
Project number: EFR-1301

Simulation of Early C. elegans
Embryogenesis

A Major Qualifying Project Report:

submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the

Degree of Bachelor of Science

By

Rachel Warden BB ’14 and CBC ‘14

Sarah Thayer BCB ‘14

Rachel Wigell CS ‘15

Advisors:

Professor Elizabeth Ryder, Biology Advisor

Professor Matthew Ward, Computer Science Advisor

Date: April 18, 2014

i

Abstract:

Simulations are powerful tools that can be utilized to understand complex mechanisms within a system.

Our project focuses on simulating the first several cell divisions of C. elegans embryogenesis. C. elegans

is used as biological model for development, aging, and cell biology and is an ideal simulation

candidate. Our four-dimensional simulation contains known information and hypotheses about molecular

interactions within cells. Using rules to represent biological functions, our project visually and

computationally shows the effects of several different mutations.

ii

Acknowledgements:

Thank you to our wonderful advisors, Matthew Ward and Elizabeth Ryder, for their guidance throughout

this process. Anthony Santella, Yicong Wu, and Hari Shrof were invaluable in helping our group attain

3D images of nuclei positions of the wildtype C. elegans. Finally, a special thank you to Ken Kemphues

for sending us videos from his lab.

iii

1 Introduction ... 1

2 Background ... 4

 C. elegans .. 4 2.1

2.1.1 Some Basic C. elegans Terminology and Nomenclature .. 4

2.1.2 PAR Proteins ... 6

2.1.3 Determining of Cell Fate ... 7

 iSPIM and AceTree ... 8 2.2

 Simulations and the Simulation Cycle .. 9 2.3

 Object Oriented Programming .. 10 2.4

3 Related Works ... 12

 Biological Simulations .. 12 3.1

3.1.1 The Virtual Cell .. 12

3.1.2 SmartCell .. 13

 C. elegans Simulations .. 14 3.2

3.2.1 The Perfect C. elegans Project .. 14

3.2.2 Modeling Signaling Crosstalk ... 15

3.2.3 OpenWorm .. 16

4 Laboratory Methods .. 18

 Growing and Maintaining C. elegans ... 18 4.1

 Strains Bred for iSPIM Imaging ... 18 4.2

 Strain Design ... 19 4.3

4.3.1 RY1320 ... 19

4.3.2 RY 1321 .. 19

4.3.3 RY1323 ... 20

4.3.4 RY1325 ... 20

4.3.5 RY1328 ... 20

 Freezing and Thawing Strains... 21 4.4

5 Computational Methods .. 22

 Project Scope .. 22 5.1

 Data Collecting ... 23 5.2

 Computational Design .. 23 5.3

5.3.1 Methods Considered ... 24

iv

5.3.2 Event Handling ... 25

 Implementation ... 27 5.4

5.4.1 Creating Visuals Using Processing ... 27

5.4.2 Processing Libraries .. 28

5.4.3 Data Structures and Time Complexity .. 29

5.4.4 Non-determinism .. 29

5.4.5 Extending the database .. 30

5.4.6 Wildtype and Mutations .. 30

 Methods and Implementation Summary ... 30 5.5

6 Results ... 32

 Laboratory Results .. 32 6.1

 Biological Rules Developed.. 33 6.2

 SimWorm14 .. 33 6.3

6.3.1 SimWorm14 Interface ... 33

6.3.2 SimWorm14 Outputs .. 36

 Molecular Reality .. 38 6.4

6.4.1 Gene Expression and Protein Location ... 38

6.4.2 par Mutants ... 40

 Visualization Results .. 41 6.5

6.5.1 Cell Shape and Volume ... 41

6.5.2 Cell Movement and Location .. 43

 Comparison to Previous Research .. 45 6.6

6.6.1 SimWorm13 .. 45

6.6.2 Other C. elegans Simulations .. 46

7 Conclusion .. 48

 Future Development .. 48 7.1

8 References ... 50

9 Appendices .. 53

 Appendix A: Implementation Guide ... 53 9.1

 Appendix B: Cytoscape Image of Protein Interactions ... 56 9.2

 Appendix C: Full Antecedents and Consequents Table .. 57 9.3

 Appendix D: Javadocs .. 58 9.4

 Appendix E: Glossary ... 58 9.5

1

1 Introduction

As the amount of information on biological systems grows, so does the need for a way to integrate all of

this information into one source. Even the most simple of biological interactions is much more

complicated than can be fully described in a static drawing or in a paragraph of text. Computational

models allow researchers to observe many different phenomena at once.

There are two main computational approaches to studying a complex system. The first of these, data-

mining, is extracting patterns and pieces of information from large amounts of experimental data. The

findings of data-mining can be used to pose hypotheses. Data-mining has a variety of biological

applications including predicting protein structure from an amino acid sequence and creating gene

regulatory networks. In contrast, simulations of a system are created using assumptions for that system

and tested for accuracy (Kitano, 2002). If the output from the simulation is comparable to the biological

system, then one can infer that the assumptions used to create the simulation are correct. Once a

simulation is verified to be accurate, it can be used to test further hypotheses and to make predictions.

Due to recent advances in high-throughput research, simulations are becoming more feasible to generate

from available data.

Simulations offer a variety of advantages when compared to other computational methods or laboratory

experimentation. One such example is understanding a system holistically by using data for different key

components. For example, if we have an organism’s genome, proteome, transcriptome, etc., do we know

how a cell within the organism actually operates? Simulations offer a way of putting several puzzle

pieces together and understanding the way different system components interact. Simulations also allow

researchers to study one mechanism within an organism in depth and allow hypothesis testing for that one

system before they understand the whole organism. For example, simulations have been used to model

signaling crosstalk in cells independent from the entire organism.

As previously mentioned, simulations can be integral in hypothesis testing. There are two forms of

hypothesis testing that are performed during a simulation cycle. The first of these concerns the validity of

the assumptions originally used to create a simulation. These hypotheses can be tested by checking the

simulation against real, biological data to see if the simulation is running as expected. If the simulation

deviates too far from the biological system, then researchers need to reevaluate the original assumptions.

This also allows clarity in understanding a system as a set of rules that come together to create the entire

system.

The second form of hypothesis testing happens once the simulation is complete. Then, data generated

from the simulation can be tested against hypotheses for the system and analysis can be performed with

relative confidence that the results match the biological system. This offers logistical advantages by

reducing the amount of time and cost that goes into generating quantitative data. Once a simulation is

deemed accurate, it can be used to generate additional data at a fraction of the time that it would take to

perform the laboratory experiments necessary to generate the same amount of data. This information

gained from the simulation can be trusted as relatively accurate and be used to guide the direction of

future research and laboratory experimentation. Consequently, simulations also reduce the number of

costly laboratory experiments that need to be run.

2

This project is concerned with a simulation of the model organism C. elegans. C. elegans is studied for

various biological functions such as neurobiology, aging, cell biology, and development. The advantages

of using this organism in a laboratory setting are numerous. C. elegans is easy to culture, has a high

reproduction rate, matures quickly, is transparent and therefore allows for easy observation of fluorescent

markers, and has only 959 somatic cells in the adult hermaphrodite (Kaletta, 2006). Despite the

advantages that make C. elegans a model organism, there is still a lot to learn from this model. For

example, researchers use C. elegans to elicit information about the more complex neurological functions

of humans. Because of its scientific importance and its relative simplicity, C. elegans is the ideal subject

to create a biological simulation.

By simulating C. elegans, we hope to create both a teaching and research tool. Interactive simulations can

be helpful tools in conveying complex mechanisms that occur on the cellular or molecular level that are

hard to show in real time in a lab setting. Since C. elegans is used to research many different genetic

phenomena, a simulation about a particular pathway in this organism can give insight about a similar

pathway in a more complex organism. In addition to being used to teach biological concepts, this project

also allows students to manipulate and change variables in the current simulation. By making changes to

the simulation settings, students can generate and test their own hypotheses as well as learn how to work

in an interdisciplinary environment.

To encourage future improvement, our simulation allows for open access modification. The code is

written in Java and uses Processing, a user-friendly way to create visuals with Java. The simulation code

is hosted on Github, a forum which allows anyone to modify and borrow posted code. User-friendliness is

a major consideration for the project as ultimately we would like anyone to be able to collaborate on

improving and adding to the functionality of the simulation. One team alone was not able to fully

simulate all of the possible genetic variations for C. elegans, but by allowing researchers to modify and

collaborate on the simulation it can become more detailed over time.

There were several defined goals of this project. The first was to create a rule based simulation of early C.

elegans embryogenesis up to the 26-cell stage. The rules include when the cells divide, the volume

distribution among daughter cells, and how the proteins interact and are inherited. The second goal was to

make the simulation have stochastic, or probabilistic, features. We also wanted to track the proteins that

affect cell polarity and cell fate as well as the effects of mutations in genes that affect cell polarity in

embryogenesis. Specifically, we wanted to look at PAR proteins, which have a major role in

assymetrically distributing proteins in the embryo. Much information is known about these proteins such

as their impact on early embryo development and mutation phenotype. The final goal was to demonstrate

the usefulness of simulations in the study of biological systems.

More broadly, we hope to demonstrate the advantages of computational analyses of biological systems

and the potential for interdisciplinary collaboration in biological research. To help future parties develop

and learn from this process and simulation, the code will be implemented in an extensible way.

In this paper, we discuss some background information that allows readers to understand basic C. elegans

biology as well as relevant computation methods for analyzing a biological system. We also discuss

3

related works that not only include biology simulations but also include C. elegans –specific simulations.

The rest of the paper goes through the process of creating the simulation, SimWorm14, the outcome of

our project, and future recommendations.

4

2 Background

 C. elegans 2.1

SimWorm14 focuses on the beginning of development of the nematode C. elegans. This organism is ideal

for developing a computer simulation because of its simplicity and the wealth of knowledge that has been

documented on the species. The worms have two sexes: male and a self-fertilizing hermaphrodite. As

adults, the animals have only approximately 1,000 somatic cells which allow researchers to study their

development and neurological systems in great detail; this is a unique feature of C. elegans because it is

nearly impossible in more complex organisms (Atlun, 2006). The worms are microscopic in size and can

be easily maintained on agar plates with E. coli as food. Their transparency and size also make them

easily observable at a cellular level. The worms become reproducing adults approximately 3 days after

they are born, which means that breeding and repetition of experiments can happen relatively fast (Atlun,

2006). This allows researchers to obtain a lot of information in a relatively short period of time.

C. elegans is also extremely well documented as a species. The fate and lineage of every somatic

wildtype cell has been traced and is highly invariant between individuals. During embryogenesis 671 cells

are generated, with either 113 (hermaphrodites) or 111 (males) undergoing apoptosis. The remaining cells

either terminally differentiate or become postembryonic blast cells (Sulston, 1983). Besides the lineage of

the cells, many of the genes in C. elegans have known functions and many of the interactions between

these genes are known.

The data on the growth and development of C. elegans helped us create an accurate simulation of the

species. Since there is such a vast knowledge of the species and only a short amount of time to create our

project, we focused on some of the genes and proteins that affect the very beginning of embryogenesis. In

the future, other data can be added to the project to help simulate what happens further on in C. elegans

development.

2.1.1 Some Basic C. elegans Terminology and Nomenclature

C. elegans is described by three principle axes: anterior-posterior (A-P), dorsal-ventral (D-V), and left-

right (L-R) (Fig. 2-1). These axes help provide a coordinate system for the nematode and are used to

describe the position of individual cells. The A-P axis refers to the front and back end of the embryo, the

D-V axis refers to the top and bottom of the embryo, and the L-R refers to the two sides of the embryo

(Gönczy, 2005).

Figure 2-1: Depiction of a C. elegans embryo at the 8-cell stage (Adapted from Gönczy, 2005). The axes are labeled with the

abbreviations for the three principle axes. The most anterior part of the embryo is to the left. It is customary to orient photos and

drawings of C. elegans with the anterior (A) to the left and posterior (P) to the right.

5

The embryo starts as a single fertilized cell and divides into smaller daughter cells until it hatches at 558

cells (Sulston, 1983). These cells all originate from the six founder cells: AB, E, MS, C, and D are the

five somatic founder cells and P4 is the germline founder cell. The five somatic founder cells were named

arbitrarily and progeny are named by adding lowercase letters indicating their approximate axis of

division (Sulston, 1983). For the first part of C. elegans development all of the cells follow these

nomenclature rules, except for the daughters of P4 which are named Z2 and Z3.The figure below shows the

six founder cells and the basic nomenclature of the descendants of the founder cells.

Figure 2-2: Early cells in embryogenesis (Adapted from Riddle, 1997). This lineage diagram shows the six founder cells with

the somatic cell founders blocked in orange and the germline founder blocked in green. The two daughters are labeled below the

parent cell. The vertical axis labels the time of development at 25oC.

Figure 2-3: Founder cells’ formation (Adapted from Rose, 2005). It can be seen that P0, P1, P2, P3, and EMS divide

asymmetrically to form the six founder cells.

6

The parent of each founder cell asymmetrically divides with its daughter cells inheriting different mRNA

and proteins as well as obtaining two different sizes. The asymmetrical sister cells also divide at slightly

different times and have different tissue fates. The descendants of each founder cell generally all have the

same volume and divide synchronously. As displayed below, P1, P2, P3, and P4 inherit a smaller volume

than their sister cells and E inherits a smaller volume than MS (Figure 2-3).

2.1.2 PAR Proteins

Before the oocyte is fertilized, the cell is fairly uniform. Once the sperm enters the cell, the centrosome it

donates breaks this symmetry and causes anterior and posterior polarization of the cell (Motegi, 2013).

After this initial break in symmetry, the partitioning defective (PAR) proteins come into play. PAR

proteins are a set of cytoplasmic proteins that are involved in the asymmetric divisions of C. elegans.

PAR proteins control cell polarity and help determine cell fate. In the zygote PAR-3, PAR-6, and atypical

protein kinase C-like 3 (PKC-3) form the anterior domain, PAR-1 and PAR-2 form the posterior domain,

and PAR-4 and PAR-5 remain uniform throughout the cytoplasm and cortex (Figure 2-4; Nance, 2005b).

Figure 2-4: Distribution of the PAR proteins in C. elegans zygote (Macara, 2004). PAR-3, PAR-6, and PKC-3 are enriched in

the anterior cortex, PAR-1 and PAR-2 are enriched in the posterior cortex, and PAR-4 and PAR-5 are uniform throughout the

cytoplasm and cortex.

Before the first cell division, cytoplasmic flow helps guide the PAR-3, PAR-6, and PKC-3 towards the

anterior of the cell and restricts PAR-1 and PAR-2 to the posterior. PAR proteins help to localize each

other and maintain their distinct domains of the embryo. The asymmetrically distributed PAR proteins

also direct the asymmetric localization of MEX-5/6, MEX-3, and GLP-1 toward the anterior and PIE-1,

POS-1, MEX-1, and SKN-1 toward the posterior (Rose, 2005; Gönczy, 2005). When there is a mutation

in any of the par genes, these proteins can become mislocalized and alter the tissue fate of many of the

cells in the embryo. In addition, mutations in the par genes generally cause equal and synchronous

cleavages throughout development (Rose, 2005).

Between the 4-cell and 26-cell stages the PAR proteins become important to the apicobasal polarization

of the embryo cells. PAR-3, PAR-6, and PKC-3 become restricted to the apical surfaces of the cells

starting in the late 4-cell stage. PAR-1 and PAR-2 become restricted to the sites of cell to cell contact.

PAR-5 remains uniform throughout the cytosol and is thought to help with the interplay between the

anterior and posterior PAR proteins. The PAR proteins gradually degrade after gastrulation begins

(Nance, 2005b).

7

Table 2-1: PAR Proteins and their Function in Early Embryogenesis

Protein Wildtype location at 1

cell stage/ early embryo

Function

PAR-1 Posterior cortex/

basolateral cortex

A kinase that excludes PAR-3 from the posterior of the

zygote and helps localize SKN-1 and PIE-1

PAR-2 Posterior cortex/

basolateral cortex

Helps localize PAR-1 and restricts PAR-3 to anterior in

presence of PAR-1

PAR-3 Anterior cortex/ apical

cortex

Forms a complex with PAR-6 and PKC-3 and helps localize

PAR-1 and PAR-2

PAR-4 Uniform throughout A kinase that helps activate PAR-1 and localizes P granules

to the posterior and GLP-1 to the anterior.

PAR-5 Uniform throughout Helps localize P granules, PAR-3, and MEX-5. Helps

maintain the boundary between the anterior and posterior

PAR proteins.

PAR-6 Anterior cortex/ apical

cortex

In a complex with PAR-3 and PKC-3. Helps maintain PAR

asymmetry during early embryogenesis.

PKC-3 Anterior cortex/ apical

cortex

Phosphorylates PAR-1 and PAR-2 excluding them from the

anterior.
Information for this table was compiled from several sources: (Morton, 2002), (Boyd, 1996), (Aceto, 2006), (Nance, 2005b),

(Reese, 2000), (Motegi, 2013), and (Crittenden, 1997)

2.1.3 Determining of Cell Fate

In the wildtype, the cell fate of every cell is known. These fates are determined partly by the proteins that

the cells express. Mutations that change protein expressions can change a cell’s fate. As described in the

previous section, par mutants can cause certain proteins to become mislocalized. The proteins that are

mislocalized can change the cell fates by inhibiting normal protein expression or by activating abnormal

protein expression. These reactions can be fairly complicated, but the table below (Table 2-1) lists a few

of the proteins that this project focuses on and their role in determining cell fate.

Table 2-2: Proteins in the Early Embryo and their Function

Protein Description

SKN-1 Required to specify EMS cell fate, suppresses PAL-1 expression

PIE-1 Required to specify germline cell fate, suppresses SKN-1 and PAL-1 expression

PAL-1 Required to specify C and D cell fate

GLP-1 Transmembrane protein that binds to APX-1 and other ligands to produce the

different AB cell fates

APX-1 A protein secreted from P2 that binds to GLP-1 to determine ABp cell fate

MEX-1 Highest concentration in the germline cells, involved in APX-1 regulation

MEX-3 Inhibits PAL-1 translation in the anterior in wildtype

MEX-5/6 Prevents PIE-1 accumulation in the anterior in wildtype
Information for this table was compiled from several sources: (Tabara, 1999), (Huang, 2002), (Gönczy, 2005), and (Rose, 1998)

Although this is not the full list of proteins that are involved in fate determination, one might imagine that

even if these few proteins were in the wrong cells that there might be significant consequences. For

8

example, if MEX-3 were distributed to all of the cells and not only to the AB lineage, PAL-1 would not

be translated in any of the cells and thus prevent any cell from having the C or D cell fate.

 iSPIM and AceTree 2.2

In order to be able to compare our model to biological data, we used iSPIM (Wu, 2011) and AceTree

(Boyl, 2006) to track C. elegans nuclei through early embryogenesis. Inverted selective plane illumination

microscopy (iSPIM) is a noninvasive high-speed volumetric imaging technique that was developed by

Yicong Wu and Hari Shroff with help from their colleagues at Yale University and Memorial Sloan-

Kettering Cancer Centre. With this tool, C. elegans embryos can be constantly monitored by having their

volumes scanned every 2 seconds over the course of embryogenesis with no detectable phototoxic effect

(Wu, 2011). Using iSPIM, nuclei labelled with histone:mCherry and other fluorescent markers can be

tracked and then lineaged using StarryNite and AceTree software.

The StarryNite (Boyl, 2006) software is used to track the nuclei recorded in the thousands of iSPIM

images and record the nuclei locations and lineage relationships. AceTree is then used to edit the

information that StarryNite produces and can create a 4D visualization of C. elegans cells. Other

programs, such as SIMI BioCell (Schnabel, 1997), AceDB (Stein & Thierry-Mieg, 1998), and Virtual

WormBase (Rogers, 2008) produce comparable 4D modeling. However, these programs are optimized for

4D differential-interference-contrast (DIC) image series but are not ideal for showing fluorescence to

track genes through embryogenesis. AceTree was developed specifically for the purpose of using

fluorescence, making it a useful addition to the existing programs. It was also useful to develop AceTree

in conjunction with StarryNite to maintain compatibility and create an open source package from which

other developers can learn (Boyl, 2006).

Figure 2-5: AceTree (Boyl, 2006) visualization pane and 3D rendering. The visualization pane showing the 2D tracking of

nuclei at time point 37 and plane 15 (left), 3D rendering of the nuclei at time point 37 (right). In both images the cell ABal is

highlighted.

AceTree provides various features to help view the data. A cell can be tracked using the nucleus identity

through the visualization pane which displays the labeled nuclei at a specific time point and plane. The

nuclei can be annotated using conventional Sulston naming standards by editing the lineage. This

involves deleting false nuclei identifications and connecting daughter cells to the parent cell. Using the

lineaging data, various ancestral trees can be constructed to better track the cellular divisions. One of the

more important features of the program relevant to this project is the ability to create a 3D image of the

9

nuclei positions in the embryo. This 3D rendering not only tracks the cell identities but the lineage

according to a user designated color scheme.

The motivation behind developing this tool was to track the nuclear position of cells expressing certain

transcription factors. For example, several of the strains designed and generated during this project

contain the marker ceh-10:GFP. This marker enables the visualization of the cells that express the CEH-

10 transcription factor. CEH-10 is important for the differentiation and development of a subset of

neurons, and by labelling these neurons, their migration can be followed throughout embryogenesis (Wu,

2011). By imaging different mutant strains, researchers can see how different genes affect the migration

of these neurons.

AceTree continues to be developed, constantly increasing accuracy and decreasing the amount of time it

takes a user to annotate the data. The long term goal of the project is to help researchers analyze data that

is less easily quantifiable.

 Simulations and the Simulation Cycle 2.3

Simulations are computer generated methods of studying a system. Mathematical or logical assumptions

are made about a system to make up the model. Sometimes these mathematical relationships can give an

answer to the question at hand to produce an analytic solution. Oftentimes, however, a real-world system

is too complex for this and a simulation must be used. A simulation evaluates a model using mathematics

which are then used to estimate characteristics of a system. There are three important characteristics that

describe a model.

The first characteristic describes a simulation as being either static or dynamic. A static simulation is used

for either a system at one time point or a system where time does not play a role. A dynamic simulation,

however, deals with the changes of a system over time. The next characteristic is either deterministic or

stochastic. A deterministic model does not use probabilities to predict the events in a simulation and will

always produce the same output given a specific input. A stochastic model introduced variability by using

probabilities to produce random outputs given a specific input. The third characteristic is either discrete or

continuous. Discrete simulations, or discrete event simulations, have events that occur at specific time

points which change the state of the system. Continuous simulations do not use specific time points to

change events, but rather, events change the variables continuously (Law, 2000).

Simulations are becoming an integral part of analyzing biological data because programs can produce a

high quantity of results which can then be compared to experimental data. The comparison of simulation

generated data against experimental data is called the simulation cycle. As described in Fisher, 2007, the

simulation cycle is the process of developing a program over time based on two findings: the simulation

accurately matches biological observations or the simulation does not accurately match biological

observations. The first case is that if the simulation’s output is comparable to the experimental results,

then the model can be considered accurate. Thus, researchers can move forward generating more data

from the model and assume that it is biologically accurate. However, if the simulation and experimental

data are not comparable, then the simulation needs to be adjusted (Fisher, 2007).

Harvest algorithms are an example of the simulation cycle in progress (Cooke, 1999). These algorithms

use available data to recommend a sustainable harvest level which is integrated into the fisheries’

10

management policy. Figure 2-6 shows a summary of this process which begins with data being used to

develop the algorithm. Then, the algorithm is used to make decisions for the fishery. The results of these

decisions are recorded in research data as well as used as fishery data to compare against the model. If the

fishery data shows that the model requires improved accuracy, further research data is collected as

denoted by the dotted arrow.

Figure 2-6: Summary of the simulation cycle for developing a harvest algorithm (Adapted from Cooke, 1999)

Another notable feature of developing a harvest algorithm includes starting with a simple array of

possibilities. This means that researchers must take a minimalistic approach and limit the number of

factors and scenarios that they take into account. This is for simplicity and allows researchers to make

sure the model works in the most basic form. Then, if the results are verified for the simplistic model,

further developments can be made to make the model more complex (Cooke, 1999).

There are several advantages to using the simulation cycle for generating data versus only conducting

biological research. For the fishery, it would take years or decades to generate the type of data that they

were looking for to make smart management decisions. It would also require a large sampling of fish

given that different populations vary and could produce varying results on an individual level. For the

simulation, this data could be modelled theoretically without needing a physical population. Simulations

also offer the benefit of hypothesis testing. The fisheries could consequently predict failures using a

simulation and try to prevent them from occurring in reality. This allows them to understand the cause of

a problem whereas, without a simulation, they would only see the issue and not the underlying causes.

Finally, the simulation allows the fisheries to conduct their research at a lower cost compared to real time.

Our project closely followed the simulation cycle by constantly checking the simulation’s output with

biological data. We spent the first part of our project completing in depth research and organizing

collected information in an easily accessible medium. Then, the simulation was created using that data

and the output was compared to the previous research. The simulation was updated according to the

accuracy that was observed.

 Object Oriented Programming 2.4

Object oriented programming is a style of handling data that is used by many languages, including Java,

the language in which our project is programmed. It provides a useful abstraction that allows the

11

programmer to divide the codebase into classes, which represent different concepts that the programmer

hopes to keep distinct. Classes house their own pertinent methods, which are processes which take in

input, perform computations, and produce output. For example, in our project, cells are a class, and all

functionality pertaining to cells is written inside of the cell’s class.

Using an object oriented language to program the simulation was a logical decision. Simulations tend to

involve many different types of objects and complex interactions between different objects. Staying

organized within the class structure helps the programmer to keep track of an immense amount of data.

The code contains classes to represent shells, cells, and genes, as well as some other abstract concepts

such as three dimensional coordinates. The class hierarchy forms itself naturally since it is modelled after

biological reality – shells contain cells, which contain genes.

12

3 Related Works
In order to gain a background of current simulations, our group researched other simulations to

understand their purposes, functions, and contribution to scientific discovery. In this section, we highlight

some general biological simulations as well as simulations specific to C. elegans.

 Biological Simulations 3.1

While simulations are diverse in application, the particular interest of this project is understanding

biological processes. Specifically, we are focusing on C. elegans at the cellular level. This section

highlights select biological simulations that have been previously created on the cellular level and used by

researchers to gain understanding on cellular processes.

3.1.1 The Virtual Cell

Developed at the University of Connecticut Health Center, the Virtual Cell (Loew, 2001) is a platform for

modeling chemical reactions, such as diffusion, within a cell. The basic mechanism is that it takes in

mathematical equations describing the model using Virtual Cell Mathematic Description Language,

VCMDL, and converts it to C++. The program then produces a VCMDL description based on the input of

the program user and resulting model.

Because of the interdisciplinary nature of Virtual Cell, it brings together experimental biologists and

mathematical modelers, thus bridging the knowledge between these communities. Another desirable

feature of Virtual Cell is that it can be used by all levels of disciplines, including those with little

programming background. The model uses a java applet to take in molecule identities, reaction and

transport properties, and cell compartmentalization data, producing a tailored prediction of the molecular

interactions.

Since its creation, Virtual Cell has been used for several research projects. These projects range in

application from pathogen research to cellular insulin secretion. One study used Virtual Cell to simulate

the passive transport system of drugs across membranes. Figure 3-1 shows the setup of the system

described in this paper as created in the Virtual Cell environment.

Figure 3-1: Setup of Virtual Cell environment to test drug transport in the cell (Adapted from Baik, 2013)

The researchers noted that Virtual Cell was an excellent environment for scientists of all backgrounds to

study systems pharmacology and biopharmaceuticals (Baik, 2013). All documented works using Virtual

13

Cell can be found on the Virtual Cell website:

http://www.nrcam.uchc.edu/vcell_models/published_models.html?current=five.

In the future, Virtual Cell developers would like to include automatic linkage to database information so

the simulation can draw previous knowledge from the literature to automatically use those values as input.

The researchers also recognize a fundamental flaw with their simulation – there is no function to handle

changing geometries and therefore simulations of cell migration and mitosis are not suited for this

program (Loew, 2001). In contrast, we would like our simulation to allow for migration as it develops

over time. This is just an example of the various ways simulations can be approached and how the needs

of a researcher can be used to prioritize the development.

Both SimWorm14 and Virtual Cell deal with subcellular interactions, even though our simulation deals

specifically with proteins and Virtual Cell is used for various other interactions. Virtual Cell is also an

important stepping stone when it comes to interdisciplinary research in the computational biology

community. The program is written in a way that appeals to both biologists and programmers, a goal that

we hope to accomplish through our simulation. Virtual Cell is also an example of a simulation with a

narrow scope.

3.1.2 SmartCell

The purpose of SmartCell is to be able to model various biological processes (Ander, 2004). Developers

hoped to compare the predictive results of SmartCell with that of differential equations. It is written in

C++, uses Extensible Markup Language (XML), and works with systems biology markup language

(SBML). There are three categories for entities, or the objects in the simulation: reactants, products, and

effectors. The program outputs a text file that has snapshots of the cell that can be converted to animated

movies or graphs.

Figure 3-2: The SmartCell interface where interactions are visually shown (Adapted from Ander, 2004)

http://www.nrcam.uchc.edu/vcell_models/published_models.html?current=five

14

SmartCell developers prioritized cell geometry in their simulation. To help with the geometry of the cell,

the volume is subdivided into smaller pieces. Then, a set G is defined G = {S, E} where S is the set of

vertices and E is the set of edges.

In the simulation, a stochastic events queue is designed to model either reaction or diffusion events. The

general algorithm is described in the excerpt below:

 1. Set the initial numbers of molecules.

2. Calculate the probability ai for each event i.

3. For each event i, sample a putative reaction time Ti from an exponential distribution with

parameter ai; and add it to the queue of events.

4. Pick the event with the lowest T from the queue of events.

5. Execute the event, recalculate ai; generate a new Ti and add it to the queue of events.

6. Check dependencies and update ‘dirty’ Ts in the queue of events.

7. If the queue of events is not empty, go to step 4, otherwise terminate. (Randel, 2004)

Here, dirty Ts are the reaction times of events that have been changed by subsequent event times.

Because SmartCell uses a stochastic algorithm, it is useful to gain information about certain interactions.

For example, SmartCell has been used in two published articles: “Noise in transcription negative

feedback loops: simulation and experimental analysis” (Mol Syst Biol. 2006;2:41. Epub 2006 Aug 1) and

“Cell type-specific importance of ras-c-raf complex association rate constants for MAPK signaling” (Sci

Signal. 2009 Jul 28;2(81):ra38). In the first article, researchers set up three different reaction circuits and

tested them using SmartCell. In the second article, researchers used SmartCell to simulate the effects of

negative feedback for Ras-cRas binding in correlation with extracellular signal-related kinase activation.

Overall, SmartCell simulates diffusion and localization using a stochastic approach. The results of the

study showed that the stochastic model was much more accurate than the ordinary differential equation

(ODE), deterministic model. Future improvements include automatically scanning images to pick up on

cell geometry, linking the graphical user interface (GUI) to databases, parallelization of the code, and

incorporating other approaches such as ODEs and hybrid modeling.

 C. elegans Simulations 3.2

Although C. elegans is a model organism for various reasons, it is still complex and therefore simulations

are useful in fully understanding different molecular interactions. The following section outlines some

previous simulations used to research C. elegans.

3.2.1 The Perfect C. elegans Project

The Perfect C. elegans Project (Ketano, 1998) developers’ main goal was to see if researchers were able

to computationally recreate genetic interactions that match the phenotypic response in living organisms. It

can also be used to visualize embryogenesis and identify cells that are interacting during that period.

Although this project made three simulations, the one that pertains most to our MQP is the visualization

and simulation of embryogenesis.

15

The embryogenesis simulation gives a 4D model that shows cell interactions and dynamics that runs from

the first cell to approximately 600 minutes after the initial cell division. Shapes were derived from

qualitative data, drawings, cell lineage charts, and migration data. This data was compiled into a computer

readable chart. Although cell shape was not completely realistic in the simulation, around 200 minutes the

embryo shape changes to a “comma” which was achieved by bending the cylindrical coordinate system

(Ketano, 1998) as shown in figure 3-3.

Figure 3-3: Cellular model of C. elegans for the Perfect C. elegans Project (Adapted from Ketano, 1998). The comma shape

of the embryo can be seen by the indentation in the middle, left of the cell mass as indicated by the red arrow. The cells are

encompassed by a shell structure.

The achievement of modeling embryogenesis on a cellular level is a large step in C. elegans research but

our project group endeavors to include greater protein detail than this model from The Perfect C. elegans

Project. While visualization is a large component of our project, we are also incorporating gene

expression data into our simulation in a way that makes it stochastic. Making the simulation probabilistic

is what really sets our project apart from previous research.

3.2.2 Modeling Signaling Crosstalk

In the study presented in (Fisher, 2007), developers recognized the importance of having a dynamic,

phenomenon-based simulation compared to a static model. They wanted to model the development of C.

elegans vulva, specifically tracking the inductive and lateral signaling pathways. Because the model is

written in reactive modules (RM), modules are used to describe objects in the system and contain

variables pertaining specifically to the module.

The three main modules used in this simulation are worms, a gonadal anchor cell (AC) and six identical

vulval precursor cells (VPCs). The AC module has variables that define if it is ablated or formed and the

sensitivity to inductive signals from the VPCs. The VPC module variables are pathway behaviors

including lateral signaling and inhibition. To test the model, experimental cell fates were compared to

simulation cell fates (Fisher, 2007). This shows not only the relationship in biology between creating

16

objects, such as the worms, VPC and AC, but also the importance of using simulations to test hypotheses

about experimental work.

This model focuses on very distinct intercellular interactions, an example of simplifying a system using a

simulation. Similarly, our project begins looking at another specific piece of development; We narrowly

looked at PAR protein interactions during early embryogenesis.

3.2.3 OpenWorm

OpenWorm (Idili, 2011) is a project that intends to make an open source simulation of adult C. elegans

using biological data available from various databases and experiments. Their ideal result would be a

model that simulates every single cell in C. elegans. However, to accomplish this, developers are

simulating one feature at a time. Currently, they have a movement model which emulates the movement

of the organism, as shown in Figure 3-4. They plan to continue development by modeling the nervous

system next.

Figure 3-4: Muscle cells within C. elegans as simulated for OpenWorm (Adapted from Idili, 2011). Understanding C.

elegans movement at different levels helped developers create a successful model to simulate the complex movement. In this

figure, muscle cells are shown and color coded according to function.

This data is compiled into a platform entitled Geppetto that can run the different models simultaneously.

The code is available on GitHub and those interested are encouraged to study and alter it for their own

learning. Ultimately, the researchers aim to create an open environment where interested individuals can

come to learn. This is also shown through their website, openworm.org, which helps any viewer

understand the project and gives access to many of the project’s documents. These documents include the

working code, media downloads for both CS oriented individuals and biologically oriented individuals,

and data spreadsheets. Anyone is invited to the core team meetings via Google hangouts because this

practice does “a good job at expressing the true spirit of OpenWorm: openness, transparency and of

course, science!” The developers have also created an interactive model of C. elegans online where an

audience can come and learn about the different systems and rotate the model freely. OpenWorm is

important because its priority is education to the public, and it bridges multiple data sets to create a

complete picture of C. elegans.

17

Compared to our model, the approach is very similar in that this project will be completed by reducing the

characteristics of a cell and completing one phase of the simulation at a time. However, unlike

OpenWorm, we are focusing on early embryogenesis and how the worm develops over time. OpenWorm

is strictly looking at a fully developed adult.

18

4 Laboratory Methods

 Growing and Maintaining C. elegans 4.1

C. elegans were grown on Nematode Growth Media agar plates spotted with the mutant E. coli strain

OP50. Strains not currently being used in experimants were grown at 15
o
C and maintained once a week

by transferring three L4s to a new plate, with the exception of N2Ms which were maintained by

transferring three L4s and ten males to a new plate. Transferring or picking of individual worms involved

observing the worms under a dissecting microscope and using a worm picker with a blob of E. coli at the

end of it to transfer the worms. The worms stuck to the E. coli and were transferred to plates or slides.

The worm picker had a platinum wire at the end of it which was flamed before and between transfers to

reduce contamination.

 Strains Bred for iSPIM Imaging 4.2

The Tables below list the fluorescent markers, strains used to create additional strains, and the strains that

were newly constructed during the course of this project.

Table 4-1: Fluorescent Marker Description

pie-1 :: H2B:: wcherry Red histone marker for early embryonic cells

his-72 ::HIS-72::wcherry Red histone marker for larval and adult cells

ceh-10 ::GFP Green marker for the CAN neuron

pgp-12 ::GFP Green marker for the excretory cell

vha-1::GFP Green marker for the excretory cell that can be imaged

dlg-1::GFP Green marker for epithelial cells

Table 4-2: Strain Description

N2M Wild Type mating strain

BV117* ceh-10::GFP; his-72:: HIS-72 :: wcherry; pie-1:: H2B :: wcherry

BW315 mig-10 (ct41)

RY1212 mig-10 (ct41); pgp-12::GFP

VA74M abi-1(tm494); pgp-12::GFP

unknown unc-34(gm104)

RY1221** mig-10 (ct41); ceh-10 :: GFP; his-72 :: HIS-72 :: wcherry; pgp-12::GFP

FT48 dlg-1::GFP;him-8
*Kindly provided by Zhirong Bao’s lab. This wildtype strain was used to produce the AceTree (Boyl, 2006) images.

**Developed by the previous simulation group (Brandon, 2013). Was used in the cross that produced RY1320.

Table 4-3: New Strains Constructed

RY1320 mig-10 (ct41); ceh-10::GFP; his-72::HIS-72::wcherry; pie-1::H2B::wcherry; pgp-12::GFP

RY1321 mig-10 (ct41); ceh-10::GFP; his-72::HIS-72::wcherry; pie-1::H2B::wcherry

RY1323 abi-1(tm494); ceh-10::GFP; his-72::HIS-72::wcherry; pie-1::H2B::wcherry

RY1325 unc-34(gm104); ceh-10::GFP; his-72::HIS-72::wcherry; pie-1::H2B::wcherry

RY1328 mig-10(ct41); dlg-1::GFP

19

 Strain Design 4.3

This section describes the crosses that were performed to obtain the strains that are presented in Table 4-

3. For each mating, approximately ten males and three L4s were transferred to the same plate, and the C.

elegans that were produced from these matings were used in the next step of the cross. The plates that

were used for these crosses were stored at either 15
o
C or 20

o
C.

To check if the strains contained the desired markers, L4s and gravid, or pregnant, hermaphrodites were

picked to a glass slide with an agar pad and observed under an inverted fluorescent microscope. Location

of the worms on the slide were recorded prior to observation under the fluorescent microscope. Desired

worms were recorded on the location map then picked from the slides and put on a new agar plate with E.

coli.

Table 4-4: Legend for Crosses
x indicates breeding between two different strains of C. elegans

 indicates that the desired offspring of mating directly above the arrow were selected

to continue the cross

 indicates that the offspring of this step were created by self-fertilization and were

produced by picking three L4s to a plate unless indicated otherwise

+ indicates that the worm is heterozygous for the marker or mutation

? indicates that it is unknown if the worm is heterozygous or homozygous for the

marker or mutation

::G short for ::GFP

::W short for ::wcherry

4.3.1 RY1320

A) N2 ♂ x ceh-10::G; his-72::W; pie-1::W

  pick males

B) ceh-10::G; his-72::W; pie-1::W ♂ x mig-10; ceh-10::G; his-72::W; pgp-12::G

 + + +

  pick L4s with green full-length excretory and red labeled

 germline cells in gonad

C) mig-10; ceh-10::G; his-72::W; pie-1::W; pgp-12::G

 + ? ? + +

 single; look for truncated excretory cell and all of the markers

D) mig-10; ceh-10::G; his-72::W; pie-1::W; pgp-12::G

 ? ?

 single until all markers are homozygous

E) mig-10; ceh-10::G; his-72::W; pie-1::W; pgp-12::G

4.3.2 RY 1321

Same as RY1320 cross except that after step D) the worms were singled until pie-1::wcherry was

homozygous and pgp-12::GFP was bred out of the strain (no longer has green excretory cell).

20

4.3.3 RY1323

A) abi-1; pgp-12::G ♂ x mig-10; ceh-10::G; his-72::W; pie-1::W

  pick L4s with green full-length excretory cells

B) mig-10 + ; ceh-10::G; his-72::W; pie-1::W

 + abi-1 + + +

 single L4s with green full-length excretory cells, check in the

 next generation to confirm that all the offspring produced

 have full-length excretory cells

C) abi-1; ceh-10::G; his-72::W; pie-1::W; pgp-12::G

 ? ? ? +

 single until ceh-10::G, his-72::W, and pie-1::W are homozygous

 and pgp-12::G is bred out

D) abi-1; ceh-10::G; his-72::W; pie-1::W

Note: The genes abi-1 and mig-10 are linked and so are almost always inherited together. This means that when the

mig-10 mutant and abi-1 mutant are bred together their offspring will have a copy of the mutant mig-10 on one

allele and a mutant abi-1 on the other allele but none of the descendants will have an allele with both of those genes

mutated or wildtype.

4.3.4 RY1325

Same as RY 1320 cross except in step B) mig-10; ceh-10::G; his-72::W; pgp-12::G was replaced by unc-

34 and after step C) L4s were singled until the markers were homozygous and there were only unc-34

mutants found on the plate. The C. elegans that were homozygous for the unc-34 mutation were selected

based on their characteristic phenotype, uncoordinated movement which includes rolling and curling.

Note: It was found through earlier crossing attempts that unc-34 and pgp-12::G are linked. After crossing an unc-34

with a strain containing pgp-12::G a much smaller percentage of offspring than expected actually became

homozygous for both the marker and the unc-34 mutation. Due to this linkage, unc-34 mutants were selected based

on their uncoordinated phenotype rather than their excretory cell appearance.

4.3.5 RY1328

A) N2 ♂ x dlg-1::G

  pick males

B) dlg-1::G; ♂ x mig-10; pgp-12::G

 +

  pick L4s with green excretory cell and dlg-1 marker

C) mig-10; pgp-12::G; dlg-1::G

 + + +

 look for truncated excretory cell and dlg-1 marker

D) mig-10; dlg-1::G; pgp-12::G

 ? ?

 single until dlg-1::GFP is homozygous and pgp-12::GFP is no longer

 present

E) mig-10; dlg-1::G

21

Note: It was also attempted to create mig-10; dlg-1::G; pgp-12:G but pgp-12::G did not become homozygous after

over 5 generations of singling, so the attempt was dropped. This difficulty suggests that pgp-12::G may be linked to

dlg-1::G.

 Freezing and Thawing Strains 4.4

Strains obtained and constructed were stored at -80
o
C in order to preserve the strains for future use and to

provide a backup of the strains that were currently being used. To prepare for a freeze, four plates of a

particular strain were grown until just after starvation, so that eggs hatched and larvae were in L1 arrest.

Worms were then rinsed off with M9 and allowed to settle on ice. Excess M9 was removed until there

was only 2 mL of C. elegans mixture. This was then mixed with 2 mL of warmed freezing solution,

quickly pipetted into two cryotubes, and stored in a foam storage container at -80
o
C.

To thaw, a chunk of the frozen mixture was removed from the cryotube using a flamed spatula and was

placed around the edge of a new agar plate. If after a few days viable C. elegans are observed on the plate

then the thaw was successful and these worms can be transferred to a new plate. If the thaw was not

successful and the C. elegans did not survive, then it is advisable to refreeze the strain.

22

5 Computational Methods
After understanding project background, it was important to begin the planning process of how the

program design was going to be executed and what biological data was going to be represented in the

simulation. The following section outlines the process of narrowing down project scope and documenting

biological data in a way that is readable for a simulation.

 Project Scope 5.1

Before designing the simulation itself, we first determined how complex the model should be. We had to

decide how far into embryogenesis we should model and what type of biological data we should represent

in our model.

We first considered simulating gastrulation, which starts at the 26-cell stage and positions the germ layers

in the embryo (Nance, 2005a). This process occurs during the first 100 cell divisions which the

Simulation Worm group before us had previously attempted to simulate because it is an important process

during C. elegans development (Brandon, 2013). Gastrulation involves cell migration, cell-cell

interactions, cell polarization, and morphogenesis, all of which would be important to simulate

throughout embryogenesis. By starting with gastrulation, we thought we could provide the groundwork

for more complex migration that occurs later in embryogenesis and be able to simulate several different

mutations that affect this process. Unfortunately, after observing the simulation the group before us had

created, we decided that the simulation had too many biological inaccuracies to provide a groundwork for

continued development.

After our first consideration, we decided to focus our simulation on the cell divisions that occur before

gastrulation. With this smaller scope we could focus on making our simulation as biologically accurate as

possible and still develop rules for important biological phenomena. We focused mainly on the PAR

proteins because they are active from the very beginning of embryogenesis and their function in cell

polarization has been studied extensively. The embryos that have mutations in any of the genes involving

these proteins have highly characteristic phenotypes. These phenotypes include evenly sized cells and an

excess of cells with a particular cell fate, which can be easily shown in a simulation. Our simulation

focuses on accurately representing division timing, cell fate, and protein interactions that occur within

cells. It also allows the user to produce different mutants by turning off any of the selected par genes.

Working with these early proteins lays the groundwork for groups who want to pursue simulating

phenomena that occur later in development.

Aside from limiting the scope of C. elegans development and protein interactions, we made

simplifications to movement of the cells within the shell. In this simulation, we have the cells only

dividing on one of the three axes (x-axis, y-axis, or z-axis) and there is no movement of the cell once it

has divided. Additionally, there are no collision forces which cause the cells to move once another cell is

created. This is a simplification of reality because once a cell divides along one axis it moves small

amounts due to the pushing forces within the shell when subsequent cells divide.

23

 Data Collecting 5.2

There has been significant research done on the very beginning of C. elegans embryogenesis. Even

though our lab does not focus on the very beginning of embryogenesis there is enough literature written

on early development to create an accurate representation.

We first looked to WormBook and other reviews to get an overview of early embryogenesis. Several

WormBook chapters helped provide information on early cell divisions and the determination of cell fate

(Gönczy, 2005; Priess, 2005; Evans, 2005). The review “Early Patterning of the C. elegans Embryo”

provided us with an overview of the maternally expressed genes that help determine cell fate and the

patterning of the earlier cells (Rose, 1998). We also read “The Embryonic Cell Lineage of the Nematode

Caenorhabditis elegans” to get an overview on the cell lineage and cell fates of C. elegans (Sulston,

1983). All of these resources provided us with the background research we needed to understand the basic

concepts involved in early embryogenesis.

After looking at the overviews of the early development, we started to look into specific research papers

that focused on certain pathways and protein interactions. First we found literature on the different PAR

proteins, how they interacted with each other, and their specific functions (Nance, 2005b; Cheeks, 2004;

Guo, 1995; Boyd, 1996; Hao, 2006; Etemad-Moghadam, 1995; Watts, 2000; Hoege, 2013). Next we

looked into research on Notch-signaling and the determination of tissue fates of the AB lineage (Mango,

1994; Neves, 2005; Crittenden, 1997; and Mickey, 1996). Additionally, we looked into the Wnt signaling

pathway and the effects on E and MS cell fates (Rocheleau, 1999; Eisenmann, 2005; Lo, 2004; Lin,

1998). Any information we could not easily find in research articles we supplemented with the

information provided on WormBase and the online textbook C. elegans II (Riddle, 1997). All of the

research found from the sources above helped provide us with information that we used in our data tables

and event queues.

 Computational Design 5.3

After collecting data that was necessary to run the simulation, we needed to figure out how to store the

data in a readable structure from which a program could create a simulation. To understand our options,

we looked at all of the pieces of information that we collected and how they related to each other. The

very basic information was the names of all the cells and their daughter cells. To create a progression of

this information each parent cell needed to be connected to its time of division. We also collected volume

information for daughter cells to make the visualization somewhat accurate for C. elegans development.

In addition, we needed information for each cell to help define its location within the embryonic shell,

such as axis of division.

For the protein interactions, we needed to track protein expression in a given cell as well as interactions of

the cells since this often affects protein expression. The amount of information we needed to organize

presented several challenges for data storage. We explored different methods and examined the degree for

which the method would allow future development. The following explains our thought process and the

current structure of the data.

24

5.3.1 Methods Considered

Looking for an effective way to represent cell lineage information as well as protein regulation, our group

looked carefully at previous versions of the project which were executed in 2004 and 2013 (Bogdanova,

2004; Brandon, 2013). Based on the available information and the decision to focus on protein regulation,

it appeared that the 2004 project had better documentation of an events queue and so we based our events

queue on this.

We began a table similar to a discrete events table that was used in the 2004 project. Their table included

a parent cell, each of the two daughter cells, the axis for which the cell division occurred, and the time of

division. However, the 2004 table did not include protein information and so our group adjusted for the

additional data we researched. We incorporated a new function to the table that showed the gene

expression for each cell. This portion of the table can be seen in Table 5-1. We looked at several different

genes, as well as cell fate, and gave them a probability of being expressed in a given cell, organized by

each daughter cell. Each column represents a cell fate and tracks expression while each row represents a

parent cell. This allowed for each parent cell to carry information about cell fate for the two daughter

cells.

For example, look to the value that occurs in the p-0 row and AB_Probability_D1 column. This piece of

information records the expression probability of the AB cell fate in the first daughter (D1) of p-0.

Specifically, the data shown below is for the wild type so the expression values are either 100%, for a

100% chance of demonstrating a characteristic, or 0%, for no chance of demonstrating a characteristic. As

we progressed, we anticipated creating separate tables for mutant phenotypes where the probabilities

would be more variable. This would ensure that our simulation was stochastic.

Table 5-1: Version 1 of Expression. This is a portion of the expression table that we first considered to represent a read-in to the

simulation. There are six cell fates chosen and their values are given for daughter 1 (D1) and daughter 2 (D2). A value of 100

means that the given cell fate will be inherited into that specific daughter and a value of 0 means that a given cell fate will not be

inherited.

Parent AB_Pro

bability

_D1

P_Pro

babilit

y_D1

MS_Pr

obabilit

y_D1

C_Pro

babilit

y_D1

E_Pro

babilit

y_D1

D_Pro

baility

_D1

AB_Pr

obabilit

y_D2

P_Pro

babilit

y_D2

MS_Pr

obabilit

y_D2

C_Pro

babilit

y_D2

E_Prob

ability_

D2

D_Pro

baility

_D2

p-0 100 0 0 0 0 0 0 100 100 100 100 100

ab 100 0 0 0 0 0 100 0 0 0 0 0

p-1 0 0 100 0 100 0 0 100 0 100 0 100

ab-a 100 0 0 0 0 0 100 0 0 0 0 0

After working on this table, we discussed some of the flaws of using it; mainly, it creates a large problem

for expanding the table either by increasing the number of cell divisions, adding genetic information, or

increasing the number of mutant phenotypes. Increasing the number of cell divisions would allow the

simulation to include a larger time span of embryogenesis. This is useful so that researchers could learn

more about how interactions change over time. However, this would mean that data needed to be

manually entered for each of the cell fates for each new division.

Another development would be adding genetic information; this would increase the biological accuracy

of the simulation. This would mean that information for all of the additional genes would need to be

25

manually entered for the current cell divisions. Likewise, an entirely new table would need to be

constructed for each mutant phenotype to track the separate probabilities for expression. Ultimately, these

developments would have to occur at some point in the future as the project progresses. We decided this

table was not effective because it would be too difficult to grow with the project and the large table would

not be efficient for the simulation’s implementation.

5.3.2 Event Handling

Despite the impracticality of the previous method discussed, we decided to maintain the cell division

portion of that table that tracks the parent cell, daughter cells, volume of daughter cells, time of division

and axis of division (shown in Table 5-2). A priority of our group was maintaining the stochastic nature

of the simulation. This implementation of events was instead deterministic. Ultimately, we decided that it

was more important to create a stochastic handling of protein interactions and simplify the model by using

deterministic lineaging.

Table 5-2 maintains important information about naming, visualization, and timing. The Sulston name for

the parent is given in relation to the Sulston names of the two daughter cells. The daughter cells are

assigned to be Daughter 1, for the most anterior or right cell, or Daughter 2, for the most posterior or left

cell. For cell location purposes, we have the cell axis of division. Essentially, if a cell divides along the x-

axis, then the two daughter cells will appear side-by-side along that axis. This is used to determine cell

location rather than explicitly reading nuclei locations into the program. Our group felt it was important to

explore axis of division as a location indicator instead of nuclei positions because it would make the

simulation less deterministic in this respect.

The time of division is researched data on when the division of the parent cell occurs. The simulation time

is 10 minutes added to the biological time to account for showing the first cell division; otherwise the

simulation would start with the first two daughter cells present (division 1 of p-0 happening at time 0).

The volumes of the daughter cells are represented as percentages of the parent where an even division of

cellular volume is given as 50 to each daughter cell. Then, based on observation, we can adapt the

proportions for unequal divisions such as 60/40, 30/70, 20/80, etc. These values would change for certain

mutated genes based on published phenotypes.

Table 5-2: Daughter Cells, Division Times, and Volume Distribution. This shows the parent, each daughter, the division axis,

time of division, the time adjusted by 10 minutes to account for the simulation time, and the two volumes by percentage.

Parent Daughter1 Daughter2 Division Axis Time of Division Sim Time V_Daughter1 V_Daughter2

p-0 ab p-1 x 0 10 60 40

ab ab-a ab-p x 17 27 50 50

p-1 ems p-2 x 18 28 60 40

ab-a ab-ar ab-al z 35 45 50 50

ab-p ab-pr ab-pl z 35 45 50 50

In terms of protein regulation, we decided to look more abstractly at the data we wanted to represent.

First, we used a program called Cytoscape (Shannon, 2003) which allows users to construct networks of

interactions and nodes. This was primarily used to help us visually map out the protein interactions we

26

researched and understand how they were connected. An example of an interaction within the map is

shown in Figure 5-1. Activation is denoted by an arrow, with the arrow’s direction pointing to the

activated gene. Inhibition is denoted by a “T” with the line intersection pointing to the protein being

inhibited. For example, Figure 5-1 shows that PIE-1 inhibits both SKN-1 and PAL-1; additionally, SKN-1

inhibits PAL-1. In the cell this would equate to PIE-1 inhibiting the transcription of SKN-1 and PAL-1

and SKN-1 inhibiting the transcription of PAL-1 when PIE-1 is not present in the cell.

Figure 5-1: Protein interactions in Cytoscape (Adapted from Shannon, 2003). Protein interactions in the anterior involving

PIE-1, SKN-1, and PAL-1.

We created an encompassing map that had all of the protein interactions we initially looked at, which

helped us understand the complexity of the data we were trying to represent and helped us move toward a

rule-based structure. We used the concept of antecedents and consequents to structure the rules.

Antecedents are the initial condition that must be attained to see a change in the system and consequents

are the actual change. For our project, the antecedents are the protein states that have an effect on another

protein, and the consequent is the resulting change in another protein. Although the mechanism for how

proteins can affect the state of another protein can vary, all of these types of interactions were grouped

together as the same to simplify the rules for the simulation. For example, proteins can indirectly affect

the other proteins’ state through transcription or translation of a protein or directly interact with the

protein through phosphorylation.

Table 5-3 shows a sample of the antecedents and consequents table. Upward pointing arrows show

activation and downward pointing arrows show inhibition. In the first interaction, we can see that an

activated PIE-1 and an activated PAL-1 result in an inhibited PAL-1. A notable trend in the table is that

all of the antecedents contain the opposite state of the consequents. This was a change our group found

necessary since, in the first interactions, the antecedent would be negligible if PAL-1 was already

inhibited.

Table 5-3: Antecedents and Consequents. This shows the preceding states of proteins necessary to have an effect on other

protein states.

Antecedents Consequents P or T Start Stage End Stage

pie-1 , pal-1  pal-1  T 1 end

pie-1 , skn-1  skn-1  T 1 end

skn-1 , pal-1  pal-1  T 1 end

Additionally, the table we created as shown in Table 5-3, documents whether the change is through

phosphorylation (P), transcription (T), or unknown (U). If a protein is a kinase and thus regulates through

27

phosphorylation, then the consequent would occur instantly since a physical change is happening to the

protein. If the protein is regulated through transcription, then there is a delay in the consequent since the

change is occurring through DNA expression. Otherwise, interactions that we could not find regulation

data for are marked as unknown. Currently, our simulation does not take this information into account

but it is compiled into the table for future development.

Each rule is applicable for different cell stages so we also kept track of the first cell stage for which the

interaction would occur as well as the last cell stage. We considered using time to designate this interval

but decided cell stage was more biologically accurate. Not only would this would help to maintain

biological accuracy, but it would increase the efficiency of SimWorm14 during runtime. Otherwise, the

program would have to check an antecedent even if the simulation timeframe is outside of when the

interaction is relevant.

Finally, a third table for storing information about the genes initially present in p-0 was necessary. This

table holds a complete list of genes currently modelled in our simulation, which currently is only

composed of those genes whose behavior is very well understood. Each gene also has some data

associated with it, such as whether it is active or inactive at the start of the simulation and its general

location within the cell. Several example entries in this table are shown below.

Table 5-3: Genes incorporated into the simulation. This shows the initial status of the genes at the start of the simulation. A

status of A indicates that the gene is active, while a status of I would indicate the gene was inactive.

Gene name Status Location

par-1 A posterior

par-2 A posterior

par-3 A anterior

par-4 A center

par-5 A center

par-6 A anterior

pkc-3 A anterior

skn-1 A posterior

pie-1 A posterior

pal-1 A posterior

mex-3 A anterior

mex-5 A anterior

 Implementation 5.4

5.4.1 Creating Visuals Using Processing

Processing 2.0 (Fry, 2014), a free, open source software that has a java library to handle graphics, can

easily be integrated into a program written in Java. It is compatible with Windows, Mac OS X, and Linux.

The developers created a user friendly website to offer a wide range of examples and tutorials to help any

individual from any background start using Processing (Fry, 2014). Consequently, our team decided to

use Processing to visualize the simulation. The main goal of Processing’s developers is to bridge the gap

between visual artists and programmers and it has been implemented in a way that is easy to learn.

28

Because Processing is easy to learn, it allowed our team to continue program development without taking

significant time to learn a new language. It was also ideal for the interdisciplinary nature of this group

because Processing was designed with interdisciplinary development in mind.

Processing provides an abstraction for OpenGL, a more challenging graphics programming language.

Because Processing is executing OpenGL code, it, like OpenGL, is an events-based language. This means

that programs written in Processing have two distinct phases – a setup, in which anything that needs to be

initialized one time occurs, and a main loop that the program repeatedly executes. This means that the

program is, in essence, “waiting” for the majority of the time, but when an event is detected, such as a

mouse click, code may be executed. It is up to the programmer to write what actions occur upon detecting

an event.

Processing interacts very cleanly with Java, behaving in practice as though it were a Java library. It allows

relatively easy and user-friendly rendering of three dimensional graphics within a Java project.

Additionally, many other libraries have been built on top of Processing to add extra functionality in a way

that is very easy for a programmer to implement. Several libraries for Processing played an integral role

in developing the user interface. These are noted below.

5.4.2 Processing Libraries

Picking 0.2.1 is a library by Nicolas Clavaud that implements a feature called object picking (Clavaud,

2013). Object picking is the means by which a program detects when one of its components has been

selected by the user. Picking in three dimensions is complicated because any number of objects can be

located in one position in the two-dimensional space of the screen, and the program should select only the

nearest one. Additionally, object picking within a view that uses a dynamic camera poses a challenge

because it rules out the option of hard-coding correct behavior for each pixel of the screen; the view can

change at any time. Usually these problems are solved by using a method called ray tracing. Ray tracing

involves sending out a ray between the camera’s point of view and the mouse cursor. This ray then

reflects off the first object it hits and can report back information about the object.

Because the picking library has already been written, ray tracing should not need to be implemented from

scratch for the project. However, at the current time, users have difficulty running programs that

incorporate the Picking library outside of the dedicated Processing application.

Object picking will be used in the simulation to allow the user to select any cell on the screen by clicking

on it in order to gain more information about it. At the present, a workaround exists that requires the user

to type in the name of a cell they want to know more information about. Information about which genes

are present in the cell and the state of each gene is displayed when a cell is requested.

Peasycam v201 is an implementation of a very powerful and user-friendly camera. It was written by

Jonathan Feinberg. Peasycam requires only one line of code to set up, and can rotate 360 degrees, zoom

in and out, and pan (Feinbeg, 2013).

ControlP5 2.0.4 is a library written by Andreas Schlegal that allows the programmer to easily divide up a

view into multiple sections, and also provides many standard user interface features such as check boxes

29

or radio buttons. This is used extensively in our project, primarily to allow for a three dimensional section

in which the worm is displayed and still maintain a two dimensional section for user controls to be

housed. The use of ControlP5 was necessary to avoid having the user interface visuals affected by

alterations to the camera in the three dimensional view. ControlP5 also provided all of the buttons that the

user interacts with to choose settings (Schlegal, 2012).

The ControlP5 library as written contained a bug that caused programs to crash if the menu key is

pressed. In order to make the SimWorm14 more robust, we altered the ControlP5 source to fix this issue.

5.4.3 Data Structures and Time Complexity

Every step along the way, efficiency was a top consideration when choosing how to store data. There is a

large amount of data stored within the simulation, and on every time step, computations need to be made

over many objects. Therefore, both spatial and temporal efficiency is key in preventing the simulation

from running slowly. The time complexity of functions was minimized wherever possible.

A favorite data structure commonly used within the code was the hashmap. Hashmaps store a set of any

kind of object, each of which is identified by a unique key that can also be of any data type. Hashmaps are

a favorable way of storing sets because a query into a hashmap has constant time complexity.

Within the code, hashmaps were used whenever possible, not just because of their efficiency, but for the

elegance of their application to the project. They were a logical choice for holding cells within the shell

and genes within the cells, because each of these objects has a unique name that can serve as the key

within the mapping.

5.4.4 Non-determinism

A major goal of the simulation was to set it up such that it is as self-determining as possible. That is, at

every opportunity, subsequent events should be calculated rather than hard-coded. This required that we

develop, as much as was possible, rules about behavior.

This non-deterministic philosophy was motivated by several factors. It would be fairly easy to observe

how C. elegans behaves in the lab and then program a visual that progresses in the same way. However,

this would defeat the purpose of creating a simulation. It would not provide any information that could

not be easily observed in the lab, which is one major reason simulations exist. It would not be able to

extrapolate future behavior beyond what has been observed previously. It also would be completely

invariable and thus would not be able to demonstrate behavior that might occur when environment

variables are altered. A major motivation for this non-deterministic philosophy was the goal to add the

ability to mutate genes and watch how the development is affected.

It was not always possible to avoid hard-coding information into the simulation. For example, we wanted

to match the timing of events such as cell divisions to observations made in the lab, but this timing

doesn’t seem to follow any mathematical pattern, so an events queue containing observed information

was created. However, all such data is stored in structures that are easily altered such that a mutation that

affects timing can still propagate changes over the events queue.

30

5.4.5 Extending the database

The project has been designed to be, in some ways, easily extensible by people without a highly technical

background. There were three large sets of data involved in the simulation – these were as follows:

 The events queue, containing information about cell divisions, including when each cell divides,

which axis it divides along, and what percentage of the volume is allocated to each daughter cell.

 The list of the genes present in the initial cell, p-0, and information about them, including whether

they are active and their general location within the cell.

 The antecedent and consequent rules.

At its start, data points in each of these categories were placed into the appropriate data structures

manually. This, while trivial for a programmer, was not something that many biologists who have interest

in this simulation would be comfortable doing. So, to make adding to the simulation more accessible to

laypeople, SimWorm14 was altered to read in these data points from excel spreadsheets instead. Now

anyone who can enter the data into a spreadsheet in a precise fashion can test the effects of adding new

genes or rules to the simulation.

5.4.6 Wildtype and Mutations

When SimWorm14 is initialized, an option is given to the user to mutate any of the par or pkc-3 genes. If

none of these are chosen, it will run a wildtype simulation. It will read in all of the rules from the excel

spreadsheets as described in the previous section, and these will determine its behavior. Though the

simulation’s status at each time step will be calculated based on these rules and its status at the previous

time step, there is no amount of randomness built into the wild-type simulation.

However, if the user chooses any of the cells to be mutated, several differences will arise. First, the

spreadsheets will be read in as usual, but then some of the rules will be overwritten with mutation rules.

Each gene that can be mutated has a list associated with it that describes the ways in which program

behavior should change in the case of mutation (par-3, par-6, and pkc-3 share a list because their

mutations manifest in the same way). For example, if par-1 is mutant, the following changes to the

wildtype will be implemented:

 The protein SKN-1 is mislocalized, meaning that instead of staying confined to the posterior for

the first division and then moving to the center as it would in the wildtype, in each cell it has a

90% chance of being distributed evenly throughout the cell, a 5% chance of being confined to the

anterior, and a 5% chance of being confined to the posterior.

 PIE-1 degrades, meaning that it ceases to be present.

 PAR-3, MEX-3, and MEX-5 are mislocalized in much the same way as SKN-1.

 All cell divisions will be close to even, that is, each daughter cell will get about 50% of the

volume. This can vary between 40-60%, and the exact value is determined randomly.

 All cells belonging to the same generation will divide at the same time.

Each of the other mutant genes has a similar list of effects associated with it.

 Methods and Implementation Summary 5.5

Certain simplifications were made in order to focus on maintaining biological accuracy of the simulation.

We focused on the cell divisions up to the 26-cell stage and incorporated protein interactions specific to

31

cell polarity. This is so we could gain useful information about cell fate in relation to mutations in the

genes encoding for cell polarity proteins. We gained information for the proteins, such as interactions and

cell stages for which these interactions are relevant, through literature research. The collected data was

stored in a table that tracked antecedents and consequents. This table guides the protein interactions for

the simulation.

The simulation was coded using Java and was aided by Processing (Fry, 2014), a software that is used to

handle graphics and can act like a Java library. While creating the code, non-determinism was an essential

consideration. Our team wanted to make the simulation as self-determining as possible, though some

features such as cell divisions are hard-coded into the simulation.

Ultimately, the simulation was made to simulate both the wildtype and par or pkc-3 mutants. While the

values for the wildtype remain constant, a degree of variability was incorporated into the mutants. When a

mutant is selected, certain rules are overridden to accommodate for a greater chance of mutation as well

as alter the antecedents/consequents that were relevant to that gene. Each mutant has a list of effects

associated with it.

32

6 Results

 Laboratory Results 6.1

To test if the output from SimWorm14 is biologically accurate, the output from the simulation needs to

be compared to real biological data. Our lab is interested in migration of neurons during the development

of the nervous system. We thus created strains with transgenes that label a particular neuron, the CAN

neuron, that migrates during embryogenesis. The strains also contain histone markers, to allow lineaging

during embryogenesis. The initial simulation does not yet reach the developmental stage at which

neuronal migration occurs; thus, comparison of the model to these strains is not yet possible, but is

planned for future simulation versions.

To create this data, several strains of C. elegans were developed during the course of this project that

contain several specific fluorescent markers (See Methods). Most of these strains contain the markers

pie-1::H2B::wcherry and his-72::HIS-72::wcherry which mark the histones in the early embryo, and late

embryo and larval stages, respectively (Figure 6-1). These markers are required for StarryNite to be able

to track the nuclei positions of all of the cells in the different mutants. Once the nuclei positions have been

tracked, AceTree will be able to create a 3D visualization of the nuclei positions in every cell stage and be

able to track the lineage of each cell. In addition to the histone markers, most of the strains also contain a

ceh-10::GFP fluorescent marker that labels the CAN neuron, which migrates during embryogenesis. This

marker can also be tracked using iSPIM and StarryNite.

Figure 6-1: Fluorescently labeled strains constructed for simulation comparison. Photos were acquired on a compound

fluorescent microscope and were taken with the anterior to the left and ventral down. (A) Pie-1::H2B::wcherry and his-72::HIS-

72::wcherry were visualized in an RY1320 animal; the label shows the location of the nuclei in the worm. (B) Ceh-10::GFP was

visualized in an RY1321 animal with a white arrow indicating the location of the CAN neuron. (C) Dlg-1::GFP was visualized in

an RY1328 animal. All worms were at the L4 stage when the photos were taken.

The strains that contain these three markers are RY1320, RY1321, RY1323, and RY1325. In addition,

RY1320 also contains the marker pgp-12::GFP which fluoresces in the excretory cell and was used to

33

help determine when mig-10 was homozygous in the strain (mig-10 mutants have a truncated excretory

cell). The four strains that include the histone and CAN markers also each contain a mutation that affects

neuronal migration during development of the nervous system (mig-10, unc-34, and abi-1). These strains

were developed because our lab is interested in early neurodevelopment. After these strains have been

imaged and analyzed, the data they provide can be used to show if the mutations created by SimWorm14

accurately portray the changes in the neuron migration in the real mutants.

There was also one strain, RY1328, which was developed that only contains the marker dlg-1::GFP and

the mig-10 mutation. Dlg-1::GFP marks the membrane of epidermal cells and will be used to create data

to help identify the changes in cell shape in the mig-10 mutant. The dlg-1::GFP marker may be added to

other mutant strains in the future. In the embryo the green fluorescence appears between the cells and

highlights the boundaries between them.

 Biological Rules Developed 6.2

The biological rules in SimWorm14 were created from molecular interactions that have been recorded in

multiple journal articles. In total approximately 40 antecedents and consequents were created and, out of

these, 18 are currently used in SimWorm14. The antecedents and consequents that are not included in the

simulation involve proteins that are in pathways that have intercellular interactions. For simplification

purposes, our project only incudes intracellular interactions since it would be more complex to

differentiate between intracellular interactions and intercellular interactions. In addition, normal

intercellular interactions do not occur in the simulation at the moment, because cell locations are not yet

accurate. SimWorm14 tracks the cellular locations of 12 proteins. The division times and percent volumes

of the daughter cells up to the 26-cell stage are included as well.

In addition to the wildtype, rules for protein mislocalization, cell division timing, and cell volumes for the

par-1 through 6 and pkc-3 mutants are included. Since mutations can have a variable effect on C. elegans

phenotype, there is variability built into the protein localization, cell division timing, and cell volumes, as

described in 5.4.6. While the real life wildtype has slight variability in phenotype as well, the simulation

only includes variability for the mutant phenotype. This is because the mutant phenotype has more

extreme variability than the wildtype.

 SimWorm14 6.3

The following section outlines key results regarding the present simulation, SimWorm14, including

details for the interface as well as output structure.

6.3.1 SimWorm14 Interface

The screen presented to the user upon first starting SimWorm14 is a simple menu in which a user chooses

which genes, if any, to mutate prior to running. The mutant genes that SimWorm14 supports are par-1,

par-2, par-3, par-4, par-5, par-6 and pkc-3 (Figure 6-2). After the user makes a selection, the main screen

is drawn and remains for the rest of the simulation. Although users can select multiple mutants at a time,

only single mutants have been thoroughly tested and deemed relatively accurate.

34

Figure 6-2: Mutant selection menu. In this menu, users choose which mutant they want to simulate. Par-2 is selected as

indicated by a different shade selection box. Users can select as many of the options as they want to mutate, or they can also

choose not to select any of the mutants and therefore produce a simulation of the wildtype. Once the desired selections have been

made, users press “create shell” to bring them to the simulation rendering.

The main screen is divided into two distinct sections – a three-dimensional view of the current state of the

shell taking up the majority of the screen on the left (Figure 6-3), and a two-dimensional panel on the

right (Figure 6-4) in which user input/output occurs.

The left side displays ellipsoids representing the location and spans of each cell within the shell. Each of

these cells is color coded in a particular way as explained in section 6.3.2. In the three-dimensional view,

the user can left-click and drag anywhere on the screen to rotate the camera around the cell 360 degrees,

right-click and drag to zoom in or out, and middle-click and drag to pan. This functionality is made

possible by the Peasycam library (Feinberg, 2013). A set of labelled coordinate axes is pictured to help

the user stay oriented during rotations.

Figure 6-3: The left side of the display during the two-cell stage. Cells are represented as ellipsoids and can be viewed from

any angle. Labelled coordinate axes can rotate with the rendering in order to show the user the orientation of the cells.

35

Figure 6-4: An example of what the interaction pane looks like during the simulation.

The right side contains interactive controls (Figure 6-4). The top of the screen shows a string of text that

serves as the input and output. At any time, the user may type and their keystrokes will be displayed there.

If the user types the name of a cell that is currently present on the screen and presses enter, the text will be

replaced to show the list of proteins present in that cell and their states (active or inactive). As this list can

be quite lengthy, most of the vertical space on this menu exists to accommodate this feature. However, if

the list has to extend beyond the space allocated for it, the list is contained within an element that

automatically gains scroll bars when they become necessary. This is the solution that currently exists to

circumvent the issues we faced implementing object picking as described in section 5.4.2.

The first set of boxes below the text area serve as a color key that communicates to the user what the

different colors of cells represent. The legend changes based on which color mode is selected. Below the

color key are the radio buttons that the user can use to select a different color mode.

Another set of radio buttons controls the time flow mode of the simulation. If it is set to manual, the user

can press right arrow to progress forward by one time step or left arrow to rewind by one time step. If it is

36

set to automatic, the program will measure elapsed time and periodically perform a time step

automatically.

Finally, the interaction pane contains six buttons that can be used to quickly change the camera to each of

the six orthogonal views – front, back, top, bottom, left, and right.

6.3.2 SimWorm14 Outputs

Beyond what is immediately visible to the user when running SimWorm14, many calculations are

occurring at each time step. These functions are all documented in the javadocs (Appendix E), but what

follows is a short description of how SimWorm14 runs and what it calculates.

As described in section 5.4.1, our project, as a Processing application, is events-based and thus contains a

set up function and a main drawing loop. The set up function executes once at the start of the program. It

simply draws the menu in which users can choose mutants for this run, then waits for the confirmation

button to be clicked. When this happens, the second phase of set up occurs, which is more complex:

1. The user’s choice of mutant genes are read and stored.

2. The shell constructor is called.

a. The events queue spreadsheet is parsed and its information is stored.

b. The first cell, p-0, is created.

i. p-0 is given dimensions 50, 30, 30.

ii. The genes spreadsheet is parsed and the genes present in it are assigned to p-0.

iii. The antecedents and consequent spreadsheet is parsed. Genes have a list of

relevant rules, meaning those rules for which the gene is an antecedent. Each

gene in p-0 iterates through the rules and populates its own list.

iv. For each mutant gene that the user chose, the mutant rules are applied.

v. p-0’s color is calculated according to the currently selected color mode.

vi. p-0 is drawn to the screen.

3. The coordinate axes and interactions panel are drawn to the screen.

SimWorm14 then enters its main loop, which it will stay in for the rest of execution. This loop is

waiting for one of several things to happen:

 The user clicks a mouse button.

1 This will execute Peasycam code to rotate, zoom, or pan the camera view if it occurs

in the three-dimensional view.

2 In the two-dimensional view, mouse clicks trigger different events based on whether

the object clicked was a button, and what button it was.

a If one of the buttons for altering the camera view was clicked, the new

camera location will be calculated and it will be set there.

b If a new color mode was chosen, the new color for each cell will be

calculated according to the newly selected mode’s algorithm and the cells

will be redrawn with their new colors.

i For the lineage color mode, cell color is determined by the founder

cell from which it is descended. These colors were chosen to match

37

the AceTree application, so that direct comparisons would be easier

to make (Boyl, 2006).

ii For the fate color mode, cells are colored based on which fate it

fulfills. A cell fulfills a fate if it contains certain combinations of

active genes.

iii For the PAR color mode, cell colors are an additive combination of

which PAR proteins they contain, with each PAR represented by a

different color. This helps track the movements of these important

proteins.

c If a new time flow mode was chosen, the corresponding rules for time flow

will be set

i For the manual time flow mode, nothing happens when the program

is idle. The program simply waits for the user’s next action.

ii For the automatic time flow mode, when the program is idle it counts

elapsed time. After a certain amount of time, a time step is triggered.

 The user presses a keyboard key.

1 If the key is enter, the string printed on the interactions pane is checked for

equivalence with any of the cell names present in the shell at the time. If there is a

match, that cell’s genes and states are printed to the screen, otherwise, an error

message is displayed.

2 If the key is right arrow, a time step occurs.

a The list of antecedent and consequent rules is updated to see if any new rules

have become active.

b In each cell, for each gene, the list of relevant rules is updated, then each rule

is checked to see its conditions are fulfilled. If so, a change to the gene is

queued to occur after all the other genes have been checked, so as to prevent

inaccuracies caused by concurrent modification.

c After all of the genes have been checked for changes, the changes are

propagated.

d The events queue is checked to see if any divisions occur on this time step.

i If a division occurs, the names of the two daughter cells are

calculated based on the name of the dividing cell.

ii Then the new dimensions (center point, x/y/z diameters) of the

daughter cells are calculated. The daughter cells only differ from the

parent cell in the axis of division.

iii The genes inherited by each daughter are calculated, based on the

compartment of the parent gene in which genes were located.

iv The colors of the daughter genes are calculated based on the

currently selected color mode.

v The parent cell is removed from the list of cells and the daughter

cells are added to it.

e A deep clone of the shell is created and stored in a hashmap that associates it

with the integer value of the current time step. This allows the state of the

38

shell at this time step to be saved and accessed when the simulation moves

backwards in time.

f The cells are drawn to the screen.

3 If the key is left arrow, a backward time step occurs.

a The integer value of the previous time step is requested from the hashmap

holding the shell clones. Its associated shell is made active and drawn to the

screen.

4 If the key is anything else, that letter is added to the string printed on the interactions

pane.

 Molecular Reality 6.4

SimWorm14 treats each interaction as if each protein was directly interacting with the other proteins. In

reality, some proteins like PIE-1 actually inhibit the transcription of mRNA of the proteins they affect,

and don’t actually interact with the proteins directly (Reese, 2000). For our purposes at this time in the

simulation creation process, direct and indirect inhibition or activation of a protein is treated exactly the

same way in our rules. This was done to keep the simulation rules as simple as possible and make

progress towards visually showing how different interactions affect cell fate.

6.4.1 Gene Expression and Protein Location

SimWorm14 currently models the behavior of a small subset of the genes that are expressed at the

beginning of embryogenesis (Figure 6-5); we limited ourselves to those genes whose behavior is well

understood and which produce proteins that are mainly involved in intracellular interactions. Rules

regarding the state of these genes are set at the beginning of SimWorm14 and dictate the way gene

expression progresses over time. The cells contain anterior, posterior, and center compartments that can

determine where certain proteins will be passed during the cell division; if the protein is located in the

anterior compartment it will be passed on to the anterior daughter cell and if it is located in the posterior

compartment it will be passed on to the posterior daughter cell. If the protein is in the center compartment

it will be passed on to both daughter cells. In the biological cell, the proteins are usually inherited at

different concentrations rather than all or nothing, but at this time there is not enough information to get

accurate protein concentration inheritance for most of the proteins. Instead of arbitrarily assigning

concentrations, the daughter cells that normally inherit low levels of protein inherit no protein in the

simulation. This will need to be modified when SimWorm14 becomes more complex and realistic, but for

the extent the project is right now this “all or nothing” inheritance produces relatively accurate results.

For example, in the wildtype, P-0 has all of the proteins active in order to initialize the protein

interactions. The proteins do not begin interacting with each other until after the first division. When P-0

divides into AB and P-1, the AB daughter cell inherits PAR-3, 4, 5, and 6, MEX-5/6, and MEX-3 (all

active). P-1 inherits PAR-1, 2, 4, and 5, and PIE-1 (all active), and also inherits SKN-1, and PAL-1 (both

inactive). Because PIE-1 was inherited by P-1, SKN-1 and PAL-1, which were also inherited from P-0,

are inactive (See Figure 6-5). AB then splits into ABa and ABp which inherit the same proteins and

protein states as the parent. There is no change because there are no interactions that change the protein

states based on those that are present. P-1 divides into P-2, which inherits all of the proteins and protein

states from P-1, and EMS. EMS inherits PAR-4, 5, and 6 and SKN-1 (all active) while PAL-1 is inactive.

Because PIE-1 is in the posterior compartment of P-1, only its posterior daughter cell (P-2) inherits this

protein. The change in state for SKN-1 is brought by the absence of PIE-1. These interactions can clearly

39

be seen in Figure 6-5 and show how the protein interactions directly relate to the proteins present in each

cell in SimWorm14.

Figure 6-5: Protein map of the current protein interactions incorporated into SimWorm14 (Adapted from Shannon,

2003). These interactions are relevant for proteins that are present in the same cell. Additional rules are mapped in Appendix B.

One of the outcomes we tracked during SimWorm14 was cell fate, which is determined by which genes

are expressed and consequently which proteins are present in those cells. Certain combinations of active

genes in a cell indicate that that cell is expressing a particular cell fate. After programming in the known

set of antecedent and consequent rules, as well as what is known about the way the proteins are inherited

from parent to daughter cells during cell division, all of the cells up to the 26 cell stage, which is the

scope of our project, have expressed the expected cell fate (Figure 6-6).

Figure 6-6: SimWorm14 under cell fate color mode at the eight cell stage. Each of the cells is expressing the biologically

expected cell fate.

SimWorm14 takes four different cell fates into account at this time: germline, C/D, MS/E, and a default

cell fate that correlates with the AB cell fate in the wildtype. The rules that account for these cell fates are

the presence of PIE-1 for germline, SKN-1 for MS/E, PAL-1 for C/D, and none of these proteins present

for the default. Although these proteins are required for these cell fates in the organism, this is a major

40

simplification of what actually occurs in the C. elegans. There are other factors that differentiate the MS

and E cell fates from each other, C and D cell fates from each other, and genes that must be expressed in

the AB lineage. Despite this extreme simplification, the cell fates appear to propagate accurately for the

wildtype in the simulation.

6.4.2 par Mutants

To simulate par mutants, certain rules are put into place that override the wildtype rules. The first rule

that is put into place is that the gene that is mutated is no longer in the simulation and any rules from the

antecedents and consequents that require this gene are no longer applied to the simulation. The rules

regarding the cell volume size and division timing are also overwritten and replaced with the rules that are

consistent with the phenotype of the mutant. These rule changes allow for a certain degree of variability

as mutants have varying effects on these properties, as described in 5.4.6. For the par mutants, certain

proteins become mislocalized so the simulation takes this into account as well.

To see if our rules were being propagated accurately, we ran SimWorm14 multiple times with the

different proteins selected for mutations (Figure 6-7). We found that the mutations were propagated

accurately and had varying effects when run multiple times. The mutations were even accurate to the

phenotypes described in the literature. For example, par-1 mutations result in excess body wall and

pharyngeal muscle cells which are normally produced by the MS lineage (Guo, 1995). Our simulated par-

1 mutant has excess MS/E lineage which correlates to this finding (Figure 6-8).

Figure 6-7: Cell fate distribution at the 26 cell stage over 1000 mutant embryos. After running a simulation of a par-1 mutant

1000 times, it was found that the average fate distribution at the 26 cell stage is 23.427 (90.1%) MS/E fate cells, 1.141 (4.4%)

C/D fate cells, 0 (0%) germline fate cells, and 1.432 (5.5%) default fate cells. The above graph shows these averages with

standard deviations for the mutant and the wildtype. The wildtype has no variability, so the standard deviation is 0 for all cell

fates.

41

Figure 6-8: Screenshot of par-1 mutant at the 8-cell stage. As expected based on literature findings, there is an excess of MS/E

lineage cells.

This lineage change is due to the mislocalization of SKN-1 which was explained earlier results in the

MS/E fate.

 Visualization Results 6.5

Visualization was an important consideration for this project even though we were focusing on protein

interactions. Consequently, we took necessary steps to make SimWorm14 as visually accurate as possible

given the timeframe of the project and simplifications that we decided to make. The following section

outlines the progress that was made in regards to cell shape and volume as well as cell movement.

6.5.1 Cell Shape and Volume

Cell shapes are difficult to simulate because they cannot be defined by a simple, three-dimensional shape.

In a C. elegans embryo, cells are encased in a shell and take on shapes that roughly fill the volume of the

shell. The cells have rounded edges but form blobby shapes as they move and divide to form the embryo.

Our team made a few simplifications to make cell shape easier to manage in the timeframe we had. The

first was for cell divisions to occur at specific time points and not show the division process. As shown in

Figure 6-9, when cells divide, the cytoplasm of the parent cell separates into each side of the cell as the

two daughter cells form. The complex cell shapes during the division process contributed to the decision

to not show the cell division process.

Figure 6-9: Cell division leading to the four cell stage (K. Kemphues, personal email, February 11, 2014). The red arrow

points to the cell that is dividing. A notable characteristic is that the cytoplasm is being separated to either side of the cell as two

daughter cells begin to form.

42

The second simplification we made is that cells are represented as ellipsoids, or three-dimensional

ellipses, which are generated as a result of the parent cell’s volume. SimWorm14 begins with a single

ellipsoid to represent the first cell. As cells divide, the volumes of daughter cells are determined based on

proportions of the parent cell’s volume. This proportional splitting of volumes is related to a proportional

splitting of the parent cell’s diameter. For example, when the first cell division occurs, the split volumes

for the two daughter cells should represent 60% of the parent cell’s volume in one daughter and 40% of

the parent cell’s volume in the other daughter. Consequently, the diameters of the daughter cells will

represent 60% and 40% of the parent cell’s diameter, respectively, as shown in Figure 6-10.

Figure 6-10: First cell (left) and the resulting two daughter cells (right). The volumes in the daughter cells are representative

of 60% and 40% of the parent cell’s volume. The diameters are 60% and 40% of the parent cell as well.

Because the cell’s shape is predominately changing by diameter, it causes the simulation cells to form

shapes that are not biologically accurate; the diameters become smaller and smaller forming pancake-

shaped cells. This becomes notable at the four cell stage (Figure 6-11).

Figure 6-11: Cell shapes at the four (left) and 26-cell (right) stages. The diameters of the cells become smaller with each

division while the height remains the same causing "flat" or "pancake" looking cells.

Despite the differences between SimWorm14 and biological cell shapes, the cell volumes are relatively

accurate. It is challenging to assess the volumes based on visual comparisons because volume observation

is largely based on shape, but given an early comparison of cell volumes (Figure 6-12) and comparing

literature data to the simulation’s input, we can see that volumes are relatively accurate.

First cell Two daughter cells

43

Figure 6-12: Comparison of cell volumes between the embryo and SimWorm14 (K. Kemphues, personal email, February

11, 2014). Comparing the two images reveals that the left cell has a larger volume than the right cell.

6.5.2 Cell Movement and Location

Although cell migration does not occur until gastrulation, cells still exhibit small movement within the

shell as subsequent divisions cause the cell to fill the available area. This movement is complex and based

on cellular collisions; the cells move as their shape changes during division. This movement is

demonstrated in Figure 6-13 where the first two cells are pushed upward by a third cell.

Figure 6-13: Transitioning from the two cell stage to the three cell stage (K. Kemphues, personal email, February 11,

2014). In the first image, the two cells are along the same axis. However, in the second image, as cell division occurs, the cells

move within the shell. The third image shows the new cell and the original two cells in their new locations.

In order to maintain the stochastic nature of SimWorm14, our group did not want to read the cell

locations directly into the simulation. However, as demonstrated above, the divisions and movements of

cells are very complicated. To simplify the concept of cellular movement during division, SimWorm14

only takes into account the axis of division for a split. There are three axes: the x-axis, the y-axis, and the

z-axis. Once a cell divides, the locations of the daughter cells are calculated based on the division axis.

The daughter cells do not move after they are generated. Consequently, this causes some of the cell

locations to be relatively inaccurate, especially as the number of divisions increase.

Figure 6-14 shows a comparison of SimWorm14 for the wildtype and AceTree (Boyl, 2006) nuclei

positions of the wildtype through the eight cell stage. Note that, while AceTree shows the nuclei

positions, SimWorm14 shows the entire cell. This means that the AceTree rendering shows smaller

spheres that are not connected while SimWorm14 shows ellipsoids that are spatially closer.

C. elegans embryo at the 2 cell stage Simulaion at the 2 cell stage

Two cell stage Two cell stage Three cell stage

44

Figure 6-14: AceTree 3D rendering of nuclei compared to SimWorm14 through the eight cell stage (Adapted from Boyl,

2006). The cell coloring is indicative of cell lineage and matches between AceTree and the simulation for easy comparison.

At the two cell stage, it can be seen that there is some difference in positioning between the AceTree

rendering and SimWorm14. However, we can still see the basic relationship of two cells that are next to

each other. This is similar for the three cell stage. However, by the four cell stage, SimWorm14 shows the

cells all along the same axis whereas the AceTree rendering shows more of a cluster. This is a great

example where small movements between cell divisions affect cell locations. For example, Figure 6-15

shows the different positions of nuclei at the four cell stage as time progresses.

The six cell stage is a product of a split along the z-axis and is the first non-x-axis division. Although the

cell positions are not completely accurate, SimWorm14 clearly maintains some of the relationships

between cells. For example, the six cell stage is a product of ABa and ABp splitting at the same time to

form adjacent daughter cells. This is clearly reflected in SimWorm14. The eight cell stage still reflects the

45

basic locations of the shells but has some clear differences in the orientation of cells along the x-axis. This

is a result of the movement of previous cells during cell divisions.

Figure 6-15: AceTree rendering of nuclei at the four cell stage (Adapted from Boyl, 2006). The left figure was taken right

after cell division and the right figure was taken right before the subsequent cell division. This clearly demonstrates the small

movements that occur between cell divisions.

SimWorm14 has certain strengths and weaknesses when it comes to cell movement and location. Because

cells do not move between divisions, the difference in location between SimWorm14 and the AceTree

renderings are augmented as the number of divisions increase. However, up until the eight cell stage, the

basic relationships between cells are apparent and provide an adequate basis for making future

improvements to have more complex cell movements.

 Comparison to Previous Research 6.6

6.6.1 SimWorm13

This project is a continuation of previous work done at Worcester Polytechnic Institute to simulate C.

elegans. The project completed as of last year, in 2013 (Brandon, 2013), focused on creating an accurate

portrayal of C. elegans up to the first 100 cells. Specifically, the authors wanted to track the migration of

the CAN neuron. They also focused on creating visually accurate cell shapes by using metaballs and

marching cubes, two computer science concepts that help programmers make complex shapes.

Figure 6-16: Comparison of the 2013 simulation and SimWorm14 (Adapted from Brandon, 2013). The 2013 simulation

placed a heavy emphasis on visualization and used metaballs, a computer visualization technique, to simulate the complex shape

of cells. SimWorm14 used Processing to create the visuals and the cells were made as ellipsoids.

This differs from our project because we focused on the early stages of embryogenesis and, while we

wanted to make visually accurate cells an important consideration, we mainly focused on PAR proteins

2013 simulation 2014 simulation

46

and their effects on cell fate and polarization. Additionally, we incorporated the ability to make mutations

in par genes so that users could test the effects of a particular mutation.

Another difference between the two projects is that we strove to make SimWorm14 as stochastic as

possible. This caused the way our group handled cell divisions and movement to be very different from

the previous group. In the 2013 simulation, cell positions were read in from laboratory data that

designated the nuclei positions. Our group, however, did not want to explicitly tell cells where to be

located in the embryo and developed an algorithm that determined cell positions based on the axis for

which they divide.

Overall, the two projects aimed to simulate C. elegans in a way that would be useful for education and

research. However, each project prioritized different proteins of interest and visualization components.

They are both steps in a collaborative effort to get a more holistic view of C. elegans embryogenesis.

6.6.2 Other C. elegans Simulations

There are two main simulations that are relevant to C. elegans: The Perfect C. elegans Project (Ketano,

1998) and OpenWorm (Idili, 2011). Each of these projects are efforts of researchers to understand C.

elegans at a deeper level by narrowly focusing on one area of interest at a time. This narrowing of scope

is comparable to the development of our project since we focused on early embryogenesis and the

proteins that affect cell polarity during the beginning cell stages.

The Perfect C. elegans Project, though interested in neural network simulation, focused mainly on

visualization of the cells within a shell. In order to compute cell positions, there was some biological data

given to indicate initial positions. Additional computational methods were applied to improve the

biological accuracy of these cell positions such as pushing and collision forces between cells. The

movement is simulated using algorithms to emulate objects in a viscous fluid.

Figure 6-17: The Perfect C. elegans Project cells encased within the shell (Adapted from Ketano, 1998).

In comparison, SimWorm14 does not account for any biological positioning data or collision forces.

Instead, we use the axis of divisions to primarily dictate the positioning of subsequent cells. It is also

indicated in (Kitano, 1998) that the next steps in the project would likely be to simulate cell fate. While

there are no publicly available updates on the project, it can be seen that their approach was the opposite

from our own. While developers of The Perfect C. elegans Project focused on visualization first and

planned to simulate cell fate designation, our project used proteins to simulate cell fate and would like to

make future improvements to cell shape.

47

OpenWorm is an ongoing effort to create an open source simulation of C. elegans. The researchers are

focusing on specific aspects of C. elegans, such as movement and neurology, to eventually create a

biologically complete simulation of C. elegans. The latest development for the project involves

simulating the movement of the worm. Figure 6-18 shows an image of the simulation’s complex

movements of C. elegans.

Figure 6-18: OpenWorm's simulation of C. elegans movement (Adapted from Idili, 2011).

While the approach of focusing on one aspect of C. elegans at a time is comparable to our approach in

first focusing on protein interactions, the two projects are very different. OpenWorm began their

simulation at a larger scale by modeling the whole worm, whereas our project starts at the cellular level.

We also start with early embryogenesis while OpenWorm uses an adult worm.

Creating a simulation of C. elegans is a collaborative effort and, while there are several independent

projects, much can be learned from each simulation. SimWorm14 aims to add to the progress of

simulation by specifically tracking PAR proteins through early embryogenesis.

48

7 Conclusion
The goal of this project was to create a rules based simulation of early C. elegans embryogenesis from the

first cell to the 26-cell stage. Currently, SimWorm14 is able to accurately show the cell divisions and

timing up until this point. In particular, the goal was to create rules for how a subset of proteins interact

and demonstrate how mutations in the genes that encode these proteins can affect cell fate. We were able

to incorporate several proteins involved in embryogenesis cell polarity and create a simulation that allows

a user to mutate the respective genes. The gene mutations visibly affect the mutant cell fate as can be

shown through the cell fate coloring scheme. Additionally, other coloring schemes can be chosen to easily

demonstrate protein distribution and lineage of each cell. SimWorm14 maintains stochastic features by

utilizing probabilities to introduce random mutations in addition to the selected par mutation. An events

queue is used to determine cell fates based on a cell’s protein distribution.

In addition, we wanted to use this project to demonstrate the usefulness of simulations in the study of

biological systems. SimWorm14 can be used to explore the C. elegans embryo using a dynamic camera

that can view the embryo from any angle. Researchers can also easily check protein content within cells

by typing in a cell’s name which produces a list of proteins in the cell and whether they are active or

inactive. Hypotheses can also be tested by testing different mutant genes against an expected phenotype.

 Future Development 7.1

As with any simulation in progress, there are specific steps that should be taken to both improve the

current state of SimWorm14 as well as incorporate additional features and data into the simulation. This

section outlines the steps our group thinks are necessary to make in the near future to enhance the project.

The most visible inaccuracy of the current simulation is the cell shapes. These shapes are governed by

complex physical rules involving the cells pushing against one another or against the shell. In the current

simulation, newly divided cells simply appear side-by-side on the axis along which the division occurred,

and cells are simple ellipsoid shapes. For the future, cell divisions should be handled in a more complex

way that reflects the biologically accurate change in dimensions along all axes. Efforts should be made to

draw the cells using metaballs, also known as “blobby objects,” which are a primary method of depicting

irregular three-dimensional shapes in computer graphics (Wyvill, 1990). This will allow the programmer

to model the cell shapes that occur during complex interactions within the shell. Because the 2013

SimWorm project (Brandon, 2013) used metaballs to handle the complex shapes of cells, looking at this

code will be useful in implementing the next stages of the SimWorm14 code. Additionally, the 2004

SimWorm project (Bogdanova, 2004) incorporated collision forces into their simulation and studying this

code will be useful, in conjunction with metaballs, for creating biologically accurate cell movements.

Improving accuracy for cell shape and location will be important, because although our project

incorporates intracellular gene interactions, intercellular interaction rules that exist in reality are not

included at all. It is not useful to include these rules until correct cell placement is achieved because

SimWorm14 does not currently accurately depict which cells are adjacent to other cells within the shell.

Once biological cell position and cell boundaries are verified against SimWorm14, the interactions that

occur between cells and mutants involving these interactions can be developed. Once these interactions

can be simulated, more cell fates can be added to SimWorm14 and the simulation can go further in

development, possibly past the 26-cell stage which is when migration of cells begins.

49

Our team took steps to help with future development regarding cellular interactions. There are currently

20 antecedents and consequents that have been developed and are not incorporated into SimWorm14.

These rules were not included because they are involved in pathways that include cell-cell interactions.

The two pathways that were studied but not included in SimWorm14 are the Notch and Wnt signaling

pathways. Since these two pathways are involved in cell fate determination and are active at the

beginning of embryogenesis, simulating the interactions and downstream effects from these pathways are

the logical next steps in the project; these pathways and rules are included in Appendix B and C.

We also recommend that SimWorm14 remain user friendly. One update to the user interface that will be

important to increasing the project’s ease of use will be to troubleshoot and implement object picking.

This will allow users to obtain information about cells by clicking on them in the three-dimensional view.

Currently users have to type in the name of a cell in order to view its information, which is problematic

because the users might not always know the name of the cell they are interested in. The right-hand panel

does, however, provide a list of the names of the present cells so that users know what their options are.

Also, the color scheming highlights the currently selected cell so that it is apparent which ellipsoid on the

screen represents the cell about which the user has requested information.

We hope that SimWorm14 can be built upon in subsequent years so that it can be a useful research and

learning tool. A complete simulation of C. elegans not only has the potential to aid researchers in

efficiently directing their research but can also be used to teach interested individuals about the complex

systems within C. elegans. Furthermore, we hope SimWorm14 can grow as a collaborative effort among

the computational biology community and show the powerful benefits of simulation.

50

8 References

Aceto, D., Beers, M., & Kemphues, K. J. (2006). Interaction of PAR-6 with CDC-42 is required for

maintenance but not establishment of PAR asymmetry in C. elegans. Developmental Biology,

299(2), 386-397.

Altun, Z. F. and Hall, D. H. (2006) Introduction to C. elegans Anatomy. Handbook of C.

elegans Anatomy. In WormAtlas.

http://www.wormatlas.org/ver1/handbook/anatomyintro/anatomyintro.htm

Ander, M. (2004). SmartCell, a framework to simulate cellular processes that combines stochastic

approximation with diffusion and localisation: analysis of simplenetworks. In P. Beltrao (Ed.)

(Vol. 1): Systems Biology.

Baik, J., & Rosania, G. R. (2013). Modeling and Simulation of Intracellular Drug Transport and

Disposition Pathways with Virtual Cell. J Pharm Pharmacol (Los Angel), 1(1).

Bogdanova, N., Jajosky, J., Lloyd, N., & Stolzar, L. (2004). “Computer Simulation of C. elegans

Embryogenesis”, Major Qualifying Project: Worcester Polytechnic Institute.

Boyd, L., Guo, S., Levitan, D., Stinchcomb, D. T., & Kemphues, K. J. (1996). PAR-2 is asymmetrically

distributed and promotes association of P granules and PAR-1 with the cortex in C. elegans

embryogenesis. Development, 122(10), 3075-3084.

Boyl, T., Bao, Z., Murray, J., Araya, C., & Waterston, R. (2006). AceTree: a tool for visual analysis

of Caenorhabditis elegans embryogenesis. BMC Bioinformatics.

Brandon, D., Cromartie, J., and Decker, W. (2013). “Modeling Development in C. elegans”, Major

Qualifying Project: Worcester Polytechnic Institute.

Cheeks, R. J., Canman, J. C., Gabriel, W. N., Meyer, N., Strome, S., & Goldstein, B. (2004). C. elegans

PAR Proteins Function by Mobilizing and Stabilizing Asymmetrically Localized Protein

Complexes. Current Biology, 14(10), 851-862.

Clavaud, Nicolas (2013). "Picking." Picking. Web. 13 Mar. 2014.

http://n.clavaud.free.fr/processing/library/picking/
Cooke, J. G. (1999). Improvement of fishery-management advice through simulationtesting of harvest

algorithms. ICES Journal of Marine Science, 56.

Crittenden, S. L., Rudel, D., Binder, J., Evans, T. C., & Kimble, J. (1997). Genes Required for GLP-1

Asymmetry in the Early Caenorhabditis elegans Embryo. Developmental Biology, 181(1), 36-

46.

Eisenmann, David (2005). "Wnt Signaling." WormBook ed: The C. elegans Research

Community. http://www.wormbook.org/chapters/www_wntsignaling/wntsignaling.html

Etemad-Moghadam, B., Guo, S., & Kemphues, K. J. (1995). Asymmetrically distributed PAR-3 protein

contributes to cell polarity and spindle alignment in early C. elegans embryos. Cell, 83(5), 743-

752.

Evans, T. C., & Hunter, C. P. (2005). Translational control of maternal RNAs. WormBook ed: The C.

elegans Research Community, WormBook, http://www.wormbook.org.
Feinberg, Jonathon (2013). "Peasycam V200." Peasycam. Web. 13 Mar. 2014.

http://mrfeinberg.com/peasycam/

Fisher, J., Piterman, N., Hajnal, A., & Henzinger, T. (2007). Predictive Modeling of Signaling Crosstalk

during C. elegans Vulval Development: PLoS Computational Biology.

Fry, Ben, and Casey Reas (2014). "Processing.org." Processing.org. Web. 13 Mar. 2014.

http://www.processing.org/

Gönczy, P., & Rose, L.S. (2005) "Asymmetric Cell Division and Axis Formation in the Embryo."

WormBook ed: The C. elegans Research Community, WormBook, http://www.wormbook.org.

http://www.wormatlas.org/ver1/handbook/anatomyintro/anatomyintro.htm
http://www.wormbook.org/chapters/www_wntsignaling/wntsignaling.html

51

Guo, S., & Kemphues, K. J. (1995). Par-1, a Gene Required for Establishing Polarity in C. elegans

Embryos, Encodes a Putative Ser/Thr Kinase That Is Asymmetrically Distributed. Cell,

81(4), 611-620.

Hao, Y., Boyd, L., & Seydoux, G. (2006). Stabilization of Cell Polarity by the C. elegans RING Protein

PAR-2. Developmental Cell, 10(2), 199-208.

Hoege, C., & Hyman, A. A. (2013). Principles of PAR polarity in Caenorhabditis elegans

embryos. Nature Reviews Molecular Cell Biology, 14(5), 315-322.

Huang, N. N., Mootz, D. E., Walhout, A. J. M., Vidal, M., & Hunter, C. P. (2002). MEX-3 interacting

proteins link cell polarity to asymmetric gene expression in Caenorhabditis

elegans. Development, 129(3), 747-759.

Idili, G., & Cantarelli, M. (2011-2013). OpenWorm. Retrieved 3-10-2014. http://www.openworm.org.

Kaletta, T., & Hengartner, M. O. (2006). Finding function in novel targets: C. elegans as a model

organism. Nat Rev Drug Discov, 5(5), 387-398.

Kitano, H. (2002). Computational systems biology. Nature, 420, 206-210.

Kitano, H. (1998). The Perfect C. elegans Project: An Initial Report. In S. Hamahashi (Ed.): Artificial

Life.

Law, A. M., & Kelton, D. W. (2000). Simulation Modeling and Analysis (3 ed.). Boston: McGraw Hill.

Loew, L. M., & Schaff, J. C. (2001). The Virtual Cell: a software environment for computational cell

biology. Trends in Biotechnology, 19(10), 401-406.

Macara, I. G. (2004). Parsing the Polarity Code. Nature Reviews Molecular Cell Biology, 5(3), 220-231.

Mango, S. E., Thorpe, C. J., Martin, P. R., Chamberlain, S. H., & Bowerman, B. (1994). Two maternal

genes, apx-1 and pie-1, are required to distinguish the fates of equivalent blastomeres in the early

Caenorhabditis elegans embryo. Development, 120(8), 2305-2315.

Mickey, K. M., Mello, C. C., Montgomery, M. K., Fire, A., & Priess, J. R. (1996). An inductive

interaction in 4-cell stage C. elegans embryos involves APX-1 expression in the signalling

cell. Development, 122(6), 1791-1798.

Motegi, F. & Seydoux, G. (2013).The PAR network: redundancy and robustness in a symmetry-

breaking system. Philosophical Transactions of Royal Society B 368: 20130010.

http://dx.doi.org/10.1098/rstb.2013.0010

Nance, J., Lee, J.-Y., & Goldstein, B. (2005a). Gastrulation in C. elegans (WormBook ed.): The C.

elegans Research Community, WormBook, http://www.wormbook.org.

Nance, J. (2005b). PAR proteins and the establishment of cell polarity during C. elegans

development. BioEssays, 27(2), 126-135.

Neves, A., & Priess, J. (2005). The REF-1 Family of bHLH Transcription Factors Pattern C. elegans

Embryos through Notch-Dependent and Notch-Independent Pathways. Developmental Cell,

8(6), 867-879.

Priess, J. R. (2005). Notch signaling in the C. elegans embryo. WormBook ed: The C. elegans

Research Community.
Reese, K. J., Dunn, M. A., Waddle, J. A., & Seydoux, G. (2000). Asymmetric Segregation of PIE-1 in C.

elegans Is Mediated by Two Complementary Mechanisms that Act through Separate PIE-1

Protein Domains. Molecular Cell, 6(2), 445-455.

Riddle DL, Blumenthal T, Meyer BJ, et al. (1997). Editors . C. elegans II. 2nd edition. Cold Spring

Harbor (NY): Cold Spring Harbor Laboratory Press.

Rocheleau, C., Yasuda, J., Shin, T. H., Lin, R., Sawa, H., Okano, H., et al. (1999). WRM-1 Activates the

LIT-1 Protein Kinase to Transduce Anterior/Posterior Polarity Signals in C. elegans. Cell, 97(6),

717-726.

Rogers, A., Antoshechkin, I., Bieri, T., Blasiar, D., Bastiani, C., Canaran, P., ... & Sternberg, P. W.

(2008). WormBase 2007. Nucleic acids research, 36(suppl 1), D612-D617.

Rose, L.S. & Kemphues K.J. (1998). Early Patterning of the C. elegans Embryo. Annual Review of

Genetics 32: 521-545.

52

Schlegal, Andreas (2012). "ControlP5." Processing GUI. Web. 13 Mar. 2014.

http://www.sojamo.de/libraries/ControlP5/

Schnabel, R., Hutter, H., Moerman, D. and Schnabel, H. (1997). Assessing normal embryogenesis in

Caenorhabditis elegans using a 4D microscope: variability of development and regional

specification. Dev. Biol. 184,234 -265.

Shannon, P., Markiel, A., Ozier, O., Balinga, N., Wang, J., Ramage, D., et al. (2003). Cytoscape: A

Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome

Research, 13(11), 2498-2504.

Stein, L. D., & Thierry-Mieg, J. (1998). Scriptable access to the Caenorhabditis elegans genome

sequence and other ACEDB databases. Genome research, 8(12), 1308-1315.

Sulston, J. E., Schierenberg, E., White, J. G., & Thomson, J. N. (1983). The Embryonic Cell Lineage of

the Nematode Caenorhabditis elegans. Developmental Biology, 100(1), 64-119.

Tabara, H., Hill, R. J., Mello, C. C., Priess, J. R., & Kohara, Y. (1999). Pos-1 encodes a cytoplasmic

zinc-finger protein essential for germline specification in C. elegans. Development, 126(1), 1-11.

Watts, J. L., Morton, D. G., Bestman, J., & Kemphues, K. J. (2000). The C. elegans par-4 gene encodes a

putative serine-threonine kinase required for establishing embryonic asymmetry. Development,

127(7), 1467-1475.

Wu, Y., Ghitani, A., Christensen, R., Santella, A., Du, Z., Rondeau, G., Bao, Z., Colón-Ramos, D., &

Shroff, H. (2011). Inverted selective plane illumination microscopy (iSPIM) enables coupled cell

identity lineaging and neurodevelopmental imaging in Caenorhabditis elegans. Proceedings of

the National Academy of Sciences, 108(43), 17708-17713.

Wyvill, Geoff, and Andrew Trotman. (1990). Ray-tracing soft objects. Springer Japan, 1990.

53

9 Appendices

 Appendix A: Implementation Guide 9.1

Running SimWorm14

Running the simulation requires simply double clicking the executable jar file. It must be accompanied by

three .csv files in order to read in all the necessary data. These files are entitled AandC.csv,

eventsQueue.csv, and genes.csv. These file names must not be altered, and all three files must be in the

same directory where the executable jar is located.

Antecedents and Consequents Table

This table is designed to run the protein interactions within cells and between cells. Currently, we have

worked on interactions for the wild type
1
 that can have effects on cell location within the embryo, polarity

and cell fate. This table is broken into several columns:

 Antecedents: the necessary conditions to have an effect on another protein which is specified in

consequents

o The 3 letter and number codes are the names of proteins

o An up arrow indicates that the protein is active

o The down arrow indicates that the protein is inactive

 Consequents: given that the conditions in the antecedent is true for each cell, change the protein

state as specified in this column

o This works like an if/then statement (if [antecedent], then [consequent])

 P or T: specifies if the state change is due to phosphorylation (P), transcription (T), or unknown

(U)

o Phosphorylation: time of change specified in consequent is instant due to an instant

change in the protein conformation

o Transcription: time of change specified in consequent is delayed due to a change in

expression

o Unknown: no information was found

 startStage: the minimum number of cells where that rule is applicable, expressed as cell stage

 endStage: the maximum number of cells where that rule is applicable, expressed as cell stage

o Ex: row 2 rule is active from the embryo having 1 cell to the embryo having 26 cells,

when the embryo consists of more than 26 cells we do not need to check this rule

 Interaction location: the location in the cell where this interaction is taking place in the wild type

o Rules are only applicable on cells located in the region specified

o Axes: AP, DV, LR

 AP: Anterior (x-axis negative values) and posterior (x-axis positive values)

 DV: Dorsal (y-axis positive values) and ventral (y-axis negative values)

 LR: Left (z-axis positive – toward the user) and right (z-axis negative)

1
 A species that occurs under natural circumstances, not a mutant

54

The current working version of the antecedent and consequents table that is read in by the program is

entitled AandC.csv and must be included in the directory with the executable jar in order to run the

simulation.

Lineaging Table

The entirety of the C. elegans lineage is known. The lineage is the sequence of cell divisions and cell

identities (naming is based on the cell tissue type and cell family). An example of the C. elegans lineage

for the first few cell divisions that also shows fate (designated by color) and cell location can be found at

this location: http://labs.bio.unc.edu/Goldstein/CelegansGastrulationLineage.jpg. Additionally, the figure

below shows the first few divisions as a lineage tree.

You can look at subsequent divisions by visiting this website:

http://wormweb.org/celllineage#c=P0a&z=1

We have created a lineaging table that holds several pieces of information as described below:

 Parent: the name of the parent cell

 Daughter 1 & Daughter 2: each of the resulting cells after cell division of the parent

 Division of axis: the axis for which each daughter cell appears (for an axis definition, please refer

to the description of interaction location under Antecedents and Consequents Table)

 Time of division: the biological data known for the cell time of division, this is calculated

continuously from the start time (time of first division is 0)

 Sim Time: this is 10 minutes more than the Time of division in order to shown the first cell

division in the simulation

 V_Daughter1 & V_Daughter2: Comparative volume of each daughter cell in the wild type

o For now, the cells either split equally (50/50) or unequally (60/40)

The lineaging table that is read in by the program is entitled eventsQueue.csv and must be included in the

directory with the executable jar in order to run the simulation.

Simulation Features
We understand that designing this simulation will require forethought of the types of features that will

make it most useful in order to ensure the coding and implementation are created with these features in

mind. Below is an outline of what we would like to have included:

 Capability to identify a time point for the simulation to begin at instead of starting at time 1

 Capability of viewing different planes to see “inside” the embryo when cells are covered by other

cells

 Label cells according to name based on the lineaging table

 Be able to highlight all cells from one lineage

http://labs.bio.unc.edu/Goldstein/CelegansGastrulationLineage.jpg
http://wormweb.org/celllineage#c=P0a&z=1

55

o Be able to filter out cells – hide them from view

o Displays should be linked (when rotating the an axis, the same cells should be

highlighted)

 Capability of adjusting window proportions – having a split screen and then adjusting the

proportion of the screen that shows the simulation and the part that tracks data

 Model the cells using metaballs to achieve more accurate shapes and locations

Further, the following is a list of previous goals that were accomplished successfully:

 Capability to rotate the embryo on three different planes along each axis (x-axis, y-axis, z-axis)

o Maintains integrity of cell positioning within the embryo

 Label cells with the cell fate

o This was indicated by color scheme.

 For coloring schemes: http://colorbrewer2.org/

 Capability of changing the initial conditions of the genes for hypothesis testing

o Turn on/off specific genes per user’s needs to test mutant

o This simply involves altering the data in the genes.csv file

http://colorbrewer2.org/

56

 Appendix B: Cytoscape Image of Protein Interactions 9.2

The following images depict the Notch signaling pathway with cell polarity protein interactions and the

Wnt signaling pathway, respectively. They were generated using the mapping software Cytoscape

(Shannon, 2003). Each node is a protein or complex of proteins and each edge indicates the type of

interaction. An arrow from node A to node B indicates that protein A is activating protein B. Likewise, a

“T” from node A to node B indicates that protein A is inhibiting protein B. These protein maps include all

of the proteins that were researched during this project period.

57

 Appendix C: Full Antecedents and Consequents Table 9.3

Antecedents Consequences

pie-1 , pal-1  pal-1 

pie-1 , skn-1  skn-1 

skn-1 , pal-1  pal-1 

mex-3 , pal-1  pal-1 

mex-5/6 , par-3  par-3 

mex-5/6 , par-6  par-6 

mex-5/6 , pkc-3  pkc-3 

mex-5/6 , pie-1  pie-1 

par-2 , pkc-3  pkc-3 

par-2 , par-6  par-6 

par-2 , par-3  par-3 

par-1 , pkc-3  pkc-3 

par-1 , par-6  par-6 

par-1 , par-3  par-3 

par-3 , par-6 , pkc-3 , par-2  par-2 

par-3 , par-1  par-1 

par-1 , mex-5/6  mex-5/6 

par-1 , mex-3  mex-3 

par-4 , mex-3  mex-3 

apx-1 , glp-1  glp-1 

glp-1 , tbx-37  tbx-37 

glp-1 , tbx-38  tbx-38 

glp-1 , ref-1  ref-1 

glp-1 , ref-1  ref-1 

skn-1 , MS signal  MS signal 

MS signal , glp-1  glp-1 

glp-1 , lag-2  lag-2 

glp-1 , lin-12  lin-12 

glp-1 , tbx-37 , tbx-38 , pha-4  pha-4 

mom-3 , mom-1 , mom-2  mom-2 

mom-5 , mom-4  mom-4 

mom-4 , lit-1  lit-1 

mom-4 , wrm-1  wrm-1 

mom-4 , wrm-1 , lit-1 , pop-1  pop-1 

mom-2 , mom-5  mom-5 

skn-1 , med-2  med-2 

skn-1 , med-1  med-1 

wrm-1 , lit-1 , pop-1  pop-1 

58

 Appendix D: Glossary 9.4

abstraction – A relatively user friendly tool that performs the same functions as a more difficult tool. For

example, one programming language is an abstraction for another if it can achieve the same

results with more readable code.

allele – One member of a pair of genes, a pair of alleles are located at the same spot on the same

chromosome and code for the same trait.

apicobasal – The difference between the outside of the body (apical) and inside of the body (basal).

apoptosis – Programmed cell death.

blast cells – Immature precursor cells that have not differentiated.

centrosome – An organelle that organizes the microtubules of the cell and helps regulate cell divisions.

class – In object oriented languages, a file in which a type of objects is defined. The class typically

contains the object's attributes and any functions that operate on objects of that type.

class hierarchy – A tree-like way of structuring object classes; describes the way classes relate to one

another.

constant time complexity – A function whose computation time does not change based on the size of the

input data.

constructor – The code that runs when a new instance of an object is created. It usually sets the values of

any attributes that objects of that type contain.

cortex – A specialized layer of cytoplasm on the inner face of the plasma membrane.

cytoplasm – The material within the plasma membrane of a cell excluding the nucleus.

deep clone – A duplicate of a piece of data that is completely independent of the original, so that

changing one will not affect the other.

deterministic simulation – A simulation that does not incorporate probabilities to predict an event. A

deterministic simulation will always produce the same outcome given the same input.

discrete simulation – A simulation where events occur at a specific time point and changes due to an

event are propagated at a specific time point.

drawing loop – In events-based languages, the code inside of the draw function is called repeatedly any

time that the program is idle.

dynamic simulation – A simulation in which changes are made over time.

events queue – A repository of events which are waiting to be called upon by the program.

59

fluorescent marker – A protein that exhibits a bright color when exposed to a specific range of

wavelengths of light.

gravid – Pregnant, carrying eggs.

GUI (graphical user interface) – The visual that a user sees when running a program. The user interacts

with these visuals to trigger computations in the program. The goal is program usage to be

intuitive for the user.

hard-coding – Setting program parameters in a way so that they cannot be changed without altering the

code.

hashmap – A data structure that stores sets of data of the form <key, value>. The key and the value are

linked such that if the programmer knows the key, he or she can easily access the corresponding

value.

hermaphrodite – The sexual form of the C. elegans that contains both eggs and sperm allowing for self-

fertilization.

heterozygous – Having two different alleles for the same trait.

histone – Highly alkaline proteins that are used for packing and organizing DNA, found in high

concentrations in the nucleus of cells.

homozygous – Having two copies of the same allele for a trait.

kinase – An enzyme that transfers a phosphate group from ATP to a protein.

L1 arrest – An alternative development stage in C.elegans life cycle that can occur right after hatching if

there is a lack of resources in the environment; the worm can survive several weeks without food

at this stage, conserving energy by not developing fully.

L4 – The fourth C. elegans larval stage occurring starting at 40-49.5 hours after hatching when cultured at

25
o
C, last stage before the reproductive adult stage.

linkage – The tendency for two genes that are located near each other on a chromosome to be inherited

together during meiosis.

methods – Processes that consume input, perform computations, and produce output.

mislocalized – Located in the wrong cell or area of the cell.

N2M – The wildtype C. elegans strain that contains males.

Nematode Growth Media – Standard media used for growing C. elegans.

oocyte – An immature egg cell that has not been fertilized.

OpenGL – A programming language for drawing graphics.

60

parsing – Converting data that is human-readable into data structures that a program can understand. If

the data is structured in a systematic way, parsing can be done programmatically.

phosphorylation – The addition of a phosphate group to a protein or other organic molecule.

postembryonic – After the embryonic stage.

set-up function – In events-based languages, the set up function contains the first code to be executed at

the start of the program. This code initializes any data structures that need to exist for the

remainder of the execution.

somatic – Cells forming the body of the organism as opposed to the germline, or sexual reproductive

cells.

static simulation – A simulation in which time is not a factor.

stochastic simulation – A simulation that incorporates probabilities to predict an event. Stochastic

simulations are variable and may not produce the same outcome given the same input.

Sulston naming – The cell lineage nomenclature described in Sulston, 1983.

system – The subject for which a simulation is being written and can range in size and complexity.

time complexity – The time a program takes to run as a function of the size of the input.

transcription – The transition of the genetic message from DNA to RNA.

wildtype – The typical form of an organism as it occurs in nature.

61

 Appendix E: Javadocs 9.5

dataStructures

Enum Axes

java.lang.Object

 java.lang.Enum<Axes>

 dataStructures.Axes

All Implemented Interfaces:

java.io.Serializable, java.lang.Comparable<Axes>

public enum Axes

extends java.lang.Enum<Axes>

An enum to indicate axes in three dimensional space choices are X, Y, Z

Author:

Rachel

Enum Constant Summary

X

Y

Z

file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Axes.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Axes.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Axes.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Axes.html%23X
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Axes.html%23Y
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Axes.html%23Z

62

Method Summary

static Axes valueOf(java.lang.String name)

 Returns the enum constant of this type with the specified name.

static Axes[] values()

 Returns an array containing the constants of this enum type, in

the order they are declared.

Methods inherited from class java.lang.Enum

clone, compareTo, equals, finalize, getDeclaringClass, hashCode, name,

ordinal, toString, valueOf

Methods inherited from class java.lang.Object

getClass, notify, notifyAll, wait, wait, wait

Enum Constant Detail

X

public static final Axes X

Y

public static final Axes Y

Z

public static final Axes Z

file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Axes.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Axes.html%23valueOf(java.lang.String)
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Axes.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Axes.html%23values()
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Axes.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Axes.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Axes.html

63

Method Detail

values

public static Axes[] values()

Returns an array containing the constants of this enum type, in the order they are

declared. This method may be used to iterate over the constants as follows:

for (Axes c : Axes.values())

 System.out.println(c);

Returns:

an array containing the constants of this enum type, in the order they are declared

valueOf

public static Axes valueOf(java.lang.String name)

Returns the enum constant of this type with the specified name. The string must

match exactly an identifier used to declare an enum constant in this type. (Extraneous

whitespace characters are not permitted.)

Parameters:

name - the name of the enum constant to be returned.

Returns:

the enum constant with the specified name

Throws:

java.lang.IllegalArgumentException - if this enum type has no constant with the

specified name

java.lang.NullPointerException - if the argument is null

file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Axes.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Axes.html

64

processing

Class BasicVisual

java.lang.Object

 java.awt.Component

 java.awt.Container

 java.awt.Panel

 java.applet.Applet

 processing.core.PApplet

 processing.BasicVisual

All Implemented Interfaces:

java.awt.event.FocusListener, java.awt.event.KeyListener,

java.awt.event.MouseListener, java.awt.event.MouseMotionListener,

java.awt.event.MouseWheelListener, java.awt.image.ImageObserver,

java.awt.MenuContainer, java.io.Serializable, java.lang.Runnable,

java.util.EventListener, javax.accessibility.Accessible, processing.core.PConstants

public class BasicVisual

extends processing.core.PApplet

See Also:

Serialized Form

Nested Class Summary

Nested classes/interfaces inherited from class processing.core.PApplet

processing.core.PApplet.RendererChangeException

file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/serialized-form.html%23processing.BasicVisual

65

Nested classes/interfaces inherited from class java.applet.Applet

java.applet.Applet.AccessibleApplet

Nested classes/interfaces inherited from class java.awt.Panel

java.awt.Panel.AccessibleAWTPanel

Nested classes/interfaces inherited from class java.awt.Container

java.awt.Container.AccessibleAWTContainer

Nested classes/interfaces inherited from class java.awt.Component

java.awt.Component.AccessibleAWTComponent,

java.awt.Component.BaselineResizeBehavior,

java.awt.Component.BltBufferStrategy, java.awt.Component.FlipBufferStrategy

Field Summary

(package private) controlP5.Button backB

(package private) controlP5.Button bottomB

(package private) peasy.PeasyCam camera

(package private) controlP5.RadioButton chooseColorMode

file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/processing/BasicVisual.html%23backB
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/processing/BasicVisual.html%23bottomB
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/processing/BasicVisual.html%23camera
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/processing/BasicVisual.html%23chooseColorMode
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/processing/BasicVisual.html%23chooseColorMode

66

(package private) controlP5.CheckBox chooseMutants

(package private) controlP5.Button createShell

(package private) Shell displayShell

(package private) controlP5.Button fateKey0

(package private) controlP5.Button fateKey1

(package private) controlP5.Button fateKey2

(package private) controlP5.Button fateKey3

(package private) controlP5.Button fateKey4

(package private) controlP5.Button fateKey5

(package private) controlP5.Button fateKey6

(package private) boolean fateState

(package private) controlP5.Button
frontB

file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/processing/BasicVisual.html%23chooseMutants
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/processing/BasicVisual.html%23createShell
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Shell.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/processing/BasicVisual.html%23displayShell
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/processing/BasicVisual.html%23fateKey0
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/processing/BasicVisual.html%23fateKey1
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/processing/BasicVisual.html%23fateKey2
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/processing/BasicVisual.html%23fateKey3
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/processing/BasicVisual.html%23fateKey4
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/processing/BasicVisual.html%23fateKey5
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/processing/BasicVisual.html%23fateKey6
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/processing/BasicVisual.html%23fateState
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/processing/BasicVisual.html%23frontB

67

(package private) controlP5.ControlP5 info

(package private) controlP5.Button leftB

(package private) controlP5.Button lineageKey0

(package private) controlP5.Button lineageKey1

(package private) controlP5.Button lineageKey2

(package private) controlP5.Button lineageKey3

(package private) controlP5.Button lineageKey4

(package private) controlP5.Button lineageKey5

(package private) controlP5.Button lineageKey6

(package private) boolean lineageState

(package private) processing.core.PMatrix matScene

(package

private) java.util.HashMap<java.lang.String,java.lang.Boolea
mutants

file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/processing/BasicVisual.html%23info
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/processing/BasicVisual.html%23leftB
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/processing/BasicVisual.html%23lineageKey0
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/processing/BasicVisual.html%23lineageKey1
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/processing/BasicVisual.html%23lineageKey2
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/processing/BasicVisual.html%23lineageKey3
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/processing/BasicVisual.html%23lineageKey4
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/processing/BasicVisual.html%23lineageKey5
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/processing/BasicVisual.html%23lineageKey6
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/processing/BasicVisual.html%23lineageState
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/processing/BasicVisual.html%23matScene
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/processing/BasicVisual.html%23mutants

68

n>

(package private) boolean mutantsChosen

(package private) controlP5.Button parsKey0

(package private) controlP5.Button parsKey1

(package private) controlP5.Button parsKey2

(package private) controlP5.Button parsKey3

(package private) controlP5.Button parsKey4

(package private) controlP5.Button parsKey5

(package private) boolean parsState

(package private) controlP5.Button rightB

(package private) controlP5.Button topB

(package private) java.lang.String userText

(package private) controlP5.Textarea
userTextArea

file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/processing/BasicVisual.html%23mutantsChosen
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/processing/BasicVisual.html%23parsKey0
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/processing/BasicVisual.html%23parsKey1
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/processing/BasicVisual.html%23parsKey2
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/processing/BasicVisual.html%23parsKey3
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/processing/BasicVisual.html%23parsKey4
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/processing/BasicVisual.html%23parsKey5
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/processing/BasicVisual.html%23parsState
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/processing/BasicVisual.html%23rightB
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/processing/BasicVisual.html%23topB
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/processing/BasicVisual.html%23userText
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/processing/BasicVisual.html%23userTextArea

69

Fields inherited from class processing.core.PApplet

args, ARGS_BGCOLOR, ARGS_DISPLAY, ARGS_EDITOR_LOCATION, ARGS_EXTERNAL,

ARGS_FULL_SCREEN, ARGS_HIDE_STOP, ARGS_LOCATION, ARGS_PRESENT,

ARGS_SKETCH_FOLDER, ARGS_STOP_COLOR, DEFAULT_HEIGHT, DEFAULT_WIDTH,

defaultSize, displayHeight, displayWidth, dmouseX, dmouseY, emouseX, emouseY,

exitCalled, EXTERNAL_MOVE, EXTERNAL_STOP, finished, firstMouse, focused,

frame, frameCount, frameRate, frameRateLastNanos, frameRatePeriod,

frameRateTarget, g, height, insideDraw, javaVersion, javaVersionName, key,

keyCode, keyEvent, keyPressed, loadImageFormats, looping, matchPatterns,

MIN_WINDOW_HEIGHT, MIN_WINDOW_WIDTH, mouseButton, mouseEvent, mousePressed,

mouseX, mouseY, online, paused, pixels, platform, pmouseX, pmouseY, recorder,

redraw, requestImageMax, sketchPath, useNativeSelect, useQuartz, width

Fields inherited from class java.awt.Component

BOTTOM_ALIGNMENT, CENTER_ALIGNMENT, LEFT_ALIGNMENT, RIGHT_ALIGNMENT,

TOP_ALIGNMENT

Fields inherited from interface processing.core.PConstants

ADD, ALPHA, ALT, AMBIENT, ARC, ARGB, ARROW, BACKSPACE, BASELINE, BEVEL,

BEZIER_VERTEX, BLEND, BLUR, BOTTOM, BOX, BREAK, BURN, CENTER, CHATTER, CHORD,

CLAMP, CLOSE, CODED, COMPLAINT, CONTROL, CORNER, CORNERS, CROSS,

CURVE_VERTEX, CUSTOM, DARKEST, DEG_TO_RAD, DELETE, DIAMETER, DIFFERENCE,

DILATE, DIRECTIONAL, DISABLE_DEPTH_MASK, DISABLE_DEPTH_SORT,

DISABLE_DEPTH_TEST, DISABLE_NATIVE_FONTS, DISABLE_OPENGL_ERRORS,

DISABLE_OPTIMIZED_STROKE, DISABLE_RETINA_PIXELS, DISABLE_STROKE_PERSPECTIVE,

DISABLE_STROKE_PURE, DISABLE_TEXTURE_MIPMAPS, DODGE, DOWN, DXF, ELLIPSE,

ENABLE_DEPTH_MASK, ENABLE_DEPTH_SORT, ENABLE_DEPTH_TEST, ENABLE_NATIVE_FONTS,

ENABLE_OPENGL_ERRORS, ENABLE_OPTIMIZED_STROKE, ENABLE_RETINA_PIXELS,

ENABLE_STROKE_PERSPECTIVE, ENABLE_STROKE_PURE, ENABLE_TEXTURE_MIPMAPS, ENTER,

EPSILON, ERODE, ERROR_BACKGROUND_IMAGE_FORMAT, ERROR_BACKGROUND_IMAGE_SIZE,

ERROR_PUSHMATRIX_OVERFLOW, ERROR_PUSHMATRIX_UNDERFLOW,

ERROR_TEXTFONT_NULL_PFONT, ESC, EXCLUSION, GIF, GRAY, GROUP, HALF_PI, HAND,

HARD_LIGHT, HINT_COUNT, HSB, IMAGE, INVERT, JAVA2D, JPEG, LANDSCAPE, LEFT,

LIGHTEST, LINE, LINE_LOOP, LINE_STRIP, LINES, LINUX, MACOSX, MAX_FLOAT,

70

MAX_INT, MIN_FLOAT, MIN_INT, MITER, MODEL, MODELVIEW, MOVE, MULTIPLY, NORMAL,

OPAQUE, OPEN, OPENGL, ORTHOGRAPHIC, OTHER, OVERLAY, P2D, P3D, PATH, PDF,

PERSPECTIVE, PI, PIE, platformNames, POINT, POINTS, POLYGON, PORTRAIT,

POSTERIZE, PROBLEM, PROJECT, PROJECTION, QUAD, QUAD_BEZIER_VERTEX,

QUAD_STRIP, QUADRATIC_VERTEX, QUADS, QUARTER_PI, RAD_TO_DEG, RADIUS, RECT,

REPEAT, REPLACE, RETURN, RGB, RIGHT, ROUND, SCREEN, SHAPE, SHIFT, SOFT_LIGHT,

SPHERE, SPOT, SQUARE, SUBTRACT, TAB, TARGA, TAU, TEXT, THIRD_PI, THRESHOLD,

TIFF, TOP, TRIANGLE, TRIANGLE_FAN, TRIANGLE_STRIP, TRIANGLES, TWO_PI, UP,

VERTEX, WAIT, WHITESPACE, WINDOWS, X, Y, Z

Fields inherited from interface java.awt.image.ImageObserver

ABORT, ALLBITS, ERROR, FRAMEBITS, HEIGHT, PROPERTIES, SOMEBITS, WIDTH

Constructor Summary

BasicVisual()

Method Summary

(package

private) void
back(float theValue)

(package

private) void
bottom(float theValue)

(package

private) void
createShell(float theValue)

 void draw()

file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/processing/BasicVisual.html%23BasicVisual()
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/processing/BasicVisual.html%23back(float)
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/processing/BasicVisual.html%23bottom(float)
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/processing/BasicVisual.html%23createShell(float)
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/processing/BasicVisual.html%23draw()

71

 void drawAxes()

 void drawKey(ColorMode colorMode)

(package

private) void
front(float theValue)

 void gui()

 void keyReleased()

(package

private) void
left(float theValue)

static void main(java.lang.String[] args)

(package

private) void
right(float theValue)

 void secondarySetup()

 void setup()

(package

private) void
top(float theValue)

 void updateColorMode()

file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/processing/BasicVisual.html%23drawAxes()
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/processing/BasicVisual.html%23drawKey(dataStructures.ColorMode)
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/ColorMode.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/processing/BasicVisual.html%23front(float)
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/processing/BasicVisual.html%23gui()
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/processing/BasicVisual.html%23keyReleased()
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/processing/BasicVisual.html%23left(float)
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/processing/BasicVisual.html%23main(java.lang.String%5b%5d)
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/processing/BasicVisual.html%23right(float)
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/processing/BasicVisual.html%23secondarySetup()
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/processing/BasicVisual.html%23setup()
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/processing/BasicVisual.html%23top(float)
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/processing/BasicVisual.html%23updateColorMode()

72

Methods inherited from class processing.core.PApplet

abs, abs, acos, addListeners, alpha, ambient, ambient, ambient, ambientLight,

ambientLight, append, append, append, append, append, append, applyMatrix,

applyMatrix, applyMatrix, applyMatrix, applyMatrix, arc, arc, arraycopy,

arrayCopy, arraycopy, arrayCopy, arraycopy, arrayCopy, asin, atan, atan2,

background, background, background, background, background, background,

background, beginCamera, beginContour, beginPGL, beginRaw, beginRaw,

beginRecord, beginRecord, beginShape, beginShape, bezier, bezier,

bezierDetail, bezierPoint, bezierTangent, bezierVertex, bezierVertex, binary,

binary, binary, binary, blend, blend, blendColor, blendMode, blue, box, box,

brightness, camera, camera, canDraw, ceil, checkExtension, clear, clip,

color, color, color, color, color, color, color, color, colorMode, colorMode,

colorMode, colorMode, concat, concat, concat, concat, concat, concat, concat,

constrain, constrain, copy, copy, cos, createDefaultFont, createFont,

createFont, createFont, createGraphics, createGraphics, createGraphics,

createImage, createInput, createInput, createInputRaw, createOutput,

createOutput, createPath, createPath, createReader, createReader,

createReader, createShape, createShape, createShape, createShape,

createWriter, createWriter, createWriter, cursor, cursor, cursor, cursor,

curve, curve, curveDetail, curvePoint, curveTangent, curveTightness,

curveVertex, curveVertex, dataFile, dataPath, day, debug, degrees, delay,

dequeueEvents, desktopFile, desktopPath, destroy, die, die, directionalLight,

displayable, dispose, dist, dist, edge, ellipse, ellipseMode, emissive,

emissive, emissive, endCamera, endContour, endPGL, endRaw, endRecord,

endShape, endShape, exec, exit, exp, expand, expand, expand, expand, expand,

expand, expand, expand, expand, expand, expand, expand, expand, expand,

expand, expand, expand, expand, fill, fill, fill, fill, fill, fill, filter,

filter, filter, floor, flush, focusGained, focusGained, focusLost, focusLost,

frameRate, frustum, get, get, get, getCache, getExtension, getMatrix,

getMatrix, getMatrix, green, handleDraw, handleKeyEvent, handleMethods,

handleMethods, handleMouseEvent, hex, hex, hex, hex, hint, hour, hue, image,

image, image, imageMode, init, insertFrame, isGL, join, join, keyPressed,

keyPressed, keyPressed, keyReleased, keyReleased, keyTyped, keyTyped,

keyTyped, lerp, lerpColor, lerpColor, lightFalloff, lights, lightSpecular,

line, line, link, link, loadBytes, loadBytes, loadBytes, loadFont, loadImage,

loadImage, loadImageIO, loadImageMT, loadImageTGA, loadJSONArray,

loadJSONArray, loadJSONObject, loadJSONObject, loadPixels, loadShader,

loadShader, loadShape, loadShape, loadStrings, loadStrings, loadStrings,

loadStrings, loadTable, loadTable, loadXML, loadXML, log, loop, mag, mag,

main, main, makeGraphics, map, mask, match, matchAll, max, max, max, max,

max, max, method, millis, min, min, min, min, min, min, minute, modelX,

modelY, modelZ, month, mouseClicked, mouseClicked, mouseClicked,

mouseDragged, mouseDragged, mouseDragged, mouseEntered, mouseEntered,

mouseEntered, mouseExited, mouseExited, mouseExited, mouseMoved, mouseMoved,

mouseMoved, mousePressed, mousePressed, mousePressed, mouseReleased,

mouseReleased, mouseReleased, mouseWheel, mouseWheel, mouseWheelMoved,

nativeKeyEvent, nativeMouseEvent, nf, nf, nf, nf, nfc, nfc, nfc, nfc, nfp,

73

nfp, nfp, nfp, nfs, nfs, nfs, nfs, noClip, noCursor, noFill, noise, noise,

noise, noiseDetail, noiseDetail, noiseSeed, noLights, noLoop, norm, normal,

noSmooth, noStroke, noTexture, noTint, open, open, openStream, orientation,

ortho, ortho, ortho, paint, param, parseBoolean, parseBoolean, parseBoolean,

parseBoolean, parseByte, parseByte, parseByte, parseByte, parseByte,

parseByte, parseByte, parseByte, parseByte, parseChar, parseChar, parseChar,

parseChar, parseFloat, parseFloat, parseFloat, parseFloat, parseFloat,

parseFloat, parseInt, parseInt, parseInt, parseInt, parseInt, parseInt,

parseInt, parseInt, parseInt, parseInt, parseInt, parseInt, parseJSONArray,

parseJSONObject, parseXML, parseXML, pause, perspective, perspective, point,

point, pointLight, popMatrix, popStyle, postEvent, pow, print, print, print,

print, print, print, print, print, print, printArray, printCamera, println,

println, println, println, println, println, println, println, println,

println, println, printMatrix, printProjection, pushMatrix, pushStyle, quad,

quadraticVertex, quadraticVertex, radians, random, random, randomGaussian,

randomSeed, rect, rect, rect, rectMode, red, redraw, registerDispose,

registerDraw, registerKeyEvent, registerMethod, registerMouseEvent,

registerPost, registerPre, registerSize, removeCache, removeListeners,

render, reportDeprecation, requestImage, requestImage, resetMatrix,

resetShader, resetShader, resizeRenderer, resume, reverse, reverse, reverse,

reverse, reverse, reverse, reverse, rotate, rotate, rotateX, rotateY,

rotateZ, round, run, runSketch, runSketch, runSketch, saturation, save,

saveBytes, saveBytes, saveBytes, saveFile, saveFrame, saveFrame,

saveJSONArray, saveJSONArray, saveJSONObject, saveJSONObject, savePath,

saveStream, saveStream, saveStream, saveStream, saveStream, saveStrings,

saveStrings, saveStrings, saveTable, saveTable, saveXML, saveXML, scale,

scale, scale, screenX, screenX, screenY, screenY, screenZ, second,

selectFolder, selectFolder, selectFolder, selectFolder, selectImpl,

selectInput, selectInput, selectInput, selectInput, selectOutput,

selectOutput, selectOutput, selectOutput, set, set, setCache, setIconImage,

setMatrix, setMatrix, setMatrix, setupExternalMessages,

setupFrameResizeListener, shader, shader, shape, shape, shape, shapeMode,

shearX, shearY, shininess, shorten, shorten, shorten, shorten, shorten,

shorten, shorten, showDepthWarning, showDepthWarningXYZ, showMethodWarning,

showMissingWarning, showVariationWarning, sin, size, size, size, sketchFile,

sketchFullScreen, sketchHeight, sketchPath, sketchQuality, sketchRenderer,

sketchWidth, smooth, smooth, sort, sort, sort, sort, sort, sort, sort, sort,

sort, sort, specular, specular, specular, sphere, sphereDetail, sphereDetail,

splice, splice, splice, splice, splice, splice, splice, splice, splice,

splice, splice, splice, splice, split, split, splitTokens, splitTokens,

spotLight, sq, sqrt, start, status, stop, str, str, str, str, str, str, str,

str, str, str, stroke, stroke, stroke, stroke, stroke, stroke, strokeCap,

strokeJoin, strokeWeight, style, subset, subset, subset, subset, subset,

subset, subset, subset, subset, subset, subset, subset, subset, subset, tan,

text, text, text, text, text, text, text, text, text, text, text, textAlign,

textAlign, textAscent, textDescent, textFont, textFont, textLeading,

textMode, textSize, texture, textureMode, textureWrap, textWidth, textWidth,

textWidth, thread, tint, tint, tint, tint, tint, tint, translate, translate,

triangle, trim, trim, unbinary, unhex, unregisterDispose, unregisterDraw,

74

unregisterKeyEvent, unregisterMethod, unregisterMouseEvent, unregisterPost,

unregisterPre, unregisterSize, update, updateListeners, updatePixels,

updatePixels, urlDecode, urlEncode, vertex, vertex, vertex, vertex, vertex,

year

Methods inherited from class java.applet.Applet

getAccessibleContext, getAppletContext, getAppletInfo, getAudioClip,

getAudioClip, getCodeBase, getDocumentBase, getImage, getImage, getLocale,

getParameter, getParameterInfo, isActive, newAudioClip, play, play, resize,

resize, setStub, showStatus

Methods inherited from class java.awt.Panel

addNotify

Methods inherited from class java.awt.Container

add, add, add, add, add, addContainerListener, addImpl,

addPropertyChangeListener, addPropertyChangeListener,

applyComponentOrientation, areFocusTraversalKeysSet, countComponents,

deliverEvent, doLayout, findComponentAt, findComponentAt, getAlignmentX,

getAlignmentY, getComponent, getComponentAt, getComponentAt,

getComponentCount, getComponents, getComponentZOrder, getContainerListeners,

getFocusTraversalKeys, getFocusTraversalPolicy, getInsets, getLayout,

getListeners, getMaximumSize, getMinimumSize, getMousePosition,

getPreferredSize, insets, invalidate, isAncestorOf, isFocusCycleRoot,

isFocusCycleRoot, isFocusTraversalPolicyProvider, isFocusTraversalPolicySet,

layout, list, list, locate, minimumSize, paintComponents, paramString,

preferredSize, print, printComponents, processContainerEvent, processEvent,

remove, remove, removeAll, removeContainerListener, removeNotify,

setComponentZOrder, setFocusCycleRoot, setFocusTraversalKeys,

setFocusTraversalPolicy, setFocusTraversalPolicyProvider, setFont, setLayout,

transferFocusBackward, transferFocusDownCycle, validate, validateTree

Methods inherited from class java.awt.Component

75

action, add, addComponentListener, addFocusListener,

addHierarchyBoundsListener, addHierarchyListener, addInputMethodListener,

addKeyListener, addMouseListener, addMouseMotionListener,

addMouseWheelListener, bounds, checkImage, checkImage, coalesceEvents,

contains, contains, createImage, createImage, createVolatileImage,

createVolatileImage, disable, disableEvents, dispatchEvent, enable, enable,

enableEvents, enableInputMethods, firePropertyChange, firePropertyChange,

firePropertyChange, firePropertyChange, firePropertyChange,

firePropertyChange, firePropertyChange, firePropertyChange,

firePropertyChange, getBackground, getBaseline, getBaselineResizeBehavior,

getBounds, getBounds, getColorModel, getComponentListeners,

getComponentOrientation, getCursor, getDropTarget, getFocusCycleRootAncestor,

getFocusListeners, getFocusTraversalKeysEnabled, getFont, getFontMetrics,

getForeground, getGraphics, getGraphicsConfiguration, getHeight,

getHierarchyBoundsListeners, getHierarchyListeners, getIgnoreRepaint,

getInputContext, getInputMethodListeners, getInputMethodRequests,

getKeyListeners, getLocation, getLocation, getLocationOnScreen,

getMouseListeners, getMouseMotionListeners, getMousePosition,

getMouseWheelListeners, getName, getParent, getPeer,

getPropertyChangeListeners, getPropertyChangeListeners, getSize, getSize,

getToolkit, getTreeLock, getWidth, getX, getY, gotFocus, handleEvent,

hasFocus, hide, imageUpdate, inside, isBackgroundSet, isCursorSet,

isDisplayable, isDoubleBuffered, isEnabled, isFocusable, isFocusOwner,

isFocusTraversable, isFontSet, isForegroundSet, isLightweight,

isMaximumSizeSet, isMinimumSizeSet, isOpaque, isPreferredSizeSet, isShowing,

isValid, isVisible, keyDown, keyUp, list, list, list, location, lostFocus,

mouseDown, mouseDrag, mouseEnter, mouseExit, mouseMove, mouseUp, move,

nextFocus, paintAll, postEvent, prepareImage, prepareImage, printAll,

processComponentEvent, processFocusEvent, processHierarchyBoundsEvent,

processHierarchyEvent, processInputMethodEvent, processKeyEvent,

processMouseEvent, processMouseMotionEvent, processMouseWheelEvent, remove,

removeComponentListener, removeFocusListener, removeHierarchyBoundsListener,

removeHierarchyListener, removeInputMethodListener, removeKeyListener,

removeMouseListener, removeMouseMotionListener, removeMouseWheelListener,

removePropertyChangeListener, removePropertyChangeListener, repaint, repaint,

repaint, repaint, requestFocus, requestFocus, requestFocusInWindow,

requestFocusInWindow, reshape, setBackground, setBounds, setBounds,

setComponentOrientation, setCursor, setDropTarget, setEnabled, setFocusable,

setFocusTraversalKeysEnabled, setForeground, setIgnoreRepaint, setLocale,

setLocation, setLocation, setMaximumSize, setMinimumSize, setName,

setPreferredSize, setSize, setSize, setVisible, show, show, size, toString,

transferFocus, transferFocusUpCycle

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait,

76

wait

Field Detail

displayShell

Shell displayShell

userText

java.lang.String userText

camera

peasy.PeasyCam camera

matScene

processing.core.PMatrix matScene

info

controlP5.ControlP5 info

userTextArea

controlP5.Textarea userTextArea

frontB

controlP5.Button frontB

backB

file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Shell.html

77

controlP5.Button backB

topB

controlP5.Button topB

bottomB

controlP5.Button bottomB

leftB

controlP5.Button leftB

rightB

controlP5.Button rightB

mutantsChosen

boolean mutantsChosen

mutants

java.util.HashMap<java.lang.String,java.lang.Boolean> mutants

chooseMutants

controlP5.CheckBox chooseMutants

createShell

controlP5.Button createShell

78

chooseColorMode

controlP5.RadioButton chooseColorMode

lineageState

boolean lineageState

fateState

boolean fateState

parsState

boolean parsState

fateKey0

controlP5.Button fateKey0

fateKey1

controlP5.Button fateKey1

fateKey2

controlP5.Button fateKey2

fateKey3

controlP5.Button fateKey3

fateKey4

controlP5.Button fateKey4

79

fateKey5

controlP5.Button fateKey5

fateKey6

controlP5.Button fateKey6

parsKey0

controlP5.Button parsKey0

parsKey1

controlP5.Button parsKey1

parsKey2

controlP5.Button parsKey2

parsKey3

controlP5.Button parsKey3

parsKey4

controlP5.Button parsKey4

parsKey5

controlP5.Button parsKey5

lineageKey0

80

controlP5.Button lineageKey0

lineageKey1

controlP5.Button lineageKey1

lineageKey2

controlP5.Button lineageKey2

lineageKey3

controlP5.Button lineageKey3

lineageKey4

controlP5.Button lineageKey4

lineageKey5

controlP5.Button lineageKey5

lineageKey6

controlP5.Button lineageKey6

Constructor Detail

BasicVisual

public BasicVisual()

Method Detail

setup

public void setup()

81

Overrides:

setup in class processing.core.PApplet

secondarySetup

public void secondarySetup()

draw

public void draw()

Overrides:

draw in class processing.core.PApplet

createShell

void createShell(float theValue)

front

void front(float theValue)

back

void back(float theValue)

top

void top(float theValue)

bottom

void bottom(float theValue)

82

left

void left(float theValue)

right

void right(float theValue)

updateColorMode

public void updateColorMode()

keyReleased

public void keyReleased()

Overrides:

keyReleased in class processing.core.PApplet

drawKey

public void drawKey(ColorMode colorMode)

drawAxes

public void drawAxes()

gui

public void gui()

main

public static void main(java.lang.String[] args)

file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/ColorMode.html

83

dataStructures

Class Cell

java.lang.Object

 dataStructures.Cell

public class Cell

extends java.lang.Object

Field Summary

private Coordinates center

private RGB color

private DivisionData divide

private int generation

private java.util.HashMap<java.lang.String,Gene> genes

private Coordinates lengths

private java.lang.String name

private java.lang.String parent

file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Coordinates.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Cell.html%23center
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/RGB.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Cell.html%23color
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/DivisionData.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Cell.html%23divide
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Cell.html%23generation
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Gene.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Cell.html%23genes
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Coordinates.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Cell.html%23lengths
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Cell.html%23name
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Cell.html%23parent

84

private java.util.HashMap<java.lang.String,Gene> recentlyChanged

(package private) Coordinates sphereLocation

(package private) BasicVisual window

Constructor Summary

Cell(BasicVisual window,

java.lang.String name, Coordinates center, Coordinates lengths,

java.lang.String parent,

java.util.HashMap<java.lang.String,Gene> genes, RGB color, DivisionData divid

e, int generation)

 Constructor for a cell object

Method Summary

 java.util.HashMap<java.lang.String,Gene> applyCons()

 Checks for fulfilled antecedents

and applies their consequences.

 void drawCell()

 Draws the cell to the PApplet

 Coordinates getCenter()

 DivisionData getDivide()

file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Gene.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Cell.html%23recentlyChanged
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Coordinates.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Cell.html%23sphereLocation
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/processing/BasicVisual.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Cell.html%23window
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Cell.html%23Cell(processing.BasicVisual,%20java.lang.String,%20dataStructures.Coordinates,%20dataStructures.Coordinates,%20java.lang.String,%20java.util.HashMap,%20dataStructures.RGB,%20dataStructures.DivisionData,%20int)
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/processing/BasicVisual.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Coordinates.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Coordinates.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Gene.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/RGB.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/DivisionData.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Gene.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Cell.html%23applyCons()
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Cell.html%23drawCell()
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Coordinates.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Cell.html%23getCenter()
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/DivisionData.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Cell.html%23getDivide()

85

 int getGeneration()

 java.util.HashMap<java.lang.String,Gene> getGenes()

 java.lang.String getInfo()

 Returns the string that is printed

to the screen when information about

the cell is requested by the user

 Coordinates getLengths()

 java.lang.String getName()

 java.lang.String getParent()

 java.util.HashMap<java.lang.String,Gene> getRecentlyChanged()

 Coordinates getSphereLocation()

 void setColor(RGB color)

 Cell timeLapse(int stage)

 Per cell effects that occur on a

timestep.

Methods inherited from class java.lang.Object

file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Cell.html%23getGeneration()
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Gene.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Cell.html%23getGenes()
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Cell.html%23getInfo()
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Coordinates.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Cell.html%23getLengths()
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Cell.html%23getName()
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Cell.html%23getParent()
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Gene.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Cell.html%23getRecentlyChanged()
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Coordinates.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Cell.html%23getSphereLocation()
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Cell.html%23setColor(dataStructures.RGB)
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/RGB.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Cell.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Cell.html%23timeLapse(int)

86

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString,

wait, wait, wait

Field Detail

window

BasicVisual window

name

private java.lang.String name

center

private Coordinates center

lengths

private Coordinates lengths

parent

private java.lang.String parent

genes

private java.util.HashMap<java.lang.String,Gene> genes

recentlyChanged

private java.util.HashMap<java.lang.String,Gene> recentlyChanged

color

file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/processing/BasicVisual.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Coordinates.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Coordinates.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Gene.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Gene.html

87

private RGB color

divide

private DivisionData divide

generation

private int generation

sphereLocation

Coordinates sphereLocation

Constructor Detail

Cell

public Cell(BasicVisual window,

 java.lang.String name,

 Coordinates center,

 Coordinates lengths,

 java.lang.String parent,

 java.util.HashMap<java.lang.String,Gene> genes,

 RGB color,

 DivisionData divide,

 int generation)

Constructor for a cell object

Parameters:

window - The PApplet where the cell will be displayed

name - The name of the cell

file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/RGB.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/DivisionData.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Coordinates.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/processing/BasicVisual.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Coordinates.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Coordinates.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Gene.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/RGB.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/DivisionData.html

88

center - The coordinates of the center point of the cell

lengths - The length of the cell on each axis

parent - The name of this cell's parent (the cell that divides to create this cell)

genes - The list of genes present in this cell

color - The color the cell should be rendered in

divide - The data that will be required to calculate this cell's division

generation - Generation that the cell belongs to (p-0 is 0th generation, ab and p-1 are

first generation, etc)

Method Detail

getName

public java.lang.String getName()

getCenter

public Coordinates getCenter()

getLengths

public Coordinates getLengths()

getParent

public java.lang.String getParent()

getGenes

public java.util.HashMap<java.lang.String,Gene> getGenes()

getRecentlyChanged

file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Coordinates.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Coordinates.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Gene.html

89

public java.util.HashMap<java.lang.String,Gene> getRecentlyChanged()

getSphereLocation

public Coordinates getSphereLocation()

getDivide

public DivisionData getDivide()

getGeneration

public int getGeneration()

setColor

public void setColor(RGB color)

applyCons

public java.util.HashMap<java.lang.String,Gene> applyCons()

Checks for fulfilled antecedents and applies their consequences. Cascading effects

handled on next timestep.

Returns:

The updated list of genes - cell's genelist should be set equal to this result after this

method is called.

timeLapse

public Cell timeLapse(int stage)

Per cell effects that occur on a timestep. Updates the relevantCons list and calls

applyCons.

file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Gene.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Coordinates.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/DivisionData.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/RGB.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Gene.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Cell.html

90

Parameters:

stage - The number of cells present in the shell right now

Returns:

The updated cell

drawCell

public void drawCell()

Draws the cell to the PApplet

getInfo

public java.lang.String getInfo()

Returns the string that is printed to the screen when information about the cell is

requested by the user

Returns:

String containing list of genes and their states

91

dataStructures

Class CellChangesData

java.lang.Object

 dataStructures.CellChangesData

public class CellChangesData

extends java.lang.Object

Field Summary

 java.util.List<Cell> cellsAdded

 java.util.List<java.lang.String> cellsRemoved

Constructor Summary

CellChangesData(java.util.ArrayList<java.lang.String> cellsRemoved,

java.util.ArrayList<Cell> cellsAdded)

 Constructor for cellChangesData - holds information after a cell division about

which cells are now gone and which ones will be added

Method Summary

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString,

file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Cell.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/CellChangesData.html%23cellsAdded
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/CellChangesData.html%23cellsRemoved
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/CellChangesData.html%23CellChangesData(java.util.ArrayList,%20java.util.ArrayList)
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Cell.html

92

wait, wait, wait

Field Detail

cellsRemoved

public java.util.List<java.lang.String> cellsRemoved

cellsAdded

public java.util.List<Cell> cellsAdded

Constructor Detail

CellChangesData

public CellChangesData(java.util.ArrayList<java.lang.String> cellsRemoved,

 java.util.ArrayList<Cell> cellsAdded)

Constructor for cellChangesData - holds information after a cell division about which

cells are now gone and which ones will be added

Parameters:

cellsRemoved - Cells that divided and are now gone

cellsAdded - Cells that were created during division

file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Cell.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Cell.html

93

dataStructures

Enum ColorMode

java.lang.Object

 java.lang.Enum<ColorMode>

 dataStructures.ColorMode

All Implemented Interfaces:

java.io.Serializable, java.lang.Comparable<ColorMode>

public enum ColorMode

extends java.lang.Enum<ColorMode>

Enum Constant Summary

FATE

LINEAGE

PARS

Method Summary

static ColorMode valueOf(java.lang.String name)

 Returns the enum constant of this type with the specified

name.

static ColorMode[] values()

 Returns an array containing the constants of this enum

file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/ColorMode.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/ColorMode.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/ColorMode.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/ColorMode.html%23FATE
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/ColorMode.html%23LINEAGE
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/ColorMode.html%23PARS
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/ColorMode.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/ColorMode.html%23valueOf(java.lang.String)
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/ColorMode.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/ColorMode.html%23values()

94

type, in the order they are declared.

Methods inherited from class java.lang.Enum

clone, compareTo, equals, finalize, getDeclaringClass, hashCode, name,

ordinal, toString, valueOf

Methods inherited from class java.lang.Object

getClass, notify, notifyAll, wait, wait, wait

Enum Constant Detail

FATE

public static final ColorMode FATE

LINEAGE

public static final ColorMode LINEAGE

PARS

public static final ColorMode PARS

Method Detail

values

public static ColorMode[] values()

Returns an array containing the constants of this enum type, in the order they are

declared. This method may be used to iterate over the constants as follows:

for (ColorMode c : ColorMode.values())

file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/ColorMode.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/ColorMode.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/ColorMode.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/ColorMode.html

95

 System.out.println(c);

Returns:

an array containing the constants of this enum type, in the order they are declared

valueOf

public static ColorMode valueOf(java.lang.String name)

Returns the enum constant of this type with the specified name. The string must

match exactly an identifier used to declare an enum constant in this type. (Extraneous

whitespace characters are not permitted.)

Parameters:

name - the name of the enum constant to be returned.

Returns:

the enum constant with the specified name

Throws:

java.lang.IllegalArgumentException - if this enum type has no constant with the

specified name

java.lang.NullPointerException - if the argument is null

file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/ColorMode.html

96

dataStructures

Enum Compartment

java.lang.Object

 java.lang.Enum<Compartment>

 dataStructures.Compartment

All Implemented Interfaces:

java.io.Serializable, java.lang.Comparable<Compartment>

public enum Compartment

extends java.lang.Enum<Compartment>

Enum Constant Summary

ANTERIOR

DORSAL

LEFT

POSTERIOR

RIGHT

VENTRAL

XCENTER

file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Compartment.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Compartment.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Compartment.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Compartment.html%23ANTERIOR
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Compartment.html%23DORSAL
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Compartment.html%23LEFT
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Compartment.html%23POSTERIOR
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Compartment.html%23RIGHT
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Compartment.html%23VENTRAL
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Compartment.html%23XCENTER

97

YCENTER

ZCENTER

Method Summary

static Compartment valueOf(java.lang.String name)

 Returns the enum constant of this type with the specified

name.

static Compartment[] values()

 Returns an array containing the constants of this enum

type, in the order they are declared.

Methods inherited from class java.lang.Enum

clone, compareTo, equals, finalize, getDeclaringClass, hashCode, name,

ordinal, toString, valueOf

Methods inherited from class java.lang.Object

getClass, notify, notifyAll, wait, wait, wait

Enum Constant Detail

ANTERIOR

file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Compartment.html%23YCENTER
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Compartment.html%23ZCENTER
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Compartment.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Compartment.html%23valueOf(java.lang.String)
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Compartment.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Compartment.html%23values()

98

public static final Compartment ANTERIOR

XCENTER

public static final Compartment XCENTER

POSTERIOR

public static final Compartment POSTERIOR

DORSAL

public static final Compartment DORSAL

YCENTER

public static final Compartment YCENTER

VENTRAL

public static final Compartment VENTRAL

LEFT

public static final Compartment LEFT

ZCENTER

public static final Compartment ZCENTER

RIGHT

public static final Compartment RIGHT

file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Compartment.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Compartment.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Compartment.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Compartment.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Compartment.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Compartment.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Compartment.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Compartment.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Compartment.html

99

Method Detail

values

public static Compartment[] values()

Returns an array containing the constants of this enum type, in the order they are

declared. This method may be used to iterate over the constants as follows:

for (Compartment c : Compartment.values())

 System.out.println(c);

Returns:

an array containing the constants of this enum type, in the order they are declared

valueOf

public static Compartment valueOf(java.lang.String name)

Returns the enum constant of this type with the specified name. The string must

match exactly an identifier used to declare an enum constant in this type. (Extraneous

whitespace characters are not permitted.)

Parameters:

name - the name of the enum constant to be returned.

Returns:

the enum constant with the specified name

Throws:

java.lang.IllegalArgumentException - if this enum type has no constant with the

specified name

java.lang.NullPointerException - if the argument is null

file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Compartment.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Compartment.html

100

dataStructures

Class Consequence

java.lang.Object

 dataStructures.Consequence

public class Consequence

extends java.lang.Object

Field Summary

private Gene[] antecedents

private Gene consequence

private int endStage

private int startStage

Constructor Summary

Consequence(Gene[] antecedents, Gene consequence, int startStage,

int endStage)

 Constructor for a consequence object

Method Summary

file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Gene.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Consequence.html%23antecedents
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Gene.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Consequence.html%23consequence
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Consequence.html%23endStage
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Consequence.html%23startStage
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Consequence.html%23Consequence(dataStructures.Gene%5b%5d,%20dataStructures.Gene,%20int,%20int)
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Gene.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Gene.html

101

 Gene[] getAntecedents()

 Gene getConsequence()

 int getEndStage()

 int getStartStage()

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString,

wait, wait, wait

Field Detail

antecedents

private Gene[] antecedents

consequence

private Gene consequence

startStage

private int startStage

endStage

private int endStage

file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Gene.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Consequence.html%23getAntecedents()
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Gene.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Consequence.html%23getConsequence()
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Consequence.html%23getEndStage()
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Consequence.html%23getStartStage()
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Gene.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Gene.html

102

Constructor Detail

Consequence

public Consequence(Gene[] antecedents,

 Gene consequence,

 int startStage,

 int endStage)

Constructor for a consequence object

Parameters:

antecedents - All of the gene names and their states (see simple gene constructor)

required for this consequence to occur

consequence - The gene and its state that will be set if the antecedents are fulfilled

startStage - The cell stage (number of cells present) at which this rule starts being

considered

endStage - The cell stage at which this rule stops being considered

Method Detail

getAntecedents

public Gene[] getAntecedents()

getConsequence

public Gene getConsequence()

getStartStage

public int getStartStage()

getEndStage

file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Gene.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Gene.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Gene.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Gene.html

103

public int getEndStage()

104

dataStructures

Class ConsList

java.lang.Object

 dataStructures.ConsList

public class ConsList

extends java.lang.Object

Field Summary

 java.util.List<Consequence> AandC

 java.util.List<Consequence> startLate

Constructor Summary

ConsList()

 Constructor for a ConsList object Just populates AandC and startLate from the

CSV

Method Summary

 void readAandCInfo(java.lang.String file)

 Parses a CSV to create the antecedent and consequence rules

file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Consequence.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/ConsList.html%23AandC
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Consequence.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/ConsList.html%23startLate
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/ConsList.html%23ConsList()
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/ConsList.html%23readAandCInfo(java.lang.String)

105

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString,

wait, wait, wait

Field Detail

AandC

public java.util.List<Consequence> AandC

startLate

public java.util.List<Consequence> startLate

Constructor Detail

ConsList

public ConsList()

Constructor for a ConsList object Just populates AandC and startLate from the CSV

Method Detail

readAandCInfo

public void readAandCInfo(java.lang.String file)

Parses a CSV to create the antecedent and consequence rules

Parameters:

file - The name of the CSV file as a string

file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Consequence.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Consequence.html

106

dataStructures

Class Coordinates

java.lang.Object

 dataStructures.Coordinates

public class Coordinates

extends java.lang.Object

Field Summary

private Compartment AP

private Compartment DV

private Compartment LR

private float x

private float y

private float z

Constructor Summary

Coordinates(Compartment AP, Compartment DV, Compartment LR)

file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Compartment.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Coordinates.html%23AP
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Compartment.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Coordinates.html%23DV
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Compartment.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Coordinates.html%23LR
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Coordinates.html%23x
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Coordinates.html%23y
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Coordinates.html%23z
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Coordinates.html%23Coordinates(dataStructures.Compartment,%20dataStructures.Compartment,%20dataStructures.Compartment)
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Compartment.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Compartment.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Compartment.html

107

 Constructor that indicates compartment

Coordinates(float x, float y, float z)

 Constructor that indicates location

Method Summary

 Compartment getAP()

 Compartment getDV()

 Compartment getLR()

 float getSmallest()

 float getX()

 float getY()

 float getZ()

 Coordinates lengthsToScale()

Methods inherited from class java.lang.Object

file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Coordinates.html%23Coordinates(float,%20float,%20float)
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Compartment.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Coordinates.html%23getAP()
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Compartment.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Coordinates.html%23getDV()
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Compartment.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Coordinates.html%23getLR()
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Coordinates.html%23getSmallest()
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Coordinates.html%23getX()
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Coordinates.html%23getY()
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Coordinates.html%23getZ()
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Coordinates.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Coordinates.html%23lengthsToScale()

108

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString,

wait, wait, wait

Field Detail

x

private float x

y

private float y

z

private float z

AP

private Compartment AP

DV

private Compartment DV

LR

private Compartment LR

Constructor Detail

Coordinates

public Coordinates(float x,

 float y,

file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Compartment.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Compartment.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Compartment.html

109

 float z)

Constructor that indicates location

Parameters:

x - The x coordinate of the location

y - The y coordinate

z - The z coordinate

Coordinates

public Coordinates(Compartment AP,

 Compartment DV,

 Compartment LR)

Constructor that indicates compartment

Parameters:

AP - The compartment on the anterior-posterior axis

DV - The compartment on the dorsal-ventral axis

LR - The compartment on the left-right axis

Method Detail

getX

public float getX()

getY

public float getY()

getZ

file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Compartment.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Compartment.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Compartment.html

110

public float getZ()

getAP

public Compartment getAP()

getDV

public Compartment getDV()

getLR

public Compartment getLR()

getSmallest

public float getSmallest()

lengthsToScale

public Coordinates lengthsToScale()

file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Compartment.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Compartment.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Compartment.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Coordinates.html

111

dataStructures

Class DivisionData

java.lang.Object

 dataStructures.DivisionData

public class DivisionData

extends java.lang.Object

Field Summary

private Axes axis

private double d1Percentage

private int generation

private java.lang.String parent

private int time

Constructor Summary

DivisionData(java.lang.String parent, double d1Percentage, Axes axis,

int time, int generation)

 The constructor for a DivisionData object, which contains all the information

that the cellDivision function needs to know in order to compute a division

file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Axes.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/DivisionData.html%23axis
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/DivisionData.html%23d1Percentage
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/DivisionData.html%23generation
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/DivisionData.html%23parent
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/DivisionData.html%23time
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/DivisionData.html%23DivisionData(java.lang.String,%20double,%20dataStructures.Axes,%20int,%20int)
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Axes.html

112

Method Summary

 Axes getAxis()

 double getD1Percentage()

 int getGeneration()

 java.lang.String getParent()

 int getTime()

 DivisionData setD1Percentage(double d1Percentage)

 DivisionData setTime(int time)

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString,

wait, wait, wait

Field Detail

parent

private java.lang.String parent

file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Axes.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/DivisionData.html%23getAxis()
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/DivisionData.html%23getD1Percentage()
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/DivisionData.html%23getGeneration()
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/DivisionData.html%23getParent()
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/DivisionData.html%23getTime()
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/DivisionData.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/DivisionData.html%23setD1Percentage(double)
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/DivisionData.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/DivisionData.html%23setTime(int)

113

d1Percentage

private double d1Percentage

axis

private Axes axis

time

private int time

generation

private int generation

Constructor Detail

DivisionData

public DivisionData(java.lang.String parent,

 double d1Percentage,

 Axes axis,

 int time,

 int generation)

The constructor for a DivisionData object, which contains all the information that the

cellDivision function needs to know in order to compute a division

Parameters:

parent - The name of the cell being divided

d1Percentage - The percentage of the volume that goes to d1 (between 0 and 1)

axis - The axis along which the cell is dividing

file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Axes.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Axes.html

114

time - The time at which the division occurs

generation - The generation of the dividing cell

Method Detail

getParent

public java.lang.String getParent()

getD1Percentage

public double getD1Percentage()

getAxis

public Axes getAxis()

getTime

public int getTime()

setD1Percentage

public DivisionData setD1Percentage(double d1Percentage)

setTime

public DivisionData setTime(int time)

getGeneration

public int getGeneration()

file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Axes.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/DivisionData.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/DivisionData.html

115

dataStructures

Class Gene

java.lang.Object

 dataStructures.Gene

public class Gene

extends java.lang.Object

Field Summary

(package private) LocationData changes

(package private) Coordinates location

private java.lang.String name

private java.util.List<Consequence> relevantCons

private GeneState state

Constructor Summary

Gene(java.lang.String name, GeneState state)

 Cnstructor for a "simple gene" which only has name and state - used to avoid

storing excess info in antecedents and consequences which only need name and state

file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/LocationData.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Gene.html%23changes
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Coordinates.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Gene.html%23location
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Gene.html%23name
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Consequence.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Gene.html%23relevantCons
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/GeneState.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Gene.html%23state
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Gene.html%23Gene(java.lang.String,%20dataStructures.GeneState)
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/GeneState.html

116

Gene(java.lang.String name, GeneState state, Coordinates location)

 Constructor for genes that don't change compartment

Gene(java.lang.String name, GeneState state, Coordinates location, LocationDa

ta changes)

 Constructor for genes that change compartment during the course of

development

Method Summary

 LocationData getChanges()

 Coordinates getLocation()

 java.lang.String getName()

 java.util.List<Consequence> getRelevantCons()

 GeneState getState()

 Gene populateCons()

 Populates relevantCons Must be called before

any gene's list of relevant consequences should be

used.

 Gene setLocation(Coordinates location)

 Gene
setState(GeneState state)

file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Gene.html%23Gene(java.lang.String,%20dataStructures.GeneState,%20dataStructures.Coordinates)
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/GeneState.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Coordinates.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Gene.html%23Gene(java.lang.String,%20dataStructures.GeneState,%20dataStructures.Coordinates,%20dataStructures.LocationData)
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/GeneState.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Coordinates.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/LocationData.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/LocationData.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/LocationData.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Gene.html%23getChanges()
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Coordinates.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Gene.html%23getLocation()
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Gene.html%23getName()
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Consequence.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Gene.html%23getRelevantCons()
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/GeneState.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Gene.html%23getState()
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Gene.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Gene.html%23populateCons()
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Gene.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Gene.html%23setLocation(dataStructures.Coordinates)
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Coordinates.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Gene.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Gene.html%23setState(dataStructures.GeneState)
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/GeneState.html

117

 Gene updateCons(int time)

 Updates the relevantCons list to remove

consequences whose time period is over, or add new

ones whose time periods have begun Should be called

every time step TODO inefficient now that we're

reading from CSV and might not be working exactly

right - see testApplyingConsequences

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString,

wait, wait, wait

Field Detail

name

private java.lang.String name

state

private GeneState state

relevantCons

private java.util.List<Consequence> relevantCons

location

Coordinates location

file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Gene.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Gene.html%23updateCons(int)
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/GeneState.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Consequence.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Coordinates.html

118

changes

LocationData changes

Constructor Detail

Gene

public Gene(java.lang.String name,

 GeneState state,

 Coordinates location)

Constructor for genes that don't change compartment

Parameters:

name - Name of the gene

state - Active/inactive state of the gene (also can be unknown)

location - Compartment in which the gene is located

Gene

public Gene(java.lang.String name,

 GeneState state,

 Coordinates location,

 LocationData changes)

Constructor for genes that change compartment during the course of development

Parameters:

name - Name of the gene

state - Active/inactive state of the gene

location - Compartment in which the gene is located

changes - Info on compartment that the gene moves to and what time the move occurs

file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/LocationData.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/GeneState.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Coordinates.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/GeneState.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Coordinates.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/LocationData.html

119

Gene

public Gene(java.lang.String name,

 GeneState state)

Cnstructor for a "simple gene" which only has name and state - used to avoid storing

excess info in antecedents and consequences which only need name and state

Parameters:

name - Name of the gene

state - Active/inactive state of the gene

Method Detail

populateCons

public Gene populateCons()

Populates relevantCons Must be called before any gene's list of relevant consequences

should be used. Otherwise this list will be null. Only the gene instances that are in a

cell's gene list generally need to call this

Returns:

The gene with its populated list

updateCons

public Gene updateCons(int time)

Updates the relevantCons list to remove consequences whose time period is over, or

add new ones whose time periods have begun Should be called every time step TODO

inefficient now that we're reading from CSV and might not be working exactly right -

see testApplyingConsequences

Parameters:

time - The cell stage that the simulation is currently at (number of cells present)

file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/GeneState.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Gene.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Gene.html

120

Returns:

The gene with its relevantCons list updated

getName

public java.lang.String getName()

getState

public GeneState getState()

getRelevantCons

public java.util.List<Consequence> getRelevantCons()

getLocation

public Coordinates getLocation()

getChanges

public LocationData getChanges()

setState

public Gene setState(GeneState state)

setLocation

public Gene setLocation(Coordinates location)

file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/GeneState.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Consequence.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Coordinates.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/LocationData.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Gene.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/GeneState.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Gene.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Coordinates.html

121

dataStructures

Class GeneState

java.lang.Object

 dataStructures.GeneState

public class GeneState

extends java.lang.Object

Field Summary

private double firstUsed

private boolean on

private boolean unknown

Constructor Summary

GeneState()

 Constructor for a geneState that is unknown indefinitely

GeneState(boolean on)

 Constructor for a geneState whose state is known

GeneState(double firstUsed)

 Constructor for a geneState whose state is unknown, but becomes known at a

certain time

file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/GeneState.html%23firstUsed
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/GeneState.html%23on
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/GeneState.html%23unknown
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/GeneState.html%23GeneState()
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/GeneState.html%23GeneState(boolean)
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/GeneState.html%23GeneState(double)

122

Method Summary

 double getFirstUsed()

 boolean isOn()

 boolean isUnknown()

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString,

wait, wait, wait

Field Detail

on

private boolean on

unknown

private boolean unknown

firstUsed

private double firstUsed

Constructor Detail

GeneState

public GeneState(boolean on)

file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/GeneState.html%23getFirstUsed()
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/GeneState.html%23isOn()
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/GeneState.html%23isUnknown()

123

Constructor for a geneState whose state is known

Parameters:

on - True if the gene is active

GeneState

public GeneState(double firstUsed)

Constructor for a geneState whose state is unknown, but becomes known at a certain

time

Parameters:

firstUsed - The time at which the state becomes known

GeneState

public GeneState()

Constructor for a geneState that is unknown indefinitely

Method Detail

isOn

public boolean isOn()

isUnknown

public boolean isUnknown()

getFirstUsed

public double getFirstUsed()

124

dataStructures

Class LocationData

java.lang.Object

 dataStructures.LocationData

public class LocationData

extends java.lang.Object

Field Summary

(package

private) java.lang.String
changeDivision

(package

private) Coordinates
changedLocation

(package

private) Coordinates
initialLocation

Constructor Summary

LocationData(Coordinates initialLocation, Coordinates changedLocation,

java.lang.String changeAfterDivision)

 Constructor for a locationData object - holds information about genes that

change location

Method Summary

 java.lang.String
getChangeDivision()

file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/LocationData.html%23changeDivision
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Coordinates.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/LocationData.html%23changedLocation
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Coordinates.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/LocationData.html%23initialLocation
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/LocationData.html%23LocationData(dataStructures.Coordinates,%20dataStructures.Coordinates,%20java.lang.String)
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Coordinates.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Coordinates.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/LocationData.html%23getChangeDivision()

125

 Coordinates getChangedLocation()

 Coordinates getInitialLocation()

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString,

wait, wait, wait

Field Detail

initialLocation

Coordinates initialLocation

changedLocation

Coordinates changedLocation

changeDivision

java.lang.String changeDivision

Constructor Detail

LocationData

public LocationData(Coordinates initialLocation,

 Coordinates changedLocation,

 java.lang.String changeAfterDivision)

file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Coordinates.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/LocationData.html%23getChangedLocation()
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Coordinates.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/LocationData.html%23getInitialLocation()
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Coordinates.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Coordinates.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Coordinates.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Coordinates.html

126

Constructor for a locationData object - holds information about genes that change

location

Parameters:

initialLocation - The location of the gene at the time of creation of the shell

changedLocation - The location that it changes to

changeAfterDivision - The name of the cell who division triggers the change in

location

Method Detail

getInitialLocation

public Coordinates getInitialLocation()

getChangedLocation

public Coordinates getChangedLocation()

getChangeDivision

public java.lang.String getChangeDivision()

file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Coordinates.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Coordinates.html

127

test

Class MethodsTests

java.lang.Object

 test.MethodsTests

public class MethodsTests

extends java.lang.Object

Field Summary

(package

private) Shell
testShell

(package

private) BasicVisual
testVis

Constructor Summary

MethodsTests()

Method Summary

 void enumTests()

 void firstDivision()

file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Shell.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/test/MethodsTests.html%23testShell
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/processing/BasicVisual.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/test/MethodsTests.html%23testVis
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/test/MethodsTests.html%23MethodsTests()
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/test/MethodsTests.html%23enumTests()
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/test/MethodsTests.html%23firstDivision()

128

 void instancesTest()

 void moreInstancesTests()

 void mutationsTest()

 void par1MutantTest()

 void par2MutantTest()

 void par3MutantTest()

 void par4MutantTest()

 void par5MutantTest()

 void perCellMutationsTest()

 void perShellMutationTest1()

 void perShellMutationTest2()

 void randomTests()

file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/test/MethodsTests.html%23instancesTest()
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/test/MethodsTests.html%23moreInstancesTests()
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/test/MethodsTests.html%23mutationsTest()
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/test/MethodsTests.html%23par1MutantTest()
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/test/MethodsTests.html%23par2MutantTest()
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/test/MethodsTests.html%23par3MutantTest()
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/test/MethodsTests.html%23par4MutantTest()
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/test/MethodsTests.html%23par5MutantTest()
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/test/MethodsTests.html%23perCellMutationsTest()
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/test/MethodsTests.html%23perShellMutationTest1()
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/test/MethodsTests.html%23perShellMutationTest2()
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/test/MethodsTests.html%23randomTests()

129

 void runEventsQueue()

 void testApplyingConsequences()

 void testGeneInitiation()

 void testHashMapInstances()

 void testInheritance()

 void testInstantiation()

 void testReadingCSV()

 void testTimeLapse()

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString,

wait, wait, wait

Field Detail

testVis

BasicVisual testVis

file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/test/MethodsTests.html%23runEventsQueue()
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/test/MethodsTests.html%23testApplyingConsequences()
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/test/MethodsTests.html%23testGeneInitiation()
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/test/MethodsTests.html%23testHashMapInstances()
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/test/MethodsTests.html%23testInheritance()
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/test/MethodsTests.html%23testInstantiation()
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/test/MethodsTests.html%23testReadingCSV()
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/test/MethodsTests.html%23testTimeLapse()
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/processing/BasicVisual.html

130

testShell

Shell testShell

Constructor Detail

MethodsTests

public MethodsTests()

Method Detail

firstDivision

public void firstDivision()

runEventsQueue

public void runEventsQueue()

testGeneInitiation

public void testGeneInitiation()

testApplyingConsequences

public void testApplyingConsequences()

testTimeLapse

public void testTimeLapse()

enumTests

public void enumTests()

file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Shell.html

131

randomTests

public void randomTests()

testInheritance

public void testInheritance()

instancesTest

public void instancesTest()

mutationsTest

public void mutationsTest()

perShellMutationTest1

public void perShellMutationTest1()

perShellMutationTest2

public void perShellMutationTest2()

perCellMutationsTest

public void perCellMutationsTest()

moreInstancesTests

public void moreInstancesTests()

par1MutantTest

public void par1MutantTest()

132

par2MutantTest

public void par2MutantTest()

par3MutantTest

public void par3MutantTest()

par4MutantTest

public void par4MutantTest()

par5MutantTest

public void par5MutantTest()

testInstantiation

public void testInstantiation()

testReadingCSV

public void testReadingCSV()

testHashMapInstances

public void testHashMapInstances()

133

dataStructures

Class RGB

java.lang.Object

 dataStructures.RGB

public class RGB

extends java.lang.Object

Field Summary

private int blue

private int green

private int red

Constructor Summary

RGB(int red, int green, int blue)

 Constructor for an RGB object

Method Summary

 int getBlue()

file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/RGB.html%23blue
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/RGB.html%23green
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/RGB.html%23red
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/RGB.html%23RGB(int,%20int,%20int)
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/RGB.html%23getBlue()

134

 int getGreen()

 int getRed()

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString,

wait, wait, wait

Field Detail

red

private int red

green

private int green

blue

private int blue

Constructor Detail

RGB

public RGB(int red,

 int green,

 int blue)

Constructor for an RGB object

file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/RGB.html%23getGreen()
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/RGB.html%23getRed()

135

Parameters:

red - The 0-255 value of the red channel

green - The 0-255 value of the green channel

blue - The 0-255 value of the blue channel

Method Detail

getRed

public int getRed()

getGreen

public int getGreen()

getBlue

public int getBlue()

136

dataStructures

Class Shell

java.lang.Object

 dataStructures.Shell

public class Shell

extends java.lang.Object

Field Summary

private java.util.HashMap<java.lang.String,Cell> cells

 ColorMode colorMode

private Coordinates dimensions

private java.util.HashMap<java.lang.String,DivisionData> divisions

 java.util.HashMap<java.lang.String,java.lang.Boolean> mutants

 float mutationProb

(package private) int simTime

 java.util.HashMap<java.lang.String,Gene> startGenes

file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Cell.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Shell.html%23cells
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/ColorMode.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Shell.html%23colorMode
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Coordinates.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Shell.html%23dimensions
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/DivisionData.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Shell.html%23divisions
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Shell.html%23mutants
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Shell.html%23mutationProb
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Shell.html%23simTime
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Gene.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Shell.html%23startGenes

137

(package private) BasicVisual window

Constructor Summary

Shell(BasicVisual window,

java.util.HashMap<java.lang.String,java.lang.Boolean> mutants)

 Constructor for a cell - initializes everything

Method Summary

 Cell calcMutation(Cell c)

 Deprecated.

 RGB cellColorFate(java.util.HashMap<java.lang.S

tring,Gene> genes)

 color codes based on cell fate, which is

determined by the states of various genes

 RGB cellColorLineage(java.lang.String cellName)

 color codes based on lineage, which can

be determined from the cell name

 RGB cellColorPars(java.util.HashMap<java.lang.S

tring,Gene> genes)

 Color codes cells based on what par

proteins they contain

 CellChangesData cellDivision(DivisionData data)

 simulates division of cell by calculating

new names, centers, dimensions, and gene states

of daughter cells daughter1 is always the more

file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/processing/BasicVisual.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Shell.html%23window
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Shell.html%23Shell(processing.BasicVisual,%20java.util.HashMap)
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/processing/BasicVisual.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Cell.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Shell.html%23calcMutation(dataStructures.Cell)
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Cell.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/RGB.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Shell.html%23cellColorFate(java.util.HashMap)
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Gene.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/RGB.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Shell.html%23cellColorLineage(java.lang.String)
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/RGB.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Shell.html%23cellColorPars(java.util.HashMap)
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Gene.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/CellChangesData.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Shell.html%23cellDivision(dataStructures.DivisionData)
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/DivisionData.html

138

anterior, dorsal, or right child

 java.util.HashMap<java.lang.Stri

ng,Gene>
childGenes(java.lang.String parent, Axes ax

is, boolean daughter1)

 calculates the genes that a child will

contain; to be called during cell division

 void drawAllCells()

 Draws all cells present in the shell to the

screen

 java.util.HashMap<java.lang.Stri

ng,Cell>
getCells()

 Coordinates getDimensions()

 java.util.HashMap<java.lang.Stri

ng,DivisionData>
getDivisions()

 java.lang.String nameCalc(java.lang.String parent, Axes axis

, boolean d1)

 Determines the name of a daughter cell

based on what the parent cell is and what axis

it's dividing along

 java.util.HashMap<java.lang.Stri

ng,Gene>
par1Mutations(java.util.HashMap<java.lang.S

tring,Gene> genes)

 Calculates mutations that occur in a cell

due to par1 being mutant

 java.util.HashMap<java.lang.Stri

ng,Gene>
par2Mutations(java.util.HashMap<java.lang.S

tring,Gene> genes)

 Calculates mutations that occur in a cell

due to par2 being mutant

 java.util.HashMap<java.lang.Stri par3Mutations(java.util.HashMap<java.lang.S

tring,Gene> genes)

file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Gene.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Shell.html%23childGenes(java.lang.String,%20dataStructures.Axes,%20boolean)
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Axes.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Shell.html%23drawAllCells()
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Cell.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Shell.html%23getCells()
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Coordinates.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Shell.html%23getDimensions()
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/DivisionData.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Shell.html%23getDivisions()
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Shell.html%23nameCalc(java.lang.String,%20dataStructures.Axes,%20boolean)
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Axes.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Gene.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Shell.html%23par1Mutations(java.util.HashMap)
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Gene.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Gene.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Shell.html%23par2Mutations(java.util.HashMap)
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Gene.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Shell.html%23par3Mutations(java.util.HashMap)
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Gene.html

139

ng,Gene> Calculates mutations that occur in a cell

due to par3, par6, or pkc-3 being mutant (these

mutants all behave the same way)

 java.util.HashMap<java.lang.Stri

ng,Gene>
par4Mutations(java.util.HashMap<java.lang.S

tring,Gene> genes)

 Calculates mutations that occur in a cell

due to par4 being mutant

 java.util.HashMap<java.lang.Stri

ng,Gene>
par5Mutations(java.util.HashMap<java.lang.S

tring,Gene> genes)

 Calculates mutations that occur in a cell

due to par5 being mutant

 java.util.HashMap<java.lang.Stri

ng,Gene>
perCellMutations(java.util.HashMap<java.lan

g.String,Gene> genes)

 Calculates mutations for each cell

 void perShellMutations()

 Calculates mutations for the overall shell

 java.util.HashMap<java.lang.Stri

ng,DivisionData>
readEventsQueue(java.lang.String file)

 Reads info about the events queue from

CSV

 java.util.HashMap<java.lang.Stri

ng,Gene>
readGeneInfo(java.lang.String file)

 Populates the initial gene list from a CSV

 void timeStep()

 runs cell timeStep on each cell and then

checks for cell divisions

 void updateColorMode()

 Recolors all cells to match a new color

mode

file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Gene.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Gene.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Shell.html%23par4Mutations(java.util.HashMap)
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Gene.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Gene.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Shell.html%23par5Mutations(java.util.HashMap)
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Gene.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Gene.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Shell.html%23perCellMutations(java.util.HashMap)
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Gene.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Shell.html%23perShellMutations()
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/DivisionData.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Shell.html%23readEventsQueue(java.lang.String)
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Gene.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Shell.html%23readGeneInfo(java.lang.String)
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Shell.html%23timeStep()
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Shell.html%23updateColorMode()

140

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString,

wait, wait, wait

Field Detail

window

BasicVisual window

cells

private java.util.HashMap<java.lang.String,Cell> cells

dimensions

private Coordinates dimensions

divisions

private java.util.HashMap<java.lang.String,DivisionData> divisions

simTime

int simTime

mutationProb

public float mutationProb

startGenes

public java.util.HashMap<java.lang.String,Gene> startGenes

file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/processing/BasicVisual.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Cell.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Coordinates.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/DivisionData.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Gene.html

141

mutants

public java.util.HashMap<java.lang.String,java.lang.Boolean> mutants

colorMode

public ColorMode colorMode

Constructor Detail

Shell

public Shell(BasicVisual window,

 java.util.HashMap<java.lang.String,java.lang.Boolean> mutants)

Constructor for a cell - initializes everything

Parameters:

window - The PApplet in which the shell will be drawn

mutants - The user's choice for which genes should be mutated in this shell

Method Detail

getCells

public java.util.HashMap<java.lang.String,Cell> getCells()

getDimensions

public Coordinates getDimensions()

getDivisions

public java.util.HashMap<java.lang.String,DivisionData> getDivisions()

file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/ColorMode.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/processing/BasicVisual.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Cell.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Coordinates.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/DivisionData.html

142

nameCalc

public java.lang.String nameCalc(java.lang.String parent,

 Axes axis,

 boolean d1)

Determines the name of a daughter cell based on what the parent cell is and what axis

it's dividing along

Parameters:

parent - The name of the cell that is dividing

axis - The axis along which the cell is dividing

d1 - Indicates whether we are calculating the name of daughter1 or daughter2

Returns:

The name that the corresponding daughter cell should have

childGenes

public java.util.HashMap<java.lang.String,Gene> childGenes(java.lang.String parent,

 Axes axis,

 boolean daughter1)

calculates the genes that a child will contain; to be called during cell division

Parameters:

parent - the parent that is dividing

axis - the axis along which the division is occurring

daughter1 - true if we are calculating genes for daughter1, false if we're calculating for

daughter2

Returns:

the genes that the child will contain

file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Axes.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Gene.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Axes.html

143

cellDivision

public CellChangesData cellDivision(DivisionData data)

simulates division of cell by calculating new names, centers, dimensions, and gene

states of daughter cells daughter1 is always the more anterior, dorsal, or right child

Parameters:

data - The divisionData for the cell that is dividing; contains name, axis, percentages,

etc.

Returns:

Data on which cells are now gone or new cells that were created

cellColorPars

public RGB cellColorPars(java.util.HashMap<java.lang.String,Gene> genes)

Color codes cells based on what par proteins they contain

Parameters:

genes - The geneslist of the cell to be colored

Returns:

The RGB value of the cell's color

cellColorLineage

public RGB cellColorLineage(java.lang.String cellName)

color codes based on lineage, which can be determined from the cell name

Parameters:

genes - The name of the cell to be colored

Returns:

file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/CellChangesData.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/DivisionData.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/RGB.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Gene.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/RGB.html

144

The RGB value of the cell's color

cellColorFate

public RGB cellColorFate(java.util.HashMap<java.lang.String,Gene> genes)

color codes based on cell fate, which is determined by the states of various genes

Parameters:

genes - The geneslist of the cell to be colored

Returns:

The RGB value of the cell's color

updateColorMode

public void updateColorMode()

Recolors all cells to match a new color mode

drawAllCells

public void drawAllCells()

Draws all cells present in the shell to the screen

timeStep

public void timeStep()

runs cell timeStep on each cell and then checks for cell divisions

calcMutation

@Deprecated

public Cell calcMutation(Cell c)

file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/RGB.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Gene.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Cell.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Cell.html

145

Deprecated.

perCellMutations

public java.util.HashMap<java.lang.String,Gene>

perCellMutations(java.util.HashMap<java.lang.String,Gene> genes)

Calculates mutations for each cell

Parameters:

genes - The genes that the cell contains

Returns:

The updated list of genes with mutations calculated

perShellMutations

public void perShellMutations()

Calculates mutations for the overall shell

par1Mutations

public java.util.HashMap<java.lang.String,Gene>

par1Mutations(java.util.HashMap<java.lang.String,Gene> genes)

Calculates mutations that occur in a cell due to par1 being mutant

Parameters:

genes - the cell's genes

Returns:

the updated genes with effects from mutation

par2Mutations

file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Gene.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Gene.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Gene.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Gene.html

146

public java.util.HashMap<java.lang.String,Gene>

par2Mutations(java.util.HashMap<java.lang.String,Gene> genes)

Calculates mutations that occur in a cell due to par2 being mutant

Parameters:

genes - the cell's genes

Returns:

the updated genes with effects from mutation

par3Mutations

public java.util.HashMap<java.lang.String,Gene>

par3Mutations(java.util.HashMap<java.lang.String,Gene> genes)

Calculates mutations that occur in a cell due to par3, par6, or pkc-3 being mutant

(these mutants all behave the same way)

Parameters:

genes - the cell's genes

Returns:

the updated genes with effects from mutation

par4Mutations

public java.util.HashMap<java.lang.String,Gene>

par4Mutations(java.util.HashMap<java.lang.String,Gene> genes)

Calculates mutations that occur in a cell due to par4 being mutant

Parameters:

genes - the cell's genes

Returns:

the updated genes with effects from mutation

file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Gene.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Gene.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Gene.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Gene.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Gene.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Gene.html

147

par5Mutations

public java.util.HashMap<java.lang.String,Gene>

par5Mutations(java.util.HashMap<java.lang.String,Gene> genes)

Calculates mutations that occur in a cell due to par5 being mutant

Parameters:

genes - the cell's genes

Returns:

the updated genes with effects from mutation

readGeneInfo

public java.util.HashMap<java.lang.String,Gene> readGeneInfo(java.lang.String file)

Populates the initial gene list from a CSV

Parameters:

file - the name of the CSV as a string

Returns:

The genes list as populated

readEventsQueue

public java.util.HashMap<java.lang.String,DivisionData> readEventsQueue(java.lang.String file)

Reads info about the events queue from CSV

Parameters:

file - the name of the CSV as a string

Returns:

The events queue as populated

file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Gene.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Gene.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/Gene.html
file:///C:/Users/Rachel/School/MQP/Simworm14%20Javadocs/dataStructures/DivisionData.html

