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Abstract

A decline in both pollinator and floral biodiversity has motivated conservation

initiatives such as the Beecology Project to collect and analyze ecological data in hopes of

sustaining native bumblebee and plant species populations. After incorporating native

plant and Bombus subgenera classifications, we used clustering and visualization

techniques to uncover patterns within our local bee-flower network. Our experiments

showed significant variation in the clusters that occurred, with both flower shape and bee

species appearing to play a role in many clusters.
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Chapter 1: Introduction

Pollinators are a crucial component in many co-dependent biological networks and
contribute greatly to global biodiversity. Approximately 80% of wild plant species (Potts,
2010) and 75% of cultivated plant species (Thomann, 2013) are dependent on insect
pollination as means for sustainability and survival. Pollinators also contribute to higher
trophic levels in ecosystems as many species are dependent on plant products for food (e.g.,
seeds and fruits), and nesting material. Unfortunately, in the past decade pollinator decline
has become an increasingly prevalent issue, one of chief importance in environmental
conservation due to the important roles pollinators play. Research has indicated that
human-made drivers such as agrochemicals, climate change, and habitat destruction have
directly contributed to this downward trend (Potts, 2010).

One of the insect genera most important for pollination in New England is Bombus,
known colloquially as the bumblebee. Close to fifty bumblebee species are native to the
North American continent, with twelve generally found in New England. When comparing
current and historic data in the New England area, it is evident that the populations of
many bumblebee species as well as the plants they are responsible for pollinating have
declined both in numbers and geographic spread (Colla, 2008). Although it is obvious that
the number of pollinators plays an important role, the diversity of the pollinator species is
equally as important in maintaining balance in an ecosystem.

In response to pollinator decline (both in population and diversity), the Beecology
Project was established to inform citizen scientists of this issue as well as encourage them
to record their own observations of bee-flower interactions. This citizen-collected data, as
well as historic data, is stored in the Beecology database for use in analysis of the
bee-flower interaction network. Additionally, the Beecology Project works alongside the
Bio-CS Bridge, an NSF-funded project which is developing an educational curriculum to
engage students in using computational thinking and tools to analyze biological data.

In an effort to discover patterns in at-risk bumblebee pollinator species, we
performed exploratory analysis of the bee-flower interaction network using the real world
data collected in the Beecology database. The difference in networks between bees and
native versus non-native plant species was identified as a major area of interest. This
prompted us to add new ecological classifications to the database to further classify floral
and Bombus attributes. With the addition of these new classifications, we used hierarchical
clustering, visual, and manual analysis techniques to explore the data and investigate the
interaction network. Our analysis indicated that flower shape plays a large role in
bee-flower preference, and the distribution of Bombus species (and thus tongue lengths)
throughout the clusters played far less important of a role. We also determined that bees do
not seem to have a preference for either native or non-native plant species, but do show an
affinity for plants of specific families.
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Chapter 2: Background

2.1 Ecological Components

Codependent relationships between organisms are an essential part of sustaining
life and are present throughout the global ecosystem. In providing recommendations,
learning tools, and spreading awareness about the pollinator decline, it is essential that we
understand the biology behind the bee-flower interaction.

2.1.1 Pollinators

Many plant species rely on animals like beetles, bees, and butterflies for
reproduction. When an animal visits a flower in search of food (nectar and pollen), it can
deposit pollen from a previously visited plant of the same species onto the female
reproductive part, the stigma, of the flower. This pollination signals to the plant to begin
reproducing, usually via a fruit or seed (About Pollinators, n.d.). While it is possible for
plants to self-pollinate using natural forces such as water and wind to carry pollen from the
stamen (the male part), to the stigma, the United States Department of Agriculture
estimates that three-fourths of the global flowering plant population and approximately
thirty-five percent of the world’s food crops rely on pollinators as carriers to trigger
reproduction (USDA, n.d.). Currently, the most well-documented and researched pollinator
species are bees, which are responsible for pollinating sixty to seventy percent of the
world’s total flowering species (Brauman, 2018).

The role pollinators play in sustaining an ecosystem is also dependent on their
physical, and species-specific characteristics. Both the functional diversity, which is the
range and variety of functions organisms have that contribute to an ecosystem, and species
diversity amongst pollinators is crucial in order to promote pollination and modulate how
insects in a community deliver pollen. Pollinator attributes such as tongue length, flower
preference, and sensory/cognitive abilities all contribute to the functional diversity of an
ecosystem (Kremen, 2007).  A 2013 study examined the effect of bee diversity on plant
reproductive success. In the experiment, they established 55 self-contained mesocosms,
each with a different combination and number of up to 5 bee and 16 plant species. An
analysis of the seed production in each cage confirmed that both species richness and
diversity resulted in a positive yield on seed production. Functional complementarity
between the different species was apparent as the cages with more pollinator diversity had
more visits from different species and had higher yields, as shown in Figure 1 (Frund,
2013).
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Figure 1: Functional Complementarity among the bees and plant species visited. When multiple bee
species were present, they made more visits and had more diverse plant interactions (Frund, 2013).

Increased species diversity implies a more diverse set of functional diversity which
can, in turn, cater to a wider variety of other life forms. Coevolution, how different species
influence each other’s evolution through natural selection (Rafferty, 2020), results in a
biodiverse ecosystem that's very interdependent. Because so many species have coevolved
to rely on each other for food, germination, and other functions, the reduction of
biodiversity of one species can result in the reduction of biodiversity of another. For
example, the loss of a long-tongued pollinator species in an otherwise self-sustaining
ecosystem could lead to insufficient pollination of plants with deeper or less accessible
stigmas. Over time, this could lead to the endangerment or extinction of said plant species,
or be cause for the evolution of those plants to become more accessible for the present
pollinators. With a more diverse pollinator population, an ecosystem can sustain a more
biodiverse plant population as well.

2.1.2 Pollinator Decline

Despite the substantial role pollinators play in the global ecosystem, the population,
geographic spread, and diversity among the different species has declined (Colla, 2008).
While domesticated bees (i.e., honey bees, non-native) have been at the forefront of
pollinator-flower interaction research and conservation efforts (Penn, 2019), other native
species such as the variety of different bumblebees are also seeing a decrease in diversity, a
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factor that can in turn also lead to a decrease in population. While honey bees contribute
largely to the pollination of different crops and hold a larger economic importance as
compared to their non-honey producing counterparts, they are not as important for
sustaining native ecosystems. After analysis of pre- and post-1980s pollinator data,
Biesmeijer and colleagues found that there had been a 30% decrease in the number of
different bee species in both Britain and the Netherlands. This was consistent with their
findings of decreased population size of the recorded bee species (Biesmeijer, 2006).

The decline in species richness and functional diversity has been attributed to
several human-influenced factors that often work in tandem. Land use that causes habitat
destruction and degradation is one of the main drivers for bee pollinator decline. As land
becomes increasingly urbanized, the resources for survival and spatial availability for a
colony decreases. Not only does urbanization destroy the natural resources for the
pollinators, but also introduces new obstacles such as pesticides and potentially dangerous
alien species, both animal and plant (Potts, 2010). Climate change is also a driving factor in
the destruction of natural ecosystems and has harmful effects on wild bee populations. As
pollinator species decline in both population and diversity, so too will the biodiversity of
the plants that rely on pollinators. This decline can be substantially detrimental to both
natural ecosystems and those in which humans are directly involved such as agriculture
where pollinators contribute more than 24 billion dollars to the United States agricultural
economy (National Archives, 2014).

2.1.3 Bombus

In New England alone, there have been 401 wild bee species reported across 6
different families; Andrenidae, Apidae, Colletidae, Halictidae, Megachilidae, and Melittidae.
Bombus, the bumblebee, is 1 of 14 different genera of the Apidae family (Dibble, 2018). The
Bombus genus includes 250 species found around the globe, 21 of which are present in the
United States. Bombus species are unique in that they have the capability to thermoregulate
and heat themselves to the minimum temperature of flight, 30℃, which allows them to be
active from spring to fall. Unlike honey bees, bumblebees are able to forage under harsher
conditions with their thermoregulatory ability which makes them an extremely important
pollinator. While each subspecies of Bombus has unique characteristics and abilities, the
variation in tongue length strongly influences the bee’s flower preferences among all the
species, as the ability to maximize nectar intake increases when the flower depth is the
same length as the tongue (Colla, 2011). It is also important to note that although tongue
length determines the types of flowers that a bee can feed from, bees with the same length
tongue can still have unique floral preferences. Figure 2 depicts a guide chart of several
Massachusetts natives according to abdomen color and tongue length.
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Figure 2: Bumblebee species in Massachusetts (https://beecology.wpi.edu).

In New England, the most common bumblebee is Bombus impatiens (B. impatiens),
which can also be found all along the east coast. B. impatiens is a generalist both in terms of
its food choices and habitation. It has a medium length tongue and a shaggy coat, ideal for
holding onto pollen (Species Bombus, n.d.). While there is, comparatively, an abundance of
B. impatiens, other New England natives including B. affinis, B. terricola, and B. fervidus, are
in decline or at risk for extinction. In 2017 the U.S. Fish and Wildlife Service listed B. affinis
as critically endangered, and later B. terricola and B. fervidus were recognized as
endangered or declining (Dibble, 2018). The eleven Bombus species observed in our project
belong to five different subgenera: bombus, pryobombus, cullumanobombus,
subterraneobombus, and thoracobombus, which are shown in relation to each other on a
Bombus phylogenetic tree in Figure 3.
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Figure 3: Phylogenetic tree of Bombus subgenera (simplified from 38 to 15 subgenera) and
relevant Bombus species based on genetic similarity, modified from (Williams, 2000). Also

included is a color key indicating tongue length.

2.1.4 New England Flower Biodiversity

New England is rich in plant biodiversity as the soil type, elevation, climate, and
pollinator availability vary around the region. Plant diversity is essential in maintaining the
health of an entire ecosystem as plants rarely occur in isolation and are often sensitive to
changes in their environment. Species can be classified as either Native or Non-native in
relation to where they are found. Native Species are historically indigenous to the specific
area or ecosystem, whereas non-native species are introduced from another ecosystem
(USDA, n.d.). While not all non-native plant species detrimentally impact native ecosystems,
the introduction of a non-native plant species or the loss of a single native plant has the
potential to disrupt other vegetation or animal life that it supports. A 2013 study by the
USDA Forest Service found that two-thirds of all their monitored forest plots in the
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Northeast contained at least 1 non-native species (USDA Forest Service. 2013). Today, 22%
of New England’s native plants are deemed rare or historic, as human intervention has
driven many plant populations to cluster in the remnants of their former regional range.
Among these declining plant species, a disproportionately high number requires insect
pollination for reproduction (Farnsworth, 2015).

Bombus are some of the primary pollinators in the Northeast region. A variety of
floral attributes such as flower shape and color contribute to the preferences of different
Bombus species. Summarized in Figure 4 are some physical characteristics of several major
plant families found in Massachusetts. Although a plant family is composed of multiple
species each with their own unique physical traits, often flowers within the same family
will share similar general characteristics.

Figure 4: A variety of Massachusetts native plant species (plant family in perens) illustrating
the differences in flower shape. Graphic created using images from ([vikisuzan, 2007],

[McCranie, 2009],[pixabay],[Gould, 2005],[McGrady, 2018]).

While bumblebees are generalists in nature and many flowers fit the different needs
of various tongue-lengthed bees (due to the variety in flower shapes), observations have
shown that Bombus are especially drawn to flowers with a blue, purple, pink, or yellow
color (Attracting Beneficial Bees, 2019). However, it is important to note that a bee’s ability
to see UV light (and thus colors/patterns not visible to the human eye) certainly plays a
significant role in flower choice(Chittka, 1997). Additionally, Bombus tends to prefer
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perennial plants as opposed to annuals, which other natives and honey bees prefer
(Salman, 2019). Perennials regrow each season and typically produce more nectar than
annuals, which live for one growing season (Dawson, 2011).

2.2 The Beecology Project

Established in 2016, the Beecology Project aims to educate a broad scope of
audiences about pollinator decline across New England, as well as to encourage people
across the region to collect and submit ecological data about native bee species to a central
bumblebee data repository. The project consists of several components including but not
limited to a mobile and web application for collecting and submitting pollinator data;
analysis, visualization, and simulation tools; and an education curriculum for high school
students (About the Beecology Project, n.d.). Although the project currently focuses on
bumblebees, they hope to expand their database to include other struggling pollinators
such as butterflies in the future. All of the software tools used for Beecology were
developed as part of the Bio-CS Bridge, a related project sponsored by the National Science
Foundation. The Bio-CS Bridge project is a team of university and high school-level biology
and computer science faculty and students aiming to develop a curriculum to engage and
encourage students to use computational tools to analyze biological data and use biology to
motivate learning computer science concepts (About Bio-CS Bridge, n.d.).

The data gathered in the Beecology project is stored in a postgres database. The data
comes primarily from observations made using the Beecology app, but also from historical
data dating back to the late 19th century, primarily from the last few decades, for a total of
close to 9,000 observations at the time of this writing. Each observation, or data point,
consists of the following attributes: time, year, date, and month observed; latitude,
longitude, and elevation of observation; the bee species, its behavior (nectar vs. pollen), its
gender, its tongue length, and the months in which it starts and stops being active. About
one-third of these data instances include data for the flower the bee was seen interacting
with, and all of these came from submission to the app from 2017 on. For these data
instances, the following flower characteristics were recorded as well: genus, species,
common name, primary shape, and primary color.
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2.3 Data Analysis

2.3.1 Exploratory Analysis

Analyzing the network of interactions between bees and flowers presents an
opportunity to discover underlying patterns in bees’ flower preference as well as to draw
conclusions regarding native versus non-native plant pollination. Exploratory analysis
differs from other forms of analysis in that it does not have a hypothesis to be proved or
rejected; rather, insight is gained as the analysis proceeds and many of the most interesting
questions which are answered through the analysis are not even known at the outset. This
does not mean, however, that guiding questions or goals do not exist — it just means that
the analysis is of an open-ended nature (Chatfield, 1986).

2.3.2 Clustering

Clustering, or cluster analysis, is the process of taking data instances and grouping
them based on similarity in characteristics. An example of a basic clustering, with each
cluster shaded differently, can be seen in Figure 5. Clustering can help reveal underlying
patterns existing in a dataset that are not immediately apparent from basic metrics or other
forms of analysis (Tan, 2019).

Figure 5: An example of clustered data instances (public domain).

A broad variety of algorithms exist for performing clustering. These algorithms can
generally be grouped based on several aspects, one of which is hierarchical versus
partitional. Partitional algorithms simply divide up the entire dataset into disjoint clusters.
Hierarchical clustering algorithms yield a varying number of nested clusters by proceeding
in a bottom-up way, where clusters are grouped into a bigger cluster, or in a top-down way,
where clusters are broken down into two or more subclusters. The bottom-up method of
hierarchical clustering is referred to as agglomerative clustering, which will be discussed
more in Section 2.3.4 (Tan, 2019).
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Another distinction between different types of clustering algorithms is exclusive,
overlapping, or fuzzy. In exclusive clustering, every data point belongs to exclusively one
cluster (hence the name). In overlapping clustering, a data point may belong to multiple
clusters. Fuzzy clustering replaces the idea of belonging or not belonging to a given cluster
with a weight that describes the extent to which a data point belongs to that cluster.
Clustering can also be complete or partial, the former meaning every data point belongs to
at least one cluster, with the latter meaning that not all data points are required to belong to
one (Tan, 2019).

Clustering algorithms can also be classified in terms of what underlying metrics are
being used to separate the data points into their clusters. There are many ways of doing so,
only a few of which are discussed here. In centroid-based or prototype-based clustering,
such as the k-means algorithm, data points are clustered based on their proximity or
resemblance to a given centroid, which can be viewed as the “representative” value for that
cluster. In conceptual clustering, data points are clustered based on specific shared
attributes that are known ahead of time. In connectivity-based clustering, such as
hierarchical clustering, the data points are clustered based on how close they are to one
another. In the case of a well-separated clustering, each data point is closer to every other
point in its cluster than it is to any other point in other clusters. Note that applying this type
of clustering requires separation, or distance, to be defined (Tan, 2019).

2.3.3 Distance and Similarity Metrics

Given that data used in clustering experiments is generally high-dimensional,
algorithms such as hierarchical clustering which make use of distances between data points
must have a precise mathematical definition for distance. The most commonly used
definition is Euclidean distance, which is the square root of the sum of the difference along
each dimension squared, as given by the following formula, where x and y are two data
points, n is the number of dimensions, i corresponds to a particular dimension, and xi and yi

being the magnitudes of the data points in the ith dimension:

Manhattan distance is an absolute sum of difference between the points in a
Cartesian grid, which ignores diagonals. Cosine similarity is a way of measuring a distance
by taking the cosine of the angle between the two data points, equal to the dot product of
the normalized vectors composing the two data points. In clusterings that do not rely on a
mathematical distance, such as conceptual clustering, similarity may be defined in a myriad
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of ways, such as the number of attributes the data points have in common, with certain
attributes perhaps weighted more highly than others in this determination (Tan, 2019).

2.3.4 Agglomerative Hierarchical Clustering

Agglomerative clustering is the bottom-up form of hierarchical clustering. At
initialization, each data instance forms its own cluster, known as a singleton. The two
closest clusters are then merged together, using the preferred distance metric (often
Euclidean). Then, the next two closest are merged, and this continues until there is only one
cluster, consisting of the entire dataset (Manning, 2008). The specific points during the
process at which clusters group together is often displayed via a dendrogram. Analysis can
be performed at any point along this dendrogram, by isolating the clusters that were in
existence at that point in the algorithm’s course. The key value of agglomerative clustering
is that, for a set of n data points, it allows for analysis on n different clusterings, some of
which may provide different insights from others. This is an advantage that many other
clustering algorithms, such as k-means, lack (Manning, 2008).

2.3.5 Data Preprocessing and Encoding

Generally, a dataset has a number of attributes, which will be clustered on. It is good
practice to ensure that all data points to be used in the clustering have defined values for
each attribute, with unknowns or blanks excluded. Additionally, depending on the
clustering experiment being run, some attributes may be excluded, either to focus analysis
on a few attributes, or to see the effect on the clustering when a specific attribute is
excluded. Some data points may be excluded as well, often because they are above or below
a threshold of interest. This can help eliminate outliers and lead to a more rigorous
clustering.

In the simplest cases of clustering, all data exists as numerical values in Cartesian
coordinates, where distances can be objectively and mathematically calculated using a
distance metric such as Euclidean or Manhattan. Clustering becomes more difficult when
dealing with data that is non-numeric or needs scaling. The need for scaling arises when
the range of the attributes in data differs. In a clustering where each attribute is intended to
have equal weight, the data values under each attribute should be normalized so that each
attribute has the same mean and standard deviation. Alternatively, in cases where the
distribution is relatively similar across all the attributes, it may suffice to use min-max
scaling. This approach takes the minimum value for the values under that attribute, sets it
to 0, sets the maximum value to 1, and scales all the other values in between accordingly
(Garcia, 2015).
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Occasionally, one might wish to weigh one attribute more heavily than others in the
clustering. This can be done by scaling that attribute to have a wider range. Alternatively,
attributes which are intended to be deemphasized in the clustering can be scaled to smaller
ranges, or if their impact is not desired at all, excluded from the clustering.

Any non-numeric data must be converted to a numeric form in order to be clustered.
For data that is ordinal (can be ordered or made to fit on a spectrum), it can be converted to
a range of properly-scaled numbers. For example, colors could be converted to a
wavelength or a gradient pixel value, and then scaled. Data without a natural ordering is
best hot-encoded: this means that every unique type of that attribute becomes its own
dimension, with each data point having a value of 1 for the dimension that describes its
own type and 0 for all the other related dimensions (Cerda, 2018). As an example of this, if
a United States customer datasheet listed the state each customer was in, a customer from
Montana would end up with a 1 in the dimension for Montana and a 0 in the other 49
dimensions, each of which correspond to one of the other 49 states. As can be seen from
this example, hot-encoding often massively increases the dimensionality of the data.

2.3.6 Data Dimensionality Reduction

Working with high-dimensional data is difficult both from a comprehension and a
visualization standpoint, so dimensionality reduction becomes necessary in order to
perform meaningful analysis. Many methods exist for clustering higher-dimensional data
and then reducing it to two or three dimensions, among them t-distributed stochastic
neighbor embedding (t-SNE), uniform manifold approximation and projection (UMAP),
multidimensional scaling (MDS), and spectral embedding (SE) for the purpose of
visualization. All of these algorithms rely on complex linear algebra, making use of various
tradeoffs to reduce so many dimensions, leading to various advantages and disadvantages.
t-SNE operates by assigning every pair of data points a similarity score, and then places
similar objects closely while avoiding placing dissimilar objects near each other, generally
making use of Euclidean distance (Shah, 2019). UMAP functions similarly to t-SNE, but with
some specific underlying assumptions which lead to it preserving more of the global
structure (Dorrity, 2020). MDS records a distance matrix for the high-dimensional structure
and attempts to preserve these distances as exactly as possible while transforming each
data point into a two- or three-dimensional space. This leads to very accurate spacing
between data points, but may fail to preserve global structure (Hout, 2012). SE makes use
of the set of the eigenvalues of a calculated similarity matrix across all the data points to
perform its reduction, and is also not ideal for preserving global structure (Bengio, 2016).

These dimensionality reduction techniques are often used in conjunction with other
clustering methods. For example, performing agglomerative clustering on a
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high-dimensional dataset and then using one of the dimensionality reduction techniques
allows for visualization of that original clustering, assuming that color, shape or some other
property is used to show which original cluster each data point belongs to. As each
technique has advantages and disadvantages, it is best to apply several to get a better
understanding of the clustering.

2.3.7 Evaluating Clusters

While clustering provides distinct groups of similar data, analysis of these clusters is
necessary in order to evaluate the resulting clusters and to discover any patterns or draw
meaningful conclusions about the data being interpreted. There are a variety of techniques
to analyze the results of clustering analyses, including manual investigation of the clusters’
contents, visualization, and quantitative analysis.

Manually examining the data points and summarizing the patterns in attributes
between clusters is the most straightforward way to discover patterns in the data, but is
also time-consuming and prone to human error. This can include calculating a variety of
metrics on numerical data: mean, median, mode, variance, range, as well as examination of
minima, maxima, outliers, and anything else that stands out about the data.

Visualization, generally requiring dimensionality reduction, is another powerful
method for evaluating clusters. This can take the form of simple scatter plots, but dozens of
visualization techniques can help lead to more insight, from violin plots to 3D displays to
dendrograms. Two features are important for visualizing clusters: first, that it is readily
apparent which cluster a data point belongs to. This means that if something is being
visualized other than the layout of the clusters (such as a scatterplot comparing clusters
with an attribute), color or some other property must be used to indicate which cluster
each data point belongs to. Second, it is important that the attributes of a data point are
either visible or easily accessible, as otherwise the amount of information that can be
gleaned from the visualization is minimal.

Finally, there are quantitative methods for evaluating clustering. These fall into two
categories: extrinsic and intrinsic. Extrinsic methods compare the clustering to a “ground
truth” (perhaps using known information that was left out of that particular clustering, or
to another clustering considered to be ideal), while intrinsic methods analyze the clustering
itself, based on how close points within a cluster are to each other, and how far from points
in other clusters they are. Especially in exploratory analysis, it is only through a
combination of investigation, visualization, and quantitative methods that meaningful
conclusions can be drawn from the cluster analysis.
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Chapter 3: Methodology

3.1 Biological Classifications

Early in our project, we consulted with Dr. Robert Gegear, the founder of the

Beecology Project, as well as other members of the Beecology team and found that
additional biological information was necessary to perform in-depth analysis of the
network. Classifying the floral attributes of native versus non-native, native ecoregion, and
plant family, along with categorizing Bombus subgenera, provided valuable information to
further the analysis of the bee-flower network and to add to the database.

3.1.1 Classifying Plant Native Status and Ecoregion

Prior to our project’s contributions, the Beecology database contained information
for each plant species entry such as the flower’s shape, main color, and bloom period. It did
not, however, have any information regarding the plant’s native ecoregion (the general
geographical region from which the species originates), nor did it identify whether or not a
particular species was a native to where it was sighted. To aid in both our exploratory
analysis and to provide useful biological information to the database, we classified each
plant species as either native or non-native and provided the species’ native egoregion.

Because we were mainly focused on the local bee-flower network interaction, the
scope of our project was specific to the U.S. state of Massachusetts and the plants were
classified as either native or non-native to MA specifically. It is important to note that plants
do not follow state borders; thus, any plant species that were found to be native to
bordering states (such as New Hampshire or Connecticut) were also classified as native to
MA.

After running a simple SQL script on the entire Beecology dataset to remove
duplicate floral entries, we generated a list of all the known plant species that had been
entered in the database. For each of the 259 unique plant species, we manually
cross-referenced verified botanical sources (primarily Go Botany: Native Plant Trust and
Lady Bird Johnson Native Plant Database) to classify them as either native or non-native
and to identify their native ecoregion. If the plant was not native to anywhere in the United
States, the native ecoregion was labeled as the main country(ies) or continent(s) of origin.
If the species was only native to the greater MA/ New England area, the native ecoregion
was classified as Northern-Appliacian-US. In other cases where there were several native
ecoregions, each was identified.
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3.1.2 Plant Family

Identifying each plant species’ scientific family was also an important contribution
both to our project’s analysis and the Beecology database. Although the database already
had both plant species and plant genus as a flower attribute, due to the very high number of
genuses represented (several hundred), we came to the consensus that adding a taxonomic
attribute another level higher would enable us to more easily manage all the data and find
patterns later on in our analysis. Using the same plant list as previously generated in our
native/ non-native classification, we manually referenced a variety of botanical sources to
classify each plant species’ plant family.

3.2 Data Description

The database table of bee-flower interactions we worked with consisted of 8687
rows, each corresponding to an observation. In this context, an observation refers to an
observation of a bumblebee. For data collected from 2017 on, using the Beecology app, the
vast majority involved the bee photographed interacting with a flower, which was then
submitted to the Beecology project (with accompanying data such as time and location, and
information about the flower where it could be determined) and became a row in the
Beecology database. The exact preprocessing we did before clustering is discussed later, but
our clustering experiments made use of only nine of the twenty-four columns existent in
the database. A description of each of the nine we worked with (month, elevation, bee
species, behavior, gender, tongue length, flower shape, flower native classification, and
flower family) is provided here. An example of the data can be seen in Figure 6.
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Figure 6: Sample rows from the dataset, displaying all attributes for 14 observations.

The month column consisted of integer values corresponding to the month of the
Gregorian calendar in which the observation was made. Because bumblebees are not active
in the winter, not all months were represented, with the values ranging from 4 (April) to 11
(November), and the vast majority being either 6 (June) or 7 (July).

The elevation column consisted of the elevation at which the observation was
recorded, measured in meters above sea level. Decimal accuracy was provided to 5 places;
however, in the vast majority of cases, only one nonzero value was provided past the
decimal point, meaning the true accuracy is to the nearest meter or decimeter. The vast
majority of observations were found at low elevations of less than 150 meters. (This was
especially true after preprocessing was done due to data being constrained to the
Massachusetts area, which will be discussed more later.)

The bee species column consisted of the bumblebee species involved in the
observation. There were ten different species: B. impatiens, B. borealis, B. ternarius, B.
griseocollis, B. bimaculatus, B. vagans, B. perplexus, B. fervidus, B. terricola, and B.
pensylvanicus. (An eleventh species, B. affinis, was present in the overall data but did not
occur in our dataset due to not having been found in the Massachusetts area recently.)

The behavior column consisted of either “nectar” or “pollen,” based on which of
these the bee in question was pursuing when observed. Gender was also a binary attribute,
labeled as either “male” or “female.”
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Tongue length was classified into “short,” “medium,” and “long,” and was entirely
determined by the bee species involved. Due to only some less-common species (such as B.
ternarius) having short tongues, medium and long were far more common.

Flower shape was categorized into five possible values, defined entirely by the
flower species: “Long Tube,” “Tube with Spur,” “Open Tube,” “Closed Tube,” and “Short/No
Tube,” of which “Tube with Spur” was uncommon, and the other four all well-represented.

Flower native classification also had binary values (“native” or “non-native”), with
similar numbers of each. Flower family referred to the scientific family name for that flower,
when it could be determined. The information in both of these columns came from work we
did, and is accordingly discussed further in the results.

3.3 Exploratory Analysis

In our search to uncover any naturally occurring patterns or themes in bee-flower
preference or in the interaction network itself, we utilized hierarchical clustering to group
the data instances according to their similarities. As our clustering analysis was
exploratory, we went through multiple iterations of different preprocessing criteria to
ensure that each attribute was weighted correctly in how we wanted to analyze the data.
Due to the nature of exploratory analysis, there was no specific hypothesis we sought to
address; rather, there were several questions which guided us in our work. For each
iteration of the analysis, we investigated the compositions of each cluster, performed
quantitative analyses and used other visualization techniques in order to draw conclusions
and find naturally occurring patterns in the data.

3.3.1 Guiding Questions

Our analysis was guided by several questions of interest. The one we invested the
most time into was, “Do Bombus prefer native or non-native flowers?” There were several
associated questions:“Which species tend to prefer non-native flowers the most?” “ Which
flower families were frequented the most in general by each bee species?” Another
important guiding question was, “Do Bombus species and genera influence flower choice?”
Perhaps the most important question was, “Do naturally occurring clusters exist in the
data?”

3.3.2 Hierarchical Clustering

With the exception of a few early experiments using k-means, all the clustering
experiments run during the project made use of hierarchical clustering, specifically the
bottom-up implementation of it known as agglomerative clustering. The
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AgglomerativeClustering class from the scikit-learn Python library was used to implement
the clusterer and then fit to our data using built-in methods.

3.3.2.1 Data Preprocessing

The bee-flower interaction data was downloaded directly from the Beecology
website and then imported into our Python projects as a CSV file, where it was converted
into a dataframe using the Pandas library. The starting dataframe for all the clustering
experiments had 8687 rows in it, each corresponding to an observation existing in the
Beecology database. Once all our additional data about the plants (family, native status, and
others mentioned above) was added, each row contained 24 columns, each for a different
attribute, although this would be narrowed down to the nine columns of interest discussed
in Section 3.2.

The first preprocessing action was to remove all data before the year 2017, as 2017
was the first year in which the Beecology app was deployed, allowing for submitting photos
of bumblebees on flowers. Before this, the vast majority of data points had no plant
information, making them irrelevant for our analysis. This reduced the dataset down to
3616 observations. Next, the data was whittled down to only observations from the
approximate area of the state of Massachusetts, by excluding everything not within the
latitude range of 41.2N and 42.9N and longitude range of 69.9W and 73.51W. The dataset
then consisted of 3501 observations — as most of the app userbase is in the general
Massachusetts region, this did not remove many data instances.

At this point, the dataframe was reduced to the columns of interest, which in the
majority of clustering experiments consisted of month, elevation, bee species, behavior,
gender, tongue length, flower shape, flower native classification, and flower family.
Descriptions of data in each of these columns was provided in Section 3.2.

Next, any rows with unknown or missing values were removed, and the dataframe
index reset. This left us with 2366 data points; this large reduction was primarily due to
observations where the associated flower had not been identified. However, for the
majority of the analysis, data points with B. impatiens as the bee species were also removed.
This is because it is by far the most abundant species in the area, and dominates all the
clustering experiments if left in. Consequently, the majority of analysis was done without it
(although a few experiments were run with it included, or with exclusively impatiens, a
dataset of 1346 observations). This left 1020 observations for the majority of the clustering
experiments.
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3.3.2.2 Encoding and Clustering

The dataframe now contained the exact data to be used in clustering. To work with
scikit-learn’s AgglomerativeCluster class to perform the hierarchical clustering, it had to be
scaled and encoded properly. Month was scaled using a MinMaxScaler class from
scikit-learn, setting the largest month value to 1, the smallest to 0, and everything else
appropriately scaled in between. Tongue length was put on a scale from 0 to 1, with short
corresponding to 0, medium to 0.5, and long to 1. Behavior, gender, and flower native
classification, all being binary attributes, each had one of their values encoded to 0 and the
other value to 1.

The remaining columns (elevation, species, flower shape, and flower family) had to
be one-hot encoded. In the case of elevation, this involved a prior step of binning the values
into quartiles, so that equal amounts ended up in each. For flower shape, ‘long tube’ and
‘tube with spur’ were encoded together, while the other three possible values (‘open tube’,
‘short/no tube’, ‘closed tube’) each received their own dimension. All this one-hot encoding
increased the dimensionality of each observation (i.e., number of attributes) to just under
70. The dataframe was now fully ready to be passed into the scikit-learn clusterer, which
could be accomplished with only a few lines of code.

3.3.3 Dendrograms

Because bottom-up hierarchical clustering starts with as many clusterings as there
are data points and then joins them together, it lends itself naturally to visualization via a
dendrogram. This was done partly through the use of a built-in scikit learn dendrogram
function, with additional code written to generate a correct linkage matrix from our
clustering and then plot the dendrogram using the Python library matplotlib.

3.3.4 Dimensionality Reduction

Due to high-dimensional data being difficult to visualize, dimensionality reduction
techniques were used. The four that we used were Multidimensional Scaling (MDS),
Spectral Embedding (SE), t-Distributed Stochastic Neighbor Embedding (t-SNE), and
Uniform Manifold Approximation and Projection (UMAP). The first three were
implemented using the appropriate classes for them from the scikit-learn library, while for
UMAP we made use of the umap Python library.
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3.3.5 Visualization Techniques

Other than the dendrogram, the first visualization technique used in every clustering
experiment was to display the results of the various dimensionality reductions, after they
had reduced the data points from the clustering to two dimensions. These points were then
displayed as a scatterplot using matplotlib plotting functions. The points were color coded
to indicate which cluster they had originally belonged to at a certain point in the
hierarchical clustering — generally when there were four clusters exactly, although we also
worked with three, five, and six clusters.

To visualize how the clusterings corresponded with the possible values for each
attribute, one of the dimensionality reduction color-coded graphs (usually t-SNE) was
plotted several times in a row, with the color-coding used to represent the different
attributes (instead of cluster membership). For example, one subplot would have each color
correspond to a bee species, one would have two colors for native vs. non-native, one would
have each color correspond to a flower shape, and so on. This provided a quick and intuitive
way to see how the attributes had been divided up across the clustering.

Additionally, more scatterplots were used to compare the breakdown between two
attributes; for example, putting elevation on one axis and bee species on the other. For
some of the clustering experiments, the centroid of each cluster was calculated, although
these values were not used in the analysis.

3.3.6 Manual Analysis

After the clustering was performed, a column was added back on to the original
(unencoded dataframe) with the numbers of the cluster each data point corresponded to.
(Again, this was usually done with four clusters, but also for some experiments either three,
five, or six.) This allowed the dataframe to then be separated into several different
dataframes, each one corresponding to the observations in a particular cluster. From there,
each cluster’s data was outputted to a CSV file, where it could be manually analyzed.

Manual analysis of each clustering was performed to summarize the contents of
each cluster and to aid discovery of any underlying patterns. A simple Excel script was run
to count the number of different attribute instances of each data instance in the cluster. The
data attributes summarized or counted are shown below in Table 1. The summary of each
cluster was then recorded on a spreadsheet for later interpretation of the findings. Other
metrics (such as average value for a numerical attribute) were also calculated using Excel
functions.
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General Observation
Attributes

Bombus Attributes Floral Attributes

Elevation: highest, lowest,
and cluster average

Distribution of Bombus
species

Number of native &
non-native plants

Location: longitude / latitude
Distribution of tongue

lengths
Distribution of flower

families

Distribution of months Distribution of gender
Distribution of  flower

shape

Table 1: Summary of attributes investigated in our analysis; including Native Classification,
the distribution of different months, bee species and flower families, the number of each

gender bee, the distribution of bee tongue length, the different flower shapes, as well as the
highest, lowest, and average elevation for each cluster.

3.3.7 Clustering Experiments

A sequence of experiments was designed, with the initial ones being used to tune
parameters and decide on the best approaches for data preprocessing, attribute encoding,
and clustering.

Once the general clustering script was fully set up and debugged, there were many
slight variations that were made for running different clustering experiments. Elevation
was treated in different ways: scaling it from 0 to 1, from 0 to 2, thresholding out higher
elevations, and then finally binning it into 4 quartiles and making each its own dimension.
Most experiments were run with B. impatiens excluded, yet a few were run either with it
included, or with just the impatiens data. Additional experiments were run with the bee
species attribute excluded entirely (i.e., all non-impatiens observations present, but the bee
species column removed from the dataframe).

Because of the nature of hierarchical clustering, for every clustering experiment
there is a choice of how many clusters to use for the analysis. The standard number used
was four clusters, yet for most of the experiments we also examined (through visualizations
and manual analysis) the clusterings involving three, five, and six clusters.

3.3.8 Clustering by Attribute

In addition to clustering by observation, experiments clustering the data by attribute
were designed.  The approach can be thought of as essentially clustering on the transpose
of the original dataframe depicted in Figure 6. Conceptually, this meant that each singleton
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cluster began as one of the 70 or so dimensions, with attributes that are more similar to
each other (based on the data) being combined into clusters sooner than others. Several
clustering experiments were run with clustering by attribute, varying how the attribute
encoding and (to a minor extent) which attributes were included The full dendrogram
resulting from each clustering by attribute experiment was displayed so that the horizontal
distances between attributes could be analyzed. All clustering by attribute experiments
included all of the encoded data, both impatiens and non-impatiens observations.

The first clustering by attribute experiment encoded all attributes exactly as the
clustering by observation experiments had.  Later experiments made small changes to the
encoding. The data that had been encoded binarily (gender, behavior, flower native
classification status) was instead one-hot encoded. This allowed the attributes to be broken
up further to aid in analysis; for example, instead of a singleton cluster simply labeled
‘native_classification_status,’ there were now two clusters, one labeled ‘native’ and the other
‘non-native.’ For one experiment, tongue length was changed from a scale into three
discrete attributes (short, medium, and long). One experiment was run with month divided
into the months themselves (June, July, etc.).
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Chapter 4: Results

4.1 Biological Contributions

In this section, we summarize our biological classifications to help further our

analysis and understanding of the bee-flower interaction network. Additionally, these
classifications were reviewed and added as attributes to the official Beecology database.

4.1.1 Native Plant and Ecoregion Classifications

At the time of our analysis, the Beecology database contained 259 unique flower
species entries for bee-flower interactions. We classified 113 native plant species, 136
non-native plant species, and found that 10 of the entries either did not provide enough
information, or could be considered as either native or non-native. Summarized in Table 2
are all 58 plant families (later classified) with the varying proportions of native to
non-native species. The overall native classification ratio of the plant species is very similar
to the rate of non-native observations themselves, as 52% of the recorded plant species are
non-native, and 51.4% of the observations in MA were with a non-native plant.

Plant Family Sp. Native Plant Family Sp. Native
Plant Family Sp. Native

Papaveraceae 1 0%

Acanthaceae 1 0% Crassulaceae 2 0% Phrymaceae 1 100%

Actaea 1 0% Cucurbitaceae 3 33% (1) Phytolaccaceae 1 100%

Amaryllidaceae 2 0% Elaeagnaceae 1 0% Plantaginaceae 9 44% (4)

Anacardiaceae 1 100% Ericaceae 8 75% (6) Polemoniaceae 1 0%

Apiaceae 2 50% (1) Fabaceae 19 32% (6) Polygonaceae 3 33% (1)

Apocynaceae 6 83% (5)
Grossulariacea

e
1 0% Pontederiaceae 1 100%

Aquifoliaceae 1 100% Hostacaeae 1 0% Primulaceae 1 100%

Asteraceae 69
57%
(39)

Hydrangeaceae 4 0% Ranunculaceae 10 50% (5)

Balsaminaceae 3 66% (2) Hypericaceae 2 0% Rhamnaceae 2 100%

Boraginaceae 4 0% Iridaceae 2 50% (1) Rosaceae 22 45% (10)

Brassicaceae 3 0% Lamiaceae 29 24% (7) Rubiaceae 2 100%
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Buxaceae 1 0% Liliaceae 1 100% Salicaceae 1 100%

Campanulaceae 2 50% (1) Lythraceae 2 50% (1) Saururaceae 1 100%

Caprifoliaceae 2 50% (1) Malvaceae 4 0% Saxifragaceae 1 100%

Caryophyllaceae 1 0% Myrsinaceae 1 0%
Scrophulariacea

e
1 0%

Clethraceae 1 100% Myrtaceae 1 0% Solanaceae 4 0%

Commelinaceae 1 0% Nymphaeaceae 1 100% Styracaceae 2 0%

Convolvulaceae 2 50% (1) Onagraceae 3 66% (2) Verbenaceae 2 50% (1)

Cornaceae 1 100% Orobanchaceae 1 100% Violaceae 1 0%

Table 2: Plant families in the Beecology database. Plant, Plant families (green), Sp, Number of
unique recorded species in each family (red), Native, Native composition based on the # of

recorded species in that family (blue).

In identifying each species’ native status, we also classified the native ecoregion for
later use, as the Beecology project hopes to expand their reach and native classification is
relative to the area of interest. Ecoregion of plant species that are not native to the United
States were labeled as their continent of origin; in some cases, the native country was
identified. Ecoregions of the United States were identified referencing the US
Environmental Protection Agency’s website, and are broken down into nine regions, as
shown in Figure 7 below. Massachusetts falls within the Northern Appalachian ecoregion.
The higher level of ecoregion specificity for the US, in comparison to non-US natives,
enabled us to add multiple ecoregion classifications to plants that are native to many parts
of the United States.
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Figure 7: Map of the contiguous United States with a key depicting the nine assigned
ecoregions (Environmental Protection Agency, 2020).

Our classifications showed the plants in the database have a variety of native
ecoregions, ranging across five continents (Europe, Asia, Africa, North America, and South
America), and inclusive of all nine U.S. ecoregions. 106 of the recorded species were
completely non-native to the U.S., and 19 species were native to other regions within the US
but not the northern appalachians. It is however, important to note that this flower data
may not represent the entire range of floral observations with bees or completely
encapsulate the bees’ preference, as many observations are taken near urbanized areas
where there might be a higher frequency of human-introduced, non-native plants. A fully
detailed list of all 259 floral entries and their classifications is included in appendix A.

4.1.2 Plant Family Classifications

The 259 plant species in the database belong to 58 different plant families, the
largest being Asteraceae which includes 69 recorded species. Interestingly, 28 (49%) of the
species were the only recorded member of their family in the database. Table 2 summarizes
the identified plant families and the number of observed species in each. Figure 8 is a
corresponding phylogenetic tree illustrating the degree of similarity between the different
plant families. Note that the number of observations corresponds to the number used in
our dataset after data preprocessing, not the number in the overall Beecology database.
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Figure 8: Phylogenetic tree relating the 15 identified plant families which have 5 or more recorded
observations in our database. The number in parentheses indicates the total number of observations

for that plant family in our analyzed dataset.

4.2 Analysis of the Bee-flower Network

4.2.1 Clustering By Observation

Through the use of hierarchical clustering, visualization techniques, and manual
analysis, we identified several patterns in the interaction network and confirmed several
predictions about Bombus behavior. Over the course of our project, we ran multiple
clustering experiments, as summarized below in Table 3, in order to fine-tune our
preprocessing criteria so that each attribute was properly weighted and scaled.
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Clustering
Experiment
#

1 2 3 4 5 6 7 8 9 10 11

Year ≥2013 ≥2017

Months 4-10, encoded using the MinMaxScaler from 0 to 2

Species* A-i X A-i i A X i A-i

Latitude /
Longitude

Not
limited

Limited to MA

Gender Binary Encoding

Tongue
Length

short: 0, medium: 0.5, long: 1

Flower Shape Inaccurately
grouped

Grouped into 4 types

Elevation Encoded using the MinMaxScaler from 0 to 2

Native
Classification

N/A Binary Encoding

Flower
Family

Hot Encoded Hot Encoded, removing families with less
than 5 observations

Table 3: Summary of our data preprocessing criteria used for each of our clustering
experiments. *Species criteria indicating which Bombus species were included as a labeled

feature in our clustering; A = All Bombus species, i = B. impatiens, A-i = All species excluding
impatiens, X = Only A-i observations included but excluding the labeled species attribute itself

from clustering.

Out of  the eleven clustering experiments we performed, we present here in-depth
analysis of the three experiments that produced the most interesting results:  Experiment
#11: All Bombus species except impatiens, with Bombus species included as a labeled
attribute in clustering; Experiment #9: All Bombus species except impatiens, but with the
Bombus species attribute not included in the clustering (i.e., the species column was
removed before performing clustering); and Experiment #10: clustering only B. impatiens
observations. We analyzed B. impatiens separately due to the high volume of recorded
observations with B. impatiens (1310) as compared to all other species (1020 total), to
avoid skewing any underlying patterns that might be overshadowed by the sheer amount of
impatiens data. In addition to the data summarized here, the complete analysis of each
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cluster is included in the supplementary materials. The subsections below present the
results and analysis of each of these three experiments.

4.2.1.1 All species except B. impatiens; Bombus Species Included as an Attribute (Clustering
Experiment #11)

The first clustering experiment we discuss here included species as an attribute,

with B. impatiens observations excluded but observations involving all other species
included. Flower families present in fewer than 5 observations were excluded. For this
clustering experiment, we analyzed four clusterings from the dendrogram, namely the
clusterings consisting of  three, four, five, and six clusters. Figure 9 shows the dendrogram
highlighting the clustering that consists of five clusters. The results of the scatter plot
visualizations for these five clusters are seen in Figures 10 and 11.

Figure 9: Dendrogram from Clustering Experiment #11. The clustering with five clusters is
highlighted with each of the clusters in a different color. Height of a branch in the dendrogram

is proportional to the distance between the clusters that the branch joins.
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Figure 10: Visualizations of the resulting clustering consisting of five clusters in Clustering
experiment #11, where each color corresponds to one of the hierarchical clusters.

Figure 11: Visualizations of  the resulting clustering with five clusters in Clustering experiment
#11 , comparing t-SNE plots using four different coloring conventions: by cluster,  by  bee

species, by native classification, and by flower shape, respectively.

Of the dimensionality reduction techniques, the 2D spacing generated by t-SNE
separated out the five clusters from the hierarchical clustering the most clearly, meaning it
was more in general agreement with the hierarchical clustering than any of the other
dimensionality reduction techniques (Figure 10). Thus, for comparison purposes, we next
color-coded the t-SNE scatter plot by various attributes, instead of coloring by cluster
(Figure 11). Flower shape showed a strong correspondence to the clusters (bottom right of
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Figure 11); we observed this correspondence in most of our subsequent findings. Neither
bee species (top right of Figure 11) nor native status (bottom left of Figure 11)  showed a
strong relationship to the clusters.

Manual analysis of these clusters agreed that most clusterings are dictated primarily
by flower shape, as the total number of each flower shape was generally concentrated
within one or two clusters (Table 4). Interestingly, the distribution of bee species
throughout the clusters was consistent with the expected flower shape; for example,
long-tongued bees dominated clusters that predominantly contained long tube and tube
with spur flower shapes.  In addition, while short-tongued bees were rare overall in the
database,  the highest number of short-tongued bees were grouped in the same clusters
that were primarily short/no tube shape. Bombus species distribution and flower shape for
each cluster is summarized in Table 4. While we did measure other attributes and aspects
of the clusters, such as the average elevation and distribution of observations throughout
different months, we did not uncover any other notable patterns and thus focused on the
most interesting results.

1 2 3

Native % 46% (190) 52% (161) 37% (113)

Flower Shape ---

open tube 19 303 8

short/no tube 373 1 14

long tube 19 2 189

tube w spur 1 36

closed tube 55

Species /
Tongue Length

Distributions

83% (40/48) of all
recorded short tongue
Bombus species

94% (289) long or medium
tongue Bombus species

79% (240) long tongue
Bombus species

1 2 3 4 5

Native % 46% (190) 11% (12) 75% (149) 9% (17) 87% (96)

Flower Shape

open tube 19 105 198 8

short/no tube 373 1 10 4

long tube 19 2 119 70
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tube w spur 1 36

closed tube 55

Species /
Tongue Length

Distributions

83% (40) of all
recorded short tongue
Bombus species

97% (104)
long or
medium
tongue
Bombus
species

97.5% (195)
long or
medium
tongue
Bombus
species

77% (148)
long tongue
Bombus
species

84% (92)
long tongue
Bombus
species

1 2 3 4 5 6

Native % 28% (45) 58% (145) 11% (12) 75% (149) 9% (17) 87% (96)

Flower Shape ---

open tube 19 105 198 8

short/no tube 159 214 1 19 4

long tube 19 2 119 70

tube w spur 1 36

closed tube 55

Species /
Tongue Length

Distributions

No short
tongue
Bombus
species
(0/159)

83% (40)
of all
recorded
short
tongue
Bombus
species

81% (87)
long tongue
Bombus
species

96.5% (193)
long or
medium
tongue
Bombus
species

76.5% (147)
long tongue
Bombus
species

84% (92)
long tongue
Bombus
species

Table 4: Summary of native percentage and the distribution of all flower families throughout
nested clusterings consisting of three, five and six clusters in  Clustering Experiment #11.

Additionally, many clusters in the five and six cluster analysis were heavily skewed
native or non-native, despite the overall ratio in the data being closer to 50-50. This is
particularly interesting in the six-cluster analysis, where a large number or the majority of a
given flower shape were distributed amongst two clusters, one of which is heavily skewed
native, the other skewed non-native, as summarized in Table 4. This evidence indicates that
while flower shape still plays a large role in cluster formation, native status is also a
determining factor.
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4.2.1.2 All species except B. impatiens; Bombus Species Not Included as an Attribute in
Clustering (Clustering Experiment #9)

The second clustering experiment discussed here included the same observations as
previously clustered in 4.2.1.1, but excluding Bombus species attribute weight in the
clusterings. This meant that the exact same observations were clustered on, but the bee
species column was removed from the data before performing the clustering. We
hypothesized that removing this attribute in the clusterings would uncover new patterns or
validate the existence of other trends discovered from clustering with species. For this
clustering experiment, we analyzed four clusterings from the dendrogram, namely the
clusterings consisting of  three, four, five, and six clusters. Figure 12 shows the dendrogram
highlighting the clustering that consists of five clusters. The results of the scatter plot
visualizations for these five clusters are seen in Figures 13 and 14.

Figure 12: Dendrogram from Clustering Experiment #9. The clustering with five clusters is
highlighted with each of the clusters in a different color. Height of a branch in the dendrogram

is proportional to the distance between the clusters that the branch joins.
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Figure 13: Visualizations of the resulting clustering consisting of five clusters in Clustering
experiment #9, where each color corresponds to one of the hierarchical clusters.

Figure 14: Visualizations of  the resulting clustering with five clusters in Clustering experiment
#9, comparing t-SNE plots using four different coloring conventions: by cluster,  by flower

shape, by native classification status, and by tongue length, respectively.

Like with other experiments, t-SNE was more in agreement with the five hierarchical
clusters than any of the other dimensionality reduction techniques (Figure 12). Flower
shape was somewhat predictive of cluster in these experiments, but interestingly, not to the
same extent as when bee species had also been present. Meanwhile, native status had more
of an effect than before. If bee species was added back to the dataframe and compared
afterwards, it did not play a huge role in the clustering, as the manual analysis showed that
species were relatively evenly distributed across each cluster. This is perhaps unsurprising,
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given that species did not play a huge role in clustering even when it was included directly,
as discussed in Section 4.2.1.1.  In Clustering Experiment # 11, tongue length was
somewhat correlated with cluster, but this association is not apparent here, likely because
flower shape is also playing less of a role in clustering.

Unlike the experiment discussed in Section 4.2.1.1., removing bee species from the
analysis yielded clusters that were grouped more by flower family, as opposed to flower
shape (Table 5). In the clusterings, there are 1-4 clusters, (respective to 3, 4, 5, and 6 final
clusters), that consist of only 1 plant family. In the clustering set of 6, the four lone plant
families are Astraceae, Fabaceae, Lamiaceae, and Ericeae, which are some of the most
frequently observed plant families in the dataset used for clustering (Figure 8).
Interestingly, we see that while Astraceae and Lamiaceae have a relatively even ratio of
native to non-native plants, the Fabaceae and Ericaceae plant families have a much more
skewed distribution. Since almost the entire, if not the whole, plant family is isolated to the
singular cluster, we can conclude that about 56% of the observations with Asteraceae or
Lamiaceae plants are non-native species, 91% of Fabaceae observations are non-native, and
that 99% of Ericaceae observations are native.

1 2 3

Native % 14% (57) 56% (110) 75% (338)

Plant
Families

Fabaceae (180) Lamiaceae (195) Asteraceae (152)

Boraginaceae (86) Apocynaceae (93)

Rosaceae (79) Ericaceae (80)

Other (73) Other (123)

1 2 3 4

Native % 14% (57) 44% (85) 44% (67) 92% (271)

Plant
Families

Fabaceae (180) Lamiaceae
(195)

Asteraceae
(152)

Apocynaceae (93)

Boraginaceae (86) Ericaceae (80)

Rosaceae (79) Balsaminaceae (35)

Other (73) Other (88)

1 2 3 4 5

Native % 9% (16) 17% (41) 44% (85) 44% (67) 92% (271)

Plant
Families

Fabaceae (180) Boraginaceae
(86)

Lamiaceae
(195)

Asteraceae
(152)

Apocynaceae (93)
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Rosaceae (79) Ericaceae (80)

Acanthaceae
(12)

Balsaminaceae (35)

Other (61) Other (88)

1 2 3 4 5 6

Native % 9% (16) 17% (41) 44% (85) 44% (67) 99% (79) 89% (192)

Fabaceae (180) Boraginaceae
(86)

Lamiaceae
(195)

Asteraceae
(152)

Ericaceae
(80)

Apocynaceae
(93)

Plant
Families

Rosaceae (79) Balsaminacea
e (35)

Acanthaceae
(12)

Plantaginacea
e (19)

Other (61) Other (69)

Table 5: Summary of native percentage and the distribution of all flower families throughout
nested clusterings consisting of three, four, five and six clusters in  Clustering Experiment#9.

Additionally, we find that the native percentage of Fabaceae in cluster 1 (of
Experiment #9 with five and six clusters) is consistent with our findings in cluster 5 of
clustering #11.6, where the overall native percent is also 9% and fabaceae, while not the
only plant family included, is the most prevalent (178 fabaceae / 192 total observations in
cluster 5).

4.2.1.3 Clustering only B. impatiens observations (Clustering Experiment #10)

The third clustering experiment discussed here included solely B. impatiens

observations. For this clustering experiment, we analyzed four clusterings from the
dendrogram, namely the clusterings consisting of three, four, five, and six clusters. Figure
15 shows the dendrogram highlighting the clustering that consists of four clusters. The
results of the scatter plot visualizations for these four clusters are seen in Figures 16 and
17.
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Figure 15: Dendrogram from Clustering Experiment #10. The clustering with four clusters is
highlighted with each of the clusters in a different color. Height of a branch in the dendrogram

is proportional to the distance between the clusters that the branch joins.

Figure 16: Visualizations of the resulting clustering consisting of four clusters in Clustering
experiment #10, where each color corresponds to one of the hierarchical clusters

42



Figure 17: Visualizations of  the resulting clustering with five clusters in Clustering experiment
#10, comparing t-SNE plots using four different coloring conventions: by cluster,  by tongue

length, by native classification status, and by flower shape, respectively.

As seen in Figure 17, t-SNE spaced the data points in a way that did the best job of
separating out the hierarchical clusters; however, not to the same extent as the clustering
experiments discussed in 4.2.1.1 and 4.2.1.2 did. Figure 17, meanwhile, shows that the
clustering was highly dependent on flower shape, as was often the case for clustering
experiments, though again not to the same extent as discussed in 4.2.1.1. Native status was
not as obvious a determining factor as flower shape, but did differ among the clusters. The
breakdowns of these clusters are summarized in Table 6.

1 2 3

Native % 58% (263) 28% (109) 63% (295)

Flower Shape ---

open tube 247 3

short/no tube 339 469

long tube 134 1

tube w spur 69

closed tube 48

1 2 3 4 5

Native % 65% 50% (102) 28% (109) 83% (208) 40% (87)
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(161)

Flower Shape

open tube 247 3

short/no tube 339 249 220

long tube 134 1

tube w spur 69

closed tube 48

1 2 3 4 5 6

Native % 65% (161) 90% (62) 30% (40) 28% (109) 83% (208) 40% (87)

Flower Shape ---

open tube 247 3

short/no tube 339 249 220

long tube 134 1

tube w spur 69

closed tube 48

Table 6:  Summary of native percentage and the distribution of all flower families throughout
nested clusterings consisting of three, five and six clusters in  Clustering Experiment #10.

As this clustering contains only B. impatiens observations, having 81% of the flower
shapes being short/no tube or open tube is consistent with the medium tongue-length of
the species. Additionally, the distribution of flower shape in this clustering is much less
dispersed as several shapes are confined almost entirely to one cluster. This can allow us to
make generalizations regarding the likelihood of native classification based on the shape.
For example, cluster #2 of the 6-cluster analysis is 90% native and contains exclusively tube
with spur, which is not found in any other clusters; thus, we can assume that most
observations with recorded flower shape of tube with spur belong to native plant species. It
is also worth noting that impatiens showed preferences for plant families that were also
popularly visited amongst other Bombus species (such as Asteraceae, Fabaceae, and
Rosaceae), and also favored non-native plants at similar rates as all the other bee species.

4.3 Clustering By Attribute

Clustering by attribute was an additional means of analyzing the collected data. This

involved clustering on the transpose of the dataframe, essentially treating each column

44



(attribute) as a data point to be clustered rather than each row (observation). This resulted
in each of the bottom-most (singleton) clusters in the hierarchical clustering consisting of
one of the encoded attributes, whether that be a plant family, bee species, or one of the
elevation ranges. This allowed for comparing how closely each attribute was clustered to
each other attribute.  For example, if two bee species visited highly similar types of flowers
at the same locations and times of year, the species names should be closely clustered
together.

Figure 18: Dendrogram of Clustering by Attribute Experiment
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Figure 19: Enlargement  of the clustered attributes, with dots next to flower families (red =
majority of species in the family are non-native, green = majority native, yellow =

approximately even split) and purple dashes next to the two native classification statuses.
Note that the colorings are determined by percentage of native species in the family, not

percentage of observations involving native species in that family.

The dendrogram for the final clustering by attribute experiment can be seen in
Figure 18. A closeup of some of the sections can be seen in Figure 19, where flower families
are marked based on how many of their species are native. The most significant result came
from comparisons between the bee species and flower families in this dendrogram with
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two phylogenetic trees, one for bees and one for flowers. (Figure 3 is contained in the
background section while Figure 8 is earlier in the results section.) No significant
correspondence was found with either, indicating that genetics may not play much of a role
in Bombus flower selection.

Two closely related bees often display entirely different flower preferences, as
exemplified by B. ternarius and B. bimaculatus, which are clustered far apart in the
dendrogram despite being closely related. Additionally, bees with similar preferences may
not be closely related, as seen in the case of B. perplexus and B. fervidus, which are clustered
relatively closely to one another despite not being closely related at all.

Also of note is that the plant families clustered near either native classification
status or non-native classification status did not necessarily consist of native or non-native
flowers, respectively, as seen by Malvaceae (a flower family with majority non-native
species) being clustered closely with the native status. The underlying reasons for this
likely require further analysis. One potential explanation is that several Malvaceae species
(such as linden trees) have been in the Northeast for centuries and may consequently be
more similar to native species than to recent invasive species. Another potential
explanation is that the Malvaceae species most visited by the bees happen to be the few
native species within the Malvaceae family.

The fact that the bee species are generally interspersed between various flower
families, rather than right next to other bee species, is of interest. The majority of flower
families clustered near a bee species were often observed with that bee: for example, B.
ternarius with the flower families Commelinaceae and Balsaminaceae, or B. griseocollis with
the flower family Solanaceae. The fact that most bee species are not clustered near other
species and instead by flowers they prefer provides more evidence for the idea that flower
preferences are not determined by how closely related two bees are, and that these
preferences can vary widely even between two closely related Bombus species.
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Chapter 5: Discussion and Conclusion

The analysis of citizen-collected observation data provided valuable insights to help
further the understanding of the local bee-flower interaction network. The two main
components of our MQP were classifying biological attributes and analyzing the Beecology
observations using hierarchical clustering, visualization, and manual analysis.

While many ecological attributes, such as the flower’s main color and bloom period
were already included in the database, our new classifications of floral native status, native
ecoregion, and plant family not only helped inform our analysis of the hierarchical
clustering, but also will serve as permanent fixtures in the Beecology database as new
means of detailing floral observation entries.  Additionally, these contributions to the
Beecology database make future analysis of native versus non-native networks outside
Massachusetts possible.

In comparing the analyses of the three clustering experiments, we can identify both
unique characteristics and similarities in cluster formation and preference patterns. Flower
shape played a pivotal role in the clustering, consistent with its known role in shaping
bumblebees’ flower preferences. Native vs. non-native classification status showed an
interesting distribution across a number of clusters, yet overall, none of the bee species
showed an obvious preference for native (or for non-native) flowers, perhaps indicating
that their preferences depend more on what is available to them. Bee species played
comparatively little role in the clustering experiments. Tongue length was somewhat
associated with cluster in some experiments (e.g., clustering experiment #11), but this
association was not observed consistently. The lack of a strong association could be
explained by the paucity of short-tongue length bees in the data, in addition to the
generalist nature of medium-tongued bees, which allows them to visit the vast majority of
flower species.

Manual analysis also demonstrated that clustering by flower shape was one of the
most apparent grouping patterns. Although the one clustering excluding the Bombus
species did not show the same pattern, many other clustering experiments (not included in
final analysis, detailed in supplementary materials) also showed this pattern in cluster
grouping. Additionally, it was very common for the closed tube flower shape to be clustered
with the  long tube / tube with spur flower shape. The distribution of Bombus species
throughout the clusters was remarkably consistent across all clustering experiments, with
the species being well distributed among clusters. This meant that tongue length was also
well-distributed, and not a very strong determining factor in the clustering. Flower shape,
meanwhile, was consistently a strong determining factor for clustering, with individual
shapes often being concentrated almost entirely in one cluster. Because of this distribution
of flower shape, some flower families were more highly represented in some clusters than
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others. Although the plant family distribution was not consistent across the three clustering
experiments, species in the Asteraceae, Lamiaceae, and Fabaceae families were the three
most visited overall.

Another particular area of interest was determining if there was a difference in
native and non-native plant observations. Our analysis of the clusters showed that the
percentage of native to non-native observations (51.5% to 48.5%) was quite close to the
ratio of unique recorded native to non-native species in the database (54.6% to 45.4%). The
ratio of native versus non-native observations was also remarkably consistent across
species, indicating that bees may not be explicitly preferring either native or non-native
species, but are simply visiting available plants in their area. This presents opportunities
for future study, as it may be that some non-native species are acting as substitutions for
native ones that have been crowded out. This might allow for repopulation of these native
species through concerted efforts, without having to worry about destabilizing the bee
species in their role as pollinators. Due to the biases in the dataset as discussed previously,
we cannot draw any firm conclusions about exact bee preferences; instead, our conclusions
consist solely of interesting correspondences. It is also of note that there were no large
unexpected trends in the data (e.g., one species overwhelmingly preferring non-native
plants).

Finally, the clustering by attribute experiments were most notable for what they
indicated not to be the case. Specifically, they indicated that closely related bees do not
necessarily have similar flower preferences, and that closely related flowers do not
necessarily attract similar bees. This, when taken in conjunction with the clustering by
observation experiments showing that species did not play a significant role in the
clustering, strongly suggests that the flower preference of bumblebees is dependent on
other factors, likely environmental, not underlying genetics.
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Appendix: Summary of Plant Classifications
Full table detailing our plant classifications including the flower species and flower

common name (both previously included in the database), as well as the flower family, the

flower’s native ecoregion, and the duration of the flower (our newly added classifications).

Flower Species Flower Common Name Flower Family Native Ecoregion(s) Duration

farinacea mealy sage Acanthaceae Mexico-US Southwest-US perennial

simplex chinese bugbane Actaea Asia perennial

tuberosum garlic chives Amaryllidaceae China perennial

app. daffodil Amaryllidaceae Europe perennial

glabra smooth sumac Anacardiaceae United-States perennial

carota queen anne's lace Apiaceae Europe biennial

aurea zizia Apiaceae United-States perennial

herbacea herbaceous periwinkle Apocynaceae Europe Asia perennial

tuberosa butterfly milkweed Apocynaceae
Northeast-US Southeast-US
Midwest-US Southwest-US perennial

syriaca common milkweed Apocynaceae

Northern-Appalachians-US
Southern-Appalachians-US
Coastal-Plains-US
Temperate-Plains-US perennial

androsaemifoliu
m spreading dogbane Apocynaceae United-States perennial

spp. milkweed Apocynaceae United-States perennial

incarnata swamp milkweed Apocynaceae US-Excluding-West-Coast perennial

opaca american holly Aquifoliaceae

Northern-Appalachians-US
Southern-Appalachians-US
Coastal-Plains-US perennial

chinensis chinese aster Asteraceae Asia annual

dentata leopard plant Asteraceae Asia perennial

novi belgii new york american aster Asteraceae East-Coast-US perennial

cyanus blue cornflower Asteraceae Europe annual

intybus chicory Asteraceae Europe perennial

stoebe spotted knapweed Asteraceae Europe perennial

officinale dandelion Asteraceae Europe perennial

cyanus cornflower Asteraceae Europe annual

serriola prickly lettuce Asteraceae Europe annual

arvense creeping thistle Asteraceae Europe Asia perennial

54



burdock Asteraceae Europe Asia perennial

tataricus tatarian aster Asteraceae Europe Asia perennial

vulgare common thistle Asteraceae Europe Asia annual

sphaerocephalus globe thistle Asteraceae Europe Asia perennial

radicata. cat's ear Asteraceae Europe Asia perennial

arvensis field sow thistle Asteraceae Europe Asia perennial

superbum shasta daisy Asteraceae Europe Asia perennial

spp. knapweed Asteraceae Europe Asia perennial

rotundifolia mexican sunflower Asteraceae Mexico Central-America annual

dahlia Asteraceae Mexico Central-America perennial

zinnia Asteraceae Mexico Central-America annual

bipinnatus garden cosmos Asteraceae Mexico Southwest-US annual

spp. goldenrod Asteraceae Northern-Appalachians-US perennial

spp. american aster Asteraceae Northern-Appalachians-US perennial

novae angliae northern blazing star Asteraceae Northern-Appalachians-US perennial

laciniata cutleaf coneflower Asteraceae Northern-Appalachians-US perennial

pumilum pasture thistle Asteraceae Northern-Appalachians-US perennial

divaricata white wood aster Asteraceae

Northern-Appalachians-US
Southern-Appalachians-US
Coastal-Plains-US perennial

patens late purple american aster Asteraceae

Northern-Appalachians-US
Southern-Appalachians-US
Coastal-Plains-US
Temperate-Plains-US perennial

decapetalus thin leaved sunflower Asteraceae

Northern-Appalachians-US
Southern-Appalachians-US
Coastal-Plains-US
Temperate-Plains-US perennial

purpureum purple joe pye weed Asteraceae

Northern-Appalachians-US
Southern-Appalachians-US
Coastal-Plains-US
Temperate-Plains-US perennial
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horridulum bull thistle Asteraceae

Northern-Appalachians-US
Southern-Appalachians-US
Coastal-Plains-US
Temperate-Plains-US annual

juncea early goldenrod Asteraceae

Northern-Appalachians-US
Southern-Appalachians-US
Coastal-Plains-US
Temperate-Plains-US perennial

laeve smooth american aster Asteraceae

Northern-Appalachians-US
Southern-Appalachians-US
Coastal-Plains-US
Temperate-Plains-US perennial

caesia axillary goldenrod Asteraceae

Northern-Appalachians-US
Southern-Appalachians-US
Coastal-Plains-US
Temperate-Plains-US perennial

racemosum small white american aster Asteraceae

Northern-Appalachians-US
Southern-Appalachians-US
Coastal-Plains-US
Temperate-Plains-US perennial

rugosa wrinkleleaved goldenrod Asteraceae

Northern-Appalachians-US
Southern-Appalachians-US
Coastal-Plains-US
Temperate-Plains-US perennial

dumosum bushy american aster Asteraceae

Northern-Appalachians-US
Southern-Appalachians-US
Coastal-Plains-US
Temperate-Plains-US perennial

flexicaulis zig zag goldenrod Asteraceae

Northern-Appalachians-US
Southern-Appalachians-US
Coastal-Plains-US
Temperate-Plains-US perennial

perfoliatum boneset thoroughwort Asteraceae

Northern-Appalachians-US
Southern-Appalachians-US
Coastal-Plains-US
Temperate-Plains-US
Southern-Plains-US
Northern-Plains-US perennial
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lateriflorum calico american aster Asteraceae

Northern-Appalachians-US
Southern-Appalachians-US
Coastal-Plains-US
Temperate-Plains-US
Southern-Plains-US
Northern-Plains-US perennial

maculatum spotted joe pye weed Asteraceae

Northern-Appalachians-US
Southern-Appalachians-US
Temperate-Plains-US perennial

macrophylla large leaved aster Asteraceae

Northern-Appalachians-US
Southern-Appalachians-US
Temperate-Plains-US
Northern-Plains-US perennial

discolor field thistle Asteraceae

Northern-Appalachians-US
Southern-Appalachians-US
Temperate-Plains-US
Northern-Plains-US biennial

hieraciifolius american burnweed Asteraceae

Northern-Appalachians-US
Southern-Appalachians-US
Temperate-Plains-US
Northern-Plains-US annual

puniceum
purple stemmed american
aster Asteraceae

Northern-Appalachians-US
Southern-Appalachians-US
Temperate-Plains-US
Northern-Plains-US perennial

umbellata tall white aster Asteraceae

Northern-Appalachians-US
Southern-Appalachians-US
Temperate-Plains-US
Northern-Plains-US perennial

canadensis canada goldenrod Asteraceae

Northern-Appalachians-US
Southern-Appalachians-US
Temperate-Plains-US
Southern-Plains-US
Northern-Plains-US perennial
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novae angliae
new england american
aster Asteraceae

Northern-Appalachians-US
Southern-Appalachians-US
Temperate-Plains-US
Southern-Plains-US
Northern-Plains-US perennial

lanceolatum lance leaved aster Asteraceae

Northern-Appalachians-US
Southern-Appalachians-US
Temperate-Plains-US
Southern-Plains-US
Northern-Plains-US perennial

pilosum awl american aster Asteraceae

Northern-Appalachians-US
Southern-Appalachians-US
Temperate-Plains-US
Southern-Plains-US
Northern-Plains-US perennial

nemoralis gray goldenrod Asteraceae

Northern-Appalachians-US
Southern-Appalachians-US
Temperate-Plains-US
Southern-Plains-US
Northern-Plains-US perennial

altissima tall goldenrod Asteraceae

Northern-Appalachians-US
Southern-Appalachians-US
Temperate-Plains-US
Southern-Plains-US
Northern-Plains-US
Coastal-Plains-US perennial

bicolor white goldenrod Asteraceae

Northern-Appalachians-US
Southern-Appalachians-US
Temperate-Plains-US
Southern-Plains-US
Northern-Plains-US
Coastal-Plains-US perennial

patula french marigold Asteraceae South-America annual

spicata blazing star Asteraceae Southeast-US perennial

purpurea eastern purple coneflower Asteraceae Southeast-US perennial

lanceolata lance leave tickseed Asteraceae Southeast-US perennial

lettermannii narrowleaf ironweed Asteraceae Southern-US perennial

spp. symphyotrichum Asteraceae United-States perennial

annuus daisy fleabane Asteraceae United-States annual
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spp. sneezeweed Asteraceae United-States annual

graminifolia grass leaved goldenrod Asteraceae US-Excluding-Southwest perennial

tripartita three lobed beggar ticks Asteraceae US-Excluding-West-Coast annual

hirta black eyed susan Asteraceae US-Excluding-West-Coast annual

annuus common sunflower Asteraceae Western-US annual

spp. daisy Asteraceae perennial

spp. thistle Asteraceae perennial

spp. tagetes Asteraceae

glandulifera ornamental jewelweed Balsaminaceae Asia annual

pallida pale jewelweed Balsaminaceae

Northern-Appalachians-US
Southern-Appalachians-US
Temperate-Plains-US
Southern-Plains-US
Northern-Plains-US annual

capensis touch me not Balsaminaceae

Northern-Appalachians-US
Southern-Appalachians-US
Temperate-Plains-US
Southern-Plains-US
Northern-Plains-US
Coastal-Plains-US annual

officinale common comfrey Boraginaceae Europe perennial

officinalis borage Boraginaceae Europe annual

saccharata bethlehem lungwort Boraginaceae Europe perennial

spp. comfrey Boraginaceae perennial

mustard family Brassicaceae Africa

vesicaria arugula Brassicaceae Europe annual

odoratum fragrant solomon's seal Brassicaceae Europe perennial

boxwood Buxaceae Europe Asia perennial

rapunculoides creeping bellflower Campanulaceae Europe perennial

siphilitica blue lobelia Campanulaceae

Northern-Appalachians-US
Southern-Appalachians-US
Temperate-Plains-US
Southern-Plains-US
Northern-Plains-US
Coastal-Plains-US perennial

spp. bellflower Campanulaceae United-States perennial

weigela Caprifoliaceae Asia perennial
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lonicera northern bush honeysuckle Caprifoliaceae

Northern-Appalachians-US
Southern-Appalachians-US
Temperate-Plains-US
Southern-Plains-US
Northern-Plains-US perennial

flos cuculi ragged robin lychnis Caryophyllaceae Europe perennial

alnifolia sweet pepperbush Clethracea
Northern-Appalachians-US
Coastal-Plains-US perennial

virginiana virginia spiderwort Commelinaceae Midatalantic-US Southeast-US perennial

purpurea common morning glory Convolvulaceae Mexico Central-America annual

sepium hedge false bindweed Convolvulaceae United-States perennial

amomum silky dogwood Cornaceae

Northern-Appalachians-US
Southern-Appalachians-US
Coastal-Plains-US perennial

arboroseum garden stonecrop Crassulaceae Asia perennial

spp. sedum autumn joy Crassulaceae perennial

sativus cucumber Cucurbitaceae Asia annual

pepo pumpkin Cucurbitaceae Mexico Central-America annual

lobata wild cucumber Cucurbitaceae United-States perennial

multiflora goumi Elaeganceae Asia perennial

vulgaris heather Ericaceae Europe perennial

floribunda mountain fetterbush Ericaceae Midatalantic-US Southeast-US perennial

latifolia mountain laurel Ericaceae

Northern-Appalachians-US
Southern-Appalachians-US
Coastal-Plains-US perennial

spp. azalea Ericaceae

Northern-Appalachians-US
Southern-Appalachians-US
Coastal-Plains-US perennial

azalea Ericaceae

Northern-Appalachians-US
Southern-Appalachians-US
Coastal-Plains-US perennial

fuscatum black highbush blueberry Ericaceae

Northern-Appalachians-US
Southern-Appalachians-US
Coastal-Plains-US
Temperate-Plains-US
Southern-Plains-US perennial
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corymbosum highbush blueberry Ericaceae

Northern-Appalachians-US
Southern-Appalachians-US
Coastal-Plains-US
Temperate-Plains-US
Southern-Plains-US perennial

spp rhododendron Ericaceae United-States perennial

vulgaris bush bean Fabaceae
Central-America
South-America annual

repens white clover Fabaceae Europe perennial

cracca cow vetch Fabaceae Europe Asia perennial

corniculatus bird's foot trefoil Fabaceae Europe Asia perennial

arborescens siberian pea shrub Fabaceae Europe Asia perennial

hybridum alsike clover Fabaceae Europe Asia perennial

officinalis yellow sweet clover Fabaceae Europe Asia annual

pratense red clover Fabaceae Europe Asia Africa perennial

varia purple crown vetch Fabaceae Europe Asia Africa perennial

australis blue wild indigo Fabaceae Midatlantic-US perennial

fasciculata partridge pea Fabaceae

Northern-Appalachians-US
Southern-Appalachians-US
Coastal-Plains-US
Temperate-Plains-US
Southern-Plains-US annual

perennis sundile lupine Fabaceae

Northern-Appalachians-US
Southern-Appalachians-US
Coastal-Plains-US
Temperate-Plains-US
Southern-Plains-US perennial

marilandicum maryland tick trefoil Fabaceae

Northern-Appalachians-US
Southern-Appalachians-US
Coastal-Plains-US
Temperate-Plains-US
Southern-Plains-US perennial

tinctoria yellow wild indigo Fabaceae

Northern-Appalachians-US
Southern-Appalachians-US
Temperate-Plains-US perennial

hebecarpa northern wild senna Fabaceae

Northern-Appalachians-US
Southern-Appalachians-US
Temperate-Plains-US
Southern-Plains-US perennial
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canadense showy tick trefoil Fabaceae

Northern-Appalachians-US
Southern-Appalachians-US
Temperate-Plains-US
Southern-Plains-US perennial

sativa alfalfa Fabaceae perennial

legume family Fabaceae annual

spp. indigo Fabaceae perennial

uva crispa european gooseberry Grossulariaceae Europe perennial

ventricosa blue plantain lily Hostacaeae China perennial

paniculata panicled hydrangea Hydrangeaceae Asia perennial

spp. hydrangea Hydrangeaceae Asia perennial

macrophylla mophead hydrangea Hydrangeaceae Asia perennial

petiolaris climbing hydrangea Hydrangeaceae Asia perennial

perforatum common st. john's wort Hypericaceae Europe perennial

prolificum shrubby st. john's wort Hypericaceae Midatalantic-US Southeast-US perennial

spp. iris Iridaceae Europe Asia perennial

versicolor northern blue flag iris Iridaceae
Northern-Appalachians-US
Southern-Appalachians-US perennial

citriodorum lemon basil Lamiaceae Africa Asia annual

atriplicifolia russian sage Lamiaceae Asia perennial

hederacea gill over the ground Lamiaceae Europe perennial

angustifolia english lavender Lamiaceae Europe perennial

scorodonia wood sage Lamiaceae Europe perennial

reptans carpet bugle Lamiaceae Europe perennial

vulgare oregano Lamiaceae Europe Asia perennial

cataria catnip Lamiaceae Europe Asia perennial

racemosa walkers low catmint Lamiaceae Europe Asia perennial

byzantina lamb's ear Lamiaceae Europe Asia perennial

thyme Lamiaceae Europe Asia perennial

spicata spearmint Lamiaceae Europe Asia perennial

officinalis common hedgenettle Lamiaceae Europe Asia perennial

maculatum spotted deadnettle Lamiaceae Europe Asia perennial

bifida split lipped hemp nettle Lamiaceae Europe Asia annual

didyma red beebalm Lamiaceae Midatlantic-US perennial

foeniculum anise hyssop Lamiaceae Midwest-US perennial

canadensis american wild mint Lamiaceae Northern-Appalachians-US perennial
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incanum hoary mountain mint Lamiaceae
Northern-Appalachians-US
Southern-Appalachians-US perennial

fistulosa wild bergamot Lamiaceae

Northern-Appalachians-US
Southern-Appalachians-US
Coastal-Plains-US
Temperate-Plains-US
Southern-Plains-US perennial

virginianum virginia mountain mint Lamiaceae

Northern-Appalachians-US
Southern-Appalachians-US
Temperate-Plains-US
Southern-Plains-US perennial

virginiana fall obedient plant Lamiaceae

Northern-Appalachians-US
Southern-Appalachians-US
Temperate-Plains-US
Southern-Plains-US
Northern-Plains-US perennial

vulgaris self heal Lamiaceae United-States perennial

pilosa hairy hedgenettle Lamiaceae US-Excluding-Coastal-Plains perennial

spp. lavendula Lamiaceae perennial

spp. lavender Lamiaceae perennial

sp. snowy spires Lamiaceae perennial

mint family Lamiaceae perennial

giant hyssop Lamiaceae perennial

cernuum nodding onion Liliaceae

Northern-Appalachians-US
Southern-Appalachians-US
Temperate-Plains-US
Southern-Plains-US
Northern-Plains-US perennial

salicaria purple loosestrife Lythraceae Europe Asia perennial

verticillatus swamp loosestrife Lythraceae

Northern-Appalachians-US
Southern-Appalachians-US
Coastal-Plains-US
Temperate-Plains-US perennial

syriacus rose of sharon Malvaceae Asia perennial

marsh mallow Malvaceae Europe perennial

trimestris rose mallow Malvaceae Europe Asia annual

spp. linden tree Malvaceae perennial
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vulgaris yellow loosestrife Myrsinaceae Europe Asia perennial

communis myrtle Myrtaceae Asia perennial

odorata white water lily Nymphaeaceae

Northern-Appalachians-US
Southern-Appalachians-US
Temperate-Plains-US
Southern-Plains-US
Northern-Plains-US
Coastal-Plains-US perennial

lindheimeri guara Onagraceae Midatalantic-US Southeast-US perennial

biennis common evening primrose Onagraceae

Northern-Appalachians-US
Southern-Appalachians-US
Temperate-Plains-US
Southern-Plains-US
Northern-Plains-US
Coastal-Plains-US biennial

angustifolium fireweed Onagraceae US-Excluding-Coastal-Plains perennial

canadensis wood betony Orobanchaceae

Northern-Appalachians-US
Southern-Appalachians-US
Temperate-Plains-US
Southern-Plains-US
Northern-Plains-US
Coastal-Plains-US perennial

eximia wild bleeding heart Papaverceae Southern-Appalachians-US perennial

ringens allegheny monkey flower Phrymaceae

Northern-Appalachians-US
Southern-Appalachians-US
Temperate-Plains-US
Southern-Plains-US
Northern-Plains-US
Coastal-Plains-US perennial

americana american pokeweed Phytolaccaceae

Northern-Appalachians-US
Southern-Appalachians-US
Temperate-Plains-US
Southern-Plains-US
Northern-Plains-US
Coastal-Plains-US perennial

purpurea purple foxglove Plantaginaceae Europe perennial

vulgaris toad flax Plantaginaceae Europe Asia perennial

lanceolata english plantain Plantaginaceae Europe Asia perennial
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spicata spiked speedwell Plantaginaceae Europe Asia perennial

hirsutus hairy beardtongue Plantaginaceae
Northern-Appalachians-US
Southern-Appalachians-US perennial

glabra white turtlehead Plantaginaceae

Northern-Appalachians-US
Southern-Appalachians-US
Temperate-Plains-US
Southern-Plains-US
Northern-Plains-US
Coastal-Plains-US perennial

digitalis foxglove beardtongue Plantaginaceae

Northern-Appalachians-US
Southern-Appalachians-US
Temperate-Plains-US
Southern-Plains-US
Northern-Plains-US
Coastal-Plains-US perennial

virginicum culver's root Plantaginaceae

Northern-Appalachians-US
Southern-Appalachians-US
Temperate-Plains-US
Southern-Plains-US
Northern-Plains-US
Coastal-Plains-US perennial

spp. snapdragon Plantaginaceae annual

paniculata garden phlox Polemoniacaea Midatlantic-US perennial

japonica japanese knotweed Polygonaceae Asia perennial

maculosa lady's thumb smartweed Polygonaceae Europe annual

sagittata arrow leaved tearthumb Polygonaceae

Northern-Appalachians-US
Southern-Appalachians-US
Temperate-Plains-US
Southern-Plains-US
Northern-Plains-US
Coastal-Plains-US perennial

cordata pickerelweed Pontederiaceae

Northern-Appalachians-US
Southern-Appalachians-US
Temperate-Plains-US
Southern-Plains-US
Northern-Plains-US
Coastal-Plains-US perennial
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meadia shooting star Primulaceae

Northern-Appalachians-US
Southern-Appalachians-US
Temperate-Plains-US perennial

rochebruneanu
m meadow rue Ranunculaceae Asia perennial

tomentosa japanese anemone Ranunculaceae Asia perennial

macrantha hummingbird mint Ranunculaceae California perennial

acris tall buttercup Ranunculaceae Greenland perennial

racemosa black baneberry Ranunculaceae
Northern-Appalachians-US
Southern-Appalachians-US perennial

pubescens tall meadow rue Ranunculaceae
Northern-Appalachians-US
Southern-Appalachians-US perennial

palustris marsh marigold Ranunculaceae

Northern-Appalachians-US
Southern-Appalachians-US
Temperate-Plains-US perennial

columbine Ranunculaceae

Northern-Appalachians-US
Southern-Appalachians-US
Temperate-Plains-US
Northern-Plains-US
Coastal-Plains-US perennial

virginiana virginia virgin's bower Ranunculaceae

Northern-Appalachians-US
Southern-Appalachians-US
Temperate-Plains-US
Southern-Plains-US
Northern-Plains-US
Coastal-Plains-US perennial

spp. monkshood Ranunculaceae perennial

alnifolia alder leaved buckthorn Rhamnaceae

Northern-Appalachians-US
Southern-Appalachians-US
Temperate-Plains-US
Pacific-Northwest-US perennial

americanus new jersey tea Rhamnaceae

Northern-Appalachians-US
Southern-Appalachians-US
Temperate-Plains-US
Southern-Plains-US
Northern-Plains-US
Coastal-Plains-US perennial

rugosa beach rose Rosaceae Asia perennial
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japonica japanese meadowsweet Rosaceae Asia perennial

divaricatus spreading cotoneaster Rosaceae Asia perennial

oblonga quince Rosaceae Asia perennial

multiflora multiflora rose Rosaceae Asia perennial

recta sulphur cinquefoil Rosaceae Europe perennial

robertianum red robin Rosaceae Europe annual

rubiginosa sweet briar rose Rosaceae Europe Asia perennial

persica peach Rosaceae Europe Asia perennial

cerasus sour cherry Rosaceae Europe Asia perennial

odoratus flowering raspberry Rosaceae
Northern-Appalachians-US
Southern-Appalachians-US perennial

carolina carolina rose Rosaceae

Northern-Appalachians-US
Southern-Appalachians-US
Coastal-Plains-US
Temperate-Plains-US
Southern-Plains-US perennial

alba white meadowsweet Rosaceae

Northern-Appalachians-US
Southern-Appalachians-US
Temperate-Plains-US perennial

spiraea
tomentosa steeplebush Rosaceae

Northern-Appalachians-US
Southern-Appalachians-US
Temperate-Plains-US perennial

virginiana virginia rose Rosaceae

Northern-Appalachians-US
Southern-Appalachians-US
Temperate-Plains-US perennial

allegheniensis common blackberry Rosaceae

Northern-Appalachians-US
Southern-Appalachians-US
Temperate-Plains-US perennial

tomentosa rosy meadowsweet Rosaceae

Northern-Appalachians-US
Southern-Appalachians-US
Temperate-Plains-US perennial

pensylvanica pin cherry Rosaceae

Northern-Appalachians-US
Southern-Appalachians-US
Temperate-Plains-US
Northern-Plains-US perennial

idaeus raspberry Rosaceae US-Excluding-Coastal-Plains perennial
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virginiana common strawberry Rosaceae US-Excluding-West-Coast perennial

cinco de mayo cinco de mayo rose Rosaceae perennial

spp. rose Rosaceae perennial

occidentalis common buttonbush Rubiaceae

Northern-Appalachians-US
Southern-Appalachians-US
Coastal-Plains-US
Temperate-Plains-US perennial

repens partridge berry Rubiaceae

Northern-Appalachians-US
Southern-Appalachians-US
Coastal-Plains-US
Temperate-Plains-US perennial

petiolaris meadow willow Salicaceae
Northern-Appalachians-US
Temperate-Plains-US perennial

cernuus lizard's tail Saururaceae

Northern-Appalachians-US
Southern-Appalachians-US
Coastal-Plains-US
Temperate-Plains-US perennial

spp. foamflower Saxifragacaea

Northern-Appalachians-US
Southern-Appalachians-US
Temperate-Plains-US perennial

thapsus common mullein Scrophulariaceae Europe Asia Africa biennial

dulcamara climbing nightshade Solanaceae Europe Asia perennial

philadelphica tomatillo Solanaceae Mexico annual

lycopersicon garden tomato Solanaceae
South-America
Central-America annual

carolinense carolina nightshade Solanaceae Southeast-US perennial

rostratum horned nightshade Solanaceae Southeast-US annual

grandifolius bigleaf snowbell Styracaeae Coastal-Plains-US perennial

spp. styrax Styracaeae perennial

bonariensis purpletop vervain Verbenaceae Europe perennial

hastata swamp verbena Verbenaceae United-States biennial

tricolor pansy Violaceae Europe Asia perennial
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