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Robotic Blisk Fillet Inspection
Breanne Happell, Karen Orton, Kevin Ouellette, Charles Sinkler
Advised By: Michael Gennert, Craig Putnam, Kenneth Stafford

Abstract—The Robotic Blisk Inspection System utilizes a cus-
tom turntable, an ABB robotic arm with custom end of arm tool-
ing (EOAT), and a computer vision algorithm to autonomously
determine if the blade root fillets are within tolerance. Currently,
GE Aviation in Hooksett, NH uses manual techniques to inspect
the bladed disks (blisks) that they produce. Their techniques re-
quire consumables and are more costly than a robotic inspection.
Positional feedback through force and contact sensing allows the
system to navigate the closely spaced blades with the compact
EOAT. Compliance in one axis ensures the EOAT is properly
seated within the fillet. A computer vision algorithm developed
with OpenCV tracks the fillet position to confirm proper radius
dimensions.

I. INTRODUCTION

The GE Aviation plant in Hooksett, New Hampshire manu-
factures bladed disks (blisks) used to compress intake air in jet
engines. Fig. 1 shows a single stage blisk. Blisks vary greatly;
the Hooksett Plant manufactures blisks with diameters ranging
from 6” to 36”. Some blisks have multiple stages, or layers of
blades, where the gap between stages varies from 0.7” to 2”.
Blisks are milled from a single slice of cylindrical titanium.

The LEAP series of GE blisks consists of two single stage
blisks, and one double-stage blisk. The part number for these
three blisks are 2468M19P01 (P01), 2468M17P02(P02), and
2468M18G01(G01). GE Aviation is increasing its production
of the LEAP series, which is projected to compose 60-80% of
the Hooksett plant’s production volume by 2021.

Blisks, as a critical engine component, are carefully in-
spected by hand before they leave the factory to ensure they
meet quality standards. The blade fillets between the blades
and the hub are one of many inspected components. The fillets
are inspected to ensure their radii are within a given tolerance.
Blade root fillet dimensions are critical to the strength of each
blade. The Hooksett Plant wants to automate the inspection of
these fillets.

The purpose of this project was to create a robotic system
capable of autonomously inspecting the blade root fillets on
LEAP series blisks for GE Aviation. GE Aviation aimed
to reduce the time and money spent inspecting each blisk
during the Quality Assurance (QA) checks. A robotic solution
would decrease the need for salaried QA workers, thereby
reducing the direct labor costs associated with each blisk. As
stated previously, much of the Hooksett plant’s business in the
coming years will be LEAP components, so the scope of the
project was limited to those blisks, although this process could
be expanded to more blisks in the future.

Fig. 1: A Single-Stage Blisk

II. BACKGROUND

A. Manual Inspection Methods

GE Aviation’s primary method for fillet inspection starts
with a fine, white developer powder sprayed onto the blisk.
Precision ball gauges are then run along the fillets by an
inspector, scraping off the powder where contact is made. A
ball gauge that matches the maximum tolerance for fillet radius
should make two points of contact with the blisk, producing
two tracks in the developer powder along the fillet. A ball
gauge that matches the low tolerance will make one point of
contact and thus one track in the powder. These are illustrated
in Fig. 2. If both conditions are met, the radius is within
both tolerance values. This process takes a skilled technician
between 15 and 30 minutes for a single stage blisk.

Fig. 2: Contact points of the max and min ball gauges in a
fillet.

An accepted secondary inspection method uses a light
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behind the same ball gauges to validate the radius of the fillets.
The smaller ball produces one region of light on each side
of the ball, while the larger ball produces one region in the
middle and one on each side. This process is currently used if
the technician is unsure of the results from the developer test
as the pattern of light passing around the ball is easy to see
but generally takes longer than the first method.

The current Takt time for a GE Aviation blisk is roughly
three hours. This means each unit must move from one process
to the next in three hours to meet production demand. The
fillet inspection is one of many tests performed by the Quality
Assurance (QA) team. GE Aviaton requires that the inspection
process remain under an hour per blisk stage to meet Takt time
goals.

B. Previous Project Results
A similar project was attempted in AY2015, but there

were many aspects of the previous designs that needed to be
improved upon. The system for inspecting blisk fillets used a
turntable to hold the blisk and rotate it. An ABB robotic arm
then inspected each fillet using a custom End of Arm Tooling
(EOAT). Rather than use the standard process of developer
powder, the previous team used the light inspection method
to determine the radius of the fillet. A camera, ball gauge,
and light source were all mounted on the EOAT. The LED
illuminated the ball gauge such that the camera could capture
the shape of the light passing by the ball gauge. Based on the
shape of this light and the size of the ball gauge, the system
was designed to determine whether or not the fillet was within
tolerance.

The previous team designed and built the EOAT and
turntable. They also implemented computer vision to assess
each fillet. However, the previous team did not successfully
combine each of these components into one functioning sys-
tem. In addition to this, each component had issues that needed
solutions. This section aims to identify these problems.

Fig. 3: Previous Turntable

1) Turntable: The previous project team built a turntable
to hold and locate the blisk. The goal was to position each
new blade of the blisk in the same position as the last, so the
robotic arm could make the same motion for each blade. The
completed turntable can be seen in Fig. 3.

A three jaw chuck clamped the blisk to the turntable. A
stepper motor was used because it can turn small amounts
extremely precisely. A photogate sensor confirmed the location
of the next blade once the motor had positioned it.

There were a few manufacturing issues with the implemen-
tation of the turntable. The first was with the chuck jaws,
which held the blisk in place. They were slightly too short
and therefore tape was needed to properly clamp the blisk.
There was also an issue with the chain rubbing, causing the
motor to skip and the precision of the table to be compromised.
Finally, the sprocket was eccentric to the assembly, causing the
chain to tighten and loosen as the blisk spun. This also caused
a significant issue with the precision of the table. Most of
the problems with the previous turntable were manufacturing
issues.

Fig. 4: Previous EOAT

2) End of Arm Tooling (EOAT): The final design of the
EOAT, shown in Fig. 4, consisted of three main sections: a
hard plastic base, a segment of flexible elastomer, and a hard
plastic tip.

The hard plastic base was a platform used to connect the
EOAT to the ABB arm. Connected to this was a flexible
elastomer measuring 0.75” by 1.5” by 2”. This elastomer could
flex a maximum of 2” in the X direction, 0.75” in the Y
direction, and 0.25” in the Z direction of the tool’s coordinate
frame, as shown in Fig. 4. This flexibility compensated for any
error in the positioning of the turntable or the arm by allowing
the EOAT to bend into the correct location. This elastomer was
successfully created, however in practice it sagged 10◦ due to
the weight of the EOAT, causing issues when pathing with the
ABB arm.

The third section of the EOAT, the hard plastic tip, held the
ball gauge, camera, and LED. The ball gauge was mounted
on a thin rod that extended from the center of the EOAT. Two
rods extended above and below the central rod. The longer
of these held the LED, which was positioned as close to the
ball as possible. The shorter arm held the camera. Because the
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camera was too big to fit close to the ball gauge, it had to be
mounted parallel to the central rod. A small mirror allowed
the camera to inspect the ball gauge at a 90◦ angle to the hub
of the blisk. This section of the arm was successfully created,
and images of the back-lit ball gauge were captured. However,
because the mirror was mounted approximately an inch away
from the camera, only a small portion of each image was
used in the image processing, reducing the effective resolution
of the camera. Though the LED and mirror required precise
positioning, they were held in place by a paper clip. Any slight
jarring of the tooling negatively impacted the camera’s view
of the ball.

3) Computer Vision: The system also used computer vision
to determine if the current fillet passed inspection.

VLC Media Player was used to convert the captured video
into images for MATLAB processing. The image was first
cropped to show only the area of interest. The image was
then aligned based on a dot of lime green paint on the ball
gauge. Lime green was used because a computer can easily
differentiate this color due to its high green amount in the
RGB color scale. The image was then converted to grayscale
and then to binary, rendering the light and dark areas of the
image as a binary matrix.

The captured image was compared, using a 2D correlation
program, against images of fillets that passed inspection. If the
matching percentage passed a certain threshold, then the image
passed inspection. If an image failed inspection, the location
was reported to the operator for further inspection.

The cropping and zooming significantly reduced the quality
of the images. The MATLAB image processing required a
separate laptop with the MATLAB Image Processing Toolbox
installed. This increased the complexity and cost of the system.
The computer vision algorithm worked by comparing the
current image to previously captured passing images. This
approach was not a very robust way to verify that light is
being detected in each of the segments, as a slight camera
repositioning or light adjustment could cause the image to fail.

III. METHODOLOGY

A. Procedure

This project was completed over the course of an academic
year. The team began by analyzing the similar project that was
attempted in 2015. The team examined both the successful and
unsuccessful aspects of the project to guide the initial system
brainstorming. This analysis is discussed in detail in Section
II.

The team then moved into an initial design and analysis
phase. The team prototyped critical components to ensure they
would function as intended. Based on these prototypes, the
team redesigned the system’s components. The design process
was repeated until a final design was proven sufficient. Once
this happened, the final design was manufactured and all the
components were tested together. Where necessary, redesigns
and other adjustments were made until the system operated
optimally.

B. Physical System Overview
The blisk inspection system consists of three physical parts.

An ABB IRB1600T six degree of freedom robot arm and
corresponding IRC5 controller was used as the basis of the
inspection system. To simplify the robot’s pathing, a turntable
rotates each blade into a known position and holds the blisk
steady while it is inspected. An EOAT allows the ABB robot
to interact with the blisks. The EOAT holds and illuminates
the correct ball gauge in the fillet while capturing pictures to
be analyzed.

As with any physical system, positional error had to be
considered in the design. This error was expected to include
mainly eccentricity in parts assumed to be concentric. As such,
the EOAT was designed to have force feedback, reducing the
chances of damage from driving into the blisk. The EOAT also
has a compliant segment made of spring steel which can flex
1/8” under 1/8 pound of force, allowing the ball gauge to slot
properly into the fillet, even if there is some positional error
in the turntable.

C. Control System Overview
The control system handles the user interface, as well as the

sensors and actuators necessary for performing an inspection.
It also communicates with the IRC5 robot controller in order
to coordinate robotic arm movements with image collection.
When the images are collected, the control system runs com-
puter vision software to determine whether or not a fillet is
within its manufacturing tolerance.

Fig. 5: Raspberry Pi 3 Model B

1) Processor: The team chose to use a Raspberry Pi 3B as
the main control system. A Raspberry Pi, shown in Fig. 5,
is a microcomputer that has pins for controlling digital input
and output (IO). The Raspberry Pi was chosen because it can
handle both the computer vision for the fillet inspection and
the control of other components through digital IO. It also
supports Linux, allowing for GUI control of the system. Using
a laptop or microcontroller to implement the project software
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was also considered. The problem with using a laptop was
that it would not be able to handle the digital IO easily. Using
a microcontroller was also considered, but it would not be
able to run any of the image processing toolboxes necessary
for the computer vision inspection. In order to control the IO,
image processing, and the robotic arm, a laptop would have
to communicate with both a separate microcontroller and the
IRC5. In contrast, the Raspberry Pi could be used for all three
functions, and was much cheaper and simpler than using both
a computer and microcontroller. Though a laptop would likely
have more processing power than the Raspberry Pi, the Pi
3B has a 1.2GHz 64-bit quad-core ARMv8 CPU and 1GB of
RAM, which was sufficient for this project.

D. Turntable
The turntable is the base of the design, holding the blisk and

rotating each blade into place. This component allows the ABB
robot to follow the same path when inspecting the same fillet
with the same ball gauge on each blisk, simplifying the robot
pathing. The turntable is driven by a stepper motor through a
timing belt tensioned with a custom spring tensioner to reduce
backlash in the system. A stepper motor is used to drive the
pulley system, allowing for precision position control. Finally,
a custom part provided by GE Aviation is used to interface
between the turntable and each blisk. A picture of the final
turntable can be seen in Fig. 6.

Fig. 6: Turntable

1) Blisk Holding Mechanism: The blisk holding mechanism
was designed to hold the blisk rigidly on the turntable. It
had to be capable of holding every blisk in the LEAP series.
Each blisk has a different inner hub diameter, so the holding
mechanism needed to accommodate those variations. The
holding mechanism was also designed to hold the blisk at least
6” off the turntable surface to leave room for the EOAT to
reach under the blades during the inspection process.

GE Aviation has custom plastic holding devices (adaptors)
for each blisk that all have the same mounting holes. As this

Fig. 7: Blisk Holder

part was already in use by GE Aviation, it was determined
that the system would be easier for GE to recreate if this part
was used. The turntable was therefore designed such that the
correct adaptor could be bolted on as desired. An example of
these adaptors can be seen in Fig. 7.

2) Drive System: Three designs were considered for the
turntable drive system. The first was a chain drive system, the
same design used in the previous project. This system would
involve two chain sprockets, one connected to the motor shaft
and one connected to the turning disk. This chain system would
require adjusting and maintaining the tension on the chain. The
second option was a timing belt drive system. This would have
a similar design to the chain drive except the chain would be
replaced with a timing belt. A direct drive system was also
considered, with the motor directly connected to the turning
disk.

To compare and decide on the best system, a decision
matrix was created with seven criteria that were important to
a successful design. From most important to least important
those criteria were: accuracy, reliability, speed, cleanliness,
ease of manufacturing, and cost of manufacturing. Accuracy,
reliability, and speed were most important because they af-
fected the success or failure of our project. Cleanliness was
important because it makes the system more desirable to use
for GE Aviation. Ease and cost of manufacturing were lowest
because, while they make building the system easier, they do
not play a key role in the result of the project.

Scores were selected between one and ten for each category
with higher scores representing a more desirable score. The
direct drive scored lower than the other two as it has no gearing
to make it faster. It would be easier and cheaper to manufacture
as there are fewer components involved. While the timing belt
driven system is more difficult to manufacture, as a custom
pulley would need to be built, it would be significantly cleaner
than a greasy chain drive. It is also more reliable and accurate
as slop and backlash can be removed almost entirely from a
timing belt system.



10

Each factor was weighted based on its importance to the
final design. The scores were then multiplied by their weight-
ing factor and added together to generate a total score for each
design. Based on the decision matrix, shown in Table I, the
timing belt drive was the most well-suited to the needs of the
system.

Weighting
Factor

Chain
Drive

Timing
Belt

Direct
Drive

Accuracy Capability 6 9 10 4
Ease of Manufacturing 2 6 4 9
Cost of Manufacturing 1 6 7 10
Cleanliness 3 6 9 10
Speed 4 10 10 6
Reliability 5 8 9 4
Total 170 187 126

TABLE I: Drive System Decision Matrix

Once a timing belt was selected for the drive mechanism,
calculations were completed to design the full mechanism. The
larger pulley was designed with a diameter of 15” such that
it was slightly larger than the plastic blisk holder. The size of
the motor pulley was to be determined and affects both the
maximum tension on the timing belt and the turning speed.

The worst case moment of inertia was determined using a
SolidWorks model. The acrylic pulleys, two aluminum disks
above and below the pulleys to keep the belt in place, the blisk
holder, and the heaviest blisk were all modeled, resulting in a
worst case moment of inertia of 1200 in2-lb.

A stepper motor was used because it gives the turntable
highly accurate turning capabilities without requiring feedback.
The motor torque of the stepper motor used is 16 in-lb. It was
decided that the repositioning of the blades by the turntable
needed to operate at a speed of under five seconds per blade.
This will allow enough time for the robot to move between
each blade and path along the fillet.

To calculate how quickly the turntable would turn, the
moment of inertia of everything being turned, the motor torque,
and the gear ratio were needed. The radius of the motor pulley,
the motor torque, and the maximum acceleration all determine
how much tension the motor puts on the belt. By selecting
potential motor pulley radii and checking the resulting belt
tension and turning speed, an appropriate motor pulley was
selected. The result was a 12 tooth, 1.5” diameter pulley. This
produces a maximum belt tension of 21.33 lb, and a worst case
of 1.3 second turn time between blades. Given this maximum
belt tension, a 0.5” wide L type belt was purchased because
it has a working tension of 24.5 lb, which is just above the
maximum tension.

As previously stated, a stepper motor was selected to drive
the turntable so that the position could be very precisely
controlled. The specific stepper motor selected was the Pololu
NEMA 23, 3.2V, 2.8A/phase stepper motor. The control system
for this stepper motor consists of the Pololu A4988 Stepper
Motor Driver, Black Edition. The schematic for the stepper
drive system is shown in Fig. 8. The stepper motor driver
is configured to microstep the motor with 1/16th of a step,
allowing the highest precision possible with this driver. This

Fig. 8: Stepper Motor Drive Circuitry

gives the overall turntable a theoretical rotational accuracy of
±0.00060 in at the blisk hub. This is shown in Eq. 1. All
calculations are for blisk model 2552M02P02.

θstep =
1.8◦

16
× 12

125
= 0.0108◦

θblade = N × 360

Blades
= N × 10.58◦

ErrorAngular = MAX(MOD(θblade, θstep))

ErrorLinear =
ErrorAngular

360◦
×Dblisk = 0.00060′′

(1)

The software to control the stepper motor sends signals to
the step pin on the motor controller in order to turn the motor.
The exact number of steps between the blades on each stage of
a blisk was calculated to minimize error in the turning of the
blisk. This functionality is handled in a function to increment
the blisk by one blade based on the current blade number and
which stage is being inspected.

The stepper motor driver is a small surface mount device.
It also puts through a large amount of power. A thermal study
was completed in SolidWorks of the chip and heatsink to
determine if any further cooling mechanisms were needed to
keep the chip from entering a thermal shutdown mode. First,
a study was conducted with a low convection coefficient, 1.5
W/m2 K, and 3.37 W going into heat power. This power usage
was calculated in Eq. 2. After three hours, the chip reached a
maximum of 2575 K, much hotter than the 423 K chip shut off.
The results of this study can be seen in Fig. 9. When a fan was
added to the study, changing the convection coefficient to 75
W/m2 K, the chip only reached a maximum of 400 K, safely
below the chip cutoff. The full results of this study can be seen
in Fig. 10. The full The drive circuit has a small heatsink on
it, and is kept cool by a 70 mm computer fan, blowing directly
on the chip and exiting the side of the enclosure. The fan is
wired to the 12V supply on the circuit board, and is therefore
always running when the stepper motor driver is powered.

Pdrv = I2out ×Rdrv = 2.82 × 480mΩ = 3.37W (2)
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Fig. 9: SolidWorks thermal study without fan

Fig. 10: SolidWorks thermal study with a fan

3) Custom Timing Belt Pulley: A custom timing belt pulley
was built for the turntable. The pulley was designed with 126
teeth, giving it an outside diameter of 15.01”. A drawing of
a timing belt was used to reverse engineer the design of the
pulley teeth in SolidWorks. Test pulley wedges were then laser
cut, and test fitted with the timing belt. The width of the teeth
were then slightly adjusted and tested again until a perfect fit
was found. This process produced a timing belt pulley with
almost no backlash or slop.

4) Tensioner: To keep the timing belt at a constant operating
tension, a spring tensioner was designed. The tensioner can be
seen in Fig. 11. A 1/2” thick L timing belt should have 25 lb
of working tension. The spring tensioner must provide 25 lb
of tension to the loose side of the timing belt, well within the
max load of the chosen spring. When the motor accelerates, the
tension increases on the tight side of the belt. The maximum
tension on the tight side as a result of the motor is 23 lb.
This is calculated in Eq. 3. Because this is lower than the
tension supplied by the spring tensioner, the belt is always
under tension on both sides. This reduces slop and backlash
in the turntable. Sliding tracks in the base plate were designed
such that the tension could be adjusted if necessary.

τ = τmotor ×
teethload
teethmotor

= 16.44lb · in× 125

12
= 173lb · in

α =
τ

I
=

173lb · in
1200lb · in · s2

= 0.144
rad

s2

T =
I × α

r
=

1200lb · in · s2 × 0.144 rad
s2

7.55in
= 23.07lb

(3)

The tensioner was made out of aluminum for durability. The
tracks in the base plate were counter sunk on the bottom of the
plate, allowing the plate to sit flat. The nuts were then ground
down on two sides to fit within the countersunk track, so the
tensioner can be adjusted without accessing the bottom of the
plate. This also increased the surface area of the contact points
between the nuts and the base plate, reducing the chance the
outside of the nuts would be stripped. A Hexagonal shaft was
used to keep the pulley horizontal, and e-clips were used to
hold everything together.

Fig. 11: Turntable Tensioner

5) Motor Mount: The motor mount and drive shaft support
were carefully designed to support the load on the drive pulley.
There is a bearing in the motor assembly, and a secondary
bearing at the bottom of the shaft assembly. The free-body
diagram in Fig. 12 illustrates the horizontal forces acting on
the motor mount assembly. The calculation shown in Eq. 4 was
used to ensure there would not be excessive overhung load on
the motor bearing. It was assumed the maximum force applied
by the belt would be twice the tension of the belt if each side of
the belt around the pulley was pulling in the same direction.
Knowing this, the overhung load on the motor bearing was
calculated to be 14.7 lb. This is lower than the recommended
maximum overhung load on the motor bearing of 20 lb.

1.25

4.25
=

R2

2 × Fb
R2 = 14.7lb

(4)
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Fig. 12: Motor Mount Calculation

Once the design was confirmed to only need one added
bearing, the rest of the support structure was designed. A box
shape was used with two sides missing to allow room for the
belt. The box was manufactured from four separate aluminum
pieces for ease of manufacturing, and 1/2” thick plates were
used to allow room for 1/4” bolts to secure the sides together.
The 12 tooth pulley purchased had an inner diameter of 3/8”,
and so a coupler was used to connect the 1/4” motor shaft
to the pulley shaft. A clamp on rigid shaft coupling was used
to properly tighten down on the two D shafts. This coupler
also allows for easy maintenance, as the timing belt can easily
be removed and replaced. A final picture of the motor mount
assembly can be seen in Fig. 13.

Fig. 13: Turntable Motor Mount

E. End of Arm Tooling (EOAT)
The purpose of the EOAT is to position a ball gauge in

the fillet along each blade root such that a camera can take
a picture of its fit while a light source backlights the ball.
As positioning the ball gauge properly on the fillet is crucial,
force feedback and single axis compliance were implemented

to compensate for positioning errors in the system. A gauge
selector was designed to provide automatic tool switching
between the maximum and minimum ball gauges. The final
design can be seen in Fig. 14.

Fig. 14: The final EOAT design

1) Force Feedback: In order to ensure the accurate and
secure placement of the ball gauge onto a given fillet, the
system needs to be able to detect force on the ball gauge.
In the first iteration of the EOAT design, the force sensitive
component was an aluminum plate, 1/16” thick, with four
strain gauges. The four strain gauges were arranged in a
wheatstone bridge circuit to create a differential voltage signal
from the compressive force on the end of the aluminum plate.
This signal was then passed to an instrumentation amplifier to
amplify the signal from its original µVolt range to a usable
0-3.3 Volt range. A standard 10K potentiometer fed through a
unity-gain buffer was used to supply a reference voltage to the
instrumentation amplifier. The unity-gain buffer is required due
to the relatively low input impedance of the instrumentation
amplifier reference pin. This circuit, shown in Fig. 15, put out
an analog voltage signal dependent on the force on the plate,
and needed an Analog-to-Digital Converter (ADC) in order to
interface with the system controller.

Fig. 15: Analog strain gauge conditioning circuitry. This circuit
amplifies the signal from a wheatstone bridge and centers it
around a reference voltage.

When tested, the circuitry did not act as expected. While the
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strain gauge layout used was designed to eliminate any signal
change due to bending forces, any bending forces applied to
the sensitive aluminum plate showed up as a signal output. This
was a problem because signal changes resulting from bending
forces and compressive forces could not be decoupled. This
created signal ambiguity that the system would not be able to
interpret correctly. Therefore, a change in design was required.

Fig. 16: The load cell, shown colored tan, mounted on the
EOAT.

The new design, shown in Fig. 16, uses a single axis load
cell mounted to measure compressive loads on the EOAT.
Rather than manufacture a force transducer from aluminum
stock, the team purchased a load cell, designed to operate
with loads up to 5 kg. Because this load cell was designed for
relatively small loads, the gain necessary to observe a usable
output signal was much lower than previous designs. The
load cell did not need to be connected to an instrumentation
amplifier with high (>500 V/V) gain. Instead, a small board
was purchased that had adjustable gain up to 128 V/V. This
board has a 24-bit ADC, and uses bit-banging serial as a way
to connect to the Raspberry Pi without requiring any analog
pins. The purchased load cell isolates compressive forces from
bending forces, and allows the system to observe the forces
on the EOAT much more accurately.

Force sensing is handled on the Raspberry Pi as its own
class. A separate class, contained within the force sensor class,
handles communication with the ADC. Once a force sensor
object is initialized, a function is called to zero the readings.
This is done to set the idle point to read as a zero force on the
Raspberry Pi. The zeroing function is called when the EOAT
is positioned between the blades in the same orientation that
it will be moving into the fillet. Once the force sensor has
been initialized and zeroed, a software timing interrupt is set
up to trigger to handle every new reading value. The function
triggered by the interrupt returns the force sensing values to
the Raspberry Pi. Based on these values, the Raspberry Pi
can determine when contact has been made with the blisk. A
flag is sent to the ABB controller once the Raspberry Pi senses
contact. This force sensing functionality allows the ABB robot

Fig. 17: The original spring-driven single axis compliance
segment. With this design, a spring would have been attached
to the two bolt heads shown.

to update its path dynamically by providing a source of active
feedback. The use of this force sensing to update the robot’s
path is further explained in Section III-I2, Generating the
Paths.

2) Single Axis Compliance: As mentioned in Section II-B2,
the previous EOAT had compliance about three axes, resulting
in sag in the tooling. For this implementation, the EOAT was
designed to have compliance about only one axis (the Y-axis of
the tool’s coordinate frame). This prevented the EOAT from
bending as it pathed the fillets while still allowing for it to
correct for positioning errors.

Fig. 18: The final design for the single-axis compliance seg-
ment. This design utilized a piece of spring steel, shown in
dark gray.

The first compliance segment design can be seen in Fig. 17.
With this design, the EOAT would be mounted on a cylindrical
pivot. This would allow a horizontal force on the ball gauge
to rotate the EOAT about only the Y-axis . A spring mounted
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as shown would hold the EOAT centered when no force on
the ball gauge was present.

This spring compensation design satisfied the need for single
axis compliance. However, the complete segment was nearly
three inches long. This length was excessive, as the team was
working to keep the EOAT as small as possible. Therefore, the
team designed a shorter section shown in Fig. 18 which used
a thin segment of spring steel to generate the compliance.

There were a number of requirements which needed to be
accounted for in this design. First, the ball gauge needed to
be able to deflect 1/8” under 1/8 pounds of force. Second, the
steel needed to be thick enough to prevent the EOAT from
bending under its own weight. Third, the steel needed to flex
more than the ball gauge shaft so as to prevent the gauge from
being pushed out of the camera’s view.

It was calculated that, with a segment of spring steel 1” x
1.5” x 0.032”, all of these requirements would be met. 1/8 lb
of force on the ball gauge would generate 0.05” of deflection
in the ball gauge and 0.079” of deflection in the spring steel.
This totalled to just over 1/8”, as desired. The case which
would have the largest deflection is when the EOAT is rotated
so that the spring steel is flat and parallel with the ground. It
was also calculated that, in this worst case scenario, sag in the
EOAT due to its weight would cause a 0.012” deflection in the
ball gauge. As this was well within the 1/8” of error tolerance
the spring steel provided, the spring steel’s size was deemed
appropriate. Calculations used to determine these numbers can
be seen in Equation 5, and the corresponding diagram can be
seen in 19.

Fig. 19: Variables and dimensions used for deflection calcula-
tions

Ishaft =
π × d4

64

Deflectionshaft =
l3shaft × Forceball

3 × Ishaft × ESteel

Ispringsteel =
hSpringSteel × w3

SpringSteel

12

ForceSpringSteel =
Forceball × L1 + L2

L1

DeflectionSpringSteel =
l3SpringSteel × ForceSpringSteel

3 × ISpringSteel × ESpringSteel

(5)

F. Z-axis Compliance

Despite the initial belief that single axis compliance was
desired, while testing it became apparent that Z-axis compli-
ance was needed. This is because small deviations in the path
significantly affected the quality of the image passed to the
vision processing. A compliant section was therefore designed
which made use of springs and shoulder bolts in through-holes.
The design can be seen in Fig. 20. The purpose of this design
is to allow the ball gauge to track the fillet even when the
robot is not perfectly positioned to press the ball gauge into
the fillet.

Fig. 20: Z-axis compliance section

1) Gauge Selector: A gauge selection component was added
to the EOAT design to make the process more autonomous.
The design, shown in Fig. 21, had both ball gauges mounted
in an L-shaped pivot so that the shafts of each gauge were 90
degrees apart. The pivot would then be rotated into position by
a servo motor. As the forces required to turn this mechanism
were minimal, a micro servo was used. A concern with this
design was that the ball gauges would need to be held in
position by continuously driving the servo to the desired
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position. It was decided that this was not ideal, and so multiple
designs were made and tested.

Fig. 21: The gauge selector design used a small servo to rotate
an L-shaped piece holding the ball gauges.

The first locking mechanism, which can be seen in Fig. 22,
consisted of two electromagnets mounted on each side of the
EOAT. Using these electromagnets and the servo, two methods
for switching the gauges were devised. In the first method, the
servo was rotated to the left and then the left electromagnet
would be powered, holding onto the metal screw in the pivot.
To switch ball gauges, the magnet would be released, the servo
would be driven to the right, and then the right electromagnet
would be powered. This motion can be seen in Fig. 23. Using
this method, the electromagnets would have to be powered for
a majority of the inspection process.

Fig. 22: The original locking mechanism design which used
two electromagnets (colored tan) to hold the L-shaped pivot
in the proper location. The ferrous metal or permanent magnet
used in methods 1 and 2 respectively were mounted in the
blue-shaded hole.

In the second method for switching the gauges, the screw
in the pivot was replaced by a neodymium permanent magnet.
A magnet with a 2.2lb holding force was used so that the
permanent magnet could passively hold onto the metal of the

Fig. 23: The motion of the ball gauges as the selector rotates.

electromagnet. When a switch was required, the electromagnet
would be powered such that both magnets had matching poles,
causing a pushing force to be generated. This would initiate the
rotation, which would then be completed by the servo. Once
turned far enough, the other permanent magnet would generate
a pulling force between it and the electromagnet, finishing the
rotation and holding the gauge in place. Using this method,
the electromagnets would only be powered for a fraction of
the total run time of the inspection process.

Fig. 24: The circuitry designed to run the electromagnets. In
particular, this method was designed for method 2, in which
the polarity of the electromagnets has to switch.

The circuitry required to drive the electromagnets in both
directions can be seen in Fig. 24. It consists of a quadruple
half-H bridge chip, the TI SN754410NE, powered by an
external source and controlled by the Raspberry Pi. It is
capable of powering both of the electromagnet loads with the
positive supply voltage, as well as powering the electromagnet
loads with the polarity reversed on the supply. This allows the
EOAT gauge selector to run the electromagnets to attract the
permanent magnets during the switching phase to pull the arm
towards it. The electromagnet can then shut off, and allow
the permanent magnet to hold the arm. When the tool must
be switched again, the electromagnet is switched on in the
opposite direction, repelling the permanent magnet.

One major benefit of this holding method is that the electro-
magnets do not run for a long period of time. This reduces heat
buildup. This design can also provide strong holding forces
with a reliable release mechanism.
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Using the diagram shown in Fig. 25, it was determined
that the electromagnet would need a holding strength of 1 lb.
Because the shipping time for a 1lb electromagnet was nearly
a month, a 24V, 0.5lb electromagnet was ordered which, while
not strong enough for the final design, could be used for testing
to verify the magnets worked as desired.

Fig. 25: A free-body diagram of the gauge selector when acted
upon by the pushing force of the blisk and the holding force
of the electomagnet.

The team conducted tests that confirmed that the magnet
would hold metal objects only when the object was touching
(or nearly touching) the magnet. However, it was also noted

that when the magnet was run at half its rated max power or
more, the casing became very hot. For this reason, the team
designed the system to use electromagnets at least twice as
powerful as needed to minimize the heat they would generate.
A 12V, 11 lb electromagnet was chosen as it would both
generate less heat, and was small enough to fit easily into
the gauge selection design.

Method 2, using permanent magnets which would passively
hold the gauge in place, was tested first as only running the
electromagnets to release the gauge during a switch would be
better than constantly running the electromagnets. The test was
conducted without the servo initially so the team could test the
interaction between the electromagnet and permanent magnet
alone. The team was surprised to discover that powering the
electromagnet appeared to have no effect. Though the poles
of the two magnets should have repelled each other, the
electromagnet and permanent magnets still held together. After
further testing, the team concluded that this occurred because
the permanent magnet was overpowering the electromagnet.
This method could therefore not be used.

Fig. 26: The hard stops, shown colored white, designed to keep
the gauge selector from rotating too far.

After method 2 was determined unusable, method 1 was
tested. This method worked as expected, in that the electro-
magnet held the pivot in place when a ferrous metal was
attached to the pivot. However, there were two major issue.
First, running the electromagnets for an extended period of
time generated a significant amount of heat. Second, the
holding force did not meet the 1 lb requirement. The team
tested many different ferrous materials, including nuts, bolts,
and small pieces of steel. In all cases, the holding force
was not strong enough. The team concluded that the ferrous
components used were too small. However, bigger components
could not be used due to EOAT size restrictions. Therefore,
method 1 could not be used either.

As neither method devised for the electromagnets would
work, the team needed to devise an alternate method. The
team decided to implement the simple solution of driving the
servo to a hard stop. Robot pathing would then be adjusted to
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always apply force to the ball gauge pushing it into the hard
stop. This would remove the need for the servo to be running
at all times to hold the ball gauge in place. The hard stops,
shown in Fig. 26, were designed to fit into the cutouts used
previously by the electromagnets. A screw was added such that
the exact positioning of the gauges could be adjusted. Though
this method worked, it was quickly determined that the servo
used was not robust enough as the plastic gearing was stripped
after a few hours of heavy use. The team therefore purchased a
similarly sized servo with metal gears as a replacement which
was expected to have improved durability and longevity.

Inspecting the three LEAP series blisks requires the use
of eight different ball gauges total. As alignment of the ball
gauges relative to the LED and camera was critical, a modular
ball gauge mount was designed to accommodate each ball
gauge. This part would compensate for the varying shaft
diameters, shaft lengths, and ball gauge diameters needed to
inspect all the LEAP series blisks. As can be seen in Fig.
27, the original mount design meshed with the L-pivot using
one larger cylinder and four small pins. These would keep the
mount positioned properly on the L-pivot. The two spring steel
clips on either side of the mount would then hold the mount
to the L-pivot, allowing this part to be easily removed and
replaced with a similar piece holding a different ball gauge.

Fig. 27: The original gauge mount design, shown transparent
to provide vision of the mounting pins.

The other half of the mount was a thinner, 0.25” wide
segment with a hole drilled into the end to press fit a ball gauge
shaft into it. This hole diameter and depth could be changed
for each ball gauge, ensuring the tip of the ball gauge was
always positioned in same place in the camera’s view.

Though this design would have been easy to operate, the
team determined that the manufacturing process would be too
difficult given that it was to be made out of aluminum and
would require tiny, precisely placed pins in order for the mount
to line up correctly. Therefore, the mount was redesigned, the
result of which can be seen in Fig. 28. As can be seen, the
design used a single screw to attach two interlocking L shaped
pieces. This design was much easier to manufacture, and would
still be fairly simple to operate assuming the operator had the

proper screwdriver.
The servo to control switching between the ball gauge sizes

is connected to the Raspberry Pi by a signal and power pin.
When switching between the two sizes, power is first sent to
the power pin. A software PWM signal is then sent to the servo
signal pin to change the position of the servo. Originally this
was a hardware PWM signal, but the hardware PWM library
had a conflict with the library needed to read the load cell
ADC. When a hardware PWM signal was sent to the servo,
the load cell ADC would not return any values. Switching to
software PWM resolved this issue.

Fig. 28: The final gauge mount design, also shown transparent.

2) Ball Gauges: Originally, the team looked into obtaining
ball gauges identical to the those used by GE. As GE could
not provide them, the team contacted the manufacturer. The
quote the team received indicated that the 8 gauges would
total upwards of $2600 and would take 3-4 weeks to arrive.
Though the team’s budget was big enough for this expense,
time constraints made this an unfeasible option. The team
therefore requested quotes from other manufacturers, looking
to reduce both the price and shipping time of the gauges. One
manufacturer quoted the gauges at approximately $360 with
a 1-2 week arrival time. Though the gauges would not have
the same level of tolerance, they were accurate enough for this
project, so the team ordered them.

The ball gauges did not arrive for almost five weeks. The
team therefore 3D printed plastic ball gauges to use for
testing. The printed gauges, one of which is shown in Fig.
29, combined both a ball gauge and the modular gauge mount
into one component to simplify their use. Though originally
white, the printed gauges were colored black with a Sharpie
to reduce the amount of light penetrating through the plastic
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from the LED for vision testing.
Once the metal ball gauges arrived, it was apparent that they

were ordered using the radii of the balls, not the diameters.
This meant only two of the gauges were usable, as the rest were
too small. As another five week delay would put the project
too far behind, the team looked into other ball gauge options.
A series of ball bearings without shafts were purchased as they
had fast shipping and were inexpensive. Though these balls did
not perfectly match the desired sizes, they were within 0.006”
of the desired sizes, and so could be used as proof of concept.
These balls were mounted on the end of 3D printed shafts.
The result can be seen in Fig. 29.

Fig. 29: One of the ball gauges 3D printed for this project.
Black Sharpie was used to reduce the light diffusing through
the plastic.

3) Light Source: The team decided the light source needed
to be fully hidden behind the ball gauge to generate consistent
images. A small light source would also keep the EOAT more
compact, leaving more clearance within the blisk blades. The
team therefore purchased a standard surface mount LED and
some blank PCB board. It was later determined that this LED
was not bright enough, as the vision system was not able to
detect enough light passing the ball gauge. A super bright
surface mount LED was purchased to replace the standard
surface mount LED.

The surface mount LED was mounted on a 1/8” x 1/4” board
based on the circuit in Fig. 30. This board size ensured that it
would be small enough to be hidden behind the smallest ball
gauge (0.1” diameter) in any picture. The final design for the
arm positions the LED such that it pointed at the contact point
between the ball gauge and the fillet. The arm was designed
to have a curve along its length to fit properly. This can be
seen in Fig. 31 and is discussed further in Section III-F5.

4) Camera: As was discussed in Section II-B2, the camera
used in the previous project had a number of drawbacks, so a
new camera was needed. The team looked into a number of
options, judging them based on criteria such as size, cost, and

Fig. 30: The circuit diagram for the surface mount LED.

Fig. 31: The final design for the LED arm. The shape of this
arm is discussed more in Section III-F5

ease of implementation. The sections that follow discuss the
team’s findings on each camera option.

The team looked into borescopes, which use fiber optics to
allow a camera to view objects in spaces too tight to fit the
camera itself. Flexible borescopes were determined to be the
ideal solution, as they were both small enough and flexible
enough to be positioned closely to the ball gauge. However,
these devices are extremely expensive; one flexible borescope
would have used most, if not all, of the project’s available
budget. Therefore, it was decided that a flexible borescope
would be used only if no other solution could be found.

A similar decision was made for rigid borescopes. Rigid
borescopes, in general, are much cheaper than flexible
borescopes. It was determined that the ideal viewing angle for
a rigid borescope would be approximately 70◦. This is because
a larger viewing angle forces the scope to be mounted much
closer to the blisk, which introduces a risk of collision between
the scope and the blisk, while a smaller viewing angle forces
the scope to be mounted at an angle to compensate, introducing
clearance issues between the scope and the blades. Because of
this viewing angle requirement, the price of a rigid borescope
was not much lower than the price of a flexible borescope.
Therefore, it was once again decided that a rigid borescope
would only be used if no other solution could be found.

The team next looked into using a smaller endoscopic
camera. Two possible cameras were discovered, both produced
by GiraffeCam. The first was the GiraffeCam 1.0. This camera
had the same resolution as the camera used in the previous
project, but it was approximately half the diameter and came
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with a threaded mirror attachment. This camera was appealing
because the smaller diameter meant it could easily fit between
the blades of the blisk. In addition to this, the mirror had a
solid connection to the camera, meaning the system would
be reliable. Finally, this camera was cheap, costing only $20.
This meant the camera could be bought and tested before a
final decision was made.

Fig. 32: The GiraffeCam 1.0, a flexible endoscopic camera.

The other camera the team looked into was the GiraffeCam
3.0. This camera takes 2 megapixel images, which meant
it would generate clearer images when mounted a similar
distance from the ball gauge. The camera’s diameter was larger
than the GiraffeCam 1.0. This camera did not come with a
mirror attachment, meaning the team would need to design a
mirror mount into the EOAT. Additionally, this camera was
more expensive, costing $60.

The team decided to purchase the GiraffeCam 1.0, shown
in Fig. 32, for three main reasons:

1) It came with a mirror attachment.
2) It was small enough to easily fit between the blades of

a blisk.
3) It was cheap enough to buy just for testing purposes.
The team tested the camera to verify that it would work for

the system. The camera was rated for an ideal focal length of
two inches, however this distance was too far for a compact
EOAT design. To test whether the camera could generate
sufficient images with objects closer than two inches, a simple
test was set up. A quarter was positioned 1.5”, 1.0”, 0.75”, and
0.5” away from the camera, and a picture was taken at each
distance. The resulting images can be seen in Fig. 33. As can
be seen, the camera has fairly clear images up to 0.75” away.
At 0.5”, the image starts to blur significantly. The constraint
determining how close the camera needed to be to the ball
was the distance between stages of the multi-stage blisk. This
distance was measured at 2”, meaning this camera could be
used as there was enough space to avoid mounting the camera
0.5” from the ball.

Fig. 33: The GiraffeCam at Different Distances (1.5 top left,
0.5 top right, 1 bottom left, 0.75 bottom right)

Fig. 34: The original designs for the camera and LED arms.
Clearance issues meant these straight arms would not work.

5) Form Factor Restrictions: In their original designs, the
arms holding the camera and LED, shown in Fig. 34, were
designed to be straight. It was believed that by designing the
arms to be 1/4” wide, there would be enough clearance to
maneuver the arms along the fillets of each blisk. Though
this held true for the small-bladed blisk, blisk P01, a project
conducted by two of the team members for a separate class
showed that the arms did not have enough clearance to path
the largest-blade blisk, blisk P02.

Knowing this, the arms were redesigned. The results, shown
in Fig. 35, consist of two straight segments which hold the
camera and LED, and two curved segments which provide the
necessary clearance. The curve was designed by examining
blisk P02 in SolidWorks. It was determined that at the center
point of the fillet, a line running tangent to the fillet had an
angle of approximately 30 degrees from vertical. The same
point on the end of the blade had an angle of 60 degrees
from vertical. This meant there was approximately a 30 degree
change over the length of the blade. This held approximately
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true for all points along the fillet. The curved segment of
the camera and LED arms were therefore designed similarly,
curving 30 degrees over their length. When tested, this design
successfully fit between the blades of all four stages of blades
the team needed to inspect.

Fig. 35: The final design for the camera and LED arms. The
curve matched that of the most complex blades, allowing the
EOAT to utilize more of the available space between each
blade.

6) Locating Blade One: The turntable design contains no
sensor for absolute position for two reasons: the stepper motor
has very precise relative position capabilities, and the blisk is
placed arbitrarily on the turntable, so locating the position of
the turntable does not solve any problems. The system had
to therefore be able to accurately locate the first blade on
the blisk relative to the robotic arm and turntable position.
Doing so would allow the turntable to use differential position
measurements to place the other blades in the proper inspection
location. By using a differential measurement based on steps
of the stepper motor, the system can eliminate any error based
on placement of the blisk by the user.

Locating blade 1 is a multi-step process. As described in
Section III-J, the operator must first place the blisk on the blisk
stand without fully clamping it down. The robot then moves
the ball gauge of the EOAT just outside the blisk’s radius,
and the operator has a chance to adjust(rotate) the blisk to
ensure that the EOAT will be inserted between two blades.
Then, the operator indicates that the blisk is in position and
locks the blisk onto the turntable. The robot moves the EOAT
between the blades, and the turntable rotates until contact is
made between the side of the LED arm and the blisk.

The system senses if a circuit has been completed to deter-
mine if contact has been made with the blisk. A single wire
is extended from the ball gauge tip and continues down the
robot arm to be connected to a digital input on the Raspberry
Pi configured with a pull-up resistor. A grounded copper clip
is attached to the blisk to ground it. This circuit is shown
in Fig. 36, with the blisk-wire interface being represented by
the switch. The titanium blisk is conductive, so when the ball

Fig. 36: Contact Sensor Circuitry

gauge touches a blade, the input signal for the Raspberry Pi
switches from logic high to logic low. This signals to the
Raspberry Pi to use the current position of the turntable stepper
motor as the zero position. From this fixed point, the location
of the blisk blades is synced between the Raspberry Pi and the
IRC5 controller.

G. Computer Vision
Computer Vision was used to determine whether each blisk

passed inspection by examining individual images along the
blade fillets. The team decided that an image passed if the
correct number of light regions could be identified. When using
the small ball gauge in the blade fillet only two light regions
should be visible. If three light regions are visible then the fillet
is undersized. When the large ball gauge is being used, three
light regions must be visible for the image to pass inspection.
These areas of light are shown in Fig. 37. In order to identify
the light regions easier, a bright green LED was used. The
bright green color is easier to identify in image processing as
it stands out from the rest of the image.

Fig. 37: Light passes around each ball gauge to form lighter
areas on the sides and in the middle of the large tolerance
gauge, and only forms light areas to the sides of the small
tolerance gauge

An important metric for the system is its spatial resolution.
This is the number of image frames evaluated per unit distance.
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This is important for the inspection system because if the space
between each image becomes too large, it is possible that a flaw
in a fillet would be missed by the system. Through discussion
with GE, it was determined that a minimum spatial resolution
of 25 captures per inch (CPI) was acceptable.

In order to determine the spatial resolution, the team first
found the distance that the ball would have to travel pathing
fillets during the inspection. These distances for each blisk
can be found in Table IV in Appendix K. The team then
determined how long it would take for the camera to path the
fillets.While the team aimed for less than an hour of inspection
time per blisk, when calculating the potential spatial resolution
the actual time required for an inspection was unknown. The
team picked a few different scenarios for the inspection time:
If the system were as slow as acceptable, it would take an hour.
If the system were very fast, and moving quickly enough to
risk breaking parts of the EOAT, the inspection would take 15
minutes. A few other time frames within these bounds were
also explored. These can also be found in Table IV in Appendix
K.

The processing frame rate of the computer vision is essential
to the calculation of the spatial resolution. The frame rate of
the camera itself is 30 frames per second (FPS), but the FPS
of computer vision processing is what limits the system. The
processing FPS was determined once the entire system was
completed. When calculating the expected spatial resolution,
however, an expected frame rate of 10 FPS was used. The
lowest expected spatial resolution was 36 CPI, using the
highest pathing speed and longest blade length. All expected
numbers for spatial resolution can be found in Table IV in
Appendix K.

1) Choosing an Image Processing Toolbox: The two main
computer vision platforms that the team chose between were
OpenCV and the MATLAB Image Processing Toolbox. Com-
patibility with a Raspberry Pi was seen as the most important
factor. Familiarity with the programming language was seen
as the second most important factor, since being more familiar
with the language would ease the learning process. Lastly, cost
and availability of online resources were other factors the team
considered, as both were important.

There are a few benefits to using the open-source image
processing toolbox OpenCV, including the availability of re-
sources and the ability to use OpenCV with C++ or Python.
There are multiple tutorials online on how to install OpenCV
on a Raspberry Pi, whereas there was no proof that the
MATLAB Image Processing Toolbox could be installed on the
Raspberry Pi. The cost of the MATLAB Toolbox was also a
downside, especially compared to OpenCV which is free and
open source. The decision matrix summarizing these factors
can be seen in Table II. The decision matrix was developed
by ranking the importance of the categories for an image
processing toolbox, and ranking them on importance with a
high ranking indicating a more essential factor. Based on this
matrix, the team chose to use OpenCV.

Raspberry
Pi Com-
patible

Cost
Familiarity
with
Language

Online
Resources
Available

Total

Weighting
Factor 4 2 3 1

OpenCV 10 10 8 8 124
Matlab
Image
Processing
Library

2 2 3 4 30

TABLE II: Computer Vision Decision Matrix

2) GRIP for Testing: The Graphically Represented Image
Processing engine (GRIP) was used to test OpenCV with
pictures of the ball gauge resting in the fillet. GRIP is a
User Interface to easily test OpenCV functions. This allowed
the team to identify the regions of light passing around the
ball gauge. Fig. 39 shows the initial results of using GRIP to
identify the contours of green light in the image.

Fig. 38: Hue Saturation Value (HSV) Color Representation

In Fig. 39, the picture on the left shows the initial image of
the ball gauge with the LED positioned behind it. As can be
seen, the ball gauge was larger than the blade fillet, allowing
light to shine past the ball gauge in three different regions.
The goal of the inspection process was to detect how many
regions of light were present. The GRIP screenshot shows the
initial image being processed by a Hue Saturation Value (HSV)
Threshold. This allows the user to specify a range for the hue,
saturation and value to identify only the parts of the image
that meet those standards. The hue specifies what range of the
color spectrum that should be searched for. By using a range
of 26-71 any green in the image was identified. The value
and saturation are both specified as the top part of the range
since a bright green is being searched for. Fig. 38 illustrates
the HSV visual color representations. After the green regions
of light were identified in the image, the contours of these
shapes were found using the OpenCV findContours method.
These contours are shown in the right picture in the GRIP



22

Fig. 39: GRIP for Testing Identifying the Regions of Light

screenshot. By using GRIP to identify the green regions of
light and identify the contours, the optimal HSV ranges could
be incorporated into the final computer vision algorithm.

3) Computer Vision Algorithm: Computer vision was used
to determine whether an image of a ball gauge in a fillet
passes. The function to handle the inspection first captured
the current image from the camera. The function was passed
a fillet position class indicating which ball gauge size was
being used and the current position on the blisk. The frame
is first converted from RGB color scheme to HSV so that the
bright green light can be identified. Once the image’s color
scheme has been converted, the OpenCV inRange function
is used to select only the bright green shapes in the image.
After identifying the bright green regions, the contours of
these regions are identified with the OpenCV findContours
function. These contours are shown in red in Fig. 40. An array
of contours is used to store the outlines of each of the bright
green regions. The algorithm then iterates through each of the
contours to identify the centroid of each region, shown as black
circles in Fig. 40.

The algorithm next identified the location of the ball gauge
in the image. This was so that the inspection algorithm could
dynamically adjust during a fillet inspection. The ball gauge
was detected by first filtering the image to accentuate the edges
of the ball gauge. The Hough Circles OpenCV function was
then used to identify any circles with diameters similar to the
current ball gauge diameter. If a circle of the correct diameter
and relative position is detected then the stored position of the
ball gauge is updated to move in the appropriate direction. This
position is updated using a weighted average to slowly adjust
the ball gauge position over time while decreasing the effect
of incorrect circles detected. The detected ball gauge can be
seen outlined in blue in Fig. 41.

Three different regions are positioned in the image based on
their proximity to the ball gauge where light was expected to
pass through. The regions locations are adjusted based on the
current ball gauge location. The algorithm iterates over every
contour and increments a counter if one of the centroids was
located within the region. If the small gauge was being used,
the algorithm then checks that there was a centroid within the
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Fig. 40: The large ball gauge seated in a fillet with identifi-
cation of the green regions of LED light. The contours of the
regions of light are shown in red, and the centroids are shown
as black circles.

Fig. 41: Identifying the ball gauge location, shown as the bright
green circle.

outer regions, but not within the center region. Alternatively
if the large ball gauge was being used, the algorithm checks
that there were centroids of light in all three of the regions. If
these conditions were met for the current ball gauge, then the
image passes. A final passing image can be seen in Fig. 42.
Otherwise, the image failed. The inspection result was stored
in a CSV file for the end user to view. The file contains the
position along the fillet and whether or not the position in
the fillet passed inspection. A sample results CSV file can be
found in Appendix L.

H. Software System
The following section elaborates on the software controlling

the project. It will first describe the class structure implemented
for the project, and then discuss the communication and control
between the Raspberry Pi and IRC5 Controller. Finally the
section will wrap up with the overall code flow and execution
of the software.

Fig. 42: The final passing image with the regions of expected
light shown as the three white boxes.

The team choose to use Object Oriented Design (OOD)
for the software structure as the project had functionality that
could be neatly encapsulated by classes. The control of each
sensor and actuator was encapsulated in its own class. This
allowed for the code corresponding to the different elements
of the system to be easily separated and abstracted from the
top level application layer.

The team decided to use the Entity Boundary Controller
(EBC) design pattern for the software as it provides an
organized way to handle input from a User Interface to control
the hardware classes. The EBC Design Pattern uses three tiers
of classes to organize the software design. The entity classes
are the classes that represent the components in the system
such as the turntable, the blisk, or the EOAT gauge selector.
The boundary classes are the classes that represent the different
components of the User Interface (UI) of the application. The
controller classes are what handle the communication between
the boundary and entity classes. The following sections will
discuss the classes chosen as entity, boundary, and controller
classes, and the reasoning behind the design decisions.

1) Entity Classes: The entity classes are the classes which
represent the physical components and processes of the system.
The different entity classes used in the software design are
shown in Fig. 49 in Appendix 49.

The first of these entity classes is the turntable. This class
is responsible for controlling the stepper motor to turn the
turntable. The second entity class is the ABB Robot class,
which controls the movement of the robotic arm. This class
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contains methods which interface with the IRC5, directing
the arm’s movements around and along each fillet. The ABB
Robot class also handles the TCP communication with the
IRC5 controller by containing a Socket Server Thread object.

Another entity class used in the software design is the LED
class. This class handles turning this light source on and off
and dimming it as appropriate. The Force Sensor class is used
to receive input from the ADC connected to the load cell. The
Gauge Selector class controls the switching between the two
different ball gauge sizes on the EOAT by driving a servo. The
software design also includes the Circuit Completer class that
is used to determine if the EOAT has made contact with the
blisk.

One of the most essential classes to the system is the Image
Processor class. This class is responsible for the computer
vision and determining if the fillet passes or fails inspection.
Two of the final classes are the Blisk and Stage classes. Each
blisk can be comprised of either one or two stages. These
classes are used to store all of the specific information about
the three different blisks that the system can inspect.

Fig. 43: Inspection Set Up Flowchart

Lastly, and most essentially, is the Blisk Inspection System
class. This is the class that is responsible for using all of
the other entity classes in order for the system to function
correctly. The Blisk Inspection System class has a copy of
every other class to interface with the different components
of the system. The Blisk Inspection class also stores the three

different blisks that it can inspect.
2) Boundary Classes: The boundary classes of the EBC

Design Pattern are the classes which define each of the
components of the User Interface (UI) for the blisk inspection
application. Images of the UI design can be found in Appendix
I. The UI was written in Python on the Raspberry Pi using
the TkInter library. Fig 47 in Appendix D illustrates the class
diagram of the boundary classes used.

3) Controller Classes: The controller classes handle the
communication between the user interface and the entity
classes. A different controller is used to handle each action
that a user can make with the application. Fig. 48 in Appendix
E illustrates the class diagram of the controller classes used.

4) Communication with the IRC5 Controller: The Raspberry
Pi had to communicate with the IRC5 Controller to control the
pathing of the ABB Robotic Arm. This communication was
accomplished using a TCP connection. Both the Raspberry
Pi and IRC5 Controller were connected to the same router
through Ethernet. Though there were a few communication
options, including digital IO lines and a UDP socket, the team
chose to use a TCP connection because it guaranteed no packet
loss.Though UDP is faster, packet loss would be an issue.
The main downside of using the digital IO lines was that the
number of commands that could be sent through signals was
much more limited than the number of commands which could
be sent in packet format.

The RAPID program running on the IRC5 was set up as
a TCP Client. The main structure of the program consisted
of waiting to receive a command from the Raspberry Pi,
then handling that command appropriately. At the top of the
main polling loop the program had a blocking receive call
to get any message transferred over TCP. The message was
then parsed to execute the correct command. Based on the
command, the IRC5 Controller would direct the robot to
execute a path. Once the path was complete, the IRC5 would
send a response message to the Raspberry Pi, indicating the
command completed.

In order for the Raspberry Pi to have other functionality
while the robotic arm was moving, the Python program was
multithreaded. This functionality was necessary when the arm
was pathing the fillet. The Raspberry Pi had to handle cap-
turing and inspecting the images with computer vision while
also waiting for the message from the IRC5 controller stating
that the pathing was complete. Initially, the team attempted to
achieve this functionality by using non-blocking TCP socket
receive calls, but non-blocking receive calls cannot be used
for a server, only a client. The socket handler class was given
its own thread and used two different queues to communicate
with the main program thread. Queues were used as they are
a safe data structure that can be used for messages passing
between multiple threads of a program. One queue was for
sending commands to the socket handler and another queue
was used by the socket handler to pass messages to the main
program thread. The commands that could be sent to the socket
handler included sending or receiving a message, connecting
to a socket, or closing the connection.

5) Software Flow of Execution: There are two main phases
to the software’s execution. The first phase consists of the
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interactions with the user in order to prepare the blisk and
system for the inspection. During this phase, the system must
instruct the user on how to place the blisk on the turntable,
wait for the user to do so, and then handle the positioning of
the arm. Fig. 43 details the flowchart of the first phase of the
blisk inspection system.

The second phase handles the actual inspection of the blisk.
This occurs after the user has already set up the system for
inspection and chosen to start the inspection process. During
this phase the blisk inspection system must control inspecting
every fillet on the blisk with both of the two ball gauge sizes,
and then determine if each fillet passes or fails inspection. The
software flowchart for the inspection phase of the software
design can be seen in Fig. 44.

Fig. 44: Phase 2 Flow Chart

I. ABB Robot Pathing
1) Matching Physical and Simulated Environments: In order

to begin pathing, the station was set up in RobotStudio.
This involved adding the CAD models of the turntable and
EOAT to RobotStudio. A work object was then created for the
turntable. By making all targets relative to the work object, the
team would later have the option of changing the turntable’s
location without needing to recreate robot targets. Once the

environment was setup in RobotStudio, a series of points
on the corners of the base plate were created to build an
alignment path. By having the robot follow this path, the
physical turntable was properly positioned. This was a crucial
step because if the physical turntable was not in the same
position as the simulated turntable the path would be incorrect.

Using the alignment path, the team discovered a number
of inconsistencies between the CAD models and the physical
components. The true turntable was about 0.4” taller than the
CAD model, and the true EOAT was about 0.4” longer than the
CAD model. The team believed these inconsistencies resulted
from the designs being altered during manufacturing without
updating the CAD models.

After adjusting the CAD models, the alignment path was
run again. Doing this revealed that the EOAT had small
manufacturing errors in the X- and Y-axes of the tool frame
(see Appendix C). These errors caused the true tool center
point (TCP) to be about 0.08” off from the expected TCP.
This meant that when rotated about the expected TCP, the ball
gauge spun in a 0.16” diameter circle. To adjust this, the team
made modifications to the CAD model used in RobotStudio
to reflect the real EOAT. By doing this, the error was brought
down to approximately 0.02”.

Another error affecting the pathing was that the true center
of the turntable was 0.06” off in the Y direction and 0.2” off
from the expected center. The team could not identify which
components of the turntable caused this error, and so could
not fix the issue. However, it was calculated that, at worst,
this and the EOAT error would result in a total offset of about
.12” from the expected position. As this was less than the 1/8”
error tolerance built into the EOAT, it was determined that the
setup was sufficient.

2) Generating the Paths: The movement of the ABB robot
is composed of shorter paths corresponding to commands sent
by the Raspberry Pi. A home position was first established that
provided a constant starting point for the system. This was the
only position that was the same for all four blisk stages, as all
other paths were adjusted based on the exact size and shape
of the stage.

An approach path was created which moved the ball gauge
of the EOAT just outside the blades of the blisk. This position
allows an inspector to easily line up the blisk such that the
EOAT is centered between two blades.

To locate blade one, a path was created that moved the
EOAT between the blades of the blisk. While following this
path, the EOAT was also oriented so when the turntable was
rotated, the LED arm would be the first component to contact
the blisk. This is because the contact sensing wire runs down
the LED arm to detect contact between the blisk and EOAT.
With this positioning, the turntable can be rotated until contact
with the LED arm is made, ensuring the real world and
simulated systems are the same.

The next step was to path the front and back of the current
blade. First, the tooling pathed in between the blades, rotating
to maintain clearance as necessary. Once about 0.2” away from
the expected location of the fillet, the Raspberry Pi began
reading force sensing values. The tooling was moved slowly
towards the fillet until the correct force was applied.
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At this point, an offset was created using the RAPID PDist
command. The PDistOn command calculates the distance
between the robot’s current location and an expected location.
It saves this distance as an offset, and then applies this offset to
all targets until the PDistOff command is called. This process
was used to compensate for positioning and manufacturing
errors present in the system. By doing this, the path could be
dynamically updated to compensate for errors without having
to constantly poll the force sensing signal from the Raspberry
Pi.

The path along the fillet itself was split into two parts. One
path had the EOAT start in the middle of the fillet and move
up, while the other had the tooling start in the middle and
move down. This method of pathing was chosen because it
was safer than pathing the entire fillet in one pass. To path
the fillet in one pass, the ball gauge would have to be initially
placed on either the top or bottom edge of the fillet. Any error
in the height accuracy of the system would then create a risk
of the ball gauge slipping out of the fillet and past the hub of
the blisk. If this occurred, the EOAT could be damaged by the
robot trying to move the ball through the blisk.

The orientation of the EOAT while pathing the fillet var-
ied based on which ball gauge was being used. When the
maximum ball gauge was being used, the EOAT was oriented
with the camera pointing down towards the table. When the
minimum ball gauge was being used, the EOAT was oriented
with the camera pointing towards the ceiling. This was done to
protect the servo controlling the gauge selector, as it allowed
the holding force for the gauge selector to be generated by the
hard stops.

Once the front side of the fillet was followed, the offset was
turned off, and the robot retracted the EOAT from between
the blades. The same process was then repeated for the back
side of the blade and the remaining blades of the blisk being
inspected. For the tandem blisk in the LEAP series, the process
was repeated for both stages. Because the turntable rotated a
new blade into the same position each time, the same paths
could be used for each blade.

J. High-Level Inspection Process
The process an end user must take in order to use the blisk

inspection system was one of the first considerations made in
designing the system. The first operational step is to power on
the Blisk Inspection System. If at any point a user is unsure of
how to use the system the instructions will always be linked at
the bottom of the screen. The specific instructions for the Blisk
Inspection System can be found in Appendix J. After powering
the system on, the robot first moves the EOAT to a home
position, allowing for a constant starting point. The user then
chooses a blisk for inspection from the list of three possible
blisks. The user can then place the blisk on the turntable, lock
it down, and line up the first blade with a mark on the turntable.
This is not expected to be precise, but to instead ensure that
the blisk is roughly in the correct position.

During this process the robot will be clear from the
workspace to ensure that neither the EOAT nor the blisk is
damaged. Once the user indicates that the blisk is in place,

the arm will move closer to the blisk, positioning the ball
gauge just outside of its known radius. This step is for the
user to ensure that the blisk is properly lined up, and make
small adjustments to the blisk’s position if necessary. Before
proceeding, the application will require the user to place the
contact lead on the blisk for contact sensing with the EOAT.

Upon choosing to proceed to the next step, the Blisk
Inspection System will move the EOAT within the gap between
blades on the blisk. The system will then slowly turn the
turntable until contact with the blisk and the EOAT is made.
The system will then halt turning the turntable, as the blisk has
been successfully positioned. The application will then notify
the user to remove the contact sensor lead from the blisk. The
user can then choose to start the inspection of the blisk. The
system will then autonomously inspect the fillets of the blisk.

Once the inspection is complete, a message saying whether
the blisk passed or failed inspection will display. The applica-
tion will list the file where the inspection results are located
so the user can view the detailed inspection results.

IV. RESULTS

A. Turntable
The Turntable was fully manufactured and operational. The

turntable rotates each blade into position in three seconds. The
arc length between blades was measured to be accurate to
within .001”. The turntable was measured to be .05” eccentric,
well within the 1/8 ” tolerance of the EOAT. The turntable was
tested to work reliably for up to three hours. The blisk is easily
placed and removed from the turntable and each action can be
completed in 1 minute. The turntable is capable of holding
each of the LEAP series of blisks correctly. The belt drive
system is clean and reliable, and the belt can be changed by
unscrewing a few set screws and lifting the motor.

B. End of Arm Tooling
The EOAT was fully manufactured and can be seen in Fig.

45. It was successfully able to position the ball gauge, LED and
camera within the fillets of all three blisks as needed. However,
slight errors in manufacturing resulted in the true TCP of the
tooling being approximately 0.08” off of the expected TCP
obtained from the CAD model. This resulted in difficulties
pathing because the ball gauge would change in position by
as much as 0.16” when it should have been rotating in place.
The team worked to try to fix this, but could never determine
the exact cause of this discrepancy.

The load cell was successful in detecting the compressive
load on the EOAT, and resulted in consistent, repeatable
paths. The spring steel segment was also successful, flexing
approximately 1/8” under 1/8 lb of force as desired. This
allowed the ball gauge to slide into the fillet consistently
without damaging the blisk.

The spring section providing Z-axis compliance was less
successful. Because of the weight of the EOAT itself, a large
amount of friction was generated between the shoulder bolts
and the load cell through holes. This meant stronger springs
were needed to prevent the shoulder bolts from sticking. These
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Fig. 45: The fully built EOAT.

stronger springs resulted in less overall compliance than was
desired since the force being applied by the EOAT to the blisk
remained the same.

Another issue with the Z-axis compliant section of this
EOAT was that slight gaps in the clearance holes for the
shoulder bolts resulted in significant sag in the EOAT of
almost 0.5”. This had a huge impact on the paths, causing
issues for every phase of the inspection. The team was able to
compensate for some of this by adjusting the paths based on
the expected sag, however this was not ideal.

The gauge selector works, but was unreliable. This was
primarily due to misalignment in the pieces which held the
shaft of the gauge selector. Because the pieces were mounted
to the EOAT with bolts and clearance holes, these pieces could
shift and become out of alignment. This caused large amounts
of friction to be generated on the shaft, preventing the servo
from being able to rotate the gauge selector. Despite this, when
the shafts were in alignment, the gauge selector worked as
expected, rotating the desired ball gauge into position quickly
and effectively.

The modular gauge mounts worked as desired, taking ap-
proximately 1 minute to change each pair. This assumes the
proper hex key was easily accessible.

C. Computer Vision
Overall the computer vision was a success. The algorithm

met the goal that when accurately configured the algorithm
could correctly pass or fail an image based on the amount of
light passing past the ball gauge. The computer vision was
able to inspect an image in real time while the EOAT was
pathing the blisk which was a stretch goal the team initially
defined. Another stretch goal that was achieved was storing the
inspection results in a CSV file that indicates the inspection
result for an image and the corresponding position in the fillet.

Though the algorithm worked correctly, ultimately it was
only configured for a few of the fillets. This was due to not

all of the paths being finalized in the RAPID program. Ball
gauge tracking was also added into the algorithm so that it
could dynamically adjust for any changes in position of the
ball gauge in the image. The ball gauge tracking was not
incorporated into the final version of the algorithm as it cut
the processing frames per second roughly in half. The ball
gauge position also didn’t change enough throughout a fillet
inspection to require dynamic position updates. The final FPS
the team achieved was 7.2 FPS, yielding a spatial resolution
of 130 Captures per Inch (CPI) for the P02 Blisk.

Due to incomplete pathings of the fillet the team was
unable to extensively test the reliability of the computer vision
algorithm. When running the algorithm through a fillet there
were multiple instances of incorrect failures of the images.
This was not due to the computer vision algorithm but instead
due to the ball gauge not being properly seated in the fillet
throughout the path. This caused the LED light to show up as
only on one side of the ball gauge, creating a failing image.
If paths were able to consistently seat the ball gauge in the
fillet then the computer vision algorithm would successfully
identify whether an image should pass.

D. Overall System
The blisk inspection system was mostly successful. The GUI

application walked the user through each step of the inspection
process. By interacting with the GUI, the user could activate
each phase of the inspection process.

Communication between the Raspberry Pi and the IRC5
was successfully implemented. This allowed communication in
both directions as necessary for each phase of the inspection.

Zeroing blade one using the contact sensing feature of the
EOAT worked reliably. This ensured the blisk was properly
aligned for each inspection. The system was also able to locate
the fillet reliably using the force sensing and the eccentricity
of the turntable was always accounted for.

Pathing the tooling along a fillet correctly was the largest
unsuccessful part of the project, but because it was essential
for a working system it caused the whole system to be
unable to inspect a blisk. While multiple successful paths were
created in RobotStudio, fine-tuning these paths to be within
the tolerances needed to capture good images was a slow
process. In addition to this, the manufacturing errors in the
EOAT discussed in Section IV-B made generating precise paths
even more difficult. As a result, only the paths needed for P01
and P02 using the maximum ball gauges were fine-tuned. The
paths for P01 and P02 using the minimum ball gauges were
not fine-tuned, and neither were the paths for G02.

By timing the inspection process for a few blades from the
completed paths, an estimated total inspection time of one hour
and forty five minutes was calculated. This is much longer
than the desired one hour inspection time. However, the team
believes this could be improved by speeding up the robot once
the system is more reliable.

V. CONCLUSION

Overall, all individual components of the system created by
the team work in their current form, though many of them
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could be improved. In addition to this, the team is confident
that the system could reach a reliable state with more work.
The team believes that a Blisk Inspection System is feasible
for General Electric Aviation for their LEAP series of blisks.

A. Social Implications of a Robotic Inspection System
It is a common concern with industrial systems that the

introduction of autonomous systems results in the loss of
human jobs. The Blisk Inspection System would complete the
majority of a fillet inspection task autonomously. However,
the team believes that this is not synonymous with the loss of
human jobs.

The Blisk Inspection System requires an operator. If there
are any faults in the system, it is also necessary for the operator
to do a manual inspection. Furthermore, the Quality Assurance
inspectors at GE Aviation involve many checks beyond the
fillet inspection. The Blisk Inspection System was designed as
a tool for an operator to use so they have more time for value-
added tasks. This would increase the value of a blisk without
significantly increasing the labor costs associated with it.

B. Future Work
There were a number of areas in which this project could be

improved or expanded by future work. This section describes
these areas broken down by topic.

1) Turntable: The primary area in which the turntable could
be improved is in its lack of positional feedback. Currently,
the stepper motor spins the blisk without feedback. Though
this was not an issue with this implementation of the system,
a finalized implementation should have positional feedback to
account for errors such as the stepper motor or stepper circuitry
malfunctioning. Depending on the implementation, this may
also remove the need for the grounding clip, removing a setup
step from the inspection process.

2) End of Arm Tooling: There were a number of areas in
which the EOAT could be improved by future work. The Z-axis
compliance section needs significant improvement. It did not
generate as much compliance as needed, and it also resulted
in significant sag from gravity that caused pathing issues. As
such, work would need to be done to solve both of these issues.
One potential solution discussed by the team would be to use
Delrin such that the contact points would be Delrin against
Delrin or Delrin against Steel. This would result in a decrease
in the coefficient of friction. Another design could relocate
the Z-axis compliance further out on the EOAT. This would
reduce the weight applying pressure to the compliant section,
reducing the friction generated. It would also reduce the sag
at the ball gauge because there would be less distance for the
error to translate over.

Another area for improvement would be implementing a
locking mechanism for the gauge selector. Though the team’s
implementation involving hard stops worked, it is not as
reliable as a locking mechanism would be. This mechanism
would also reduce the number of paths needed to be built
in RobotStudio. In addition to this, adding feedback which
could verify that the swap was successful would increase the
reliability of the system.

The last major area of future work would be to redesign
and re-implement the manufacturing and assembly process
for the EOAT. In particular, this would include using tighter
tolerances, and using pins and precision holes to align compo-
nents instead of screws and clearance holes. This would help
to improve the error in the TCP discussed in Appendix C.
This would also help remove the potential for shifting parts to
generate heavy friction in the gauge selector as discussed in
section III-F1.

3) Computer Vision: There are multiple ways the computer
vision could be improved for future work. One of the first ways
this could be accomplished is by running the computer vision
algorithm on a more powerful processor than the Raspberry Pi.
The processing power greatly limited the speed the ABB Robot
could path along the blisk fillets. Optimizing the algorithm
would also allow for a higher processing FPS. One other
possibility is to use machine learning to identify if an image
passes inspection.

Additionally the vision from the camera could be used to
determine if the ball gauge is seated in the fillet. If the camera
could detect when the ball gauge was not in the fillet then
this information could be used as feedback to move the arm
forward more.

Another way to potentially improve the computer vision is to
not have it run in real time when the EOAT is pathing the fillet.
Instead the images could be saved and the inspection could
happen on a separate thread while the EOAT is completing
the pathing of the fillet and positioning to path the next fillet.

4) Final Thoughts: A robotic blisk fillet inspection solution
is feasible for GE Aviation. The team hopes that this project
will continue, as it is a difficult challenge, and there are many
improvements to be made to the system. If a team were to
start with the knowledge base that has been created in this
document, it is likely that they would be much more successful
in completing and implementing a Blisk Inspection System.
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APPENDIX A
BLADE NUMBERING SCHEME

The blades of a blisk are referred to by number, starting with 1 and continuing to the max number of blades. On every blisk,
there is a mark on one side of the hub which indicates which blade is blade 1. This mark is not standard across all blisks.

When the mark is face up, the direction of counting is such that the leading edge of each blade is met before its trailing
edge. On the blisks the team currently has, this means counterclockwise rotation. When the mark is face down, the direction of
counting is opposite, such that the trailing edge of each blade is met before the leading edge.

APPENDIX B
RASPBERRY PI PINOUT

Function GPIO Pin

Stepper Motor Step 20
Stepper Motor Direction 16
Servo PWM Signal 4
Servo Power Control 17
Force Sensor Clock 23
Force Sensor Data 24
Circuit Completer Input 5
LED Signal 22

TABLE III: Raspberry Pi Pinout

APPENDIX C
COORDINATE SYSTEMS

There are a number of different coordinate frames used in this system. What follows is a description of each, including a few
ways each coordinate frame is used.

A. The World Frame

The world frame is the default coordinate frame for all projects. It provides a base reference around which all other system
elements and coordinate frames can be positioned. Moving the world frame moves every other coordinate system, target, and
workobject by an equal amount. In this system, the world frame is located directly beneath the robot in the center of it’s base.
The Z-axis points vertically, the X-axis points out the front of the robot, and the Y-axis completes the right-handed coordinate
system. The world frame is a default defined by RobotStudio.

B. The Base Frame

The base frame defines the robot’s location in the world frame, and provides a way to define targets and paths relative to the
robot. In this way, moving the base frame (which is equivalent to moving the robot) moves the items defined relative to that
frame. This frame is a default defined by RobotStudio.

The base frame is located directly beneath the robot in the center of its base. The Z-axis points vertically through the robot,
the X-axis points out the front of the robot, and the Y-axis completes the right-handed coordinate system. This is the same
position as the world frame, and so in this project the base and world coordinate frames were interchangeable.

C. The Turntable Workobject

A coordinate frame was created for the turntable such that robot targets and and paths could be defined relative to it. By doing
this, the turntable could be moved around without losing all of the work done creating paths along the fillets.

D. The Tool Center Point (TCP)

The tool center point is a coordinate frame which defines the working point of an end of arm tooling. Tool0, a default TCP
defined by RobotStudio, defines the mounting point for user-built end of arm toolings. Both the tooling built by the previous
team and the tooling built in this implementation had similar TCP’s. In both cases, the TCP defined the tip of the ball gauges,
with the Z-axis extending out of the end of the ball, the Y-axis extending through the camera, and the X-axis completing the
the right handed coordinate frame. These TCP’s can be seen in Fig. 46 and Fig. 4.
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Fig. 46: The EOAT with TCP shown.
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APPENDIX D
BOUNDARY CLASS DIAGRAMS

Fig. 47: Boundary Class Diagram
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APPENDIX E
CONTROLLER CLASS DIAGRAMS

Fig. 48: Controller Class Diagram
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APPENDIX F
ENTITY CLASS DIAGRAMS

Fig. 49: Entity Class Diagram



Nomenclature: 
Inspector​: The person running the blisk inspection. 

Blisk​: The Bladed Disk that can be multi-staged.  

Blisk Inspection System​: The system that is responsible for inspecting the blisk. 

Blisk Inspection​: The process of inspecting just the radius of the root fillets of the blisk. 

Blisk Inspection Application​: The software application that controls the blisk inspection. 

 

Blisk Inspection User Stories 

I want to go to the blisk inspection opening screen so that I can choose a blisk to inspect. 

Use Case: Display Blisk Inspection Options 

I want to be able to read instructions on how to operate the blisk inspection system. 

Use Case: Display Inspection Instructions 

I want to be able to able to select a blisk from a menu to inspect. 

Use Case: Select Blisk 

I want to be able to position to ABB Robot arm into place for the inspection. 

Use Case: Position Arm 

I want to be able to have the blisk on the turntable to be correctly positioned for inspection.  

Use Case: Position Blisk 

 I want to be able to start the inspection of the blisk. 

Use Case: Start Blisk Inspection 

I want to be able to know how much time is left in the inspection process of the blisk. 

Use Case: Display Remaining Inspection Time 

I want to be able to see a progress bar of the progress of the blisk inspection. 

Use Case: Display Inspection Progress 

I want to be able to see when the blisk inspection has completed. 

Use Case: Display Inspection Completion 

I want to be able to see if the blisk inspection passed or failed. 

Use Case: Display Inspection Result 

I want to be able to see a detailed report of the blisk inspection results. 

Use Case: Display Inspection Results Report 

I wish to be able to quit the inspection and return to the opening screen 

Use Case: Quit Inspection to Return to Opening Screen 

APPENDIX G
INITIAL SOFTWARE DESIGN USER STORIES



Nomenclature: 
Inspector​: The person running the blisk inspection. 

Blisk​: The Bladed Disk that can be multi-staged.  

Blisk Inspection System​: The system that is responsible for inspecting the blisk. 

Blisk Inspection​: The process of inspecting just the radius of the root fillets of the blisk. 

Blisk Inspection Application​: The software application that controls the blisk inspection. 

 

Blisk Inspection Use Cases 

 

Use Case: Display Blisk Inspection Options 

Participating Actor: Initiated by Inspector 

Entry Condition: The Inspector opens the Blisk Inspection Application 

Exit Condition: The Blisk Inspection Application shows the different blisk options for the 
Inspector to choose from 

Flow of Events: 1. Inspector opens the Blisk Inspection Application. 
2. The Blisk Inspection Application shows the different blisk 

options. 

 

Use Case: Display Inspection Instructions 

Participating Actor: Initiated by Inspector 

Entry Condition: The Blisk Inspection Application is open. 

Exit Condition: The instructions on how to use the blisk inspection system are now 
being displayed. 

Flow of Events: 1. Inspector selects to view the instructions. 
2. The Blisk Inspection Application shows the instructions on how 

to use the system. 

 

 

APPENDIX H
INITIAL SOFTWARE DESIGN USE CASES



Use Case: Select Blisk 

Participating Actor: Initiated by inspector 

Entry Condition: The Blisk Inspection Application is at the opening screen with the blisk 
options menu 

Exit Condition: The Blisk Inspection Application now has the blisk chosen by the 
Inspector selected for inspection. 

Flow of Events: 1. The Inspector selects a blisk for inspection 
2. The Blisk Inspection System selects the blisk for inspection 

 

Use Case: Position Arm 

Participating Actor: Initiated by inspector 

Entry Condition: The Blisk Inspection System already has a blisk selected for inspection 
and is at the position arm screen 

Exit Condition: The Blisk Inspection System has positioned the arm correctly for the 
blisk being inspected. 

Flow of Events: 1. The Inspector chooses to position the arm for the selected blisk 
2. The Blisk Inspection system positions the arm in the correct 

location for inspection 

 

Use Case: Position Blisk 

Participating Actor: Initiated by Inspector 

Entry Condition: The arm has been positioned, a blisk has been selected, and the Blisk 
Inspection Application is on the Position Blisk Screen 

Exit Condition: The Blisk Inspection System has correctly positioned the blisk on the 
turntable 

Flow of Events: 1. The Inspector chooses to position the blisk on the turntable 
2. The Blisk Inspection system positions the blisk on the turntable 

in the correct location for inspection 

 



Use Case: Start Blisk Inspection 

Participating Actor: Initiated by Inspector 

Entry Condition: A blisk has been selected, the arm has been positioned correctly for the 
blisk, and the blisk has been positioned on the turntable 

Exit Condition: The Blisk Inspection System has started the blisk inspection 

Flow of Events: 1. The Inspector has selected to start the blisk inspection 
2. The Blisk Inspection System has started inspecting the blisk 

 

Use Case: Display Remaining Inspection Time 

Participating Actor: Initiated by Inspector 

Entry Condition: The Blisk Inspection System is in the process of inspecting the blisk 

Exit Condition: The Blisk Inspection Application shows the remaining time for the blisk 
inspection 

Flow of Events: 1. The Inspector has started the blisk inspection 
2. The Blisk Inspection Application shows the remaining inspection 

time for the blisk 

 

Use Case: Display Inspection Progress 

Participating Actor: Initiated by Inspector 

Entry Condition: The Blisk Inspection System is in the process of inspecting the blisk 

Exit Condition: The Blisk Inspection Application shows the progress of the blisk 
inspection 

Flow of Events: 1. The Inspector has started the blisk inspection 
2. The Blisk Inspection Application shows the blisk inspection 

progress 

 

 

 



Use Case: Display Inspection Completion 

Participating Actor: Initiated by Inspector 

Entry Condition: The Blisk Inspection System completes the inspection of the blisk 

Exit Condition: The Blisk Inspection Application shows that the blisk inspection has 
completed 

Flow of Events: 1. The Inspector has started the blisk inspection 
2. The Blisk Inspection Application shows that the blisk inspection 

has completed 

 

Use Case: Display Inspection Result 

Participating Actor: Initiated by Inspector 

Entry Condition: The Blisk Inspection system has completed inspecting the blisk 

Exit Condition: The Blisk Inspection system shows if the blisk inspection passed or 
failed 

Flow of Events: 1. The Blisk Inspection system completes inspecting the blisk 
2. The Blisk Inspection Application shows if the blisk inspection 

passed or failed 

 

Use Case: Display Inspection Results Report 

Participating Actor: Initiated by Inspector 

Entry Condition: The Blisk Inspection system has completed inspecting the blisk 

Exit Condition: The Blisk Inspection Application displays the blisk inspection results 
report 

Flow of Events: 1. The Inspector selects to display the blisk inspection results 
report 

2. The Blisk Inspection Application displays the results report of 
the blisk inspection 

 

 



 

Use Case: Quit Inspection to Return to Opening Screen 

Participating Actor: Initiated by Inspector 

Entry Condition: The Blisk Inspection System is not on the opening screen 

Exit Condition: The Blisk Inspection Application quits the inspection and returns to the 
Opening Screen 

Flow of Events: 1. The Inspector selects to quit the current inspection to return to 
the opening screen 

2. The Blisk Inspection Application displays quits the current 
inspection and returns to the Opening Screen 

 

Use Case: Leave Instructions Page to Return Back to Last Page 

Participating Actor: Initiated by Inspector 

Entry Condition: The Blisk Inspection System is on the instructions page 

Exit Condition: The Blisk Inspection Application returns to the previous page 

Flow of Events: 1. The Inspector selects to return back to the last page from the 
instructions page 

2. The Blisk Inspection Application displays the last page that was 
open before the instructions 
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APPENDIX I
BLISK APPLICATION SCREENSHOTS

Fig. 50: Blisk Application Start Screen

Fig. 51: Blisk Application Home Arm Screen

Fig. 52: Blisk Application Select Blisk Screen
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Fig. 53: Blisk Application No Blisk Selected Screen

Fig. 54: Blisk Application Position Arm Outside of Blisk Screen

Fig. 55: Blisk Application Position Arm Between Blades Screen
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Fig. 56: Blisk Application Turn Blisk Screen

Fig. 57: Blisk Application Start Inspection Screen

Fig. 58: Blisk Application Grounding Clip not Removed Error Screen
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Fig. 59: Blisk Application Inspection Complete Screen

APPENDIX J
BLISK INSPECTION APPLICATION INSTRUCTIONS

This application can be used to inspect the following GE Bladed Disks (Blisks): 2468M19P01, 2468M17P02, and 2468M18G02.
Ensure that the IRC5 Controller for the ABB Robotic Arm IRB1600T is powered on. The Raspberry Pi must be on and the
wiring must be set up according to the wiring diagram. The End of Arm Tooling (EOAT) must be mounted to the ABB Robot
with the correct ball gauge attached. When viewed from the camera side (the camera is on top, looking down onto the EOAT)
the small ball gauge is the left arm. Once everything is connected, start up the blisk inspection application. Click the button to
home the arm and select a blisk to inspect. Place the blisk on the turntable, but do not tighten it down. Select the button in the
application to position the tooling just outside of the blisk. Ensure that the arm is lined up between the blades, with the blade
to its right being the first to be inspected. Ensure that the grounding clip is on the blisk before turning the turntable with the
application, and remove it afterwards. After this the inspection process will run, and when it is complete the application will
identify where the results CSV file can be found.

APPENDIX K
SPATIAL RESOLUTION TABLE

Blisk Model Number Pathing Distance (in) Spatial Res. for 15 min.
pathing (CPI)

Spatial Res. for 20 min.
pathing

Spatial Resolution for 30
min. pathing

Spatial Resolution for 40
min. pathing

P02 148.75 36.31 47.93 72.62 96.15
P01 133 40.60 53.61 81.23 107.29
G01 (Doubled time for
tandem blisk) 268.75 40.19 53.04 80.37 106.10

TABLE IV: Spatial Resolution for Various Blisks and Pathing Times
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APPENDIX L
SAMPLE RESULTS FILE

Fig. 60: Sample Results CSV File from a test run. The file is named BliskP02 April 13 2017 1253PM which indicates that
blisk P02 was inspected on April 13, 2007 at 12:53pm.



Raspberry Pi Direction IRC5 Controller 

Sends Message “HOME” Moves Home  

Asks User to Place Blisk “HOME” Is Home 

Sends Message “FAR_STAGE” Moves Outside Blisk Radius 

Ask User to Line up Blisk  “FAR_STAGE” Is Far 

Sends Message “NEAR_STAGE” Moves between Blades 

Turns Turntable until Contact “NEAR_STAGE” Is between Blades 

Sends Message "RETRACT_NEAR_P02" Moves out from Blades 

Asks User to start Inspection "RETRACT_NEAR_P02" Is out from Blades 

Sends Message to Start 
Inspection 

“PREP_PATH”  Moves Between Blades and 
Near Center of Fillet 

Moves to Force Sensing “PREP_PATH” Is Ready to Begin Force Sensing 

Sends Message to Keep Moving 
EOAT Forward 

“MOVE_EOAT” Moves EOAT Forward .1 mm 

Checks Force Sensing Values “MOVE_EOAT” Completed the Move 

Sends Message to Inspect "INSP_PATH" Sets Offset and Begins Path 

Finish Inspection Process "INSP_PATH" Full Path Inspection Done 

Start the Computer Vision "START_PATH_UP" Starting the Actual Inspection in 
the Fillet Moving Up from 

Center 

Start the Computer Vision "START_PATH_DOWS" Starting the Actual Inspection in 
the Fillet Moving Down from 

Center 

Stop the Computer Vision “PAUSE_PATH” Pause the Video as the Ball is 
out of the Fillet 

 

 

 

 

 

 

APPENDIX M
RASPBERRY PI AND IRC5 COMMUNICATION DIAGRAM
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APPENDIX N
WIRING GUIDE

In order to properly wire the system together, there are a few important steps to follow:
1) First, set up the Raspberry Pi using a mouse, keyboard, and HDMI monitor. Connect the ribbon cable from the Raspberry

Pi to the ribbon cable connector on the auxiliary electrical board. Close the Raspberry Pi enclosure to protect the circuitry.
2) Next, connect the 12V supply to the auxiliary electrical board using the barrel connector, but do not connect it to mains

power.
3) Connect the cooling fan to the fan connection pins on the auxiliary electrical board.
4) Close the enclosure for the auxiliary electrical board, ensuring that all connectors are outside the box and accessible.
5) Connect the stepper motor to the 4-pin connector with red, black, yellow, and white wires.
6) Connect the load cell to the 4-pin connector with red, black, green, and white wires.
7) Connect the servo to the 3-pin connector with red, black, and yellow wires.
8) Connect the LED and contact sensor (one connector) to the auxiliary electrical board connector with red, black, and white

wires.
9) Connect the USB camera from the EOAT to the Raspberry Pi.

10) Once all connections are made, supply electrical power to the external 12V power supply.

Fig. 61: Wiring Labeled
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