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Abstract 

It is becoming increasingly important to secure embedded systems from physical attacks that seek 

to extract sensitive information. The integrity of electronic devices, with and without 

countermeasures, are threatened by side-channel attacks. Yet, a standardized procedure for 

assessing a system’s information leakage is a problem that has not been fully solved. The TVLA 

methodology, based on Welch’s t-test, is a commonly utilized tool. However, under certain 

conditions this test may not accurately indicate the security level of an implemented design. A 

more universal analysis may be desirable in some cases. This MQP will explore the benefits and 

drawbacks of mutual information applied to power side-channel leakage.  
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1 Introduction 

Many modern cryptographic systems are implemented on programmable logic devices such as 

FPGAs. These devices operate using transistors, which close or open depending on the charge 

applied to its gate. The amount of switching activity during various operations largely determine 

the total power consumption of the device. Measuring a devices power consumption can provide 

insight into what operations are happening and can even reveal secret information. A power side-

channel attack uses thousands of power traces to extract cryptographic keys and secrets. 

The rise of side-channel attacks has resulted in years of research into countermeasures. Masking 

data, adding noise, and inserting random delays all distort power signals and increase the security 

level of an embedded system. The ability to test cryptographic systems and their countermeasures 

for information leakage is essential. 

Testing for leakage is a complex problem. Performing cryptographic key attacks such as 

differential power analysis (DPA) or correlation power analysis (CPA) is one solution. More 

recently, mutual information analysis (MIA) has been studied as a potential attack.  However, 

performing attacks is a time-consuming task since each possible key must be tested. Testing a 

system for leakage without choosing a specific attack is more valuable and efficient during 

development. 

The Test Vector Leakage Assessment (TVLA) methodology, based on Welch’s t-test, is a common 

tool in industry. However, this test is at risk of falsely passing an implementation since it only 

measures certain types of leakage. Even with higher moment versions of the t-test, the results may 

not always accurately represent the security level of an embedded system. For systems with 

masking countermeasures, covariance is overestimated which leads to an overstatement in 

security. Further, approximating higher moments generally causes amplification in noise and can 

lead to false positives. For these reasons, it is not reliable to assess an implementation by estimating 

statistical moments or by assuming an attacker’s strategy [4]. 

A more generalized dependency test is mutual information (MI), which is based on entropy of 

observations rather than estimated statistical moments. MI makes little assumption about 
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adversarial strategy and leakage type. Although the complexity of MI is higher than that of the t-

test, it provides a more universal side-channel leakage assessment [3]. 

The goal of this MQP is to explore the possibility of using Mutual Information as a discriminator 

for FPGA power side-channel analysis. It will show the benefits and drawbacks of such a test in 

comparison with the t-test and correlation for both power simulations and real hardware captures. 
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2 Background 

2.1  TVLA and Welch’s t-test 

TVLA (Test Vector Leakage Assessment) is a statistical analysis aimed at assessing the amount 

of information leakage in an implemented design. TVLA requires a large set of observations, 

called traces, during a process implemented on an embedded system. A single power trace is a 

vector representing instantaneous power consumption over the course of some process such as an 

AES encryption. A large set of traces is divided into two groups based on a selector value 

associated with each trace. For example, a set of AES power traces may be divided based on the 

plaintext input; half of the set of traces may have been stimulated with some predetermined, fixed 

plaintext, while the other half was given random plaintext.   

 

Figure 2.1: General approach to side-channel risk assessment 

 

TVLA is based on Welch’s t-test, a test with the null hypothesis that two populations of power 

traces have equal means at any given time sample. The null hypothesis is proven false if there is 

enough information available to conclude that a selector has some impact on power consumption.  
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Figure 2.2: Probability distributions showing the division of a single Gaussian population (left) into 

two groups (right). When split, the two resulting Gaussian groups have different mean values. 

Therefore, the selector used to assign individual data points to each group does have some influence 

on the data itself. 

 

If dependency exists, there is the potential for a vulnerability in the implementation. The statistic 

value is computed as follows, where 𝑋𝑛is the mean of the nth population of power traces, sn is the 

standard deviation of the nth population of power traces, and Nn is the number of traces in each 

population [2]. 

𝑡 =
𝑋1−𝑋2

√
𝑠1

2

𝑁1
+

𝑠2
2

𝑁2

       (2.1) 

If the absolute value of the t statistic is greater than the threshold of 4.5, the test fails. Less than 

4.5 does not necessarily mean there is no leakage; it may simply mean that the population size is 

not large enough [2]. 

There are two types of t-tests: general and specific. The general test divides the set of traces based 

on the input to a cryptographic system, which is either some predetermined fixed input or any other 

random value. For example, half of the traces may be associated with the fixed input 8’hDA, while 

the other half is associated with a random set of 8-bit values. If power is dependent on input data, 

the test should yield a high t-value. It is important to remember, however, that a general test cannot 

guarantee an attack is possible even if leakage is present [2]. 

A specific test only differs in the selector. While the general test uses fixed or random input as a 

selector, the specific test uses intermediate cryptographic values such as encryption round outputs 



12 
 

or s-box outputs. These are common values exploited for key extraction. Each trace in the set is 

associated with a random input, unlike the fixed vs. random general test [2]. 

2.2  Matched Pairs t-test 

The matched pairs TVLA test is a modified version of the original TVLA procedure. The purpose 

of this variant is to reduce the effect that environmental fluctuation has on the mean and variance 

of the two sets. Fluctuations in ambient conditions such as temperature can make a system appear 

secure when leakage is present. To perform the matched pairs variant, the set of traces must 

undergo a step in which each trace from the first set is paired with an adjacent trace from the 

second set. The difference of each pair is computed and the modified t-test is performed on the 

difference set per the following equation [1]: 

𝑡𝑑 =
D

√
𝑠 

2

𝑁 

      (2.2) 

2.3  Higher Moment t-test 

A a distribution can be defined by an infinite set of moments. The first moment is the mean of the 

dataset. All remaining central moments are centered on this mean. Variance is the second central 

moment; it roughly describes the width of a probability distribution function (PDF) surrounding 

the mean. Third and fourth moments are known as skew and kurtosis respectively. Skew is a 

measure of asymmetry and kurtosis is a measure of tail weight. There is an infinite set of moments 

to a distribution, but these four are the most useful in practice [1]. 

Figure 2.3: Several pairs of PDFs that each differ in a different statistical moment. The first pair of 

distributions have different mean values, but the same variance, skew, etc. The 2nd pair have the same mean, 

but different variance. The 3rd pair differs in skew, and the 4th kurtosis. 
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There is a higher moment implementation of the t-test that can identify higher moment leakage; it 

is like the matched pairs implementation, but some pre-processing must be done before the t-test 

step. The differencing step subtracts the mean of each group from each trace and raises that 

difference to the desired order. Then the actual matched pairs differencing is performed. The higher 

moment difference is computed as follows [1]: 

𝐷 = [(𝐿𝐴 − 𝐿𝐴)
𝑑

− (𝐿𝐵 − 𝐿𝐵)
𝑑

]    (2.3) 

2.4  Linear Correlation Coefficient 

A linear correlation coefficient is highly utilized in correlation power analysis (CPA), an attack 

which attempts to extract a key by correlating the results of a leakage model with actual power 

consumption for every possible key guess. One common leakage model is Hamming Distance, 

which represents the theoretical or simulated number of binary state changes in a digital system 

over time.   

However, correlation can also be used in leakage assessment by computing Pearson’s 

correlation coefficient between an arbitrary selector and a system’s simulated or measured leakage. 

Pearson’s coefficient is calculated by the following equation [5]. 

𝑃𝑋,𝑌 =
𝑐𝑜𝑣(𝑋,𝑌)

𝑠𝑋𝑠𝑌
      (2.4) 

cov(X, Y) = ℙ(𝑋 = 1) ∗ (𝑌𝑋=1
̅̅ ̅̅ ̅̅  − 𝑌̅)           (2.5) 

 

Pearson’s correlation coefficient is a measure of linear dependency between two random variables. 

A perfect score is +/- 1 and no dependence is a score of 0. Looking at the following figure, there 

clearly exists a relationship between X and Y in each case. However, this relationship is not 

expressed by linear correlation in some of these cases.  
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Figure 2.4: Three scatter plots showing a linear trend, a logarithmic trend, and a U-shaped 

trend from left to right. The linear trend scores a perfect 1.0 for Pearson’s coefficient. The 

logarithmic trend scores a 0.9 because there is a trend, but it is not perfectly linear. The last 

plot shows nonlinear correlation that cannot be expressed by Pearson’s coefficient. 

 

In the case of binary selectors, linear correlation is essentially a comparison between the means of 

two groups, like the first moment t-test. They only differ in the fact that the t-test is proportional 

to population size. In fact, Welch’s t-test and Pearson’s correlation coefficient for a set of power 

traces will appear identical expect for the vertical scale. 

2.5 Rank Correlation Coefficient  

There are also correlation coefficients that do not only measure linear dependence. These 

coefficients correlate the ranks of two random variables, not the actual values. A rank is an integer 

value describing the sorted position of a value in a set of observations. It is therefore possible to 

have a perfect correlation score even where X is not related to Y by a constant factor [8]. The 

following figure illustrates this fact. 

 

Figure 2.5: Scatter plot illustrating the difference between linear and rank 

correlation. 
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Like with Pearson’s correlation coefficient, rank correlation is scored from 0 to +/- 1. There are 

many versions of rank correlation; some fit this application better than others. 

One widely-used rank correlation coefficient is Spearman’s coefficient. It is simply the Pearson’s 

coefficient of the ranks of two random variables [8]. 

𝑆𝑋,𝑌 =
𝑐𝑜𝑣(𝑅𝑋,𝑅𝑌)

𝑠𝑅𝑌
𝑠𝑅𝑋

     (2.5) 

If all rankings of X and Y are distinct integers (there are no ties), then Spearman’s coefficient can 

be calculated by the following formula, where n is the number of observations and di is the 

difference between the rankings of X and Y at each observation [8]. 

𝑆𝑋,𝑌 = 1 −
6 ∑ 𝑑𝑖

2

𝑛(𝑛2−1)
     (2.6) 

Kendall’s correlation coefficient is similar except that it does not consider the distance between X 

and Y. It merely uses the number of concordant and discordant pairs. A pair of observations is said 

to be concordant if the sort order of both X and Y increase between observations or both decrease 

between observations. On a scatter plot of X and Y, a pair is concordant if the slope of the line 

drawn between the two observations is positive, and discordant if the slope is negative. Kendall’s 

Tau is calculated as follows, where NC and ND are the number of concordant and discordant pairs 

respectively [7]. 

𝜏𝑋,𝑌 =
𝑁𝐶−𝑁𝐷

𝑛(𝑛−1)/2
     (2.7) 

There is a problem with using either of these coefficients in the case of a binary random variable: 

they do not consider ties, which are extremely abundant when considering a binary selector. In the 

case of a binary selector, both of these rank correlations are essentially comparing the mean 

rankings of two groups. In this case, Spearman and Kendall do not provide any more information 

than Pearson. 

Goodman-Kruskal’s gamma coefficient is intended for categorical data [6]. When a data set X is 

split into two groups A and B, gamma is calculated by the number of (A, B) pairs where XA is 

greater than XB and XA is less than XB.  
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𝛾𝑋,𝑌 =
𝑁𝐶−𝑁𝐷

𝑁𝐶+𝑁𝐷
      (2.8) 

This approach can yield a perfect score even though all pairs have ties. It also captures more than 

the difference of means between the two groups; if the means of two groups are the same, 

Goodman-Kruskal will yield a non-zero score if it is more common for one group to have larger 

data than the other. In other words, it can identify leakage where linear correlation cannot [6]. 

2.6 Mutual Information 

Mutual information (MI) is a general dependency test between two random variables. It is a 

measure of the information gained about one RV when the other is known. It makes no 

assumptions about the nature of the leakage it will attempt to identify, unlike the t-test which 

assumes leakage in a specific moment or correlation, which is only a measure of linear dependence. 

Mutual information is similar in that the global set of traces is split into two sets by a selector. This 

selector can still be a fixed vs. random input or an intermediate cryptographic value, like in the 

TVLA general and specific tests. Conceptually, there is mutual information if the two sets of traces 

have unidentical PDFs. More concretely, MI is determined by the entropies of the RVs. Entropy 

is calculated as follows [3]: 

𝐻(𝑋) =  − ∑ ℙ𝑋[𝑋 = 𝑥]𝑥∈𝑋 ∗ 𝑙𝑜𝑔2(ℙ𝑋[𝑋 = 𝑥])   (2.9) 

Using the entropy of each RV and the joint distribution’s entropy, MI can be computed. 

𝐼(𝑋; 𝑌) = 𝐻(𝑋) + 𝐻(𝑌) − 𝐻(𝑋, 𝑌)    (2.10) 

This states that the information between selector X and power consumption Y is equal to the sum 

of the entropy of the selector and the entropy of the power consumption minus the entropy of the 

joint distribution. There is no MI if the sum of the individual entropies is equal to the joint entropy 

of the two RVs. On the other hand, there is a one-to-one relationship if X uniquely determines Y. 

In this case, the joint entropy will equal the entropy of Y. So, the extremes of MI can be described 

by the function below [3]: 

𝐼(𝑋; 𝑌) = {
0

𝐻(𝑋)
  
;
;
    𝐼𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑒

𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑒
}   (2.11) 
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In the case that selector X is a binary random variable with a uniform distribution, equations 5 and 

6 can be simplified, as the entropy of X would equal 1. 

𝐼(𝑋; 𝑌) = 1 + 𝐻(𝑌) − 𝐻(𝑋, 𝑌)    (2.12) 

𝐼(𝑋; 𝑌) = {
0
1

  
;
;
    𝐼𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑒

𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑒
}    (2.13) 

Since mutual information requires entropy, the two random variables must be tracked in a 

histogram. There are methods of calculating optimal histogram bin width, which minimize error 

between the histogram and the actual PDF. The Freedman-Diaconis method is a commonly used 

method outlined below where IQR is the interquartile range (or mid-spread), and N is the total 

populate size [9]. 

𝑏𝑖𝑛 𝑤𝑖𝑑𝑡ℎ =  
𝐼𝑄𝑅(𝑋)

√𝑁
3       (2.14) 

The number of bins is equal the maximum value of X minus the minimum value of X, divided by 

bin width. The edges are equally spaced from the minimum to the maximum value. IQR is simply 

the difference between the 75th percentile and the 25th percentile. 

2.7 Applied to Side-Channel Analysis  

Applying information theory to side-channel analysis provides has become a topic of research in 

recent years. Mutual information analysis has important differences from other attacks and 

statistical tests. It makes minimal assumptions about observed leakage; the only one being that 

there is a functional relationship between leaked and observed values. As an attack, mutual 

information analysis works similarly to correlation power analysis, where observed leakage is 

correlated with a leakage model’s prediction. The difference is, instead of correlation, mutual 

information is computed between the two vectors for each possible cryptographic key guess. CPA 

only measures linear correlation between observations and assumed leakage, and DPA is limited 

to a difference of means. This makes MIA advantageous to manufacturers; it can determine the 

maximum amount of information leakage in an embedded system because it does not make these 

assumptions. If a system can withstand a MIA key attack, it should be secure against all key attacks 

including DPA and CPA [3].  
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Studies have shown some important differences between the performance of MIA, CPA, and DPA. 

CPA can distinguish between a correct and incorrect key guess with the fewest number of traces, 

closely followed by MIA, and finally DPA. However, as trace count increases, the mutual 

information associated with the correct key guess becomes much larger than the incorrect guesses, 

relative to Pearson’s correlation coefficient and DPA bias. In fact, with a sufficient population of 

traces MIA yields the largest difference between the correct key and the next best key guess. But, 

MIA is far more memory intensive as it must keep histograms for every time sample. Previous 

work has utilized a constant 256 bins per histogram, although this could be adjusted dynamically 

to reduce complexity [3]. 

As previously stated, it is faster and more conclusive to test a design without performing a key 

attack. Instead of guessing every possible key, a set of traces can be divided into two groups per 

some selector associated with each trace and one statistical test can be performed to determine 

potential vulnerabilities. DPA, CPA, and MIA attacks can be replaced with Welch’s t-test, 

correlation (linear or ranked), and mutual information for a general leakage assessment. The 

limitation of the t-test and correlations are the same as those of DPA and CPA: they only measure 

certain types of leakage. Also, they assume the adversarial strategy of statistical moment 

estimation. For higher moment leakage and for systems with masking countermeasures, estimating 

statistical moments is not adequate. Noise negatively affects high moment calculations and 

masking schemes simulate a high variance resulting in an overstatement of security. An 

information theoretic approach, however, should yield the worst-case vulnerability if PDFs can be 

adequately estimated by histograms [4]. 

2.8 T-Private Masking Countermeasure 

The t-private masking countermeasure is meant to secure an implementation at the logic synthesis 

level. If an adversary has access to t nodes of observation, this countermeasure should protect the 

system from side-channel attacks [10]. It works by creating t copies of each logic component: look 

up tables and registers. For a one-private implementation there is a single copy of each component 

created. For each input to the component, there is a random mask bit generated. One copy performs 

its function on the random bits. The other copy performs its operation on the exclusive OR of the 

mask bits and data bits. The XOR of the two components’ outputs is equal to the original output. 
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By performing the t-private transform on each component that secret information flows through, 

observations cannot be correlated with the secret information. The diagram below shows the 

transformation.  

 

Figure 2.6: t-private transformation for FPGA implementations. 

 

However, t-private has been proven to fail in hardware implementation. Unequal routing delays 

between masks and masked values cause “glitches” in cells within a single transform. These 

glitches cause information leakage. 
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3 Methodology 

3.1 Overview 

The tools created in this MQP output statistical vectors from a suite of statistical analyses 

representing information leakage of the system under test. Each type of analysis aims to locate 

observation-data dependency; however, each come with advantages and disadvantages under 

different conditions. Therefore, considering the vectors produced by multiple tests is more useful 

than just any one. These vectors can be used to predict potential vulnerabilities and, hopefully, 

assist in the design of a secure system. 

Much of the project’s structure was adopted from the existing MITRE side-channel analysis 

framework. The tools created must fit seamlessly into this existing software base. The overall 

design flow will be explained in detail. 

The statistical analyses under consideration are Welch’s t-test, higher moment t-tests, linear 

correlation, categorical rank correlation, and mutual information. Although some improvements 

were made to the t-test and linear correlation discriminators, much of this software already existed 

in MITRE’s framework. The main contributions of this project are the mutual information and 

categorical correlation analyses bundled with existing statistical tests into a single program. The 

implementation of each statistical test will be discussed. 

Extensive testing was done before analyzing any real sets of traces. Fabricated data sets were used 

to ensure each discriminator performs as expected, as well as to prove their predicted advantages 

and disadvantages. This section will also explain the hardware designs investigated by the suite of 

statistical analyses. 

Finally, this section will go into the collection of simulated and real power traces. Collecting data 

for side channel leakage is not a simple task; much thought went into this subject. 
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3.2 Design and Implementation 

3.2.1 Design Overview 

The analysis tools operate on a set of trace objects, which are collected either through simulation 

or hardware. A Vivado project is either implemented on an FPGA or run as a post-implementation 

timing simulation. A JSON stimulus file dictates input data to the simulation or hardware design. 

This stimulus file contains the number of traces and key data common to each trace. For each trace, 

it contains plaintext input data and the group of traces that it belongs to (fixed vs. random). Below 

is an example stimulus file with 8-bit data: 

 

Figure 3.1: Example stimulus file for 8-bit encryption with 1,500 traces 

 

For simulations, the tools run a testbench Verilog file in Vivado several times with the plaintexts 

and key described in the stimulus file. A Value Change Dump (VCD), which contains state 

changes for each wire at each time slice in the simulation, is retrieved from Vivado. For each trace, 

these state changes are converted into Hamming Distance, a common power leakage model which 

counts the number of state changes for each wire. Hamming Distance summed across every wire 

at some sampling frequency to produce the final set of traces. 
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For hardware power traces, an FPGA is simulated by the same file. Voltage is measured starting 

at the time of a trigger signal until the end of each encryption, for example. This power signal is 

amplified and filtered by analog circuitry. This process will be described in greater detail in a later 

section. A capture device records these measurements and stores them in a Hierarchal Data Format 

HDF5. This data set contains plaintext input, keys, and measured data. It is later read and converted 

into trace objects. 

Now that the traces are available to MITRE’s side-channel analysis tools, some pre-processing 

and statistical analysis can occur in a series of steps. These steps will be described in the proceeding 

sections. But, in general, the first step will either estimate statistical moments for correlation and 

Welch’s t-test, or compute histograms for rank correlation and MI. The diagram below outlines 

the entire process from trace collection to analysis. 

 

Figure 3.2: Overall system block diagram showing trace collection and final analysis. Dashed boxes 

represent Orchestrator objects, which pass each trace in a trace iterator though a series of steps. Output 

from the system comes from the CPA (correlation power analysis) Normalize step, Welch Test step, MI 

Normalize step, or Rank Correlation Normalize step.  The original data source is either a PSCARE (Power 

Side Channel Analysis and Risk Evaluator) Iterator, which creates simulated HD traces, or an H5Py 

Iterator, which holds data from a power trace capture. The TVLA Hypothesis step yields the final set of 

traces for analysis. Newly implemented steps for this project are highlighted in green. 
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3.2.2 Uniform Random Sampling 

Probability distribution functions are required for the total set of traces at every time sample, the 

two trace groups at each time, and the selectors for each trace (fixed vs random). PDF’s can be 

estimated by histograms, which are composed of several data bins, each containing a count of data 

points which fall into that bin. Bin width estimation is a well understood problem in statistics. 

However, these estimation techniques typically requires access to the total population, which, in 

our case, is the nth sample from every trace. There could be thousands or millions of traces in the 

set, each containing hundreds or thousands of samples. So, it is not feasible to have access to the 

total set. A simple solution is to approximate the needed statistics of the entire set based on a small 

sample. To get a good estimate of the entire set, the small subset should be a uniform random 

sample, meaning that each trace has an equal likelihood of ending up the sample. The diagram 

below shows an algorithm for yielding a uniform random sample of traces of size M from the 

original set of size N. The Python NumPy random module was used to produce random numbers. 

It is seeded with a constant value before this step runs to ensure the same sample will be obtained 

on each run. 

 

Figure 3.3: Diagram showing uniform random sample generation. A trace at 

index i is added to the sample at random index r if r, a random integer from 0 to 

sample size M, is less than M. 
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The probability that an element at index I will be inserted into the sample is: 

𝑃(𝐼𝑛𝑠𝑒𝑟𝑡) =
𝑀

𝐼
       (3.1) 

The probability that an element at index I is removed from the sample is equal to the probability 

that it is inserted in the first place, times the probability that any subsequent elements will evict 

this element. The probability that any subsequent elements will evict this element was determined 

through testing. 

𝑃(𝑅𝑒𝑚𝑜𝑣𝑒) =
𝑀

𝐼
∗ (

𝑁−𝐼

𝑁
)     (3.2) 

 

The probability that an element at index I ends up in the final sample is equal the difference of the 

probabilities of insertion and removal. 

𝑃(𝑆𝑒𝑡) = 𝑃(𝐼𝑛𝑠𝑒𝑟𝑡) − 𝑃(𝑅𝑒𝑚𝑜𝑣𝑒)                                                           (3.3) 

 

Substituting the probabilities determined above, we end up with the following equation: 

𝑃(𝑆𝑒𝑡) =  
𝑀

𝐼
 −  

𝑀

𝐼
∗ (

𝑁−𝐼

𝑁
) =

𝑀𝑁−(𝑀𝑁−𝑀𝐼)

𝑁𝐼
 =  

𝑀

𝑁
    (3.4) 

 

Since each element has an equal likelihood of being in the sample, it is a normal random sample. 

Of course, this assertion was tested and found to be true. 

3.2.3 Histogram Construction 

Now that the tools have a small sample to work with, it can go through the process of estimating 

optimal bin size and constructing histograms. The method of optimal bin width estimation used is 

the Freedman-Diaconis rule, which minimizes the difference between the area under the empirical 

PDF and the estimated histogram. Referring back to equation 2.14, it is shown that this rule 

requires interquartile range of each data set (nth time sample of every trace in the sample). This is 

difference between the 75th percentile and the 25th percentile. The numpy module in Python has a 

percentile function to calculate this value from the random sample. The population size used in the 

calculation is the total set of traces, not the size of the random sample.  This process is performed 

on every time sample to produce a set of bin edges. 
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These bin edges are given as input to the histogram construction step. This step iterates though 

each trace and quantizes the time samples according the existing bin edges. The quantized trace 

data is added to the data histograms and conditional histograms, and the selectors are added to 

selector histogram. 

3.2.4 Mutual Information 

The mutual information step simply computes entropy for the data histogram, selector histogram, 

and conditional histogram at every time sample to perform its calculation. Referring to equation 

2.10, MI is calculated by the summing the entropy of the selector histogram and the nth sample’s 

data histogram and subtracting the entropy of the nth sample’s conditional histogram. Shannon 

entropy is the summation the product of each bin’s probability and the logarithm of the probability.  

To compute entropy, histograms are normalized by dividing by the sum of the histogram. Then, 

bins with zero probability are thrown out to avoid invalid results. The computation is then 

performed. The three entropy values required are used to compute mutual information at each time 

sample. This is the final MI vector. 

           

Figure 3.4: General algorithm for calculating mutual information I(X;Y) from 

power traces and selectors. A selector histogram, data histogram, and 
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conditional histogram is created at for each time sample, highlighted in blue. 

Entropy is calculated and finally the MI equation is computed. 

3.2.5 Rank Correlation 

The rank correlation implementation uses the same histogram construction steps to produce 

categorical data. At each time sample, conditional histogram matrix is iterated through in order to 

count concordant and discordant pairs. The diagram below shows how quantized trace data at a 

single sample is transformed into a histogram and processed to count these pairs. 

 

Figure 3.5: Categorical rank correlation process. On the left shows an example 

data set divided by selector value. This is used to create the conditional 

histogram below it. On the right shows an intuitive explanation of how the 

histogram matrix is processed to count concordant and discordant pairs. 

 

At each element in the matrix, concordant pairs can be found by locating other elements which 

have a larger selector and larger data value or a smaller selector and smaller data value (positive 

slope on the graph). Discordant pairs can be found by locating other elements which are 

negatively sloped on a graph with respect to the current element. Ties are not considered. 

3.2.6 Threshold Detection 

It is important to be able to compare results of each statistical analysis. A standard method of signal 

significance detection helps compare each statistic vector and identify sources of leakage. Since 
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the TVLA methodology assigns a constant threshold of +/- 4.5 to the t-test result, this analysis is 

excluded from the threshold detection algorithm.  

Permutation testing is a way of randomizing data by resampling without the assumption of a 

specific distribution. For the fixed vs. random test, a permutation test would involve assigning 

random selectors to each trace in addition to the actual selectors. The statistic vector using this 

second set of selectors should represent no dependency for the type of data collected. 

The threshold value is based on the randomized statistic vector. From testing, it has been 

determined that some multiple of a high percentile of the randomized statistic vector appropriately 

represents statistical significance. For example, for an entire time vector, double the 95th percentile 

seems to be appropriate. 

3.2.6 Hardware Power Trace Collection 

Power trace collection must be carefully designed and carried out to obtain valid data. The diagram 

below shows a block diagram of the equipment setup for the procedure: 

 

Figure 3.6: Lab setup for collecting power traces on the SAKURA GIII board. 

 

From SAKURA-GIII evaluation board comes equip with a Kinex-7 FPGA and a voltage sense 

resistor. Voltage is probed at the two coaxial terminals of the sense resistor. A differential amplifier 
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board with the AD8129 chip amplifies this voltage signal. The differential amplifier is powered 

by two Acopian 5V DC power supplies in bipolar configuration. A second gain stage is inserted 

to bring the peak-peak of the signal closer to the +/- 250 mV of the digitizer. This signal is passed 

through an anti-aliasing filter and wired to the Gage CS121G11U 12-bit USB digitizer. The filter 

is a Mini-Circuits 80 MHz low-pass filter, which is high enough to preserve most information in 

the signal and less than the Nyquist frequency of the digitizer. The trigger signal coming from the 

SAKURA board is processed by a trigger leveling board, which uses transistors to clip the signal 

at a lower amplitude to meet the GaGe’s specifications. It is important to use shielded coaxial 

cables to reduce added noise and other EM interference. They should be as short as possible as 

well; Long cables produce an unwanted impulse response which widens the appearance of 

information leakage in time. Therefore, an orderly setup produces best results. Below is the final 

setup used. 

 

Figure 3.7: Lab setup for power side-channel trace collection. A desktop computer is running a python 

script which communicates with the SAKURA board and the GaGe digitizer.  

SAKURA 

Trigger  

Level 

GaGe 

  Amp 
Diff. Amp 
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Figure 3.8: A closer view at the instrumentation used in the lab. The red XILINX platform connector 

receives data, key, and execution signals from the python program. It stimulates the hardware design on 

the FPGA, causing AES rounds to begin. Two coaxial cables connect the SAKURA sense resistor to the 

differential amplifier. The output of this amplifier is fed into a 2nd amplification stage. The output of this 

stage goes through an anti-aliasing filter before being digitized by the GaGe and transmitted to the 

computer. 

3.3 Testing and Verification 

3.3.1 Unit Testing 

Extensive unit testing was performed on the statistical analyses to ensure the accuracy and 

advantages of each. The first test examines the performance of each discriminator for leakage in 

distinct moments. A data set was produced that contains two distinct distributions when divided 

by a binary selector, as exemplified below. 
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Dataset: [6, 7, 6, 1, 6, 0, 2, 2, 4, 7, 0, 4, 7, 0, 5, 4, 4, 6, 7, 4] 

Selectors: [1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0] 

 

Group 1: [6, 6, 6, 2, 4, 0, 7, 5, 4, 7] 

Group 0: [7, 1, 0, 2, 7, 4, 0, 4, 6, 4] 

 

The histograms of each dataset are shown below with group 0 and 1 plotted separately: 

Figure 3.9: Histograms for the four datasets used in the moment varying unit test. The histograms 

shown here use 40 bins along the horizontal axis. The vertical scale is probability. 

 

For each dataset, the two groups differ by some statistical moment. For example, the first dataset 

in Figure 3.9 contains two groups of samples that differ in average. The results of each 

discriminator were computed from 10 to 10,000 traces. The t-test should identify dependence for 

the dataset with a varying moment that corresponds to its target moment. For example, the 2nd 

moment t-test should identify dependence in the dataset with a varying standard deviation (the 

second moment) between the two groups. Linear correlation should only identify first order 

dependence, rank correlation should identify first and third order dependence, and mutual 

information should identify dependence in each dataset. This unit test also shows how population 

size influences each statistic vector. 

The next test is almost identical, but the results of each discriminator for each dataset is computed 

for a range or noise amplitudes, not population size. The population was held constant at 2000 

observations, while standard normal noise was added to the dataset from an amplitude of 0.1 to 

100. This test is meant to demonstrate the effects of noise on each discriminator. 

A test was devised to demonstrate that mutual information does not assume an attacker’s strategy 

by estimating specific statistical moments. If there existed a device which leaks information 

through an unknown moment, or the moment is too high to estimate, the t-test is not as useful. MI 

however, will always be able to identify dependence in adequate conditions. To illustrate this fact, 

a dataset was dataset was devised that, when divided into two groups by a selector, yields two 
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different distributions with nearly identical moments. The function used to produce this dataset is 

the following lognormal function, where a is any real number: 

    (3.5) 

This function will yield a different shape for each value of a, but will always result in the same 

infinite set of statistical moments. The figure below illustrates what the distributions look like: 

 

Figure 3.10: Two distributions with identical statistical moments but 

different shapes. These distributions were used to make a single dataset 

for analysis. The blue line has a value of 0 and the orange line has an a 

value of -0.5. 

 

A set of power traces were fabricated with random noise at each time sample except for one 

sample, which has the distributions above, depending on the trace selector. So, at this one 

sample, there should be a dependency between the binary selector and trace data. Only mutual 

information is expected to identify this dependency. 
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3.4 Designs Under Test 

3.4.1 AES Substitution Box 

The first design used for testing was a substitution box, a nonlinear function that takes an N bit 

input plaintext and outputs a different N bit number. There is a one-to-one relationship between 

input and output. Substitution is the first step in an AES encryption round, so it can be used to 

model full AES by wiring the output result back into the substation box module. This design takes 

an 8-bit plaintext, 8-bit key, and an input valid signal. These values are fed into an exclusive OR 

gate. At the start of the first round, stored in the intermediate register. Throughout each of the four 

rounds, the value in this register is directed into the substitution box and stored into the same 

register. At the end of the fourth round, the state of the intermediate register is stored in the output 

register. The diagram below shows a simple hardware design for this process. 

 

Figure 3.11: A simple logic diagram illustrating the s-box feedback design. 

 

The t-private implementation will also be analyzed. As discussed earlier, each component in the 

design is copied and masks or masked component outputs are applied to the input of each copy. 

Figure 3.12 shows how the original design corresponds to the synthesized masked design for a 

single bit. 
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Figure 3.12: Post synthesis schematic for the t-private s-box feedback design with accompanying block 

diagram. Looking at the s-box state register (highlighted in blue) you can see that the t-private transform 

causes two duplicate registers: One holds the masked value of the s-box output and the other holds the 

mask bit of the s-box output. 

 

The waveform below shows each wire and register in the testbench, along with other logic values, 

throughout the simulation. The total length of the simulation is about 2000 ps. The first stage of 

the simulation creates and applies masks. There is considerable glitching of multiple values in the 

simulation. These should produce leakage, as they involve input data. The next stage includes the 

data-key XOR and initial s-box state loading. Next are the actual rounds of the design. Last, the s-

box state register is directed into the output register. 

 

Figure 3.13: Testbench simulation for the s-box feedback loop design. Input plaintext is the 8-bit signal 

has the value 8’hDA in this simulation. The key is 8’h01. The actual rounds occur in the first segment of 

this waveform. The masked data starts out as the original data value and undergoes masking to the value 

8’hFF in the first segment of this waveform. The masked s-box output shows undesired glitching. We 

expect to see leakage at each of these glitches and during each round. 

3.4.2 AES Encryption 

AES-128 is the other design under test. AES takes a 128-bit key and 128-bit plaintext input. It 

performs 10 rounds total. Ten round keys are created from the original key. The initial round only 

adds the round key to the AES state using an XOR. The next 8 rounds perform nonlinear 
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substitutions, row shifting, column mixing and round key addition. The last round excludes column 

mixing. 

In the design under test, there are at least 12 locations where leakage should be identified: data-

key XOR, loading the initial AES state, and 10 rounds. Below is an example testbench simulation 

used for Hamming Distance calculations: 

 

Figure 3.14: Testbench simulation for the AES design. The key (Kin) and data (Din) are constant 

throughout the simulation. The output data updates after each round. The encryption is initiated by the 

key-ready (krdy) and data-ready (drdy) signals. When AES finishes the last round, the data-valid 

signal is set high. 

  



35 
 

4 Results and Discussion 

4.1 Unit Testing Results 

The first unit test yielded results aligning with theoretical predictions. In this test, four datasets 

were created that, when divided into two groups by a binary selector, produce a pair of distributions 

that differ in some statistical moment. For each dataset, the suite of statistical analysis was 

performed. The expected results are outlined in the table below: 

 

    

Welch’s t-test (1) Hit Miss Miss Miss 

Welch’s t-test (2) Miss Hit Miss Miss 

Welch’s t-test (3) Hit Miss Hit Miss 

Welch’s t-test (4) Miss Hit Miss Hit 

Pearson’s coefficient Hit Miss Miss Miss 

Rank correlation Hit Miss Hit Miss 

Mutual information Hit Hit Hit Hit 

Figure 4.1: Table illustrating expected results of the varying moment unit test 

 

The actual results are shown in the figure below. Each expectation was backed by these results. 

Each t-test identifies dependence in datasets exhibiting its targeted moment variation. Third and 

4th moment t-tests also identify dependence in the 1st and 2nd datasets respectively, which are 

inherently dependent in these higher moments.  
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Figure 4.2: Experimental results of the varying moment unit test. Results are 

plotted over population size from 10 to 10,000 samples. The red dashed line 

indicates a threshold. For each t-test, the threshold is a constant 4.5. The 

threshold for the remaining tests are results of a selector permutation multiplied 

by 2. 

 

This test proves the functionality of each statistical coefficient as predicted. Mutual information 

identifies dependence between data and selectors for each moment tested, whereas the t-test can 

only identify dependence within its target moment. Notice that the t-statistics will increase with 
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population size while correlations and mutual information settle to a constant offset. However, 

since the t-statistics’ threshold remains constant while the others’ decrease with population size, 

the statistical significance of each analysis result is population size dependent. This unit test also 

proves that rank correlation does in fact identify dependence when the two groups have the same 

mean but are not symmetric. 

The next unit test was similar except that population size was kept constant at 2,000 samples and 

results were obtained for a series of noise levels. As expected, each analysis yields diminished 

results as SNR decreases. 

 

Figure 4.3: Experimental results of the varying moment unit test plotted over 

standard normal noise amplitude in decibels. The green dashed lines indicate 

where the respective t-test result becomes statistically insignificant. 
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This test does back up the theory that mutual information is most negatively impacted by noise, at 

least for 1st – 3rd moment leakage. This is observed when looking at the noise level where each 

analysis result dips below its respective threshold. Noise reduces the influence that the power 

signal has on entropy and therefore causes and underestimated MI result. This may be indicative 

that mutual information will not perform well for hardware power traces, which will suffer from 

higher noise than Hamming Distance simulation. 

This next unit test illustrates a few key differences between the t-test, correlation, and mutual 

information. The figure below shows several line series on each plot; Each series represents the 

same statistic value from 0 to 200 samples and is associated with a different set of selectors. One 

set of selectors was used to create two distinct groups from a single dataset and the rest are random 

binary vectors. The line series derived from the actual selectors and data should distinguish itself 

from the other line series if the analysis type can identify the exhibited dependence. 

 

Figure 4.4: Plots for the t-test, Pearson’s coefficient, and mutual information 

respectively over 200 traces for several sets of insignificant selectors (gray) and 

one significant selector (black). The dataset exhibits first and second moment 

leakage 

 

To simulate a fixed vs. random test, a dataset was created that, when broken into two groups, 

contains a Gaussian distribution with a large variance and a distribution with very little variance. 
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The Gaussian distribution represents traces from the random group and the other represents traces 

from the fixed group, which shouldn’t exhibit much variation under low-noise conditions. When 

the means of the two groups differ, the results from figure 4.3 occur. When the means are the same, 

the analyses yield the following results. 

 

Figure 4.5: Plots for the t-test, Pearson’s coefficient, and mutual information 

respectively over 200 traces for several sets of insignificant selectors (gray) and 

one significant selector (black). The dataset exhibits second moment leakage, 

but not first moment leakage. 

 

The first figure, where the mean of the fixed group is different from that of the random group, 

shows that mutual information takes more traces to yield statistically significant results than the t-

test and correlation. Significance is judged after the black line diverges from every gray line. For 

the t-test and correlation, this occurs and roughly 10 samples. For MI, it takes about double the 

number of samples. However, it is also observed that MI produces more quality results at higher 

population sizes; that is, the relative difference between significant and insignificant results is 

greater for mutual information. Further, the second figure shows that if the mean of the fixed group 

happens to be the same or close to that of the random group, the t-test (1st order) and correlation 

will not yield a significant result whereas mutual information will. 
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Figure 4.6: Statistical analysis results from 10,000 artificial 

observation traces where there is a single point of information leakage. 

Notice that only mutual information can identify this leakage as it is 

not derived from data groups with varying moments. 
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4.2 Experiment Results 

4.2.1 Substitution Box 

The first design examined was the unprotected substitution, a basic component of symmetric key 

encryption algorithms which performs nonlinear substitutions of input bytes. As discussed earlier, 

this design performs four rounds of substitution where s-box output is fed back as the input.  

 

Figure 4.7: Statistical analysis results for an unprotected substitution-

box feedback-loop design. The data is derived from a simulation about 

2000 ns long. 
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Leakage “hits” should be expected at six consecutive rising clock edges: one for the initial s-box 

state write with data XOR key, one for each of the three rounds, one when the s-box output is 

written to the output register, and a final one when that output register is cleared. The number of 

wire state changes at each of these occurrences are influenced by input data. The results are shown 

above, where the timescale is in nanoseconds. 

First, notice the difference between Pearson’s linear correlation coefficient and Goodman-

Kruskal’s categorical rank coefficient; They are nearly identical at most times, but differ where 

there is identified leakage. The fact that they are so similar is an assurance that the histogram 

estimator produced adequate bin edges for the dataset. More importantly, rank correlation clearly 

provided stronger hits than linear correlation. This may be because rank correlation can identify 

third moment dependence, which is present at the same time locations of the affected hits. 

Next, examine the mutual information vector; With 1,000 traces, this statistic produced the most 

distinct hits. Further, it identified leakage of any moment at every expected location. This is an 

advantage over the t-test, which requires a target moment.  

A good example is the last leakage source at time 1050 ns where the fixed group has a narrow 

distribution, and the random group exhibits a wider Gaussian distribution. This is expected because 

the constant input should produce a constant Hamming Distance, and variable input should 

produce variable HD. In most cases, this leakage would be caught by both the 1st and 2nd moment 

t-tests. However, just by random chance, the fixed group impulse and the random group Gaussian 

distributions have the same mean. This means that only the 2nd moment t-test should identify this 

leakage because the standard deviations are very different. Thus, the validity of the t-test is skewed 

by the choice of fixed input during a fixed vs. random test. MI identifies this leakage because the 

entropies of the fixed and random groups are differ compared to that of the overall dataset. This 

illustrates the flexibility of mutual information. 

4.2.2 t-private Masked Substitution-Box 

The t-private masking countermeasure does not appear to protect this design. The post-

implementation timing simulation yields HD vectors that are dependent on input data at multiple 

times in the simulation. This is accredited to unequal routing delays between masked components 

and unmasking caused by feedback loops. Every analysis identifies each leakage source up to 250 
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ns. These are caused by unmasked operations with input data. Mutual information identifies 

leakage at a three clock edges that are not shown in any other test before 1000 ns. And, as before, 

it shows strong leakage during the input multiplexing, s-box rounds, and output register writing. 

There appears to be some third moment leakage present as well. Also, the Goodman-Kruskal rank 

correlation coefficient shows strong correlation at clock edge not identified by Pearson’s 

coefficient which also exhibits third moment leakage.  

 

Figure 4.8: Leakage evaluation of a t-private masked substitution-box 

feedback design including Welch’s t-test, correlation, and mutual 

information.  
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4.2.3 AES Encryption (Hamming Distance Simulation) 

Twelve points of leakage are expected for the AES encryption simulation. The last 10 are the actual 

AES rounds. The first is simply a result of setting the value of the input plaintext data in the Verilog 

testbench file. The second is from the XOR of this input plaintext with the secret key. Looking at 

the following figure, this AES implementation is potentially insecure from side-channel attacks. 

 

Figure 4.9: AES encryption leakage assessment performed by Welch’s t-

test, higher moment t-tests, correlations, and mutual information. 

 

Setting input 

data in testbench 
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This design exhibits mainly 2nd moment leakage for the fixed vs. random test. Some first moment 

leakage is detected only when the fixed group’s narrow distribution is centered far enough away 

from the random group’s wider distribution. Since both distributions are roughly symmetrical, 

there is no 3rd moment leakage. Thus, the linear and rank correlation coefficient vectors are nearly 

identical. The mutual information vector reveals the most information leakage in this design. It 

discovers potential vulnerabilities at each expected clock edge regardless of the relative statistical 

moments between the two trace groups. It also produces the highest signal-to-noise ratio of any 

other discriminator. 

A modified design examines a single round of AES. In this analysis, the sampling frequency is 

increased from 400 MHz to 4 GHz to highlight the subtleties of one round.  
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Figure 4.10: Leakage evaluation of a t-private masked substitution-box 

feedback design including Welch’s t-test, correlation, and mutual 

information.  

 

The round occurs at just after the 150-ns marker. Looking just at 1st and 2nd moment Welch’s t-

test, notice that both 1st and 2nd moment leakage is present. However, they occur at distinct times 

within the round. At the beginning of the round, only 1st moment leakage is revealed, followed by 

2nd moment, 1st again, and then a combination of both. Mutual information, on the other hand, 

shows data dependence though the entire round much clearer than other tests. Another point of 

interest occurs around time 130ns; there is a “hit” on the 2nd and fourth moment t-tests. However, 
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we know this is a false positive because it does not occur on a clock edge and the simulated design 

shows no activity at that time. This most likely means that 1,000 traces are not adequate to provide 

an accurate t-test result. That population size is, however, enough to provide a strong MI result. 

Up until this point we have only been examining the fixed vs. random test. However, it is common 

to evaluate this type of design with an algorithm-specific test. Tests that are specific to AES 

uncover leakage that is more likely to allow a key attack. For this test, the output of each AES 

round was calculated for each trace. The 2nd round is arbitrarily chosen as a target. Each trace’s 

selector is derived from the exclusive-or between the 2nd round’s input and output state. This 128-

bit represents the Hamming Distance of the AES state register.  

 

Figure 4.11: AES leakage evaluation results for an AES specific test targeting 

round 2 (time 215ns). 

 

In practice, an attacker may only use one bit of this value as the trace selector. However, since we 

are performing leakage assessment it is more useful to use the entire state, even if this is not a 

practical attack. Below are the results of this test. 

As expected, each analysis reveals leakage at the 2nd round shortly after the 200-ns mark. Since 

the selector uses output of the first round as well, we also see a smaller hit at the first round. This 
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should also continue back to the original state load, as seen in both correlations and the t-test. 

However, mutual information does not clearly identify very small differences in mean relative to 

the total spread of the two groups’ distributions; thus, the first peak is lost with MI. 

4.2.3 AES Encryption (Power Traces) 

Theoretically, the results from this test should be comparable those of the simulated results. The 

leakage vectors under analysis are physical power measurements instead of Hamming Weight 

calculations from post-implementation timing simulations. The following figure shows what these 

traces look like. 

 

Figure 4.12: Plots showing average of 200 power traces (left), the frequency domain of this sample, 

and overlapping plots of this sample. At the clock edges of all 10 AES rounds, power consumption is 

much greater than variance from noise. With enough traces, this noise is eliminated on average. The 

first round consumes slightly less power as it only performs round key addition. The data-key XOR 

consumes a small amount of power, but not more than the amplitude of noise. The x-axis is number of 

samples at 1.1 GHz and the vertical axis is measured in Volts. Most information is found between 10 

MHz and 100 MHz. Higher frequencies were filtered to avoid aliasing. 

 

As shown in the figure, the trace contains about 11 clock cycles of interest. The first performs 

some setup including combining the data and key to produce round keys. The following 10 are the 

actual AES rounds. The first round, which occurs right before the 1000th sample, consumes visibly 

less power since it only performs round key addition. There is significant noise present, as the 

signal of interest is very small. The effects of this noise are diminished as trace count increases. 

The trace set must be large enough for the tools to confidently identify a difference in the two 

groups. With a set of 15,000 traces, a clear difference in mean is noticeable at the 5th round power 

impulse. The average of the fixed group, shown in blue peaks at a higher amplitude than the 
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random group. Looking at the histogram for the maximum voltage value of this round shows two 

distributions that clearly differ in mean. 

 

Figure 4.13: Plot showing that there at least exists first 

moment power leakage in this circuit. At the peak of round 

5, this normalized histogram shows that the groups have 

different averages and roughly the same variance. Blue is the 

fixed group and green is the random group. The horizontal 

axis is bin number. 

 

The results of two 5,000 trace sets (for a total of 10,000 traces) are shown below. They illustrate 

the difference seen in results quality after organizing the instrumentation setup. 
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Figure 4.14: Full analysis results for the same AES implementation, both for 10,000 power 

traces. The instrumentation set-up remained largely the same, but was organized so shorter 

cables could be used without intersection or coiling. This yielded power traces that did not 

suffer as much from environmental noise or the coaxial cables’ impulse response. The results 

from the new set of traces are stronger and more precise. 

 

Each set of results show t-test hits at most of the expected clock edges. Mutual information 

however, is lacking in significant hits by comparison. As previously stated, mutual information 

may take more traces to yield significant hits. Therefore, another power trace capture was 

performed for a total size of 100,000 traces. The results of this collection for the fixed vs. random 

test is shown below: 
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Figure 4.15: Results of power side-channel risk assessment with 100,000 

traces. For this many traces, mutual information produces clearer hits than 

the moment targeting tests. The peak of each hit is very significant relative 

to its threshold. 

 

With this many traces, we see that mutual information does reveal leakage at every expected 

location. In fact, the relative significance of each hit is much greater for MI than the t-test; The 

most significant hit is about 50 times greater than the MI threshold, compared to the same t-test 
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being only about 15 times greater. Scaling the y-axis helps see some of the smaller hits in each 

analysis. 

 

Figure 4.16: Zooming in on results of power side-channel risk assessment 

with 100,000 traces.  
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5 Conclusion 

From the results discussed in the previous section, it appears mutual information could serve an 

important role in power side-channel risk assessment. The clear advantage is that mutual 

information identifies all types of leakage without relying on statistical moment estimation or 

assuming other adversarial strategies. However, it still may not be suitable for all situations. 

Statistical moment targeting tests will identify leakage with fewer traces than the more universal 

mutual information analysis. If trace collection time is an issue, this may be an important factor. 

However, there seems to be a point where mutual information begins to yield more statistically 

significant results. At these higher population sizes, mutual information’s precision increases to a 

level that is unattainable by the t-test.  

This crossing point is greatly dependent on the signal-to-noise ratio of the set of observations. This 

was seen on multiple occasions. In the unit test which varied SNR of multiple distributions, it was 

clear that mutual information yielded more significant results until noise was added. At the SNR 

in which the mutual information statistic became insignificant, the t-test was still above its 

threshold. Also, looking back at the simulated AES results, it took very little traces for mutual 

information to surpass the precision of other tests. This was the case in all simulation results 

because noise is not as prevalent. So, in the case of simulation, less traces would be required to see 

very confident leakage hits. For power trace results, however, noise is very strong compared to the 

signal of interest. At 10,000 traces, we saw that the t-test identified every AES round and MI only 

identified a few. But at 100,000 traces, the significance of MI at each round surpassed that of the 

t-test. From these tests, it is conclusive that moment targeting analyses identify sources of risk in 

fewer hits, but with more traces one can see far more precise results mutual information. If this 

level of precision and leakage generality is desired, mutual information could be a solution. 

Otherwise, in most situations the t-test will yield adequate leakage hits in fewer traces. 
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