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Abstract
In this PhD dissertation, we propose distributed adaptation mechanisms for connected vehicles to

deal with the connectivity challenges. To understand the system behavior of the solutions for con-

nected vehicles, we �rst need to characterize the operational environment. Therefore, we devised

a large scale fading model for various link types, including point-to-point vehicular communica-

tions and multi-hop connected vehicles. We explored two small scale fading models to de�ne the

characteristics of multi-hop connected vehicles. Taking our research into multi-hop connected ve-

hicles one step further, we propose selective information relaying to avoid message congestion due

to redundant messages received by the relay vehicle. Results show that the proposed mechanism

reduces messaging load by up to 75% without sacri�cing environmental awareness.

Once we de�ne the channel characteristics, we propose a distributed congestion control al-

gorithm to solve the messaging overhead on the channels as the next research interest of this

dissertation. We propose a combined transmit power and message rate adaptation for connected

vehicles. The proposed algorithm increases the environmental awareness and achieves the appli-

cation requirements by considering highly dynamic network characteristics. Both power and rate

adaptation mechanisms are performed jointly to avoid one result a�ecting the other negatively.

Results prove that the proposed algorithm can increase awareness by 20% while keeping the chan-

nel load and interference at almost the same level as well as improve the average message rate by

18%.

As the last step of this dissertation, distributed cooperative dynamic spectrum access technique

is proposed to solve the channel overhead and the limited resources issues. The adaptive energy

detection threshold, which is used to decide whether the channel is busy, is optimized in this work

by using a computationally e�cient numerical approach. Each vehicle evaluates the available

channels by voting on the information received from one-hop neighbors. An interdisciplinary

approach referred to as entropy-based weighting is used for de�ning the neighbor credibility. Once

the vehicle accesses the channel, we propose a decision mechanism for channel switching that is

inspired by the optimal �ower selection process employed by bumblebees foraging. Experimental

results show that by using the proposed distributed cooperative spectrum sensing mechanism,

spectrum detection error converges to zero.
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Chapter 1

Introduction

1.1 Motivation

Connected vehicles networks (CVNs) describe the connectivity of vehicles and roadside access

points or base stations within a given vicinity. In February 2014, the National Highway Tra�c

Safety Administration (NHTSA) announced that Intelligent Transportation Systems (ITS), includ-

ing connected vehicles technology, will be required in all cars by 2019 [1]. To serve this purpose,

the United States Federal Communication Commission (FCC) reserved 75 MHz of spectrum in the

5.9 GHz band for dedicated short-range communications (DSRC) for CVNs [2]. Potential appli-

cations of CVNs are based upon having reliable connectivity over the dedicated spectrum band.

Recent wireless research activities enable the realization of CVNs with the help of novel and reli-

able solutions.

There are numerous bene�ts of CVNs [3]. First, the communication links between source and

destination are more robust although the link can potentially be non line-of-sight (NLOS). Second,

the information sharing increases environmental awareness and enables applications, designed

to improve tra�c safety and e�ciency. Third, the cost of positioning and communication hard-

ware is signi�cantly less than the equivalent autonomous sensing equipment needed to cover the

360-degree envelope around the vehicle. Finally, communications allow vehicles to coordinate ma-

neuvers for safety goals as well as reduce the severity of the maneuvers required by each vehicle

to avoid a collision as shown in Figure 1.1 (diagram adapted from [4]).
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Figure 1.1: Concept diagram of the connected vehicle concept employed in safety applications.
Several statistics regarding safety enhancements resulting from connected vehicles is included in
the diagram.

CVN applications are summarized in two main categories: safety and mobility applications [5].

Mobility and tra�c e�ciency applications include transmitting information about the road coe�-

cient of friction, road weather conditions, parking management and payment solutions, enhanced

route guidance and navigation, green light optimal speed advisory, and lane merging assistants [4].

For safety-related applications, NHTSA identi�ed eight high potential applications [6]: tra�c sig-

nal violation warning, curve speed warning, emergency electronic brake light, pre-crash sensing,

cooperative forward collision warning, left turn assistant, lane-change warning, and stop sign

movement assistant. NHTSA reported that CVN systems would help drivers avoid 41 − 55% of

intersection crashes and 36 − 62% of left turn crashes [5]. NHTSA highlighted the signi�cance

of connected vehicles in technical report as [7]:

“ Connected vehicle safety applications are designed to increase situational awareness
and reduce or eliminate crashes through V2V and V2I data transmission that sup-
ports: driver advisories, driver warnings, and vehicle and/or infrastructure controls.
These technologies may potentially address up to 82 percent of crash scenarios with
unimpaired drivers, preventing tens of thousands of automobile crashes every year. ”
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Figure 1.2: Interoperatibility on CVNs: Architecture and applications.

CVNs, also referred as Vehicle-to-X (V2X) communications as shown in Figure 1.2 [8], have

slightly di�erent dynamics based on the transmitter and receiver types. In Vehicle-to-infrastructure

(V2I) architectures, messages are transmitted between vehicles and roadside units (RSUs) located

on nearby arterial road intersections or highway on-ramps. In Vehicle-to-vehicle (V2V) commu-

nication, messages are transmitted between neighboring vehicles. The information dissemination

can be point-to-point (P2P) or multi-hop (relaying) messaging scenarios in which vehicles commu-

nicate directly with other vehicles or through intermediary vehicles, respectively. In the other type

of V2X links, messages are transmitted between vehicles and various receivers such as vehicle-to-

pedestrians, vehicle-to-bicycle, and vehicle-to-home, vehicle-to-device [9–11].

The US Federal Highway Administration (FHWA) released the 2015 FHWA Vehicle to Infras-

tructure Deployment Guidance and Products", a document assisting operators in adapting tra�c

signals and other roadside devices so that they are capable of communicating with the new con-

nected vehicles [12]. V2I systems include RSUs, which collect data about the vehicular activity

and inform nearby vehicles, signal phase and timing tra�c signal enabled tra�c signal controllers,
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Figure 1.3: Investments to connected and autonomous vehicles.

which control the synchronization of the intelligent tra�c lights with the current tra�c situation,

and tra�c management centers. V2I communication is envisioned as a key building block for en-

abling safety and tra�c e�ciency applications in Europe as well [13, 14]. DSRC infrastructures

enable anticipatory and safe driving, as drivers are informed about the current tra�c situation

and danger zones. Furthermore, tra�c centers receive precise and comprehensive information on

the tra�c situation from vehicles. In this way, it is possible to control the tra�c �ow more intelli-

gently, e�ciently, and quickly, resulting in an improved �ow of tra�c. As a result, transportation

systems can potentially have less accidents, improve the use of the road network, experience less

vehicle tra�c congestion, and reduce the production of CO2 emissions.

V2V networks are more challenging to design than V2I architectures since the connection ar-

chitecture is a decentralized mesh network instead of being supported by a centralized control

unit. This unique topology has the bene�t that vehicles can provide to each other the most up-

dated situation, thereby increasing the current environmental awareness. The vehicle’s adaptation

mechanisms can thus use this updated information to provide reliable decisions. This is especially

true for tra�c safety applications and information security protocols, which require the most cur-

rent situational information. V2V communications provide the input data for substantial solutions
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to these time-critical requirements. The recent fatal accident of Tesla autopilot system, that the

Tesla driver and a truck could not have detected each other and crashed while the advanced driving

assistant system was active, urges the V2V systems to improve environmental awareness particu-

larly when the sensors cannot detect the other vehicles due to the obstacles [15].

The motivation for connected vehicle networks, which is explained above, makes research and

development in this industry very active. The leading companies of the automotive industry invest

substantial amount of resources for CVN research as shown in Figure 1.3 [16–19]. For example,

Google and Ford are performing actual road trials of autonomous vehicles while Volvo and Honda

are working on increasing vehicular awareness by providing robust connectivity in vehicular en-

vironments [20]. Moreover, Toyota recently announced that it is investing $50 million to design

and produce arti�cial intelligence within vehicular networks [21]. A quote of Tim Cook, Apple

CEO, from an interview on the Apple Car summarizes the enthusiasm on the ITS world [22]:

“ – Tim Cook, Apple CEO: Auto industry is at an in�ection point for massive change.
Not just an evolutionary change. ”

1.2 State-of-the-Art

CVNs improve tra�c safety by preventing mistakes caused by human drivers. In order to

enable information sharing, connected vehicles use periodic broadcast message exchanges to make

vehicles aware of their surrounding environments. Those are referred to as Basic Safety Messages

(BSMs) in the United States and Cooperative Awareness Messages (CAMs) in Europe.

Vehicular communications consist of two types of messages: safety messages and certi�cate

exchange messages. The safety messages are used to support the safety applications, and the cer-

ti�cate exchange messages ensure that the safety messages are from a trusted source. The safety

messages include information about the vehicles’ behavior such as the vehicles’ Global Positioning

System (GPS) location, speed, transmission power, predicted path, lateral and vertical acceleration,

and yaw rate. The messages are time-stamped so the receiving vehicle knows when the message

was sent. This information can be used by other vehicles for a variety of crash avoidance applica-

tions [5].

The intra-vehicle components, which are categorized in three main blocks, are shown in Fig-
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Figure 1.4: General concept of autonomous and connected vehicle.

ure 1.4. The internal vehicle components include two DSRC radios, whose standardization is still

under development [5]. According to current vision, the internal vehicle components include two

DSRC radios. One of the radios can potentially be assigned handling safety messages, or both

radios could be used to support a multi-channel hopping algorithm. These radios provide infor-

mation sharing with other ITS platforms in order to increase awareness on the roads. Another

important component for enabling cognition in vehicles is GPS receiver for gathering position

and timekeeping information. The onboard computer uses this information with the data gener-

ated from its sensors, such as heading, speed, and acceleration, in order to provide information to

intra- and inter- vehicle intelligence systems. The safety electronic control unit (ECU) prepares

BSMs to periodically broadcast in order to run safety applications. The memory unit satis�es the

needs of the data acquisition system, records the historical data from itself as well as other vehi-

cles, and stores security certi�cates. Finally, a driver-vehicle interface provides a mechanism for

issuing warnings to the driver. Such warnings could be audible, visual, or haptic, e.g., any type of

audio-visual alarm, tightening of the seat belt, or vibrating the driver’s seat.

The main topology of the connected vehicles standard is released besides the standardiza-
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Figure 1.5: DSRC protocol stack and the correspond standards.

tion activities are not �nalized yet. The wireless access in vehicular environments (WAVE) pro-

tocol stack, which is de�ned in the IEEE 1609 standards, describes the higher layers while IEEE

802.11p [23] explains the physical (PHY) and low level medium access control (MAC) layers. In Fig-

ure 1.5, the protocol stack for CVNs and corresponding standard of each layer are illustrated [24].

IEEE 1609 standards are speci�ed for the tasks as follows: 1609.4 for Channel Switching [25], 1609.3

for Network Services and WAVE short message protocol (WSMP) [26], and 1609.2 for Security Ser-

vices [27]. DSRC is capable of using all internet protocols for the Network and Transport layers,

i.e., Internet Protocol version 6 (IPv6), User Datagram Protocol (UDP) and Transmission Control

Protocol (TCP). These protocols are de�ned by the Internet Engineering Task Force (IETF) Request

for Comments (RFCs). Single-hop messages, e.g., collision avoidance messages, use WSMP since

it is bandwidth-e�cient, and multi-hop messages use IPv6 for its routing capability. At the top of

the stack, the SAE J2735 Message Set Dictionary standard speci�es a set of message formats that

support a variety of CVNs applications [24].
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Table 1.1: OFDM Parameters in DSRC

Parameter Value

Number of data subcarriers 48

Number of pilot subcarriers 4

Subcarrier frequency spacing 156.25 KHz

Guard interval 1.6 µsec

Symbol interval 8 µsec

Table 1.2: Data Rates Options in DSRC

Modulation Coded Bit Coding Data Rate Data Bits per

Technique Rate (Mbps) Rate (Mbps) OFDM Symbol

BPSK 6 1/2 3 24

BPSK 6 3/4 4.5 36

QPSK 12 1/2 6 48

QPSK 12 3/4 9 72

16-QAM 24 1/2 12 96

16-QAM 24 3/4 18 144

64-QAM 36 2/3 24 192

64-QAM 36 3/4 27 216

The PHY layer is divided into two layers: the physical medium dependent (PMD) sublayer,

which directly interfaces with the wireless medium, and the physical layer convergence proce-

dure (PLCP) sublayer, which converts the MAC frames and PMD messages between each other.

PMD uses orthogonal frequency division multiplexing (OFDM) with a 10 MHz bandwidth, with

its speci�cations are shown in Table 1.1 [24]. Four modulation techniques are available for use

on each subcarrier, which correspond to a di�erent number of bits encoded per subcarrier sym-

bol. Forward error correction (FEC) coding is applied to the user bits, which reduces the e�ective

user bit rate but also improves the probability of successful decoding. Eight combinations of these

speci�cations are shown in Table 1.2 [24].
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There exists several technical challenges when operating wireless networks within a vehic-

ular environment in spite of the advantages associated with CVNs. The major challenge is the

highly time-varying characteristics of the vehicle environment, which signi�cantly impacts net-

work reliability and e�ciency [28, 29]. DSRC o�ers a convenient solution to this highly dynamic

architecture, whereas cellular networks may possess latency and time synchronization issues due

to the large coverage area and how the infrastructure is con�gured. Other technical challenges

associated with CVNs include the following [3]:

• Dynamic vehicular environments include obstacles that vary with time, a changing number

of vehicles, and varying road topology;

• Relative motion due to neighbor vehicles will yield Doppler spreads across the frequency

spectrum, which makes it more di�cult to lock onto the target center frequency;

• Multipath fading due to the relative motion of the roadside structures is much more dynamic

within a CVN operating environment relative to a static wireless network;

• Error by human drivers with unexpected situations make prede�ned decision mechanisms

insu�cient;

• Decision making mechanisms in ITS are not delay tolerant since the network environment

changes rapidly;

• Frequently broadcasting between connected vehicles cause a messaging overhead on the

processing unit at each vehicle;

• Diverse interference caused by the other networks decreases vehicles’ communication e�-

ciency;

• Each vehicle can have its own target awareness distance and target message rate based on

application context and environment;

• The limited capability on information sharing, i.e., process time and bandwidth capacity

limitations, makes network organization challenging.
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1.3 Research Questions To Be Answered

The main objective of this dissertation is to develop practical decision and adaptation tech-

niques to make the V2X communications reliable. The proposed solutions include realistic as-

sumptions and are time-e�cient in order to handle the dynamic characteristics of connected ve-

hicle networks. Therefore, several research questions must be answered, namely:

• What are the characteristics of the connected vehicle channels? What are the limitations

and strengths of point-to-point and multi-hop V2X links?

• Is it necessary to rebroadcast all information, received from any source, with other vehicles?

• How can we increase the environmental awareness and achieve the context requirements

by adjusting transmission parameters?

• How can we realistically solve the spectrum scarcity issue by considering the connected

vehicle dynamics?

1.4 Dissertation Contributions

Compared to the current state-of-the-art, this dissertation presents several novel and practical

adaptive solutions for connected vehicles. The contributions of this dissertation are the following:

• Channelmodels, limitations, and optimization ofmessage relaying onmulti-hopping

connected vehicles (Chapter 3): Modeled of large and small scale fading channels for

CVN systems; derived the capacity limitations for both single-input-single-output (SISO)

and multi-input-multi-output (MIMO) networks; proposed a selective information relaying

mechanism for multi-hop relaying vehicles. Compared to the current state-of-the-art, the

proposed mechanism decreases the message congestion due to the redundant messages re-

ceived by relay vehicles without any assumption on network architecture.

• Distributed congestion control for connected vehicles (Chapter 4): Proposed a com-

bined transmission power and rate adaptation algorithm for decentralized V2V communi-

cations. Although the existing literature possesses techniques that separately adapts the
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transmission power and rate, the proposed algorithm jointly controls the message rate and

transmission power as well as achieves the target awareness rate, target message rate, and

target awareness distance requirements of each vehicle for any environment and context.

• Distributed cooperative channel sensingmechanism for connected vehicles (Chap-

ter 5): Proposed an adaptive optimization of the energy detection threshold by considering

process time limits; a cooperative channel access mechanism to decide the available channels

for unlicensed users based on a novel voting scheme. The optimum point of the trade-o�

between the computational cost and robust spectrum sensing is achieved. The proposed

mechanism outperforms existing works by converging spectrum detection error to zero in

any environmental condition without violating process time constraints.

• Bumblebee behavior from foraging theory to channel switching decision for con-

nected vehicles (Chapter 5): Proposed a distributed adaptive mechanism to decide if the

unlicensed user should stay in the same channel or switch to better channel; implemented

memory structure to obtain the optimum point between switching to the better quality

channel and the switching cost. While the current-state-of-the-art does not consider the

switching cost, the proposed switching decision mechanism increases the Benefit/Cost

rate.

1.5 Dissertation Outline

The rest of this dissertation is organized as follows:

Chapter 2 provides an extensive literature survey on connected vehicles. Existing works for

channel models for vehicular communications are explained. A comprehensive review of existing

distributed congestion control mechanisms is discussed. Finally, dynamic spectrum access (DSA)

mechanisms for vehicular communications are presented.

Chapter 3 starts with introducing the large and small scale fading channel models of CVN

systems. Lower bound on the capacity is studied for multi-hopping CVNs by using SISO and

MIMO antenna sets. Lastly, a selective message relaying mechanism is proposed to avoid relaying

the redundant messages and decrease messaging load.



12

In Chapter 4, a novel algorithm is presented for decentralized congestion control (DCC) on

V2V systems. The proposed combined rate and power control algorithm e�ciently achieves the

target awareness and rate requirements given by the application context in varying propagation

environments. The proposed algorithm adapts the transmit power to reach the target awareness

range while controlling the channel load by adjusting the rate and power according to the current

channel load, awareness range, and rate information.

In Chapter 5, a novel distributed cooperative DSA technique for connected vehicles is proposed.

The adaptive energy detection threshold, which is used to decide whether the channel is busy, is

optimized in this work by using a computationally e�cient numerical approach. Each vehicle

evaluates the available channels by voting on the information received from one-hop neighbors,

where the credibility of each neighbor is weighted during the voting process. An interdisciplinary

approach referred to as entropy-based weighting is used for de�ning the neighbor as well as the

vehicle’s own credibility. The voting mechanism is switched between the proposed voting mech-

anism and the traditional voting approach obtained from the current-state-of-the-art in order to

maintain a balance between the computational cost/latency and robust spectrum sensing. As the

last block of channel access strategy, we propose an individual decision mechanism that decides

whether to switch to a better quality channel while accepting a switching cost or stay in the same

channel assuming it is already of su�cient quality. To enable vehicles to e�ectively meet this

challenge, we devised a bumblebee-inspired decision-making algorithm. In proposed approach,

channel energy information is stored and updated in memory to estimate qualities of channel op-

tions and then weighed against switch costs to determine optimal (bene�t/cost) channel selection.

We found that an individual adaptive switching decision mechanism provides shorter computation

times and obtains an optimal point between switching bene�t and cost.
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Chapter 2

Literature Review

This chapter provides an overview on several subjects that are relevant to this dissertation.

In Section 2.1, we present the research e�orts on channel modeling CVNs. We discuss both the

analysis of V2V channel models and V2I link models. By realizing the bene�ts of multi-hopping

communications, we extend the review of P2P channel models to multi-hop channel models. Fi-

nally, we describe existing multi-hopping strategies to make the relaying operation more e�cient.

In Section 2.2, we explain congestion control approaches as a solution to overhead on channel uti-

lization load. We classi�ed congestion control mechanisms in three main titles and analyzed the

existing works under these categories. In Section 2.3, we present existing solutions for handling

the current spectrum scarcity issue. Since the understanding of system behavior is the �rst step of

conducting research, we �rst denote the �eld experiments that demonstrate the system behavior of

vehicular dynamic spectrum access (VDSA). Then, we discussed the cognitive learning approaches

implemented for VDSA for di�erent system behaviors. Finally, we narrow down the literature re-

view to focus on cognitive learning approaches for cognitive spectrum access techniques to give

a detail survey on one of the main focus on this dissertation.

2.1 Channel Modeling on Connected Vehicles Networks

Channel characterization is a fundamental step for CVNs since all design approaches are based

on knowing the channel behavior. While the modeling of V2V channels has been a steadily grow-

ing research interest over the past several years, V2I channel modeling has been increasing over
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the past couple of years since V2I systems are essential for reliable ITS connectivity [28, 35]. V2V

and V2I communications have multipath propagation with the characteristics of fading channels.

One frequently used small scale channel modeling approach for multipath propagation is Jakes

model, which de�nes the channel as a Rayleigh fading sum-of-sinusoids (SoS) for non line-of-

sight (NLOS) scenarios [36]. Since Jakes model is a deterministic approach, it has some di�culty

in creating multiple uncorrelated fading waveforms for frequency-selective fading channels and

MIMO channels. Hence, this model has been extended to statistical models for Rayleigh fading

in [37–40] and Rician fading in [41, 42].

While small scale fading de�nes the channel impulse response behavior, large scale fading

models provide the loss between transmit and received power values. In [43], large scale chan-

nel fading characteristics of V2V communications are mathematically modeled for LOS and NLOS

links due to the di�erent obstacles on the links. In [44], various propagation environments are

measured for MIMO antennas, and the parameter values that should be used in mathematically

models are provided. In [45], the accuracy of proposed models are proved by real-world measure-

ments and the e�ect of the adjacent lane tra�c on the vehicular channel is discovered empirically.

V2I links di�er from V2V links, in terms of antenna height, relative speed, and the scatterer

density at the infrastructure end of the link, resulting in signi�cantly di�erent communication

performance [46].It is assumed that the infrastructure component of the link will be located near

the roads (e.g., at intersections in cities or on gantries on highways) with antennas con�gured

for DSRC. These characteristics distinguish V2I communication from other mobile-to-base station

(“cellular”) communication, where the base station is located farther away from the road, typically

mounted on the tops of buildings or hills. As such, V2I links do not have the same characteristics

as the well studied mobile-to-base station links used in cellular networks, for which models are

readily available [47].

Field tests are crucial for the study and evaluation of V2I communications. Gozalvez et al. [48]

performed comprehensive measurements for di�erent antenna heights, vehicle driving directions,

and locations in Bologna, Italy. Measurement results on highways involving an infrastructure

near the road such as Roadside Units (RSUs) and onboard units (OBUs) inside of cars with omni-

directional antennas show that environment conditions signi�cantly a�ect communication per-

formance [49]. Shivaldova et al. [50] evaluate the performance of omnidirectional antennas, as
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well as di�erent types of directional antennas, and showed that directional antennas possess bet-

ter performance than omnidirectional antennas if the RSUs with directional antennas are deployed

properly so as to not cause interference. The propagation behavior of V2I communications in a

highway scenario was measured by Maier et al. [51] for multi-antenna systems whereas Shivaldova

et al. [52] analyzed the performance of single-antenna systems in tunnels.

While �eld tests provide realistic insights for speci�c scenarios, simulations are better suited

for repeatable, low cost evaluations of protocols and applications for vehicular communications.

Current state-of-the-art simulators focus mainly on V2V communications or V2I communications

operating in the cellular sense (e.g., LTE communication between mobile terminal and base sta-

tion). Existing V2I studies either utilize simpli�ed OBU-RSU link behavior (e.g., Paulin et al. [53]

used NS-3 [54] to regulate the data �ow and collection between the OBU and RSUs) or focus on

LTE communication (e.g., Altintas et al. [55] explored the use of cellular communication to enable

“cars as an ICT resource” in the context of future smart cities).

CVNs structure could potentially employ a relay-based architecture that leverages spatial di-

versity techniques [56]. Furthermore, multi-hop relaying vehicular communications ensure more

reliable and robust links relative to direct P2P transmissions since the transmission distance is

shortened in the case of multi-hop communications [57]. Finally, depending on the type of infor-

mation communicated by the vehicle hops, the awareness of all vehicles can be enhanced while

simultaneously relaying this information to its �nal destination. In [58], half duplex mode V2I

single antenna CVNs were studied given an amplify-and-forward (AF) operating scenario, which

the received message at the relay node is ampli�ed and transmitted to the another node. Although

amplify-and-forward scenarios are desirable for low latency networks, they also amplify chan-

nel noise and signi�cantly a�ect the reliability of the overall transmission. Another half duplex

approach proposes a link scheduling scheme and investigates the maximum throughput prob-

lem [56]. Decode-and-forward (DF) system, as an alternative to AF approach, decodes the received

message at the relay vehicle, recodes it, and transmits to the other vehicle.

MIMO-based CVNs are used to increase capacity, data rates, and transmission robustness [59].

In [60], MIMO channel characteristics are measured for collision avoidance application. The simu-

lation models for MIMO mobile channels are denoted in [61]. In [62], the reference geometry-based

channel model between MIMO mobile nodes is presented and the simulation model whose charac-
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teristic matches with the reference model is discussed in [63]. This work is extended to wideband

systems in [64] and relaying systems in [65]. The channel capacity is evaluated in [66] for the

perfect channel state information (CSI) at the transmitters that is not realistic since it does not

consider the feedback error and delay.

A geometrical model for MIMO-based relaying CVNs was proposed in [65], with a channel

capacity analysis for a geometrical model presented in [34]. This model de�nes the channel matri-

ces based on the scatterers’ angles and distances between vehicles within the network. However,

estimating the angles and distances can incur a latency penalty, which can a�ect time-sensitive

applications supported by CVNs. In addition, geometrical models derive the channel model as a

time-varying random variable. However, the transmission channel for network applications is ac-

tually a random process that depends on the time-variations occurring within the environments, as

well as the excess delay that exists between multipath components. Therefore, geometric isotropic

models are better suited for cellular networks rather than for V2V channel characteristics.

As an alternative to the ring-model, [67] proposes an elliptical model which denotes the ring

model with a large number of scatterers that is not valid in urban areas. Also, this work highlights

the case when several scatterers are also in a motion. Another work on moving scatterers is built

into [68]. In this reference and also in this research, the maximum Doppler shift is given as [36]:

fn = (vn − vi)cos(αn)/λ, (2.1)

where λ is wavelength, vn is the speed of considered vehicle, n is s, r, and d for source, relay,

and destination nodes, respectively. The angle between x-axis and the corresponding scatterer is

αn. The speed of the scatterers vi changes between zero (i.e., �xed scatterer case) and a maximum

speed limit.

It is possible to increase the bene�ts of multi-hop relaying CVNs even more by optimizing the

message transmission at the relay vehicle. Message optimization primarily focuses on decreasing

the network load by dropping the redundant or expired messages instead of re-transmitting them

at the relay vehicle. Barradi et al. [69] proposed a MAC layer strategy to avoid broadcast storm by

adjusting the backo� time in highway scenarios. Hoque and Kwon [70] proposed to choose the

packets in order to rebroadcast based on packet directions. Although this technique helps decrease

the network load, a relay vehicle needs to know the types of applications that destination vehicles
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Figure 2.1: Taxonomy of distributed congestion control studies.

use. For instance, intersection warning messages from a relay vehicle need to be received by the

vehicles behind the relay vehicle. On the other hand, ambulance warning messages from a relay

vehicle usually need to be received by the vehicles ahead of the relay vehicle. Xiang et al. [71]

chose the rebroadcast messages based on their packet values. The data preference is a promising

idea, although the messages are checked one-by-one, which causes processing delay.

2.2 Distributed Congestion Control on Connected Vehicles Net-

works

The main goal for enabling many safety applications in CVNs is cooperative awareness. The

main premise for cooperative awareness is that by knowing their operating environment, vehi-

cles and their drivers are going to be better equipped for decision-making in hazardous situations

(e.g., emergency braking) and more adept at �nding better routes to their destination (e.g., avoid-

ing congested roads). To enable cooperative awareness, vehicles use periodic message exchanges

(also referred to as “beaconing”) in order to exchange position, speed, heading, and other vital

information that makes the vehicles aware of their surroundings. Such cooperative awareness is

used to enable safety applications, such as intersection collision warning, accident warning, and
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emergency braking [72]. Since they are sent periodically by all vehicles, beacons are envisioned

to occupy a large proportion of the channel time [73]. Decentralized Congestion Control (DCC)

algorithms can be used to control the number of beacons and other messages transmitted across

the channel. Typically, DCC approaches in CVNs are classi�ed as shown in Figure 2.1: 1) rate

control; 2) power control; and 3) combined rate and power control. Rate control algorithms adapt

the message rate, i.e., number of packets per unit time that a vehicle can transmit, where the rate

is often adapted based on the channel load information. Power adaptation algorithms use transmit

power control to limit the range over which a message is broadcast, thus e�ectively controlling

the channel load. Hybrid algorithms employ the previous two types of control by applying both

rate control to reduce the number of messages and power control to limit their range.

In recent years, there have been a number of works on DCC approaches proposed for CVNs.

Since the standardization of DCC is vital for interoperability and performance of vehicle-to-X

(V2X)1 communications, there continues to be ongoing research on DCC in various standardiza-

tion bodies and special interests consortia (e.g., within European Telecommunications Standards

Institute (ETSI) and as part of the Car-to-Car Communications Consortium) aimed at performance

evaluation and providing a uni�ed cross-layer DCC framework [73–77]. One example of a metric

that is often used is the channel busy ratio (CBR), de�ned as the proportion of channel time that

is deemed occupied by an ongoing transmission. Bansal et al. devised an algorithm called the

LInear MEssage Rate Integrated Control (LIMERIC) [78], a rate control algorithm that adapts the

message rate by using CBR measurements in a linear manner (e.g., proportional to the change of

CBR). The authors prove that the convergence of LIMERIC yields fair and e�cient channel utiliza-

tion. Tielert et al. [79] proposed an algorithm called PULSAR (Periodically Updated Load Sensitive

Adaptive Rate control), which uses piggybacked two-hop CBR information and additive increase

multiplicative decrease method (AIMD) in order to achieve better channel utilization and max-min

fairness. The approaches described above used linear rate adaptation. A simpler approach to rate

control is to increase/decrease the rate based on, for example, the CBR being above or below a

preset threshold. This approach is frequently referred to as binary rate control. One example of

a binary rate control algorithm is Context-Aware Rate Selection (CARS) by Shankar et al. [80].

Egea-Lopez and Pavon-Marino [81] reformulated the congestion control problem as a network
1V2X is referred as the common name of all type of communication links such as V2V, V2I, V2D, V2P.



21

utility maximization problem and design fair adaptive beaconing rate for intervehicular commu-

nications (FABRIC), a proportionally fair binary rate control algorithm. The required message rate

may change depending on the situation. To deal with these di�erences, Joerer et al. [82] perform

rate adaptation by considering the context.

Power adaptation algorithms use transmit power control to limit the range over which a mes-

sage is broadcast, thus e�ectively controlling the channel load. Torrent-Moreno et al. [83] designed

a power control algorithm aimed at ensuring bandwidth allocation for high-priority event-based

messages (e.g., for safety applications), whereas Mittag et al. [84] elaborated on the same algorithm

by introducing segment-based power control with the goal of reducing overhead. By testing the

solution on homogeneous vehicular tra�c densities and imperfect channel information, the au-

thors demonstrated the e�ectiveness of their algorithm. Caizzone et al. [85] proposed an algorithm

that adapts transmit power depending on the number of neighbors, where the transmit power is

increased in case the number of neighbors is under the threshold or vice versa. Regarding com-

bined power and rate adaptation algorithms, Le et al. [86] evaluated rate-only, power-only, and

combined rate and power control algorithms. By performing extensive simulations, the authors

identi�ed which of the algorithms is preferable for a speci�c scenario and application requirement.

Kloiber et al. [87] introduced a random transmission power assignment in order to make correlated

packet collisions more uncorrelated in space. Authors in [88–90] de�ne the DCC problem as a state

machine to perform transmission power control. Khorakhun et al. [91] combined the binary rate

adaptation with transmit power control, where the increase/decrease of transmit power is de�ned

with a parameter chosen based on CBR. Tielert et al. [92] adapted the transmit power and rate

with respect to the target transmission distance and channel conditions by using Pareto optimal

parameter combinations. The authors point out that there is a need for further study involving

variable channel conditions, including dynamic transitions between line-of-sight (LOS) and non-

LOS conditions, which was experimentally shown to have a profound impact on communication

performance, and with signi�cant real-world e�ect on congestion control algorithms [93].

Since congestion control is inherently a cross-layer issue, with the need for implicit or explicit

coordination between applications, transport-, network-, and access-layer algorithms, there have

been studies looking at the cross-layer congestion control (e.g., Kovacs et al. [94] and ETSI special-

ist task force work on cross-layer DCC [73]). In terms of using awareness to adjust the parameters
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(power and rate) of congestion control algorithms, Gozalvez and Sepulcre propose OPRAM [95], an

opportunistic transmission power control algorithm that increases the transmit power of messages

in critical situations (e.g., before intersections). However, in order to function properly, apart from

precise location information, such as from GPS transmissions, OPRAM requires a priori knowl-

edge about geographical regions that are accident-prone. Kloiber et al. [87, 96] used awareness

quality as a metric and employ a random transmit power for messages with a goal of reducing

interference. Huang et al. [97] perform power and rate adaptation mechanisms independently as

well as based on potential tracking error resulting from the di�erence between actual and esti-

mated states. This approach might be challenging to use in practice since it is hard to precisely

obtain the actual state at each algorithm step. Sepulcre et al. [98] proposes the integration of con-

gestion and awareness control (INTERN), which adjusts transmit power based on the prevailing

application context (target dissemination distance set by applications) alone, without considering

the surrounding environment. Numerous measurement studies have shown that the surround-

ings and vehicle tra�c signi�cantly a�ect the range, thus making it di�cult to separate the target

application range from the propagation environment restrictions. Frigau et al. [99] control the

transmission range using the transmission power as well as beacon generation range based on

beacon reception rate. Nasiriani et al. [100] perform similar power control mechanism and com-

bine it with rate control based on channel utilization. Jose et al. [101] de�nes power adaptation

as a joint Lagrangian optimization and rate adaptation. These approaches as well as [102] com-

bine power and rate adaptation without their combined operation. However, the value that power

control decides may cause a negative e�ect on message rate control mechanism, and vice versa.

2.3 Spectrum Sensing on Connected Vehicle Networks

The issue of wireless spectrum scarcity caused by increasing connectivity demand impacts the

automotive industry. It is predicted that the currently allocated 6 channels of DSRC spectrum

band will be insu�cient for meeting all connectivity needs of the emerging ITS architecture [103].

Consequently, in many of the envisioned scenarios, the use of other wireless spectrum band such

as TV white space (TVWS) is viewed as a potential solution of the spectrum challenges faced by

connected vehicles [104–109].
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Table 2.1: Spectrum Sensing Techniques in the Current State-of-the-Art.

Technique Bene�t Drawback Reference

Genetic Algorithm Finds global optimum Converges slow [114–118]

Queuing Theory Gives priority to safety messages Large number of switching operation [119–121]

Game Theory Finds the optimum of bene�t and cost Needs a centralized control mechanism [122–125]

As the idea of VDSA evolves, connected vehicles use available non-DSRC channels as unli-

censed users ( i.e., secondary users or SUs) while not interfering with the licensed users ( i.e.,

primary users or PUs) of the speci�c frequency bands [110]. The viability of VDSA is based on

the successful classi�cation of channel available [107,111]. As an alternative to using Digital Tele-

vision (DTV) band, Ghandour et al. proposed the usage of the 5.8 GHz ISM band for secondary

connected vehicle users in [112]. Although this idea has the bene�t of not requiring to perform

primary user detection and the hardware con�guration is similar to DSRC standards, it also has

several drawbacks such as other users utilizing the ISM band and the CSMA/CA mechanism caus-

ing extra process latency [113].

Field experiments have provided several insights on the practical limitations of VDSA de-

signs [111, 126–128]. While these experiments have demonstrated the characteristics of highway

and urban environments, parameter settings for secondary user (SU) vehicles that �t into these

characteristics have been obtained in [129–132]. The �eld measurement data also has led to the

development of realistic testbed implementations. In [133], a testbed employing the Microsoft Soft-

ware Radio was used to create a realistic test scheme, while a software de�ned radio implementing

the IEEE 802.11p standard was used to observe the out-of-band spectral leakage in [134]. Another

testbed was implemented using multi-radio access technologies (GSM/GPRS, CDMA, Wi-Fi) in

order to demonstrate V2V communication in [135, 136].

There have been numerous approaches for implementing di�erent parts of the cognitive learn-

ing cycle of VDSA as listed in Table 2.1. Genetic algorithm has been one of the most common

techniques to cognitive network parameter adaptation [114–118]. Although the genetic algorithm

is robust to various environmental characteristics, the convergence time is relatively slow, which

is not practical for a dynamic CVNs environment. As an alternative to genetic algorithms, queuing

theory has been considered for the adaptation of cognitive network parameter settings [119–121].
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Queuing solves the problem of successful reception of urgent safety messages. However, this ap-

proach may cause a large number of channel switching operations in some scenarios. Game theory

has also been considered for channel access strategies, since game theory optimizes sensing time

and sensing bene�ts [122–125].

Detecting the current environment conditions is key for cognitive network parameters adap-

tation as well as sensing the channel status, i.e., busy or available. Energy detection is the most

common spectrum sensing technique since its does not have any initial assumption and its com-

putation complexity is lower than the alternatives such as cyclostationary detection and action

recognition [137]. In [138], spectrum detection schemes were described for Additive White Gaus-

sian Noise (AWGN) channels. Although this study provides a generic idea about spectrum sensing,

an AWGN channel is not a realistic assumption for CVNs. In [139], an optimization of resources

was performed for the empirical Okumura-Hata Model. In [140], blind spectrum sensing was per-

formed for cognitive CVNs in Nakagami fading. Since vehicular channels are Rayleigh fading for

non-line-of-sight (NLOS) and Rician fading for line-of-sight (LOS) links in reality, energy detec-

tion for fading channels is viewed as more practical for several scenarios derived in [141–145].

The approaches are derived for general wireless communications perspective without considering

speci�c features of CVNs.

The success of spectrum sensing is directly a�ected by the choice of the threshold used during

the binary decision. It was proven that minor interruptions in the PU data tra�c may cause serious

tra�c jams under highway conditions [146]. Due to the highly mobile environment of vehicles,

the energy detection threshold may vary signi�cantly in time. In [147], the optimum detection

threshold is derived for AWGN channels for a stable network. However, adaptive energy detection

threshold in a dynamic fading network was still an open research question in the current state-of-

the-art. In addition to the spectrum sensing with energy detection threshold, likelihood detection

operations were described in [148–151]. The likelihood ratio is not a realistic solution for highly

time varying CVN environments since their likelihood thresholds need to be de�ned, which is an

additional unknown variable that causes extra computational cost and time. The existing literature

on the spectrum sensing was not considered the process timing which is critical for dynamic VDSA

applications. Process time of the proposed approach should not take more time than the channel

coherence time,i.e., the duration that the channel is �xed. To de�ne the process time limits, the
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channel coherence time has been derived based on the vehicle speed and environmental conditions

in [152].

Cooperative sensing is one of the most promising applications for VDSA [153, 154] since the

detection errors made by the vehicles can be �xed with the help of neighbor vehicles. The current

state-of-the-art shows that cooperative sensing makes the detection operation more robust and

reliable [144, 155–157]. Once the available channels are detected by secondary users, this infor-

mation is shared between neighbor nodes. When the vehicle receives the available channels list

from its neighbors, it votes on the received available channels. With respect to distributed chan-

nel sensing studies, [158, 159] proposed a voting algorithm where the channel was deemed to be

available if half of the neighbors have the same decision on corresponding channel availability.

However, this voting mechanism assumes that all neighbors are at the same credibility level al-

though they might not be. In [160], belief propagation was performed with few iterations which

causes delay. In [161], a weighing function was de�ned to evaluate a neighbor’s credibility and

operate the voting based on the weight function which depends on only the distance between the

vehicles. In reality, the distance may not be consistent with the neighbor’s credibility. For exam-

ple, in an urban area, the closer neighbor may misinform the vehicle as there might be obstacles

between the vehicles. Alternatively, a more distant neighbor may inform correctly the availability

of channels to the vehicle if there is a LOS component.

2.4 Chapter Summary

This chapter summarizes the literature review related this dissertation. The main topics are

channel modeling, congestion control mechanisms, and dynamic spectrum access techniques for

CVNs. While they are separated topics by themselves, CVNs possess the potential to combine

them, and it is the cross-discipline e�orts that revolutionize ITS applications. In the following

chapters, this background material is referenced to explain the contribution to the current state-of-

the-art. The proposed approaches in the dissertation address the open research problems discussed

in this chapter.
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Chapter 3

Channel Characteristics and Relaying

Optimization of Connected Vehicle

Networks

Understanding and modeling channel behavior is the �rst step in devising CVN solutions.

Although the literature includes many propagation models and channel simulators for point-to-

point (P2P) V2V systems, there is a noticeable lack of studies focused on multi-hopping vehicular

communications. In this chapter, we explore limitations and strengths of multi-hopping CVNs. We

�rst de�ne the channel propagation models with large and small scale fading. Large scale fading

is analyzed for di�erent link types. Small scale channel models are presented for Decode-and-

Forward (DF) relaying MIMO antennas since MIMO systems are generalized version of all type of

antenna arrays, i.e., SISO, SIMO, MISO, MIMO. Next, we analyzed the lower bound on the channel

capacity of multi-hopping CVNs by using the channel models. Lastly, we proposed a selective

message relaying algorithm to solve message overhead on rebroadcasting operation at the relay

vehicle.
The work presented in this chapter has been published in parts at [C5], [C4], [C3], [C2], and [C1].
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Figure 3.1: Large scale link attenuation greatly varies based on the link type: line-of-sight (LOS),
non-line-of-sight by vehicles (NLOSv), non-line-of-sight by foliage (NLOSf), non-line-of-sight by
buildings (NLOSb).

3.1 Architecture Overview

Line-of-Sight (LOS) links can be a�ected by di�erent objects, from which we classify link types

into non-line-of-sight (NLOS) links, with the latter being further classi�ed as NLOS due to obstruc-

tion by vehicles (NLOSv), buildings (NLOSb), and foliage (NLOSf). These three main object types

a�ecting propagation are shown for V2I architecture in Figure 3.1. In V2I architecture, road side

units (RSUs) and vehicles, i.e., on board units (OBU), exchange information to enable safety and

mobility applications.

In the DF multi-hopping architecture, the source vehicle transmits data xs to both the relay and

destination vehicles. In turn, the relay vehicle receives xs, decodes it, re-encodes it as the relay

data xr , and sends it to destination vehicle. The main bene�t of DF relaying is that the coding

scheme at the relay vehicle helps to correct for any corruption on transmitted data.

In the full-duplex relaying architecture, the relay can act as both a transmitter and a receiver at

the same time. The transmission from the source to the relay, as well as the relay to the destination,

uses the same carrier frequency (Figure 3.2). A signi�cant challenge for full-duplex relaying sys-

tems is self interference (SI), which refers to the situation where each transmission pollutes its own

signal at the transmitter by producing receiver noise, thus reducing the signal-to-noise-ratio (SNR)
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Figure 3.2: Network architecture of DF CVNs.

and ultimately the throughput [162]. In order to realize the advantages of full-duplex relaying with

respect to throughput and bandwidth utilization, the SI problem is a topic of extensive research

activities [163]. Although passive suppression techniques such as natural isolation, orthogonal po-

larization, orthogonal polarization, and antenna selection are not practical for connected vehicles

network, active (digital/analog) cancellation schemes are successfully mitigates the interference

e�ect [164, 165]. Given that several SI cancellation techniques applied to the RF front-end have

been proposed in the literature, this work does not consider the impact of untreated SI on the

channel capacity [166–168].

In addition to the relay transmission, a direct transmission is also performed since it increases

the network capacity and reliability. The source-to-relay and source-to-destination links are called

the Broadcast Channel (BC). Similarly, source-to-destination and relay-to-destination links are col-

lectively called the Multiple Access Channel (MAC). The DF mode enables the use of the same fre-

quency bandwidth for all three links due to a special decoding scheme [169]. The scatterers are not

a�ected by the other vehicles since the distance between the vehicles are assumed to be su�ciently

large. This frequency architecture shows DF architecture provides more reliable transmission than

single link by using same frequency band.

A highly dynamic CVN topology does not lend itself to standard channel models. The e�ects

of Doppler spread with respect to relative velocities between nodes need to be detected and �xed.

Furthermore, a successful implementation must take into account of safety application at the ap-

plication layer. This issue causes limits on latency and reliability of packet delivery which are

strong challenges to designer.
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3.2 Channel Models

In this section, we de�ne both large and small scale fading models for CVNs [170]. We consider

di�erent link types for large scale fading. We apply two di�erent small scale statistical channel

models to DF relaying vehicular communication: geometrical-based model, sum-of-sinusoids (SoS)

model. The small scale fading is analyzed for both non-line-of-sight (NLOS) and line-of-sight (LOS)

conditions, and both multipath propagation and time varying channel conditions are considered.

In this chapter, we consider block fading and explain this is a realistic assumption in Section 3.3.

Therefore, Doppler e�ect on fading channel is stable on a block.

Notations: Upper (lower) boldface letters are used to denote matrices (column vectors). The

conjugate-transpose operation is shown as (.)† and E[.] to express expectation with respect to all

random variables within the brackets. The matrix trace and determinant are denoted as tr(.) and

|.|, respectively.

3.2.1 Large Scale Attenuation Models

We derive the large scale attenuation characteristics based on the V2I architecture since there

is a freely available data from a V2I measurement campaign in 5.9 GHz frequency band performed

in the city center of Bologna, Italy [48]. We employ real world measurements to : i) extract the

large scale received power variation parameters; and ii) validate the accuracy of proposed model.

Although the link types are explored for V2I links to be able compare with open source measure-

ment results, the models are valid for also V2V links. The only di�erence between V2V and V2I

links is that V2I has fewer scatterers that are also distributed more isotropically than in case of

V2V, thus resulting in less variation due to multipath since the antenna height of the RSU is higher

than the OBU. We also depict free space path loss as a reference point for the reader (i.e., not as a

representative model for all of the link types).

In the referenced V2I measurement campaign [48], 10 RSUs are deployed throughout the city

so as to encompass di�erent conditions in an urban environment. In Figure 3.3, the RSUs that are

used in this section and corresponding propagation power levels are depicted. In Figure 3.3(a),

the OBU approaches the RSU in a straight street which is 500 m long. At each time step, the

received power is recorded. The levels of received power are shown with colors varying from red
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RSU 

(a) LOS and NLOSv experiment region

 

RSU 

(b) NLOSf experiment region

 

RSU 

(c) NLOSb experiment region

Figure 3.3: Locations of RSUs for selected scenarios representing di�erent link types.

to blue, respectively corresponding to high and low received power. The same setup is also used

for NLOS due to heavy vehicle obstacles. In this experiment, the vehicle with OBU approaches

the RSU while a heavy vehicle drives right in front of the OBU, thus breaking the direct LOS link.

In Figure 3.3(b), the RSU is located in a region surrounded by foliage. The street is curve-shaped

right in front of the RSU, which is itself surrounded by trees. Hence, the vegetation limits the

reception of signals from the RSU, causing extra attenuation. In Figure 3.3(c), the RSU is located

near a building and the OBU approaches the RSU on the road in front of the building, so that the
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(b) LOS V2I Links: Measurement 2

Figure 3.4: LOS V2I Links: OBU monotonically approaches the RSU at each time step for both
measurements. Both results generated by the model and measured data have a pattern similar to
free space path loss since the link type is LOS. Model vs Measurements: mean absolute error: 3.16
mean; standard deviation: 2.84.

building breaks the direct link. We propose a model that separately models all these link types and

evaluate it against real-world measurements depicted in Figure 3.3. For each link type, we de�ne

large-scale attenuation e�ects through a characterization of its unique link properties.

Line-of-Sight Links (LOS): To characterize LOS links, we resort to a two-ray ground re�ec-
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tion model described as follows [171]:

ETOT =
E0d0

dLOS
cos

(
wc

(
t− dLOS

c

))
Rground

E0d0

dground
cos

(
wc

(
t−

dground

c

))
, (3.1)

where the re�ection coe�cient Rground and distance dground for the ground-re�ected ray are cal-

culated according to the exact antenna heights, wc is the carrier frequency in radian. In Figure 3.4,

the OBU approaches the RSU as shown in 3.3(a). The same experiment is performed two times. In

the �rst measurement, the OBU approaches the RSU during 450 time steps, so that received power

monotonically increases (Figure 3.4(a)). In the second measurement, the OBU moves around the

RSU by keeping a steady distance throughout 500 time steps and then approaching the RSU, thus

leading to increased received power (Figure 3.4(b)). As expected, both model and measured data

follow a pattern similar to the free space path loss model.

Non-Line-of-Sight Links due to Vehicles (NLOSv): Vehicles – particularly large ones like

buses and trucks – have a strong impact on CVN links. When a link is blocked by one or more ve-

hicles, additional attenuation can be modeled as (multiple) knife-edge di�raction [172]. According

to the knife-edge model, the additional attenuation A can be computed as follows:

A =

 6.9 + 20log10

[√
(v − 0.1)2 + 1 + v − 0.1

]
v > 0.7

0 otherwise
, (3.2)

where v =
√

2H/rf , H is the height di�erence between obstacle and OBU antenna, rf is the

Fresnel ellipsoid radius. In Figure 3.5, �eld measurements for the RSU deployed in Bologna are

compared with the considered NLOSv model. During the measurement, there is a heavy vehicle

in front of the OBU as it approaches the RSU as shown in 3.3(a). The same experiment is performed

twice, with the �rst lasting 700 (Figure 3.5(a)) and the other one 800 time steps (Figure 3.5(b)). The

distance between the heavy vehicle and the OBU varies between 5 and 25 m during the measure-

ments. We can observe that the proposed model matches measured data well, with mean absolute

error of 3.98 and standard deviation of 3.47 over the two experiments. The good match shows the

�exibility of the knife-edge model, which, unlike stochastic models, takes into account the heights

of antennas and obstructing objects to calculate the link attenuation.

Non-Line-of-Sight Links due to Foliage (NLOSf): NLOSf links are modeled by using the

empirical derivation given by Goldhirsh et al. [173], where the attenuation caused by foliage is
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(a) NLOSv V2I: Measurement 1
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(b) NLOSv V2I: Measurement 2

Figure 3.5: NLOSv V2I links: comparison of �eld measurements and simulated results. OBU ap-
proaches to RSU at each time step while the heavy vehicle is driving right front of the OBU. Model
vs Measurements: mean absolute error: 3.98 mean; standard deviation: 3.47.

de�ned as mean excess loss (MEL) per meter as follows:

MEL = 0.79f0.61 (3.3)

where f is the carrier frequency, i.e., 5.9 GHz for 802.11p-based communication. MEL is multiplied

with the length of propagation through foliage. In Figure 3.6, �eld measurements for the RSU

deployed in Bologna are compared with the proposed model. In this experiment, the RSU is located

on a road that has a curve surrounded by trees; once the OBU moves behind the curve, the direct
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(b) NLOSf V2I links: Measurement 2

Figure 3.6: NLOSf V2I links: comparison of �eld measurements and simulated results. Model vs
Measurements: mean absolute error: 4.14 mean; standard deviation: 3.64.

link becomes obstructed by trees. The measurement in the location shown in Figure 3.3(b) is

performed two times. In the �rst measurement, the OBU drives away from the RSU during 350

time steps, so that the received power decreases largely monotonically (Figure 3.6(a)). In the second

measurement (Figure 3.6(b)), the OBU moves away from RSU; between time step 200 and 700,

the speed is very low (under 1 km/h), which is re�ected in almost stable received power. The

transmission distance through foliage (and thus the attenuation) gradually increases in the �rst

measurement, while it remains stable in the second measurement, as evidenced relative to the free
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(b) NLOSb V2I: Measurement 2

Figure 3.7: NLOSb V2I links: comparison of �eld measurements and simulated results. Model vs
Measurements: mean absolute error: 5.03 mean; standard deviation: 5.79.

space path loss. Figure 3.6 shows that the proposed model can model the foliage-obstructed V2I

links well.

Non-Line-of-Sight V2I links due to Buildings Obstacles (NLOSb): Since the large scale

e�ect of buildings is similar for V2V and V2I links, for the attenuation on V2I NLOSb link, we

used the model for V2V NLOSb from GEMV2 simulator [43], with modi�ed small scale signal

variation parameters, which were extracted from V2I measurements [48]. In the model, the atten-

uation due to buildings is estimated as the maximum received power between: i) the joint e�ect of
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single-interaction di�ractions and re�ections; and ii) the log distance path loss model with a com-

paratively high path loss exponent (for details, see [43]). In Fig. 3.7, the �eld measurements for the

RSU deployed in Bologna (shown in Figure 3.3(c)) are compared with the proposed model. In this

measurement, the RSU is located near a building and the OBU approaches it through the street

in front of the building. Therefore, the nearby building slightly breaks the direct link between

OBU and RSU, resulting in a moderate attenuation due to the building. The same experiment is

performed two times. We can observe that the proposed model result matches measured data with

mean absolute error of 5.03 and standard deviation of error of 5.79.

3.2.2 Small-Scale Fading Models: Geometry-based Channel Model for Multi-

hopping Connected Vehicle Networks

In this channel model, channel coe�cients for small scale fading are computed based on ge-

ometrical parameters such as distances and angles. We present the channel model for MIMO

antenna arrays. However, it is also used for SISO systems by setting the antenna number to one.

3.2.2.1 Geometrical Framework

The source, relay, and destination vehicles are assumed to possess instantaneous speeds of vs,

vr , and vd, with angles to x-axis labeled as αs, αr , and αd, respectively (Figure 3.8). We extend

the geometrical model, which was proposed in [65], to DF relaying LOS conditions. The proposed

three rings scattering model is based on only local scattering since high path loss dilutes the e�ects

of remote scatterers. The scatterers of source (relay and destination, respectively) are Sms ,m =

1, ...,M (Skr , k = 1, ...,K and Sld, l = 1, ..., L). The random phase shift for the source (relay and

destination) is θ(m)
s (θ(k)

r and θ(l)
d ) which is i.i.d. random variable with a uniform distribution over

the interval [0, 2π).

Distances between the mobiles are Dxy where the subscript x and y refer the transmitter and

receiver nodes, respectively. The angle of source to relay link and x-axis is γs and the angle of

relay to destination link and x-axis is γd. The radii of the scatterers of transmitters and receivers,

Rs, Rr , and Rd, are signi�cantly smaller than the distances between the corresponding nodes.

The antenna spacing for each node are de�ned as δs, δr , and δd, which are less than radii of the

scatterers. The angles between antenna arrays and x-axis are de�ned as βs, βr , and βd.
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	Figure 3.8: System model of DF relaying vehicular communication with MIMO antenna arrays
based on geometrical approach.

3.2.2.2 Description of Geometrical Channel Model

The channel between a transmitter and a receiver is represented by Hxy(t), whose dimensions

are the number of receive antennas times the number of transmitter antennas [174]. The received

signals at the relay and destination nodes for vehicular MIMO relay channels are de�ned as:

r(t) = Hsr(t)xs + nr, (3.4)

y(t) = Hsd(t)xs + Hrd(t)xr + ny, (3.5)

where noise vectors at the relay, nr , and at the destination, ny are zero-mean identity covariance

complex Gaussian random vectors. Although a 2 × 2 MIMO model is presented in this section,
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the channel model can be extended to any number of antenna array elements. Considering a three

ring MIMO model for CVNs, the �rst channel element of Hxy(t) for the �nite number of scatterers

is de�ned in NLOS channel components are obtained as [65]:

z(11)
sr (t) =

1√
MK

M,K∑
m,k=1

g(mk)
sr e

j
[
2π
(
f
(m)
s +f

(k)
sr

)
t+
(
θ
(mk)
sr +θsr

)]
, (3.6)

z
(11)
rd (t) =

1√
KN

K,N∑
k,n=1

g
(kn)
rd e

j
[
2π
(
f
(k)
rd +f

(n)
d

)
t+
(
θ
(kn)
rd +θrd

)]
, (3.7)

z
(11)
sd (t) =

1√
MN

M,N∑
m,n=1

g
(mn)
sd e

j
[
2π
(
f
(m)
s +f

(n)
d

)
t+
(
θ
(mn)
sd +θsd

)]
, (3.8)

where fxmax = vx/λ is maximum Doppler frequency and λ is the carrier’s wavelength [65]. The

angle of departure of the mth and kth transmitted waves are φ(m)
s and φ(k)

sr at the source and

the relay. The angle of arrival of the kth and lthreceived waves are φ(k)
rd and φ(l)

d at the relay

and the destination. The parameters in these equations are de�ned in Table 3.1. NLOS path loss

components are added to the direct link to obtain LOS channel envelope:

h(11)
sr (t) =

z
(11)
sr (t) +

√
Ksr exp(j2πfsr0 t+ Φsr

0 )√
1 +Ksr

, (3.9)

h
(11)
rd (t) =

z
(11)
rd (t) +

√
Krd exp(j2πf rd0 t+ Φrd

0 )√
1 +Krd

, (3.10)

h
(11)
sd (t) =

z
(11)
sd (t) +

√
Ksd exp(j2πfsd0 t+ Φsd

0 )√
1 +Ksd

, (3.11)

(3.12)

where Kxy is the Rician coe�cient, Φxy
0 is the random phase in the interval [−π, π], and Doppler

frequency of the LOS component is derived as:

fxy0 = (|vy|cos(αy − βy)− |vx|cos(αx − βx))/λ. (3.13)

The other channel elements are obtained by replacing a(p)
x and b(p)y with the complex conju-

gates a(p)†
x and b(p)†y for h(22)

xy (t), a(p)
x with a(p)†

x for h(12)
xy (t), b(p)y with b(p)†x for h(21)

xy (t) where p is

m for source, k for relay, and l for destination.
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Figure 3.9: SISO relaying vehicular network architecture. The channel impulse responses, which
consider both multipath propagation delay and time varying channel conditions, are de�ned as
hsr(τ, t), hsd(τ, t), and hrd(τ, t). The angle between scatterer and x-axis is α and the motion
angle of vehicle is θ rad/s.

3.2.3 Small-Scale Fading Models: Sum-of-Sinusoids Channel Model for Multi-

hopping Connected Vehicle Networks

In this section, a sum-of-sinusoids (SoS) model [39, 42] for small scale fading is derived for

relaying CVNs. The model is presented for both SISO and MIMO cases. The applied SoS model

is independent from parameters such as distance/angles between vehicles, which changes contin-

uously in time. Therefore, it is more suitable to use for real-time CVNs applications than geo-

metrical model. Furthermore, SoS relaying channel model that takes into account excess delay of

multipath contributions besides time variation. Therefore, it potentially provides a more reliable

channel model relative to those that consider only time variation.

3.2.3.1 SISO Sum-of-Sinusoids Model with LOS Component

We start with the channel model proposed for P2P networks in [40] by extending it to DF

relaying CVNs. In Figure 3.9, the channel architecture is illustrated, where the speed of the source

(resp. relay, destination) node is vs (resp. vr , vd) and the angle between the movement direction

of the source (resp. relay, destination) and x - axis is θs (resp. θr , θd). The angles between the

uniformly distributed random scatterers, occurring as a result of the mobility, and the x-axis are

de�ned as αs, αr , and αd for the source, relay, and destination, respectively.

The complex envelope of the Rayleigh distribution on source to relay link is given as [42, Ch

9]:
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gsrk (t) =gsrik (t) + jgsrqk(t), (3.14)

gsrik (t) =
1√
NM

M,N∑
m,n=1

cos (2πfrcos(α
r
k)) cos (2πfscos(α

s
k) + Φnmk) , (3.15)

gsrqk(t) =
1√
NM

M,N∑
n,m=1

sin (2πfrcos(α
r
k)) cos (2πfscos(α

s
k) + Φnmk) , (3.16)

whereN is the number of scatterers of source node andM is the number of scatterers of relay node.

The random phase, Φnmk, is uniformly distributed on the interval [−π, π). Maximum Doppler

shifts occurring at source and relay nodes (fs and fr) are computed as shown in Equation (2.1).

The angles of the scatterers at the source (αsk) and the relay (αrk) are given as:

αsk =
2πn

4N
+

2πk

4PN
+

Ω− π
4N

, (3.17)

αrk = 0.5

(
2πm

M
+

2πk

PM
+

Ψ− π
M

)
, (3.18)

where k = 0...P −1 is the number of complex envelopes, Ω and Ψ are random variables that pos-

sess identical and independently distributed (i.i.d.) uniform random variables across the interval

[−π, π). The complex envelope of the vehicular networks with LOS component is obtained by:

zsrk (t) =
gsr(t) +

√
K exp(j2πf0t+ Φ0)√

1 +K
, (3.19)

where Φ0 is an independent and identically distributed (i.i.d.) random variable across the interval

[−π, π) and K is the Rician coe�cient. The Doppler shift caused by relative speeds of vehicles on

LOS path is de�ned as [42, Ch 9]:

f0 = (|vr|cosθr − |vs|cosθs)/λ, (3.20)

where λ is wavelength. A multipath channel impulse response function of time (t) and excess

delay (τ ) is de�ned as [175, pg 760]:

hsr(τ, t) =
P−1∑
k=0

hsrk (t)e−j2πfcτk(t)δ[τ − τk(t)], (3.21)

where hsrk (t) is kth independent channel envelope, and fc is carrier frequency, which is de�ned as

5.9 GHz for the vehicular networks analyzed in this work. The channel impulse response for all

three links are obtained by using the same method.
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Figure 3.10: MIMO relaying vehicular network architecture. Channel impulse responses are de-
�ned as Hsr(τ, t), Hsd(τ, t), and Hrd(τ, t). The distances between antennas on the top of vehicle
is δ. The angle between antenna spacing and x-axis is γ.

The autocorrelation, or second order statistics, of the channel impulse response, which de�nes

the duration channel stays stable, is given as [42, Ch 9]:

Rsr(τ) =
2J0(2πfsτ)J0(2πfrτ) +Ke−j2πf0τ

1 +K
, (3.22)

while the received signals at the relay and destination are given for the DF relaying time varying

channels as:

r(t)=

∫ ∞
−∞
hsr(τ, t)xs(t− τ) dxs + nr, (3.23)

y(t)=

∫ ∞
−∞
hsd(τ, t)xs(t−τ)dxs+h

rd(τ, t)xr(t−τ)dxr+ny. (3.24)

3.2.3.2 MIMO SoS Model with LOS Component

Spatial diversity provides a communication system with a higher reliability at MIMO sys-

tems [176]. However, MIMO technology has not been extensively deployed in CVNs due to its

complexity [59]. In this section, a reliable channel model for MIMO-based DF relaying vehicular

communication is obtained with LOS component. The applied relaying model is extended from

point-to-point model proposed in [61]. The envelope matrix of a Rayleigh MIMO model is given

in Equations (3.20) – (3.22) for Nt ×Nr antenna arrays.

In these derivations, ws = 2πfs and wr = 2πfr , Rx = 3 − 2Nt/λ and Ry = 3 − Nr/λ,

where Nt and Nr are number of antennas at the transmitter and receiver vehicles, δs and δr are

the distances between two antennas at the source and relay vehicles, respectively (see Figure 3.10).

The angle between antenna spacing and x-axis are γs at the source node and γr at the relay node.



43

Gsr(t) =


gsr11i(t) + jgsr11q(t) ... gsr1Nri(t) + jgsr1Nrq(t)

... ... ...

gsrNt1i(t) + jgsrNt1q(t) ... gsrNtNri(t) + jgsrNtNrq(t)

 , (3.20)

gsrxyi(t)=
1√
NM

N,M∑
n,m=1

cos (Rxδs cos(αs−γs)+wst cos(αs−θs)) · (3.21)

cos (Ryδr cos(αr−γr)+wrt cos(αr − θr)+Φnm) ,

gsrxyq(t)=
1√
NM

N,M∑
n,m=1

sin (Rxδs cos(αs − γs)+wst cos(αs − θs)) · (3.22)

sin (Ryδr sin(αr − γr)+wrt sin(αr − θr)+Φnm) .

The source node moves towards the direction with the angle of θs to x-axis, similarly θr for relay

node and θd for destination node. The uniform random phase Φnm is in interval of [−π, π]. The

angles of the random scatterers are similar to the SISO case, yielding:

αs =
2πn

4N
+

Ω− π
4N

, (3.23)

αr = 0.5

(
2πm

M
+

Ψ− π
M

)
. (3.24)

By using a Rayleigh complex envelope, the Rician envelope is obtained using:

zsr(t) =
gsrxy(t) +

√
K exp(j2πf0t+ Φ0)
√

1 +K
, (3.25)

where K is the Rician coe�cient, Φ0 is the random phase in the interval [−π, π], and Doppler

frequency of the LOS component is derived as:

f0 = (|vr|cos(θr − γr)− |vs|cos(θs − γs))/λ. (3.26)

The multipath channel impulse response function of time (t) and excess delay (τ ) is computed

by using Equation (3.21). By determining all of the elements of the channel matrix, the Rician
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channel impulse response for the Nt ×Nr MIMO links matrx is given as:

Hsr(τ, t) =


hsr11(τ, t) ... hsr1Nr(τ, t)

... ... ...

hsrNt1(τ, t) ... hsrNtNr(τ, t)

 . (3.27)

This method is used for computing all channel links. The received signals at the relay and

destination for DF MIMO relaying time varying channels are:

r(t)=

∫ ∞
−∞
Hsr(τ, t)xs(t− τ) dxs + nr, (3.28)

y(t)=

∫ ∞
−∞
Hsd(τ, t)xs(t−τ)dxs+Hrd(τ, t)xr(t−τ)dxr+ny. (3.29)

As a result, both geometrical and SoS models take each scatterer around the vehicle as one path

and sums the multipath contributions to �nd the channel impulse responses. Geometrical model

assumes the number and the location of the scatterers are exactly known and uses the geometrical

parameters of this given information. However, this assumption may not be realistic since estima-

tion of the location of the scatterers in the dynamic vehicular environment is challenging. On the

other hand, the SoS model assigns the location of scatterers statistically. Furthermore, it considers

the time delay between the multipaths. These features make SoS model more realistic and more

accurate than geometrical model.

3.3 Derivation of Lower Bound on the Capacity for Relaying Con-

nected Vehicles

The channel capacity of the relay network, which is provider a limit within information �ow

on the network in the presence of noise and interference, is analyzed in order to demonstrate the

e�ciency of the proposed models. For the relay network, we cannot de�ne the exact capacity

since BC and MAC are vector channels. However, we can derive the upper and lower bounds of

the capacity. In this chapter, we derive only lower bounds of the channels for SISO and MIMO

cases since lower and upper bounds are very close numbers to each other, i.e., 0 − 1 bit/sec/Hz

di�erence [169, 174, 177].

In the analysis, the receivers have perfect channel state information (CSI) and the transmitters

have only covariance feedback. This case provides more realistic perspective than perfect CSI at
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Figure 3.11: Autocorrelation of a CVN link. The channel is constant for 0.05 ms. Since a packet is
transferred in 8 µs on DSRC architecture, capacity bounds are computed as block fading.

the transmitters. We perform full duplex mode communications with individual power constraints

at the source and relay.

The relay channel DF lower bound presented in [169] is valid for block fading channels where

the channel remains the same during a transmission block and jumps to another realization for

the next block. CVN links remain stable during approximately 0.05 ms, as shown in Figure 3.11.

The block fading assumption makes sense since the time interval of the DSRC channel is 8 µs.

Under a block fading assumption, we can de�ne discrete channel random processes (csri , csdi , crdi )

from the channel impulse responses, where i is the running index of successive blocks. Note that

random variables corresponding to successive blocks are correlated, although this does not violate

the achievability proof of [169].

3.3.1 SISO Relaying Connected Vehicles

The channel impulse responses (hsr(τ, t), hsd(τ, t), hrd(τ, t)) for the SISO relaying connected

vehicles are de�ned in Equation (3.21). The channel envelopes that �t to SoS model de�ne the

discrete channel random processes (csri , csdi , crdi ). The lower bound on the capacity of a SISO
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relay-based CVNs is given as [177]:

RSISO = max(Isd,min(Imac, Isr)), (3.30)

Isr = E
[
log
(
1 + Psr|csr|2

)]
, (3.31)

Isd = E
[
log
(

1 + Psd|csd|2
)]
, (3.32)

Imac = E
[
log
(

1 + Psd|csd|2+Prd|crd|2
)]
, (3.33)

where the signal-to-noise ratio (SNR) of the source-to-relay, source-to-destination, and relay-to-

destination links are Psr , Psd, and Prd, respectively.

It is important to note that using the ergodicity of the channel random process, we can calculate

the above capacity as an average over time instead of �nding the probability distribution functions

of the channel random processes. By using SoS model for fading relaying vehicular network, lower

bound on the capacity is computed with the consideration of vehicular propagation characteristics

such as Doppler shift, scatterers.

3.3.2 MIMO Relaying Connected Vehicles

Similar to the SISO case, we can assume block fading and de�ne the block fading channel

random processes Csr
i , Csd

i and Crd
i from the channel impulse responses (Hsr(τ, t), Hsd(τ, t),

and Hrd(τ, t)). Then, the lower bound on the capacity of MIMO relay vehicular communication

is given as [174, 177]:

RMIMO = max
tr(Qs)≤Ps,tr(Qr)≤Pr

max(Isd,min(Imac, Isr)), (3.34)

Isr = E
[
log
∣∣∣I + CsrQsC

sr†
∣∣∣] , (3.35)

Isd = E
[
log
∣∣∣I + CsdQsC

sd†
∣∣∣] , (3.36)

Imac=E
[
log
∣∣∣I + CmacQmacC

mac†
∣∣∣] , (3.37)

where:

Cmac =
[
Csd, Crd

]
, (3.38)

Qmac = [Qs, Qr] , (3.39)
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with Ls and Lr being the number of antennas at the source and relay. The covariance matrices of

the transmitted signals at the source and relay are Qs = E[xsx
†
s] and Qr = E[xrx

†
r], respectively

and the power constraints at the transmitters are tr(Qs) ≤ Ps and tr(Qr) ≤ Pr .

3.4 Selective Message Relaying Algorithm

The advantages of multi-hopping vehicular communications are explained in the previous sec-

tions. To enable safe and e�cient multi-hopping vehicular communications, there are several tech-

nical challenges associated with CVNs. The periodic broadcasting at the source vehicles and the

rebroadcasting the same information at the relay vehicles result in a signi�cant number of mes-

sages. However, most of the rebroadcast messages are redundant or not useful information for the

destination vehicles. With the large number of messages, high network and processing loads cause

signi�cant message delays and message losses. The existing works require speci�c information in

messages such as message directions.

In this section, we present a selective message relaying algorithm that relays information and

only rebroadcasts a few non-redundant messages that are useful for other vehicles. To the best of

our knowledge, selective message relaying in V2V networks without contextual knowledge of the

destination vehicles has not been proposed before. The proposed algorithm rebroadcasts urgent

safety messages immediately without any selection. For the rest of the received messages, the

proposed algorithm utilizes a hierarchical clustering mechanism to identify similar information

among those received messages. The number of clusters is decided by a technique considering

the proximity of the messages, and only a few messages from each cluster are selected and re-

broadcast. It is important to note that the proposed algorithm selects messages and rebroadcasts

them. It is a completely di�erent approach from traditional routing techniques, such as Position

Based Forwarding (PBF) [178], Contention-Based Forwarding (CBF) [179], and Ad hoc On-Demand

Distance Vector (AODV) [180], which choose destination vehicles and forward messages. The pro-

posed clustering mechanism detects redundant the information, and selects messages to rebroad-

cast without sacri�cing environmental awareness. Therefore, network and processing loads are

decreased since only a few messages from each cluster are rebroadcast. Moreover, the proposed

algorithm uses only general information in messages such as time stamp, location, and message
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Figure 3.12: Relaying architecture. The source (blue) vehicles periodically broadcast the messages
about environment status. The relay (red) vehicle receives these messages, performs the proposed
algorithm, and then rebroadcasts the seleced messages to the destination (green) vehicle.

priority so that it can be applied to many real-world applications.

Vehicles between the source and destination vehicles 1 play the roles of relay vehicles to prop-

agate information. Figure 3.12 shows an example. The relay vehicle receives the messages broad-

cast by source vehicles near the event region. The received messages are denoted as MSR
i where

i = 1, 2, . . . ,K andK is the number of received messages. The relay vehicle decides which infor-

mation is crucial or worth rebroadcasting and rebroadcasts the selected messages. The rebroadcast

messages are denoted as MRD
j where j = 1, 2, . . . , L and L is the number of rebroadcast mes-

sages. We assume that relay vehicle has su�cient computing ability or the computation can be

supported by other devices such as laptops. We also assume that all vehicles have dedicated short-

range communications (DSRC) devices [23], and there are one transmitting and one receiving

omnidirectional antennas at each vehicle.

The standardized broadcast scheme is used [23]. The MAC layer performs the traditional Re-

quest to Send/Clear to Send (RTS/CTS) mechanism in order to avoid the hidden node problem

and broadcast collisions. Additionally, the exponential backo� time is utilized based on the wire-

less access in vehicular environments (WAVE) standard [26]. The network architecture utilizes
1Source and destination here are conceptual terms. In practical, all messages are broadcast without specifying

destinations.
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the BSM format, as de�ned in IEEE 802.11p [23], which includes core state information such as

location, speed, and brake status, as well as path history and prediction. These messages are typ-

ically on the order of 300–400 bytes [46] with a 6 Mbps data rate and a 10 Hz message rate, and

transmitted over 300–500 meters. Usually, a vehicle can handle up to 2,000 messages per second,

so some works adjust the message rates to avoid congestion. Rather than decreasing the message

rates to solve the network congestion problem, our goal is to let the relay vehicle select crucial or

representative messages and rebroadcast them to the destination vehicle(s), so we will focus on

the selection algorithm in Section 3.4.3.

3.4.1 Real-World Applications

In this part, we present several real-world applications that the proposed selective message

relaying algorithm can be applied. The �rst application is intersection awareness, as shown in

Figure 3.13(a). The source vehicles near the intersection broadcast the environmental situation.

The relay vehicle eliminates the redundant messages and rebroadcasts useful information to the

destination vehicle which is approaching the intersection. The second application is emergency

vehicle warning, as shown in Figure 3.13(b). The source vehicles create the messages indicating

the presence of the approaching emergency vehicle. The relay vehicle eliminates the redundant

messages and rebroadcasts useful information to the destination vehicle ahead so that it can yield

the emergency vehicle. The other two applications are side road merging and sharp curve as-

sistant as shown in Figure 3.13(c) and Figure 3.13(d). They have several common features. The

destination vehicle does not have a direct line-of-sight to the environment where the source ve-

hicles are located. Furthermore, similar (or even redundant) messages are created from di�erent

source vehicles so that a relay vehicle should perform message selection. The application list can

be extended to cover collision warning, parking lot assistance, tra�c jam warning, and so on.

These application can be performed more e�ciently by using the proposed selective message

relaying algorithm. The proposed mechanism detects the redundant information and rebroadcast

only the unique information. Therefore, the same environmental awareness is provided by relay-

ing a smaller number of messages. Hence, message delay and congestion in the message bu�er

are avoided.
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(a) Intersection Awareness. (b) Emergency Vehicle Warning.

(c) Side Road Merging. (d) Sharp Curve Assistant.

Figure 3.13: Real-world applications that the proposed selective message relaying algorithm can
be applied. S, R, and D represent the source, relay, and destination vehicles, respectively.

3.4.2 Performance Metrics

To evaluate cooperative awareness in vehicular environments, we use the following three met-

rics:

• Rebroadcasting Rate: The number of messages that are rebroadcasted to the destination

vehicle(s). This metric is highly related to processing delay and system e�ciency.

• Processing Delay: The summation of computing delay and queuing delay. The computing



51

delay is measured directly, and the processing delay is calculated by the M/M/1 queuing

model [181]. Assuming a Poisson arrival rate and exponential service time, the expected

response time for broadcast messages is de�ned as [182]:

E[Tr] =
1

µ

(
1 +

ρ

1− ρ

)
, (3.40)

where µ is the service rate of the relay vehicle, which is set to 2,000 messages per second,

and ρ is the tra�c intensity for �rst-come-�rst-serve behavior, which is de�ned as:

ρ =
V λ

µ
, (3.41)

where V is the number of source vehicles, and λ is the message rate, which is set to 10 Hz

(as de�ned in the standard). Processing delay measures the system e�ciency.

• Vehicle Coverage: The number of vehicles that receive the message of corresponding

events. This metric measures the level of environmental awareness.

3.4.3 Proposed Algorithm

The goal of the proposed algorithm is to identify crucial or representative messages received

by a relay vehicle and only rebroadcast them for the destination vehicles. Due to di�erent environ-

ments and tra�c conditions, the relay vehicle will receive various numbers of messages at di�erent

broadcast periods, so the proposed algorithm uses an adaptive clustering mechanism which can

be used in di�erent environments and tra�c conditions.

3.4.3.1 Message Clustering

Clustering mechanisms �nd the set of objects that are more similar to each other than the

other sets of objects2 [183]. There are three main clustering methods that are commonly used:

K-means [184], density-based [185], and hierarchical [186]. K-means clustering associates each

cluster with its centroid. K-means clustering is not the best for the selective message relaying

problem since its performance is very dependent on initial cluster centroids. Furthermore, outlier

data points, i.e., those very di�erent messages from the others, can cause K-means clustering
2Objects are referred to received messages of a relay vehicle in our case.
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Table 3.2: A set of K received messages.

Received Features

Messages f1 f2 · · · fj · · · fN

MSR
1 x11 x12 · · · x1j · · · x1N

MSR
i xi1 xi2 · · · xij · · · xiN

· · · · · · · · · · · · · · · · · · · · ·

MSR
K xK1 xK2 · · · xKj · · · xKN

to be nonfunctional. Regarding density-based clustering, the data set is evaluated by clustering

high-density data points and leaving the low-density data points out of the clusters as outliers.

This does not �t our problem since message clustering considers the similarities of the messages

instead of how they are distributed. On the other hand, hierarchical clustering is independent of

the initial centroids and capable of adapting to various information sets. Therefore, we use the

agglomerative hierarchical clustering as our clustering mechanism.

In hierarchical clustering, each object is initially a cluster and then the closest two clusters

are merged until a single cluster remains. The main paradigm of hierarchical clustering is the

proximity matrix. Di�erent approaches are proposed to de�ne the distance between clusters such

as the minimum or maximum distance between clusters. In this work, we use the average distance

between clusters since it is more robust to outliers and noise. The Euclidean distance between

message i and message j can be computed as:

dij =

√√√√ N∑
n=1

(xin − xjn)2, (3.42)

where N is the number of features of a message and xin is the n-th feature of message i. A set of

K received messages is illustrated in Table 3.2.

We consider three features to de�ne the location of a message in the clustering space: mes-

sage type, time stamp, and location that the message is created. Although these three features are

su�cient to de�ne the similarity of messages, the interval (di�erence between the maximum and

minimum values) of these features are relatively di�erent from each other. For example, the dis-

tance between the source and relay vehicles is between [0, 300] meters, while the time stamp is
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between [0, 60] seconds. To develop a reliable clustering mechanism, we need to process the re-

ceived messages �rst and model the features in similar intervals. The modeling approach of each

feature is addressed below. Note that we de�ne the proposed algorithm with these three features

to demonstrate the general idea. Besides them, any information in BSM can be utilized as a feature.

Message Type: The events that the broadcast message include have di�erent priority lev-

els. In IEEE 802.11p standard [23], four di�erent access categories (AC), i.e., message priorities,

are de�ned. The �rst category, AC0, is assigned to the lowest priority messages, which are non-

safety and non-urgent applications. The second category, AC1, is assigned to non-urgent events.

The third category, AC2, is for environmental awareness or presence of other vehicles, especially

when drivers have limited vision abilities. The highest priority, AC3, de�nes urgent safety mes-

sages [187].

With the message types, we assign the weight for message i with AC0, AC1, AC2 to Pi =

0.125, 0.25, 0.5, respectively. All urgent safety messages, i.e., AC3, are broadcast by default, so

they do not need any message selection or weight assignment.

Temporal Feature: Each broadcast message includes the time stamp de�ned in Coordinated

Universal Time (UTC) format. A relay vehicle computes the di�erence between the times that a

message is created and the current time. We assign the temporal feature for message i as [71]:

Ti = e
− 1
αi

(tc−ti), (3.43)

where tc is the current time, ti is the time that message i is created, and αi is the mean of expo-

nential, which is de�ned based on message type. Here, we assign the means of AC0, AC1, AC2 to

4, 8, 16, respectively. Again, AC3 does not need this assignment.

Exponential modeling provides the property that a newer message has a higher value and an

older one has a lower but never non-zero value (a message may still be useful for the destination

vehicle although it gets older). A unique mean value is de�ned for each message type since a

message with higher priority should decay slower as time goes. On the other hand, a message

with lower priority should decay faster. For example, if two messages are created at the same

time, one with AC0 decays faster than the other with AC3.

Spatial Feature: The relevance of messages received by a relay vehicle intuitively has a neg-
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Table 3.3: A set of K received messages after preprocessing.

Received Features

Messages P T S

MSR
1 P1 T1 S1

MSR
i Pi Ti Si

· · · · · · · · · · · ·

MSR
K PK TK SK

ative correlation to the distance. We assign the spatial feature for message i as:

Si =

 1− Di
AR if Di ≤ AR;

0 otherwise,
(3.44)

where Di is distance between the source and relay vehicles and AR is the awareness range that

is pre-de�ned.

The preprocessing above provides the value of each feature needed for clustering message,

and each feature is in the interval of [0, 1]. As an example, the raw data shown in Table 3.2 is

transformed to the version as shown in Table 3.3. The hierarchical clustering is then performed

on the features after preprocessing. Once the hierarchy is obtained, the next step is to decide the

number of clusters on which the number of rebroadcast messages depends.

3.4.3.2 Number of Clusters

We use theL-method to obtain the number of clusters [188]. The method to obtain the adaptive

number of clusters is based on the distance between messages in the clustering space [189]. The

distance set is divided into two subsets, and the curve �tting is performed for these two subsets.

The intersection of the extensions of the two �tting lines is decided as the number of clusters. In

Figure 3.14, the method is illustrated, and the number of clusters is detected as 9. This number

is used in hierarchy of messages as shown in Figure 3.15. As a result, the member of clusters are

decided as the corresponding branches below the red line.
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Figure 3.14: Distance between messages in the clustering space.

Figure 3.15: Hierarchical message clustering. The member of clusters are decided as the corre-
sponding branches below the red line.

3.4.3.3 Message Selection for Rebroadcasting

The received messages at a relay vehicle are clustered based on their distances to each other in

the clustering space. We use the centroids of clusters to represent the corresponding clusters, and

the closest messages to the centroids are selected to be rebroadcast. Depending on the requirement

of application context, multiple messages from each cluster can be selected to be rebroadcast. The

proposed selective message relaying algorithm is summarized in Algorithm 1.
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Algorithm 1 Selective Message Relaying Algorithm
1: /∗preprocessing ∗ /

2: for Each message MSR
i do

3: if Message Type = AC3 then

4: Rebroadcast;

5: else

6: Pi = 0.125, 0.25, 0.5 for AC0, AC1, AC2, resp.;

7: Ti = e
− 1
αi

(tc−ti);

8: if Di ≤ AR then

9: Si = 1− Di
AR ;

10: else

11: Si = 0;

12: end if

13: end if

14: end for

15: /∗clustering ∗ /

16: Compute the distances between messages;

17: Build hierarchy;

18: Decide the number of clusters;

19: Decide the members of clusters;

20: Rebroadcast the closest messages to the centroids of clusters;

3.5 Numerical Results

We analyze the performance of the selective message relaying algorithm within a CVN envi-

ronment using the GEMV2 Vehicle-to-X (V2X) propagation simulator and MATLAB [43]. GEMV2

is a computationally e�cient propagation model for V2X communications, which explicitly ac-

counts for surrounding objects. The environment map is created using Open Street Map [190].The

experimental tra�c data is created in SUMO for a 1 km2 region (shown in Figure 3.16) and used

as an input to GEMV2 [191]. The link colors between vehicles highlight the link powers. The

experiment setup is summarized in Table 4.3.

By increasing number of scatterers, the accuracy of channel model also increases. However,

higher number of scatterers means higher computational complexity. In this section, the numbers
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Figure 3.16: Experimental tra�c data. The environment map is created using Open Street Map.
The buildings in the chosen area are de�ned by white blocks. Vehicle tra�c, illustrated as red
vehicles, is created using SUMO based on the environmental map. The random tra�c de�ned
within the area is used as an input to the GEMV2 simulator. The link colors between vehicles
show the link powers. If the link color is dark blue, the channel is noisy and experiencing strong
fading. If the link color is red, the channel has little noise and fading.

of scatterers change between 6 and 12, and are located within the geographical vicinity of each

node. These numbers are preferred for scatterers since more than these numbers does not make

any change on the channel impulse response result.

The two-lanes highway scenario is considered, with tra�c in each lane traveling in the same

direction. The speeds of the vehicles have uniform random distribution in an interval of [40, 80]

km/h and changes±10 km/h every time. The motion angle is chosen as θs = θr = θd = π, which

means the nodes move towards the negative x-axis. The wavelength is λ = c/fc = 3×108/5.9×

109 = 0.0508 2m, where c is speed of light in m/s and carrier frequency of DSRC is fc = 5.9 GHz.

The MIMO channel models are derived for 2× 2 antenna arrays, but the model can be readily

extended to Nt ×Nr MIMO models. The antenna spacing of each vehicle is chosen as δs = δr =

δd = 10λ. Thus, it can be assumed that the antennas are uncorrelated. The angle between the

antenna spacing and x-axis for each vehicle is γs = γr = γd = π/2.

Since the geometrical model depends on the radius of scatterer and the angles/distance between

vehicles, we denote these parameters setup as well. The radii of the isotropic scatterers are Rs =
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Table 3.4: System Parameter Setup.

Parameter Value

Message Size (Byte) 375

Message Rate (Hz) 10

Transmission Power (dBm) 23

Carrier Sense Threshold (dBm) -90

Noise Floor (dBm) -113

Max Transmission Range (m) 300

Message Period (msec) 100

Rr = Rd = 50 m, and the initial distance between each two nodes is Ds = Dr = Dd = 200

m. Since the initial distance is same for each node pair, the initial angle between vehicles are π/3

radians. Changing the vehicles speeds, the distances and angles are computed by the algorithm

for each time constant.

3.5.1 Simulation Results

We start with an analysis of the proposed framework for the SISO DF relaying CVNs. The

channel impulse response is a random process, which depends on time (t) and excess delay (τ)

for time varying multipath channels. In Figure 3.17, the changing on power of channel impulse

response (|h2
sr(τ, t)|) is shown for source to relay link (hsr). The channel impulse response changes

for each time constant. In addition, channel impulse response is non-zero only for some excess

delays. This result matches with the real data measurements shown in [192, pg 108].

The characteristics of the channel model are provided below such that they can be used in

order to help to understand the propagation characteristics. The spreading function, which is also

referred to as the delay Doppler spreading function, of a random process channel model demon-

strates the channel behavior by changing the Doppler shift and excess delay [193]:

Ssr(υ, τ) =

∫ ∞
−∞

hsr(τ, t)e
−j2πυtdt. (3.45)
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Figure 3.17: Squared magnitute of the source to relay channel impulse response. Carrier frequency
is 5.9 GHz; τ is excess delay; t is time variation.
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Figure 3.18: Spreading function of the source to relay channel impulse response. τ is excess delay;
υ is Doppler shift.

In Figure 3.18, the spreading function of the channel is shown, where υ is the Doppler shift and

τ is the excess delay. When the Doppler shift is small, the channel impulse response has highest

power. However, the channel power decreases by increasing the Doppler shift.

Geometrical channel model is de�ned by immediate channel elements depending on the ge-

ometrical parameters. In Figure 3.19(a), the changes on lower bound is shown based on initial

distances (Dsr = Drd = Dsd) and scatterer radii (Rr = Rs = Rd). Since the longer distance

causes higher interference on the channel, the lower bound decreases by increasing initial dis-
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Figure 3.19: Impact of parameters to the lower bound on the capacity. (a) Lower bound depending
on scatterer radii and initial distances. By increasing initial distance, the lower bound decreases.
Conversely, lower bound increases by increasing scatterer radius. (b) Lower bound depending on
antenna spacing (δs/λ) and maximum Doppler frequency (fsmax ). Lower bound increases by in-
creasing antenna spacing since the e�ect of interference reduces. By increasing Doppler frequency,
lower bound decreases since the scattering e�ect is increasing.

tance. Moreover, increased scatterer radius transform the channel behavior from interfered chan-

nel to multi-path channel. Therefore, lower bound increases by increased scatterer radius. In

Figure 3.19(b), the e�ects of Doppler frequency(fsmax ) and antenna spacing (δs) is shown. Since

Doppler e�ect causes the distortion on channel, lower bound decreases by increasing maximum
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Figure 3.20: Comparison of lower bound on the network capacity given by two di�erent models
for both high and low speeds. SoS model has better rate performance since the excess delay (τ ) is
taken into account.

Doppler frequency value. Conversely, lower bound increases when the antennas move away each

other since the mitigation of interference e�ect.

In Figure 3.20, the lower bound on the capacity of applied SoS model with LOS component

and geometrical model [34] are compared for both high and low speed vehicles. By using the

same amount of resources, the chosen model provides higher network capacity. The reason for

this result is that the SoS model takes into account the excess delay of the time varying multipath

channels while geometrical model assumes there is no excess delay. Adding to that, the SoS model

does not need any rapid measurements, such as the distances and angles between cars. Since

the geometrical model needs those measurements, the SoS model is more handy relative to the

geometrical model for vehicle-to-vehicle (V2V) networks. The analysis of low speed vehicles,

which is shown as dashed lines, indicate that the SoS model is more sensitive to speed changes,

especially for high SNRs. In the same �gure, the capacity of the P2P transmission is also shown

for both models. The results expose the bene�t of cooperative communication on CVNs.

In Figure 3.21, the autocorrelation function of both the applied SoS model and the existing

geometrical model are compared with the theoretical model [37]. While the same resources are

used in all model setup, statistics of SoS model matches with the reference model.

In Figure 3.22, the normalized spreading functions of both models are compared. The spread-
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Figure 3.21: Comparison of normalized autocorrelation given by geometrical and SoS models. Al-
though proposed SoS model and geometrical model use the same amount of resources, autocorre-
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Figure 3.22: Normalized Spreading functions for both SoS and geometrical model. The amplitude of
geometrical model decreases slightly faster than the amplitute of SoS model by increasing Doppler
shift.

ing function of proposed SoS model is 3-D, as shown in Figure 3.18, since it is random process.

However, geometrical model is random variable, so that, the comparison is done in 2-D platform

by one of the excess delay value is chosen for SoS model. The Doppler e�ect is almost the same for

both models but the geometrical model decreases a little sharper than the SoS model by increasing

the Doppler shift.

After analyzing the performance using the SISO models, the lower bound on the capacity is
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Figure 3.23: Lower bound on the capacity of MIMO SoS model with LOS component and geometri-
cal model for both cooperative and direct transmissions. For the same input parameters SoS model
has higher avhievable rate than geometrical model. Both models provide better performance by
using relay-based approach rather than P2P transmission.

analyzed for the MIMO relay-based CVNs. Since the other channel characteristics are the same

with the SISO model, they are not denoted here. In Figure 3.23, the lower bound results are shown

for both geometrical and SoS models. It can be observed that the cooperative transmission possess

a higher capacity relative to the P2P transmission for both models due to the bene�t of spatial

diversity. In addition, as shown in Figure 3.23, the MIMO SoS model with an LOS component has

a higher lower bound relative to the MIMO geometrical model for the same resources.

In Figure 3.24, the messages which are created in the transmission range around the relay

vehicle are shown. The colors of messages are referred to the priorities of messages, and the

messages with grey stars are selected to be rebroadcast. As shown in the �gure, all AC3 messages

are rebroadcast without selection. Several other messages are selected based on the combination

of their types, time stamps, and locations.

In Figure 3.25, the number of rebroadcast messages (rebroadcasting rate) is shown with respect

to the number of connected vehicles. The number of rebroadcast messages linearly increases with-

out any selection mechanism by the increasing number of vehicles in the experiment region. The

data preference mechanism, known as packet-valuecast (PVcast), was proposed by Xiang et al. [71]

and is used as a comparative approach. Compared with rebroadcasting without any selection,
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Figure 3.24: Message map. The points show the locations where the messages are created. The
colors of messages are referred to the priorities of messages, and the messages with grey stars are
selected to be rebroadcasted.
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Figure 3.25: The number of rebroadcasted messages (rebroadcasting rate) with respect to the num-
ber of connected vehicles.

the proposed algorithm decreases the number of rebroadcast messages by around 75% without

sacri�cing the environmental awareness. Additionally, it also rebroadcast fewer messages than

PVcast without sacri�cing the environmental awareness since PVcast decides which packet will

be rebroadcast based on their priority assigned by the proposed algorithm. Therefore, some of

the redundant messages are rebroadcast more than one time if their assigned priority values are

large. Since proposed selective message relaying algorithm considers both the priority of messages
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Figure 3.26: Processing delay with respect to the number of connected vehicles.
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Figure 3.27: Vehicle coverage with respect to the number of connected vehicles.

and their uniqueness, it rebroadcasts less number of messages to provide the same environmental

awareness.

In Figure 3.26, the processing delay is shown with respect to the number of connected vehicles3.

In the cases of fewer vehicles, the proposed algorithm has the same or slightly higher processing

delay than the two comparative approaches. This is due to the computation time of the proposed

algorithm. However, in the cases of more vehicles, the proposed algorithm has signi�cant pro-

cessing delay reduction, compared with the two other approaches. This shows that the proposed
3Experiment is run with Intel Core i7 and 2.2 GHz processor, and the selective message relaying algorithm takes

less than 2 msec.
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algorithm is less sensitive to the number of connected vehicles, and it provides better scalability

for various network environments.

In Figure 3.27, vehicle coverage is shown with respect to the number of connected vehicles. In

the cases of fewer vehicles, queuing delay is not a concern, and thus PVcast has high performance.

However, as the number of connected vehicles increases, the proposed algorithm outperforms PV-

cast. This is because the proposed algorithm can reduce queuing delay and thus prevent message

loss or expiration, demonstrating again that it has better scalability.

3.6 Chapter Summary

In this chapter, we explored large and small scale fading characteristics of CVNs. We analyzed

large scale fading for di�erent link types. The proposed large scale channel models are compared

with the real-world measurements and obversed that the results match. We derive two small scale

channel models for Decode-and-Forward (DF) relaying. We analyzed the lower bound on the chan-

nel capacity for multi-hopping CVNs to compare the performance of various network settings. We

explored the bene�ts of multi-hopping CVNs over P2P communication. Lastly, we proposed a se-

lective message relaying algorithm to increase the performance of multi-hopping CVNs by solving

message overhead on rebroadcasting operation at the relay vehicle. The proposed algorithm re-

duces 75% message rebroadcasting without sacri�cing environmental awareness and has very

good scalability which is especially important for future highly-loaded vehicular networks. In this

chapter, we understand the system behavior by exploring the channel characteristics. In the fol-

lowing chapters, the distributed adaptation techniques are proposed by considering these channel

characteristics. In addition to optimization of the relaying operation for multi-hop CVNs in this

chapter, we propose a distributed congestion control algorithm for cooperation with the one-hop

neighbors to make the CVNs more e�cient in the next chapter to make the CVNs communication

more reliable.
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Chapter 4

Environment Aware Cooperative

Distributed Congestion Control on

Vehicular Network

Safety and e�ciency applications in vehicular networks rely on the exchange of periodic mes-

sages between vehicles. The drawback of exchanging periodic cooperative messages is that they

generate signi�cant channel load. Decentralized Congestion Control (DCC) algorithms have been

proposed to minimize the channel load. However, while the rationale for periodic message ex-

change is to improve awareness, existing DCC algorithms do not use awareness as a metric for

deciding when, at what power, and at what rate the periodic messages need to be sent in or-

der to make sure all vehicles are informed. In this chapter, we propose a transmit power control

approach designed to achieve cooperative neighborhood awareness for vehicles, while the rate

control is subsequently employed to utilize the available resources. Speci�cally, we propose an

algorithm called ECPR (Environment- and Context-aware Combined Power and Rate Distributed

Congestion Control for Vehicular Communication), which is a combined power and rate control

DCC algorithm that aims to improve the cooperative awareness for challenging environments,

while at the same time increasing the message rate when the environment and application re-

The work presented in this chapter has been published in parts at [P1] and [J7].
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quirements1 permits. To comply with target channel load/capacity requirements, ECPR employs

an adaptive rate control algorithm. In this work, we use LIMERIC [78], a state-of-the-art adaptive

rate control algorithm, although other adaptive rate control algorithms could serve the same pur-

pose. We performed simulations with ECPR in an experimentally validated simulation tool [43]

and showed that it can provide gains in terms of awareness or throughput in realistic propagation

environments. The proposed mechanism is brie�y presented in ETSI 101 613 [194].

Compared to current state-of-the-art, the main contributions of our work are:

• A practical algorithm to incorporate awareness – a key building block for CVN applications

– as a core metric for congestion control in CVNs. ECPR proactively considers the e�ect

of power adaptation on rate adaptation and vice versa, so that it can adapt the mechanisms

more e�ciently at the next algorithm step.

• By adjusting the transmit power based on the awareness criterion, we enable: i) congestion

control adaptation to the dynamic propagation environment surrounding vehicles; and ii)

e�ective adaptation of cooperative awareness range based on the application context, in-

cluding requirements of di�erent safety and non-safety applications, speed of vehicles, and

di�erent tra�c conditions per direction.

• By combining rate and awareness control, the proposed algorithm can achieve one of the

following goals: i) improved channel utilization (in terms of the overall number of messages

exchanged) for a given awareness rate; or ii) improved cooperative awareness for a given

channel utilization;

We perform extensive simulations including both realistic propagation and environment mod-

eling (e.g. large- and small-scale fading parameters, dynamic transitions between LOS and NLOS

links based on real building and vehicle locations) as well as realistic vehicle contexts (varying

demand on both awareness by range and rate). We show that ECPR increases awareness by up

to 20% while keeping the channel load within reasonable bounds and interference at almost the

same level. When the target awareness distance permits it, our proposed algorithm improves the

average message rate by approximately 18%, while keeping the target awareness.
1We use the term “application requirements" to encompass the e�ects that determine the rate and awareness re-

quirements for a vehicle (e.g., speed, tra�c conditions, and currently active application).



69

4.1 Environment- andApplicationContext-awareCongestionCon-

trol

The work presented in this chapter aims at designing a novel DCC solution for V2V commu-

nication that can satisfy the target awareness levels for di�erent application contexts in di�erent

realistic propagation environments. As noted earlier, cooperative awareness is vital for CVNs since

many applications need to be aware of neighboring vehicles to trigger the correct type of action

for avoidance of hazardous situations (e.g., accident prevention). To that end, in this section we

discuss the main design goals for DCC algorithm and introduce metrics we use for evaluation of

the algorithms.

4.1.1 Design goals

To obtain acceptable performance in terms of cooperative awareness, DCC algorithms need to

take into account the following aspects:

• Application context, determined by vehicular tra�c conditions and application constraints,

yields the requirements in terms of rate (amount of data) and communication and awareness

range. Based on the application context, the DCC algorithm needs to distribute the available

channel resources in a fair way (fair both in terms of achieved awareness and rate).

• Due to varying vehicular tra�c density and mobility, the network topology is highly dynamic

and depends on the time of day, type of road and other features [33,195]. The DCC algorithm

needs to be adaptive with respect to network dynamics at a rate higher than the rate of

change of network.

• The propagation environment where vehicular communication occurs can be highly vary-

ing, even within a relatively small area. Environment characteristics of urban, suburban

and rural areas create di�erent challenges for congestion control and awareness [46]. The

environment creates e�ects similar on network topology to that of varying tra�c density

and mobility, albeit with geographically constrained dynamics.

• In addition to the e�ect of static objects near the road, surrounding vehicles also introduce
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signi�cant variation in the reception probability and network topology. Depending on vehi-

cle size, a vehicle can completely block the communication between two other vehicles [196].

Hence, a vehicle on a highway with dense tra�c (e.g., morning rush hour) will have larger

number of neighbors and a limited communication range due to the obstruction by sur-

rounding vehicles; on the same highway during late of night, a vehicle will have fewer

neighbors and an increased range. The DCC algorithm should be able to adapt to such vari-

ations.

• Electromagnetic emission regulations, limited channel resources, and potentially high num-

ber of communicating entities (including vehicles and roadside units) create practical limits

on the ability to control the power and rate parameters.

Figure 4.1 shows how the physical environment a�ects the awareness range [197], whereas

Figure 4.2 shows how the application context requirements a�ect the target awareness range [198].

In reality, there will exist numerous scenarios where the e�ects of the environment and application

context will be combined, with the applications setting the awareness and rate requirements and

the environment shaping the awareness range. Our goal in this study is to design a DCC solution

that can e�ciently support the functioning of safety and non-safety applications in diverse and

dynamic CVN scenarios.

4.1.2 Metrics

One of the main goals of cooperative awareness is to enable drivers/vehicles to enhance their

knowledge of the environment in order to augment the information that they can obtain visually.

To that end, cooperative message exchange mechanisms need to ensure that vehicles are aware

of other relevant vehicles within the same geographical proximity, including those that are in

NLOS conditions. However, achieving this goal e�ciently is a challenge since environments where

vehicular communication occurs are quite diverse. For example, the transmit power required to

send a message to a vehicle in an open environment (e.g., highway scenario) at a certain distance

will likely be much lower than the power required to send a message to a vehicle at the same

distance in a NLOS environment (e.g., urban scenario) as shown in Figure 4.3 [46].

To evaluate cooperative awareness in vehicular environments, we use two metrics introduced
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Figure 4.1: An example of how environment shapes the awareness range. Due to the particular
environment layout, with buildings surrounding the intersection, if it is using �xed transmit power,
vehicle X is likely to inform the vehicles on the same road of its existence, with a limited awareness
of vehicles on the perpendicular road, up until X is in the intersection, at which point vehicles
on both roads are likely to be aware of it. However, for active safety applications, awareness of
vehicles on perpendicular road is more valuable than that on the same road, since the drivers of
those vehicles cannot see vehicle X. Thus, for most CVN applications, it is assumed that the target
awareness/communication range is a circular shape (or as circular as possible) of certain radius.
Achieving such range in di�erent environments requires power control. Lower part of the �gure
shows an idealized transmit power pro�le to adapt to the intersection environment for vehicle X
as it travels through the intersection.

in previous work [46]: Neighborhood Awareness Ratio (NAR) and Ratio of Neighbors Above Range

(RNAR). For completeness, we de�ne these metrics as follows:

• NAR: The proportion of vehicles in a speci�c range from which a message was received in

a de�ned time interval. Formally, for vehicle i, range r, and time interval t, NARi,r,t =

NDi,r,t
NTi,r,t

, where NDi,r,t is the number of vehicles within r around i from which i received

a message in t and NTi,r,t is the total number of vehicles within r around i in t (we use

t=1 second). This metric measures the ability of cooperative message exchange to ful�ll its

purpose: enable cooperative awareness.
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Figure 4.2: Depending on the application context, which includes the speed of the vehicle, tra�c
context and the type of currently active application, vehicles can have di�erent target awareness
ranges. For example, vehicle Y can be going at a lower speed than vehicle Z, in which case it
might require smaller awareness range. Similarly, vehicle Z might be executing a safety-critical
application (e.g., emergency vehicle noti�cation), in which case it requires larger awareness range

	

(a) Highway. (b) Urban.

Figure 4.3: Measurements of NAR in Tampere, Finland. Measurements in both environments were
collected using in the same measurement run based on the same vehicles, �xed transmit power,
and 10 cooperative messages sent per second.

• RNAR: For a vehicle i, range r, and time interval t, the ratio of neighbors that are above

a certain distance from the observed vehicle RNARi,r,t =
NAi,r,t
Ni,t

, where NAi,r,t is the

number of vehicles above r from which i received a message in t (again, we use t=1 second)

andNi,t is the total number of vehicles from which i received a message in t (irrespective of

r). This metric gives an indication of potentially unnecessary tra�c overheard from distant

neighbors (i.e., those that are not relevant for current application context). Once the tech-

nology is deployed at a large scale (i.e., with communication equipment installed in most

vehicles), such tra�c will translate to unwanted interference.
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In addition to NAR and RNAR, we also analyze the the performance of DCC in terms of the

following metrics.

• Average Message Rate shows the number of messages that a vehicle can transmit per sec-

ond, averaged over all vehicles for a given second.

• Average Transmit Power shows the average transmit power messages that a vehicle trans-

mits, averaged over all vehicles for a given second.

• Channel Busy Ratio (CBR) is de�ned as the proportion of channel time where the energy

measured on the channel is above the Clear Channel Assessment (CCA) threshold.

4.2 Proposed ECPR Algorithm

In this section, we describe the proposed ECPR (Environment- and Context-aware Combined

Power and Rate Distributed Congestion Control) algorithm. The goal of ECPR is to satisfy the re-

quirements of target awareness levels for di�erent application contexts in di�erent realistic prop-

agation environments, along with utilizing the available channel resources. Due to possibly dif-

ferent application contexts and environments, the vehicles will have di�erent target awareness

ranges and di�erent target rates. To that end, ECPR uses power to control awareness range (dis-

tance) for the vehicles, whereas it uses rate to utilize the channel resources as allowed by the

awareness requirements. In other words, ECPR attempts to satisfy the awareness requirements, at

the same time maximizing the rate of messages through rate control. If the vehicles require low

rates in order to not overload the channel, ECPR will set the transmit power of the vehicles to a

maximum value. However, when the channel load increases (either due to higher rate require-

ments or due to an increased number of vehicles), ECPR is able to reduce the power in order to

support such scenarios by considering the awareness requirement. Below we explain how power

and rate control components are implemented, along with the way they are combined to reach the

abovementioned goals.
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4.2.1 Power Adaptation for Awareness Control

The power adaptation component of ECPR adapts the transmit power based on the current

target awareness range set by the application context. ECPR is capable of adapting to dynamic

scenarios with varying application contexts and in di�erent environments without requiring ex-

plicit knowledge about the surroundings, such as map information. To do so, it needs to estimate the

channel path loss for all vehicles from which a message has been received the past time segment t.

Consequently, each vehicle requires knowledge of the transmit power level of the messages sent

from each of its neighbors. The value of neighbor’s transmit power information can be transmit-

ted in the form of an integer value (e.g., between 0 and 33 dBm), which can be piggybacked in the

transmitted messages (e.g., in cooperative awareness messages or in data packets).

To adjust the transmit power in order to meet the awareness requirement, ECPR use Path Loss

Exponent (PLE) estimation. The transmit power adaptation algorithm is described as follows:

• De�ne: Ego vehicle: The vehicle that is currently estimating its DCC parameters;

Neighbor: Vehicle from which ego vehicle received a message within time segment

[t− 1, t] sec

• Given: Ego vehicles’ transmit power at time t: P Txe (t);

ith neighbor’s transmit power at time t: P Txi (t), where i = 1, ..., N (N : Known

number of neighbors within range);

Target awareness range of ego vehicle re(t);

Target awareness percentage of ego vehicle within re(t) (Target NAR described in

Section 4.1.2) : TAe(t)

• For each received message, calculate dij(t), distance between ego vehicle and ith neighbor

at time t when message j was received

• Select neighbors that are within target awareness range re(t); select messages which are

received from neighbors within re(t)

• Compute PLEij(t) (PLE for message j from neighbor i) by using log-distance path loss as
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per [171]:

PLEij(t) =
PLij(t)

10 log10

(
4π
λ dij(t)

) , (4.1)

where λ the signal wavelength and PLij(t) is the path loss for message j of neighbor i:

PLij(t) = P Txi (t)− PRxij (t), (4.2)

where P Txi (t) and PRxij (t) are the transmit (Tx) of neighbor i and receive (Rx) power of jth

message from neighbor i, respectively.

• Calculate ego’s nodes transmit power required to reach ith neighbor for next time step,

P Txe→i(t+1), usingPLEij(t) and calculating the mean transmit power required for messages

received from ith neighbor (with the mean over messages taken so as to counter the e�ects

of fading):

P Txe→i(t+ 1) =
1

m

m∑
j=1

PRxij (t) + 10PLEij(t) log10

(
4π

λ
re(t)

)
. (4.3)

• Set ego node’s transmit power for next time step (t+1) by considering the target awareness

distance re(t) and target awareness percentage TAe(t), provided as input of the application

context. Sort the required transmit power to each neighbor and select TAe(t)-th percentile

transmit power:

P_sortedTxe = sortNi=1(P Txe→i(t+ 1)), (4.4)

P Txe (t+ 1) = P_sortedTxe [round(TAe(t) ∗N)]. (4.5)

Implicitly, by estimating the PLE from the received messages to adjust the transmit power,

ECPR estimates what are the “worst” channels with all vehicles within the awareness range re

(i.e., not only those from which a vehicle received messages correctly). By receiving messages

from enough neighbors, ECPR gets an idea at what transmit power messages need to be sent at in

order to reach the vehicles in re. In other words, by using PLE estimation, ECPR attempts to reach

even those vehicles from which the ego vehicle has not yet received a message. As long as the

received power is higher than carrier sensing threshold, the transmit power at the next time step

to the corresponding neighbor can be estimated. For the extreme cases such as very large path loss
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with a short distance, probably more than one neighbor will su�er from large path loss issue in

the current environment. In that case, ECPR calculates Equation 4-5 and keep the transmit power

high to reach the target awareness. The frame error level (less than< 5%) is neglected since there

is not a signi�cant impact on performance. It will be shown in Section ?? that ECPR is a robust

adaptation mechanism even in situations with signi�cant MAC layer collisions.

4.2.2 Rate Adaptation

In this work, we employ the LInear MEssage Rate Integrated Control (LIMERIC) algorithm [78]

to perform the rate adaptation aspect of ECPR due to its ability to converge to a fair and e�cient

channel utilization.2 LIMERIC takes the current channel busy ratio (CBR) and the current beacon

rate as an input to the rate adaptation algorithm. The next beacon rate is adjusted to keep the

current CBR under the threshold CBR, which is set to 0.6 in this work [73]. The next message rate

(Rj(t)) adaptation is done by Monte Carlo iteration at each ego node as de�ned below:

Rj(t) =(1− α)R(t− 1) + sign(Rg −Rc(t− 1))min[X,β ∗ |Rg −Rc(t− 1)|], (4.6)

whereRc is the message rate, α and β are the convergence parameters, andRg is target rate which

satis�es the threshold CBR. For a detailed description of LIMERIC, we refer the reader to Bansal

et al. [78].

Recent measurement-based studies showed that message exchanges in vehicular environments

are dominated by shadowing scenarios (i.e., obstruction by buildings, vehicles), where messages

are both received and lost in bursts depending on the channel quality [46, 199]. This implies that

sending fewer high-power messages in NLOS scenarios have a better chance of creating awareness

between vehicles than sending multiple successive messages at a lower transmit power. However,

the current state-of-the-art with respect to DCC algorithms do not provision for making sure that

the hard-to-reach vehicles are informed via cooperative awareness message exchange. Further-

more, depending on the speed of the vehicle, the type of tra�c context (e.g., congested highway,

busy or empty intersection) and the type of active application [198], target regions of interest

(which directly translates into awareness range) can vary for di�erent vehicles. Rate-control-only
2We note that ECPR is capable of performing combined adaptation for congestion control with other adaptive rate

control algorithms.
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Table 4.1: Parameters used in the proposed algorithm

Parameter De�nition

t Time (sec)

re(t) Target awareness range at time t (m)

PTxi
Transmit Power of j’th message from neighbor i

within re(t) (dBm)

PRxij Rx Power of j’th message from neighbor i within re(t) (dBm)

dij(t)
ith neighbor’s distance within re(t) at time t

when receiving message j (m)

DefaultTxPwr Default transmit power (dBm)

TAe(t) Target awareness of ego node at time t (no unit)

CBR(t) Channel Busy Rate at time t (no unit)

lmj Length of the j’th message received by ego vehicle (byte/sec)

C Capacity of channel in terms of time (byte/sec)

a = 0.1, b = 1/150 LIMERIC parameters (see eq. 4.6) (no unit)

CBRTh Threshold CBR (no unit)

δA Di�erence between target and actual awareness (no unit)

eNAR(t) Estimated Neighbor Awareness Ratio at time t (no unit)

δR
The ratio of the di�erence between

target and actual rate to target rate (no unit)

TR(t) Target message rate at time t (Hz)

BR(t) Message rate at time t (Hz)

γ Awareness/rate preference coe�cient (no unit)

algorithms, which are proposed for the initial iteration of V2X systems [73], cannot accommodate

for di�erent awareness ranges.

4.2.3 Combining power and rate control

Algorithm 2 describes the steps of the ECPR algorithm, whereas Table 4.1 summarizes the pa-

rameters used by ECPR. The proposed combined control algorithm adapts the next transmission

power based on the current path loss (PLij(t)) and path loss exponent (PLEij(t)) for each mes-

sage (j) received from the neighbors (See Algorithm 2: Line 1-2). If the neighbor iwas already ego

node’s neighbor in the previous time step, the algorithm assigns the required transmit power to
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Algorithm 2 Environment-Aware Combined Power and Rate Control for Vehicular Communica-

tion (ECPR) algorithm
1: PLij(t) = P Txi (t)− PRxij (t)

2: PLEij(t) =
PLij(t)

10 log10( 4π
λ
dij(t))

3: if Neighbore→i(t) ∈ Neighborhoode(t− 1) then

4: P Txe→i(t) = 1
m

∑m
j=1 P

Rx
ij (t) + 10PLEij(t) log10

(
4π
λ re(t)

)
5: else

6: P Txe→i(t)← DefaultTxPwr

7: end if

8: Psorted
Tx
e = sort∀i,j∈N (P Txe→i(t+ 1))

9: P Txe (t+ 1) = Psorted
Tx
e [round(TAe(t) ∗N)]

10: CBR(t) =
∑n

j=1 lmj/C

11: BR(t+ 1) = (1− a)BR(t) + sign(CBRTh − CBR(t)) ∗min[X, b(CBRTh − CBR(t))]

12: δA = TAe(t)− eNAR(t)

13: δR = TR(t)−BR(t)
TR(t)

14: if CBR(t) < CBRTh then

15: Apply P Txe (t+ 1)

16: else

17: if P Txe (t+ 1) ≤ P Txe (t) then

18: Apply P Txe (t+ 1)

19: else if δA ≥ γδR then

20: Apply P Txe (t+ 1)

21: else

22: P Txe (t+ 1)← P Txe (t)

23: end if

24: end if

this neighbor based on the current PLij(t), PLEij(t), and target awareness range. Conversely,

if this vehicle was not a neighbor to the ego node in the previous time step, a default value (e.g.,

10 dBm or 23 dBm in our simulations) is used as needed in order for the transmission power to
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reach this neighbor. By using the default transmit power value, the ego node increases the prob-

ability of being heard by those nodes for which it does not know what kind of power is needed

to reach them (See Algorithm 2: Line 3-6). Once the ego node has the transmission power infor-

mation it needs to reach each of the neighbors, it sorts these values from the least to the most.

The next transmission power level of the ego node is chosen by considering the target awareness

percentage. In other words, the smallest value that covers TA% for all neighbors is chosen as the

next transmit power (See Algorithm 2: Line 8-9). In terms of rate adaptation, ECPR adapts the rate

by using the current message rate and channel load (i.e. CBR). The ratio of the messages received

divided by the channel capacity is de�ned as the CBR (See Algorithm 2: Line 10-11) - this is in line

with the standardized CBR calculation approaches [73].

Furthermore, as Algorithm 2 shows, the transmit power control takes into account the channel

load (CBR), such that the transmit power is not increased if the CBR threshold is reached. The

power control algorithm interacts with the rate control, such that the power and rate control

“share the load” in case of high CBR: the relationship between the target and current beacon rate

BR and the current and target awareness determines whether or not the transmit power will be

changed (either increased or reduced). The value of coe�cient γ determines whether awareness or

rate control is prioritized (In this study, we use the same weight for the awareness and rate: γ=1).

Furthermore, in the case of high CBR, ECPR prevents a signi�cant increase of the channel load

that could be caused by the application context suddenly increasing the target awareness range re.

However, we note that safety-critical messages generated due to hazardous events are going to be

sent at a high power and rate that are not governed by the DCC algorithm. Therefore, controlling

the power and rate of cooperative messages will not a�ect safety-critical messages (See Algorithm

2: Line 10-11). For clarity, Table 4.2 shows the transmit power control actions undertaken by ECPR

depending on the channel load (CBR), awareness, and rate.

The awareness metric measures the awareness of neighboring vehicles about the ego vehicle,

thus it can be estimated at ego vehicle locally by using the channel loss to each neighbor and the

transmit power that will be used at the ego vehicle at t+1. Since obtaining the NAR metric from a

receiver’s perspective as de�ned in Section 4.1.2 would require a vehicle to know about all vehicles

within r (in which case, by design, its NAR for r would be 1), we de�ne the estimated NAR (eNAR)
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Table 4.2: States that a�ect transmit power adaptation

CBR Awareness Rate

Transmit Power at t+1State vs. vs. vs.

Target Target Target

1 < < = Apply P Txe (t+ 1)

2 < ≥ = Apply P Txe (t+ 1)

3 < < < Apply P Txe (t+ 1)

4 < ≥ < Apply P Txe (t+ 1) if ≤ P Txe (t)

5 > < = Apply P Txe (t+ 1) if ≤ P Txe (t) OR δA ≥ γδR

6 > ≥ = Apply P Txe (t+ 1) if ≤ P Txe (t)

7 > < < Apply P Txe (t+ 1) if ≤ P Txe (t) OR δA ≥ γδR

8 > ≥ < Apply P Txe (t+ 1) if ≤ P Txe (t)

from transmitter’s perspective as follows:

eNARr(t) =
ND′r(t)

Nr(t)
, (4.7)

where Nr(t) is the number of vehicles within r at time t which ego vehicle detected (i.e., received

a cooperative message from), andND′r(t) is the estimated number vehicles inNr(t) that detected

the ego vehicle, calculated as:

ND′r(t) = ε ·
N∑
i=1

I(P Txe (t− 1) + PLTxe→i(t− 1) > PRxTh ), (4.8)

where I is the indicator function, PLTxe→i(t− 1) is the channel loss from ego vehicle to neighbor

i, and PRxTh is the receiver sensitivity threshold. E�ectively, the ego vehicle uses the channel reci-

procity theorem (PLTxe←i = PLTxe→i) [171] to estimate the proportion of its neighbors that were

able to receive cooperative messages from it in the previous time step. The estimation error for

number of neighbors is de�ned as ε and is set to [−10, 10]%. It is possible that a comparatively

high power signal is lost due to strong interference (although not too frequently, since CSMA/CA

mechanism and congestion control mechanism are in place). Hence, Equation (4.8) can introduce

false positive cases which lead to an inaccurate number of neighbors.
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(a) Highway Scenario (b) Urban Scenario

Figure 4.4: Regions used for highway and urban simulations (circled) on the topology of Newcastle,
UK. Both regions have an area of approximately 1km2. White outlines represent buildings that
were incorporated in simulations for realistic propagation modeling.

At low densities, when vehicles have a small number of neighbors, the eNAR estimate can be

incorrect because of a small number of data points it needs to work with. However, in low density

cases, vehicles will almost always be able to achieve the maximum rate and awareness, since the

channel load at low densities will be low. Therefore, knowing the correct eNAR is not necessary.

As the network density increases and vehicles start having more neighbors and they have a larger

number of data points to work with (e.g., 100 instead of 10 neighbors), which makes the eNAR

estimate more accurate.

4.3 Numerical Results

To evaluate the performance of ECPR, we implemented it in the GEMV2 V2V propagation

simulator [43]. In terms of parameters, the time step used for the ECPR time step duration was

set to 200 ms. For a given target range r, we use a target awareness TA = 85%. We use omni-

directional antennas on the vehicle roof and evaluate the DCC performance on a single channel.

We set the maximum transmit power to 23 dBm and the maximum beacon rate to 10 Hz. We

used the performance metrics described in Section 4.1.2.

To give a physical perspective to the parameters relevant for ECPR, the typical values for
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Table 4.3: System Parameters Setup for the Simulations.

Parameter Value

Carrier sense threshold [dBm] -90

Data rate [Mbps] 6

Measurement period [ms] 200

Min. and Max.packet transmission frequency [Hz] 1 and 10

Min. and Max. transmission power [dBm] 0 and 23

Min. and Max. awareness range [m] 20 and 500

Target neighbor awareness ratio 85%

Threshold Channel Busy Ratio 60%

awareness range r are from 20 to 500 m, depending on application context; similarly, target

awareness within r, TA, will be dependent on the application context and can range from e.g.,

50% to 100%; P Txe is usually limited from 0 to 23 dBm in radios used for V2V communication,

whereas the message rate BR is usually set between 1 and 10 Hz for cooperative messages [73].

Communication parameters considered in this chapter are summarized in Table 4.3.

Since the goal of this study is to show the feasibility of environment- and context-aware DCC

control by leveraging the bene�ts of both power and rate adaptation, we choose to compare the

proposed ECPR algorithm with LIMERIC (rate-only DCC algorithm), the power-control only com-

ponent of ECPR, and a scenario without DCC (i.e., messages are set with �xed rate and power

irrespective of the channel conditions).

Simulated Environments: One of the most challenging scenarios for DCC algorithms is to

ensure they properly function in any kind of environment. To that end, we perform simulations

using the city of Newcastle upon Tyne, England as shown in Figure 4.4. The region around A167 is

chosen for the highway scenario. A part of the city grid around Princess Square is used to simulate

an urban area. We used 1 km2 area and 500 vehicles for both the highway and urban simulations.

Vehicular mobility is generated using SUMO [200], whereas OpenStreetMap [201] is used to obtain

the outlines of buildings and foliage for accurate propagation modeling.

Application Context: Varying Target Rate and Target Awareness Distance: As shown

in Figure 4.2, depending on the application context, di�erent vehicles can have di�erent aware-

ness range and rate requirements at the same time. To test ECPR with varying awareness range
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Table 4.4: Tests de�ned with di�erent target awareness range and message rate combinations to
stress-test ECPR.

Target Awareness Range Target Message Rate

Test 1 Same for all vehicles (90 m) Same for all nodes (10 Hz)

Test 2 Same for all vehicles (90 m)
Uniformly distributed

between 5 and 10 Hz

Test 3
Chosen randomly from set

Same for all nodes (10 Hz)
S = [30, 60, 90, 120, 150, 180 m]

Test 4
Chosen randomly from set Uniformly distributed

S = [30, 60, 90, 120, 150, 180 m] between 5 and 10 Hz

and rates, we perform four types of tests described in Table 4.4. In Test 1, each vehicle’s target

awareness range is set to 90 m and target beacon rate is 10 Hz. In Test 2, the target awareness

distance is 90 m and target beacon rate is di�erent for all ego nodes. The target rate is chosen uni-

formly across an interval of [5, 10]Hz. In Test 3 and 4, the target awareness distances are selected

uniformly at random.

4.3.1 Simulation Results

In this section, we compare several results compare the existing solutions with ECPR by pro-

viding mean and standard deviation values. Furthermore, performance results for the individual

vehicles are provided in order to prove that individual vehicle behavior matches with the average

values. Then, ECPR performance is shown with di�erent target awareness range and target mes-

sage rate for both highway and urban scenarios. Finally, e�ects of medium access layer collisions

are discussed.

4.3.1.1 Comparison of ECPR with LIMERIC, power-only algorithm, and no DCC

In this subsection, we compare the performance of ECPR relative to LIMERIC (rate-only al-

gorithm), the power-control only component of ECPR (described in Section 4.2.1), and a scenario

without DCC. To obtain a fair comparison, we use only Test 1 from Table 4.4 (i.e., same aware-

ness range and rate requirements for all vehicles). We perform simulations with di�erent default

transmit power settings: these a�ect the initial power levels for radios employed in the ECPR and
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(e) Channel busy ratio (CBR)

Figure 4.5: Target Awareness 85%, Target Awareness Distance = 150m, default Tx Power = 10 dBm.
Urban Scenario. Power-only algorithm achieves awareness (NAR) comparable to ECPR; however,
due to it not taking channel load (CBR) into account, it exceeds the target CBR.

power-only adaptation scenarios, whereas for no DCC and rate-only DCC scenarios the default

power is used throughout the simulation.

Figure 4.5 shows the results for the urban environment with a target awareness range of 150m,

a default transmit power of 10 dBm. Compared to rate-only (LIMERIC), ECPR can achieve a

20% increase in points better awareness at the target distance by reducing the average rate from
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(d) Transmit power
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Figure 4.6: Target Awareness 85%, Target Awareness Distance = 50m, default Tx Power = 23
dBm. Urban Scenario. In this application context, ECPR can reduce the average power while not
jeopardizing awareness. This allows for increase of overall throughput in the system as visible
through increased average rate, while at the same time keeping the average CBR lower than that
of rate-only algorithm.

approximately 9 Hz to 8 Hz. This scenario can be regarded as awareness-focused, where an

application (e.g., intersection collision detection) requires vehicles to be aware of other vehicles

within 150m range. In this case, it is reasonable to trade some of the rate to increase the transmit

power (Figure 4.5(d)) and obtain an overall better awareness, since the messages that are traded for

increased awareness are likely cooperative awareness messages at lower power, which would not
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(b) Message rate

Figure 4.7: Randomly selected 100 vehicles for Target Awareness Distance = 50 m, default Tx Power
= 23 dBm.

be able to reach all vehicles at desired range, which defeats the purpose of sending those messages

in the �rst place. Power-only algorithm achieves awareness (NAR) comparable to ECPR; however,

due to not taking channel load (CBR) into account, it would exceed the target CBR.

Figure 4.6 shows results for an urban environment with target awareness range of 50m, default

transmit power of 23 dBm and showing how ECPR can achieve up to 25% better average mes-

sage rate, for the same satisfying requirement of the awareness rate at target awareness range.

In this scenario, because the application context allows it, ECPR can reduce the average power

(Figure 4.6(d)) while not jeopardizing awareness. This allows for an increase of overall through-

put in the system (see Figure 4.6(c)), while at the same time keeping the average CBR lower than

that of rate-only algorithm (see Figure 4.6(e)). In this scenario, no DCC adaptation performs as

well as rate-only in terms of awareness; however, the CBR target is not satis�ed. This emphasizes

the need for DCC algorithms, since without adaptation there is a risk of channel overload and

communication breakdown in case of high vehicular density. Note that ECPR can only adapt to

awareness and rate requirements to the extent allowed by the physical surroundings (e.g., it is not

possible to reach 500 m awareness range with 95% awareness rate without very high transmit

power) and transmit power parameters (which we limit to 0−23 dBm range so as to comply with

the capabilities of existing IEEE 802.11p radios).

In Figure 4.7 the per-vehicle behavior of the CBR and rate for 100 randomly chosen vehicles is

shown. Although CBR overshoots the threshold CBR at each time step for both scenarios, it hap-

pens for one time step only, speci�cally when new vehicles enter the simulation. In the next step,
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Figure 4.8: The number of vehicles that can achieve the target awareness.The number of vehicles
that can reach awareness target, 85%, and rate target, 10 Hz, for rate-only algorithm and ECPR.
As a result of adaptation on transmission power on ECPR, frequency reuse is able to be used more
actively, more vehicles reach the target message rate, and reaches target awareness more stably
than rate-only adaptation.

the ECPR adapts the beacon rates to keep the CBR under the threshold. Regarding per-vehicle

statistics, the results show that ECPR can control the load and can meet the target rate for all ve-

hicles whose awareness requirements and environment allow it. It is important to note that ECPR

aims to reach both the target awareness range and message rate based on the application require-

ments and given the constraints of speci�c physical environment. This results in a relatively large

message rate spread, since the environment dictates that some vehicles need to transmit at higher

power to reach the neighbors to which it has a bad channel (e.g., those behind a corner), which in

turn increases the load for those neighbors to which it has a good (LOS) channel. In other words,

combined awareness and rate control will not result in the same message rate at all vehicles unless

their propagation environment is the same.

In Figure 4.8(a) the number of vehicles that can achieve the target message rate, 10Hz for this

experiment, is shown for rate-only and ECPR adaptations. Since ECPR adapts the transmission

power to various context, transmission power is reduced if needed. As a result of adaptation on

transmission power, frequency reuse is able to be used more actively and more vehicles reach the

target message rate than rate-only adaptation. In addition to target rate, the number of vehicles

that can achieve the awareness target, 85%, is compared in Figure 4.8(b). Rate-only adaptation

uses default transmission power therefore has limited capability to achieve target awareness for
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Figure 4.9: Average transmit Power and beacon rate for highway and urban environments. The
relationship between average message rate and average transmit power is reversely proportional
on each environment.

any kind of application while ECPR can adapt the transmission power to changing application and

environment. Consequently, ECPR reaches target awareness more stably than rate-only adapta-

tion.

ECPR is tested for di�erent default transmission power values to see its adaptation ability to

any environment and context cases. However, we use 10 dBm power and 150 m target range (low

default power, high range requirement) and 23 dBm power and 50 m target range (high default

power, low range requirement) to show how ECPR performs in comparatively extreme cases.

4.3.1.2 Di�erent Target Rate andAwareness Distance Sets for CombinedAlgorithm: Ur-

ban vs Highway Environment

Figure 4.9 shows average message rates and transmit powers for di�erent tests. Target aware-

ness range and message rate are denoted in Table 4.4. The relationship between average message
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Figure 4.10: Average di�erence between target and achieved message rate for highway and urban
environments. Test 1 and 3 target the maximum message rate, the di�erence between target and
current rate is higher than in Test 2 and Test 4. The target rate is on average less than maximum
rate, thus the di�erence of achieved to target rate is less.

rate and average transmit power is reversely proportional on each environment: the lower the

average power, the smaller the message coverage, resulting in better channel reuse and higher

rate. The average rate is similar in the two environments because the high density of vehicles

means that the channel is loaded most of the time. Interesting to note is that in urban scenarios,

the average power converges to a value lower than in highway scenarios; this can be attributed to

the increased number of neighbors for the same range in urban environment. Thus, the channel

becomes more congested from neighbors at shorter distance and requiring lower power to reach

them. In turn, this o�sets the range limitations due to obstructing buildings requiring larger power

for the same range at highways.

Figure 4.10 shows the di�erence between the target message rates and the achieved rate for

both urban and highway scenarios. Since Test 1 and 3 target the maximum message rate, the

di�erence between target and current rate is higher than in Test 2 and Test 4. In other words, in

Tests 2 and 4, the target rate is on average less than maximum rate, thus the di�erence of achieved

to target rate is less.

Figure 4.11 shows the average CBR levels and their standard deviations for each time step for

all tests. As expected, the test which has higher average message rate also has higher CBR values.

However, average CBR values never over�ow the CBR threshold, which is 0.6 with ±0.05 toler-

ance. Although new vehicles entering the simulation and starting at maximum transmit power
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Figure 4.11: Standard deviation and mean of CBRs in highway and urban environments. The
threshold CBR value is set as 0.6 with ± 0.05 tolerance.In urban scenario, average CBR is higher
than in the highway scenario. The reason is that each ego node needs to communicate with a larger
number of neighboring vehicles in urban environment than highway due to the vehicles being
concentrated around intersections; combined with higher power to achieve the same awareness,
this results in higher overall CBR.

join the communication at each second, ECPR adapts the power and message rate at the next time

step and decreases the CBR to threshold value. In urban scenario, average CBR is higher than in the

highway scenario. The reason is that each ego node needs to communicate with a larger number

of neighboring vehicles in urban environment than highway due to the vehicles being concen-

trated around intersections [202]; combined with higher power to achieve the same awareness,

this results in higher overall CBR.

The results show that ECPR can e�ectively adapt the power and rate to achieve the target

requirements on awareness and rate given by the application context, irrespective of the prop-

agation environment. Since it has the ability to obtain higher average rate when the awareness

requirements allow it, at the same time maintaining or reducing the CBR as compared to rate-only

solution, it can be used to improve the overall system throughput. Conversely, if the awareness

requirements are more stringent or the propagation environment more harsh, ECPR e�ciently

trades rate to improve the awareness.

4.3.1.3 E�ect of Medium Access Layer Collisions

To investigate the e�ect of Medium Access Layer (MAC) collisions on the performance of

ECPR, we perform simulations with the same network conditions as for the scenario shown in Fig-
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Figure 4.12: Target Awareness 85%, Target Awareness Distance = 50m, default Tx Power = 23
dBm. Urban Scenario with MAC collisions.

ure 4.5 (Target Awareness 85%, Target Awareness Distance = 150m, default Tx Power = 10 dBm),

with increased loss due to MAC collisions (note that results in Figure 4.5 consider no loss due to

MAC collision). The collision statistics are de�ned as follows: when CBR is below 20%, 20−30%,

30− 40%, 40− 50%, 50− 60%, and above 60%, MAC layer collision causes 0%, 1%,3%,7%, 10%,

30% packets drops, respectively. These parameters are selected to represent harsh conditions

caused by progressively increasing collisions with the increase in channel load [203]. Compared

with Figure 4.5, Figure 4.12(a)– 4.12(b), shows that the e�ect of MAC collisions is quite limited in
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Table 4.5: Average percentage of potentially hidden nodes for ECPR and rate-only (LIMERIC)
algorithm.

Transmit Power = 23 dBm Transmit Power = 10 dBm

Awareness Range = 50 m Awareness Range = 150 m

50 Vehicles 100 Vehicles 50 Vehicles 100 Vehicles

ECPR 12.9% 22.4% 8.5% 17.4%

LIMERIC 11.9% 23.2% 8.7% 16.5%

terms of the key performance metrics of ECPR (NAR, RNAR); similarly limited di�erence can be

observed in Figures 4.12(c)– 4.12(e) in terms of the resulting network parameters (message rate,

transmit power, and CBR). Therefore, we conclude that ECPR utilizes channel as e�ective as pos-

sible while keeping CBR under the threshold even in the face of MAC collisions. In Figure 4.12(c),

the dip points are how network parameters react to changes without any adaptation yet. The

ECPR adapts the parameters to the optimum values every 200 msec by considering the resource

limitations.

Hidden node problem is another access layer consideration that can be caused by the propa-

gation environment layout as well the transmit power variations. To illustrate the issue, consider

the scenario in Figure 4.1, where two vehicles on perpendicular roads are trying to transmit to

vehicle in the center of intersection; if those two vehicles cannot “hear” each other, they create

the hidden node problem on the vehicle in the intersection. For each of A’s neighbors, we check

if that neighbor can “hear” from A’s other neighbors. Each pair of A’s neighbors that cannot hear

each other is counted as potentially causing a hidden node problem at A. Thus, the percentage of

hidden nodes is computed as the proportion of potentially hidden node pairs to total number of

communication pairs. The results in Table 4.5 show that ECPR results in comparative percentage

of hidden node pairs as LIMERIC (i.e., ECPR does not increase the probability of hidden nodes).

4.4 Chapter Summary

In this chapter, we proposed a combined rate and power DCC algorithm that e�ciently achieves

the target awareness and rate requirements given by the application context (e.g., target applica-
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tions, vehicle speed, tra�c density) in varying propagation environments. By using path loss

exponent estimation, ECPR adapts the transmit power to reach the target awareness range. ECPR

controls the channel load by adjusting the rate and power according to the current channel load,

awareness range, and rate information. We show that ECPR has the ability to obtain higher rate

when the awareness requirements allow it, improving the average rate by 15+%, while keeping

the target awareness and channel load. If the awareness requirements are more stringent or the

propagation environment more harsh, ECPR e�ciently trades rate to improve the awareness by

up to 20 percentage points. As de�ning a DCC algorithm for DSRC links in this chapter, we pro-

pose a practical DSA technique in the following chapter. While ECPR increases the environmental

awareness and achieves the application requirements for high priority messages in DSRC band, the

proposed DSA technique in the next chapter provides DTV channel access strategy for low prior-

ity messages. Nevertheless, the messaging overhead is avoided and the communications between

vehicles become more reliable.
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Chapter 5

Cooperative Spectrum Sensing and

Bumblebee-Inspired Channel

Switching Decision

The wireless spectrum scarcity issue, currently experienced by several sectors within modern

society, is also beginning to impact the automotive industry although connected vehicles have sig-

ni�cantly enabled research and development into intelligent transportation. It is predicted that the

connected vehicle technology and the currently allocated 6 channels of DSRC spectrum band will

be insu�cient for meeting all connectivity needs of the emerging ITS architecture. Consequently,

in many of the envisioned scenarios, the use of other wireless spectrum band such as TV white

space (TVWS) is viewed as a potential solution of the spectrum challenges faced by connected

vehicles. In this chapter, we propose a novel distributed dynamic spectrum access techniques for

CVNs. We �rst propose a voting based adaptive cooperative sensing algorithm for connected vehi-

cles. Once vehicles access the Digital television (DTV) band as secondary users (SUs), they need to

decide to whether keep staying in the current channel or switch to another channel with a better

quality although its switching cost. To enable vehicles e�ectively meet this challenge, we devised

a bumblebee-inspired decision-making algorithm in which channel energy information stored and

updated in memory to estimate qualities of channel options and then weighed against switch costs

The work presented in this chapter has been published in parts at [J5], [J4], [J3], [J2], and [J1].
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to determine optimal (bene�t/cost) channel selection.

5.1 AVotingBasedDistributedCooperative SpectrumSensing Strat-

egy

Cooperative spectrum sensing is a promising approach for enabling greater robustness and

reliability in vehicular dynamic spectrum access (VDSA) networks. The unique characteristics of

CVNs challenges channel access designs [3]. Firstly, highly dynamic vehicular environments re-

quiring a fast sensing algorithm that makes channel sensing optimization more challenging. The

features speci�c to vehicular communications such as Doppler e�ect, multipath fading channels,

transmission errors a�ecting the control messaging should be considered in the proposed solu-

tions. Furthermore, implementation of information sharing in cooperative sensing frameworks

needs to be evaluated. Limited capability to handle computational complexity hardware compo-

nents and processing latency.

To deal with these challenges on VDSA, we propose a novel cooperative distributed spectrum

sensing mechanism that uses an adaptive detection threshold for sensing and a robust voting mech-

anism for cooperative decision-making. The proposed mechanism selects an available channel for

a SU vehicle across a shorter time period relative to the channel coherence time. The adaptive de-

tection threshold is optimized by using a numerical method based on minimizing the probability

of incorrect detection, as well as used for the individual detection of available channels. Due to the

cooperative nature of connected vehicles, the decision of individual channel sensing is broadcast

to nearby one-hop neighbors. When the vehicle receives a list of available channels, it evaluates

this information based on the weighting functions of its neighbors as well as its own. Employing

an interdisciplinary method, called entropy-based weighting, the credibility of the information

provided by the neighbors is determined. By taking into account the computational load and pro-

cessing latency, the switching mechanism either selects the proposed voting mechanism for low

tra�c scenarios or an equally-weighted voting mechanism based on the literature for dense tra�c

conditions. The numerical results show that the detection error of the spectrum sensing process

converges to zero when employing the proposed distributed cooperative mechanism. To the best

of our knowledge, a concrete mechanism on how to use the shared information is a novel research
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idea despite the fact that cooperative sensing techniques have been extensively studied. Addi-

tionally, there does not exist a fast adaptive spectrum awareness mechanism for a highly dynamic

vehicular environment in the current state-of-the-art. When compared to current techniques pre-

sented in the open literature, our proposed solution has the following contributions:

• A fast optimization algorithm based on an energy decision threshold that provides an adap-

tive decision scheme to handle highly varying vehicular environments.

• An energy detector that considers Doppler e�ects, multipath channel characteristics, and

fading e�ect.

• A procedure that enables the sharing of available channel information between vehicles

without a�ecting the periodic control messaging.

• A novel and practical voting scheme that is derived from entropy-based credibility functions

of neighbors and the vehicle’s own information.

• A switching mechanism that considers the tradeo� between the computational cost/latency

and robust spectrum sensing.

5.1.1 Connected Vehicle Environment Setup

Figure 5.1 illustrates a typical connected vehicle topology. The red vehicle is referred as an ego

vehicle, while the white vehicles are referred to as neighbor vehicles. The communication links can

be either LOS or NLOS, and both can be dynamically changing over time. In our proposed dis-

tributed sensing mechanism, each vehicle individually performs spectrum sensing. Hence, every

vehicle will possess its own decision on which channels are available to use for the SU vehicles.

The proposed cooperative spectrum access uses the DSRC channels for sharing spectrum aware-

ness. For the data tra�c, DTV is used as SUs when the registered PUs do not use it. Once the DTV

channel is accessed based on cooperative sensing as the SU, the data tra�c is provided on DTV

channel.

The distributed spectrum sensing operation is performed based on detecting the energy levels

of the channels. Thus, the accuracy of the proposed algorithm depends on the employed channel

propagation model. In this work, we use a sum-of-sinusoids model de�ned in Chapter 3, in order
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Figure 5.1: Proposed concept diagram of connected vehicle environment: Each vehicle detects the
available channels individually and shares the channel information with the one-hop neighbors in
the next control message. Each vehicle decides the available channel list by using the information
received from neighbors, if available.

to obtain an accurate channel envelope, hk(t). Using the channel impulse response, we can for-

mulate aM -ary hypothesis test [204] such that the spectrum sensing operation performs a binary

hypothesis test as follows:

H0 :r(t) =
∞∑
t=0

nr(t)

H1 :r(t) =

∞∑
t=0

h(τ, t)x(t− τ)+nr(t), (5.1)

where r(t) is the received signal, x(t − τ) is the transmitted signal, nr(t) is the noise e�ect. The

hypothesis of the absence and presence of the PU areH0 andH1, respectively. The comparison of

the energy detection threshold and the energy level of the received signal, Er , yields the decision
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of channel’s availability to be used by SU vehicle, namely:

H0 : Er =
1

T

T∑
t=1

|r(t)2|< λj

H1 : Er =
1

T

T∑
t=1

|r(t)2|> λj , (5.2)

where λj is the energy detection threshold and T is the number of samples. Due to the dynamic

vehicular environment, the energy detection threshold, λj1, will be individually adapted at each

vehicle based on minimizing detection error. This TVWS information as a result of spectrum

sensing is periodically broadcast in the control messages. Without loss of generality, the broadcast

period is de�ned to be 100 msec such that 10 broadcasts occur per second [205].

Each vehicle receives control messages from its one-hop neighbors whose received power is

higher than the message received threshold. The available channel list to be used by the SU vehicle

is based on the neighbor’s individual decision that is collected from all the control messages. The

ego vehicle detects the credibility of the neighbors based on their signal-to-noise-ratio (SNR). The

credibility of the neighbors are used for de�ning the weights of the neighbors such that weighted

voting can be performed, as shown at the Neighbor Table in concept diagram. For example, in

Figure 5.1 we observed that the ego vehicle de�nes Neighbor A’s credibility as 0.1, Neighbor B’s

credibility as 0.3, and Neighbor C’s credibility as 0.6. Consequently, Channel Y would be chosen

with the highest vote as 0.9.

If the individual sensing is ready at the onset of the control messaging period, it is not sent dur-

ing the current phase of messaging and instead sent in the next messaging phase. This procedure

helps preventing the sensing algorithm from causing delays with respect to messaging. When a

vehicle receives a list of the available channels, it evaluates this information with the neighbors’

credibility. In case a vehicle does not receive any information regarding available channels, it will

only utilize its own individual decision.
1Since the sensing mechanism is performed distributed, all vehicles have individual energy detection calculation.

The subscript j for individual vehicle is used to highlight this distributed sensing mechanism.
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5.1.2 Proposed Optimal Energy Detection

Energy detection uses the energy spectra of the received signal in order to detect the busy

channels across a frequency band. Hypothesis testing is performed by comparing the channel

energy with an energy threshold, λj . When the channel energy is observed to be less than the

energy threshold, the channel is de�ned as available. Otherwise, the channel is de�ned as busy.

Since vehicular environments potentially vary rapidly over time, the signal-to-noise ratio (SNR)

will also �uctuate thus yielding detection errors. Therefore, �xed energy detection threshold may

not work e�ciently in vehicular communication environments.

We de�ne an optimization problem based on minimizing the probability of incorrect detec-

tion (P incj ) in order to adapt the energy detection threshold. Most approaches �nd the optimum

threshold by either minimizing the probability of false alarm or maximizing the probability of

successful detection [206]. However, the detection performance is actually a�ected by both phe-

nomena. Therefore, we use the probability of incorrect detection P incj for Vehicle j based on

Bayesian statistics in order to obtain the optimum detection threshold as follows:

P incj = P (H0)P (Ej > λj |H0) + P (H1)P (Ej ≤ λj |H1), (5.3)

where P (H0) refers to the probability that the channel is available, which has an exponential

distribution based on its �eld measurements [207]. P (H1) is probability that the channel is busy,

which is equal to 1−P (H0), P (Ej > λ|H0) refers to the probability of false alarm, P fj , where the

energy detector decides that a PU issuing the channel when in fact it is not, and P (Ej ≤ λ|H1) is

the probability of missed detection, Pmj , where the energy detector decides that no PU is present

in the channel when in fact it is. The optimum energy threshold minimizes the probability of

incorrect detection, λ∗j :

λ∗j = argmin
λj>0

P incj . (5.4)

Closed form derivations of P (Ej > λ|H0) (P fj ) and P (Ej ≤ λ|H1) (Pmj ) are needed to solve

the optimization problem. Digham et al. derived the closed form expression of the probability of
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successful detection of Rayleigh fading for Vehicle j as follows [141, 208]:

P dj =e−
λ
2

N/2−2∑
s=0

(
λj
2

)s
s!

+

(
1 + SNRj

SNRj

)N/2−1

e− λj

2(1+SNRj) − e−
λj
2

N/2−2∑
s=0

(
λjSNRj

2(1+SNRj)

)s
s!

 ,
(5.5)

whereN is the number of samples, SNRj is the average SNR forN samples where SNRj(dB) =

Er − Enoise giving Er is de�ned in Equation (5.2) and Enoise is the noise �oor. The SNR value

varies based on changes of the signal energy and channel envelope. This dynamically changing

environment motivates the need for an adaptive solution. Thus, the probability of missed detec-

tion, which is equal to Pmj = 1 − P dj , is used to �nd the adaptive energy threshold as shown in

Equation (5.4). The probability of false alarm of the Rayleigh fading for Vehicle j is the same as

the AWGN scenario [141, 208]:

P fj =
Γ
(
N/2, SNRj/2

)
Γ (N/2)

. (5.6)

The optimum energy detection threshold can be solved by applying numerical methods to the

optimization problem de�ned in Equation (5.4). One optimization method that is often used is the

Gradient method. This technique �nds the optimal points of the �tness function by discovering

those points where the slope is equal to zero, i.e.:

∂

∂λ
P incj (λ∗j ) = 0 (5.7)

Another optimization technique to �nd the optimal points of the �tness function is the New-

ton’s method. The method �nds the distance between two values of λj in the �tness function

space, i.e., P incj (λj) . The iteration is carried on until the distance is smaller than error tolerance.

The mathematical representation of the method is de�ned as [209]:

λn+1 = λn −
P incj (λn)
∂
∂λP

inc
j (λn)

(5.8)

The proposed algorithm should operate in less time than the coherence time of the vehicular

communication channel. Although the Gradient and Newton’s methods are the most common

optimization methods, they include a derivative that may incur a penalty in terms of computa-

tional cost and time. An alternative to these approaches is the Secant Method, where instead of
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a derivative, the di�erence of the error functions between two iterations is performed assuming

linearity [209]. Since this assumption would be valid with respect to discrete time vehicular com-

munications, we can obtain an accurate optimum value with a rapid convergence with respect to

this method as follows:

λj [n+ 1] = λj [n]− P incj [n]
λj [n]− λj [n− 1]

P incj [n]− P incj [n− 1]
, (5.9)

where n is the iteration index. The optimum energy threshold value, λ∗j , is equal to λj [n+1] when

λj [n+ 1]− λj [n] ≤ 10−4 assuming as error tolerance of 10−4. Note that the error tolerance can

be selected depending on the required sensitivity of the application.

Once the optimum energy detection threshold is obtained, the energy level of channel is then

compared with this threshold. In the event that the channel’s energy level is less than the en-

ergy threshold, this implies that only noise �oor is present across the channel and this channel is

available for usage by SUs.

5.1.3 Proposed Entropy-Based Weighted Cooperative Spectrum Sensing

The proposed cooperative spectrum sensing approach builds upon our distributed individual

sensing mechanism, where each vehicle detects channel availability individually, and transmits

this information to their one-hop neighbors along with the control messages. When the channel

availability cannot be detected between the transmission of control messages, the process will not

pause for the detection information. Instead, the available channel information will not transmit-

ted in the control message, but will be transmitted in the subsequent message.

At the receiver side, the vehicle obtains the available channel information from each control

message transmitted from the one-hop neighbors. By using the existing periodical beacon mes-

sages to share channel information, it is not necessary to transmit any additional messages. Thus,

the proposed approach avoids causing extra messaging overhead. In the case that none of the

neighbors have transmitted any available channel information, the receiver vehicle will use its

own detection information. Otherwise, the vehicle will gather the available channel lists and eval-

uate the detection results. Each neighbor has a di�erent credibility level since the control messages

may be exposed to transmission errors. Therefore, the evaluation at the vehicle is based on the

credibility function of each neighbor as well as its own.
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Figure 5.2: The behavior of entropy function. Note how the Uncertainty converges to zero if the
probability of random event occuring gets closer to the edges and at the peak value for p = 0.5.

In this work, we de�ne the credibility function via an entropy paradigm. Entropy de�nes the

uncertainty of random events [210]. The entropy behavior of a binary random event is illustrated

in Figure 5.2, where the uncertainty converges to zero when the probability of a random event

approaches the edges. For example, if the probability of an event occurring is 0.99, it means that

it is much more likely to occur, thus the uncertainty is almost zero. Conversely, if the probability

of an event occurring is 0.5, it is equally likely the event may occur or not. Hence, the entropy

as a measure of uncertainty peaks at the value of 1. Besides physics and mathematics [211, 212],

entropy-based weight functions are used in numerous disciplines such as economies and biol-

ogy [213, 214]. Likewise, Yuming et al. used weighting functions based on entropy in order to

�nd the priority of channel parameters during spectrum sensing operations, e.g. channel capacity,

acceptable error rate, delay [215].

In this work, we de�ne the entropy as a function of the probability of incorrect detection (see

Equation (5.3)) and the probability of correct detection, which is the complement of the probability

of incorrect detection, i.e. P corij (λ∗j ) = 1− P incij (λ∗j ). Each vehicle transmits its own value for the

probability of incorrect detection in the control messages. This shared information does not cause

any extra computation burden since the vehicle already computes the probability of incorrect de-

tection in order to �nd the optimum energy detection threshold. Moreover, the control message

characteristics, i.e., message length and transmission power, does not change since the probability

information to be shared in the control message is relatively small. Since the probability of incor-
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rect detection is formed by using SNR as well as the channel model de�ned in Section 5.1.1, the

e�ects of shadowing, multipath fading, and distance are all included in the credibility function.

The ego vehicle considers the neighbor decisions only if the probability of incorrect detection

is less than 0.5, since a high value for the probability of incorrect detection means the neighbor

decisions are very unreliable for some reason, e.g., transmission error, too noisy channel, too low

SNR. Please note that any value less than or equal to 0.5 can be chosen. In this work, we choose 0.5

for representation of the performance since it is the worst possible case. If the proposed mechanism

can provide a error-free detection even in the case where the uncertainty is at its maximum, the

proposed mechanism should be su�ciently reliable for more optimistic setups, e.g., threshold is

less than 0.5. As a result, the ego vehicle does not use unreliable neighbor decisions. By this way,

we use only right half of the entropy function in Figure 5.2. The ego vehicle i computes its jth

neighbor’s entropy using the following expression:

Hij = −P corij (λ∗j ) log2 P
cor
ij (λ∗j )− P incij (λ∗j ) log2 P

inc
ij (λ∗j ), P incij (λ∗j ) ≤ 0.5. (5.10)

Entropy function considers all factors of vehicular environment that a�ects probability of cor-

rect and incorrect detection. As noted above, the entropy paradigm is the measure of uncertainty,

where we de�ne the neighbor’s credibility using the complement of the entropy. The ego vehicle

i de�nes the weighting of all the neighbors and itself based on the complementary of the entropy

(uncertainty) as follows:

wij =
1− Hij∑M

k=0(1− Hik)
, (5.11)

where M is the total number of neighbors. The summation used in the denominator is from

k = 0 to M since k = 0 refers to ego node’s own entropy. The credibility levels are used for

voting on the available channels. Cooperative sensing provides a reliable sensing scheme since

the proposed mechanism implements the decision by evaluating the information received from

all neighbors [216]. In this case, several of the neighbors may send incorrect or corrupted data,

and the voting scheme will provide a decision based on the combination of correct and incorrect

data received from all neighbors. Therefore, the channels, which might be corrupted by malicious

attackers and/or transmission errors, will be repaired by the cooperative sensing scheme. The

channel that has the highest weight value in total is chosen for transmission. In the case where
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Table 5.1: Vehicular Density for Tra�c Classes.

Class Vehicular Density

Sparse 50 vehicle/km2

Medium 100 vehicle/km2

Dense 250 vehicle/km2

Extreme 400 vehicle/km2

none of the channels are available to be used by SUs, the result of voting mechanism will be zero for

all DTV channels. Hence, the ego vehicle will perform the traditional frequency re-use technique.

If there are no available channels to access even with frequency re-use mechanism, the ego vehicle

will wait for the next energy detection period to perform the proposed mechanism.

5.1.4 Proposed Switching Mechanism between Weighted and Equally Voting

The entropy-based weighting of neighbor channel availability decisions is a robust approach

with respect to adapting to a dynamically changing environment. The equal voting mechanism

presented by the current-state-of-the-art can cause decision error especially in the case of a low

number of neighbors as well as numerous obstacles located within the environment. On the other

hand, one drawback of entropy-based weighted voting is that it increases the computational com-

plexity of the implementation as well as the process latency. We propose a switching mechanism

to deal with this tradeo�. Based on our approach, the ego vehicle uses the entropy-based weighted

voting in the case of sparse tra�c conditions. Otherwise, it uses an equally-weighted voting ap-

proach that provides a cooperative decision possessing that is less complex in the event of a large

number of vehicles. We de�ne the variable switching threshold in order to di�erentiate the sparse

and dense tra�c conditions. In the literature, there are several studies that predict the current

tra�c density [217]. In this work, we de�ne the density, D, based on the number of neighbors in

the communication range as follows [218]:

D(vehicles/km2) =
Number of Neighbors + 1

Transmission Range
. (5.12)

The total number of vehicles that can communicate within the transmission range is computed
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Figure 5.3: Flow chart of the cooperative voting algorithm at the receiver. If the vehicle receives
an available channels list from nearby neighbor(s), it checks the number of neighbors. In case the
number of vehicles is less than the threshold, it computes the weight functions of all the neighbors
and itself when voting on the channel status. The channel that has the largest number of votes
is chosen for the data transmission. In case the number of vehicles exceeds the threshold, an
equally-weighted voting mechanism is employed. If the vehicle does not receive any available
channel information from its neighbors, it trusts its own detection result.

as a function of the number of neighbors and the ego node. Standards on mobility models pro-

vide a de�nition of sparse, medium, dense, extreme dense tra�c cases [73, Table 18]. In Table 5.1,

the density for the tra�c cases are listed based on ETSI TR 101 612 [73]. The ego vehicle com-

putes the tra�c density and compares the current density with the values in Table 5.1. In this

case, the ego vehicle decides whether it is denser than the medium tra�c class, i.e., the density is

higher than 100 vehicle/km2, and the ego vehicle decides whether there are enough neighbors

to perform accurate equally-weighted voting mechanism. Otherwise, it uses an entropy-based

weighting mechanism to choose the DTV channel in order to access as SU.

The cooperating sensing mechanism including a switching operation is shown in Figure 5.3.

The proposed mechanism performs individual distributed spectrum sensing using an optimal en-

ergy threshold. Once the decision of the neighbors are shared, the vehicle uses this information in

order to vote on the availability of channels for use by an SU vehicle. If the number of neighbors

is less than the neighbor threshold, the voting is performed by using an entropy-based weighted

voting approach. Otherwise, the voting mechanism considers each vehicle with equal weighting.

In the next section, the numerical results of proposed mechanism will be provided.

5.2 Bumblebee-Inspired Channel Switching Decision

Once the spectrum sensing is performed and the DTV channel is accessed by SU vehicle, the

next research question is whether the SU should stay in the same channel or it should switch to
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other DTV channel. If the current channel has a bad quality relative to other channels, it is required

to switch to the other channel. However, each switching operation has a switching cost due to the

computation, energy, and time consumption. It is not possible to use a �xed switching decision

threshold since the vehicular environment is highly dynamic and the threshold which is valid for

one environmental condition may give inaccurate decision in another conditions. To deal with

this issue, we propose an adaptive switching decision based on an adaptive behavioral responses

model of animals exposed to similar sensory conditions in their natural habitat. In particular, we

focus on bumblebee foragers since they have evolved cognitive abilities that enable them to make

adaptive behavioral decisions based on both individually and socially acquired information. Using

the bumblebee model, an e�cient channel sensing and selection system has been developed that

can rapidly and adaptively respond to changes in multi-channel environments. The key compo-

nent of this system is channel memory, which will enable the optimum point between switching

to the better quality channel, and the channel switching cost. Although the proposed mechanism

is speci�ed for accessing DTV spectrum in this dissertation, it can be adapted to any spectrum

band.

5.2.1 Why Bumblebees?

There have been several practical approaches proposed in the open literature that leverage

distributed optimization techniques employed in nature, such as ant colonies, honeybees, and other

insects, that perform swarm optimization of available resources [219]. However, thspectrumese

techniques require that each node within the network is dependent on the social interaction with

all other nodes within the network, which is not the case in applications such as connected vehicle

networks.

Consequently, we explore the bumblebee as a suitable social insect model for studying distri-

bution optimization of channel resources. Unlike ants and honeybees, bumblebees socially share

information with others but independently solve optimization problems within the distributed

network. The behavior of colony-based animals often involves duty sharing, such as a queen, a

scout, and a worker bee. Therefore, the social dependence of each individual does not cover all

possible connected vehicle networking scenarios. For example, if a vehicle is in a rural area, it may

loose connectivity with a centralized database or other neighboring vehicles. In such a scenario,
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any optimization mechanism relying on this form of communication may potentially not work

properly.

In a honey bee colony, the scout bee �nds a food source, comes back to the hive, performs

a “dance” to guide the worker bees to the food source [220]. If the nectar level decreases at the

food source, the worker bees are informed of a better food source when they all return to the hive

and decode the dance. The scouting process and the need for worker bees to return to the hive

in order to be informed about a better food source can incur a delay with respect to accessing a

better food source. By considering the highly dynamic characteristics of a vehicular environment,

the honeybee colony behavior is not an e�cient mechanism for such a highly time-varying envi-

ronment. Similarly, ant colony behavior is based on the tracking the pheromones that primer ants

have left [221]. Although ant colonies are very e�cient for routing scheduling and organization,

this mechanism also cannot deal with highly time-varying vehicular networking environment.

As an alternative to colony behavior, reinforcement learning mechanisms have been presented

in the existing literature. Genetic algorithms provide a reliable optimization technique but at the

expense of a large computation latency with respect to converging to the optimum value [116].

Partial swarm optimization is a very fast optimization technique since it jointly solves the �tness

function based on a multiobjective formulation [222]. However, it is highly dependent on the initial

information about the swarm structure, which is not realistic for connected vehicle networks.

Bumblebee foraging behavior is mainly based on individual decision mechanisms and fed by

collaborative decisions when available to make a decision more reliable. Since there is no need to

access any centralized system or wait for information from others, the decision and adaptation to

change that can occur as rapidly as their highly e�cient neural processing system allows. Thus, the

proposed approach to translate bumblebee distributed optimization to connected vehicle networks

and their access to wireless spectrum is e�cient.

5.2.2 Translation Between Two Worlds

Matching the terminology between bumblebee foraging and vehicular communications is the

�rst step in transiting bumblebee behavior to the vehicular optimization problem. In-band interfer-

ence is an unwanted phenomenon in the channel bandwidth. The equivalent of this phenomenon

are the pheromones produced by other bees in around a �ower. Pheromones from other bees may
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Table 5.2: Several De�nitions in Connected Vehicular Communications and Their Equivalent Def-
initions in Bumblebees.

Vehicles Bumblebees

In-band Interference Pheromone by other bees

Out-of-Band Interference Pheromone from the adjacent �owers

Minimum Channel Energy Level Maximum Nectar Level

Computation/Process Time Handling/Searching Time

Latency vs. Reliability Speed vs. Accuracy

Switching Cost/ Time between channels Switching Cost/Time between �owers

Channel activity over time Flower occupancy over time

Channel-user distribution Ideal free distribution

cause the incorrect detection of nectar levels by the bumblebee. Out-of-band interference is a form

of interference produced by co-channels that is similar to the pheromones produced by to the bees

foraging at adjacent �owers.

Channel energy levels is a key feature with respect to channel access and is similar to nectar

levels of the �owers for the foraging bees. However, there is an inverse relationship between these

two features. In vehicular communications, it is desired to access the channel with as low energy

level as possible since low energy level means there is no other user in the channel, which also

means low noise levels and interference e�ects. On the other hand, bumblebees desire to access

the �ower with the highest nectar levels since they can collect more nectar as well as more energy.

Computation/process time of the algorithms used by connected vehicles corresponds to the

handling/searching time of bees. Many algorithms have been proposed for connected vehicles

that provide the perfect channel access scheme. However, if the algorithm gives the result across a

longer time interval than the coherence time, the environment conditions change and the output

of the algorithm does match. Similarly, if the foraging process time for bumblebees to �nd the

best food source is relatively long, this causes longer searching times as well as spending more

energy. In other words, the trade-o� between latency and reliability is mirrored with respect to

the bumblebees in terms of speed versus accuracy.

Switching cost/time between channels should be considered although switching operations
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Figure 5.4: Representation of mixed �oral array used to assay learning, memory, and decision-
making in foragers. Various patch colors present the nectar levels of �owers. Bumblebee uses the
nectar levels to decide whether �y to the another �ower with higher nectar level although it will
spend energy to �y there.

provide the access to the channel with higher quality. Similarly, bumblebees switch to the �ower

with the higher nectar level in order to gain more energy. However, they also loose energy and

time for switching to another �ower.

Channel activity over time helps to understand channel behavior as well as design a prediction

mechanism. Similarly, �ower occupancy over time provide some input for modeling the foraging

behavior. In the literature, foraging animals distribute themselves among several patches of re-

sources, which is called Ideal Free Distribution [223]. As a result, these similarities between the

two worlds help us to leverage these mechanisms from nature. The relation between these two

disciplines is summarized in Table 5.2.

5.2.3 Foraging Theory

Bumblebees provide a robust biological framework for building and implementing cognitive

algorithms for DSA in vehicular networks. Bumblebees are social insects that form colonies com-

prised of a single queen and up to several hundred workers. A small subset of workers called “for-

agers” have the sole task of �nding and collecting food for the colony in the form of �oral nectar
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and pollen rewards [224]. Foragers routinely encounter a wide array of �owers with reward levels

that rapidly change over time and space (see Figure 5.4) [225]. Foragers are not pre-programmed

with information on the reward level associated with di�erent �owers [226]. Rather, they learn

and remember the reward level and sensory cues (color, odor, shape) associated with each �ower

types and then decide which ones to visit [227]. Importantly, bumblebee foragers do not depend

on “scout" bees such as honeybees or pheromone trails left by others such as ants. Consequently,

each individual has the capacity to learn, remember, and track changes in �oral rewards on its own.

This system has evolved to enable maximal reward intake to the colony across complex and highly

variable �oral conditions. While searching for �owers containing the greatest reward, foragers im-

plement a number of adaptive behavioral processes that are comparable to those processes needed

for vehicles to function independently and e�ectively in a connected network environment. First,

foragers (vehicles) evaluate the available �ower types (channels) and then select the type (channel)

that yields the greatest reward (channel quality). Second, foragers (vehicles)track and respond to

changes in �oral reward levels (channel quality) in a �exible manner. Finally, foragers (vehicles)

make �oral (channel) decisions that maximize the rate of nectar delivery to the colony (constant

utilization of a high quality channel by the vehicle). For example, the decision on whether or not

to switch to a new �ower type (channel) is based on a trade-o� between the rewards gained by

visiting a new type types (channel quality) and the time costs incurred when switching to that

type (channel; also referred to as a “switch cost"). Although they primarily use their personal ex-

periences to make �oral decisions, they can also enhance their knowledge of �oral environments

by gaining information from other foragers. For example, individuals can passively acquire infor-

mation about reward quality from cuticular hydrocarbon “footprints" left on �owers by previous

foragers: low hydrocarbon levels signal high likelihood of reward and high hydrocarbon levels sig-

nal low likelihood of reward. In this way, individual bumblebee foragers can use the experiences

of others (use memory of other vehicles) to increase their e�ciency of �ower (channel) selection

by minimizing the amount of time spent (cost) on empty �owers (low quality channels). By in-

corporating this agent-based approach into our empirical studies of forager behavior, we greatly

accelerate the subsequent development and implementation of cognitive algorithms for optimal

channel selection by vehicles in connected network environments.
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5.2.4 Proposed Switching Decision Mechanism

To leverage the potential of bumblebee foraging behavior in connected vehicle environments,

we propose to translate evolutionarily optimized bumblebee forager memory strategies to DSA

decision making for connected vehicle networks. One of the major challenges faced by vehicles

in a connected network environment is that they must accurately estimate channel quality from

power levels that signi�cantly vary over both time and space. The incorporation of an individual

memory component into the algorithm design would overcome this challenge by enabling indi-

vidual vehicles to derive estimates of local channel quality, which could then be shared throughout

the vehicular network. Equipping vehicles with an unlimited memory capacity would provide the

most accurate estimate of channel quality. However, unlimited memory would also generate ad-

ditional costs, e.g., information processing speed, time lag in reacting to environmental changes.

Thus, determination of an optimal decision-making strategy requires consideration of memory

capacity, dynamics, and associated costs. Bumblebees face identical constraints in choosing the

optimal foraging strategy in variable �oral environments.

Once the SU vehicles occupy the channel that is available, H0, they need to periodically check

whether they may switch to a better channel. The key parameter associated with the channel

switching decision is the switch threshold, which decides whether the users should continue to

use the same channel or search for another. However, the �xed switch threshold does not work

for a highly dynamic connected vehicle environment. For example, the noise level may be low

while the vehicle drives across a highway during a time step, and then it can drive into an urban

area possessing a high noise �oor during the next time step. In this example, switching to another

channel may not be the best decision since all of the channels could potentially be noisy. To

overcome this issue, we borrow the control mechanism employed in optimal foraging theory [224]:

Switching

Decision
=


“Switch”, Di

hi
≤

∑
k 6=i

λkDk

1+

∑
k 6=i

λkhk

“Stay”, otherwise

, (5.13)

where Dx = max
j

(Ej)−Ex the subscript i refers to the channel which is currently used, while k

refers to the other ones than Channel i, and j refers to the channel which has the highest energy
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level. The duration of searching for and switching to Channel k is de�ned as λk and the other cost

to switch Channel k such as energy consumption and computation is de�ned as the parameter of

hk. Without loss of generality, we assume the switching time and cost are the same for all channels

since the network devices and capabilities are the same for all vehicles.

The fraction in Equation (5.13) formalizes the Bene�t/Cost rate of the switching operation. The

bene�t is de�ned as the lowest energy level since SUs are searching for the available channels

and if available, the least noisy one. Therefore, the bene�t is the di�erence between the energy

level channel, which has the highest one, and the energy level of the current channel. A larger

di�erence between the highest energy level and the current noise �oor implies a more bene�cial

channel. In case the current bene�t/cost rate is less than the others, it means there is a less noisy

channel worth switching to despite the switching cost.

5.2.5 Memory Structures

Our proposed mechanism includes an individual memory structure to store the energy levels of

the channel during each energy detection period. By using the stored energy values, the proposed

channel access technique provides long term understanding of channel behaviors. For example, the

individual responses for changing channel energy values without memory. However, in case there

is an instantaneous change in a channel energy level, the individual should not need to respond

to that change. The output of the memory structure helps to eliminate this e�ect of instantaneous

changing.

We use the mean value of the stored energy values for each channel. However, the weighting

of the memory stacks needs to be de�ned di�erently, even adaptively. In the proposed mecha-

nism, the individual vehicle stores the channel energy values during the de�ned memory length,

computes its mean, and uses this mean energy values to perform in switching decision in Equa-

tion (5.13). The memory structure Equation (5.13) transforms as:

Switching

Decision
=


“Switch”, D̄i

hi
≤

∑
k 6=i

λkD̄k

1+

∑
k 6=i

λkhk

“Stay”, otherwise

, (5.14)
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(a) Dense urban tra�c (b) Light highway tra�c

Figure 5.5: The arti�cial vehicle tra�c data in Worcester, MA for numerical results.

where D̄x is computed by using the mean of the stored channel energy values in the memory. The

memory length directly a�ects the output of the memory mechanism as well as the switching de-

cision. For highly varying vehicular environments, it is not e�cient to use a large memory length

since the energy values will change and the next energy value will be uncorrelated relative to the

stored energy values. On the other hand, large memory lengths help to decrease the switching

costs and make the channel access e�cient for stable vehicular environment.

5.3 Numerical Results

We analyzed the performance of the proposed cooperative channel sensing algorithm within a

CVN environment using the GEMV 2 Vehicle-to-Vehicle (V2V) propagation simulator and MAT-

LAB [43]. GEMV 2 computes the propagation features of vehicular communication links for

given vehicular tra�c and environment map. The experiment regions are obtained in Open Street

Map [201] as shown in Figure 5.5 for dense urban and sparse highway scenarios. Vehicle tra�cs

are created on SUMO [200] for the given experiment regions for 100 sec. During the experiment,

the vehicles are moving in the experiment region randomly. As the experiment time progresses

on, the number of vehicles in the experiment region increases. The parameter setup implemented

in GEMV 2 is summarized in Table 5.3.
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Table 5.3: System Parameter Setup.

Parameter Value

Communication Parameters

Transmission Power (dBm) 23

Carrier Sense Threshold (dBm) -90

Noise Floor (dBm) -113

Number of Samples per detection 1024

Max Transmission Range (m) 500

Message Period (msec) 100

DTV Band (MHz) 509-605 & 617-698

Mobility Parameters

Number of Lanes 2-6 (Depends on street)

Number of Vehicles 150 (Sparse)&1200 (Dense)

Size of Experiment Region (km2) 2

5.3.1 Simulation Results

We show the results for proposed distributed cooperative spectrum sensing mechanism by

comparing the existing solutions. In addition to better performance results, we prove that the

proposed mechanism has less computational time than the channel coherence time. This feature

makes the proposed algorithm more realistic. Lastly, we show the results for proposed channel

switching decision mechanism. We provided a Benefit/Cost rate analysis and concluded the

results with the process time analysis.

5.3.1.1 Channel Sensing Algorithm

In Figure 5.6, the probability of incorrect detection de�ned by Equation (5.3) is presented as a

surface function. The optimization techniques de�ned in Section 5.1.2 can provide a global optima

only for convex and concave functions. Since the probability of incorrect detection is convex, there

is only one minimum point for each SNR value. Hence, the proposed mechanism is valid for any

operating condition.
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Figure 5.6: Probability of incorrect detection by changing the SNR and detection threshold. For
each SNR value, there is only one minimum point since the function is convex.

In Figure 5.7, the probability of incorrect detection is derived in order to optimize the adaptive

energy threshold for both Secant and Newton’s methods, which is chosen as a reference numeri-

cal method for the literature, and also compared with the result of having no optimization of the

energy detection threshold. The results show that adapting the detection threshold provides ap-

proximately a 20% decrease in incorrect detection around SNR = 15 dB. For other values of SNR,

the optimization is more bene�cial since it adapts the detection to the changing environment while

the �xed threshold does not.

In Figure 5.8, the optimum threshold value is evaluated and compared for three results, namely:

Actual value, Newton’s method, and Secant method. The Newton’s method is chosen as the ref-

erence numerical method. As observed in the results, both numerical methods give an accurate

actual result for any SNR value. The bene�t of the Secant method is that it provides the result in

a shorter period of time since the process does not include the derivative operation.

In Figure 5.9, the convergence time of both Secant and Newton’s methods are presented. The

experiment is repeated 20 times and the worst performances are chosen to demonstrate. As ob-

served in the results, both methods yield shorter times relative to the channel coherence time. This

experiment is performed using low SNR values (5dB) since the algorithms converge to the opti-

mum threshold more slowly in these scenarios. Therefore, the algorithms are su�ciently fast even

in the worst case scenarios. The Secant method is relatively faster than the Newton’s method since

the Secant method does not need to compute a derivative operation. Since the coherence time is
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Figure 5.7: Probability of incorrect detection by the optimizing detection threshold. Comparing to
a �xed threshold, the probability of incorrect detection is decreased by approximately 20%. Both
iterative methods give the correct probability values.
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Figure 5.8: Optimum energy threshold for di�erent SNR values. Both the Newton’s method (as a
reference numerical method) and the proposed Secant method are employed. The Secant method
provides an accurate threshold value during a shorter process time.

relatively longer than the algorithm duration, the proposed method is capable of performing the

detection before the channel values changes [152].

In Figure 5.10, the performance of the proposed �tness function in Equation (5.3) is compared

with the �tness functions based on either only probability of missed detection or the probability
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Figure 5.9: Convergence time of the iterative methods the optimum threshold is detected in less
time relative to the coherence time. Therefore, the proposed approach would be suitable for time
varying CVN operating conditions.
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Figure 5.10: Probability of incorrect detection for di�erent �tness functions for spectrum detection
at the individual vehicle. If the �tness function is de�ned with respect to only probability of missed
detection to �nd the optimum energy threshold, the chosen threshold may not be optimum for the
probability of false detection, or vice versa. On the other hand, the proposed mechanism �nds the
optimum energy detection threshold by considering both probability of missed and false detection.
Therefore, the incorrect detection is minimized.

of false detection. If the �tness function is de�ned with respect to only probability of missed

detection to �nd the optimum energy threshold, the chosen threshold may not be optimum for the

probability of false detection, or vice versa. On the other hand, the proposed mechanism �nds the

optimum energy detection by considering both probability of missed and false detection. Therefore

the incorrect detection is minimized.
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Figure 5.11: Receiver operating characteristics (ROC) curves for di�erent numbers of attendees
that join the cooperative channel sensing network. Notice how an increase in the number of
neighbors provide a more robust sensing environment.

The performance of the proposed entropy-based weighted cooperative sensing approach is

evaluated using the total probability of the missed detection and false alarm. We use the approach

of Letaief et al. derived in [156] that computes the total error probabilities of M users by consid-

ering the transmission error on control message:

Qfi =1−
M∏
j=0

[(
1− P fj

) (
1− P teij

)
+ P fj P

te
ij

]
, (5.15)

Qmi =

M∏
j=0

[
Pmj

(
1− P teij

)
+
(
1− Pmj

)
P teij
]
, (5.16)

where the probability of transmission error on the control messages received from jth neighbor is

taken into account as P teij . The transmission error for the ego node itself is set to zero, i.e., P tei0 = 0.

In Figure 5.11, receiver operating characteristics (ROC) curve is shown for non-cooperative and

cooperative scenarios with entropy-based voting mechanism forM = 10 and 20 users. The results

show that increasing the amount of cooperation decreases the detection error and provides for a

more reliable result despite the transmission errors during the control messaging.

In Figure 5.12, the entropy-based weighted voting scheme is compared with the non-cooperative

sensing and equally-weighted voting technique in the current state-of-the-art for the sparse traf-

�c condition. There are 150 vehicles employed in the selected experiment region that senses 10

DTV channels at each time step. The wrong detection percentage results show that the individual
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Figure 5.12: Comparison of only individual sensing, equally-weighted voting mechanism, and
entropy-based weighted voting. Sparse tra�c conditions of 150 vehicles were employed within
the experiment region. Each vehicle senses the status of 10 channels at each time step.

spectrum sensing cannot handle the dynamic spectrum characteristics. Although the cooperative

sensing scheme helps to decrease the wrong detection results, the equally-weighted voting still

performs relatively poorly. Since the vehicle tra�c environment is not dense, the distribution of

the neighbors within the region varies more than the dense vehicle scenario. Since the ego node

assigns the same credibility to all the neighbors without considering the variations for the path

loss across the links, the cooperative sensing error occurs in the equally-weighted voting mecha-

nism. Conversely, in the proposed entropy-based voting algorithm employing the adaptive energy

detection threshold, each ego node de�nes the weight of each neighbor as well as itself. Therefore,

even in the event that there are very few or no neighbors present, the ego node achieves an almost

zero-error spectrum sensing performance unlike the other approaches.

In Figure 5.13, the entropy-based weighted voting scheme is compared with the current state-

of-the-art employed in a high density tra�c scenario. The performance of the individual spectrum

sensing approach yields a spectrum detection error of around 10%. The detection of the equally-

weighted voting cooperative sensing scheme converges to zero, as well as the entropy-based voting

scheme. The equally-weighted approach converges to an errorless detection state at around 30 sec

since it needs a su�cient number of neighbors in order to perform reliable voting mechanism.

The proposed entropy-based mechanism is reliable with any number of neighbors. Therefore, the

entropy-based approach converges to an errorless state more quicker than the equally-weighted
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Figure 5.13: Comparison of only individual sensing, equally voting mechanism, and entropy-based
weighted voting. High dense tra�c conditions of 1200 vehicles were employed within the selected
region. Each vehicles sense the status of 20 channels at each time step.
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Figure 5.14: The e�ect of the threshold on the number of neighbors in sparse tra�c conditions. The
switching scheme decides on using the entropy-based weighted voting if the number of neighbors
are less than the neighbor threshold. Otherwise, equally-weighted voting is performed.

approach without needing su�cient tra�c density. Since the large amount of information being

shared can compensate for the detection error caused by giving equal credibility to each neighbor,

the equally-weighted voting approach can provide equivalently accurate detection performance

as the proposed mechanism in case the ego vehicle has a large number of neighbors. Since the

detection error converges to zero for both voting schemes, equally-weighted voting is chosen for

dense tra�c conditions due to its relatively low computational cost.

There exists a trade-o� with respect to the proposed switching mechanism. The equally-
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Figure 5.15: The e�ect of the threshold of number on the neighbors in dense tra�c conditions. The
cognitive scheme decides on using the entropy-based weighted voting if the number of neighbors
are less than the threshold. Otherwise, equally-weighted voting is performed.

weighted voting mechanism is desirable since the computational cost is relatively lower to other

techniques. However, the equally-weighted voting scheme cannot provide reliable voting results

for sparse tra�c conditions. On the other hand, the entropy-based weighted voting provides accu-

rate detection results in any cases but it is computationally more expensive in high with the dense

tra�c. In Figure 5.14, the proposed switching mechanism between the entropy-based weighted

and equally-weighted voting mechanisms is simulated in sparse tra�c conditions. The detection

results for 150 vehicles for 10 channels are computed during a 30 sec time interval. Although the

general setup of the experiment is for sparse tra�c, the individual vehicles may possess dense

tra�c characteristics due to the mobility and obstacle conditions at the current simulation time.

In this experiment, di�erent values for the tra�c densities are chosen to represent the accuracy

of both voting mechanisms. The blue line in Figure 5.14 shows that the ego vehicle uses equally-

weighted voting if the current density is more than the density of 5 vehicle/km2, which means

equally-weighted voting is used for very sparse tra�c condition according to the de�nition of

sparse tra�c in the standards [73]. Otherwise, it uses entropy-based weighted voting. As shown

in the results, using the equally-weighted voting scheme in the sparse tra�c causes detection er-

ror. Similarly, for the red line, if the ego vehicle uses the equally-weighted voting more than the

density of 25 vehicle/km2 which is still very sparse tra�c, signi�cant detection error occurs. For
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Figure 5.16: Detection performance changes with transmit power for sparse tra�c conditions.

the black line, the switching mechanism uses the equally-weighted voting if the current tra�c

density is more than the density of 50 vehicle/km2. Since the entropy-based weighted voting is

used up to the density of 50 vehicle/km2 and it provides an accurate detection although the small

number of neighbors, it provides almost error-free mechanism.

In Figure 5.15, the switching mechanism between the entropy-based weighted and equally-

weighted voting mechanisms is simulated in dense tra�c conditions. Similar to sparse tra�c,

di�erent values for the tra�c densities are chosen to represent the accuracy of both voting mech-

anisms. For the di�erent threshold values, the ego vehicle uses entropy-based weighted voting less

often than the threshold mentioned in the legend and equally voting more often than the thresh-

old. Since the ego vehicle has a large number of neighbors for reliable spectrum detection most

of the time in the dense scenario, the equally voting can provide almost error-free detection. As a

result, the proposed switching mechanism due to the sparse and dense tra�c classes is consistent

with the de�nition of tra�c classes de�ned in standards [73].

In Figure 5.16, the same sparse tra�c experiment is simulated for di�erent transmit power

values for the proposed distributed cooperative sensing mechanism. Transmit power values a�ect

the SNR level and the detection performance, which are important to observe since the stan-

dards have not been �nalized yet regarding the transmit power [73]. Furthermore, recent research

activities propose adaptive transmit power techniques which changes in the interval from 10 to

23 dBm based on the environment and application requirementse.g., Chapter 4. The results show
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that transmit power can cause incorrect detection up to 2.5%.

5.3.1.2 Computational Complexity and Process Latency

One major consideration with respect to connected vehicles is process latency. In this subsec-

tion, we evaluate computational complexity and process the latency of proposed mechanism2. In

Table 5.4, the computational complexity of both the entropy-based weighted voting and equally-

weighted voting schemes are compared with respect to the amount of mathematical operations

they each perform. The operations of Equations (5.10) and (5.11) are listed in the �rst two lines of

the table. These operations are performed M + 1 times, which is obtained from the M number

of neighbors as well as the ego vehicle itself. Once the weights are obtained, voting is performed

by summing the weights of the M neighbors and the ego vehicles for each channel. De�ning the

total number of channels to be equal to N , the M + 1 adding operations are performed N times.

For the equally voting scheme, only the binary decisions of the neighbors and the ego vehicle are

summed up for N channels. As a result, the proposed entropy-based weighted voting scheme has

a higher computational complexity relative to the equally-weighted voting mechanism. There-

fore, the switching mechanism is used to leverage the bene�t of the robustness associated with

the entropy-based weighted voting scheme and the low computational load associated with the

equally-weighted voting scheme.

In Table 5.5, the process time is shown for both sparse (150 vehicles) and dense (1200 vehicles)

tra�c scenarios within the experiment region. Although the complexity of the proposed algorithm

is higher than the equally-weighted voting algorithm, the latency levels do not violate the coher-

ence time limitations, e.g., 1 − 10 msec depends on the vehicle speed, as Kremo et al. explained

in [152]. These results prove that proposed algorithm provide an accurate spectrum detection for

any environment conditions without violating the latency limitations.

5.3.1.3 Channel Switching Decision Mechanism

The channel characteristic is shown in Figure 5.17. Vehicles switch between channels in or-

der to �nd the most powerful available channel of a given time instant. The adaptive behavioral
2Experiment is run with Intel Core i7 and 2.2 GHz processor. The processing time is tested by using tic − toc

comments on MATLAB.
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Table 5.4: Computational complexity analysis based on the number of mathematical operations at
each voting scheme.Total number of mathematical operations that are noted at the last two lines
show that equally-weighted voting has relatively lower complexity than entropy-based weighted
voting.

Operation × +/− log2 ÷

Entropy-Based Weighting Eq. (5.10) 2 · (M + 1) (M + 1) 2 · (M + 1)

Eq. (5.11) 2 · (M + 1) M + 1

Chn =
∑M

j=0wj n = 1 . . . N N · (M + 1)

Equally Voting Chn =
∑M

j=0 1j n = 1 . . . N N · (M + 1)

Entropy-Based Total O (2 · (M + 1)) O ((3 +N)(M + 1)) O (2 · (M + 1)) O (M + 1)

Equally Total O (N · (M + 1))

Table 5.5: Process latency caused by cooperative sensing mechanism. Results show that the oper-
ation duration of both voting mechanisms is lower than channel coherence time that makes the
proposed approach practical.

150 Vehicles 1200 Vehicles

Entropy-Based Weighted Voting (Min–Max µsec) 401.38 – 418.64 271 – 790.416

Equally Voting (Min–Max µsec) 13 – 26.23 9 – 135

Figure 5.17: Normalized squared magnitude of the channel impulse response: t refers to the time
variation on a channel. Three representative channels are visualized to indicate the environment
changes on time.

response mechanism is needed to decide whether the channel is worth switching to despite the

switching cost. The individual memory will provide a solid decision on the channel switching. For

example, a vehicle chooses to be on Channel 42, if available, by using its individual memory since

Channel 42 is more powerful based on its long term behavior. Therefore, the unwanted switching
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cost, which is caused by instantaneous decisions, will be avoided.

In Figure 5.18 and Figure 5.19, the sparse tra�c conditions, 12 vehicles/km2, are tested with-

out and with the proposed switching mechanism for various memory lengths. The simulation is

performed for 100 sec. The number of randomly moving vehicles increases at each time step from

0 to 1200 vehicles. In Figure 5.18, the number of vehicles that can access the best possible channel

at each time step. “Best possible channel" means the available channel to be used by the SU is the

least noisy DTV channel. In Figure 5.19, the number of vehicles that performs the switching oper-

ation is counted to compute the switching cost. Without a switching decision, vehicles randomly

access a DTV channel and stay in the same channel until the connection is lost. The switching

cost is always zero for this case since the switching operation is never performed. The proposed

switching decision with a memoryless mechanism checks the requirement for the switching op-

eration by using Equation (5.13) at each time step. Therefore, the vehicles can access the best

possible channel at each time if they are not already using a good quality channel. However, the

switching cost is higher than the memory mechanisms since they check the switching decision at

each time step. For the memory systems, the energy detection is performed at each second and

stored in the memory. When the memory length is 3 sec, the memory stores the energy values for

3 sec, performs the switching decision, and then waits for the next 3 sec to store the new energy

levels to perform another switching decision. By increasing the memory length, the number of

best vehicles accesses of the best available channels decrease since the waiting time for the switch-

ing decision increases. However, the switching cost also decreases since the number of switching

operation decreases. In Figure 5.20 and Figure 5.21, the experiment is run for dense urban tra�c

conditions,i.e., 150 vehicles/km2. In this scenario, the number of vehicles increases from 0 to

900 vehicles at each time step. Unlike sparse highway scenario, the channel qualities quite change

every time step due to dense tra�c, re�ection and scatterers by the obstacles. The memory mech-

anism waits for new energy values are stored the memory. Therefore, the longer memory lengths

wait longer than the shorter memory lengths to perform the switching decision. Since the energy

values change immediately, the number of vehicles that uses the best available channel signi�-

cantly decrease at the next time step when performing the switching. Therefore, although there

is a decrease on switching cost, using a longer memory length in dense urban scenarios may not

be practical.
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Figure 5.18: Sparse highway tra�c: The best number of vehicles that can access the best possible
channel at the corresponding time step.
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Figure 5.19: Sparse highway tra�c: Switching cost at the corresponding time step.

The previous results show the trade-o� between accessing the best available channel and

switching costs. In Figure 5.22 shows the Bene�t/Cost rate to decide which memory length to

choose. For sparse highway tra�c, 10 secmemory length provides the optimum point of trade-o�

while 5 sec is the best for dense urban tra�c. For highly dynamic environment, lower memory

length is preferred since the mean of channel values are di�erent than the instant channel values

that may cause wrong detection. For less dynamic environments, large memory length is pre-
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Figure 5.20: Dense urban tra�c: The number of vehicles that can access the best possible channel
at the corresponding time step.
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Figure 5.21: Dense urban tra�c: Switching cost at the corresponding time step.

ferred since the average of channel values in the memory is close to the instant values that helps

to decrease channel switching operation as well as switching cost.

In Figure 5.23, the proposed approach is compared with the existing works, i.e., optimal mod-

i�ed de�ection coe�cient (OPT-MDC), parallel arti�cial bee colony (PABC), genetic algorithms

(GA), partial swarm optimization (PSO), memory enable genetic algorithms (MEGA). Since the

proposed switching mechanism is based on individual decision process and uses the energy val-
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Figure 5.22: Sparse highway tra�c: Bene�t / Cost Rate for various memory lengths.For sparse
highway tra�c, 10 sec memory length provides the optimum point of trade-o� while 5 sec is the
best for dense urban tra�c.
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Figure 5.23: Benchmark on computation time: the proposed approach, optimal modi�ed de�ec-
tion coe�cient (OPT-MDC), parallel arti�cial bee colony (PABC), genetic algorithms (GA), partial
swarm optimization (PSO), memory enable genetic algorithms (MEGA). Since the proposed switch-
ing mechanism is based on individual decision process and uses the energy values in the memory
without performing any complicated mathematical operation, the proposed approach possesses a
low computation time.

ues in the memory without performing any complicated mathematical operation, the proposed

approach possesses a lower computation time than existing solutions [116, 228].

As a result, bumblebee foraging behavior provides a potentially e�cient solution with respect

to channel accessing requirements in vehicular communications. Individual adaptive switching
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decisions provide a fast computation, while obtaining the optimum point between switching to

the better quality channel and the switching cost by memory structure.

5.4 Chapter Summary

In this chapter, we propose a voting-based distributed dynamic spectrum access solutions for

CVNs. We �rst proposed a voting based cooperative channel sensing algorithm for connected ve-

hicles. We adapted the energy detection threshold based on minimizing the probability of incorrect

detection using a fast numerical method and employed the optimum energy detection threshold

to sense the available channels. The individual decision per available channel is shared between

one-hop neighbors. The ego vehicle uses entropy-based weighted voting mechanism to derive its

neighbors’ credibility as well as its own. The weights are used for voting on the available channel

and the channel that has the highest votes is selected to be used by the SU vehicle. The proposed

mechanism employs a tradeo� between robustness and computational load. To achieve a suitable

tradeo�, we proposed a switching algorithm between the entropy-based weighted voting mech-

anism applied to sparse tra�c conditions and an equally-weighted voting mechanism for dense

tra�c conditions. Once SU vehicles access the DTV channel, we proposed a distributed channel

switching decision mechanism. Channel energy levels are compared to decide whether there is a

better quality channel than currently used one, that is worth to switch despite of its switching cost.

With this decision mechanism, the optimum trade-o� point between switching cost and bene�ts

is provided with memory structure.
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Chapter 6

Conclusion and Future Work

In this dissertation, we proposed distributed adaptation techniques for connected vehicles

to have reliable communications in any environmental condition. We �rst identify the channel

characteristics to enable the research approaches. Next, we proposed a distributed congestion

control algorithm for de�ned channel characteristics that increases the environmental awareness

and achieves the application requirements. While the proposed DCC algorithm provides a robust

mechanism for high priority messaging in DSRC band, we proposed a distributed DSA mechanism

to access the DTV channels for low priority messaging. The solutions de�ned in this dissertation

are practical and compatible with the communication standards.

6.1 Research Achievements

In this dissertation, several contributions have been made in the area of CVNs. The research

achievements of this thesis are the following:

• Channel models for CVNs with large and small scale fadings. The system limitations of P2P

and multi-hop CVNs. A novel selective message relaying mechanism, which decreases the

message congestion due to the redundant messages received by relay vehicles without any

assumption on network architecture.

• A novel environment- and context- aware combined power and rate adaptation algorithm for

decentralized V2V communications. The proposed algorithm jointly controls the message
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rate and transmission power as well as achieves the target awareness rate, target message

rate, and target awareness distance requirements of each vehicle for any environment and

context.

• A novel voting based distributed cooperative VDSA mechanism with an adaptive optimiza-

tion of the energy detection threshold by considering process time limits. The optimum

point of the trade-o� between the computational cost and robust spectrum sensing is achieved.

The spectrum detection error of the proposed mechanism converges to zero in any environ-

mental condition without violating process time constraints.

• A bumblebee-inspired distributed adaptive channel switching mechanism to decide if the

unlicensed user should stay in the same channel or switch to better channel. The pro-

posed mechanism uses memory structure to obtain the optimum point between switching

to the better quality channel and the switching cost. Hence, the increase is observed on the

Benefit/Cost rate.

6.2 Lessons Learned

The summary of the discoveries from this dissertation are listed below:

• Large scale fading characteristics vary due to LOS and NLOS links. NLOS links possess

various attenuation model due to the di�erent obstacle types on the links

• There are two small scale fading models for multi-hopping connected vehicles: Geometrical

and SoS models. Geometrical model computes the channel impulse responses based on ge-

ometrical parameters of scatterers. However, this model assumes the number and location

of scatterers are known which may not be practical for dynamic CVN environment. On the

other hand, SoS model assigns the location of the scattereres statistically as well as consid-

ers the time delay between multipaths. These features make SoS model more practical and

more accurate.

• Multi-hop CVNs have better performance than P2P regarding to channel capacity and prop-

agation error. However, rebroadcasting each received message at the relay vehicle causes
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message storm. Clustering messages helps to detect the redundant information and rebroad-

cast only unique incidents. Thus, the same environment awareness is satis�ed by rebroad-

casting less number of messages.

• Distributed congestion control technique improves environment awareness and provides the

context requirements. Existing techniques can be classi�ed under three main categorizes:

only transmit power adaptation, only message rate adaptation, combined power and rate

adaptation.

• For transmit power adaptation, estimation of the current path loss exponent makes the sys-

tem adjust itself to the current environment conditions. As using the current path loss ex-

ponent, the transmit power at the next time step can be found to reach the target awareness

distance.

• Message rate adaptation keeps the channel utilization under the limits de�nes by standards.

• Combined power and rate adaptation approach needs to proactively consider the e�ect of

next power value decided by the mechanism on the next message rate performance or vice

versa.

• VDSA techniques needs adaptive energy detection threshold due to the dynamic environ-

ment characteristics. For an accurate adaptive sensing, the adapted energy threshold should

minimize both false detection and missed detection errors.

• Cooperative sensing needs an accurate de�nition of neighbor credibility. Entropy as a de�-

nition of uncertainty of the information provides a reliable de�nition of credibility.

• Channel switching decision mechanism needs to be adaptive and simple. Bumblebees for-

aging behavior helps to deal with these requirements.

6.3 Future Works

The future work of this PhD research can be classi�ed in two main categories. In the �rst

category, we will be extending the proposed solutions to the further steps. The channel capacity
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analysis for connected vehicles will be derived for frequency selective fading characteristics as an

extension of block fading analysis in this dissertation. Another future work will be on bumblebee-

inspired channel switching decision mechanism. Various weight functions will be de�ned for

memory structure alternative to average the stored values in the memory as de�ned in this disser-

tation. Furthermore, we will be working on adaptive weighting on memory stacks that changes

the weights each time by learning about the current environment conditions.

Second category of the future works is to combine the connected vehicles including the pro-

posed solutions in this dissertation with the various architectures such as the sensory system of

the vehicle. In addition, the combination of DSRC system and cellular networks is still an open

research topic since using cellular networks for vehicular communications enables to have the

bene�ts of both systems. Another practical consideration for future works is to bridge the DSRC

standards with other standards since the improving technology leans to have all existing structures

in one main frame. However, this approach needs to link the structures properly.
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