
Improving the Efficiency of
Homomorphic Encryption Schemes

by

Yin Hu

A Dissertation
Submitted to the Faculty

of the
WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the
Degree of Doctor of Philosophy

in
Electrical and Computer Engineering

May 2013

APPROVED:

Professor Berk Sunar Professor Lifeng Lai
Dissertation Advisor Dissertation Committee
ECE Department ECE Department

Professor Kathryn Fisler Professor Wenjing Lou
Dissertation Committee Dissertation Committee
Computer Science Department Computer Science Department

Virginia Tech

Abstract

In this dissertation, we explore different approaches to practical homomorphic en-

cryption schemes. For partial homomorphic encryption schemes, we observe that

the versatility is the main bottleneck. To solve this problem, we propose general

approaches to improve versatility of them by either extending the range of sup-

ported circuits or extending the message space. These general approaches can be

applied to a wide range of partial HE schemes and greatly increase the number

of applications that they support. For fully homomorphic encryption schemes, the

slow running speed and the large ciphertext are the main challenges. Therefore, we

propose efficient implementations as well as methods to compress the ciphertext. In

detail, the Gentry Halevi FHE scheme and the LTV FHE scheme are implemented

and the resulting performance shows significant improvement over previous works.

For ciphertext compression, the concept of scheme conversion is proposed. Given

a scheme converter, we can convert between schemes with compact ciphertext for

communication and homomorphic schemes for computation.

Acknowledgements

I would like to sincerely thank to my advisor: Professor Berk Sunar, who has

guided me through my Ph.D career. Special thanks to Professor Kathryn Fisler,

Professor Wenjing Lou and Professor Lifeng Lai for serving on my committee.

I wish to thank all my teachers for their help during the six years of my studies

at WPI, especially Professor William J. Martin and Professor Xinming Huang.

I also would like to thank all my fellow students for their help and company,

special thanks to Michael Moukarzel, Chenguang Yang, Yarkın Doröz, Ghaith Ham-

mouri and Wei Wang.

Finally, I would like to express my deepest gratitude to the most important

people in my life: my parents. Without their constant support and continuous

trust, this dissertation can not be achieved.

i

Contents

1 Introduction 1

1.1 Homomorphic Encryption Schemes 3

1.2 A Brief Overview of this Thesis . 5

2 Overview of Homomorphic Encryption Schemes 8

2.1 Partial Homomorphic Encryption Schemes 8

2.2 Fully Homomorphic Encryption Schemes 11

2.3 Toward Practical Homomorphic Encryption Schemes 13

3 Improving Partial HE Schemes 16

3.1 Extending Message Space of HE Schemes 16

3.1.1 The CRT-Based ElGamal Scheme 17

3.1.2 Applying CRT to the BGN homomorphic scheme 24

3.1.3 Applying CRT to the BGN Scheme 26

3.2 Extending Supported Circuits of Partial HE Schemes 29

3.2.1 Probabilistic Gates . 30

3.2.2 Converters for Schemes with Limited Homomorphic Properties 33

3.2.3 Application: Evaluating n-DNF Formula 36

4 Improving FHE Schemes 39

ii

4.1 Implementing the Gentry-Halevi Scheme 39

4.1.1 The Gentry-Halevi FHE Scheme 39

4.1.2 Fast Multiplications on GPUs 42

4.1.3 The Schönhage-Strassen FFT Multiplication 42

4.1.4 Emmart and Weems’ Approach 42

4.1.5 Modular Multiplication . 44

4.1.6 Optimization of FHE Primitives 46

4.1.7 Optimizing Encrypt . 46

4.1.8 Implementing Recrypt . 49

4.1.9 Implementation Results . 50

4.2 Impelementing the LTV FHE Scheme 53

4.2.1 Lopez-Tromer-Vaikuntanathan FHE 53

4.2.2 Parameter Selection in the LTV-FHE 56

4.2.3 LTV-FHE in Software . 60

4.3 Compressing Ciphertexts . 64

4.3.1 Secure Converters for Cryptographic Schemes 65

4.3.2 Using homomorphic encryption for secure converters 68

4.3.3 Bandwidth Reduction via Secure Scheme Converters 77

4.3.4 Performance . 85

5 Conclusion 87

5.1 Summaries and Conclusions . 87

5.2 Recommendation for Future Work . 89

iii

List of Figures

3.1 n-DNF Formula Evaluation Scheme 38

4.1 Strassen’s FFT Multiplication Algorithm 43

4.2 Barret reduction algorithm . 45

4.3 Decryption Procedure . 47

4.4 Proposed Encrypt and Decrypt in the FFT domain 51

4.5 Merged scheme . 67

4.6 Bandwidth Optimized Scheme with Converters 78

iv

List of Tables

2.1 Survey of partially homomorphic encryption schemes 10

2.2 Partial HE schemes vs. FHE schemes 14

3.1 Performance comparison of CEG with Paillier’s Scheme 23

3.2 A few sample computations with a probabilistic ORp gate. 32

4.1 Performance comparison of multiplication on CPUs vs. GPUs 44

4.2 Performance of FHE primitives with proposed optimizations 52

4.3 Security level of the LTV scheme. 60

4.4 Speed-Space Trade off . 62

4.5 Speed of the LTV FHE scheme . 63

4.6 Ciphertext sizes for FHE schemes. 77

4.7 Cost of conversion . 86

v

Chapter 1

Introduction

In recent years, distributed systems and especially cloud computing are developing

at a high speed. The economic benefits achieved through resource sharing and

the greater degree of flexibility in scaling resources have pushed the cloud into

mainstream computing.

However, the cloud inherits most information security problems from traditional

computing platforms. In addition, the distributed nature of the cloud enables many

new types of attacks. There are several major problems that the cloud faces:� The cloud may be untrusted. The cloud service provider (CSP) is not

necessarily trusted. For example, a malicious Google employee may be able to

setup back doors and bypass all the protection over the Google cloud services.

In addition, some machines in the cloud may be mismanaged, making them

vulnerable to attacks. Even further, some machines may belong to attackers.� Implementation bugs can be exploited. Even if the CSPs are trusted

and they provide isolation mechanisms such as sandboxing and virtualization.

Bugs in the system of which more are discovered every day, may be exploited

to circumvent any protection, e.g. [1]. As an example, in [2] the authors

1

show that an attacker could take control of the VMware and Xen virtualiza-

tion software when moving a virtual machine from one physical computer to

another.� Side channel attacks can bypass protection. Even if the system is fully

secure and the code is executing in a trusted environment, the side channel

attacks may still compromise the security. For example, an attacker using

the cold boot attack [3] is able to retrieve sensitive data from the unrefreshed

DRAM after using a cold reboot to restart the machine. An attacker using the

branch prediction attacks [4] can gather information about the encryption keys

by simply monitoring the CPU time. These attacks typically require physical

access to the machines, which is not an easy task traditionally. However, in

cloud computing settings, it is possible that your code will be executed in a

machine belongs to the attacker. In such cases, the attacker will be able to

gain physical access to the machine easily.

Secure cloud computing protocols can help to overcome these challenges. As a

result, the secure function evaluation (SFE) is gaining more and more significance

since it may be employed to design computation delegation schemes and secure cloud

computing protocols. SFE provides an important tool when designing protocols

involving various parties performing computation together while each party still

keeps some of their information secret. A simple setting of the SFE can be abstracted

as follows. Alice has the data x and Bob has the function f . Alice wants Bob to

calculate f(x) for her without revealing the input x to Bob. Depend on the setting,

Alice may or may not have access to the function f and Bob may or may not

have access to the result f(x). Applying this simple setting to the cloud scenario

generates a secure cloud computing protocols, i.e. the clients can evaluate functions

2

on the cloud without revealing the input to the cloud service provider.

Numerous SFE schemes have been introduced in the literature. One early so-

lution was the garbled circuit construction proposed by Yao in [5]. This approach

can work for virtually on any function f . However, the communication cost for

this approach is high since the ciphertext size grows at least linearly in size of f .

Sander, Young and Yung proposed another approach to evaluate any constant fan-in

Boolean circuit in NC1 [6]. Unfortunately, again the communication complexity is

exponential in the depth of the circuit implementing f .

1.1 Homomorphic Encryption Schemes

The development of homomorphic encryption provides yet another clear-cut ap-

proach to build SFE protocols. Informally, a homomorphic encryption scheme allows

computation directly on encrypted data. It is clear that a SFE protocol can also be

build quite straightforward using HE. Alice can now encrypt the input x and send

the ciphertexts to Bob. Bob will compute f(x) directly on the ciphertext and send

back the encrypted result that only Alice can decrypt. In this way, Bob will not be

able to learn anything about x as long as the security of the homomorphic encryption

scheme holds. Homomorphic properties of standard public key encryption schemes,

e.g. RSA and ElGamal encryption, were recognized early on [7]. However they were

largely viewed as a weakness rather than an asset. Applications where data is static

typically require non-malleable encryption. However, the community has grown to

trust the security of these schemes and, recently, the work of Gentry and others

demonstrate that, when carefully employed, such homomorphic properties can be

quite valuable. Indeed, a number of recent specific applications such as data aggrega-

tion in distributed networks [8, 9], electronic voting [10], biometrics [11] and privacy

3

preserving data mining [12] have led to reignited interest in homomorphic schemes.

Many powerful HE schemes were proposed during the past decades. One of the ear-

liest discoveries relevant here was the Goldwasser-Micali cryptosystem [13] whose

security is based on the quadratic residuosity problem which allows homomorphic

evaluation of a bitwise exclusive-or (XOR). Other additive homomorphic encryp-

tion schemes that provide semantic security are Benaloh [14], Naccache-Stern [15],

Paillier [16], Damg̊ard-Jurik [17], Okamoto-Uchiyama [18] and Boneh-Goh-Nissim

[19]. Some additively homomorphic encryption schemes use lattices or linear codes

[20, 21, 22, 23, 24]. These HE schemes only support homomorphic evaluation of

certain classes of circuits. e.g. the Goldwasser-Micali Scheme only supports bitwise

exclusive-or, Paillier’s Scheme only supports additions. A number of techniques

were proposed to expand the classes of circuits the schemes handle. For instance,

the chaining encryption scheme introduced by Melchor, Gaborit and Herranz [23]

allows homomorphic computation of functions expressible as d-operand products of

terms, each of which is a sum of inputs. The products of sums are effectively CNF

circuits. However, the ciphertext size of the chaining scheme will grow exponentially

with d, which limits the circuits supported by this scheme.

One of the most significant developments in cryptography in the last few years

has been the introduction of the first fully homomorphic encryption scheme by

Gentry [25]. Since addition and multiplication on any non-trivial ring constitute a

Turing-complete set of gates, a fully homomorphic encryption scheme – if made effi-

cient – allows one to employ untrusted computing resources without risk of revealing

sensitive data. Computation is carried out directly on ciphertexts and the true re-

sult of circuit evaluation is not revealed until the decryption stage. In addition to

this powerful applicability, Gentry’s lattice-based scheme appears to be secure and

hence settles an open problem posed by Rivest et al. in 1978 [7].

4

Inspired by this milestone work, a variety of new schemes are proposed in recent

years [26, 27, 28]. In the same time, implementation of proposed FHE schemes also

achieved impressive performance [29, 30]. However, the achieved efficiency is still

far from being enough to support practical applications.

1.2 A Brief Overview of this Thesis

The goal of this dissertation is to improve the efficiency of homomorphic encryption

schemes and move them to practice. To achieve this goal, we propose varieties of

ways to improve existing HE schemes. In detail, we observe common problems of the

partial HE schemes and the FHE schemes and propose different possible solutions

to them, including new protocols and more efficient implementations.

Extending Message Space of HE Schemes. Some HE schemes have high po-

tential in practical applications however are limited by small message space. e.g. the

ElGamal-type encryption schemes are homomorphic with respect to one algebraic

operation, however, message recovery involves solving a discrete logarithm problem

in the group, which means only small message can be efficiently recovered. The

BGN [19] scheme which could be employed to evaluate 2-DNF formulas has the

same problem. To solve this problem, we employ the CRT to replace one discrete

logarithm problem in a large space by several similar problems in a more tractable

search space while retaining full security. This work appears in the Industrial Track

of the ACNS 2012 [31].

Extending Supported Circuits of Partial HE Schemes. Clearly, the main

problem of the partial HE schemes is the range of the circuits that they support.

Most partial HE schemes only support one type of operations (either addition or

multiplication in most cases) while we need two types of operations for a large

5

number of practical applications. To solve this problem, we propose a special family

of partial HE schemes and discuss ways to convert between different partial HE

schemes that support different types of operations. In this way, we can convert to

corresponding schemes when certain types of operations are required. This approach

can extend the supported circuits of partial HE schemes significantly.

Efficient Implementation of FHE schemes. Speed is one of the major bot-

tlenecks that stop existing FHE schemes being practical. To solve this problem,

we propose efficient implementation for the Gentry-Halevi FHE scheme and the

Lopez-Alt, Tromer and Vaikuntanathan (LTV) FHE scheme. In detail, for the

Gentry-Halevi FHE scheme, we adopt NTT based multiplications via GPUs along

with other optimizations and achieve about 174, 7.6 and 13.5 times faster than the

original Gentry-Halevi code for encryption, decryption and recryption respectively.

This result of this joint work that appears in the proceeding of 2012 IEEE HPEC

[32]. The LTV FHE scheme is a recently proposed scheme without previous im-

plementation results. We analyze the parameter selection of it and implement the

scheme using the selected parameters. The implementation results show promising

speed of millisecond level encryption, decryption and relinearization operations.

Compressing Ciphertexts. The large ciphertext size of existing FHE schemes

is another major problem of the FHE schemes. It will generate large bandwidth

requirement if the applications require transferring ciphertext through the network.

To address this issue, we formalized the concept of scheme conversion between differ-

ent encryption schemes originally mentioned in [33, 34, 35]. In addition, we provide

efficient instantiation of the conversion between FHE schemes and other encryption

schemes with small ciphertext sizes. This enables us converting to schemes with

small ciphertext sizes for communication and to FHE schemes for homomorphic

evaluation. In this way, we can “compress” the ciphertexts of the FHE schemes and

6

reduce the bandwidth requirement.

In the rest of the dissertation, we will present an overview of the existing HE schemes

first, followed by the discussion of the challenges and possible approaches to over-

come them. After that, we will discuss our solutions in detail.

7

Chapter 2

Overview of Homomorphic

Encryption Schemes

In this chapter, we will briefly introduce some of the existing partial and fully homo-

morphic encryption schemes. After that, we will present the advantage of disadvan-

tages of these two families of HE schemes respectively and discuss the approaches

to improve them toward practical HE schemes.

2.1 Partial Homomorphic Encryption Schemes

Homomorphic properties of several standard public key encryption schemes were

recognized early on [7]. Both the RSA and ElGamal encryption schemes were im-

mediately seen to have homomorphic properties, but only with respect to one oper-

ation. Ironically, this aspect of these schemes was largely seen as a weakness rather

than an asset. Applications where data is static typically require non-malleable en-

cryption. However, the community has grown to trust the security of these schemes

and, recently, the work of Gentry and others demonstrates that, when carefully em-

8

ployed, such homomorphic properties can be quite valuable. Indeed, a number of

recent specific applications such as data aggregation in distributed networks [8, 9],

electronic voting [10], biometrics [11] and privacy preserving data mining [12] have

led to reignited interest in homomorphic schemes.

A list of prominent partially homomorphic schemes is presented in Table 2.1.

One of the earliest discoveries relevant here was the Goldwasser-Micali cryptosys-

tem [13] whose security is based on the quadratic residuosity problem and which

allows homomorphic evaluation of a bitwise exclusive-or. This scheme has already

been applied to the problem of securing biometric information [11]. Other additive

homomorphic encryption schemes that provide semantic security are Benaloh [14],

Naccache-Stern [15], Paillier [16], Damg̊ard-Jurik [17], Okamoto-Uchiyama [18] and

Boneh-Goh-Nissim [19]. Some additively homomorphic encryption schemes use lat-

tices or linear codes [20, 21, 22, 23, 24]. For instance, the lattice-based encryption

scheme introduced by Melchor, Gaborit and Herranz [23] allows homomorphic com-

putation of functions expressible as d-operand products of terms, each of which is a

sum of inputs.

Of particular interest to us is the Boneh-Goh-Nissim partially homomorphic en-

cryption scheme [19], which allows evaluations of arbitrary 2-DNFs, i.e., functions

whose evaluation requires one multiplication per term followed by an arbitrary num-

ber of additions of terms. The scheme is based on Paillier’s earlier additive partially

homomorphic scheme and bilinear pairing. As a consequence, the Boneh-Goh-Nissim

scheme allows the secure evaluation of degree-two multivariate polynomials, with dot

product computation being a particularly useful primitive arising as a special case.

Paillier’s scheme is the most efficient among currently known additively homomor-

phic schemes. Therefore, it is employed by some of our works as a building block or

as a basis for comparison.

9

Scheme Homomorphism Computation
Textbook RSA Multiplicative Mod. Exp. in Zpq

Textbook ElGamal Multiplicative Mod. Exp. in GF (p)
Goldwasser Micali [13] XOR Mod. Exp. in Zpq

Benaloh [14] Additive Mod. Exp. in Zpq

Paillier Scheme [16] Additive Mod. Exp. in Z(pq)2

Paillier ECC variations [36] Additive Scalar-point mult. in elliptic curves
Naccache-Stern [15] Additive Mod. Exp. in Zpq

Kawachi-Tanaka-Xagawa [21] Additive Lattice Algebra
Okamoto-Uchiyama [18] Additive Mod. Exp. in Zp2q

Boneh-Goh-Nissim [19] 2-DNF formulas Mod. Exp. in Z(pq)2 , Bilinear Map

Melchor-Gaborit-Herranz [23] d-op. mult. Lattice Algebra

Table 2.1: Survey of partially homomorphic encryption schemes

Limitation of Partial HE Schemes: Clearly, partial HE schemes are useful in

certain applications. In addition, the efficiency of some partial HE schemes is high

enough for practical applications. E.g. the Paillier scheme can perform evaluations

in milliseconds level. However, the drawbacks of this family of schemes are also

clear.

The main problem of the partial HE schemes is the range of the circuits that

they support. Most partial HE schemes only support one type of operation, e.g.

additions for Paillier and multiplications for RSA. This draws a heavy restriction

on the circuits that the HE schemes can evaluate homomorphically.

Some partial HE schemes supports more than one operation, however, restric-

tions still exist. The Boneh-Goh-Nissim scheme support one level of multiplications

via bilinear maps. This feature enables it evaluating 2-DNF formulas which cannot

be evaluated using single-operation partial HE schemes. However, only one level

multiplication is supported. The Boneh-Goh-Nissim scheme cannot handle more

complicated circuits.

Somewhat Homomorphic Encryption Scheme: FHE schemes without “re-

freshing” the noise can also be employed as partial HE schemes. These schemes

10

usually support a large number of additions and limited levels of multiplications.

HE schemes with this property are usually referred to as Somewhat Homomorphic

Encryption Schemes (SWHE). Although this type of partial HE schemes can sup-

port much more complicated circuits than the single-operation ones, it is still heavily

restricted since the limitation on levels of multiplications will eventually be reached.

Some partial HE schemes have additional bottlenecks that prevent them from

being employed for practical applications. For example, the Boneh-Goh-Nissim

scheme requires a small message size to achieve tractable decryption efficiency, which

imposes extra limitation to the scheme.

2.2 Fully Homomorphic Encryption Schemes

To support the efficient evaluation of an arbitrary function f we may make use of

a powerful class of homomorphic encryption schemes named “fully homomorphic

encryption” (FHE) which support efficient homomorphic evaluation of any circuit1.

Gentry proposed the first FHE scheme [25] based on lattices that supports addition

and multiplication circuits for any depth. Since addition and multiplication on any

non-trivial ring constitute a Turing-complete set of gates, this scheme – if made

efficient – allows one to employ any untrusted computing resources without risk of

revealing sensitive data. In [26], Marten van Dijk et al proposed a FHE scheme

based on integers. In 2010, Gentry and Halevi [29] presented a variant of Gentry’s

FHE; this publication introduced a number of optimizations as well as the results

of the world’s first FHE implementation.

Although these earlier schemes have achieved full homomorphism, the perfor-

mance of these schemes becomes the bottleneck. To address this problem, some

1The “efficient” here means in asymptotic. The actual running speed of existing FHE schemes
is not considered.

11

newer FHE schemes were proposed in recent years. In [37, 38, 30] Gentry, Halevi

and Smart, propose a customized LWE-based FHE scheme tailored for the efficient

leveled evaluation of the AES block cipher without bootstrapping. In [27] Brakerski,

Gentry, and Vaikuntanathan proposed a new FHE scheme (BGV) based on LWE

problems. Instead of recryption, this new scheme uses other light weighted methods

to refresh the ciphertexts. These methods cannot thoroughly refresh the ciphertexts

as the recryption does, however they can limit the growth of the noise so that the

scheme can evaluate much deeper circuits. The recryption process will serve as an

optimization to deal with over complicated circuits instead of a necessary for most

circuits. In [28], Lopez-Alt, Tromer and Vaikuntanathan adopted this idea to a

modified NTRU [39] scheme from Stehle and Steinfeld [40] and developed a FHE

scheme (LTV) that supports multiple public keys. The later FHE schemes signifi-

cantly improved over earlier constructions in both time complexity and in ciphertext

size. Still both the latency and the message expansion rates are roughly 2 orders of

magnitude higher than those of public-key schemes.

Limitation of Fully HE Schemes: In contrast to the partial HE schemes,

the FHE schemes can support both additions and multiplications for unlimited

times. This enables them evaluating any Boolean circuits. However, the efficiency

of existing FHE schemes is far from practical in terms of both computation speed

and ciphertext size.

We use the first FHE implementation proposed by Gentry and Halevi [29] as an

example. Despite the impressive array of optimizations proposed with the goals of

reducing the size of the public-key and improving the performance of the primitives,

encryption of one bit takes more than a second on a high-end Intel Xeon based server,

while recryption primitive takes nearly half a minute for the lowest security setting.

Furthermore, after every few bit-AND operations a recryption operation must be

12

applied to reduce the noise in the ciphertext to a manageable level. In addition

to the computation efficiency, the Gentry-Halevi scheme requires a ciphertext of

more than 780, 000 bits for encrypting a single bit. This huge cipher size creates

bottlenecks on bandwidths required to transfer the ciphertexts.

2.3 Toward Practical Homomorphic Encryption

Schemes

It is clear that one of the most important goals of the researches about the homo-

morphic encryption schemes is to make them closer to practical applications. In this

section, we will discuss possible ways to achieve it. Before we can even discuss the

practical HE schemes, we need to define the criteria for a scheme to be considered

practical.

The first requirement we set is versatility of the scheme, i.e., the scheme should

support a large range circuits. This is the feature that most partial HE schemes

are missing. It is easy to see that FHE schemes are extremely powerful in terms

of versatility. However, fully homomorphism is not a necessary. The BGV and

LTV schemes give perfect example of this. Both schemes can perform recryption

and achieve fully homomorphism, however, in most cases, the recryption is left as

an optimization. In [30], the full AES rounds are evaluated using the BGV scheme

without recryption. In other words, the BGV scheme is used as a partial HE scheme

or Somewhat HE scheme instead of a “Fully” HE scheme in this case. In conclusion,

the versatility is an important requirement for a HE scheme to be practical. The

practical HE schemes that we are searching for may not necessarily be FHE schemes,

however, it should support a large enough range of circuits.

Another requirement we set for the practical HE schemes is the efficiency. As we

13

discussed in previous sections, it is the low efficiency that stops existing FHE schemes

from being employed in practical applications. In detail, neither the efficiency in

terms of computation or cipher size is satisfactory. Since the approaches to improve

the computation speed and to reduce the ciphertext size are quite different, we

separate them into two categories. Hence, there are three basic requirements for a

practical HE scheme:� Versatility� Speed� Ciphertext Size

The obvious approach to achieve practical HE schemes is to design a new scheme

that meets every requirement, i.e., a fast FHE scheme with small ciphertext size.

Clearly, this is not an easy task. Alternatively, we can improve existing scheme

to make them closer to practical. As we discussed in the previous sections, there

are two families of HE schemes exit, i.e., the partial HE schemes and the FHE

schemes. If we check the partial HE schemes and the FHE schemes against the

three requirements we set, we get the result listed in Table 2.2.

Type Versatility Speed Ciphertext Size
Partial HE Low Fast Small
Fully HE High Slow Large

Table 2.2: Partial HE schemes vs. FHE schemes

We can see clearly from the table that versatility is the main problem for the

partial HE schemes and speed and cipher size are more of a problem for the FHE

schemes. Therefore, we will focus on versatility when discussing improving the

partial HE schemes and focus on speed and cipher size when discussing improving

14

the FHE schemes. In the rest of the dissertation, we will first discuss the approaches

to improve the Partial HE schemes followed by the ones for FHE schemes.

15

Chapter 3

Improving Partial HE Schemes

3.1 Extending Message Space of HE Schemes

It is well known that ElGamal-type encryption schemes are homomorphic with re-

spect to one algebraic operation. However, this feature has been widely dismissed

as useless since in the additive context, message recovery involves solving a discrete

logarithm problem in the group, and this is precisely the problem whose difficulty

ensures security. Our solution is simple: we employ the CRT to replace one discrete

logarithm problem in a large space by several similar problems in a more tractable

search space while retaining full security. On the one hand, this yields for us a

general form for two ElGamal variants which are homomorphic with respect to ad-

dition: one based on the ElGamal set-up in the multiplicative group Z∗
p and another

using the group of Fq-rational points on an elliptic curve. These schemes are homo-

morphic with respect to addition in Z. This simple CRT expansion technique has a

second application. We show that this technique solves an open problem in the pa-

per of Boneh, et al. [19], alleviating message size limitations on the BGN encryption

scheme which was shown to allow homomorphic evaluation of 2-DNF circuits.

16

3.1.1 The CRT-Based ElGamal Scheme

We now present, in generic form, our CRT-based ElGamal scheme E which we shall

henceforth refer to as the CEG Scheme. The CEG scheme, with security parameter

λ, is specified using four procedures: KeyGen, Encrypt, Decrypt and Eval as follows.

KeyGen: Choose a group G with subgroup H generated by g ∈ G and require |H| to

have at least one large prime factor. Pick1 k
$← [0, 2λ − 1]. Compute h = gk.

Choose di ∈ Z+ for i = 1, . . . , t such that d =
∏

di < |H| and gcd(di, dj) = 1

for i 6= j. Set the message space as M = {0, 1, . . . , N} where N < d. The

secret key is SK = (k) and the public key is PK = (g, h, 〈d1, . . . , dt〉).

Encrypt: A message m ∈M is encrypted as the t-tuple of pairs

Encrypt(m) = 〈(gℓi, hℓigmi) , i = 1, . . . , t〉 ,

where mi = m (mod di) and ℓi
$← [0, 2λ − 1].

Decrypt: A ciphertext c = 〈(ui, vi) , i = 1, . . . , t〉 is decrypted as follows.

Decrypt(c) = CRT−1
(

〈logg(viu−k
i) , i = 1, . . . , t〉

)

,

where CRT−1(〈mi , i = 1, . . . , t〉) =
∑t

i=1mi
d
di

(

d
di

−1
mod di

)

mod d. The

function logg(·) denotes the discrete logarithm with respect to generator g.

Eval: Given encryptions of S values m(1), . . . , m(S), it is straightforward to obtain

an encryption of their sum. We simply perform componentwise multiplication

in group G. The resulting 2t-tuple lists t pairs (gLi, hLig
∑

m
(r)
i) where the sum

1The notation k
$← U stands for k drawn uniformly at random from a universe U .

17

of residues m
(r)
i ≡ m(r) (mod di) suffice to reconstruct the sum of the integers

m(r) via CRT−1.

Correctness. The correctness of the scheme follows from the correctness of El-

Gamal encryption and the correctness of the CRT. The CRT will yield correct

results as long as d > N . Let c = 〈(ui, vi) , i = 1, . . . , t〉 be the entrywise sum of

valid ciphertexts cj whose corresponding plaintexts satisfy
∑

Decrypt(cj) <
∏

di.

Then 〈m1, . . . , mt〉 = 〈logg(viu−k
i) , i = 1, . . . , t〉 satisfies gmiuk

i = vi. So m =

CRT−1(〈mi , i = 1, . . . , t〉) satisfies m mod di = mi as long as 0 ≤ m <
∏

di.

Efficiency. The CEG scheme converts one carefully constructed DLP in the sub-

group H := 〈g〉 into a sequence of tractable discrete logarithm problems in the same

group. The factors di of the composite modulus d = d1d2 . . . dt are pairwise relatively

prime and [1,max(di)] represents a tractable search space (for the DLP). If each di

is not too large (say, w = 16 bits each) Alice may retrieve each integer mi, even if

she must resort to exhaustive search. But she can exploit standard techniques to

do better than this; we present some ideas on this step below. However she obtains

these logarithms, Alice can then recover the message m via a simple CRT inversion

step.� CEG-Zp: Additive CRT-ElGamal Encryption using a Prime Field.

The integer specialization of the generic CEG will be denoted by CEG-Zp.

KeyGen: Choose a large prime p with generator g for Z∗
p; we require p− 1 to

have at least one large prime factor. Pick a random k as above and set h =

gk; the integer SK = (k) remains secret, while PK = (g, h, 〈d1, . . . , dt〉)

are made public, where, as in the general case, the message space is

M = [0, N] and we have small coprime integers di with d =
∏

di > N .

18

Encrypt: A message m ∈M is encrypted as

Encrypt(m) = 〈(gℓi, hℓigmi) , i = 1, . . . , t〉 ,

where mi = m mod di.

Decrypt: A given ciphertext c = 〈(ui, vi) , i = 1, . . . , t〉 is decrypted as

Decrypt(c) = CRT−1
(

〈logg(viu−k
i) , i = 1, . . . , t〉

)

.

The function logg(·) denotes the discrete logarithm with respect to gen-

erator g in Z∗
p.� CEG-ECC: Elliptic Curve Version of CRT-ElGamal Encryption: The

elliptic curve specialization of the above scheme will be denoted by CEG-ECC.

For illustrative purposes, we concisely present the three procedures as they

specialize to elliptic curve encryption.

KeyGen: Choose an elliptic curve E with element P ∈ E such that |〈P 〉| is a

large prime. Pick k
$← [0, 2λ − 1]. Compute Q = kP . Choose di ∈ Z for

i = 1, . . . , t as in the general case. The secret key is again SK = (k) and

the public key is PK = (P,Q, 〈d1, . . . , dt〉). The message space is again

M = [0, N].

Encrypt: A message m ∈M is encrypted as Encrypt(m) = 〈(ℓiP, ℓiQ+miP) ,

i = 1, . . . , t〉, where mi = m mod di and ℓi
$← [0, 2λ − 1].

Decrypt: Letting logP (·) denote the discrete logarithm in 〈P 〉 with respect to

P , ciphertext c = 〈(Ai, Bi) , i = 1, . . . , t〉 is decrypted as Decrypt(c) =

CRT−1 (〈logP(Bi − kAi) , i = 1, . . . , t〉).

19

Optimizations for the CEG-CRT Scheme

For the sake of simplicity we focus our attention on the elliptic curve specialization

CEG-ECC. Similar optimizations may be applied to the other specializations.

Encryption. There are number of optimization techniques we can utilize in the

implementation of the CEG scheme. Recall that each component of the CEG cipher-

text is in the form (ℓP, ℓQ +mP). The encryption procedure for each component

involves only three point-scalar multiplications and one point addition neglecting

the generation of the random integer ℓ. This simple approach improves the speed

of the encryption procedure. In addition, the encryption can be further sped up

using Shamir’s Trick. Since the plaintext m is much smaller than the random num-

ber ℓ, the latency of the encryption procedure is dominated by the computation of

ℓP and ℓQ. For different CRT components, we would compute different ℓiP and

ℓiQ however with the same P and Q, this is ideally suited for Shamir’s Trick [42].

With Shamir’s Trick, the complexity of CEG encryption for all t components would

become c · t+2
3t

instead of ct, where c represents the time required for the encryption

of a single component.

Decryption. The CEG decryption may use the Pollard Kangaroo Algorithm to

solve the discrete logarithm problem. More specifically, in the CEG scheme, if we

want to solve for m given C0 = mP , where m ∈ [0, b], we generate random walks

from T0 = bP with iterations defined as Ti = xiP + Ti−1, xi = f(Ti−1) where f is a

hash function. After a number of steps we place a trap T = (b+
∑

xi)P . Then we

start a similar procedure from C0 = mP and get Ci = yjP + Cj−1, yj = f(Cj−1). If

the trap is placed after sufficiently many steps, the second run (the kangaroo) will

collide with the trap with a high probability. When this collision happens, we can

then solve for m from m = b+
∑

xi −
∑

yj. In our experiment the steps xi and yj

20

are generated with an average size of 0.5
√
b and the trap is placed after

√
b steps.

It is clear that the expectation of the trap position would be 1.5b. Therefore, 2
√
b

steps are expected before the kangaroo is caught by the trap. The complexity of

this algorithm is O(
√
b).

We can exploit the fact that we need to perform t parallel DLP computations

to reduce the overall decryption complexity. After the accumulation of S operands

with word size w the upper limit of the value of m would be 2
w+log(S)

2 . Therefore, the

complexity of recovering each CRT component using the Pollard Kangaroo algorithm

will be O(2
w+log(S)

2). However, in recovering the various CRT components, we are

solving discrete logarithm problems in the same known group. Therefore, only one

trap is required. Therefore, the first phase of the Pollard Kangaroo procedure needs

only to be executed for the first CRT component; for all remaining components we

need only find the collision. This approach saves about 1/3 of the steps. Therefore,

the complexity for all t components together can be reduced to O(2t+1
3
· 2w+log(S)

2).

Decryption with Precomputation. Since we envision a scheme where the same

group, the same generator and the same primes di will be used repeatedly, we can

significantly exploit precomputation techniques to speed up the Pollard Kangaroo

Algorithm. For instance, the “trap” can be pre-computed as it is independent of

the ciphertext. Also, when we are computing Ci = yjP +Cj−1, yj = f(Cj−1) during

the second run, the costly multiplication yjP can be significantly speed up by using

table lookup;
√
b entries are required for such a table.

Moreover, since the search space of our scheme is relatively small, we can even get

rid of the Pollard Kangaroo Algorithm and directly apply table lookup techniques

on the DLP computation. For instance, a naive approach is to store all b = S · 2w

possible pairs (i, gi) in a table sorted by the second coordinate. At the expense of

substantial storage this reduces the DLP to t lookup operations requiring tw log2(S)

21

computational steps. A more reasonable compromise is to precompute a fraction

of the search space, say z out of b evenly spaced points. The table lookup remains

negligible while the search space is reduced to only b/z. After this many iterations

y 7→ y · g we are assured a collision and the table lookup completes the computation

of our DLP. For example, for 160-bit CEG-ECC with b = 232 and z = 216, we will

need a table of z = 216 rows with each row contains the 32-bit i and the 160-bit gi

(representing elliptic curve points by their x coordinate). (only x part of the points

is more than enough.). Then the lookup table contains about 192 · 216 bits≈ 1.6

Mbytes. 2 The number of components will not affect the storage overhead as all t

components can share the same table.

Implementation Results

To evaluate the performance of the CEG scheme, we implemented one CRT compo-

nent and used the measured performance to estimate the addition, encryption and

decryption speed of the full CEG scheme. We also implemented the standard version

of Paillier’s scheme (Page 7, [16]) for comparison. The implementation is realized

on an Intel Core i5 2.4GHz CPU.

In the implementation for both our CEG schemes and Paillier’s scheme we made

use of the Crypto++ library [43]. The Crypto++ library is modestly optimized.

Therefore, the performance of Paillier’s scheme may be worse than some optimized

implementations [44]. To be thorough we also present results for a more efficient

implementation of Paillier’s scheme using the MPIR library [45]. But we note that

the first implementation may be the most natural one to compare against as our

CEG scheme implementations are using the same optimization level.

Several parameter choices such as w,W, S and t will affect the performance of

2In practice, we do not need to store the entire operand, but sufficiently many bits, e.g. 64-bits,
enough to uniquely identify the point with high confidence.

22

the CEG scheme. The efficiency of Paillier’s scheme is not tied to these parameters.

The performance for the original CEG-ECC scheme, CEG-Zp scheme and Paillier’s

scheme for various numbers of summands with various word sizes is given in Table

3.1. We chose a 224-bit NIST curve for the CEG-ECC scheme and selected a Paillier

scheme with roughly equivalent security level of 2048-bits [46]. Our CEG-Zp scheme

implementation also uses a 2048 bit prime number.

Parameters Addition Encryption Decryption
Normal Shamir’s Pollard Precomputation

trick Kangaroo

CEG-Zp-2048
w = 8, S = 224, t = 7 0.22 ms 115.71 ms 79.63 sec 1.35 sec (0.75 Mbytes)
CEG-ECC-224
w = 8, S = 224, t = 7 0.22 ms 12.37 ms 5.30 ms 99.61 sec 2.76 sec (0.75 Mbytes)
w = 16, S = 224, t = 4 0.12 ms 7.07 ms 3.53 ms 15.93 min 25.17 sec (12 Mbytes)
w = 8, S = 240, t = 9 0.28 ms 15.90 ms 6.48 ms 8.97 hours 15.10 min (192 Mbytes)
Paillier - Crypto++
n = 2048 0.028 ms 29.60 ms 28.10 ms
Paillier - MPIR
n = 2048 0.013 ms 25.90 ms 24.90 ms

Table 3.1: Performance comparison of CEG with Paillier’s Scheme

From Table 3.1 we can see that the CEG-ECC scheme is about 4 times faster

than the Paillier scheme in encryption at comparable security levels. In this sim-

plest approach, the decryption performance of CEG is significantly worse than that

of Paillier. However, with precomputation the decryption performance may be im-

proved. The precomputation tables were fixed to have
√
b =

√
S2W rows. For

instance, for a very modest precomputation table of 0.75 Mbytes we can reduce

the decryption time to less than 3 seconds3. In many applications of homomor-

phic encryption schemes the encryption and evaluation speeds matter more than

the decryption speed since typically decryption is performed only once after the

computations are completed.

3In the table, we assume that 64 bits is sufficient to uniquely identify the points in the precom-
putation table.

23

3.1.2 Applying CRT to the BGN homomorphic scheme

In this section, we first review the encryption scheme of Boneh, Goh and Nissim

(BGN) [19]. We then discuss applying the same CRT approach to the BGN scheme.

The BGN homomorphic scheme

Groups admitting Bilinear Pairing The BGN scheme uses what is known as a

bilinear pairing to effect the required multiplication in evaluating a 2-DNF formula.

We use a notation similar to the one in [19] in order to facilitate easier comparison:

1. Let G and G1 be two (multiplicative) cyclic groups of finite order n;

2. let g be a generator of G;

3. let e : G×G→ G1 satisfy three conditions:

(a) e(·, ·) is efficiently computable,

(b) e(g, g) is a generator of G1,

(c) for all u, v ∈ G and a, b ∈ Z+, e(ua, vb) = e(u, v)ab.

The map e above is a special case of a bilinear pairing; one source of such pairings

is Tate pairings and another is Weil pairings [47], but this beautiful and complex

mathematics is beyond the scope of this dissertation; we need nothing more here

than to know that such maps exist for various groups.

To abstract the construction process in the scheme, define an algorithm G that

given a security parameter τ ∈ Z+ outputs a tuple (q1, q2,G,G1, e) where G,G1 are

groups of order n = q1q2 and e : G × G → G1 is a bilinear pairing. On input τ ,

algorithm G works as follows:

1. Generate two random τ -bit primes q1, q2 and set n = q1q2 ∈ Z;

24

2. Generate two groups G and G1 of order n such that there exists a generator

g for G and a bilinear pairing e : G×G→ G1;

3. Output (q1, q2,G,G1, e).

The BGN Scheme Using the definition of the bilinear pairings and the construc-

tion function G(τ) presented above, the BGN scheme can be described as follows.

(The presentation here differs slightly from that in [19] in order to match our nota-

tion and use.)

KeyGen(τ): Given a security parameter τ ∈ Z+, run G(τ) to obtain a tuple

(q1, q2,G,G1, e). Let n = q1q2. Pick two random generators g, u
R← G and

set h = uq2. Then h is a random generator of the subgroup of G of order q1.

The public key is PK = (n,G,G1, e, g, h). The private key is SK = (q1).

Encrypt(PK, m): We assume the message space consists of integers in the set

{0, 1, . . . , T} with T < q2. To encrypt a message m using public key PK,

pick a random r
R← {0, 1, . . . , n − 1} and compute C = gmhr ∈ G. Output C

as the ciphertext.

Add(C(1), C(2)): Addition is quite straightforward in the scheme. To evaluate the

sum of two messages homomorphically, pick a random r
R← {0, 1, . . . , n − 1}

and compute

C = C(1)C(2)hr = gm
(1)

hr(1)gm
(2)

hr(2)hr = gm
(1)+m(2)

hr̃

Output C as the resulting ciphertext.

Mul(C(1), C(2)): The bilinear map is used to perform the one multiplication com-

putation. Set g1 = e(g, g), and h1 = e(g, h). Then g1 is of order n and h1 is of

25

order q1. Also, write h = gαq2 for some unknown α ∈ Z. Then to evaluate the

product of two messages homomorphically, pick a random r
R← {0, 1, . . . , n−1}

and compute

C = e(C(1), C(2))hr
1 = e(gm

(1)

hr(1) , gm
(2)

hr(2))hr
1

= gm
(1)m(2)

1 hm(1)r(2)+m(2)r(1)+αq2r(1)r(2)+r
1 = gm

(1)m(2)

1 hr̃
1 ∈ G1

Output C as the resulting ciphertext. Note that any number of outputs of

multiplication gates (i.e., values produced by the bilinear pairing) will have

the form gm
′

1 hr′

1 and these can all be viewed as secure encryptions of the corre-

sponding plaintexts m′, but instead in the group G1, where the same additive

homomorphic properties hold.

Decrypt(SK, C): To decipher C using private key SK = (q1), observe that Cq1 =

(gmhr)q1 = (gq1)m. Let ĝ = gq1. To recover m, it suffices to compute the

discrete log of Cq1 base ĝ. Since 0 ≤ m ≤ T this takes expected time Õ(
√
T)

using Pollard’s lambda method [48]. It is clear that the message space of the

BGN scheme is limited due to the complexity of this decryption.

3.1.3 Applying CRT to the BGN Scheme

As discussed above, the (output) message size of the BGN scheme is limited since

decryption requires a discrete logarithm computation. In fact, the BGN paper [19]

leaves the message size restriction as an open problem. We find that the application

of CRT presents a solution to this problem, i.e. we employ CRT to break large

messages into smaller pieces and then encrypt the smaller pieces using the BGN

scheme. Since the BGN scheme has semantic security, the overall scheme will still

be semantically secure even with smaller message sizes. We present the CRT-BGN

26

scheme first and discuss its efficiency later.

KeyGen(τ): Given a security parameter τ ∈ Z+, run G(τ) to obtain a tuple

(q1, q2,G,G1, e). Let n = q1q2. Pick two random generators g, u
R← G and

set h = uq2. Then h is a random generator of the subgroup of G of order q1.

Suppose the message space consists of integers in the set {0, 1, . . . , N}. Choose

di ∈ Z for i = 1, . . . , t such that di < T , d =
∏

di > N and gcd(di, dj) = 1

for i 6= j. The public key PK = (n,G−⋗a⋉,G1, e, g, h, 〈d1, . . . , dt〉). The

private key is SK = (q1).

Encrypt(PK,M): We will encrypt the message with t tuples of BGN scheme. The

message space for each tuple will be {0, 1, . . . , T}, T < q2. To encrypt a

message m using public key PK, pick random variables ri
R← {0, 1, . . . , n− 1}

and compute t-tuple of pairs

C = 〈Ci , i = 1, . . . , t〉 = 〈gmihri ∈ G , i = 1, . . . , t〉 .

where mi = m (mod di). Output C as the ciphertext.

Add(C(1), C(2)): The addition is done pairwise for the t-tuples. To evaluate the sum

of two messages homomorphically, pick random variables ri
R← {0, 1, . . . , n−1}

and compute

C = 〈C(1)
i C

(2)
i hri , i = 1, . . . , t〉 = 〈gm

(1)
i hr

(1)
i gm

(2)
i hr

(2)
i hr

i , i = 1, . . . , t〉

= 〈gm
(1)
i +m

(2)
i hr

(1)
i +r

(2)
i +ri , i = 1, . . . , t〉 = 〈gm

(1)
i +m

(2)
i hr̃i , i = 1, . . . , t〉 .

Output C as the resulting ciphertext. After the multiplication, the addition

can be evaluated in the same way using g1 and h1.

27

Mul(C(1), C(2)): Similarly, the multiplication is done pairwise for the t-tuples. Set

g1 = e(g, g), and h1 = e(g, h). Then g1 is of order n and h1 is of order q1.

Also, write h = gαq2 for some unknown α ∈ Z. Then to evaluate the product

of two message homomorphically, pick random variables ri
R← {0, 1, . . . , n−1}

and compute

C = 〈e(C(1)
i , C

(2)
i)hri

1 , i = 1, . . . , t〉

= 〈e(gm
(1)
i hr

(1)
i , gm

(2)
i hr

(2)
i)hri

1 , i = 1, . . . , t〉

= 〈gm
(1)
i m

(2)
i

1 h
m

(1)
i r

(2)
i +m

(2)
i r

(1)
i +αq2r

(1)
i r

(2)
i +ri

1 , i = 1, . . . , t〉

= 〈gm
(1)
i m

(2)
i

1 hr̃i
1 ∈ G1 , i = 1, . . . , t〉 .

Output C as the resulting ciphertext.

Decrypt(SK, C): To decrypt a ciphertext C using a private key SK = (q1), for each

tuple we have: Cq1
i = (gmihri)q1 = (gq1)mi where the g, h here could be g1, hi

if the multiplication is computed.

Let ĝ = gq1. To recover mi, it suffices to compute t tuples of the discrete

log of Cq1
i base ĝ. Since 0 ≤ mi ≤ T this takes expected time Õ(

√
T) using

Pollard’s lambda method. After recovering all the mi values, the plaintext can

be reconstructed as m = CRT−1(mi mod di , i = 1, . . . , t).

Correctness: The correctness of the CRT-BGN scheme follows from the correctness

of the BGN and CRT schemes. The correctness of each component in CRT comes

from the property of the multiplicative cyclic group. As long as the sub-result of

each component is smaller than T , the residues can be efficiently decrypted. After

the recovery of each mi, if the result of the computation satisfies m < d =
∏

di,

then m can be correctly recovered by the definition of CRT.

28

Conclusion: In this section, we propose an approach to overcome the discrete log-

arithm impasse in the additive version of ElGamal encryption and in the decryption

step of the BGN schemes. This new CRT-based technique holds promise for making

the additively homomorphic schemes described above more practical. The technique

also has potential as a building block for a variety of other protocols where one party

needs an advantage over another in computing discrete logarithms.

3.2 Extending Supported Circuits of Partial HE

Schemes

In previous chapters, we have highlighted several advantages of partially homomor-

phic encryption (partially HE) schemes over FHE schemes, such as efficiency and

compact ciphertexts. Of course, these savings come at the cost of a severely limited

suite of circuits that the scheme can evaluate homomorphically. The question then

arises as to what sorts of circuits fall “in between” the two paradigms. For example,

in [19] a scheme is proposed to homomorphically evaluate any 2-DNF circuit. More

generally, a somewhat homomorphic encryption scheme (SWHE, which can evalu-

ate arbitrary circuits of fixed limited depth) can be employed to homomorphically

evaluate n-DNF circuits of limited degree and size. While a partially homomorphic

scheme is not able to evaluate arbitrary n-DNF circuits, we will now see how a

converter may be employed to piece together two partially HE schemes resulting in

a merged scheme with much more computational power.

A direct approach would involve a converter from a partially HE scheme to an

FHE, which can then perform the evaluation. But, in this case, we may as well use

the FHE scheme to do the evaluation in the first place. We gain an advantage only if

both schemes are more efficient in some way than the known FHE schemes. Consider

29

a pair of converters taking an additively HE scheme to a multiplicatively HE scheme

and back again4. If we are able to convert unlimited numbers of ciphertexts between

the two schemes, the resulting merged scheme becomes fully homomorphic! Whether

such a pair of converters exists remains unknown. However, there do exist converters

that can perform large-but-limited numbers of such conversions; the result of this

construct is greatly expanded flexibility for partially HE schemes. For example, this

construction makes it possible to evaluate DNF formulas homomorphically.

In the rest of this section, we will first introduce a special family of partial HE

schemes and then discuss how these may be used to build a converter with the above-

mentioned properties, thereby allowing us to perform homomorphic DNF-formula

evaluation.

3.2.1 Probabilistic Gates

Given a a set of universal gates such as NAND or OR and AND gates it is possible

to realize any boolean function. However, if we are given a less than universal set

of gates then it becomes impossible to build a deterministic circuit to evaluate any

boolean function. In contrast, here we present a technique that allows one to build

probabilistic gates using a limited set of logic gates. Using the probabilistic gates

as a building block we can realize several useful classes of functions. We construct

these gates with the aid of a pseudo random permutation function and redundant

encoding. The encoding is defined as follows:

Definition 1 (Encoding Function) Let C denote a binary linear code and denote

its complement by C̄. Then an encoding function e : {0, 1} 7→ {0, 1}n is defined as

eC(b) = (1 − b)c ⊕ bc̄ where c ← C and c̄ ← C̄. For completeness, define the

4In practice, a converter from a SWHE that supports more additions to a SWHE that supports
more multiplications also has the same effect and is, in fact, a more realistic goal.

30

symmetric case as ēC(b) = bc ⊕ (1 − b)c̄. Here ⊕ is the usual mod 2 addition of

binary n-tuples.

Thus eC encodes each zero bit to a random element of C, and each one bit to

a random element of C̄. Note that when the context is clear we will drop the

subscript for brevity and write eC = e. Next we introduce a probabilistic gate.

Definition 2 (Probabilistic Gate Gp) Given an encoding function eC : {0, 1} 7→

{0, 1}n (or ēC) a probabilistic gate Gp : {0, 1} 7→ {0, 1}n is explicitly defined as

(a Gp b) = a⊕ b.

Here, the subscript p denotes a failure probability for the gate Gp. For instance,

if C ⊆ {0, 1}n and we interpret all tuples in C to be valid encodings of zero and all

other binary n-tuples to be valid encodings of one, we have a probabilistic OR gate

with

p = Pr[c1 ⊕ c2 ∈ C̄ | c1, c2 ← C] + 2Pr[c1 ⊕ c̄2 ∈ C | c1 ← C; c̄2 ← C̄]

+Pr[c̄1 ⊕ c̄2 ∈ C | c̄1, c̄2 ← C̄]

which, for a linear code C with |C| ≪ 2n, simplifies to p = Pr[c̄1⊕ c̄2 ∈ C | c̄1, c̄2 ←

C̄]. Likewise, for a binary linear [n, k]-code C, the encoding function ēC yields a

probabilistic AND gate with failure probability p satisfying 1− p ≈ Pr[e(0)− e(0) ∈

C] = |C̄|
2n

= 1− 2k−n.

Lemma 1 (ORp Gate) An OR2k−n probabilistic gate can be constructed using an

encoding function eC where C is any binary linear [n, k]-code.

Lemma 2 (ANDp Gate) An AND2k−n probabilistic gate can be constructed using

an encoding function ēC where C is any binary linear [n, k]-code.

31

Example 1 Assume eC is built using a binary [4, 1]-code (4-bit repetition code). We

have two codewords C = {(0000), (1111)}. We may then use eC : {0, 1} 7→ {0, 1}4

given by b← C when b = 0 and b← C̄ when b = 1. Table 3.2 gives a few examples

of how reliably the mod 2 addition of encodings represents the encoding of the logical

OR of the two input bits.

Operands Vector operation Result Comment
0⊕ 0 (0000)⊕ (1111) = (1111) 0
0⊕ 1 (0000)⊕ (0101) = (0101) 1 Logic
1⊕ 0 (0110)⊕ (1111) = (1001) 1 OR

1⊕ 1 (0101)⊕ (0110) = (0011) 1
1⊕ 1 (0101)⊕ (0101) = (0000) 0 Error

Table 3.2: A few sample computations with a probabilistic ORp gate.

Clearly the gate fails only when both input bits are ones and the failure probability

is only 1/254. Therefore, we have constructed a probabilistic OR gate with small

failure probability using the repetition code. Clearly the failure probability drops

exponentially as the length of the code grows. The idea of using repetition code

to compute multiplications first appears in [6]. Our probabilistic gates built from

arbitrary linear codes can be viewed as a generalization of that technique.

Consider any partially HE scheme A which evaluates (XOR) gates. Using the

encoding just described, this scheme functions effectively as a partially HE scheme

HE which evaluates probabilistic (AND or OR) gates; so we have achieved (allow-

ing for a controllable failure probability) scheme conversion from an additively HE

scheme to a multiplicatively HE scheme. This latter scheme, based on probabilistic

gate Gp, will now be denoted by HG. The probabilistic scheme is limited in two

respects:� there exists a controllably small failure probability p associated to every oc-

currence of gate Gp which can potentially lead to wrong results;

32

� only one of the two multiplicative operations is supported at a time; i.e., one

may create a partially HE using either ORp gates or ANDp gates. However it is

impossible to evaluate AND operation directly on ciphertexts output by ORp

gates and vice versa.

The first restriction can be largely removed by increasing code length. Failure

probability drops exponentially with code length while the overhead grows only

linearly. Therefore, we can achieve exponential reduction in the failure probability

with reasonable overhead. The second restriction is actually a common drawback

for many partially HE schemes, and this is where the use of a converter has value.

3.2.2 Converters for Schemes with Limited Homomorphic

Properties

Using the probabilistic gate based HE schemes, we now build a secure converter

to achieve conversion from an additively homomorphic scheme to a multiplicatively

homomorphic scheme. We introduce the concept of scheme converters to formalized

this procedure. The same concept will also be used in later chapters. Here we will

give a brief definition of the scheme converter. The details will be covered in later

chapters.

Definition 3 (Converter) Given two encryption schemes A and B, a converter

from A to B is an ordered pair C = (KeyGen,Convert) such that

s = C.KeyGen(A,B)

satisfies B.Enc(x, kB) = C.Convert(A.Enc(x, kA), s) .

Here, the extra input s required for C.Convert is called the converter key. We then

33

say scheme A is convertible to scheme B, we refer to C as a converter, and we

refer to the overall process informally as scheme conversion.5

Consider an additive HE scheme HE and a multiplicative HE scheme HG con-

structed from HE , we will discuss conversion from HE to HG first and the converter

for the opposite direction later.

Converter from HE to HG. Designing a converter from HE to HG is straight-

forward. Recall the encoding process defined for probabilistic gates: eC(x) =

(1 − x)c ⊕ xc̄. The converter from HE to HG can be simply viewed as homo-

morphically computing HG.Enc(x) = HE .Enc(eC(x)) from HE .Enc(x)6. Clearly, the

additive part in the encoding process can be evaluated homomorphically trivially

since HE is additive. However, we also need to evaluate products, i.e. (1− x)c and

xc̄ where c and c̄ are random elements of C or C̄ which can be viewed as vectors

while x and 1− x are single bits.

Multiplication is usually hard to evaluate in additive schemes. However, for the

encoding process, c and c̄ are generated in plaintext form and x and 1−x are single

bits. Therefore, what we need is only bitwise scalar multiplication which can be

achieved in the additive setting. For example, HE .Enc(xc̄) = HE .Enc(x)c̄ can be

computed by checking each bit c̄i of c̄. If c̄i equals one, put HE .Enc(x) the ith

position of the result. If c̄i equals zero, put HE .Enc(0) to the ith position of the

result. With this approach, we can realize the desired products.

Combining the above multiplication approach and the additive homomorphic

property ofHE , it is clear that a converter fromHE toHG can be achieved by homo-

morphically evaluating the encoding process. The security of this converter is easily

reduced to the security of HE since no extra information other than HE .Enc(x) is
5This notion is not to be confused with the Fujisaki-Okamoto conversion scheme [49], with

which it has no relationship.
6The encryption of a vector, i.e. eC(x), is defined as the bit by bit encryption of the eC(x).

34

used. If there exists any method to compromise the resulting HG.Enc(x), an attacker

may then compromise HE .Enc(x) by converting it to HG.Enc(x) then attacking HG.

Converter from HG to HE . We can construct a converter from HG to HE

using the homomorphic decryption idea introduced in Section 4.3.2. Similar to

the encoding process, the decoding process of the probabilistic gates can also be

evaluated as bit operations, which can be easily carried out by HE . However, due

to the higher complexity of the decoding process, certain depth of homomorphic

multiplication is required in most cases. This means that we have to use SWHE for

HE .

For example, suppose the 64-bit repetition code [64, 1] is used for the HG, the

decoding process will be simply checking whether all the bits are ’1’s. It can be done

by AND (multiplying) them together. However, this will require a depth 6 multi-

plication circuit. If the SWHE scheme we selected for HE supports multiplication

circuits deeper than this, we can then define a converter which simply decodes the

probabilistic gate homomorphically. The security of this converter can be proven

using an approach similar to the approach in Section 4.3.2. Now that we have con-

version techniques in both directions, we can present concise definitions of all four

of these converters. Given a somewhat homomorphic encryption scheme HE , we

can define HGAND and HGOR from some linear code c using the methods discussed

in previous sections and define the converters as follows:

HEtoHGAND.Convert: Evaluate xc⊕ (1− x)c̄ homomorphically from HE .Enc(x).

HEtoHGOR.Convert: Evaluate (1− x)c⊕ xc̄ homomorphically from HE .Enc(x)..

HGANDtoHE .Convert: Decode HGAND.Enc(x) homomorphically.

HGORtoHE .Convert: Decode HGOR.Enc(x) homomorphically.

35

Note that for the above process to work, the number of multiplications supported

by HE must be sufficient to homomorphically decode c. Therefore, this HE alone

is capable of evaluate circuits with large amount of additions and certain depth of

multiplications. However, with proper parameters, the hybrid HE-HG scheme will

be able to support a larger range of circuits. We will explain this in the next section

using an n-DNF formula evaluation scheme as example.

Security If we merge HE and HG before and after the conversion and view them as

a single merged scheme. The resulting merged scheme can be proved to be IND-CPA

if the HE is IND-CPA. The detail will be discussed in Section 4.3.2.

3.2.3 Application: Evaluating n-DNF Formula

DNF formula can be used to describe complicated circuits. Evaluating DNF formu-

las homomorphically enables varies of applications, such as homomorphic database

operations. In [19], the authors proposed a method to homomorphically evaluate

2-DNF formulas, which supports only one level of AND operation before the OR op-

erations. In this section, we will propose an approach to homomorphically evaluate

n-DNF formulas which supports n levels of AND operation.

For simplicity, we assume that the n-DNF formulas do not require inversing

inputs. Clearly, inversion can be easily evaluated homomorphically with the additive

homomorphic property in our setting. Suppose we describe an n-DNF formula by

F = (a1, a2, . . . , an, an+1, . . . , a2n, a2n+1, . . . , asn). Then the result we are looking for

can be computed by:

result =

s
∨

j=1

(

n
∧

i=1

a(j−1)n+i

)

.

Given security parameter τ , using the HE and HG and the converters discussed in

last section, we can define the homomorphic n-DNF formula evaluation procedure

36

as Figure 3.1. As we discussed above, if the HE supports N multiplications, the

HE alone can evaluate certain DNF formulas. However, clearly the size of the DNF

formulas that HE supports is limited by7 sn ≤ N . For our scheme, the decoding

process will consume certain number of multiplications. However, as we can see from

Figure 3.1, the decoding process is independent of the input formula. Therefore,

the overhead from the decoding is independent of the size of n-DNF formula to

be evaluated. In addition, the homomorphic multiplications of HG ciphertexts is

evaluated by additions ofHE ciphertexts. Assume that the decoding process requires

constant c multiplications and additions generate logarithmic level noise 8, the size

of the DNF formulas that our scheme supports is limited by log(sn) + c ≤ N .

Recall that the same limitation of HE alone is sn ≤ N . Clearly our scheme is able

to evaluate much larger DNF formulas with proper parameters. Note that if HE

allows more multiplications, we can apply the converter more times to evaluate more

complicated circuits. However, the number of times that a given converter can be

applied in practice is heavily restricted by the costly decoding process. Therefore,

though much larger range of circuits are supported, our new scheme is still partial

homomorphic. An interesting question to consider is whether there exists any secure

converter that can process an unlimited number of ciphertexts from an additive

scheme to a multiplicative scheme. Clearly, the discovery of such a converter gives

us a new approach to the construction of FHE schemes.

7Here we ignore noise accumulation from additions.
8Most of the existing SWHE schemes exhibit this behavior.

37

Homomorphic evaluating F = (a1, a2, . . . , an, an+1, . . . , asn):

Setup :

Run KeyGenHE(τ).

Encrypt :

Given F = (a1, a2, . . . , an, an+1, . . . , a2n, a2n+1, . . . , asn), compute

F ′ = (a′1, a
′
2, . . . , a

′
sn) ,

where

a′i = HE .Enc(PKHE , ai).

Evaluate :

Given F ′ = (a′1, a
′
2, . . . , a

′
sn), run the following steps:

1. Compute AND:

For j = 1, 2, . . . , s

bj = HEtoHGAND.Convert(a
′
(j−1)n+1);

For i = 2, 3 . . . , n

bj = HGAND.Eval(bj ,HEtoHGAND.Convert(a
′
(j−1)n+i))

cj = HGANDtoHE .Convert(bj)
2. Compute OR:

d = HEtoHGOR.Convert(c1);

For j = 2, 3, . . . , s

d = HGAND.Eval(d,HEtoHGOR.Convert(cj))

3. Output d as the result.

Decrypt :

Decrypt each bit of d and decode the result according to OR proba-
bilistic gate.

Figure 3.1: n-DNF Formula Evaluation Scheme

38

Chapter 4

Improving FHE Schemes

As we discussed in previous chapters, the low speed and large ciphertext size of

existing FHE schemes prevent them from being employed in practical applications.

In this section, we will present our efficient implementation of the Gentry-Halevi

scheme and the LTV scheme, followed by our scheme conversion approach to com-

press the ciphertext of FHE schemes.

4.1 Implementing the Gentry-Halevi Scheme

4.1.1 The Gentry-Halevi FHE Scheme

The first FHE was proposed by Gentry in [25, 50]. However, this preliminary im-

plementation is far too inefficient to be used in any practical applications. The

Gentry-Halevi FHE variant with a number of optimizations and the results of a

reference implementation were presented in [29]. Here we only present a high-level

overview of the primitives and the details can be referred to the original work in

[29].

Encrypt: To encrypt a bit b ∈ {0, 1} with a public key (d, r), Encrypt first generates a

39

random “noise vector” u = 〈u0, u1, . . . , un−1〉, with each entry chosen as 0 with some

probability p and as ±1 with probability (1−p)/2 each. Clearly, p will determine the

hamming weight of the random noise u. Gentry showed in [29] that u can contain a

large number of zeros without impact the security level, i.e., p could be very large.

Then the message bit b is encrypted by computing

c = [b+ u (r)]d =

[

b+ 2
n−1
∑

i=1

uir
i

]

d

(4.1)

where d and r is part of the public key.

Eval: When encrypted, arithmetic operations can be performed directly on the

ciphertext with corresponding modular operations. Suppose c1 = Encrypt(m1) and

c2 = Encrypt(m2), we have:

Encrypt(m1 +m2) = (c1 + c2) mod d

Encrypt(m1 ·m2) = (c1 · c2) mod d .
(4.2)

Decrypt: An encrypted bit can be recovered from a ciphertext c by computing

m = [c · w]d mod 2 (4.3)

where w is the private key and d is part of the public key.

Recrypt: The Recrypt process is realized by homomorphically evaluating the decryp-

tion circuit on the ciphertext. However, due to the fact that we can only encrypt a

single bit and that we can only evaluate a limited number of arithmetic operations,

we need an extremely shallow decryption method. In [29], the authors discussed

a practical way to re-organize the decryption process to make this possible. Infor-

mally, the private key is divided into s pieces that satisfy
∑swi = w. Each wi

40

is further expressed as wi = xiR
li mod d where R is constant, xi is random and

li ∈ {1, 2, . . . , S} is also random. The recryption process can then be expressed as:

m = [c · w]d mod 2

=
[

∑S cxiR
li

]

d
mod 2

=
[

∑S cxiR
li

]

2
−
[⌊

(
∑S cxiR

li)/d
⌋

· d
]

2

=
[

∑S cxiR
li

]

2
−
[⌊

∑S (cxiR
li/d)

⌋]

2
.

(4.4)

The Recrypt process can then be divided into two parts. First we compute the

sum of cxiR
li for each “block” i. To further optimize this process, encode li to a 0−1

vector {η(i)1 , η
(i)
2 , . . . , η

(i)
n } where only two elements are “1” and all other elements

are “0”s. Suppose the two positions are labeled as a and b. We write l(a, b) to refer

to the corresponding value of l. Alternatively we can obtain cxiR
li from

cxiR
li =

∑

a

η(i)a

∑

b

η
(i)
b cxiR

l(a,b) . (4.5)

Obviously, only when η
(i)
a and η

(i)
b are both “1”, the corresponding cxiR

l(a,b) is se-

lected. In addition, if we encode l in a way that each iteration only increases it by

1, the next factor cxiR
l(a,b) can be easily computed by multiplying R to the result

of the previous computation.

After applying these modifications, all operations involved in this formulation of

decryption become bit operations realizable by sufficiently shallow circuits. Thus

we can evaluate this process homomorphically. The parameters ηi are stored in

encrypted form and incorporated into the public key.

41

4.1.2 Fast Multiplications on GPUs

4.1.3 The Schönhage-Strassen FFT Multiplication

Large integer multiplication is the most time consuming operation in the FHE prim-

itives. Therefore, it becomes the main target for acceleration. In [51], Strassen de-

scribed a multiplication algorithm based on Fast Fourier Transform (FFT), which

offers a good solution for effectively parallel computation of the large-number multi-

plication as shown in Fig. 4.1. The algorithm uses Fast Fourier transforms in rings

with 22
n

+ 1 elements, i.e. a specialized number theoretic transform. Briefly, the

Strassen FFT algorithm can be summarized as follows:

1. Break large numbers A and B into a series of words a(n) and b(n) given a

base b, and compute the FFT of the A and B series by treating each word as

an sample in the time domain.

2. Multiply the FFT results, component by component: set C [i] = FFT (A) [i]∗

FFT (B) [i].

3. Compute the inverse fast Fourier transform: set c(n) = IFFT (C).

4. Resolve the carries: when c [i] ≥ b, set c [i+ 1] = c [i+ 1] + (c [i] div b), and

c [i] = c [i] mod b.

4.1.4 Emmart and Weems’ Approach

In [52], Emmart and Weems implemented the Strassen FFT based multiplica-

tion algorithm on GPUs. Specifically, they performed the FFT operation in fi-

nite field Z/pZ with a prime p to make the FFT exact. In fact, they chose the

p = 0xFFFFFFFF00000001 from a special family of prime numbers which are called

42

FFT

FFT

a

a[0]

a[1]

.

.

.

a[n-2]

a[n-1]

b

b[0]

b[1]

.

.

.

b[n-2]

b[n-1]

A[0]

A[1]

.

.

.

A[n-2]

A[n-1]

B[n-1]

B[n-2]

.

.

.

B[1]

B[0]

x

IFFT

C[0]

C[1]

.

.

.

C[n-2]

C[n-1]

c[0]

c[1]

.

.

.

c[n-2]

c[n-1]

c

Figure 4.1: Strassen’s FFT Multiplication Algorithm

Solinas Primes [53]. Solinas Primes support high efficiency modulo computations

and this p especially is ideal for 32-bit processors, which has also been incorporated

into the latest GPUs. In addition, an improved version of Bailey’s FFT technique

[54] is employed to compute the large size FFT. The performance of the final im-

plementation is very promising. For the operands up to 16, 320K bits, it shows a

speedup factor of up to 16.7 when comparison with multiplication on the CPUs of

the same technology generation.

We follow the implementation in [52] and test it on the GPU. As we can see from

Table 4.1, the actual speedup factors are slightly different from [52]. Nevertheless,

it is a significant speedup over the implementations achieved on CPUs. Therefore,

we employ this specific instance of the Strassen FFT based multiplication algorithm

in the FHE implementation.

43

We note however, the optimizations we later introduce virtually eliminate the

need for FFT conversions except at the very beginning or the very end of the compu-

tation chains. The only exception is the decryption primitive which is implemented

using a single modular multiplication. Therefore, while still necessary, the efficiency

of the FFT operation has a negligible impact on the overall performance of encryp-

tion and recryption.

Size in K bits On CPU On GPU Speedup

1024 x 1024 8.5 ms 0.583 ms 14.6
2048 x 2048 15.1 ms 1.085 ms 13.9
4096 x 4096 30.4 ms 2.351 ms 12.9
8192 x 8192 63.1 ms 4.850 ms 13.0
16384 x 16384 137.3 ms 8.835 ms 16.7

Table 4.1: Performance comparison of multiplication on CPUs vs. GPUs

4.1.5 Modular Multiplication

Efficient modular multiplication is crucial for the decryption primitive. The other

primitives only use modular reduction at the very end of the computations only

once. Many cryptographic software implementations employ the Montgomery mul-

tiplication algorithm, cf. [55, 56]. Montgomery multiplication replaces costly trial

divisions with additional multiplications. Unfortunately, the interleaved versions

of the Montgomery multiplication algorithm generates long carry chains with little

instruction-level parallelism. For the same reason, it is hard to realize Montgomery’s

algorithm on parallel computing friendly GPUs. For example, a Montgomery mul-

tiplication implementation on GeForce 9800GX2 card was presented In [57]. The

speedup factor of GPU decreased from 2.6 to 0.6 when the operand size increases

from 160-bit to 384-bit, which showed little speedup if any can be achieved with

large operand sizes. In addition, the underlying large integer multiplication algo-

44

rithm we use is FFT based and optimized for very large numbers. Therefore, there

does not seem to be any easy way to break it into smaller pieces. In conclusion,

we implement modular multiplications without integrating the multiplication and

reduction steps, but instead by executing them in sequence.

Modular Reduction

The most popular algorithms for modular reduction are the Montgomery reduction

[58] and the Barrett reduction algorithms [59]. As mentioned earlier, the inter-

leaved Montgomery reduction algorithm cannot exploit the parallel processing on

GPUs. The Barrett approach has a simpler structure and thus lends itself better for

further optimizations. Therefore, we select the Barrett method to realize modular

reductions.

Given two positive integers t and M , the Barrett modular reduction approach

computes r = t mod M . A version of Barrett’s reduction algorithm is shown in

Figure 4.2.

1: procedure Barrett(t,M) ⊲ Output: r = t mod M
2: q ← 2 ⌈log2(M)⌉ ⊲ Precomputation
3: µ← ⌊

2q

M

⌋

⊲ Precomputation
4: r ← t−M ⌊tµ/2q⌋
5: while r ≥M do
6: r ← r −M
7: end while
8: return r ⊲ r = t mod M
9: end procedure

Figure 4.2: Barret reduction algorithm

Note that code from line 5 to line 7 is a loop. However, it can be shown that the

initial r for this loop is smaller than 3M −1. Therefore, this loop can finish quickly.

In addition, the value µ =
⌊

2q

M

⌋

(q = 2 ⌈log2(M)⌉) can be pre-computed to speed up

45

the process. If multiple reductions are to be computed with the same modulus M .

Then this value can be reused for all reductions, which is exactly the case we have.

In addition, it would be advantageous to apply truncations only at multiples

of the word size w of the multiplier hardware (usually 32 bits) rather than at the

original bit positions. In this case, we require q to be a multiple of the word size w.

With this approach, the division by 2q can be easily implemented by discarding the

least significant q/w words.

4.1.6 Optimization of FHE Primitives

The FHE algorithm consists of four primitives: KeyGen, Encrypt, Decrypt and Re-

crypt. The KeyGen is only called once during the setup phase. Since keys are gener-

ated once and then preloaded to the GPU, the speed of KeyGen is not as important.

Therefore we focus our attention to optimizing the other three primitives.

For the Decrypt primitive, we perform the computation as in 4.3. The flow is

shown in Fig. 4.3. Obviously, the time spent in the primitive is equivalent to the time

it takes to compute a single modular multiplication with large operands. Applying

the FFT based Strassen algorithm and Barrett reduction, which we discussed earlier,

yields significant speedup for the Decrypt operation.

4.1.7 Optimizing Encrypt

To realize the Encrypt primitive, we need to evaluate a degree-(n− 1) polynomial

u at point r. In [29], a recursive approach for evaluating the 0-1 polynomial u of

degree (n− 1) at root r modulo d. The polynomial u (x) =
∑n−1

i=0 uir
i is split into

a “bottom half” ubot (r) =
∑n/2−1

i=0 uir
i and a “top half” utop (r) =

∑n/2−1
i=0 ui+d/2r

i.

Then y = rn/2utop (r) + ubot (r) can be computed. The same procedure repeats until

the remaining degree is small enough to be computed directly.

46

Strassen

Mul

a b

t

Strassen

Mul

>> q

Strassen

Mul

M

Sub

r

Compare(r,M), Sub

r

MulMod

Mod 2

Decryption

Figure 4.3: Decryption Procedure

In our implementation, to fully exploit the power of pre-computation, we use

a direct approach for polynomial evaluations. Specifically, we apply the sliding

window technique to compute the polynomial. Suppose the window size is w and

we need t = n/w windows, we compute:

∑

(uir
i) =

t−1
∑

j=0

[rw·j ·
w−1
∑

i=0

(ui+wjr
i)]. (4.6)

Here all additions and multiplications are evaluated modulo d. After organizing

the computation as described above, we can introduce pre-computation to speed up

the process. As r is determined during KeyGen and therefore known apriori, the ri,

47

i = 0, 1, . . . , w values can be precomputed. In order to further reduce the overhead

caused by the relatively slow communication between the CPU and the GPU, these

precomputed values can be preloaded into GPU memory before the Encrypt process

starts. Clearly, larger window size w leads to fewer multiplications but an increased

memory requirement. Hence, we have a trade-off between speed and memory use.

In addition, as mentioned in previous sections, the majority of the coefficients of u

are zeros. It is possible that all the coefficients a window are zeros. In this case, we

can skip the multiplication to further speed up the process.

In addition, as we use the FFT based algorithm to compute the multiplications,

these pre-computed values can also be saved in FFT form. Since the FFT form

is linear, we can directly evaluate additions in FFT domain. Therefore, the whole

computation before the final reduction can be performed in FFT domain:

∑

(uir
i) = IFFT (

31
∑

j=0

[R64·j ·
63
∑

i=0

(ui+64jR
i)]) mod d, (4.7)

where Ri is the precomputed FFT form of corresponding ri. With this reformulation

we eliminated almost all of the costly FFTs and IFFTs and modular reductions.

Also as a side-benefit of staying in the FFT domain, carry propagations among

words normally performed during addition operations are eliminated, which also

contributes to the speed up.

In our implementation with dimension n = 2048, we choose the window size as

w = 64. With this parameters, the CPU implementation of Encrypt runs in 1.08

seconds while our implementation on GPU the run time is significantly reduced to

only 6.2 ms.

48

4.1.8 Implementing Recrypt

The Recrypt primitive is significantly more complicated. As mentioned earlier, Re-

crypt can be divided into two steps: processing of S blocks and the computation of

their sum. In the first step, the most time-consuming computation is as follows

cxiR
li =

∑

a

η(i)a

∑

b

η
(i)
b cxiR

l(a,b) . (4.8)

Here ηi is part of the public key. If we encode the l in a proper way such that each

iteration it only increases by one, the next factor cxiR
l(a,b) can be easily computed

by multiplying R with the result of the previous iteration. Here we refer to cxiR
l(a,b)

as the factor for each iteration. In each iteration, we update factor · R mod d and

determine whether we should sum ηb or not. Since in this process R is a small con-

stant, the computation may even be performed on the CPU without any noticeable

loss of efficiency in the overall scheme. Therefore, the CPU is used to compute

the new factor value while the GPU is busy computing the additions from previous

iteration. This approach allows us to run the CPU and the GPU concurrently and

therefore harnessing the full computational power of the overall system.

The constants used in Recrypt are part of the public key. They can be precom-

puted to further speed up the computation. Similar to Encrypt, the public keys can

be pre-loaded into the GPU memory to eliminate the latency incurred in CPU-GPU

communications. In our implementation we targeted the small (security) setting,

where the public key is about 140MB. The public key can perfectly fit into the GPU

memory of the latest graphic cards. In fact, the public key will even fit into the

GPU memory in the large setting, whose public key is about 2.25GB [29].

Furthermore, the majority of the computation in the Recrypt can also be repre-

sented as some “add-mul-add” chain as in the Encrypt. Therefore, the similar opti-

49

mizations can be applied. The computation before the reduction can be performed

in the FFT domain, reducing the number of expensive FFT and IFFT operations

significantly. However, this optimization will also cause growth in public key size

and make it impossible to store the whole public key in the GPU memory in the high

dimension case. Fortunately, with such high dimension settings, the computation

time is long enough to dwarf this extra communication overhead.

4.1.9 Implementation Results

We realized the Encrypt, Decrypt and Recrypt primitives of the Gentry-Halevi FHE

scheme with the proposed optimizations on a machine with Intel Core i7 3770K

running at 3.5 GHz with 8 GB RAM and a NVIDIA GTX 690 running at 1.02 GHz

with 4GB memory. Only one GPU is used in this implementation. Shoup’s NTL

library [60] is used for high-level numeric operations and GNU’s GMP library [61]

for the underlying integer arithmetic operations. A modified version of the code

from [52] is used to perform the Strassen FFT multiplication on GPU.

We implemented the scheme with small and medium parameter setting, respec-

tively dimension 2,048 and 8192. We also recompiled the code provided by Gentry

and Halevi for the CPU implementation [29] on the same computer for comparison.

The performance results are summarized in Table 4.2.

As we can see clearly from the table, our implementation for the small case

is about 174, 7.6 and 13.5 times faster than the original Gentry-Halevi code for

encryption, decryption and recryption, respectively [29]. The impressive speedup

of encryption is due to the fact that encryption benefits significantly from pre-

computation. For the medium case with dimension 8192, we also achieved a speed

up of 442, 9.7 and 11.7. Note that the encryption process enjoys even more speedup

as the dimension grows.

50

Encryption

Polynomial Evaluation

Precomputation
r, r

2
, … , r

64
Public

Key d

Encrypted data

Encryption in FFT domain

Polynomial Evaluation

In FFT domain

Precomputation r,r
2
,

… , r
64
, and calculate

their FFT transforms

R, R
2
, …, R

64
, R

128

Encrypted data

Get FFT of

Public Key,

D

1-bit

data

IFFT

AddMod

1-bit

data
AddMod

Recryption

Process block

Precompute

secret ciphertexts

Public

Key d

Recrypted data

ciphertext

Grade-school Addition

Recryption in FFT domain

Process block in FFT domain

Precompute the

FFT forms of

secret ciphertexts

Get FFT

of Public

Key, D

Recrypted data

Grade-school Addition

FFT

IFFT

ciphertext

Figure 4.4: Proposed Encrypt and Decrypt in the FFT domain

To explore the effect of our optimizations, we also broke down and evaluated

the time consumption for the Recrypt primitive. Use the small case as example, if

we look into the 1.32 seconds of time it takes to compute the Recrypt, we discover

51

Small Setting: Dimension 2048
Operation CPU GPU Speedup
Encrypt 1.08 sec 6.2 msec 174
Decrypt 14 msec 1.84 msec 7.6
Recrypt 17.8 sec 1.32 sec 13.5

Medium Setting: Dimension 8192
Operation CPU GPU Speedup
Encrypt 10.6 sec 24 msec 442
Decrypt 70 msec 7.2 msec 9.7
Recrypt 96.3 sec 8.4 sec 11.5

Table 4.2: Performance of FHE primitives with proposed optimizations

that it takes about 0.87 seconds for processing blocks and 0.46 second for grade-

school addition. Further inspection of the block processing part reveals that the

GPU multiplications and additions take about 0.54 second. In the meantime, it

takes the CPU about 0.6 second to compute the factor. Clearly, the sum of this two

latencies amounts to more than 0.87 seconds. This is due to the fact that the CPU

and the GPU are working in parallel. For comparison, if we implement the Recrypt

by only realizing the multiplications and additions via GPU, i.e. without out our

further optimization, the same break down shows the multiplications and additions

will take about 2.3 seconds in total. This shows that our optimization speedup the

block processing part by a factor of 2.64.

For the medium case, the GPU memory is not large enough to hold the whole

public key. Therefore, the keys are loaded when required, which introduces an

overhead of about 0.6 seconds for Recrypt. However, as the computation for the

medium case consumes much more time, the impact of this overhead to the overall

performance is limited.

Optimizing the grade-school additions The grade-school addition part is rel-

atively light-weighted and therefore of less important for optimization. Thus, for

the previous discussed implementation, no optimization is allied to it other than

52

employing GPU multiplications. However, as the block processing becomes faster,

the overhead of the the grade-school addition part generates a new bottle neck.

Therefore, we further optimized the grade-school addition part by employing “three

to two” adders. The resulting grade-school addition module only requires about

0.1 seconds to finish the additions. After applying this optimization, the Recrypt

process can be evaluated in less than 1 second.

4.2 Impelementing the LTV FHE Scheme

4.2.1 Lopez-Tromer-Vaikuntanathan FHE

In [28], Lopez-Alt, Tromer and Vaikuntanathan propose a multi-key homomorphic

encryption scheme (LTV-FHE) based on a modified NTRU [39] scheme previously

introduced by Stehle and Steinfeld [40]. Striving to obtain implementations that are

truly practical, in this section we adapt their presentation to arrive at a streamlined

single-key formulation.

We require the ability to sample from a probability distribution χ on B-bounded

polynomials in Rq := Zq[x]/(x
n + 1) where a polynomial is “B-bounded” if all of

its coefficients lie in [−B,B]. For example, we can sample each coefficient from a

discrete Gaussian with mean 0 and discard samples outside the desired range. The

basic idea of encryption is to cover each messagem with two masks, one which can be

removed with the private key and the other which vanishes upon reduction modulo

two. Simply put, if f is the private key satisfying f ≡ 1 (mod 2), we generate a

random polynomial g from χ and publish h = 2gf−1 as our public key. A bit m

is then encrypted as c = hs + 2e +m where s and e are random polynomials also

sampled from distribution χ. The decryption is simply multiply the cipher to the

private key: cf = 2gsf−1f + 2ef +mf ≡ 1 (mod 2).

53

With a single key in use, we immediately gain some economy over the LTV-

FHE scheme. Since the norm of a sum of two polynomials is bounded by the sum

of their respective norms, we may implement an XOR gate by simply adding the

two ciphertexts encrypting the two inputs. Each AND gate in the circuit incurs a

modulus reduction step that has the effect of reducing the magnitude of the noise in

the output of the gate. As well, a Relinearization step is employed to effectively re-

encrypt the output of previous gates under the new encryption modulus. So we have

a decreasing sequence of odd prime moduli q0 > q1 > · · · > qd where d is the depth

of the decryption/application circuit. In this way, the key (public and evaluation

keys) can become quite large and it remains a practical challenge to manage the

size of this data and handle it efficiently. As well, the parameters n and the qi must

be chosen very carefully to balance efficiency and wraparound control while still

maintaining a trusted level of security in the face of known attacks.� KeyGen: We choose a decreasing sequence of primes q0 > q1 > · · · > qd and a

polynomial φ(x) = xn+1. For each i, we sample u(i) and g(i) from distribution

χ, set f (i) = 2u(i) + 1 and h(i) = 2g(i)
(

f (i)
)−1

in ring Rqi = Zqi[x]/〈φ(x)〉. (If

f (i) is not invertible in this ring, re-sample.) We then sample, for i = 0, . . . , d

and for τ = 0, . . . , ⌊log qi⌋, s(i)τ and e
(i)
τ from χ and publish evaluation key

{

ζ
(i)
τ (x)

}i

tau
where ζ

(i)
τ (x) = h(i)s

(i)
τ + 2e

(i)
τ + 2τ

(

f (i−1)
)2

in Rqi−1
.� Encrypt: To encrypt a bit b ∈ {0, 1} with a public key (h(0), q0), Encrypt first

generates random samples s and e from χ and sets c(0) = h(0)s + 2e + b, a

polynomial in Rq0.� Decrypt: To decrypt the ciphertext c with the corresponding private key f (i),

Decrypt multiplies the ciphertext and the private key in Rqi then compute the

message by modulo two: m = c(i)f (i) (mod 2)

54

� Eval: We assume we are computing a leveled circuit with gates alternating

between XOR and AND. Arithmetic operations are performed directly on

ciphertexts as follows: Suppose c
(0)
1 = Encrypt(b1) and c

(0)
2 = Encrypt(b2).

Then XOR is effected by simply adding ciphertexts: Encrypt(b1 + b2) = c
(0)
1 +

c
(0)
2 . Polynomial multiplication incurs a much greater growth in the noise,

so each multiplication step is followed by a modulus switching. First, we

compute c̃(0)(x) = c
(0)
1 · c

(0)
2 (mod φ(x)) and then perform Relinearization, as

described below, to obtain c̃(1)(x) followed by modulus switching Encrypt(b1 ·

b2) = ⌊ q1
q0
c̃(1)(x)⌉2 where the subscript 2 on the rounding operator indicates

that we round up or down in order to make all coefficients equal modulo 2.

The same process hold for evaluating with ith level ciphertexts, e.g. computing

c̃(i)(x) from c
(i−1)
1 and c

(i−1)
2 .� Relinearization: We will show the general process that computing c̃(i)(x) from

c̃(i−1)(x). We expand c̃(i−1)(x) as an integer linear combination of 1-bounded

polynomials c̃(i−1)(x) =
∑

τ 2
τ c̃

(i−1)
τ (x) where c̃

(i−1)
τ (x) takes its coefficients

from {0, 1}. We then define c̃(i)(x) =
∑

τ ζ
(i)
τ (x)c̃

(i−1)
τ (x) in Rqi .

To see why this works, observe that simple substitution gives us

c̃(i)(x) = h(i)(x)





⌊log qi⌋
∑

τ=0

s(i)τ (x)c̃(i−1)
τ (x)



+ 2





⌊log qi⌋
∑

τ=0

e(i)τ (x)c̃(i−1)
τ (x)





+
[

f (i−1)
]2

⌊log qi⌋
∑

τ=0

2τ c̃(i−1)
τ (x)

= h(i)(x)S(x) + 2E(x) +
[

f (i−1)
]2
c̃(i−1)(x)

= h(i)(x)S(x) + 2E(x) +
[

f (i−1)c
(i−1)
1 (x)

] [

f (i−1)c
(i−1)
2 (x)

]

= h(i)(x)S(x) + 2E ′(x) +m1m2

55

modulo qi−1 for some pseudorandom polynomials S(x) and E ′(x). This ensures that

the output of each gate takes the form of a valid fresh encryption of the product

m1m2 of plaintexts.

4.2.2 Parameter Selection in the LTV-FHE

A significant – yet unresolved – problem holding researchers back from implementing

and improving LTV-FHE is parameter selection. In the original reference [28] the

security analysis is mostly given in asymptotic by reduction to the related learning

with error (LWE) problem [40]. In this section we summarize the results of our

preliminary work on parameter selection.

There are three parameters that will affect security, the dimension N, the co-

efficient size |q| and the error bound B. The |q| will mainly affect the number of

multiplications the scheme supports. The value of it largely depends on the complex-

ity of the application. e.g. a full ten round AES will require at least |q| = 1024. For

our implementation, we select |q| = 256 for small scale experiments and |q| = 1024

for AES implementation. The error in the LTV scheme must provide enough ran-

domness to defend against brute force attack. If the dimension is high enough, even

B = 1 will be enough to cover brute force attacks. If we assume the RLWE reduction

and consider the lattice attacks, then the smaller the B the lower the security level.

Therefore we assume a small B, i.e. B = 1, so that the corresponding dimension

requirement will provide enough security for any larger B. Given the selection of |q|

and B, we will discuss the relation between the dimension N and the security level.

The LTV-FHE scheme is developed from a modified version of NTRU [39] pro-

posed by Stehle and Steinfeld [40], which can be reduced to the Ring-LWE (RLWE)

problem. Specifically, the security reduction is obtained through a hybrid argument:

1. Recall that for the LTV-FHE scheme, the public key is of the form h = 2gf−1

56

where g, f chosen from a Gaussian distribution D where f is kept secret.

The DSPR problem is to distinguish polynomials of the form h = 2gf−1 from

samples h′ picked uniformly at random from the ring Rq. If the DSPR problem

is hard, we can replace h = 2gf−1 by some uniformly sampled h′.

2. Once h is replaced by h′, the encryption c = h′s+2e+m takes the form of the

RLWE problem and we can replace the challenge cipher by c′ = u+m with a

uniformly sampled u, thereby ensuring security.

Stehle and Steinfeld have shown that the DSPR problem is hard even for unbounded

adversaries with their parameter selection. However, the new LTV-FHE scheme

will require different parameters to support homomorphic evaluation. The impact

of the new parameter settings to the security level is largely unknown and requires

careful research. However, even if we assume that the DSPR problem is hard for

typical LTV-FHE parameter selection, concrete parameters are still hard to chose.

The RLWE problem is still relatively new and lacks thorough security analysis. A

common approach is to assume that RLWE follows the same behavior as the LWE

problem [30]. Under this assumption only, we can select parameters. If we omit the

noise, given the prime number q and k-bit security level, the dimension is bounded

as in [30] as N ≤ log(q)(k + 110)/7.2 .

For example, given a 256-bit prime q, an 80-bit security level will require di-

mension N = 6756. However, this large estimate is actually an upper bound and

assumes that the LTV-FHE scheme can be reduced to the RLWE problem. It

is not clear whether the reverse is true, i.e. whether attacks against the RLWE

problem apply to the LTV-FHE scheme. For instance, the standard attack on the

LWE problem requires many samples generated with the same secret s. However,

in the LTV-FHE scheme, the corresponding samples are ciphertexts of the form

57

c = h′s+2e+m, where the s polynomials are randomly generated and independent.

This difference alone suggests that standard attacks against LWE problems cannot

be directly applied to the LTV-FHE scheme. However, as a modified version of

NTRU, the LTV-FHE scheme suffers from the same attack as the original NTRU.

We can follow a similar approach as in the original NTRU paper [39] to find the

secret f : Consider the following 2N by 2N “NTRU” lattice where the hi are the

coefficients of h = 2gf−1. Let L be the lattice generated by the matrix. Clearly, L

contains the vector a = (f, 2g) which is small. Now the problem is transformed to

searching for short lattice vectors.



























I

h0 h1 · · · hN−1

−hN−1 h0 · · · hN−2

...
...

. . .
...

−h1 −h2 · · · h0

0 qI



























In [62], Gama and Nguyen proposed a useful approach to estimate the hard-

ness of the SVP in an N -dimensional lattice L using the Hermite factor δN =

||b1||/ det(L)1/N where ||b1|| is the length of the shortest vector or the length of

the vector for which we are searching. The authors also estimate that, for larger

dimensional lattices, a factor δN ≤ 1.01N would be the feasibility limit for current

lattice reduction algorithms. In [63], Lindner and Peikert gave further experimental

results regarding the relation between the Hermite factor and the break time as

t(δ) := log(T (δ)) = 1.8/ log(δ) − 110. For instance, for δN = 1.0066N , we need

about 280 seconds on the platform in [63].

For the LTV-FHE scheme, we can estimate the δ of the NTRU lattice and

thus the time required to find the shortest vector. Clearly, the NTRU lattice has

58

dimension 2N and volume qN . However, the desired level of approximation, i.e. the

desired ||b1||, is unclear. In [62], Gama and Nguyen use q as the desired level for the

original NTRU. However, for the much larger q used in the LTV-FHE scheme, this

estimate won’t apply. In particular, Minkowski tells us that L has a nonzero vector

of length at most det(L)1/t
√
t where t is the dimension. There will be exponentially

(in t) many vectors of length poly(t) det(L)1/t. In our case, this size would be

(qN)1/2Npoly(N) = poly(N)
√
q. Since N ≈ log(q) for the LTV-FHE scheme, we can

see that the approximate level q will tend to be obscured by these exponentially

many vectors. In other word, the analysis in [62] for NTRU does not apply to the

LTV scheme. Therefore, we choose to follow the experimentation approach in [64].

We ran a large number of experiments to determine the time required to search

for this shortest vector for a number of dimensions following the same approach as

in [64]. We generated different LTV keys with with coefficient size |q| = 2561 and

different dimensions, constructed the NTRU lattices as above and used the Block-

Korkin-Zolotarev (BKZ) [65] lattice reduction functions provided in Shoup’s NTL

Library [60] to search for the shortest vectors. More specifically, we set Schnorr’s

pruning constant to 0 as experiments did not show that it would improve the running

time. Then we set the LLL constant to 0.99 and ran the program with different block

sizes. We started with a small block size for each run and kept increasing the block

size until we found the target vector. The observed results showed the same pattern

as in [64]. The block size needed increases roughly linearly with the dimension, and

the running time grows exponentially with the block size.

After getting the time required to break different dimension instance of LTV

keys, we can estimate the time required for higher dimensions and estimate the

1Clearly, the larger |q|, the larger the required dimension will be to keep the LTV scheme secure.
However, other than lower the number of iterations required to break the system, larger |q| will
also slow down the reduction algorithm significantly. Experiments show that for |q| = 1024, the
actual time required to break the LTV scheme for given dimension is close to the |q| = 256 case.

59

corresponding bit security levels using the approach in [66]. Table 4.2.2 summarizes

the results and the estimated bit security level for higher dimensions. The results are

collected on a latest 3.5 GHz Intel i7 machine using the approaches discussed above.

The newly proposed BKZ2.0 algorithm in [66] will affect our parameter selection.

Unfortunately, we do not have access to it and cannot run it to determine the

performance. However, we may estimate the impact on the security level according

to the timing results reported in [66]. The dimension N = 768 will be appropriate to

keep enough security margin against BKZ2.0. Following the time to bit conversion

approach of BKZ2.0 we estimated the security level as 90-bits with BKZ (80-bits

against BKZ2.0).

Dimension Bit Security
140 42
160 46
256 52 (est.)
384 63 (est.)
512 74 (est.)
768 90 (est.)

Table 4.3: Security level of the LTV scheme; a small subset of our experiments and
estimates

4.2.3 LTV-FHE in Software

To form a baseline for performance evaluation, we implemented the LTV primitives

using Shoup’s NTL library [60]. The LTV FHE algorithm consists of four functions:

KeyGen, Encrypt, Decrypt and Eval. The KeyGen is only called once during the

setup phase. Therefore the speed of KeyGen is not as important. In addition,

the computation of Encrypt and Decrypt is quite simple. Experimental results also

show that Encrypt and Decrypt have satisfactory performance even without any

optimization other than those already included in the NTL library. Thus, we focus

60

on the optimization of the Eval primitive.

The Eval operation can be divided into three steps: the actual evaluation (ad-

dition or multiplication), Relinearization and modulus switching. Among these, the

actual evaluation and the modulus switching operations require negligible time.

The most computation intensive operation in the Eval is Relinearization. Recall

that the Relinearization process of the LTV scheme involves calculating c̃(i)(x) =

∑

τ ζ
(i)
τ (x)c̃

(i−1)
τ (x) where c̃

(i−1)
τ (x) takes its coefficients from {0, 1} and ζ

(i)
τ is part

of the public evaluation key. In other word, we are computing the sum of product

of polynomials for the Relinearization. In addition, since c̃
(i−1)
τ (x) takes its coeffi-

cients from {0, 1}, the product can also be easily calculated via additions. Clearly,

that the performance of the Relinearization process heavily relies on the efficiency of

polynomial additions.

Further Optimizations. Relinearization process can be further improved via pre-

computation. Recall that the Relinearization computation is expressed by c̃(i)(x) =

∑

τ ζ
(i)
τ (x)c̃

(i−1)
τ (x) where ζ

(i)
τ (x) = 2τfi and c̃

(i−1)
τ (x) is the corresponding bits of

the input ciphertext. However, the same computation can also be carried out more

than one bit a time. i.e. let ζ
(i)
τ (x) = 2kτfi and c̃

(i−1)
τ (x) take its coefficients from

{0, 1, ..., 2k−1}. In this way, the Relinearization can be done in 1/k iterations. How-

ever, each iteration will then require multiplication of the ζτ and the corresponding

2k bit coefficient instead of one bit coefficient, which will slow down the process.

To solve this problem, we pre-compute all possible multiples of ζτ so that the mul-

tiplication can be computed via table lookup. In this way, we may speed up the

Relinearization process at the expense of increased storage space. Table 4.4 shows

the speedup factor and corresponding evaluation key sizes for various selections of

bits per iteration. Note that, although we need only 1/k-th iterations if we process

k bits a time, the speedup is not k-fold since, if we process one bit per iteration,

61

half of the iterations can be skipped due to zero coefficients of c̃
(i−1)
τ (x) . However,

if we process k bits per iteration, only the fraction of 1/2k of the iterations can

be skipped. In addition to the pre-computation, we also wrote our own code for

Bits per Iteration Speedup Factor Size of Evaluation Key
1 1 4 MBytes
2 1.33 6 MBytes
3 1.71 9.3 MBytes
4 2.13 15 MBytes

Table 4.4: Speed-Space Trade off

polynomial additions to eliminate the overhead from the NTL library lower level

functions and to improve the memory accesses. After applying all these optimiza-

tions, we achieved more than ten times speed up over the direct implementation

using NTL. The performance measured on a 3.5 GHz Intel i7 machine with 8 GB

RAM is shown in Table 4.5. We determined that a pre-computation level of 4-bits

per iteration provides a good speedup while still maintaining a reasonable evalu-

ation key size. As shown in Table 4.5, we achieved millisecond level Encrypt and

Decrypt and the Relinearization takes about 38 msecs. Compared to the 4.2 secs

Recrypt time reported in [41] for the Gentry-Halevi scheme, this result shows much

promising efficiency2. It will also be interesting to compare our implementation to

the FHE implementation in [30]. Therefore, we estimate the time required for a

homomorphic AES encryption using the LTV FHE scheme.

Homomorphic AES Encryption. Assume that the messages are encrypted bit

by bit using the LTV FHE scheme, we want to homomorphically compute the AES

rounds. Recall that for an AES round, we have four steps: SubBytes, ShiftRows,

2As an operation that is required after every multiplication, the Relinearization process in the
LTV FHE scheme plays a similar role as the Recrypt in the Gentry-Halevi scheme. Therefore,
the performance of these two operations offers a reasonable reflection of the efficiency of the two
schemes.

62

Operation N = 512 N = 512 N = 768
|q| = 256 |q| = 1024 |q| = 1024

Encrypt 1.1 msec 3.2 msec 5.9 msec
Decrypt 2.3 msec 6.7 msec 23 msec
Relinearization 522 msec n/a n/a
Relinearization

(optimized)
38.1 msec 635 msec 1413 msec

Table 4.5: Speed of the LTV FHE scheme

MixColumns and AddRoundKey. Among them, the ShiftRows step just switches bit

positions and will not require any homomorphic operations. The AddRoundKey step

simply XOR the round keys to the state values. If we pre-compute and encrypt

the round keys beforehand, we will only need homomorphic additions in this step.

The MixColumns step involves multiplications by constants and additions. Multipli-

cations by constants in the finite field can be carried out via shift and additions3,

which will not generate much noise. The SubBytes step or the SBox is the only place

where we require homomorphic multiplications and Relinearization operations.

An SBox lookup in AES correspond to a finite field inverse computation followed

by the application of an affine transformation. The later operation is realized by

simply multiplying the inverse by a {0, 1} matrix and by XOR-ing the result with

another constant vector. Therefore, if we can estimate the number of Relineariza-

tions required for homomorphically computing the inverse of the input byte, we can

estimate the number of Relinearizations required for the homomorphic AES encryp-

tion. In [67], the authors introduced a compact design for computing the inverse.

The input byte in GF (28) is converted using an isomorphism into a tower field

representation which allows much more efficient inversion. We analyzed the design

3Multiplication by 2 can be evaluated by shifting. If the leftmost bit is 1, then XOR the
result by (00011011). It can also be carried out without branching via (b7b6b5b4b3b2b1b0) · 2 =
(b6b5b4b3b2b1b00)⊕ (000b7b70b7b7). Multiplication by 3 can be computed by multiplying the input
by 2 and adding the input. Clearly, these operations can be evaluated with only additions.

63

described in [67] and determined that the inversion can be evaluated with 4 levels

of bit multiplications and 46 relinearizations in total. Converting to and from the

sub-field representation involve only multiplication with {0, 1} matrices and thus

will only requires additions. Therefore, for the SubBytes step, we only need 4 levels

of bit multiplications and 46 Relinearizations.

Since we will need 16 separate SBox substitution for one round, for the full

10 round 128 bit-AES block homomorphic encryption evaluation we need 40 levels

of multiplications and 7,360 Relinearization operations. A 1024 bit coefficient size

is sufficient to support 40 levels of multiplications. Therefore, we use 1024 bit

coefficient size, which will slow down the Relinearization by roughly 16 times. If we

omit the time required for operations other than Reliniearization, the time required

for a full AES encryption can be estimated as about 74 minutes 4.

To verify our estimation, we implemented the AES using the LTV scheme with

|q| = 1024 and N = 512. The results show that it takes about 85 minutes for the

whole 10 round AES. We estimate that with N = 768, this time will increase to

about 4 hours. In comparison, the AES implementation in [30] can evaluate the

full AES rounds in 47 hours with 54 blocks evaluated together. A more aggressive

implementation can evaluate 720 blocks together in 122 hours.

4.3 Compressing Ciphertexts

FHE schemes are powerful and allow arbitrary evaluations. On the other hand sym-

metric key schemes such as the block and stream ciphers have excellent performance

in terms of ciphertext size. It would be ideal if we can take advantage of the desir-

4This is a rough estimate. The larger coefficient sizes may require the use of a larger dimension
which will slow down Relinearization. In contrast, after each modulus switching operation, the
Relinearization process becomes faster due to the drop in the coefficient size.

64

able features of the schemes when we need them. For instance, we may transfer data

using block or stream ciphers with compact ciphertexts and then convert the cipher-

text to the homomorphic one for further evaluation and then convert the ciphertext

back into a scheme with short ciphertexts for transmission. This is precisely the

problem we confront. Similar ideas were proposed in [33, 34, 35].

The concept of the scheme conversion is also employed in previous chapters for

extending the supported circuits of partial HE schemes. In this section, we will

formalize the notion of secure converters and provide efficient instantiation to re-

duce the bandwidth requirement. A secure converter allows an untrusted party to

efficiently convert a ciphertext of one scheme to a ciphertext of another scheme,

without affecting the data or gaining any significant information. We introduce a

construction and show that a secure converter exists whenever the target scheme

may homomorphically evaluate the decryption circuit of the initial scheme. More-

over, we show how to use converters to achieve bandwidth reduction in outsourced

computation applications of FHE.

4.3.1 Secure Converters for Cryptographic Schemes

Definition 4 (Converter) Given two encryption schemes A and B, a converter

from A to B is an ordered pair C = (KeyGen,Convert) such that

s = C.KeyGen(A,B)

satisfies B.Enc(x, kB) = C.Convert(A.Enc(x, kA), s) .

Here, the extra input s required for C.Convert is called the converter key. We then

say scheme A is convertible to scheme B, we refer to C as a converter, and we

65

refer to the overall process informally as scheme conversion.5

Note that the parameter s in the definition of a converter can be generated from

either A or B or by some algorithm involving both; we make no specific assumptions

about how s is constructed. It can even contain the keys of both schemes. We use

KeyGen(A,B) to abstract this process. A näıve construction is to design a converter

that simply decrypts A.Enc(x, kA) first under A then encrypts again under scheme

B to obtain B.Enc(x, kB). In this case, the converter key will be s = (skA, pkB) or

s = (skA, skB) in the symmetric key case. However, this toy approach is completely

insecure as the plaintext is revealed during conversion.

Clearly the main challenge is to design efficient converters that will not leak any

significant information. While C is used only for conversion from one ciphertext

form to another, to capture the security of the overall scheme we need to consider

the combination of schemes A,B in conjunction with the converter C. To simplify

the security analysis we first define a merged scheme. The merged scheme M =

(A,B, C) models, as a single encryption scheme, the overall process a message goes

through as it is first encrypted using A and then converted using C to a valid

ciphertext for scheme B. (See Figure 4.5.) Rather than definingM.Enc(·, [pkA, s]) =

C.Convert(A.Enc(·, pkA), s) we choose to merge the role of C into the decryption

process and defineM.Dec(·, [skB, s]) = B.Dec(C.Convert(·, s), skB). This formalism

will allow us to analyze the end-to-end security of the overall scheme.

Below, we show why the converter C is considered secure precisely when the

merged scheme M is semantically secure. The notion of semantic security is well-

known to be equivalent to indistinguishability under chosen plaintext attack (IND-

CPA). In our proof (see appendix), we model IND-CPA using the game suggested

5This notion is not to be confused with the Fujisaki-Okamoto conversion scheme [49], with
which it has no relationship.

66

Merged Scheme M = (A,B, C)

KeyGen: Given security parameter τ :

1. (pkA, skA) ← A.KeyGen(τ); (pkB, skB) ←
B.KeyGen(τ).

2. s← C.KeyGen(A,B, τ).

3. Return pkA and s as the public key. Return
skB as the secret key.

Enc: Given message m:

1. Set c← A.Enc(m, pkA).

2. Return c as the ciphertext.

Dec: Given a ciphertext c:

1. Compute c′ = C.Convert(c, s).

2. Return a← B.Dec(c′, skB)

Figure 4.5: Merged scheme modeling the two schemes and the converter as a single
encryption scheme.

in [68]. In this game, the adversary is a pair of probabilistic algorithms E = (E1, E2).

In the first step of the game, Algorithm E1 takes the public key as input and outputs

a triple (x0, x1, s) where x0 and x1 should of the same length and s represents state

information which may also include the public key. Next, one of x0 and x1 is selected

at random and encrypted to form the challenge y. Finally, Algorithm E2 is given

input x0, x1, y and s and determines which one among x0 and x1 was selected. More

formally, we will have the following definition.

Definition 5 (IND-CPA for public key schemes [68]) Let A be an encryption

scheme and let E = (E1, E2) represent an adversary. For given security parameter

τ , let

AdvE(τ)
def
= |Pr [E2(x0, x1, s, y) = b | (pkA, skA)← A.KeyGen(τ); (x0, x1, s)← E1(pkA);

b← {0, 1}; y ← A.Enc(xb, pkA)]− 0.5 | ,

67

where |x0| = |x1|. We say that A is IND-CPA secure if AdvE(·) is negligible

whenever E is a polynomial-time adversary.

We are now ready to formally define a secure converter.

Definition 6 Given two IND-CPA public key schemes A, B and a polynomial time

converter C, if the merged scheme M = (A, B, C) is IND-CPA, then we then say

A is securely convertible to B and call C a secure converter of encryption

schemes.

Note that in this definition both A and B are public key schemes since this is the

most readily useful case in homomorphic encryption. However, a similar definition

can be given when one or both of A and B is/are symmetric key.

4.3.2 Using homomorphic encryption for secure converters

We finish this section by introducing a class of secure converters constructed using

homomorphic evaluation. Specifically, we prove that whenever B is a homomorphic

encryption scheme that is able to homomorphically evaluate the decryption circuit

A.Dec, then A is securely convertible to B. The converter C in this case has a

key generation procedure6 which encrypts the secret key of A using the public key

of B; the convert procedure belonging to C simply homomorphically decrypts the

message.

Theorem 1 Given two semantically secure schemes A and B where B is capable

of homomorphically decrypting ciphertexts of A with encrypted keys B.Enc(skA), we
6In practice, B may require more than just an encrypted copy of skA to perform the homomor-

phic decryption. For instance, if A is stateful, such as in a stream cipher, state information will
also need to be included (in encrypted form if sensitive) alongside the secret key of A.

68

have that A is securely convertible to B. In this case, the converter C is defined as

follows:

C.KeyGen(A,B, τ) = s = (pkB,B.Enc(skA, pkB)) ,

C.Convert(c, s) = B.Eval(B.Enc(c, pkB),A.Dec,B.Enc(skA, pkB)) .

We now restate Theorem 1 in terms of indistinguishability.

Theorem 2 Assume we are given two IND-CPA algorithms A and B, where B can

homomorphically evaluate A.Dec and a converter C defined as in Theorem 1. Then

the merged schemeM = (A,B, C) is IND-CPA.

Proof 1 For the merged schemeM = (A,B, C) with security parameter τ , suppose

there exist an adversary E = (E1, E2) that can break the scheme in the IND-CPA

game with a non-negligible advantage of AdvE . Then we have

AdvE(τ) = |Pr[E2(x0, x1, s, y) = b | (pkA, skA)← A.KeyGen(τ);

(pkB, skB)← B.KeyGen(τ); (x0, x1, s)← E1(pkA, pkB,B.Enc(skA, pkB));

b← {0, 1}; y← A.Enc(xb, pkA)]− 0.5|

≥ ǫ(τ) .

Then we will show that we can use E to break either A or B. Setup two games for

A and B. In the game for A, the adversary GA has access to pkA only. Then GA
prepares a game for E as follows:

1. (pk′
A, sk

′
A)← A.KeyGen(τ); (pkB, skB)← B.KeyGen(τ);

2. Substitute pk′
A with the input pkA. Note that we use the exact same KeyGen

function. Thus the distribution of the generated keys will be identical.

3. (x0, x1, s)← E1(pkA, pkB,B.Enc(sk′
A, pkB)).

69

4. Select b
$← {0, 1}; y← A.Enc(xb, pkA).

5. GA treats the x0, x1, s, y generated as the output of the its first stage GA1. GA2

will then call E2(x0, x1, s, y) to guess b.

We call the advantage gained from this game AdvA. Note that Steps 3-5 of this

game actually form a standard game of E with an unmatched pair of s and pkA.

Obviously AdvA ≤ AdvE .

In the game for B, the adversary GB has access to pkB only. Then GB prepares

a game for E as the follows:

1. (pkA, skA)← A.KeyGen(τ); (pk′
B, sk

′
B)← B.KeyGen(τ);

2. Substitute pk′
B with pkB. Note that we call the exact same KeyGen function,

the distribution of pkB and pk′
B will be identical.

3. Call A.KeyGen(τ) again to get another secret key sk′
A. sk′

A will follow the

same distribution of skA.

4. Set x0 = skA, x1 = sk′
A, b

$← {0, 1}, y ← B.Enc(xb, pkB). s← (pkA, pkB).

5. GB treats the x0, x1, s, y generated in this way as the output of the its first stage

GB1 and forward them to GB2. Note that s only contain the public keys of A

and B. It is a valid piece of state information.

6. GB2 calls (x′
0, x

′
1, s

′) ← E1(pkA, pkB, y), generate b′ and y′ = B.Enc(x′
b′ , pkB)

accordingly.

7. GB2 then calls E2(x′
0, x

′
1, s

′, y′) to guess b′.

8. If the guess is correct, GB2 guesses b = 0 else b = 1.

70

In this game, if b = 0, the selected x0 is a valid encryption of skA that matches

the public key of A contained in s. Steps 6-7 will be identical to a standard game for

E . Then E will have a non-negligible advantage of AdvE . If b = 1, the selected x1

is an encryption of sk′
A which does not match the public key of A. In this case, the

whole process will be identical to the game we designed for A. We assume that the

advantage of game A is AdvA (it may be negligible or not). Then we can compute

the overall advantage of GB as

AdvB = Pr[Correct guess]− 0.5

= Pr[b = 0 | Guess 0] + Pr[b = 1 | Guess 1]− 0.5

= 0.5 · (0.5 +AdvE) + 0.5 · (0.5−AdvA)− 0.5

= 0.5AdvE − 0.5AdvA

Now we can check the advantage of the two games together. It is clear that if AdvA

is negligible, we will have

AdvB = 0.5AdvE − 0.5AdvA

≈ 0.5AdvE

which is non-negligible. Therefore, either AdvA or AdvB is non-negligible.

Note that Theorem 2 only covers the cases that both A and B are public key

schemes. However, in the cases where A is symmetric, the converter which simply

homomorphically decrypts will still be secure. The IND-CPA of the merged scheme

in such cases can be proven using the same approach as we discussed above. More

specifically, the merged scheme built from a symmetric A will also be symmetric.

Therefore, we substitute the public key of A with an encryption oracal OA in the

71

proof as symmetric schemes do not have public keys. In this way, the GA part of

the proof will become a standard IND-CPA game for symmetric schemes and the

GB part will not be affected as B remains a public key scheme. In addition, parts of

the process can still form valid games for E . Therefore, the relation between AdvA,

AdvB and AdvE will still hold and so as the security reduction.

Secure Converter for Symmetric Schemes

Following similar approach, we can define a secure converter for symmetric

schemes and the security proof given here can be easily modified to cover that

scenario as well. First, we need a definition of IND-CPA for symmetric schemes.

The definition also follows the game defined in [68]. The form is slightly different

from the public case as we will have to rely on oracles for encryption.

Definition 7 (IND-CPA for symmetric scheme) Let A be a symmetric

encryption scheme and let E = (E1, E2) be an adversary. For given security param-

eter τ , let

AdvE(τ)
def
= |Pr[E2(x0, x1, s, y) = b | (skA)← A.KeyGen(τ);

(x0, x1, s)← E1(O); b← {0, 1}; y← A.Enc(xb,O)]− 0.5| ,

where |x0| = |x1| and O(·) is an oracle that encrypts messages under the cor-

responding keys. The oracle used by E and oracle used to generate the challange

are the same one. We say that A is IND-CPA secure if E is polynomial-time and

AdvE(·) is negligible.

Following an approach to the one taken here, we may define the symmetric

analogue of a merged scheme and a secure converter.

Merged Scheme M = (A,B, C)

72

KeyGen: Given security parameter τ :

1. (skA)← A.KeyGen(τ); (pkB, skB)← B.KeyGen(τ).

2. s← C.KeyGen’(A,B, τ).

3. Return s as the public key. Return skA, skB as the secret key.

Enc: Given message m:

1. Set c← A.Enc(m, skA).

2. Return c as the ciphertext.

Dec: Given ciphertext c:

1. Compute c′ = C.Convert(c, s).

2. Return a← B.Dec(c′, skB)
Not that this merged scheme is effectively a secret key scheme. However, it

employs a public key s for the conversion. As in the public key case, the converter

can either be merged into either the encryption or the decryption process without

affecting the security level.

Likewise, we have the definition of a secure converter for the symmetric case.

Definition 8 Given an IND-CPA symmetric scheme A, an IND-CPA public key

scheme B and a polynomial time converter C, if the merged schemeM = (A, B, C)

is IND-CPA. We then say A is securely convertible to B and call C a secure

converter.

Now consider a symmetric A, a homomorphic B and conversion effected by homo-

morphic decryptio. We have:

Theorem 3 Given an IND-CPA symmetric scheme A and an IND-CPA public key

scheme B where B is capable of homomorphically decrypting ciphertexts of A with

73

encrypted keys B.Enc(skA), then A is securely convertible to B. In this case, the

converter C is defined as follows:

C.KeyGen(A,B, τ) = (pkB,B.Enc(skA, pkB)) ,

C.Convert(c, s) = B.Eval(B.Enc(c, pkB),A.Dec, (pkB,B.Enc(skA, pkB)) .

Proof 2 For the merged schemeM = (A,B, C) with security parameter τ , suppose

there exist an adversary E = (E1, E2) that can break the scheme in the IND-CPA

game with a non-negligible advantage of AdvE . Then we have:

AdvE(τ) = |Pr[E2(x0, x1, s, y) = b | skA ← A.KeyGen(τ);

(pkB, skB)← B.KeyGen(τ); (x0 , x1, s)← E1(O, pkB,B.Enc(skA, pkB)); b← {0, 1};

y ← A.Enc(xb, pkA)]− 0.5|

≥ ǫ(τ) ,

where O is the oracle that encrypts message for A. Note that we can also pass

some public information other than the oracle to E1.

Then we will show that we can use E to break either A or B.

Then we will show that we can use E to break either A or B. Setup two games

for A and B. In the game for A, the adversary GA has access to the oracle O. Then

GA prepares a game for E as follows:

1. (sk′
A)← A.KeyGen(τ); (pkB, skB)← B.KeyGen(τ);

2. The game for E needs an oracle O′ using sk′
A. Substitute it with the input

oracle O. Note that we use the exactly same KeyGen function. Thus the

distribution of the ciphertexts generated by O and O′ will be identical.

3. (x0, x1, s)← E1(O, pkB,B.Enc(sk′
A, pkB)).

74

4. b← {0, 1}; y ← A.Enc(xb,O).

5. GA treats the x0, x1, s, y generated in this way as the output of the its first stage

GA1. GA2 will then call E2(x0, x1, s, y) to guess b.

We call the advantage gained from this game AdvA ≥ ǫA. Note that Steps 3-5

of this game actually form a standard game of E with an unmatched pair of s and

pkA. Obviously AdvA ≤ AdvE .

In the game for B, the adversary GB has access to pkB only. Then GB prepares

a game for E as the follows:

1. skA ← A.KeyGen(τ); (pk′
B, sk

′
B)← B.KeyGen(τ);

2. Substitute pk′
B with pkB. Note that we call the exact same KeyGen function,

the distribution of pkB and pk′
B will be identical.

3. Call A.KeyGen(τ) again to get another secret key sk′
A. sk′

A will follow the

same distribution of skA. The two coresponding oracles O and O′ will also

generate ciphertexts following the same distribution.

4. Set x0 = skA, x1 = sk′
A, b← {0, 1}, y ← B.Enc(xb, pkB). s← (pkA, pkB).

5. GB treats the x0, x1, s, y generated in this way as the output of the its first stage

GB1 and forward them to GB2. Note that s only contain the public keys of A

and B. It is a valid piece of state information.

6. GB2 calls (x′
0, x

′
1, s

′) ← E1(O, pkB, y), generate b′ and y′ = B.Enc(x′
b′ , pkB)

accordingly.

7. GB2 then calls E2(x′
0, x

′
1, s

′, y′) to guess b′.

8. If the guess is correct, GB2 guess 0 for b.

75

In this game, if b = 0, the selected x0 is an encryption of the skA that matches

the used oracle of A. Steps 6-7 will be identical to a standard game for E . Then

E should have a non-negligible advantage of AdvE . If b = 1, the selected x1 is an

encryption of sk′
A which does not match the used oracle of A. In this case, the

whole process will be identical to the game we designed for A, we assume that the

advantage of game A is ǫA (it may be negligible or not). Then we can calculate the

overall advantage of GB:

AdvB = Pr[Guess correct]

= Pr[b = 0 | Guess 0] + Pr[b = 1 | Guess 1]

= 0.5 · (0.5 +AdvE) + 0.5 · (0.5−AdvA)− 0.5

= 0.5AdvE − 0.5AdvA

Now we can check the advantage of the two games together. It is clear that if

AdvA is negligible, we will have

AdvB = 0.5AdvE − 0.5AdvA

≈ 0.5AdvE

which is non-negligible. Therefore, either AdvA or AdvB is non-negligible.

Here are a few examples of converters:� As per Theorem 1, conversion from any efficiently computable encryption

scheme A to any FHE F will permit a converter where the conversion scheme

76

is defined as the homomorphic evaluation of the decryption circuit of scheme

A using secret keys encrypted under F .� It is possible to think of a bootstrappable fully homomorphic scheme as a scheme

A which is convertible to itself.� A less trivial example is obtained by considering the homomorphic encryption

scheme of Boneh, Goh and Nissim [19] (BGN) which uses a bilinear pairing

e : G × G → G1 to effect the required multiplication in evaluating a 2-DNF

formula. To encrypt a messagem pick a random r
R← {0, 1, . . . , n−1} and com-

pute C = gmhr ∈ G. During homomorphic evaluation messages are mapped

to a new group G1. We can view the BGN encryption scheme defined over

domain G as the initial scheme A, and the BGN scheme defined over domain

G1 as the target scheme B, and the pairing operator e(., .) as the converter.

4.3.3 Bandwidth Reduction via Secure Scheme Converters

FHE Scheme Ciphertext size per message bit
Gentry-Halevi [29] 100 KBytes
BGV w/o batching [27] 8.5 MBytes
BGV w batching [27] 8.5 KBytes
LTV [28] 16 KBytes

Table 4.6: Ciphertext sizes for FHE schemes.

In the previous section we introduced the notion of secure converters and intro-

duced a construction using the homomorphic properties of encryption schemes. We

now show how a secure converter can greatly reduce bandwidth requirements in a

two-party secure function evaluation setting shown in Figure 4.6 (left). Assuming

the encryption function allows homomorphic computation, the server can evaluate

a public function directly on the ciphertext and return the resulting ciphertext back

77

to the client without gaining any significant information about the original plain-

text. Unfortunately, most homomorphic encryption schemes suffer from a basic flaw

which prevents real-life deployment, i.e. bandwidth. As seen in Table 4.6, for FHEs

the message expansion is quite severe. Fortunately, by utilizing the secure converter

introduced in Section 4.3.1 we can reduce the bandwidth overhead drastically for

communications between a client and a server as shown in Figure 4.6 (right). In

both directions of the communication we may employ secure converters to achieve

ciphertext compression7.

Output

Encrypt

Homomorphic

Evaluation

Decrypt

Input HE Ciphertexts

HE Ciphertexts

Client ServerCommunication

Channel

Encrypt

Homomorphic

Evaluation

Decrypt

Input
Short

Ciphertexts

Client ServerCommunication

Channel

Short

Ciphertexts

Convert

Convert

HE

Ciphertexts

HE

CiphertextsOutput

Figure 4.6: Standard Client-Server homomorphic function evaluation setting and
bandwidth optimized scheme with converters.

Ciphertext Compression at the Client Side

The client’s ultimate goal is to encrypt the plaintext using a homomorphic encryp-

tion scheme to enable server side computation. Instead the client encrypts the

plaintext using an ordinary symmetric key scheme with short ciphertexts. Once the

ciphertext is received, the server may now employ a secure converter to uncompress

the short ciphertext into a shorter one for further homomorphic evaluation.

In practice, the client may simply use a block cipher to encrypt the data before

communication. As discussed earlier, an easy way to construct a secure converter

7We should note however that the technical requirements and the schemes are quite different
since we assume the client side holds the decryption key while the server is only allowed to carry
out computations on data in encrypted form.

78

at the server side is to decrypt the received ciphertext homomorphically using a

FHE scheme. However, when we take performance into account, this approach

does not seem feasible. For instance, [30] presents a technique and implementation

to evaluate an AES circuit homomorphically. On average it takes more than 10

minutes to process a single AES block (128-bits) if the encryptions are batched.

Instead, we find that stream ciphers are more suitable to facilitate efficient secure

scheme conversion. Most stream ciphers encrypt messages on a bit by bit basis.

To homomorphically decrypt the ciphertext, one can homomorphically generate the

keystream bit by bit. Then decryption will be simply a homomorphic XOR addition

of the key stream bits to the ciphertext bits. Furthermore, stream ciphers allow pre-

computation of the keystream, which can hide the homomorphic evaluation latency,

and significantly boost burst performance.

Client Side Compression using Trivium and LTV. Here we outline a concrete

example of bandwidth reduction achieved by employing the Trivium stream cipher

and assuming the homomorphic scheme employed is the one proposed by Lopez-Alt,

Tromer and Vaikuntanathan (LTV).

Lopez-Alt, Tromer and Vaikuntanathan proposed a lattice based FHE which

supports multikey computation. The security of this scheme can be reduced to

Ring Learning with Error Problems (RLWE) with an assumption8. What makes the

LTV FHE scheme desirable for the envisioned application, is it’s simple decryption

process. Very briefly, the LTV scheme works in a polynomial ring Z[x]/〈xk+1〉. The

ciphertext lies in the ring Rq = R/qR. The LTV scheme samples small polynomials

f ′, g from a B-bounded distribution χ. 9 Then the scheme sets f = 2f ′ + 1 and

8The scheme can be reduced to RLWE through the Decisional Small Polynomial Ratio Problem
(DSPR). In [40] Stehle and Steinfeld proved that DSPR is hard even for unbounded adversaries
with certain parameter limitations. However, the scheme will lose the homomorphic property
with this parameter selection. Therefore for the LTV scheme, the authors assume that the DSPR
problem is still hard for their parameter selection.

9B-bounded means that the absolute value of the largest coefficient is smaller than the bound

79

h = 2gf−1 and outputs h as the public key and f as the private key. To encrypt

a message bit m, the LTV scheme samples some small polynomials s, e again from

χ and computes the ciphertext as c = hs + 2e + m ∈ Rq. To recover the message

from the ciphertext, we first note that µ = fc = fhs + 2fe + fm = 2gs + 2fe +

fm = 2gs + 2fe + (2f ′ + 1)m . Therefore m = µ mod 2 = fc mod 2. It is clear

that the majority of the steps in decryption involves only polynomial multiplication

operations. This property makes the LTV scheme ideal to use with converters.

Client Side Compression Using Trivium. Ciphertext compression on the client

side is rather easy to achieve. All that is needed is a compact (possibly symmetric)

scheme whose decryption circuit is relatively easy to evaluate on the server side.

Since we already assume that homomorphic encryption is already supported on

the server side, the symmetric scheme selection is mostly a matter of efficiency.

Therefore, for client side encryption we chose a stream cipher, i.e. Trivium, which

features a simple decryption circuit which can be homomorphically decrypted rather

efficiently on the server side10.

Trivium is a synchronous stream cipher proposed by De Cannière and Preneel

for the eSTREAM competition [70]. It has been selected as part of the portfolio 2

by the eSTREAM project. Trivium uses a total of 288-bits in three shift registers as

the internal state. In each round, a bit is shifted into each of the three shift registers

derived using a non-linear combination of some of the state bits and one output bit

is produced from the state. Part of the IV is served as the key. Representing the

three shift register bits by ai, bi, ci and ‘+’ for an XOR and ‘·’ for an AND we can

express the internal state update function of a Trivium round and the keystream

B.
10Indeed any stream cipher with a shallow circuit formulation will work here. However, one

needs to be careful in selecting such ciphers due to algebraic attacks, cf. [69].

80

output bit ri as follows

ai = ci−66 + ci−111 + ci−110 · ci−109 + ai−69 ,

bi = ai−66 + ai−93 + ai−92 · ai−91 + bi−78

ci = bi−69 + bi−84 + bi−83 · bi−82 + ci−87

ri = ci−66 + ci−111 + ai−66 + ai−93 + bi−69 + bi−84 .

What it is important here is to realize that a keystream bit can be computed by

just evaluating a second degree shallow circuit.

Secure Converter from Trivium to LTV. For decryption of Trivium we need to

first encrypt the ciphertext bit using the FHE scheme and homomorphically evaluate

the output bit ri. A simple homomorphic XOR of ri and the ciphertext bit suffices

to realize homomorphic decryption and thereby conversion to the FHE scheme. If

LTV is used as the FHE, then we we can simply omit the initial encryption step

from our converter, since addition of an unencrypted bit is equivalent to the addition

of an encrypted bit in the LTV scheme which stores the message bit in the parity of

the ciphertext. On the other hand, for the evaluation of ri, as easily seen from the

recurrence relations given above, only one layer of multiplications is needed for each

round and the state bits are not used until after 64 rounds after being generated.

This means that each bit is affected by at most one multiplication after about

64 rounds. If we use a FHE which will generate more noise from multiplication

than addition (as most FHE schemes do), to run Trivium homomorphically, we

will only need to evaluate the costly multiplication once every many rounds. In

addition, as a common advantage of the stream ciphers, the online performance of

the converter can be further improved by employing precomputation. Later inwe

present implementation results.

81

Ciphertext Compression at the Server Side

After homomorphic evaluation the server wants to communicate a compressed ci-

phertext back to the client. Clearly the server can convert the ciphertext to another

FHE scheme with smaller ciphertext size. Homomorphically decrypting the cipher-

text using another FHE scheme is straightforward. However, the gain in ciphertext

reduction will be limited. Therefore, we need to turn to partially homomorphic

encryption schemes. Although severely limited in their homomorphic properties,

as long as they are capable evaluate the FHE decryption circuit, they yield secure

converters. In addition, some partial homomorphic schemes support a large message

space with reasonable ciphertext sizes11.

The realize the converter we can homomorphically decrypt the cipher using the

new partial HE scheme and generate a ciphertext under the partial HE. However,

after reviewing partial HE and FHE schemes we could not find any FHE schemes

that could be homomorphically decrypted by any of the existing PHE schemes. This

is not surprising since what we are trying to achieve here is akin to bootstrapping,

but with weaker homomorphic properties. One way to overcome this problem is to

only partially decrypt the ciphertext. The protocol works correctly as long as the

client can extract the actual final result from the sub-results.

Server Side Compression Using Paillier’s Scheme. In this section we provide

a concrete construction, and show that it is possible to homomorphically nearly

decrypt ciphertexts in the LTV FHE scheme using Pailler’s HE scheme. We now

very briefly review both and highlight the features of these schemes that will enable

secure ciphertext compression.

Paillier [16] proposed an additive homomorphic encryption scheme based on a

11Here the comparison is made against ciphertext sizes of fully homomorphic encryption schemes.

82

decision problem12 closely related to the problem of deciding nth residues in the

ring Zn2 . Let p and q be large primes and set n = pq; the group of units in

the ring Zn has exponent λ = λ(n) = lcm(p − 1, q − 1). The nth roots of unity

in Zn2 are u = 1 + kn (0 ≤ k < n) and k is recovered as L(u) = u−1
n
. Pail-

lier’s scheme requires a base g satisfying gcd(L(gλ mod n2), n) = 1. Primes p and

q and the integer λ are kept private while the public key is (n, g). To encrypt

a message m ∈ Zn, Alice generates a random r and computes Enc(m) = gmrn

(mod n2). Paillier [16] gives evidence that recovering m from c = Enc(m) without

the knowledge of p, q or λ is hard. However, with the knowledge of private key λ

(or, equivalently, the factorization n = pq), m may be easily recovered from c by

computing m = Dec(c) = L(cλ mod n2)
L(gλ mod n2)

(mod n) . The encryption function is addi-

tively homomorphic and the scheme supports scaler multiplications to constants in

plaintext, i.e., Enc(m1) · Enc(m2) = gm1rn1 g
m2rn2 (mod n2) = Enc(m1 + m2) , and

[Enc(m1)]
a = (gm1rn1)

a (mod n2) = Enc(a ·m1).

Homomorphic Converters. The decryption of the LTV FHE scheme requires

multiplication of two polynomials in Rq and then a reduction modulo 2. Since the

message is kept in the parity of the constant term, we can further simplify the process

by ignoring other terms. Suppose we have the ciphertext c = c0+c1x+. . .+ck−1x
k−1

and the secret key f = f0+f1x+ . . .+fk−1x
k−1. The decryption computation b = a0

(mod 2) can be expressed as

b = [c0f0−
k−1
∑

i=1

cifk−i mod q] (mod 2) = [c0f0+
k−1
∑

i=1

ci(0− fk−i) mod q] (mod 2) .

If we further simplify the computations by postponing the modular reduction and

the modulo 2 reduction, the polynomial multiplication can be evaluated with only

12In [16], Paillier defines the “Composite Residuosity Class Problem” and gives compelling evi-
dence for its hardness.

83

one level of multiplications. Note that we can postpone the reductions, since Paillier

is additively homomorphic and that reductions modulo q (and later modulo 2) can

be simply realized as subtractions — an operation compatible with the homomor-

phic property of Paillier’s Scheme. Postponing the reductions allows us to evaluate

a significant portion of the decryption by homomorphically evaluating a sum of

products computation.

We should also point out that normally the first step in a converter is to encrypt

using the target scheme B. However, here si is part of the secret key and has to be

kept in encrypted form. The ci terms, on the other hand, are part of the ciphertext

and thus can be processed in plaintext form. Since Paillier’s scheme can evaluate a

scalar multiplication computations the where we can compute the encrypted scalar

product where one operand can be in plaintext form. Therefore, we can completely

avoid the initial encryption step of the converter and focus only on the decryption

procedure.

All operations involved in the decryption process are scalar multiplications and

additions, which can be evaluated homomorphically using Paillier’s scheme. Let

ScalarMul represent the scalar multiplication process of Paillier’s scheme. We assume

that the server is also given the Paillier encrypted private key f of the LTV FHE

computed during the key generation process of the converter, i.e. s = C.KeyGen

where

C.KeyGen = 〈Paillier.Enc(f0)),Paillier.Enc(0− fk−1),

Paillier.Enc(0− fk−2), . . . ,Paillier.Enc(0− f1)〉 .

84

The server realizes a secure converter from LTV FHE to Paillier HE as follows.

c′ = Convert(c, f) =
k−1
∑

i=0

ScalarMul(ci, si)

The big summation as well as the negations are computed homomorphically. Finally,

the message is recovered on the client side by first decrypting the ciphertext using

Paillier and then by completing the final reductions which were postponed earlier

during the LTV FHE decryption process as

m = [Paillier.Dec(c′) mod q] (mod 2) .

4.3.4 Performance

To evaluate the performance of the two secure converters outlined above we realized

the LTV FHE scheme, Trivium and the Paillier HE scheme with a reasonable choice

of parameters on an Intel Core i7 3770K running at 3.5 GHz with 8 GB RAM. The

codes were developed in the C language linked to the NTL and GMP libraries to gain

access to lower level arithmetic functions. We instantiated the LTV FHE scheme

with a modest choice of parameters with 512 dimensions and 256-bit coefficients.

Therefore, each ciphertext in the LTV scheme will require 128 KBytes. Trivium is

built with standard parameters as originally defined, and for Paillier’s scheme we use

a 2048-bit modulus. The most expensive operation is clearly the LTV evaluation

operation. In our implementation we found the cost of an LTV relinearization

operation takes about 524 msec.

The implementation results are summarized in Table 4.7. The use of converters

reduces communication cost dramatically. For client side compression with Trivium

85

Converter Time Time/H. Eval Ciphertext size Compression Rate
Trivium to LTV 223 msec 5.87 1 bit 217×
LTV to Paillier 990 msec 26 4096 bit 256×

Table 4.7: Cost of conversion, in ciphertext conversion time, rate of the conversion
time by the time needed for homomorphic AND evaluation with LTV, and gains in
ciphertext reduction rate.

and LTV, we achieve a factor 217 improvement in the ciphertext size! Homomorphic

decompression on the server takes about 223 msec only about 5.87 times more than

the time it takes to perform a homomorphic evaluation operation on the server

using LTV. Server side compression takes about 990 msec, which is about 26 times

as long as a single homomorphic evaluation using LTV. We gain, however, 256-fold

improvement in the ciphertext size.

86

Chapter 5

Conclusion

5.1 Summaries and Conclusions

In this dissertation, we explored varieties of approaches to practical homomorphic

encryption schemes. We set forth the criteria for a scheme to be practical and

proposed a number of ways to improve existing homomorphic encryption schemes.

Versatility is one of the major problems faced by partial HE schemes. It is usually

caused by the fact that partial HE schemes support only one type of operation.

To solve this problem, we proposed a special family of partial HE schemes and

discussed ways to convert between partial HE schemes that support different types

of operations. In this way, we can convert to corresponding schemes when certain

types of operations are required. This approach can extend the supported circuits

of partial HE schemes significantly.

Another problem faced by certain partial HE schemes is the small message size,

which can also be viewed as lacking of versatility. The ElGamal-type encryption

schemes and the BGN scheme are examples of this type of scheme. We applied CRT

to these schemes to replace one discrete logarithm problem in a large space by several

87

similar problems in a more tractable search space while retaining full security. This

approach helps extending the message space of these schemes significantly.

Existing FHE schemes face serious performance problems. To address the speed

problem, we implemented the Gentry-Halevi FHE scheme and the LTV FHE scheme

and achieved significant improvement in performance compare to previous works.

More specifically, our implementation of the Gentry-Halevi FHE scheme tuns about

174, 7.6 and 13.5 times faster than the original Gentry-Halevi code for encryp-

tion, decryption and recryption respectively. Our implementation of the LTV FHE

scheme achieved millisecond level Encrypt and Decrypt and the Relinearization takes

about 38 msecs for N = 512 and |q| = 256.

To reduce the large ciphertext size, scheme conversion was formalized to “com-

press” the ciphertext of FHE schemes. Given a scheme converter, we may transfer

data using block or stream ciphers with compact ciphertexts and then convert the

ciphertext to the homomorphic one for further evaluation and then convert the ci-

phertext back into a scheme with short ciphertexts for transmission. To formalize

this concept, we defined the secure converter, which allows an untrusted party to

efficiently convert a ciphertext of one scheme to a ciphertext of another scheme,

without affecting the data or gaining any significant information. In addition, we

introduced a construction and show that a secure converter exists whenever the

target scheme may homomorphically evaluate the decryption circuit of the initial

scheme. Moreover, we showed how to use converters to achieve bandwidth reduction

in outsourced computation applications of FHE.

88

5.2 Recommendation for Future Work

Further efforts can be made to further improve the HE schemes based on our works.

The implementation of the LTV FHE scheme can be further optimized. The current

implementation is a software implementation running on a single core. If GPUs or

some dedicated hardware is utilized, the speed could be further improved. The pa-

rameter selection and the optimization we proposed will also apply to these possible

implementations. In addition, as the running speed of the FHE schemes is increased

to a level that is close to be enough for practical applications, the actual speed for

real world applications using the FHE schemes becomes an interesting topic. Effi-

cient implementation of some real world algorithms other than the AES using the

LTV or other FHE schemes will be a valuable research topic.

Scheme conversion will lead to new interesting topics. The reduction of the band-

width requirement for FHE scheme will enable some new constructions that were

impractical with the bandwidth limitation. For instance, if the costly recryption

process for the FHE schemes is evaluated by the client or by some trusted third par-

ties, it can be simplified to decrypting the ciphertexts and encrypting the messages

again. However, this requires transferring the ciphertexts between parties for each

recryption. It is not practical due to the large ciphertext size of the FHE schemes.

However, with the reduction of the bandwidth requirement, such “interactive” FHE

construction becomes possible and is an interesting topic for research.

The other application of the scheme conversion will also lead to new possibilities.

Recall that we convert between an additive scheme and a multiplicative scheme for

limited times to build a DNF-formula evaluation scheme. It would be interesting

whether we could find a pair of additive and multiplicative schemes that supports

unlimited times of conversions. The existence of such schemes will imply a new

89

possible approach to construct fully homomorphic encryption schemes.

90

Bibliography

[1] E Ray, E Schultz Virtulization Security Proc. of the 5th Annual Workshop
on Cyber Security, 2009

[2] Oberheide, J. and Cooke, E. and Jahanian, F. Empirical exploitation of live
virtual machine migration Proc. of BlackHat DC convention, 2008

[3] Halderman, J.A. and Schoen, S.D. and Heninger, N. and Clarkson, W. and
Paul, W. and Calandrino, J.A. and Feldman, A.J. and Appelbaum, J. and
Felten, E.W. LestWe Remember: Cold Boot Attacks on Encryption Keys
Proc. 2008 USENIX Security Symposium

[4] Acıiçmez, O. and Koç, Ç. and Seifert, J.P. Predicting secret keys via branch
prediction Topics in Cryptology–CT-RSA 2007, Springer, 2007

[5] Yao, Andrew Chi-Chih, How to generate and exchange secrets, Foundations
of Computer Science, 1986., 27th Annual Symposium on. IEEE, 1986.

[6] Tomas Sander, Adam Young, Moti Yung, Non-Interactive CryptoComputing
For NC1. FOCS 1999: pp. 554–567.

[7] R.L. Rivest, L. Adleman, and M.L. Dertouzos. On data banks and privacy
homomorphisms. In Foundations of Secure Computation, 1978.

[8] E. Mykletun, J. Girao, and D. Westhoff. Public Key Based Cryptoschemes for
Data Concealment in Wireless Sensor Networks. In IEEE Int. Conference on
Communications ICC, Istanbul, Turkey, June 2006.

[9] Osman Ugus, Dirk Westhoff, Ralf Laue, Abdulhadi Shoufan, Sorin A. Huss,
Optimized Implementation of Elliptic Curve Based Additive Homomorphic
Encryption for Wireless Sensor Networks. WESS ’07, Salzburg, Austria, 2007.

[10] Aggelos Kiayias, Moti Yung, Tree-Homomorphic Encryption and Scalable Hi-
erarchical Secret-Ballot Elections. Financial Cryptography 2010: pp. 257–271.

[11] Julien Bringer, Hervé Chabanne, Malika Izabachéne, David Pointcheval,
Qiang Tang and Sébastien Zimmer, An Application of the Goldwasser-Micali
Cryptosystem to Biometric Authentication, Information Security and Privacy,
LNCS 4586, pp. 96–106, 2007.

91

[12] M. Kantarcioglu, Privacy-preserving distributed data mining and processing
on horizontally partitioned data, PhD. dissertation, Department of Computer
Science, Purdue University, 2005.

[13] S. Goldwasser, S. Micali, Probabilistic Encryption, J. Comp. Sys. Sci., 28, pp.
270–299, 1984.

[14] Josh Benaloh, Dense Probabilistic Encryption, SAC 94, pages 120–128, 1994.

[15] D. Naccache, J. Stern. A New Public Key Cryptosystem Based on Higher
Residues. Proceedings of the 5th ACM CCS, pages 59–66, 1998.

[16] P. Paillier, Public-key cryptosystems based on composite degree residuosity
classes, in Advances in Cryptology EUROCRYPT’99, LNCS 1592, pp. 223–
238, Springer, New York, NY, USA, 1999.

[17] I. Damg̊ard and M. Jurik. A Length-Flexible Threshold Cryptosystem with
Applications. ACISP ’03, pp. 350–356.

[18] T. Okamoto and S. Uchiyama. A New Public-Key Cryptosystem as Secure as
Factoring. Eurocrypt’ 08, LNCS 1403, pp. 308-318, 1998.

[19] D. Boneh, E. Goh, K. Nissim, Evaluating 2-DNF Formulas on Ciphertexts,
TCC ’05, LNCS 3378, pp. 325-341, 2005.

[20] C. Peikert and B. Waters. Lossy Trapdoor Functions and Their Applications.
STOC ’08, pp. 187–196.

[21] A. Kawachi, K. Tanaka, K. Xagawa. Multi-bit cryptosystems based on lattice
problems. PKC ’07, pp. 315–329.

[22] C.A. Melchor, G. Castagnos, and P. Gaborit. Lattice-based homomorphic en-
cryption of vector spaces. ISIT ’08, pp. 1858–1862.

[23] Carlos Aguilar Melchor and Philippe Gaborit, Javier Herranz, Additively Ho-
momorphic Encryption with d-Operand Multiplications. CRYPTO 2010, pp.
138–154, 2010.

[24] F. Armknecht and A.-R. Sadeghi. A new approach for algebraically homomor-
phic encryption. Eprint 2008/422.

[25] C. Gentry, Fully homomorphic encryption using ideal lattices, Symposium on
the Theory of Computing (STOC), 2009, pp. 169-178.

[26] Van Dijk, Marten, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan.
Fully homomorphic encryption over the integers. Advances in Cryptology EU-
ROCRYPT 2010 (2010): 24-4

92

[27] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. Fully homomor-
phic encryption without bootstrapping. Innovations in Theoretical Computer
Science, ITCS (2012): 309-325.

[28] Adriana Lopez-Alt, Eran Tromer, and Vinod Vaikuntanathan. On-the-fly mul-
tiparty computation on the cloud via multikey fully homomorphic encryption.
In Proceedings of the 44th symposium on Theory of Computing, pp. 1219-
1234. ACM, 2012.

[29] Craig Gentry and Shai Halevi, “Implementing Gentry’s fully-homomorphic
encryption scheme,” Advances in Cryptology–EUROCRYPT 2011, pp. 129–
148, 2011.

[30] Craig Gentry, Shai Halevi, and Nigel Smart. Homomorphic evaluation of the
AES circuit. Advances in Cryptology – CRYPTO 2012 (2012): 850-8

[31] Yin Hu, William J. Martin and Berk Sunar. Enhanced Flexibility for Homo-
morphic Encryption Schemes via CRT. Industrial Track of ACNS 2012, 2012.

[32] Wei Wang, Yin Hu, Lianmu Chen, Xinming Huang and Berk Sunar. Accel-
erating Fully Homomorphic Encryption on GPUs. Proceeding of 2012 IEEE
HPEC, 2012.

[33] Naehrig, Michael, Kristin Lauter, and Vinod Vaikuntanathan. Can homomor-
phic encryption be practical?. In proceedings of the 3rd ACM workshop on
Cloud computing security workshop. ACM, 2011.

[34] Brakerski, Zvika, and Vinod Vaikuntanathan. Efficient fully homomorphic en-
cryption from (standard) LWE. Foundations of Computer Science (FOCS),
2011 IEEE 52nd Annual Symposium on. IEEE, 2011.

[35] Gentry, Craig, and Shai Halevi. Fully homomorphic encryption without
squashing using depth-3 arithmetic circuits. Foundations of Computer Science
(FOCS), 2011 IEEE 52nd Annual Symposium on. IEEE, 2011.

[36] P. Paillier, Trapdooring discrete logarithms on elliptic curves over rings, ASI-
ACRYPT 2000, LNCS 1976, pp. 573–584. 2000.

[37] Craig Gentry, Shai Halevi, and Nigel Smart. Fully homomorphic encryption
with polylog overhead. Manuscript, 2011.

[38] Nigel P. Smart and Frederik Vercauteren. Fully homomorphic SIMD opera-
tions. Manuscript at http://eprint.iacr.org/2011/133, 2011.

[39] Jeffrey Hoffstein, Jill Pipher, and Joseph Silverman. NTRU: A ring-based
public key cryptosystem. Algorithmic number theory (1998): 267-288.

93

[40] Damien Stehle and Ron Steinfeld. Making NTRU as secure as worst-case prob-
lems over ideal lattices. Advances in CryptologyCEUROCRYPT 2011 (2011):
27-4

[41] Wei Wang, Yin Hu, Lianmu Chen, Xinming Huang and Berk Sunar, Accel-
erating Fully Homomorphic Encryption on GPUs. Proceeding of 2012 IEEE
HPEC, 2012.

[42] T. ElGamal. A public-key cryptosystem and a signature scheme based on
discrete logarithms. IEEE Transactions on Information Theory, IT- 31(4):469–
472, 1985.

[43] Crypto++ Library 5.6.1, http://www.cryptopp.com/

[44] Frederiksen, T.K., A Practical Implementation of Regev’s LWE-based Cryp-
tosystem, 2010.

[45] MPIR 2.4.0, http://www.mpir.org/

[46] Arjen K. Lenstra, Eric R. Verheul, Selecting Cryptographic Key Sizes. Vol 14,
No 4, Journal of cryptology, Springer, 2001. pp. 255–293.

[47] Victor S. Miller, The Weil Pairing, and Its Efficient Calculation, Journal of
Cryptology 17(4):235-261, Springer, 2004

[48] Menezes, A.J. and Van Oorschot, P.C. and Vanstone, S.A., Handbook of ap-
plied cryptography, CRC Press, 2005.

[49] E. Fujisaki and T. Okamoto. Secure integration of asymmetric and symmet-
ric encryption schemes. In: Advances in Cryptology - CRYPTO ?9, LNCS
vol. 1666, pp. 537?54, Springer, 1999.

[50] C. Gentry, A Fully Homomorphic Encryption Scheme. Ph.D. thesis, Depart-
ment of Computer Science, Stanford University, 2009.

[51] A. Schönhage and V. Strassen, Schnelle multiplikation grosser zahlen. Com-
puting, vol. 7, no. 3, pp. 281–292, 1971.

[52] N. Emmart and C. Weems, High precision integer multiplication with a gpu
using strassen’s algorithm with multiple fft sizes. In Parallel Processing Let-
ters, vol. 21, no. 3, p. 359, 2011.

[53] J. Solinas, Generalized mersenne numbers. Technical Reports, 1999.

[54] D. Bailey, FFTs in external of hierarchical memory. In Proceedings of the 1989
ACM/IEEE conference on Supercomputing, ACM, 1989, pp. 234–242.

94

[55] C. Mclvor, M. McLoone, and J. McCanny, Fast montgomery modular multi-
plication and RSA cryptographic processor architectures. In Signals, Systems
and Computers, 2003. Conference Record of the Thirty-Seventh Asilomar Con-
ference on, vol. 1. IEEE, 2003, pp. 379–384.

[56] A. Daly and W. Marnane, Efficient architectures for implementing mont-
gomery modular multiplication and RSA modular exponentiation on recon-
figurable logic. In Proceedings of the 2002 ACM/SIGDA tenth international
symposium on Field-programmable gate arrays. ACM, 2002, pp. 40–49.

[57] P. Giorgi, T. Izard, A. Tisserand et al., Comparison of modular arithmetic al-
gorithms on gpus. ParCo’09: International Conference on Parallel Computing.
2009.

[58] P. Montgomery, Modular multiplication without trial division. In Mathematics
of computation, vol. 44, no. 170, pp. 519–521, 1985.

[59] P. Barrett, Implementing the rivest shamir and adleman public key encryption
algorithm on a standard digital signal processor. In Advances in Cryptology
CRYPTO’86. pp. 311–323. Springer, 1987.

[60] NTL: A Library for doing Number Theory, http://www.shoup.net/ntl

[61] GMP: The GNU Multiple Precision Arithmetic Library, http://gmplib.org

[62] Nicolas Gama and Phong Nguyen. Predicting lattice reduction. Advances in
Cryptology-EUROCRYPT 2008 (2008): 31-5

[63] Richard Lindner and Chris Peikert. Better key sizes (and attacks) for LWE-
based encryption. Topics in Cryptology CT-RSA 2011 (2011): 319-339

[64] Jeffrey Hoffstein, Joseph H. Silverman, and William Whyte. Estimated break-
ing times for NTRU lattices. In version 2, NTRU Cryptosystems (2003) http:/
/www.ntru.com/cryptolab/tech notes.html, 1999.

[65] Schnorr, Claus-Peter, and Martin Euchner. Lattice basis reduction: Improved
practical algorithms and solving subset sum problems. Mathematical program-
ming 66, no. 1 (1994): 181-199.

[66] Chen, Yuanmi, and Phong Q. Nguyen. BKZ 2.0: better lattice security es-
timates. In Advances in CryptologyCASIACRYPT 2011, pp. 1-20. Springer
Berlin Heidelberg, 201

[67] Canright, David. A very compact S-box for AES. Cryptographic Hardware
and Embedded Systems-CHES 2005 (2005): 441-45

95

[68] Bellare, Mihir, Anand Desai, David Pointcheval, and Phillip Rogaway. Rela-
tions among notions of security for public-key encryption schemes. In Advances
in Cryptology CRYPTO’98, pp. 26-45. Springer Berlin/Heidelberg, 1998.

[69] Jean-Philippe Aumasson, Itai Dinur, Willi Meier, and Adi Shamir. Cube
Testers and Key Recovery Attacks On Reduced-Round MD6 and Trivium
Fast Software Encryption - FSE 2009, 1–22.

[70] De Cannière, Christophe. Trivium: A stream cipher construction inspired by
block cipher design principles. Information Security (2006): 171-186.

96

