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Abstract 

Resting-state functional connectivity (RSFC) is a measure of temporal correlation in the 

absence of an event or stimuli. The most common technique to analyze these networks is through 

functional magnetic resonance imaging (fMRI). While this method provides reliable, insightful 

data, it has inherent limitations. In recent studies, however, data suggests that an alternative 

modality referred to as functional near-infrared spectroscopy (fNIRS) may offer a unique 

opportunity to investigate brain functionality and whole brain connectivity by proxy. This study 

analyzes cortical neural hemodynamics during resting-state using fNIRS for future collation with 

fMRI data and applications in whole brain RSFC research. For analysis, a sample set of seven 

participating healthy individuals over age 18 underwent multimodal neuroimaging utilizing both 

fMRI and fNIRS imaging techniques simultaneously. This data was processed in nirsLAB 

software using a generalized linear model (GLM) analysis to derive the areas of the cortex that 

experienced significant increases in hemoglobin. The results of this study did find spontaneous 

increases in hemoglobin in the four valid samples analyzed, as expected with resting-state data. 

However, the overall consensus was that the sample set experienced a substantial loss of data 

integrity across the 20 channels observed for each subject.   
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1. Background/Introduction 

The significant correlation of spontaneous neural activity between functionally related, 

spatially remote regions of the brain is referred to as resting-state functional connectivity 

(RSFC). In other words, if two regions are considered to show functional connectivity, then there 

exists a statistical relationship between their respective measures of neural activity. Resting-state 

networks help to provide information on intrinsic functionalities of the brain, independent of 

stimulus or event-biased responses. Thus far, there have been relatively few non-invasive 

neuroimaging technologies utilized to study RSFC, with the primary modalities being functional 

magnetic resonance imaging (fMRI) and positron emission tomography (PET) (Plichta, 2006). 

Advancements in neuroimaging techniques have allowed for the progression of research in 

understanding brain functionality for healthy brain archetypes as well as neurological or 

psychiatric conditions. Despite this, it remains a challenge to evaluate how strictly controlled, 

event-based cognitive tasks relate to everyday brain activity. This is due, in part, to the inherent 

operating constraints of current standard neuroimaging technologies themselves. Notably, a 

promising and relatively new neuroimaging modality, functional near-infrared spectroscopy 

(fNIRS), is currently being considered a potential solution to overcoming these restrictions 

(Plichta, 2006). 

fNIRS is an optical, non-invasive hemodynamic neuroimaging technique that indirectly 

measures neural activity in the brain’s cortex via neurovascular coupling. This method works by 

quantifying changes in cortical hemoglobin concentrations using optical intensity measurements. 

These measurements are derived from a series of optodes which are placed on the scalp in a 

predetermined layout. Optodes are classified as either sources (emitters) or detectors (receivers) 

depending on their respective function. Sources, which emit NIR light (650-950 nm), can be 
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either LED-based or infrared laser-based. LED sources emit a Gaussian distribution of 

wavelengths whereas a laser only has a single wavelength. The NIR light emitted from a source 

is propagated through the cortex of the brain, up to a few centimeters in depth. Thereafter, the 

emitted light is attenuated via scattering and absorption into the hemoglobin (and other 

surrounding tissues). An optode (detector) placed near the source would then be able to collect 

the backscattered light and measure the optical absorption. Pairing a source and optode detector 

together provides a standard fNIRS channel that measures the local region response between the 

source and detector. Specifically, the channel exists within the section of tissue propagated by 

NIR light and is located at the midpoint between the source and detector, at the depth of the 

midpoint-to-sensor distance. The measurements taken by the channels rely upon the light 

absorption spectrum of the hemoglobin in that region. Based on the state of saturation, 

hemoglobin can exist in its oxygenated (i.e., oxyhemoglobin, HbO2) or deoxygenated (i.e., 

deoxyhemoglobin, HbR) form. Furthermore, oxyhemoglobin and deoxyhemoglobin absorb NIR 

light differently. The oxyhemoglobin absorption coefficient is higher for wavelengths greater 

than 800 nm whereas the deoxyhemoglobin absorption coefficient is higher for wavelengths less 

than 800 nm. Because oxygenated and deoxygenated hemoglobin have different absorption 

spectrums, their respective concentrations in various brain regions can be measured and 

quantified over time.  

A crucial consideration in the collection of fNIRS data from these channels is the layout 

of the optodes themselves. In addition to light detection, the positioning and quantity of probes 

has a significant impact on the brain region of interest as well as the parameters of the data 

collection. The design of the optode map layout is, therefore, integral in ensuring the data quality 

for fNIRS experimentation. Here, the distance between a source and a detector pair, determines 
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the sensitivity and depth of light penetration into the cortex. Moreover, the number of optodes 

utilized determines the density of the layout and can affect the accuracy of the data. When 

designing an optode layout, the region of interest being studied in the brain should be considered, 

as the optode position determines what regions are observed, as illustrated by Figure 1. 

 

Figure 1: Examples of optode layout affecting brain regions being studied 
 

 Through computational analysis, the fNIRS data obtained by channels can be used to 

generate neural hemodynamic maps showing the levels of oxygenated hemoglobin throughout 

the observed cortical regions. In the brain, increased blood flow and tissue oxygenation correlate 

with increased neural activity. When brain region(s) becomes active during an event (such as a 

task) or induced stimuli, the brain’s metabolic demand for oxygen and glucose increases, leading 

to an increase in blood flow to the corresponding region(s). Because of this, hemodynamic maps 

are often used to make inferences on what regions display neural activity during an 

event/stimulus. Comparatively, resting-state fNIRS measures spontaneous hemodynamic 

fluctuations in the cortex of the brain in the absence of an event or stimuli. This technique is 

reliable and reproducible in characterizing the brain functional connectivity network while in a 

spontaneous state. Notably, these maps cannot be utilized to imply causation as the relationship 
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between neural activity and blood oxygen concentrations is entirely correlative. Numerous 

physiological variables and couplings interplay with increases and decreases in oxyhemoglobin. 

These factors inherently limit the ability to analyze event-related brain function based on 

hemodynamic functional neuroimaging alone and should be considered when interpreting fNIRS 

data. Moreover, while neural hemodynamic maps are useful for observing regional brain activity 

individually, they do not provide insight into connectivity.  

As previously aforementioned, RSFC is highly useful in providing information on the 

dynamic coordination of brain activity between disparate neural populations during resting-state. 

For fNIRS applications, these networks are typically analyzed using 2D functional connectivity 

matrices as seen in Figure 2. Matrices evaluate connectivity by comparing the similarities in 

activity between two individual nodes. The more frequently nodes exhibit coactivity, the greater 

the correlation between the two nodes. Connectivity matrices can be created for oxygenated, 

deoxygenated, and total hemoglobin levels.  

 

 
Figure 2: The connectivity matrix created for HbO levels for sample 2023-06-21_002 
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While fNIRS is able to assess RSFC with many practical advantages, it remains ancillary 

to other neuroimaging modalities. Currently, fMRI is considered the gold standard non-invasive 

hemodynamic-based neuroimaging technology and is the most common method used to assess 

RSFC. The operating principles of magnetic resonance imaging (MRI) are based on the theory of 

nuclear magnetic resonance which states that all atomic nuclei possess an inherent magnetic 

moment. Within a magnetic field, such as the one created by an MRI machine, hydrogen nuclei 

align parallel to the field and rotate at a frequency proportional to the strength of the field. 

Introducing radiofrequency pulses causes these nuclei to be displaced from their equilibrium 

state, resulting in a net transverse magnetization vector. After a pulse, the return of these nuclei 

to equilibrium generates an electromagnetic signal that is differentiable between various tissue 

types in the body. This signal can be measured within each voxel, which allows for both high 

spatial resolution and the resulting highly detailed three-dimensional anatomical images 

characteristic of MRI technology. 

fMRI differs from MRI in that it creates a dynamic record of metabolic activities (brain 

function) over time by measuring the blood-oxygen-level-dependent (BOLD) signal. Here, the 

BOLD contrast is derived from the differential between the magnetic susceptibility of 

deoxygenated and oxygenated blood in the brain. Deoxygenated blood is paramagnetic and, 

therefore, attracted to the magnetic field whereas oxygenated blood is diamagnetic and repels the 

field. The resulting scans show a high-resolution three-dimensional image of whole brain neural 

activity. This modality has been favored in neuroimaging because of its high spatial resolution 

capabilities and its properties as non-invasive, repeatable, and widely available. However, 

neuroimaging technology is increasingly being applied during more dynamic behaviors in 

addition to populations that deviate from normative cognition. As such, several limitations 
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inhibit its practicality in this emerging field of study. Most notably, implicit constraints limit the 

ecological validity of tasks performed during an MRI scan. Absolute contraindications, such as 

the presence of metal within the body, pose significant risks during MRI procedures and 

generally preclude certain individuals from safely undergoing imaging. Separately, relative 

contraindications such as claustrophobia, movement restrictions, and certain specific retained 

surgical instruments (such as artery stents and intrauterine devices) pose risks to conducting the 

procedure that may make this modality inadvisable. Because of limitations such as these, fNIRS 

offers a more compelling alternative to fMRI, as it can provide brain activity data to researchers 

and clinicians with greater portability, patient comfort, cost-effectiveness, and improvement in 

computer interface technology.  

 When comparing the two neuroimaging modalities, it becomes apparent that while fMRI 

has its advantages, such as high spatial resolution and whole brain measurement capabilities, it 

also comes with certain limitations. In this sense, fNIRS addresses some of the shortcomings of 

fMRI by providing practicality while maintaining neural metrics that are, to an extent, 

comparable to those achieved with fMRI. Both fNIRS and fMRI neuroimaging modalities share 

similar hemodynamic origins, making fNIRS an optimal proxy for fMRI. As opposed to an 

fMRI, which would measure oxygen concentration changes based on the paramagnetic properties 

of hemoglobin, fNIRS utilizes the different absorption properties of biological chromophores and 

detects these light changes from anywhere between 700 and 900 nanometers.  In particular, this 

means fMRI can only measure the oxygen-dependent signal whereas fNIRS can separately 

measure oxygenated, deoxygenated, and total hemoglobin. This can be advantageous in 

measuring brain activity and hemodynamics as clinicians better understand the involvement of 
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neural activity and mapping brain activity in clinical settings. As a modality alternative, fNIRS 

largest advantage over fMRI manifests in regards to practically. This is especially  

The multiple contraindications for fMRI can complicate the scanning procedure, limit the 

population viable to undergo scanning, and restrict data collection feasibility. For example, fMRI 

requires a person to sit still for up to 60 minutes to be completed successfully, which can be 

challenging for young patients or patients experiencing chronic pain. For patients, the scan 

involves compact spaces, loud machine operating noises, and, in some cases, the intravenous 

injection of contrast dye. Patients with implants containing ferromagnetic metals, such as 

pacemakers, cannot be scanned due to the strong magnetic fields. Naturally, some patients 

experience increased levels of stress and anxiety and require sedation for the duration of the 

scan, which increases the chances of respiratory depression and airway obstructions. These 

feelings are frequently exhibited in children, which can lead to anxiety-related psychological 

disorders that continue into adulthood, such as claustrophobia. Studies suggest children 

experience similar levels of anxiety as adults.  

In contrast, fNIRS is a non-invasive process that does not expose patients to confined 

spaces or magnetic fields. Compared to fMRI scans, fNIRS scans are less sensitive and can 

tolerate motion artifacts, which is important for patients with difficulty staying still. People with 

movement disorders would greatly benefit from this, as a larger threshold for assessment along 

with the lower temporal resolution allows for shorter scan times and increases patient comfort. 

One of the most important characteristics of fNIRS scans is their incredible portability and 

reduced cost compared to fMRI scans. This feature of the machine makes it very viable in 

clinical settings that allow for greater accessibility to brain imaging (Hallowell, Stewart, de 

Amorim e Silva, Ditchfield, 2007). One of the biggest strengths of fNIRS machines is its ability 
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to integrate with other neurocognitive devices, like electroencephalography (EEG). This pairing 

improves the brain-computer interface technologies including the spatial resolution from fNIRS 

and temporal resolution of EEG. This aids in mapping areas of brain activity, which can have 

potential treatment applications in psychological disorders such as anxiety. 

Despite all the practical advantages of fNIRS, fMRI does offer certain improvements in 

data and quality. Primarily, fMRI is  fMRI capable of whole brain metrics which allows 

researchers to observe hemodynamics in all regions of the brain. While advantageous in certain 

aspects, whole brain scans can be excessive for studies that are looking to only observe a select 

few regions of the brain. Furthermore, scans provide high spatial resolution, so researchers can 

precisely pinpoint brain activity within specific regions of interest (Bandettini et al., 1992). This 

advantage is critical for mapping functional brain organization and identifying regions associated 

with particular cognitive functions or disorders. Moreover, detailed spatial information enables 

researchers to create precise brain functional connectivity maps, enhancing our understanding of 

the brain's functional architecture. Because fNIRS and fMRI share a common hemodynamic 

origin, it would be reasonable to hypothesize that fNIRS could be used to provide information on 

whole-brain connectivity by proxy (Plichta, 2006). In other words, fNIRS has the potential to 

reproduce, to an extent, the functional networks generated using fMRI. Recent studies have 

conferred the feasibility of this conjecture. In 2011, a study documented that functional 

connectivity maps derived from resting-state fNIRS data were reproducible at the group level. 

Moreover, later studies have shown that resting-state fNIRS data is also reproducible on an intra-

subject level. This study aims to analyze cortical neural hemodynamics during resting-state using 

fNIRS for future collation with fMRI data and applications in whole brain RSFC research. 

Between these modalities, an established correlation could mean expanding the horizons of 
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neuroimaging research. The utilization of fNIRS could potentially mitigate the contraindications 

associated with fMRI, thereby enhancing accessibility and facilitating a deeper understanding of 

brain function across diverse populations and contexts.                                                  
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2. Methodology 

2.1. Participants 

This prospective multimodal study was conducted in collaboration with the University of 

Massachusetts Chan Medical School to investigate the steady-state neural activity of healthy 

individuals and compare their data with patients experiencing chronic pain. The study involved 

seven participating healthy individuals over age 18, who underwent the multimodal 

neuroimaging utilizing fMRI and fNIRS imaging techniques. This report focuses on the fNIRS 

data analysis of the participants to better understand the cortical hemodynamics of the brain and 

the resulting data’s prospective role and application in the complementary analysis of fMRI data.  

The setup of a fNIRS machine involves several steps to ensure accurate and effective 

brain activity measurement. Sections 2.2 to 2.5 delineate a comprehensive overview of the 

experiment’s setup and procedure. 

2.2. Sensor and Optode Placement 

The scan involves using a skull cap containing optodes, which are the light-emitting and 

light-detecting components of the procedure. The optodes are arranged on the scalp to monitor 

specific brain regions. The placement is often guided by a standard brain atlas or based on the 

requirements of the study. The cap or band should be snug but comfortable to maintain optimal 

sensor contact with the scalp without causing discomfort to the participant. As a result, there are 

different sizes for children over age two (42 to 48 centimeters) and adults (50 to 60 centimeters). 
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Figure 3: Optode placement map used in this study, a foundational component for the subsequent neural 

connectivity mapping 
 

After samples are recorded, inferences can be made upon which brain regions were 

active, depending on the corresponding optode and area of the head for which that optode was 

placed. This study only utilizes 20 channels, therefore, only a select cortex region was analyzed. 

Figure 3 depicts the physical location of the optode placements, whereas Figure 4 shows the 

location key of the optodes utilized in this study. 

Figure 4: Functional description of optode channels 

2.3. Calibration and Baseline Measurement 

Before starting the measurement, the system is calibrated to ensure the accuracy of light 

detection and signal processing. A baseline measurement is often taken with the participant at 

rest or in a neutral state, to serve as a reference for detecting changes in brain activity. 
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2.4. Data Acquisition System Connection 

Optodes are connected to the data acquisition system, which records the light signals. 

Before starting the experiment, it's crucial to check the quality of the signals to ensure that the 

optodes are functioning properly and are receiving clear signals. 

2.5. Task Administration 

Depending on the study design, participants may be asked to perform specific tasks or be 

exposed to certain stimuli while neural activity is recorded. Because this study focuses on 

collation methods with fMRI data, the recorded neural activity was sampled during resting-state. 

Resting-state fNIRS (also known as steady-state) measures the spontaneous hemodynamic 

fluctuations in the four lobes of the cerebral cortex of the brain (frontal, temporal, parietal, and 

occipital lobes) for patients who are not exposed to explicit tasks or stimuli [9].  

2.6. fNIRS Software and use of NirsLab 

After the experiment, collected data is analyzed using specialized software. This analysis 

includes filtering, signal correction, and statistical testing to interpret the brain activity patterns. 

fNIRS signals detect changes in light attenuation over several brain areas, including the 

somatosensory and motor regions, to measure the concentration changes in HbO and HbR in 

brain tissue. This data uses a series of time-dependent signals measured between each light 

source and the detector positions of the probes [xx]. The software used to record the data was 

done using NirsLab. This imaging system is intended for NIRS of blood perfusion movement in 

the brain region. 
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2.7. Data Pre-Processing 

Channel signal visualization was completed in MATLAB using the files derived from the 

raw fNIRS data. The unfiltered signal data was plotted using a tiled chart layout to compare the 

signal quality across the individual channels. The oxygenated, deoxygenated, and total 

hemoglobin levels were plotted for each data sample to evaluate the amount of good channels 

established for each sample. A threshold number of channels was determined based on the 

prevalence of higher-quality channels across all the given data samples. By establishing a 

threshold, data samples with fewer functioning channels can be eliminated from consideration in 

later data analysis. This prevents the data from being skewed by outlier variables in signal 

quality.  

 
Figure 5: MATLAB generated graphs of the data recorded for each of the 20 channels for sample 2023-

06-21_002 with complete data integrity 
 
 

Analysis of the visualized channel data across all seven subjects revealed that every 

channel had varying levels of quality and consistency. Moreover, an assessment of channel 

quality across all subjects showed that 46.4% of channels were unreliable. In this context, no 

signal data was coming from those channels. The coefficient of variation (CV) for the instances 
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of unreliable channels across all subjects, as depicted in Figure 6, was adopted as the criterion to 

discern between channels exhibiting acceptable and subpar signal quality. This metric is 

automatically calculated using nirsLAB software and was computed at 15%. Specifically within 

this dataset, there are five channels with over four instances of poor signal quality across the 

samples. Furthermore, a subset of 12 channels (1, 3, 5, 6, 7, 9, 10, 11, 12, 13, 14, and 18) 

displayed a recurring pattern of having 3 instances of compromised or absent data.  

 
Figure 6: A graph of poor-quality channel instances across all the samples 

 
A total of seven samples were collected for analytical purposes. To mitigate data 

dimensionality and ensure the integrity of subsequent analysis, subjects characterized by less 

than 50% of channels displaying good signal quality were discarded from the examined dataset. 

Here, Subjects 2023-06-21_001, 2023-07-07_002, and 2023-07-07_003 had 9, 7, and 2 good 

channels respectively, hence why these samples were removed from the analysis. By eliminating 

these samples, the remaining dataset’s poor channel quality was reduced to 27.5%. 

 After establishing what samples would be considered in the final analysis, the raw data 

files were pre-processed and analyzed using nirsLAB. Data preprocessing was completed with 

SPM Level 1 using a generalized linear model (GLM) based analysis on each subject. GLM is a 
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statistical linear model utilized to arrange data by modeling it as a linear combination of an 

explanatory variable and an error term. In this context, a GLM measures the temporal variational 

pattern within the signals. This model is used as it represents fNIRS data better than other 

statistical models. 

  
Figure 7: Baseline HRF curve used to model the expected pattern of changes in hemoglobin concentration 

over time in response to a task or stimuli 
 

In nirsLAB, the data was truncated and checked for quality, but no filter was applied. The 

hemodynamic state parameters were from a Gratzer filter. The data was pre-whitened with 

AR(n) (NIRx’s autoregression formula that is specifically suited towards fNIRS data) and a 

hemodynamic response function (HRF) was used as a basis function. There was no temporal 

filtering applied. The GLM coefficients were then estimated to create the SPM contrast data and 

a series of p and t values were saved as MATLAB files. These coefficients were stored visually 

as hemodynamic maps for the beta and residual mean square images, as shown in Figure 8. 

Additionally, statistical parameters and approximate beta values were calculated using 

MATLAB for each sample. The fNIRS data could be compared against the GLM to draw 

inferences about brain activity characteristics. 
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Figure 8: An example beta image hemodynamic map of the brain for sample 2023-06-21_002, where 

coloration denotes the magnitude of total hemoglobin measured during steady-state  
 

  
After establishing the cortical neural hemodynamic maps, 2D resting-state functional connectivity 

matrices were generated to establish what nodes experienced signal synchrony. The matrices were created 

in MATLAB from the raw fNIRS data of each valid sample as shown in the figure below. Data was 
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normalized but was not standardized to prevent any skewing of the data. Nodes that were statistically 

significant were documented for later reference. 

 
Figure 8.1: The connectivity matrix created for HbO levels for sample 2023-06-21_002  

3. Results 

Raw Data Across Channels (Sample 2023-06-21_002) 

 
Figure 9: Raw data collection of sample 2023-06-21_002 for the total hemoglobin levels measured in 

each channel. Multiple channels indicate a sudden drop in HbR centralized around the front parietal lobe 
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Figure 10: Raw data collection of sample 2023-06-21_002 for HbO levels measured in each channel 

 

 
Figure 11: Raw data collection of sample 2023-06-21_002 for HbR levels measured in each channel 
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Neural Hemodynamic Maps (Sample 2023-06-21_002) 

 
Figure 12: Left: The beta image hemodynamic map of the brain for sample 2023-06-21_002. Right: The 
residual mean square (‘ResMS’) image illustrating the residual values for the spatial distribution of the E 

matrix. The colors denote the magnitude of oxygenated hemoglobin measured during steady-state 
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Figure 13: Left: The beta image hemodynamic map of the brain for sample 2023-06-21_002. Right: 
Illustration of the ResMS. The colors denote the magnitude of deoxygenated hemoglobin measured 

during steady-state 
 

 
Figure 14: Left: The beta image hemodynamic map of the brain for sample 2023-06-21_002. Right: 

Illustration of the RedMS. The colors denote the magnitude of total hemoglobin measured during steady-
state 
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Neural Hemodynamic Map Primary Activated Channels  
 

Sample (OxyHb) Primary 
Activated 
Channels (Beta 
Image) 

Brain Region(s) Cognitive Function 

2023-06-21_001 2, 1 Postcentral gyrus, precentral 
gyrus 

Voluntary motor movement, 
involuntary motor 
movement 

2023-06-21_002 10 Superior frontal gyrus Higher cognitive functions 

2023-06-29_001 1, 6 Precentral gyrus, central 
sulcus 

Voluntary motor movement, 
motor and sensory function 

2023-06-29_002 2, 5 Postcentral gyrus, postcentral 
gyrus 

Involuntary motor 
movement (both nodes) 

2023-07-07_001 3, 8 Inferior frontal gyrus, middle 
frontal gyrus 

Processing of language, 
development of literacy 

2023-07-07_002 14 Postcentral gyrus Involuntary motor 
movement 

2023-07-07_003 N/A N/A N/A 
Figure 15: Table of all the channels in which the oxygenated hemoglobin concentration was highest 

between samples 
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Resting-State 2D Connectivity Matrices (Sample 2023-06-21_002) 

 
Figure 16: The connectivity matrix created for HbO levels for sample 2023-06-21_002 
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Figure 17: Connectivity matrix for HbR levels for sample 2023-06-21_002 
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Figure 18: Connectivity matrix for HbO levels for sample 2023-06-29_001 
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2D Connectivity Matrices Channel Correlation Analysis (Sample 2023-06-21_002) 
 

Correlated 
channels 

Correlation 
Coefficient 

Brain Region(s) Cognitive Function 

8 and 18 0.8351 Miggle frontal gyrus, middle 
prefrontal cortex 

Literacy development, 
numeracy 

2 and 3 0.6676 Postcentral gyrus, inferior frontal 
gyrus 

Involuntary motor 
movement, processing 
of language 

3 and 8 0.5823 Inferior frontal gyrus, middle 
frontal gyrus 

Processing of 
language, literacy 
development 

3 and 13 0.5753 Inferior frontal gyrus, frontal lobe 
(Broca’s area) 

Processing of language 
(both nodes) 

2 and 13 0.4826 Postcentral gyrus, frontal lobe 
(Broca’s area) 

Involuntary motor 
movement, processing 
of language 

8 and 13 0.4481 Middle frontal gyrus, inferior 
frontal gyrus 

Literacy development, 
processing of language 

13 and 18 0.4472 Frontal lobe (Broca’s area), 
middle prefrontal cortex 

Processing of 
language, numeracy 

2 and 8 0.3855 Postcentral gyrus, middle frontal 
gyrus 

Involuntary motor 
movement, literacy 
development 

2 and 18 0.3808 Postcentral gyrus, middle 
prefrontal cortex 

Involuntary motor 
movement, numeracy 

3 and 10 0.3602 Inferior frontal gyrus, superior 
frontal gyrus 

Processing of 
language, higher 
cognitive functions 
(working memory) 

Figure 19: Connectivity Matrix values for HbO Sample 2023-06-21_002 
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4. Discussion 
Looking at past literature, resting-state cortical neural hemodynamics are indicated by 

spontaneous increases or decreases in oxyhemoglobin. In the context of this study, which utilized 

GLM analysis to derive a mathematical model of the data in comparison to the expected baseline 

HRF curve as pictured in Figure 7, it was expected that there would be numerous potential 

outliers in the hemodynamic map data. The HRF curve assumes that an event/stimuli at a given 

time causes an increase in oxyhemoglobin levels. In resting-state neural analysis, increases in 

oxyhemoglobin would occur sporadically, which likely conflicts with the event-based analysis 

method. While this is not ideal for the given neural state being studied, it would provide valuable 

knowledge regarding whether the sample data aligns with the expected behaviors.  

Following data preprocessing, the finalized set included four samples for analysis: 2023-

07-07_001, 2023-06-29_002, 2023-06-29_001, and 2023-06-21_002. The average channel 

failure rate was 46.4%. The test administrator has noted that hair plays a role in the failure rate of 

channels. Hair may prevent a near-infrared emitter or a sensor channel from making appropriate 

contact with the scalp. Either case would cause affected sensor channels to have a reading of 

little to no magnitude, which are then detected as poor channels. After analyzing the data derived 

from the GLM analysis, a similar pattern of hemodynamics was found across the 4 valid samples 

as visualized in the beta images. For example, in sample 2023-06-21_002 as depicted in 

Figure 141, the left image, representing the beta image neural hemodynamic map for 

oxyhemoglobin, shows a relatively marginal increase in oxyhemoglobin in channel 10. Increased 

oxyhemoglobin in this channel corresponds to increased neural activity in the superior frontal 

gyrus which functionally, is responsible for higher cognitive function (working memory, 

executive control, planning linguistic communication…etc). Looking at Figure 18, which 
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displays the primary channel(s) that indicated increased neural activation as observed in the beta 

image, there was little to no similarity or overlap in primary channel activation across all of the 

samples observed. In other words, every sample had different cortical regions where increased 

oxyhemoglobin levels were measured. This would confer with the prior expectation that neural 

activity would be spontaneous, as it is unrelated to any event. 

The neural hemodynamic maps for deoxyhemoglobin and total hemoglobin show a 

similar pattern of response. The distribution of responses again appears to be random (but 

proportionally related to the oxyhemoglobin neural hemodynamic maps), as expected since there 

was no coordinated task or stimuli to activate a specific brain region. Looking at Figure 12 which 

shows the deoxyhemoglobin neural hemodynamic map for sample 2023-06-21-002, we see a 

beta image that closely resembles the oxyhemoglobin map, where the level of deoxyhemoglobin 

is, however, notably lesser than that of oxyhemoglobin. This aligns with our prior expectations 

of neural activity and oxygen consumption. When a region of the brain is activated during either 

an event or spontaneously, the metabolic demand for oxygen and glucose increases, causing an 

increase in blood flow to the brain region(s) being activated. As oxyhemoglobin increases, 

deoxyhemoglobin decreases and the activated brain region experiences a net over oxygenation. 

A similar relationship between the oxyhemoglobin and deoxyhemoglobin neural hemodynamic 

maps was observed across the 4 valid samples.  

An adjacency matrix, referred to as a connectivity matrix, is utilized to compare data-

gathering node regions with areas of brain activity. For any connectivity matrix, the dimensions 

depend on the number of nodes in the system. In this particular case, there are 20 channels 

(nodes), yielding a matrix size of 20 by 20. Each data value of the connectivity matrix compares 

the similarity between two individual nodes. The more frequently these nodes exhibit signs of 
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coactivity, the greater the correlation between the two nodes. Connectivity matrices can be 

created for oxygenated, deoxygenated, and total hemoglobin levels. Oxygenated hemoglobin 

levels are the most indicative of brain activity, as shown in Figure 16. Deoxygenated hemoglobin 

levels can be useful as a secondary point of analysis, as shown in Figure 17, however, 

statistically significant levels of deoxygenated hemoglobin can represent anything from evidence 

of recent brain activity to no brain activity in the region. 

Two factors to be considered in a connectivity matrix are weighting and directionality. 

Using weighting, the intensity of brain activity can be displayed such that the stronger node 

correlations have greater magnitudes than weaker ones. Directionality is a more complicated 

factor and is most useful for determining how one node affects other nodes. In a directed 

connectivity matrix, the behavior of one node directly influences one or more other nodes in a 

causal relationship. On the other hand, an undirected connectivity matrix does not provide this 

information but is useful for drawing simple activity correlations between nodes (Fornito, 

Bullmore, 2016). For this specific case, a weighted and undirected connectivity matrix was 

generated due to data collection constraints. 

fNIRS scans are still novel and under development for brain activity applications, so the 

ultimate goal was to link the relationship between areas of activity in the brain, less so 

determining causal relationships. As shown in Figure 18 and the Appendix, the black regions 

represent poor data collection, where no conclusions can be drawn. For some of these scans, the 

data loss is low and relationships can be assessed with some scrutiny. For others, specifically the 

rejected samples with the largest number of non-functional channels, the data loss is significant 

and correlations cannot be corroborated. Each sample has three associated connectivity matrices; 

one for oxygenated hemoglobin (HbO), one for deoxygenated hemoglobin (HbR), and a 
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combined matrix of HbO and HbR levels. Full raw data collections and connectivity matrices are 

displayed in the Appendix for each sample. 

Through analyzing sample 2023-06-21_002, several trends are apparent. The ten highest 

HbO level correlations for sample 2023-06-21_002 are displayed in Figure 19. The channels 

with the highest correlations are nodes 8 and 18, which correspond to literacy development and 

literacy. Another trend involves the generally significant correlations between nodes 2 and 3 and 

any other nodes, as node 2 corresponds to involuntary muscle movement while node 3 

corresponds to language processing. It is encouraging to see that many of the strong correlations 

include regions of the brain associated with involuntary motor movements, especially for this 

steady-state analysis.  

After data analysis, many of the samples yielded erroneous or inconclusive data because 

of the poor quality of the channels. It is visually apparent in the connectivity matrices of the 

sparseness of data, as illustrated in the connectivity matrices for HbO levels in Figure 24, 

Figure 48, Figure 54, and Figure 60 in the Appendix. For these samples, correlation coefficients 

are generally very low, staying around magnitudes of 0.1. 

Figure 15 shows the channels for each respective (oxygenated) hemodynamic beta image 

map that showed the largest increase in oxygenated hemoglobin and its corresponding brain 

regions and functions for those optodes. Notably, there was little to no similarity observed 

between the samples which would confer with the notion of resting-state neural activity. An 

increase in brain region activity should be spontaneous because of a lack of events or stimuli. 

The regions that were most active between samples related to the voluntary and involuntary 

motor movement which could signify that participants either consciously or unconsciously 

moved during the scans. 
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5. Conclusion 
Although fMRI and fNIRS can track hemodynamic changes in the brain, fMRI requires a 

heavy, expensive magnet while fNIRS requires a wearable, more affordable cap. The wider use 

of fNIRS would bring the ability to track hemodynamic neuroimaging to situations where an 

MRI is not practical or available. fNIRS is more accessible to subjects and clinicians with less 

time and money available and can greatly benefit studies involving more mobile tasks.  

fNIRS must become more reliable to allow future studies and clinicians to track 

hemodynamic changes. In this case, 46.4% of the channels used in this study were unusable. 

Less than half of the channels were usable in three out of seven subjects. The causes of these 

unusable channels are not unique to this study. Insufficient contact between the scalp and near-

infrared emitter or sensor channel yields erroneous data. The issue is compounded by the reality 

that this data loss disproportionately affects subjects with hair; the thicker the hair, the more the 

data collected on the subject is likely to be affected. This may make subjects less likely to be 

included in a viable dataset. Therefore, poor quality channels caused by hair may make initial 

data collection harder and affect the ability to use data from specific demographics. There are 

ethical concerns with excluding data from specific demographics from research, so future 

development must address this issue through designs or procedures. 

Most importantly, these data results must be used alongside patient correspondence. 

These results can be used to analyze which regions are most active to aid in treatment options, 

but should not be used as evidence of a patient’s conditions. 

A significant compromise decided during data collection was using near-infrared lasers 

rather than LEDs. To collect fMRI data and fNIRS data simultaneously, the equipment for the 

fNRIS scans had to be safe for use in the MRI machine. This limited the use of LED optodes, 
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which cannot be used in strong magnetic fields. Using the LEDs would be more advantageous in 

creating a clearer dataset and may have reduced the number of poor channels observed in the 

analyzed dataset. 

fNIRS holds significant promise within the neuroimaging realm as a valuable tool for 

measuring brain activity. Our hypothesis centers on fNIRS's potential to diagnose chronic pain 

by leveraging BOLD signals at the steady-state level. This is incredibly promising as the CDC 

estimates that 20.9 percent of adults in the United States experience chronic pain (Rikard, 

Strahan, Schmit, Guy Jr, 2023). However, enhancing the technique's design remains a critical 

focus area. This includes refining spatial resolution through advanced signal processing 

algorithms, integrating multimodal approaches, enabling real-time data analysis during 

neurocognitive training, and standardizing processes to ensure reproducibility across studies. 

These advancements are essential for elevating fNIRS into a more viable neuroimaging modality 

with practical applications in clinical settings.  
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7. Appendix 
7.1. Sample 2023-06-21_001 

 
Figure 21: Raw data collection of sample 2023-06-21_001 for HbO levels measured in each channel 

 

 
Figure 22: Raw data collection of sample 2023-06-21_001 for HbR levels measured in each channel 
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Figure 23: Raw data collection of sample 2023-06-21_001 for total hemoglobin levels measured in each 

channel 
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Figure 24: Connectivity matrix for HbO levels for sample 2023-06-21_001  
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Figure 25: Connectivity matrix for HbR levels for sample 2023-06-21_001  
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Figure 26: Connectivity matrix for total hemoglobin levels for sample 2023-06-21_001  
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7.2. Sample 2023-06-21_002 

 
 Figure 27: Raw data collection of sample 2023-06-21_002 for HbO levels measured in each channel 

 

 
Figure 28: Raw data collection of sample 2023-06-21_002 for HbR levels measured in each channel 

 



 

46 

 
Figure 29: Raw data collection of sample 2023-06-21_002 for total hemoglobin levels measured in each 

channel 
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Figure 30: Connectivity matrix for HbO levels for sample 2023-06-21_002 
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Figure 31: Connectivity matrix for HbR levels for sample 2023-06-21_002 
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Figure 32: Connectivity matrix for total hemoglobin levels for sample 2023-06-21_002 

7.3. Sample 2023-06-29_001 (NEEDS TOTAL) 
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Figure 33: Raw data collection of sample 2023-06-29_001 for HbO levels measured in each channel 
 

 
Figure 34: Raw data collection of sample 2023-06-29_001 for HbR levels measured in each channel 

 

 
Figure 35: Raw data collection of sample 2023-06-29_001 for total hemoglobin levels measured in each 

channel 
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Figure 36: Connectivity matrix for HbO levels for sample 2023-06-29_001 

 



 

52 

 
Figure 37: Connectivity matrix for HbR levels for sample 2023-06-29_001 
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Figure 38: Connectivity matrix for total hemoglobin levels for sample 2023-06-29_001 

7.4. Sample 2023-06-29_002 
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Figure 39: Raw data collection of sample 2023-06-29_002 for HbO levels measured in each channel 
 

 
Figure 40: Raw data collection of sample 2023-06-29_002 for HbR levels measured in each channel 

 

 
Figure 41: Raw data collection of sample 2023-06-29_002 for the total hemoglobin levels measured in 

each channel 
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Figure 42: Connectivity matrix for HbO levels for sample 2023-06-29_002 
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Figure 43: Connectivity matrix for HbR levels for sample 2023-06-29_002 
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Figure 44: Connectivity matrix for total hemoglobin levels for sample 2023-06-29_002 

7.5. Sample 2023-07-07_001 
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Figure 45: Raw data collection of sample 2023-07-07_001 for HbO levels measured in each channel 
 

 
Figure 46: Raw data collection of sample 2023-07-07_001 for HbR levels measured in each channel 

 

 
Figure 47: Raw data collection of sample 2023-07-07_001 for the total hemoglobin levels measured in 

each channel 
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Figure 48: Connectivity matrix for HbO levels for sample 2023-07-07_001 
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Figure 49: Connectivity matrix for HbR levels for sample 2023-07-07_001 
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Figure 50: Connectivity matrix for total hemoglobin levels for sample 2023-07-07_001 
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7.6. Sample 2023-07-07_002 

 
Figure 51: Raw data collection of sample 2023-07-07_002 for HbO levels measured in each channel 

 

 
Figure 52: Raw data collection of sample 2023-07-07_002 for HbR levels measured in each channel 
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Figure 53: Raw data collection of sample 2023-07-07_002 for the total hemoglobin levels measured in 

each channel 
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Figure 54: Connectivity matrix for HbO levels for sample 2023-07-07_002 
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Figure 55: Connectivity matrix for HbR levels for sample 2023-07-07_002 
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Figure 56: Connectivity matrix for total hemoglobin levels for sample 2023-07-07_002 
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7.7. Sample 2023-07-07_003 

 
Figure 57: Raw data collection of sample 2023-07-07_003 for HbO levels measured in each channel 

 

 
Figure 58: Raw data collection of sample 2023-07-07_003 for HbR levels measured in each channel 
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Figure 59: Raw data collection of sample 2023-07-07_003 for the total hemoglobin levels measured in 

each channel 
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Figure 60: Connectivity matrix for HbO levels for sample 2023-07-07_003 
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Figure 61: Connectivity matrix for HbR levels for sample 2023-07-07_003 
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Figure 62: Connectivity matrix for total hemoglobin levels for sample 2023-07-07_003 


