordInterval',[1,N]);
set(fig,'Record2DFileName','ipass_ctrl.avi');
set(fig,'Record2D','on');
set(fig,'Record2DCompressQuality',100);
set(fig,'NavPanel','none');

for t=1:1:15
 world.aircraft.translation=[0 x(t,1) 0];
 %world.aircraft.rotation=[0 1 0 x(t,3)];
 world.aircraft.rotation=vrrotmat2vec(subs(Rxyz,[phi,theta,psi],[0-pi/2,-x(t,3),0]));
 set(world,'Time',t);
 vrdrawnow;
 pause(1);
end

close(world);

114

%---------------------------- Draw figure -------------------------------%
figure(1)
%plot(x(:,3));
plot(x(:,1),'r');
hold on
plot(x(:,3),'g');
hold off
legend('z','theta');

Figure 119: MATLAB simulation for IPASS flight in one dimension

 During launch, the team discovered that the behavior exhibited by the actual chassis was
dissimilar to the ideal simulation. The IPASS would launch vertically, tilt, and then crash. This
simulation helped determine that the likely cause of this occurrence was due to an imbalance
where the center of mass was not collinear with the force vector generated by the motors. This
was the cause of the tilt that made the system crash. This behavior was also simulated and can be
shown in Figure 125.

Figure 120: Model of the tiling behavior displayed by the IPASS

%------------------------- simulation control ---------------------------%
% Simulation for Ipass
% Ruixiang 01/27/2013
%--%

%clear
clear;
close all;
clc;

115

%Desired system state
height=50;
yaw=45/180*pi;

%Solve the ordinary differential equation for x
totalTime=10;
tspan=0:0.1:totalTime;
x0=zeros(6,1);
[t,x]=ode45(@(t,x) ipass(t,x,height,yaw),tspan,x0);
%[t,x]=ode113(@(t,x) quadrotor(t,x,flightMode,totalTime),tspan,x0);

%----------------------------- Animation --------------------------------%
% ATTENTION: If you don't have 3D Animation Toolbox installed in
% Matlab, you need to disable this part of code to run the simulation

%Rotation Matrix
% --phi----rotation angle about x axis
% --theta--rotation angle about y axis
% --psi----rotation angle about z axis
syms phi theta psi

Rxyz=[cos(psi)*cos(theta) -sin(psi)*cos(phi)+cos(psi)*sin(theta)*sin(phi)
sin(psi)*sin(phi)+cos(psi)*sin(theta)*cos(phi);
 sin(psi)*cos(theta) cos(psi)*cos(phi)+sin(psi)*sin(theta)*sin(phi) -
cos(psi)*sin(phi)+sin(psi)*sin(theta)*cos(phi);
 -sin(theta) cos(theta)*sin(phi) cos(theta)*cos(phi)];

world=vrworld('aircraft_2d.wrl');
open(world);
fig=vrfigure(world);

xsize=size(x);
N=xsize(1);
set(world,'RecordMode','scheduled');
set(world,'RecordInterval',[1,N]);
set(fig,'Record2DFileName','ipass_error.avi');
set(fig,'Record2D','on');
set(fig,'Record2DCompressQuality',100);
set(fig,'NavPanel','none');

T=600; %Generate T animation
if N/T<1
 step=1;
else
 step=N/T;
end

116

index=1;

for t=1:step:N
 world.aircraft.translation=[x(index,6) x(index,5) 0];
 %world.aircraft.rotation=[0 1 0 x(t,3)];
 %world.aircraft.rotation=vrrotmat2vec(subs(Rxyz,[phi,theta,psi],[0-pi/2,-x(t,3),0]));
 world.aircraft.rotation=vrrotmat2vec(subs(Rxyz,[phi,theta,psi],[0-pi/2,0,-x(index,1)]));
 index=round(index+step);
 if index>N
 index=N;
 end
 set(world,'Time',t);
 vrdrawnow;
 %pause(1);
 if x(index,5)<0
 break;
 end
end

%close(world);

%---------------------------- Draw figure -------------------------------%
figure(1)
%plot(x(:,3));
plot(x(:,1),'r');
hold on
plot(x(:,3),'y');
plot(x(:,4),'g');
plot(x(:,5),'c');
plot(x(:,6),'b');
hold off
legend('alpha','vz_robot','vx_robot','z_world','x_world');

Figure 121: MATLAB simulation for IPASS flight in two dimensions

 The simulation suggested that if the chassis applied a rotation to the system it would
increase stability. Angular momentum would counteract the tilt caused by the mass imbalance.
This works similar to the way a football travels when thrown in a spiral. When the rotation is
induced in the simulation, the trajectory that the IPASS follows is much closer to the desired
vertical translation as shown in Figure 127. This simulation provided the team with additional
insight into how to stabilize the launch of the system.

117

Figure 122: Model IPASS flight with rotations induced

%------------------------- simulation control ---------------------------%
% Simulation for Ipass
% Ruixiang 01/27/2013
%--%

%clear
clear;
close all;
clc;

%Desired system state
height=15;
yaw=45/180*pi;

%Solve the ordinary differential equation for x
totalTime=10;
tspan=0:1:totalTime;
x0=zeros(12,1);
[t,x]=ode45(@(t,x) ipass(t,x,height,yaw),tspan,x0);
%[t,x]=ode113(@(t,x) quadrotor(t,x,flightMode,totalTime),tspan,x0);

%----------------------------- Animation --------------------------------%
% ATTENTION: If you don't have 3D Animation Toolbox installed in
% Matlab, you need to disable this part of code to run the simulation

118

%Rotation Matrix
% --phi----rotation angle about x axis
% --theta--rotation angle about y axis
% --psi----rotation angle about z axis
syms phi theta psi

Rxyz=[cos(psi)*cos(theta)-sin(phi)*sin(psi)*sin(theta) -cos(phi)*sin(psi)
cos(psi)*sin(theta)+cos(theta)*sin(phi)*sin(psi);
 cos(theta)*sin(psi)+cos(psi)*sin(phi)*sin(theta) cos(phi)*cos(psi) sin(psi)*sin(theta)-
cos(psi)*cos(theta)*sin(phi);
 -cos(phi)*sin(theta) sin(phi) cos(phi)*cos(theta)];

Rx=[1 0 0; 0 cos(-pi/2) -sin(-pi/2);0 sin(-pi/2) cos(-pi/2)];

world=vrworld('aircraft_3d_far.wrl');
open(world);
fig=vrfigure(world);

xsize=size(x);
N=xsize(1);
set(world,'RecordMode','scheduled');
set(world,'RecordInterval',[1,N]);
set(fig,'Record2DFileName','ipass_3d2.avi');
set(fig,'Record2D','on');
set(fig,'Record2DCompressQuality',100);
set(fig,'NavPanel','none');

T=600; %Generate T animation
if N/T<1
 step=1;
else
 step=N/T;
end
index=1;

for t=1:step:N
 world.aircraft.translation=[x(index,1) x(index,3) x(index,2)];

world.aircraft.rotation=vrrotmat2vec(Rx*subs(Rxyz,[phi,theta,psi],[x(index,10),x(index,11),x(in
dex,12)]));
 index=round(index+step);
 if index>N
 index=N;
 end
 set(world,'Time',t);
 vrdrawnow;

119

 pause(0.5);
 if x(index,3)<0
 break;
 end
end

%close(world);

%---------------------------- Draw figure -------------------------------%
figure(1)
%plot(x(:,3));
plot(x(:,1),'r');
hold on
%plot(x(:,11),'y');
plot(x(:,2),'g');
plot(x(:,3),'c');
% plot(x(:,6),'b');
hold off
legend('x','y','z');

figure(2)
%plot(x(:,3));
plot(x(:,10),'r');
hold on
%plot(x(:,11),'y');
plot(x(:,11),'g');
plot(x(:,12),'c');
% plot(x(:,6),'b');
hold off
legend('Angle_x','Angle_y','Angle_z');

%Plot trajectory
figure(3)
plot3(x(:,1),x(:,2),x(:,3),'-b','LineWidth',2)
axis([-80 80 -80 80 0 100])

Figure 123: MATLAB simulation of IPASS flight in three dimensions

120

Appendix H: Message Protocol

Command Token Packet Type
0x00 Acknowledge
0x01 Pictures sent to Ground Station
0x11 IMU data sent to Ground Station
0x13 GPS data sent to Ground Station
0xE0 Launch sent to IPASS
0xF0 Land sent to IPASS
0xFF Abort sent to IPASS

Acknowledge

Value 0x00 ID Length Previous
CmdToken

Check
Sum

Size 1 byte 1 byte 2 bytes 1 byte 1 byte

Pictures Sent

Value 0x01 ID Length Number
Sent

Check
Sum

Size 1 byte 1 byte 2 bytes 1 byte 1 byte

IMU Data

Value 0x11 ID Length String of , separated
values

Check
Sum

Size 1 byte 1 byte 2 bytes N bytes 1 byte

GPS Data

Value 0x13 ID Length String of , separated
values

Check
Sum

Size 1 byte 1 byte 2 bytes N bytes 1 byte

Launch

Value 0x0E ID Check
Sum

Size 1 byte 1 byte 1 byte

121

Land

Value 0x0D ID Check
Sum

Size 1 byte 1 byte 1 byte

Abort

Value 0x0F ID Check
Sum

Size 1 byte 1 byte 1 byte

122

Appendix I: Ad-hoc Network Test
The strength of the ad-hoc network generated by the ground station was tested to

determine its range. For this test, the electronics box remained stationary while a team member
holding the ground station backed away. Images were received normally to a range of 75 ft.
Beyond 75ft, frame rate dropped to one image every 20-30 seconds (down from one image every
3-5 seconds). At a distance of 120ft, the connection became incapable of sending images, and no
more images were received by the ground station. This test showed that the ad-hoc wireless
solution was sufficient for the current system’s maximum height, but it did not meet the design
specifications.

123

Appendix J: IPASS Flight Tests

Thrust Tests
During development of the IPASS chassis, multiple thrust and flight tests were

conducted. While development was occurring on the first two chassis revisions, the thrust of the
motor-propeller pairs were evaluated. Figure 129: Thrust test setup demonstrates the testing
apparatus for early revisions of IPASS.

Figure 124: Thrust test setup

This thrust testing established that the original choice for motors were insufficient to
launch the IPASS, and influenced the selection for their replacements. Similar testing was
conducted with the newer, stronger motors and it was determined that sufficient thrust was
achieved.

Launch Tests
 Once the thrust of the IPASS propulsion system was determined sufficient for takeoff,
launch tests were conducted. Following the procedures outlined in Appendix A: Safety Manual
of IPASS, the team proceeded to attempt launch with multiple iterations of the chassis.
Inconclusive tests were not included in this appendix.

November 27, 2012
 This test was conducted underneath the Institute Park gazebo. This test featured the
chassis design shown in Figure 37: Carbon fiber springs added for shock absorption and a string
to measure height. The test demonstrated that the system was imbalanced, and simply tipped
over without leaving the ground. Figure 130: First launch test demonstrates the tipping motion
exhibited by this revision of the chassis.

124

Figure 125: First launch test

January 12, 2013
 This test was conducted under the Institute Park gazebo. The second flight test featured
the design of the chassis shown in Figure 37: Carbon fiber springs added for shock absorption,
and the team experimented with tethering the chassis until the motors reached maximum speed.
An old Desktop computer was used as an anchor, and a rope was threaded through a tab to create
the tether. As the motors reached maximum speed, the rope was released allowing the IPASS to
leave the ground. This test also tipped sideways, never leaving the ground. This tipping motion is
shown in Figure 131: Second launch test.

Figure 126: Second launch test

January 19, 2013
 This test was conducted underneath the Institute Park gazebo. This test featured the same
design described in the previous two tests and used a two-stage tether. This two-stage system
featured a latch mechanism and a tether to establish a maximum height. When this test was

125

conducted, the latch mechanism allowed the motors to reach maximum speed before takeoff.
When the latch was released, the IPASS immediately left the ground and reached the end of the
tether. Once the tether became taught, the system turned horizontally and crashed to the ground.
This motion is seen in Figure 132: Third launch test.

Figure 127: Third launch test

February 13, 2013
 This test was conducted in Institute Park. This test featured the final revision of the
chassis shown in Figure 16. For this test, the team chose not to use a tether, as the use of a tether
would invalidate the project’s success. This particular launch featured the same imbalance shown
in previous tests, and the IPASS quickly turned horizontally and crashed. This result is shown in
Figure 133: Fourth flight test.

Figure 128: Fourth flight test

 On this day, a second test was conducted as well. For this second test, the propellers were
switched to be co-rotating instead of contra-rotating. This was done to induce a rotation in the

126

IPASS while airborne, and increase stability. When the test was conducted, the system left the
ground and featured the most stable operation of any test previous. After a short time, the
rotation accelerated until stability was lost and the IPASS crashed. The system is shown during
this test in Figure 134: Fifth flight test.

Figure 129: Fifth flight test

February 28, 2013
 This test was conducted at night on the quad of WPI’s campus. During flight, the IPASS
launched about five feet into the air, hovered temporarily, and then crashed. One stitched image
was captured during this flight. The image is of the WPI Recreational Center and can be seen in
Figure 135.

Figure 130: Image of the WPI Recreational Center captured while airborne

127

March 1, 2013
 The final launch test was conducted on WPI’s football field. During the test, wind gusts
effectively prevented any launching of the IPASS. The team attempted to launch during periods
of time with little wind, but no launch was achieved. Strong winds caused the system to tip over
and never leave ground, as shown in Figure 136: Final flight test.

Figure 131: Final flight test

128

Appendix K: IPASS Survivability Test
The IPASS was dropped from a height of approximately 30 ft. in two consecutive

instances. In the first drop test the IPASS sustained minimal damage and its electronics remained
fully operational. Damage sustained from this drop test can be seen in Figure 137 and Figure
138.

Figure 132: Damage sustained between the motor mount and propeller protection ring

Figure 133: Damage to the propeller protection ring

The second drop test was conducted immediately following the first test. Minimal repairs
were made to the IPASS between tests involving resetting displaced Coroplast parts. No
adjustments were made to the electronics box. Connection to the IPASS was lost after the second
drop.

129

Figure 134: Landing site of the IPASS

Figure 135: Close up of where the Delrin tabs came disconnected

130

Figure 136: Broken battery mount inside the electronics box

 The IPASS was taken apart after recovery to diagnose the damage caused during the
tests. It was discovered that the Gumstix had become unseated from the Tobi board. Additionally
the antennae and the SD had become dislodged from their mounts on the Gumstix.

 As can be seen from these results, it has been shown that the IPASS can survive a 30 ft.
free fall with little to no damage to the key electronics components

131

Appendix L: Lenovo Thinkpad Specifications

Table 12: Lenovo Thinkpad W530 specifications

System Components
Intel Core i7-3630QM Processor (6M Cache, up to 3.40 GHz)
Windows 7 Professional (64 bit)
Windows 7 XP Mode - English
15.6" HD+ (1600 x 900) LED Backlit AntiGlare Display, Mobile Broadband Ready
NVIDIA Quadro K1000M Graphics with 2GB DDR3 Memory
8 GB DDR3 - 1600MHz (2 DIMM)
Keyboard Backlit - US English
UltraNav with Fingerprint Reader
720p HD Camera with Microphone
128GB Solid State Drive, SATA3
DVD Recordable
Express Card Slot & 4-in-1 Card Reader
9 Cell Li-Ion TWL 70++
170W Slim AC Adapter - US (2pin)
Bluetooth 4.0 with Antenna
Intel Centrino Advanced-N 6205 AGN
Mobile Broadband upgradable

132

Appendix M: IPASS Cost Breakdown

Table 13: Cost of each component to construct an IPASS

Component Quantity Unit Cost Total Cost
18" x 24" Coroplast Sheet 3 $ 25.92 $ 77.76
18" x 24" Delrin Sheet 1 $ 39.87 $ 39.87
Gumstix Overo FE COM 1 $ 229.00 $ 229.00
Tobi Expansion Board 1 $ 69.00 $ 69.00
Arduino Pro Micro 1 $ 19.95 $ 19.95
Jameco Prototyping Board 1 $ 6.00 $ 6.00
Eflite Power 25 Motor 2 $ 69.95 $ 139.90
SB101C USB CMOS Modules 3 $ 31.49 $ 94.47
Zippy Flightmax LifePo4 Battery 1 $ 43.21 $ 43.21
APC 10" x 4.7" Propeller Pair 1 $ 9.59 $ 9.59
Clevis Pins 4 $ 1.41 $ 5.64
Zip Ties 18 $ 0.01 $ 0.18
4-40 x 5 Screws 8 $ 0.65 $ 5.20
4/40 Nuts 8 $ 0.74 $ 5.92
Camera Mounting Screw 12 $ 0.42 $ 5.04
Nose Cone 1 $ 38.46 $ 38.46
Camera Mount 1 $ 81.92 $ 81.92
Total $ 871.11

133

Appendix N: Full Expense Report

Table 14: Total Expenses for thes IPASS Project

Date Company Price Balance
8/18/2012 Sparkfun - Arduino $ 23.54 $ 7,976.46
 Mouser - electronics $ 15.73 $ 7,960.73
 Adafruit - Raspberry pi

accessories
 $ 15.55 $ 7,945.18

 Newegg - electronics $ 16.48 $ 7,928.70
9/21/2012 Pack n Seal - Coroplast $ 25.92 $ 7,902.78
9/26/2012 HobbyKing - motors $ 87.16 $ 7,815.62
 Amazon - electronics $ 19.18 $ 7,796.44
 Robotshop - IMU $ 91.27 $ 7,705.17
9/28/2012 Pack n Seal - Coroplast $ 46.56 $ 7,658.61
10/2/2012 Digi - Xbee wifi $ 42.89 $ 7,615.72
 Electronics 123 - SPI cameras $180.43 $ 7,435.29
 Amazon - GPS $ 32.17 $ 7,403.12
10/5/2012 Sparkfun - Arduino $ 28.59 $ 7,374.53
10/30/2012 McMaster - mechanical parts $ 27.21 $ 7,347.32
 Adafruit - Raspberry pi

accessories
 $ 34.63 $ 7,312.69

 Newegg - electronics $ 9.99 $ 7,302.70
10/31/2012 McMaster - mechanical parts $ 18.81 $ 7,283.89
11/1/2012 Amazon - electronics $ 16.28 $ 7,267.61
11/2/2012 Rapid Prototype - nose cone $ 41.68 $ 7,225.93
11/2/2012 McMaster - mechanical parts $ 85.66 $ 7,140.27
11/5/2012 HobbyKing - motors $ 84.70 $ 7,055.57
11/14/2012 McMaster - mechanical parts $ 55.00 $ 7,000.57
11/19/2012 New Egg - electronics $ 17.98 $ 6,982.59
 Amazon - electronics $ 26.64 $ 6,955.95
11/27/2012 Pack and Seal - Coroplast $ 87.59 $ 6,868.36
11/28/2012 Zachary Mintz - motors & esc $ 91.84 $ 6,776.52
 Adam Blumenau - motors $ 74.36 $ 6,702.16
 Adam Blumenau - propellers $ 12.89 $ 6,689.27
 Alec Ishak - propellers $ 51.60 $ 6,637.67
11/30/2012 McMaster - mechanical parts $ 13.07 $ 6,624.60
12/3/2012 McMaster - mechanical parts $153.17 $ 6,471.43
 Rapid Prototye - camera mount $ 81.92 $ 6,389.51
12/4/2012 Amazon - anemometer $ 38.98 $ 6,350.53
 Returned - anemometer $(38.98) $ 6,389.51

134

12/4/2012 Hobbyking - battery $ 43.15 $ 6,346.36
12/13/2012 Gumstix $ 369.98 $ 5,976.38
1/8/2013 Gumstix $ 84.95 $ 5,891.43
1/14/2013 Amazon - mechanical parts $106.31 $ 5,785.12
1/16/2013 New Egg - electronics $ 13.99 $ 5,771.13
1/22/2013 Numato - level shifters $ 34.49 $ 5,736.64
 Mouser - level shifters $ 20.39 $ 5,716.25
 Gumstix $ 28.24 $ 5,688.01
 Rapid Prototype - WSU part $ 2.36 $ 5,685.65
1/23/2013 Alec Ishak - SD card $ 19.11 $ 5,666.54
1/30/2013 Electronics123 - USB cameras $112.85 $ 5,553.69
2/4/2013 Laptop

$1,878.00
 $ 3,675.69

2/4/2013 Gumstix $ 305.46 $ 3,370.23
 Sparkfun - $ 68.64 $ 3,301.59
 New Egg - misc electronics $ 18.79 $ 3,282.80
 Electronics123 - USB cameras $112.85 $ 3,169.95
 Robotshop.com - IMU $ 96.17 $ 3,073.78
 Amazon - mehcanical parts &

GPS
 $ 61.33 $ 3,012.45

 Amazon - mechanical parts $ 234.96 $ 2,777.49
 Hobbyking (hextronix) -

brushless motors
 $ 96.29 $ 2,681.20

 Hobbyking - battery and ESC $ 73.04 $ 2,608.16
 McMaster - mechanical parts $ 82.97 $ 2,525.19
 Amazon - mechanical parts $ 21.80 $ 2,503.39
 Dragonfly - propellers $ 62.00 $ 2,441.39
 Pack and Seal - Coroplast $ 22.24 $ 2,419.15
2/12/2013 Corey Russell - motor $ 74.36 $ 2,344.79
2/13/2013 Rapid Prototype - nose cone $ 38.56 $ 2,306.23
2/21/2013 Pelican Case $274.68 $ 2031.55

135

Appendix O: IPASS Instruction Manual

Intelligent Portable Aerial Surveillance System (IPASS) Assembly Instructions

IPASS Inventory
I. Electronics Box

a. 4x Delrin box walls
b. 8x Delrin electronics box mounts
c. 1x Nose cone
d. 1x Camera mount
e. 1x Gumstix Overo FECOM
f. 1x TOBI board
g. 1x Arduino Pro Micro
h. 1x RC receiver
i. 1x Globalsat ND100s USB GPS receiver
j. 2x Turnigy Trust 55A SBESC
k. 1x battery Y connector
l. 1x 5500 mAhr LiFePo battery
m. 3x SP101c USB cameras
n. 8x 4-40x5/8 screws
o. 8x 4/40 nuts
p. 8x camera screws

II. Chassis
a. 2x E-flite brushless Outrunner Motor 1250 Kv
b. 2x Propeller mounts
c. 2x 10x4.7 Slo-Flyer composite propellors
d. 4x 4/40 1” screws
e. 4x 4/40 nuts
f. 6x Motor lead extensions
g. 2x Delrin motor mounts
h. 4x Carbon fiber tubes
i. 2x Coroplast rings
j. 4x Coroplast supports
k. 4x Clevis pins
l. 24. Zip ties

III. Groundstation
a. 1x Lenovo Thinkpad W530 laptop
b. 1x Lenovo Thinkpad charger

136

Setup

Gumstix
There are four parts to the Gumstix system. The Overo FE COM, henceforth referred to

as the Gumstix, the Tobi expansion board, the SD card, and the antennas. Only one of the two
antennae is needed. Plug the antenna into the top antenna port when the Gumstix is held so that
the text on the Gumstix is upright. The Gumstix can then be attached to the Tobi board.

To load the Gumstix Overo image you will need a microSD card with storage greater
than 2 GB, a method of connecting the microSD card to your computer, and a Linux
environment with administrative access.

1) Select the latest stable image from the Gumstix repository:
http://cumulus.gumstix.org/images/angstrom/factory/

2) Download the omap3-desktop-image, u-boot.bin, MLO and uImage files.
3) Connect the microSD card to the computer
4) If your Linux environment automatically mounts the microSD card you will need to unmount

it. Typically the microSD card appears under /dev/mmcblk0 or /dev/sdc. The command to
unmount the microSD card is:
sudo umount –l /dev/mmcblk0

5) Now you will need to record the exact size of the microSD card in bytes. The size of the
microSD card will be displayed in the first line of results of the following command:
sudo fdisk –l /dev/mmcblk0
Disk /dev/mmcblk0: 2016 MB, 2016411648 bytes

6) Now you will need to erase the boot partition of the microSD card, this will allow you to
make a bootable microSD card so that the environment can be loaded on to the Gumstix. To
erase the partition table run the following command:
sudo dd if=/dev/zero of=/dev/mmcblk0 bs=1024 count=1024

7) Now you will need to calculate the cylinder count of your microSD card. This value is only
an approximation and is only used because the software required to create the partition table
has been adapted from standard hard drives. To find the cylinder count you will need to
divide the size of the microSD card (in bytes) by 255 heads, 63 sectors per head, and finally
512 bytes per sector. For example: this value will be 245.15, which when rounded down is
245 cylinders.

8) Take the value you calculated in step 7 and insert it into the highlighted section in the
command below:
sudo sfdisk –force –D –uS –H 255 –S 63 –C 245 /dev/mmcblk0

9) The sfdisk command will ask you for some additional information. Please enter the
highlighted information when prompted:
Checking that no-one is using this disk right now ...
OK
[snip]
Input in the following format; absent fields get a default value.

Usually you only need to specify and (and perhaps).
/dev/mmcblk0p1 :128,130944,0x0C,*
/dev/mmcblk0p1 * 128 131071 130944 c W95 FAT32 (LBA)
/dev/mmcblk0p2 :131072,,,-
/dev/mmcblk0p2 131072 3938303 3807232 83 Linux
/dev/mmcblk0p3 :
/dev/mmcblk0p3 0 - 0 0 Empty

http://cumulus.gumstix.org/images/angstrom/factory/

137

/dev/mmcblk0p4 :
/dev/mmcblk0p4 0 - 0 0 Empty
New situation:
Units = sectors of 512 bytes, counting from 0
 Device Boot Start End #sectors Id System
/dev/mmcblk0p1 * 128 131071 130944 c W95 FAT32 (LBA)
/dev/mmcblk0p2 131072 3938303 3807232 83 Linux
/dev/mmcblk0p3 0 - 0 0 Empty
/dev/mmcblk0p4 0 - 0 0 Empty
Warning: partition 1 does not end at a cylinder boundary
Do you want to write this to disk? [ynq] y
Successfully wrote the new partition table
[snip]

10) Now that the microSD card has been partitioned you will need to write valid file systems to

the two partitions.
11) To format the boot partition please enter the following command, please note the p1 at the

end of the device as this signifies the first partition:
sudo mkfs.vfat –F 32 /dev/mmcblk0p1 –n boot

12) If the following commands fails and you are presented with an error message stating that
your computer is missing “mkfs.vfat” you will need to install the “dosfsutils” package and
try again.

13) Now you will need to format the storage partition. To do so please enter the following
command, please note the p2 at the end of the device as this signifies the second partition:
sudo mke2fs –j –L rootfs /dev/mmcblk0p2

14) Now you will need to mount the partitions so that you can copy files. To do so enter the
following commands:
sudo mkdir /media/{boot,rootfs}
sudo mount –t vfat /dev/mmcblk0p1 /media/boot
sudo mount –t ext3 /dev/mmcblk0p2 /media/rootfs

15) Now you will need to copy the downloaded data over to the microSD card. This can be
accomplished with the following commands:
sudo cp MLO /media/boot/MLO
sudo cp u-boot.bin /media/boot/u-boot.bin
sudo cp uImage /media/boot/uImage

16) Finally you will need to unarchive the omap3-desktop-image folder onto the microSD card.
This can be accomplished with the following two commands:
sudo tar xaf rootfs.tar.bz2 –C /media/rootfs
sync

17) The microSD card is now ready to be inserted into the Gumstix for the first time boot
procedure.

 Once the Linux image is loaded onto the SD card, insert the SD card into the Gumstix.
Attach the Gumstix to the Tobi board and plug in the Tobi’s power cable. Make sure that there is
a monitor, keyboard, and mouse attached to the Gumstix, a USB hub may be needed. After the
Gumstix is done booting a few updates will need to be installed to get the Gumstix working with
the IPASS. Make sure the Gumstix has access to the internet. In the terminal, type:

opkg update
opkg install task-native-sdk

138

This will update the Gumstix repositories and download the necessary packages needed to run
IPASS software.

 Copy the given IPASS file system into the root directory. This contains the scripts needed
to run the cameras, GPS and C code needed for wireless communication.

 Disconnect the Gumstix from the internet. While the ad-hoc network is being hosted on
the ground station, click on the network icon on the Gumstix and then click on “Connect to
Hidden Network.” For complete instructions on how to set up the ad-hoc network on the ground
station, please see the ground station setup section below. If a network was created, select the
network in the Ad-Hoc Network section and enter the password. Similar to the ground station, go
into the edit wireless network tool and change the Netmask and Gateway to the same values used
in the ground station. Change the IP address to be 10.42.43.2. As long as the Gumstix is not
connected to a wired network and has no other wireless networks remembered it will connect to
the ad-hoc network as long as it is being hosted by the ground station.

 To set up the image transfer capabilities the Gumstix needs to be able to access the
ground station without entering a password. First, ssh from the Gumstix to the ground station
laptop and ssh into the ground station laptop from the Gumstix. This will create the ssh folder in
the root directory of both systems. Then enter the commands below in the terminal of the
Gumstix. You will need to replace all instances of groundstation with the ground station user
name and groundstationIP with the IP address of the ground station on the ad-hoc network.

ssh-keygen –t dsa
scp ~/.ssh/id_dsa.pub groundstation@grundstationIP:.ssh/authorized_keys2
ssh-agent sh –c ‘ssh-add < /dev/null && bash’

Entering ssh groundstation@groundstationIP from the Gumstix will give access to the terminal
on the ground station with no password prompt.

Arduino
As the Arduino Pro Micro is not directly manufactured by Arduino, the setup is different

than described on the Arduino web page. To begin the process, the Arduino programming
environment should be installed. This software can be easily downloaded at
http://arduino.cc/en/main/software. The arduino environment is easy to use and install in
windows, though required libraries are severely outdated for Mac OSX and Linux. Because of
this, it is strongly suggested that the Arduino software be used only in Windows. The rest of this
section will assume a Windows 7 environment.

Once the Arduino environment has been installed, the Arduino Pro Micro drivers must be
downloaded from the Sparkfun website. These drivers can be found on the product
page(https://www.sparkfun.com/products/11098?) , or directly at
http://dlnmh9ip6v2uc.cloudfront.net/datasheets/Dev/Arduino/Boards/SF32u4_boards.zip. The
files contained within the .zip folder are to be placed in the Arduino folder on the hard drive.
Once the files are merged, connect the device to your computer using the USB connection. As
the connection is made, the device must be manually directed to use the Arduino drivers. More
detailed instructions on this process can be found at http://www.sparkfun.com/tutorials/338.

mailto:groundstation@grundstationIP:.ssh/authorized_keys2
http://arduino.cc/en/main/software
https://www.sparkfun.com/products/11098
http://dlnmh9ip6v2uc.cloudfront.net/datasheets/Dev/Arduino/Boards/SF32u4_boards.zip
http://www.sparkfun.com/tutorials/338

139

After the arduino is properly recognized by the computer, the COM port used by the
arduino must be discovered. This can be accomplished by opening “Devices and Printers” in the
start menu and looking at the entry “Arduino Pro Micro”. After the COM port is established, the
.ino file included with the IPASS can be opened in the Arduino programming environment. In
the Arduino environment, select “tools” and “board”. Within this drop-down menu select the
“Sparkfun Pro Micro 5v/16MHz”. After the board is selected, enter “tools” and “Serial Port”,
selecting the COM port associated with the Arduino.

With the Arduino environment properly setup, the only remaining step is to click the
“upload” button represented by a horizontal arrow on the top of the Arduino environment. Once
this process is complete, the arduino is ready to be integrated into the system. `

Cameras
The three SB101C camera modules come with a connector with a USB B output. To

connect to the Gumstix, cut the given USB B connection off of the cable. The individual wires
can be soldered directly to a USB hub for easy attachment/detachment from the Gumstix.
Alternatively, USB A connections can be soldered on so that each camera may be removed from
the USB hub individually. However, this is not recommended because typical USB connections
are meant to be removed and could come loose during operation. For best connectivity, solder
the connection wires directly to both the cameras and the USB hub.

 To ensure operation of the cameras, plug them into the Gumstix then, in the terminal,
navigate to the /dev folder. If properly connected, the three cameras will appear in this folder as
video0, video1, and video2.

Motors
Connect the ESCs to the Arduino Pro Micro. Power the Arduino and turn on the RC

controller. The motors should play a short song to indicate that they are receiving power. Test the
motor direction by pushing on the throttle of the RC motor slightly. If one or more motors are
running in the incorrect direction, switch two motor signal cables to the ESCs to reverse the
direction of the motor spin. If the motors are running in the correct direction, mark the signal
cables and their corresponding plug for quicker setup in the future.

Ground Station
You will need to install Open SSH on the ground station to use the IPASS. In the

terminal of the ground station, type:

sudo apt-get install OpenSSH

The Ad-hoc network is hosted from the ground station. To create this network, select the
network options and click on connect to a new wireless network button. Enter the connection
name and the SSID. It is easiest if these two fields are given the same name. Select the mode to
be Ad-hoc. Under the wireless security tab, you may set a password if desired. Under the IPv4
Settings, select manual input. Add 10.42.43.1 as the address 255.255.255.0 as the Netmask, and
0.0.0.0 as the Gateway. Save these changes.

 Open the network manager and select connect to a hidden wireless network. Select the
name of the network created and select connect. The ground station will then start hosting the ad-
hoc network.

140

 In order to stitch the images coming from the IPASS the ground station will need to have
OpenCV installed. To install OpenCV onto the ground station please follow these instructions:

1) Download the latest version of OpenCV for Linux from here:
http://opencv.org/downloads.html
The download can take several minutes as it is a large file.

2) Unarchive the OpenCV files. This process can take some time as OpenCV has a large
unarchived size.

3) You will now need to install the “cmake” and “cmake-gui” packages on the ground
station.

4) Create a new folder to store the compiled OpenCV binaries.
5) Open a new terminal window and navigate into the OpenCV source folder.
6) Open the cmake gui by running the following command:

sudo cmake-gui

7) In the cmake gui you will need to specify the source code folder and the built binaries
folder. To specify the source code folder and click on the “Browse Source…” button and
in the new window click on the “Open” button. To specify the built binaries folder click
on the “Browse Build…” button and in the new windows navigate into the folder you
created and then click on the “Open” button.

8) Now you will need to click the “Configure” button, in the next window make sure that
“Unix Makefiles” and “Use default native compilers” are selected and then click the
“Finish” buttton. This will generate the cmake script to build the OpenCV files for the
ground station.

Figure 137: The cmake GUI build options

http://opencv.org/downloads.html

141

9) Once the configuration has finished the center area of the cmake gui will now display the
possible build options for OpenCV, this will have a red background to signify that you
have not selected any additional options. In order to properly operate the ground station
you will need to select the following additional options:
BUILD_JPEG
BUILD_PNG
BUILD_TIFF
BUILD_ZLIB

142

Figure 138: The cmake GUI before adding additional build options

143

10) Now you will need to click the “Configure” button again to add these additional build
options to the build script.

11) Once the configuration has finished the background will return to white and you will
need to click the “Generate” button to create the build script.

144

Figure 139: The cmake GUI after adding additional build options

145

12) Once the script has been generated you will need to close the cmake gui and return to the
terminal window. Now you will need to navigate into the OpenCV binaries folder you
created and run the “make” command. This run the script you generated in step 11 and
then build OpenCV for the ground station. This process can take upwards of 1 hour to
complete.

13) Once OpenCV has been built you will need to run the following command to install
OpenCV onto the ground station.
sudo make install

14) Once this command finishes OpenCV will be fully installed and you will be able to run
the IPASS GUI and stitch images properly.

Assembly

Motors
 Mount both motors onto the two Delrin motor mounting plates. Mount propellers on each
motor, making sure the text on both propellers is face up. To run contra rotating thrust
generation, secure both propellers from the same pair onto the motor mounts with an acrylic
spacer on each mount and connect the three motor signal cables to their corresponding ESC. To
run co-rotating thrust generation, secure identical propellers onto the motor mounts with an
acrylic spacer on each mount and connect the three motor signal cables to a corresponding ESC
with two of the signal cables switched.

Landing Gear
 The four carbon fiber tubes provided correspond to the four indents located on the bottom
of the quarter panels. Secure a carbon fiber rod to a quarter panel as shown below.

Figure 140: Attaching a carbon fiber tube to a quarter panel

Electronics Box
To assemble the IPASS, as many connections as possible should be permanent. This can

be achieved either through solder or hot glue. Use caution with working with both of these as any
erroneous connections made during assembly can cause permanent damage.

Both the Arduino and Gumstix are powered from the 5V rails on the two ESCs. On the
Gumstix, attach a wire from power to one of the ESC’s red wires and attach the ground from the
Gumstix to the brown wire. On the Arduino, attach the other ESC’s red and brown wire to Vcc
and one of the grounds respectively.

 The wireless transmitter connects to the Arduino Pro Micro. Plug the included 3 wire
connector into the transmitter so that the ground wire is closest to the outside of the transmitter.
Connect the power, signal, and ground wires to Vcc, pin 3, and ground. The signal wires from
the two ESCs are both connected to pin 9 on the Arduino.

 Each ESC is given power by the 12V battery. The Y connector is affixed to the battery
and then each ESC is connected to the Y connector. The ESC connects to the motor through the
3-phase power connections. Each ESC connects to only one motor. Leave the battery unplugged
until you are ready to start up the IPASS.

146

 The three cameras are all connected to the USB hub. The hub is then plugged into the
Gumstix’s USB port. Pins 27 and 29 from the Gumstix need to be connected to A0 and A1 on
the Arduino micro respectively.

Table 15: Connections in the IPASS electronics box

Connection 1 Type Connection 2
Tobi Pin 27 Signal Arduino A0
Tobi Pin 29 Signal Arduino A1
ESC 1 Power Power Tobi Power
ESC 1 Signal Signal Arduino 9
ESC 1 Ground Ground Tobi Ground
ESC 2 Power Power Arduino Vcc
ESC 2 Signal Signal Arduino 9
ESC 2 Ground Ground Arduino Ground
Camera 1 Data USB hub
Camera 2 Data USB hub
Camera 3 Data USB hub
USB hub Data Gumstix USB
Battery Power Y Connector
Y Connector 1 Power ESC 1
Y Connector 2 Power ESC 2
ESC 1 3-phase Power/Signal Motor 1
ESC 2 3-phase Power/Signal Motor 2

 With all electronic connections established, each component can be attached to an
internal wall of the Delrin electronics box. The Gumstix and the Arduino are mounted on
opposite sides while the two ESCs are mounted on the remaining two opposite inner walls. Once
two walls are placed, the internal Coroplast supports can be integrated into the box. Ensure that
the Gumstix’s antenna is mounted through the Coroplast supports’ holes. The cameras are
screwed into the camera mount which is then attached to the bottom of the walls. Insert the
battery into the center of the support and leave power cables to the battery and Y-connector
accessible. Place the nose cone on top of the electronics box and screw it into place.

147

Figure 141: Exploded view of the electronics box. Electrical components have been hidden

148

Figure 142: Inner view of the camera mount.

Figure 143: Reference view for camera placement and orientation.

149

Full Chassis
 The IPASS is stored in separate parts within its Pelican case. These parts are as follows: 1
electronics box, 1 dual motor assembly with propellers, 4 carbon fiber rods, 4 quarter panels, and
2 support rings.

1. Insert the four quarter panels into their corresponding Delrin mounts and secure them
with a clevis pins one at a time.

Figure 144: Affixing the panels to the electronic box with clevis pins

2. Insert the motor assembly, taking care to ensure that the propellers are oriented correctly
(the text should be facing up).

3. Secure the motor mount with four zip ties around each of the connecting quarter panels.
4. Place both rings around the quarter panels to secure them in place.

Figure 145: Affixing the motor mounting in place

150

Figure 146: Detailed view of the motor mount

5. Attach the four carbon fiber rods the bottom ends of the quarter panels using two zip ties
each.

Figure 147: Affixing the zip ties to the chassis for the carbon fiber rods

151

Figure 148: Exploded side view of the chassis

Figure 149: Exploded top view of the chassis

152

Figure 150: Completed chassis

153

Operation

Launch Procedure
1. Assemble the IPASS and stand it in a flat area
2. Remove the lens caps from the cameras
3. Connect the battery to turn on the IPASS. A red indicator light from the Arduino, blue

and green lights from the Gumstix, and a short series of beeps from the motors indicates
everything is booting up normally

4. Startup the IPASS GUI on the ground station a safe distance from the IPASS
5. Once the ground station has established connection with the IPASS, press the launch

button to begin flight
6. Use the RC controller to control the flight of the IPASS while it captures image data
7. While the IPASS is in flight the land button can be pressed to immediately begin landing
8. While the IPASS is in flight the abort button can be pressed immediately shut down all

systems in the IPASS
9. When a flight is complete, if the IPASS has been recovered disassemble it and replace its

parts into the carrying case

GUI

GUI Diagram

A. GPS Data: From left to right: latitude, longitude, and altitude. Latitude and longitude
values are in NMEA format. Altitude is in meters

B. Connection Indicator: Indicator is red when disconnected from IPASS. Indicator turns
green when a connection is established

154

C. Image Data: displays stitched image data. Updates whenever a new set of images is
received and stitched

D. Launch Button: Activates the IPASS allowing RC control.
E. Land Button: Causes the IPASS to land by reducing RC throttle
F. Abort Button: shuts down all systems
G. Image History Buttons: Allows scrolling through image data.

155

Appendix P: List of Acronyms

Acronym Meaning
ABS Acrylonitrile Butadiene Styrene
AFRL Air Force Research Laboratories
ARM Advanced RISC Machines
DoD Department of Defense
DOF Degrees of Freedom
ESC Electronic Speed Controller
FAA Federal Aviation Administration
GPS Global Positioning System
GSD Ground Sampling Distance
GUI Graphical User Interface
IMU Inertial Measurement Unit
IPASS Intelligent Portable Aerial Surveillance System
ISR Intelligence, Surveillance, and Reconnaissance
LiFePo Lithium Iron Phosphate (battery)
Li-Po Lithium Polymer (battery)
MAV Micro Air Vehicles
NMEA National Marine Electronics Association
OAI Ohio Aerospace Institute
PPM Pulse Period Modulation
RC Remote Control
RANSAC Random Sample Consensus
SIFT Scale Invariant Feature Transform
SPI Serial Peripheral Interface
SURF Speeded-Up Robust Features
TCP Transmission Control Protocol
UAV Unmanned Aerial Vehicle
VTOL Vertical Take-Off and Landing
WPI Worcester Polytechnic Institute
WSU Wright State University

	Abstract
	Table of Figures
	Table of Tables
	1. Introduction
	1.1 Background
	1.1.1 UAV History
	1.1.2 Limitations of Current UAVs
	1.1.3 Current Solutions

	1.2 Societal Impact
	1.3 Project Description
	1.4 Design Specifications
	1.5 Team Organization
	Weeks 1-5
	Week 6
	Week 7
	Week 8
	Week 9
	Week 10
	Week 11
	Week 12
	Weeks 13 & 14
	Week 15
	Week 16
	Week 17
	Week 18
	Week 19
	Week 20
	Week 21

	2. System Design and Development
	2.1 Proposed Solution
	2.2 Propulsion Considerations
	2.2.1 WSU Considerations
	2.2.2 Propulsion Design Considerations
	Consideration: Rockets
	Consideration: Electric Motors

	2.2.3 Descent Considerations
	Consideration: Parachute
	Consideration: Rotary Wing
	Consideration: Propellers

	2.2.4 Implementation: Propulsion
	Motors
	Electronic Speed Controllers
	Propellers
	Radio Control

	2.3 Chassis
	2.3.1 Chassis Design
	Motor Mounting
	Frame Material Choice
	Outer Frame Design
	Iteration One
	Iteration Two

	After conducting launch tests with this prototype it was determined that the IPASS was too heavy to lift off using the brushless motors that were being tested. This chassis prototype weighed a little over 2.4 Kg, and the thrust generated by the Turnig...
	𝑰= ,𝒊=𝟏-𝑵-,𝒎-𝒊.,𝒓-𝒊-𝟐. .
	Iteration Three
	Iteration Four

	2.3.2 Electronics Box
	Electronics Box Material
	Top Cone
	Camera Mount

	2.4 Power System
	2.5 Embedded Computing
	2.5.1 Consideration: Arduino Pro Micro
	2.5.2 Consideration: Raspberry Pi
	2.5.3 Consideration: Gumstix
	2.5.4 Inter-processor Communication
	Consideration: Raspberry Pi to Arduino
	Implementation: Gumstix to Arduino

	2.6 Vision System
	2.6.1 Consideration: C329 Camera Module
	2.6.2 Consideration: Caspa FS Camera
	2.6.3 Implementation: SB101C USB CMOC Board

	2.7 On-board Sensing
	2.7.1 Consideration: Global Positioning System Receiver
	2.7.2 Consideration: Inertial Measurement Unit

	2.8 Data Transfer
	2.8.1 Ground Station Communication
	2.8.2 Image Transfer

	2.9 Software
	2.9.1 Image Processing
	Camera Focus
	Image Stitching
	Hugin: Panorama photo stitcher
	JavaCV

	Camera Calibration

	2.9.2 Ground Station Software
	2.9.3 Embedded Software

	2.10 Ground station

	3. Results
	3.1 Summary of Accomplishments
	Reach a height of 100 ft.
	Survive a fall of 30 ft.
	Weigh less than 20 lbs.
	Method to retard fall
	Capture useful image data
	Location sensing
	Functional embedded computing
	Transmit visual and location data
	Transmit wirelessly with a 200 ft. range
	User friendly

	3.2 Discussion

	4. Conclusion and Recommendations
	4.1 Future Work

	5. Project Expenses
	6. Acknowledgements
	7. Authorship
	8. Bibliography
	9. Appendix
	Contents

	Appendix A: Safety Manual of IPASS
	UAV State definitions
	Safety Procedures for drone testing

	Appendix B: Matlab Rocket Feasibility Script
	Appendix C: Camera Resolution Test
	Objective
	Images Captured
	Results

	Appendix D: IPASS Drop Tests
	Introduction
	Assumptions
	Goals
	Measurements
	Methods
	Results

	Appendix E: GPS Precision Test
	Results
	Appendix F: Electronics Box test
	Appendix G: Matlab Simulation of IPASS Launch
	Appendix H: Message Protocol
	Appendix I: Ad-hoc Network Test
	Appendix J: IPASS Flight Tests
	Thrust Tests
	Launch Tests
	November 27, 2012
	January 12, 2013
	January 19, 2013
	February 13, 2013
	February 28, 2013
	March 1, 2013

	Appendix K: IPASS Survivability Test
	Appendix L: Lenovo Thinkpad Specifications
	Appendix M: IPASS Cost Breakdown
	Appendix N: Full Expense Report
	Appendix O: IPASS Instruction Manual
	Intelligent Portable Aerial Surveillance System (IPASS) Assembly Instructions
	IPASS Inventory
	Setup
	Gumstix
	Arduino
	Cameras
	Motors
	Ground Station

	Assembly
	Motors
	Landing Gear
	Electronics Box
	Full Chassis

	Operation
	Launch Procedure
	GUI

	Appendix P: List of Acronyms

