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WORCESTER POLYTECHNIC INSTITUTE

Abstract

Data Science

Master of Science

by Lu Zhong

Reconstructing sparse signals from undersampled measurements is a challenging problem that

arises in many areas of data science, such as signal processing, circuit design, optical engineering

and image processing. The most natural way to formulate such problems is by searching for

sparse, or parsimonious, solutions in which the underlying phenomena can be represented using

just a few parameters. Accordingly, a natural way to phrase such problems revolves around

`0 minimization in which the sparsity of the desired solution is controlled by directly counting

the number of non-zero parameters. However, due to the nonconvexity and discontinuity of

the `0 norm such optimization problems can be quite difficult. One modern tactic to treat

such problems is to leverage convex relaxations, such as exchanging the `0 norm for its convex

analog, the `1 norm. However, to guarantee accurate reconstructions for `1 minimization,

additional conditions must be imposed, such as the restricted isometry property. Accordingly,

in this thesis, we propose a novel extension to current approaches revolving around truncated

`1 minimization and demonstrate that such approach can, in important cases, provide a better

approximation of `0 minimization. Considering that the nonconvexity of the truncated `1

norm makes truncated `1 minimization unreliable in practice, we further generalize our method

to partial `1 minimization to combine the convexity of `1 minimization and the robustness

of `0 minimization. In addition, we provide a tractable iterative scheme via the augmented

Lagrangian method to solve both optimization problems. Our empirical study on synthetic

data and image data shows encouraging results of the proposed partial `1 minimization in

comparison to `1 minimization.

Keywords. Compressed sensing, `0 minimization, `1 minimization, truncated `1 minimization,

partial `1 minimization, the augmented Lagrangian method, the restricted isometry property
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Chapter 1

Introduction

Compressed sensing (CS) is a technique for reconstructing sparse or compressible signals ac-

curately from very limited measurements [1] and has attracted considerable recent attention.

It provides a protocol for sensing and compressing information simultaneously [2]. Originally

thought of as a technique for signal processing and first proposed by Candès, Romberg and

Tao in 2006, CS has found connections and applications in many domains such as applied

mathematics, computer science, and electrical engineering [28]. CS has been widely applied

in magnetic resonance imaging (MRI) [6], image processing [7], imaging techniques ( [9], [31]),

holography [29], and so forth. Such broad applicability is because CS is quite effective when

taking measurements is costly, in terms of either the cost of a sensor, i.e. sensing outside of the

visible frequency band, or the time it takes to acquire a piece of information. For example, MRI

is an essential medical imaging tool with an inherently slow data acquisition process. Applying

CS to MRI offers potentially significant scan time reductions, with benefits for patients and

health care.

However, for successful application of CS, there are two key requirements. The first one is that

the signal of interest, u, should be sparse. By sparse, we mean that only a small fraction of

the entries are nonzero, or compressible. Many real-world signals are naturally compressible

by sparse coding in appropriate transform domains [3], i.e. the images we take in our daily life

are sparse in the wavelet domain. The second requirement is that the measurement matrix A

should satisfy the restricted isometry property(RIP), and this requirement limits the application

of CS. Roughly speaking, RIP indicates that A behaves like an almost orthonormal system but

only for sparse linear combinations (the formal definition of RIP is given in Section 2.1.2).

RIP limits the application of CS because some real-world sensing systems do not satisfy this
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property, and what makes this issue even more problematic is that checking to what degree the

system satisfy RIP is not computationally tractable. In practice, it is well known that almost

all random matrices, such as Gaussian, Bernoulli, and Fourier ensemble, satisfy RIP with high

probability. But again, there is no practical algorithm for verifying whether a given matrix has

this property, and to use random matrices, in some cases, is very expensive. The study of RIP

will be the key focus of this thesis.

(a) 1024×1024-pixel image (b) Locations of significant
wavelet coefficients

(c) compressibility

Figure 1.1: In general, significant wavelet coefficients of natural images concentrate at the
upper left corner, as shown in the middle plot. The plot on the right displays that significant
coefficients are only a small fraction of all the coefficients, while the rest decay quickly.

This thesis considers the model problem of reconstructing a sparse signal u ∈ RN from under-

sampled measurements y = Au, where y ∈ Rm, with m � N , and A ∈ Rm×N is the known,

nonadaptive measurement matrix. The problem we are interested in is whether it is possible

to recover u exactly from y when A is less/non-RIP, and if so, how? By less/non-RIP, we

mean that a given A does not satisfy RIP with high probability, or A does not behave like an

orthonormal basis, for example including a pair of columns that are almost identical.

One of the main contributions of this thesis is a careful treatment of RIP. We propose a

novel optimization problem, called partial `1 minimization(PLM), aiming to be more tolerant

to less/non-RIP A compared to the classical `1 minimization. `1 minimization achieves the

sparsest solution by minimizing the sum of all absolute values of entries in u ∈ RN . On the

other hand, PLM is only concerned with the sum of the absolute values of the entries in the set

{1, . . . , N} \ ΩP , with the assumption that ΩP is a known set that overlaps with the support

of u ( the support of a vector u ∈ RN , supp(u), is defined as: supp(u) := {i|ui 6= 0,∀ i ∈

{1, . . . , N} }). To show how the requirements of RIP can be relaxed given ΩP , we perform

experiments covering a wide range of cases, including where ΩP belongs to supp(u), as well
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as where ΩP has some spurious indices outside of supp(u). With the concern that evaluating

a reconstruction from less/non-RIP measurement matrix by standard error representations is

not reliable, we present a thoughtful evaluation metric to identify acceptable reconstructions

with the consideration of significant entries, as well as the support. Even more, how to derive

less/non-RIP measurement matrices is also important in our work. So, we give details for

generating less/non-RIP matrices using spherical coordinate systems that correspond to the

geometrical interpretation of RIP. Finally, a generalization of the PLM solver, called PLM-

ALM, is provided via solving a convex, unconstrained problem formed by using the augmented

Lagrangian method. The experiments on synthetic data demonstrate that PLM is more robust

to less/non-RIP A than `1 minimization, and performs quite well even if some spurious indices

are included in ΩP . Another good property of PLM is that it is not concerned with how

large the entries in the given ΩP are compared with other significant ones. In addition, we

provide details of the truncated `1 norm(TLM), which is another optimization problem we

proposed in this thesis. It plays an important role in incubating the idea of PLM. The key

idea underlying PLM and TLM is to subtract part of entries from the `1 norm so that the

directions corresponding to the truncated coefficients would be free. Denote the subtracted

index set as Ω. The most significant difference between PLM and TLM is the selection rule of

Ω. Ω in PLM is fixed and given by, say, an Oracle who is able to reveal hidden knowledge or

information, and it does not attempt to verify this given information. Ω in TLM is the set of

the largest r entries of the unknown, to-be-reconstructed signal, and accordingly is adaptive to

x in the sparest solution searching process. While PLM is convex, TLM is nonconvex. In [4],

the two-step iterative framework provides an efficient way to solve the nonconvex truncated

nuclear norm regularization in matrix completion. Building on this idea, we derive a two-step

iterative scheme to solve TLM, by proving a theorem. The solver for TLM is called TLM-2SI,

where convergence to a local minimum is guaranteed.
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(a) two-step Iterative Algorithm Frame-
work in TNNR

(b) two-step Iterative Algorithm Frame-
work in TLM

Figure 1.2: two-step iterative TNNR framework (shown on the left) proposed in [4] provides an
efficient procedure to deal with the nonconvex truncated nuclear norm regularization arising
in matrix completion. We borrow this framework to formulate our two-step iterative TLM
framework (shown on the right) to solve the nonconvex truncated `1 minimization problem.
Details about PLM-ALM solver are in Section 4.2. The generalization of (b) can be thought
of similar to (a), though the details of the method and the solver are, of course, quite different
because we are using this methodology on quite different problems.

The remainder of the thesis is organized as follows: In the next chapter, we recall a brief de-

scription of the necessary background and the related works that form our ideas. Chapter 3

presents truncated `1 minimization (TLM) and the corresponding solver TLM-2SI, followed by

the observations that inspire our idea about PLM. In Chapter 4, we propose partial `1 mini-

mization (PLM), and the corresponding solver, PLM-ALM. Experimental results are displayed

in Chapter 5. Chapter 6 is devoted to concluding remarks and future works.
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Chapter 2

Background

This chapter presents the necessary background and the related works that inspire our ideas

and methods. The basic knowledge and core conclusions in CS are detailed first. Then we intro-

duce the augmented Lagrangian method, which helps us to replace a constrained optimization

problem with a convex, unconstrained problem. Moreover, we give a brief introduction on

the work of truncated nuclear norm regularization. As last, we introduce a Bayesian variable

selection, called spike-and-slab, to exhibit that how the sparsity models are solved in statistical

learning theory.

2.1 Two Requirements in CS

The reconstruction of an arbitrary vectors from vastly underdetermined linear systems is an

ill-posed problem and requires additional information to make the reconstruction possible.

Accordingly, the two fundamental requirements in CS are that [1]

• u ∈ RN is sufficiently sparse, or compressible, in some known basis,

• A ∈ Rm×N obeys the restricted isometry property (RIP) which, roughly speaking, means

that A behaves like an almost orthonormal system but only for sparse linear combinations.

2.1.1 Sparsity

Before explaining why the requirement of sparsity is necessary for signal reconstruction from

undersampled measurements, we give the definition of sparsity as:

Definition 2.1.1. A vector x ∈ RN is called s - sparse if at most s of its entries are nonzero.
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Given A ∈ Rm×N , m� N , suppose that u is not sparse at all, meaning all of the entries of u

are nonzero. As m < N , N (A) \ 0 6= ∅, where N (A) := {b : Ab = 0} is the null-space of A.

Correspondingly,

Au = A(u + β) = y, ∀β ∈ N (A).

Obviously, reconstruction such a u from y = Au is impossible. Therefore, the requirement that

u has to be sparse is necessary. In practice, compressibility, which is to say that the signal

of interested can be well-approximated by a sparse solution, is preferable as it is generally a

weaker assumption than sparsity. This is because that most of real world signals are naturally

compressible (while perhaps contaminated with noise). In this thesis, we focus our interest on

the reconstruction of sparse u.

2.1.2 RIP and Random Matrix

Once u is known as an s-sparse vector, we are able further to constrain the property of the

measurement matrix A to reconstruct u. This is where the second requirement comes from.

Suppose that the only s-sparse vector β ∈ N (A) is 0, then any s-sparse u can be reconstructed

from y. This property is sometimes called the null space property (NSP) [3]. Even though

the NSP is a straightforward description of the reconstruction condition, it is not sufficient to

guarantee the reconstruction when y is contaminated with noise or has been corrupted by some

error. Therefore, Candès and Tao proposed to use the RIP [5] in their recovery proofs as it is

applicable in sparse signal reconstruction from noisy or noiseless measurements.

Definition 2.1.2. A matrix A satisfies the restricted isometry property with δs, if, for all

s-sparse vector x ∈ RN ,

(1− δs)‖x‖2
2 ≤ ‖Ax‖2

2 ≤ (1 + δs)‖x‖2
2, (2.1)

where δs ∈ (0, 1) is the smallest quantity to satisfy (2.1).

RIP requires all the possible combination of column vectors with the cardinality at most s

to behave like an almost orthonormal system. If A satisfies RIP of the order 2s, then A

approximately preserves the distance between any pair of s-sparse vectors. we can say that

if A satisfies RIP, it also satisfies NSP, but not vice versa [2]. Based on the equation (2.1),

the smaller δ2s is, the better such distance is preserved. The optimal case is that δ2s is equal
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to 0, then there is no distance information missing or distorted via the transformation. This

is exactly what happens in the orthonormal basis. However, in our case, A is a rectangular

matrix. In addition, to compute δs is NP-hard [37]. For example, computing δs in a brute force

fashion would require testing all entries of x, followed by all pairs of entries in x, followed by

all triples, and so forth. Such a calculation is not practical. In practice, random matrices are

used. They satisfy RIP with overwhelming probability [5]. For example, suppose that m, N ,

and δ2s are given and fixed. For a Gaussian or Bernoulli measurement matrix, the RIP holds

for such matrix with the prescribed δ2s and any s ≤ c1m/ log N
s

with probability ≥ 1− 2e−c2m.

The constants c1 and c2 depend only on δ2s [38]. In this thesis, Gaussian matrices are used as

the measurement matrix for conducting our experiments.

2.2 Theoretical δ2s Bound for Reconstruction

For sparse signal reconstruction, `0 minimization and `1 minimization are two well-understood

optimization problems. The sparsity requirement directly leads us to reconstruct a signal by

searching for the sparsest solution x which satisfies the constraint Ax = y, that is `0 minimiza-

tion and formulated as follows:

min
x∈RN

‖x‖0

subject to Ax = y,

(2.2)

where ‖.‖0 is the `0 norm, equal to the number of nonzero entries in a vector, that is

‖x‖0 := card (i |xi 6= 0, i ∈ [N ]), x ∈ RN .

However, ‖x‖0 is not convex, and solving (2.2) is NP-hard [3]. One corresponding convex

relaxation of `0 minimization is `1 minimization, and is formulated as follows:

min
x∈RN

‖x‖1

subject to Ax = y,

(2.3)

where ‖.‖1 is the `1 norm, defined as ‖x‖1 :=
∑N

i=1 |xi|.

11



Figure 2.1: In the 2-dimensional space, the set of vectors such that ‖x‖ = 1 is a diamond. The
sparse vector x∗ locates at a coordinate axis. The set of vectors x such that Ax = y is a plane
passing through the point x∗. As shown in the figure on the left, most planes that pass through
x∗, intersect the diamond only at the point x∗. This is the situation where the `0 minimization
is equivalent to the `1 minimization. However, when the plane unfortunately overlaps with part
of the diamond, as shown in the figure on the right, the `1 minimization is not the same as
the `0 minimization. Of course, in higher dimensions one must consider the intersection of the
constraint with various higher dimensional faces/edges.

The exact reconstruction condition is the one under which, given A ∈ Rm×N and y = Au, u is

the unique minimizer to the corresponding optimization problem, ∀ s-sparse u. The theoretical

upper bound on δ2s for guaranteeing exact reconstruction for `0 minimization is

m ∼ O(s ln N
s

), and δ2s < 1,

while the one for `1 minimization is

m ∼ O(s lnN), and δ2s <
1
3
.

Obviously, the requirement on δ2s for `1 minimization is roughly “three times as strict” as

the one for `0 optimization [5]. However, δ2s cannot be accurately computed as previously

mentioned. And random matrices are only said to satisfy RIP with high probability when the

number of measurements, m, is sufficient, for given δ2s and s.
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2.3 The General Sampling Process in CS

As shown in Figure 1.1, the image is not sparse when thought of as pixels, but it can be well

compressible in the wavelet domain. In general, to get measurements y via sampling z, A,

actually, is the combination of two operations or steps [11].

A = Φ∗Ψ.

For example, we first get a pixel image flattened as a vector z ∈ RN , then use Ψ to transform

z into a sparse representation u. The rest of things is to pick up m rows from an appropriate

domain Φ so that to get Φ∗ ∈ Rm×N , then use Φ∗ to encode the sparse u, and finally get the

measurements y.

Formally speaking, the sparsity basis Ψ ∈ RN×N is an orthornomal operator to project the

original signal z ∈ RN into a space with the sparse representation u ∈ RN .

u = Ψz , u is sparse.

If z is sparse already, Ψ simply is an identical matrix IN .

The usually choice of the sensing basis, Φ ∈ RN×N , is an orthonormal basis as well. Because

this thesis involves the use of less/non-RIP matrix, our choice will go beyond orthonormal basis

(see details in Section 5.1.1). Next, m rows in Φ are uniformly, and randomly picked to form

the sensing matrix Φ∗. Then, the measurements y ∈ Rm is generated by applying Φ∗ on the

sparse representation u.

Correspondingly, to reconstruct z, we first reconstruct u from y, and then project u back to

the original basis through

z = Ψ−1u.

However, there are some applications for which the signal z is sparse not in an orthonormal

basis, but in some overcomplete dictionary [35]. This means that u = Ψz, where Ψ is a

redundant dictionary. When Ψ is not orthonormal, A = Φ∗Ψ is not at all likely to satisfy

RIP. From such reality, the interest of relaxing RIP occurs to us again.

For simplification, in this thesis, we use A to denote the sampling process, and consider the
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input vector u is sparse already.

2.4 The Augmented Lagrangian Method

The augmented Lagrangian method is an efficient way to transform a constrained optimization

problem, i.e. `1 minimization, into an unconstrained, and strongly convex function [36].

Definition 2.4.1. Let X be a convex set in a real vector space, and f : X 7→ R be a function,

then with the parameter m ∈ (0, 1), f is called strongly convex if and only if, ∀x1,x2 ∈ X and

∀ t ∈ [0, 1], it satisfies

f (tx1 + (1− t)x2) ≤ t f(x1) + (1− t) f(x2)− 1

2
mt(1− t)‖x1 − x2‖2

2. (2.4)

Correspondingly, when m = 0, f is convex such that

f (tx1 + (1− t)x2) ≤ t f(x1) + (1− t) f(x2). (2.5)

A strongly convex function is also strictly convex, but not vice versa.

Suppose that a constrained convex optimization problem is given as,

min
x∈RN

f(x)

subject to Ax = y.

The augmented Lagrangian method uses the Lagrangian of the constrained problem and an

additional penalty term (the augmentation) to give the dual function:

gρ(λ) = inf
x∈RN

Lρ(x, λ)

= inf
x∈RN

f(x) + λT (Ax− y) +
ρ

2
‖Ax− y‖2

2,
(2.6)

where A ∈ Rm×N , λ ∈ Rm is the Lagrangian multiplier, and ρ > 0 is the penalty parameter.

With the quadratic penalty term, there is only one minimizer of Lρ(x, λ) given f is convex.

Therefore, we can recover a primal optimal point x∗ from a dual optimal point λ∗ as

x∗ = arg min
x∈RN

Lρ(x, λ
∗).
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We solve the dual problem using gradient ascent [16]. Assuming that g is differentiable, the

gradient ∇g(λ) can be evaluated as follows. First, we find ẋ = arg min
x∈RN

Lρ(x, λ). Then, we

have ∇g(λ) = Aẋ − y, which is the residual for the equality constraint. The corresponding

iterative steps are as:

xk+1 : = arg min
x∈RN

Lρ(x, λ
k)

= arg min
x∈RN

f(x) + (λk)T (Ax− y) +
ρ

2
‖Ax− y‖2

2,
(2.7)

λk+1 := λk + ρ (Axk+1 − y). (2.8)

The first step (2.7) is an x-minimization step, and the second step (2.8) is a dual variable

update. This method can be used when g is not differentiable [40].

To be more convenient, we reformulate (2.7) as the scaled form [16], f plus a quadratic term.

xk+1 := arg min
x∈RN

f(x) +
ρ

2
‖Ax− y +

1

ρ
λk‖2

2. (2.9)

(2.7) and (2.9) are equivalent, because

xk+1 : = arg min
x∈RN

f(x) + (λk)T (Ax− y) +
ρ

2
‖Ax− y‖2

2

= arg min
x∈RN

f(x) +
ρ

2
‖Ax− y +

1

ρ
λk‖2

2 −
1

2ρ
‖λk‖2

2.

Discard the constant term − 1
2ρ
‖λk‖2

2 , then we have

xk+1 := arg min
x∈RN

f(x) +
ρ

2
‖Ax− y +

1

ρ
λk‖2

2.

2.5 Truncated Nuclear Norm Regularization in Matrix

Completion

Matrix completion is to estimate the missing values in a matrix from a small subset of its entries

with the assumption that the matrix is low-rank. Low-rank matrix completion constrains the

number of nonzero singular values. It is very relevant to the sparsity in CS. Similar to using the

`1 minimization as the convex relaxation of the original `0 minimization in CS, low-rank matrix

completion uses the nuclear norm regularization, which sums all the singular values together, as
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the convex relaxation of the rank regularization. The work in [4] proposed a novel method called

truncated nuclear norm regularization (TNNR) to solve the matrix completion problem. Unlike

the traditional nuclear norm approaches, which consider all the singular values, TNNR sets the r

largest singular values free and only sums up the rest, where r is the matrix rank. This idea and

our proposed truncated `1 minimization (see details in Chapter 3) are very similar. As TNNR is

no longer convex, by introducing an interim variable, they designed a two-step iterative scheme

to provide a tractable process which guarantees the convergence to a local minimum. The

experimental results on both synthetic and real visual datasets demonstrate the advantages of

the TNNR-based algorithms in comparison with other state-of-art matrix completion methods

based on the nuclear norm. Our framework for solving truncated `1 minimization problems was

inspired by this work.

2.6 The Sparsity Model in Statistical Learning Theory

In statistical learning theory, the sparsity models are used as a method for avoiding overfitting,

e.g., the sparsity assumption embedded in Bayesian variable selections. This view is especially

well illustrated by spike-and-slab variable selection. Although CS and the spike-and-slab vari-

able selection share a similar model and assumptions, they respectively use different approaches

to search for sparse solutions. The sparse solution in CS is achieved by solving a constrained

optimization problem, while the one in the spike-and-slab variable selection is achieved through

a stochastic process, such as Markov chain Monte Carlo (MCMC), to draw samples from the

model space in which models with high posterior probability will be visited more often than

low probability models [17].

For interested readers, we give some details of the spike-and-slab framework. Consider a re-

gression model given as

y = Xβ + ε,

where y ∈ Rm are independent responses, with each corresponding to a N -dimensional variable

Xi ( i ∈ 1, . . . ,m ), and the error term ε
i.i.d.∼ N (0, σ2), σ ∈ Rm. Regression through variable

selection is firstly to identify a subset Ω from the N predictors that fits the data well, then

secondly to get the final regression coefficients for predictors in Ω while the others are not used

in the regression model. To identify the subset Ω, one way is to use a frequentist approach,

the other is to use the posterior mean. The spike-and-slab framework can be viewed as a mask
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Factor CS Spike-and-Slab Similar

Model

y = Ax,

A ∈ Rm×N ,
y ∈ Rm,x ∈ RN

E(y) = Xβ,

X ∈ Rm×N ,
y ∈ Rm, β ∈ RN

yes

Matrix Generation A is randomly generated X is randomly sampled yes
Sparsity nonzero values of x is

sparse
nonzero values/coefficients
of β is sparse

yes

Spike the value of nonzero xi the distribution of zero βk no
Matrix Shape m� n m < n is not necessary no
Vector Reconstruction Convex Optimization Stochastic Process no

Table 2.1: The comparison between CS and the Spike-and-Slab variable selection. By involving
mechanisms of sparsity and randomness, both model problems use different strategies to acquire
the sparse solution.

on β, in which spikes correspond to predictors with zero coefficients and slabs correspond to

predictors with nonzero coefficients. We use the simple two-component prior [18] to explain

how it works. The prior hierarchical distribution is given as follows:

(βk|ζk)
ind∼ (1− ζk)N (0, τ 2

k ) + ζkN (0, ckτ
2
k ), ∀k ∈ {1, N},

ζk
ind∼ Bern(ωk), 0 < ωk < 1,

where ζk is a posterior latent variable defined as

ζk =

1, if the kth predictor is used in the model

0, otherwise .

The value of τ 2
k is chosen to be small and consequently, the shape of N (0, τ 2

k ) corresponding to

a predictor with ζk = 0 exhibits as a spike. On the other hand, ck > 0 is chosen to be large, thus

the shape of N (0, ckτ
2
k ) corresponding to a predictor with ζk = 1 shows as a slab. Based on such

priors, predictors with promising coefficients will have large posterior βk values. In practice,

it is difficult to manually set values for ωk, τ
2
k , and ck. Improperly chosen values lead to

models that concentrate on either too few or too many coefficients. To overcome this problem,

Ishwaran and Rao [19] proposed a continuous bimodal prior in place of the two-component

mixture distribution. It is a more sophisticated hierarchy distribution, detailed in [18].
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Chapter 3

Truncated `1 Minimization

3.1 The optimization problem and Reformulation

Compared to ‖x‖0, in which all the nonzero entries have equal contributions, ‖x‖1 treats

the entries differently by summing their absolute values. We propose the truncated `1 norm,

‖Trunr(x)‖1, as a better approximation of ‖x‖0 by subtracting the r largest absolute values

from ‖x‖1.

Definition 3.1.1. Given a vector x ∈ RN , the truncated `1-norm with order r, ‖Trunr(x)‖1,

is defined as the sum of N − r minimum absolute entries in x, that is

‖Trunr(x)‖1 :=
N∑

i=r+1

|x|∗,

where the vector |x|∗ is the nonincreasing rearrangment of x, sorted by the absolute value of

each entry.

The corresponding optimization problem, called truncated `1 minimization(TLM), is formulated

as follows:

min
x∈RN

‖Trunr(x)‖1

subject to Ax = y.

(3.1)

Following this optimization problem, the r largest entries do not need to compete with entries

in other directions to fulfill the objective because their values do not appear in the objective.

Particularly, when r = s, the implication behind TLM is first to detect the support and then

to minimize all the rest to be 0. The support detection part is similar to counting the number
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of nonzeros in calculating ‖x‖0.

Figure 3.1: In the geometric view, the truncated `1 norm is a better approximation of the `0

norm than the `1 norm. As shown in the plot, the vector set corresponding to ‖Trun1(x)‖1 = 0
is the union of the zero vector and the vector set corresponding to ‖x‖0 = 1.

Technically speaking, the truncated `1 function is not a norm or seminorm [20], because

‖Trunr(.)‖ fails to satisfy the triangle inequality.

Definition 3.1.2. Given a vector space V, then a function f : V 7→ R satisfies the triangle

inequality if and only if

f(x1 + x2) ≤ f(x1) + f(x2), ∀x1,x2 ∈ V.

Here is a counterexample. Given x1 = (1, 2, 3)T and x2 = (2, 5, 2)T , then ‖Trun1(x1)‖ = 3,

‖Trun1(x2)‖ = 4, and ‖Trun1(x1 + x2)‖ = 8. Obviously, ‖Trun1(x1 + x2)‖ � ‖Trun1(x1)‖ +

‖Trun1(x2)‖.

Note, ‖Trunr(.)‖ is not convex (see Definition 2.4.1), because the indices of the locations of

the r largest entries is not fixed. Recalling that given x1 and x2 in the above example, we set

t = 0.5, obviously, ‖Trun1(0.5 x1 + 0.5 x2)‖ � 0.5 ‖Trun1(x1)‖+ 0.5 ‖Trun1(x2)‖.
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As the truncated `1 norm is nonconvex, we cannot use the augmented Lagrangian method

directly to solve (3.1). Before we introduce an interim variable to reformulate (3.1) as a

tractable procedure, we provide the following theorem.

Theorem 3.1.1. Let Ωv denote the index set corresponding to the r largest absolute entries of

v, and Dr(v) be an diagonal matrix defined as, ∀i ∈ {1, . . . , N},

Drii =

1, if i ∈ Ωv

0, otherwise.

(3.2)

Given two vectors x, z ∈ RN and r ≤ N , then

‖Dr(z) x‖1 ≤
∑
i∈Ωx

|xi|. (3.3)

Proof. According to (3.2), we have

‖Dr(x) x‖1 =
∑
i∈Ωx

|xi|, ‖Dr(z) x‖1 =
∑
i∈Ωz

|xi|. (3.4)

Let Ω∗ = Ωz ∩ Ωx, then |Ωz \ Ω∗| = |Ωz \ Ω∗|, and

min
i∈Ωx\Ω∗

|xi| ≥ max
i∈Ωz\Ω∗

|zi|. (3.5)

Rewrite (3.4) as follows:

‖Dr(x) x‖1 =
∑
i∈Ωx

|xi| =
∑
i∈Ω∗

|xi| +
∑

i∈Ωx\Ω∗
|xi|,

‖Dr(z) x‖1 =
∑
i∈Ωz

|xi| =
∑
i∈Ω∗

|xi| +
∑

i∈Ωz\Ω∗
|xi|.

To compare ‖Dr(x) x‖1 with ‖Dr(z) x‖1 is equivalent to the comparison between
∑

i∈Ωx\Ω∗
|xi|

and
∑

i∈Ωz\Ω∗
|xi|.

If Ωz \ Ω∗ = Ωx \ Ω∗ = ∅, then

∑
i∈Ωx\Ω∗

|xi| =
∑

i∈Ωz\Ω∗
|xi| = 0.
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Otherwise, ∑
i∈Ωz\Ω∗

|xi| ≤
∑

i∈Ωx\Ω∗
|xi|,

verified directly by (3.5).

The claims (3.3) now follows.

Based on Definition 3.1.1,

‖Trunr(x)‖1 : =
N∑

i=r+1

|x|∗

= ‖x‖1 −
∑
i∈Ωx

|xi|

= ‖x‖1 − ‖Dr(x) x‖1,

according to Theorem 3.1.1, ‖Dr(x) x‖1 = sup
z∈RN

‖Dr(z) x‖1, then we have

‖Trunr(x)‖1 := ‖x‖1 − sup
z∈RN

‖Dr(z) x‖1.

Accordingly, (3.1) can be rewritten as follows:

min
x∈RN

‖x‖1 − max
z∈RN

‖Dr(z) x‖1

subject to Ax = y.

(3.6)

With fixed x̂, the optimal solution of (3.6) is when z = x̂. Instead of considering (3.6)

as a constrained optimization problem with two separable variables, we treat z as an interim

variable and enforce it to be an approximation of x. Based on that, we design a two-step

iterative scheme, inspired by the algorithmic framework in [4], to solve (3.6). We call the

solver for (3.6) TLM-2SI (see details in Algorithm 1). In the l-th iteration, we firstly fix xl

and compute Dr = Dr(xl). Then we fix Dr to update xl+1 by solving the following problem,

min
x∈RN

‖x‖1 − ‖Dr x‖1

subject to Ax = y.

(3.7)
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The objective function in (3.7) is convex, because

F (x) = ‖x‖1 − ‖Dr x‖1 =
∑
i∈Ωc

x

|xi|.

F (x) is a linear combination of |xi| with nonnegative coefficients, and |xi| is a convex function.

Moreover, a sum of convex functions is convex. Thus, F (x) is convex given by straightforward

verification of Definition 2.4.1. Correspondingly, we can use the augmented Lagrangian method

to transform (3.7), a convex constrained optimization problem, into an unconstrained strongly

convex function which guarantees convergence. The solver for (3.7) (the step 2 in TLM-2SI)

is called PLM-ALM. We will detail this solver in the next chapter.

Algorithm 1 Truncated `1 Minimization via two-step Iterative (TLM-2SI)

Input: the measurement matrix A ∈ Rm×N , the measurements y ∈ Rm, the order of the
truncated norm r ∈ Z+, and the tolerance ε

Initialize: randomly pick up a vector x0 ∈ RN
repeat

STEP 1. Given xl, compute Dr = Dr(xl)
STEP 2. Solve

min
x∈RN

‖x‖1 − ‖Drx‖1

subject to Ax = y

to update xl+1

until ‖xl+1 − xl‖∞ ≤ ε
return the reconstructed vector x

Here, ‖x‖∞ is the infinite norm of x and defined as ‖x‖∞ := max
i
|xi|.

3.2 The Order of Truncated `1 Norm in TLM

In TLM-2SI, we solve (3.6) iteratively given the order r of the truncated `1 norm. When r ≥ s,

obviously ‖Trunr(x)‖ = 0. The implicit assumption in TLM is that we know s. However, in

practice, we do not exactly know the sparsity of the signal, therefore we use a brute-force way

to get a heuristic about the choice of r in TLM. It is simply an iterative process with built-

in TLM-2SI. However, the stopping criterion for this naive searching strategy is ambiguous.

First, the convergence threshold is not suitable as each TLM-2SI with fixed r only guarantees

to return a local minimum. Second, achieving a zero value for the objective is too stringent to

identify the exact reconstruction, because it may happen when r < s. Even worse is to set the

maximum for r to be N . There would be too much wasted computation, because usually N is
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Sparsity r=0 r=1 r=2 r=3 r=4 r=5
3 100% 100% 90% 80% 50% 20%
4 100% 0 100% 80% 60% 50%
5 0 20% 30% 30% 20% 10%

Table 3.1: The rate of exact reconstruction with 10 different initialization (x0) by using TLM-
2SI. In this toy example, A ∈ R10×30 is a Gaussian matrix. The interested signals with sparsity
equal to 3, 4, and 5, respectively. They are randomly generated under an uniform distribution.
TLM-2SI with r = 0 is equivalent to solving the convex `1 norm minimization. The problem
(3.6) is nonconvex and the TLM-2SI only guarantees the local minimum, the reconstruction
from TLM is sensitive to initializations, while the reconstruction through `1 norm minimization
only depends on the structure of A and the interested signal. However, TLM shows the tolerance
to tight conditions when `1 norm minimization fails. And TLM-2SI with r < s performs not
worse than the one with r = s.

very large and r � N . However, we’ve observed that there is improvement by removing some

of entries in the support from the objective.

Moreover, as TLM is not convex and thus only the local minimum can be guaranteed, to identify

if TLM-2SI can reconstruct a sparse signal is time-consuming. We define success as being able

to reconstruct the signal of interest through multiple trials with different initializations. As

the sparsity s increases, the number of trials becomes larger to identify whether it is a success.

Compared with `1 minimization, truncated `1 minimization is unreliable because

p`1(success|A,x) ∈ {0, 1}, while pT`1(success|A,x) ∈ [0, 1],

where given A and x, p`1(.) denote the probability of successful reconstruction through `1

minimization, and pT`1(.) denote the probability of successful reconstruction through truncated

`1 minimization.

Based on this observation, we propose another optimization problem, partial `1 minimization

(PLM) , which leverages prior information about supp(u) to obtain a convex optimization

problem.
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Chapter 4

Partial `1 Minimization

4.1 The optimization problem

Suppose that an oracle provides information on which d entries are nonzero, d ≤ s. Instead of

trying to figure out if such entries are the largest, we just effortlessly give priority to them by

removing them from the objective and minimizing the sum of the remaining absolute values of

the entries, that is the partial `1 norm.

Definition 4.1.1. Given a vector x ∈ RN , and J is the support of x, let ΩP be an arbitrary

subset of J, and ΩP be the complement of ΩP in {1,. . . , N}. The partial `1 norm on ΩP ,

‖xΩP
‖1, is defined as the sum of absolute value of each entry in ΩP .

‖xΩP
‖1 :=

∑
i∈ΩP

|xi|

= ‖x‖1 − ‖xΩP‖1.

The corresponding optimization problem, called partial `1 minimization, is a derivative of (3.7),

and thus is formulated as follows:

min
x∈RN

‖x‖1 − ‖Px‖1

subject to Ax = y,

(4.1)
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where P ∈ RN×N is a diagonal matrix with

Pii =

1, if i ∈ ΩP

0, otherwise

, ∀ i ∈ {1, . . . , N}. (4.2)

PLM differs from TLM in several important ways. First, PLM makes use of appropriate

information about J and thus is formulated as a convex problem. Second, TLM needs to know

the cardinality of J. This is a strong assumption. The prior knowledge assumption in PLM

is less strong, as explained in Figure 1.1. In particular, we do not require that the oracle is

perfectly accurate! Actually, the oracle is allowed to provide indices of u which have no role

in the support. And important indices of u, which correspond to large absolute value, are also

allowed not to appear in the subset provided by the oracle. All that we require is that the

subset provided by the oracle overlaps in some way with J.

4.2 The Optimization Solver Using The Augmented La-

grangian Method

We use the augmented Lagrangian method to solve (4.1) as a strongly convex function with

the global minimum guaranteed. The augmented Lagrange function of (4.1) is

Lρ(x, λ) = ‖x‖1 − ‖Px‖1 + λT (Ax− y) +
ρ

2
‖Ax− y‖2

2. (4.3)

Finding the optimal x in (4.1) is equivalent to minimizing the augmented Lagrangian function

Lρ(x, λ), by computing xk+1 and the Lagrangian multiplier λk+1 alternatively.

Computing xk+1.

Fix λk and minimize Lρ(x, λ
k) as follows:

xk+1 = arg min
x∈RN

[ ‖x‖1 − ‖Px‖1 +
ρ

2
‖Ax− y +

1

ρ
λk‖2

2 ]. (4.4)

Because (4.4) is strictly convex, there is a unique minimizer. However, the nonsmooth `1

norm function is nondifferentiable with respect to a coordinate which is zero. Therefore,

it is not possible to obtain a closed-form solution for (4.4) [22]. As the quadratic term is

smooth and has a Lipschitz continuous gradient, there are still multiple approaches, such
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as iterative shrinkage-threshold (IST) method [21], fast iterative shrinkage-threshold (FIST)

method [21], and proximal gradient (PG) method ( [23], [24]), to solve (4.4) efficiently

with theoretical guarantees. Here, we use an approximate and straightforward approach to

formulate a sequential, point-wise solution for (4.4).

A point x∗ is the minimizer of a convex function f if and only if f is subdifferentiable at x∗

and

0 ∈ ∂f(x∗).

This condition reduces to ∇f(x∗) = 0, when f is differentiable at x∗ [27].

We define the subgradient of the `1 norm defined as

∂‖x‖1

∂xi
=


1, xi = 0

ui ∈ [−1, 1], xi = 0

−1, xi < 0.

(4.5)

Because Lρ(x, λ
k) is subdifferentiable, the condition for the unique minimizer is

0 ∈ ∂Lρ(xk+1, λk).

Based on matrix differentiation,

∂ Lρ(x
k+1, λk) = ∂ (‖xk+1‖1 − ‖Pxk+1‖1) + ∂

ρ

2
‖Axk+1 − y +

1

ρ
λk‖2

2

= ∂ (‖xk+1‖1 − ‖Pxk+1‖1) + ρAT (Axk+1 − y +
1

ρ
λk).

We use V to denote ∂ Lρ(x
k+1, λk), which is a vector in RN . Because ‖.‖1 is a separable

function, each entry vi of V can be expressed as, ∀ i ∈ {1, . . . , N}

vi = ∂ (|xk+1
i | − |Piixk+1

i |) + [ρAT (Axk+1 − y +
1

ρ
λk)]i

= ∂ |xk+1
i | − Pii ∂ |xk+1

i | − ρ [ATy]i + [ATλk]i + ρ
N∑
j=1

[ATA]ij x
k+1
j ,

(4.6)

and 0 ∈ vi.

If xk+1
i 6= 0, then |xi| is differentiable at the point xk+1

i , and consequently, vi = 0.
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From vi = 0 with the assumption that xk+1
i 6= 0, we have

∂ |xk+1
i | − Pii ∂ |xk+1

i | − ρ [ATy]i + [ATλk]i + ρ

N∑
j=1

[ATA]ij x
k+1
j = 0,

therefore,

ρ
N∑
j=1

[ATA]ij x
k+1
j = −∂ |xk+1

i |+ Pii ∂ |xk+1
i |+ ρ [ATy]i − [ATλk]i

= −sgn(|xk+1
i |) + Pii sgn(|xk+1

i |) + ρ [ATy]i − [ATλk]i.

This equation yields

xk+1
i =

[AT (ρy − λk)]i − ρ
∑N

j=1, j 6=i[A
TA]ij x

k+1
j − sgn(|xk+1

i |) + Pii sgn(|xk+1
i |)

ρ [ATA]ii
, (4.7)

and xk+1
i 6= 0.

For unknown xk+1
j on the right side of the equation (4.7), we use xkj as its approximation.

For simplification, we take off the superscript of xj, and rewrite (4.7) as

xk+1
i =

[AT (ρy − λk)]i − ρ
∑N

j=1, j 6=i[A
TA]ij xj − sgn(|xk+1

i |) + Pii sgn(|xk+1
i |)

ρ [ATA]ii

= Gi (x
k+1
1 , . . . , xk+1

i−1 , x
k
i+1, . . . , x

k
N) + Fi(x

k+1
i ),

(4.8)

where

Gi (x
k+1
1 , . . . , xk+1

i−1 , x
k
i+1, . . . , x

k
N) =

[AT (ρy − λk)]i − ρ
∑N

j=1, j 6=i[A
TA]ij xj

ρ [ATA]ii
= gi,

and

Fi(x
k+1
i ) =

−sgn(|xk+1
i |) + Pii sgn(|xk+1

i |)
ρ [ATA]ii

=


−1+Pii

ρ [ATA]ii
= f+

i , xk+1
i > 0

1−Pii

ρ [ATA]ii
= f−i , xk+1

i < 0.

Fi(x
k+1
i ) indicates that (4.8) has self-constraints to keep consistent with the sign of xk+1

i .

If |xi| = 0, then |xi| is not differentiable at the point xk+1
i , and consequently, (4.8) would

be self-contradictory.
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We formulate the sequential, point-wise solution for (4.4) as follows:

xk+1
i =


gi + f+

i , gi + f+
i > 0

gi + f−i , gi + f−i < 0

0, otherwise

, ∀ i ∈ {1, . . . , N}. (4.9)

Computing λk+1.

Fix xk+1, and calculate λk+1 as follows:

λk+1 = λk + ρ(Axk+1 − y). (4.10)

The whole procedure of solving (4.1) is summarized in Algorithm 2, called PLM-ALM. The

main computational cost of PLM-ALM in each iteration is the computation of point-wise solu-

tion for xk+1 in step 1. The linear convergence of PLM-ALM is guaranteed by the augmented

Lagrangian method [26].

Algorithm 2 Partial `1 Minimization using The Augmented Lagrangian Method (PLM-ALM)

Input: the measurement matrix A ∈ Rm×N , the measurements y ∈ Rm, the subset ΩP , the
penalty parameter ρ, the tolerance ε

Initialize: randomly pick up a vector x0 ∈ RN , and set λ0 = 0
repeat

step 1, update xk+1

xk+1
i =


gi + f+

i , if gi + f+
i > 0

gi + f−I , if gi + f−I < 0

0 , otherwise

, ∀ i ∈ {1, . . . , N}

step 2, update λk+1

λk+1 = λk + ρ (Axk+1 − y)

until ‖xk+1 − xk‖∞ ≤ ε
return the recovered vector x
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Chapter 5

Experimental Results

In this section, we investigate the practical ability of PLM to reconstruct sparse vectors from

less/non-RIP measurement matrices. The goal here is to evaluate empirically the breakpoint

of PLM so as to get a sense of the performance one might expect in practice. To do this,

we perform a series of experiments on synthetic data to: 1) check whether PLM is able to

reconstruct u from y when A is less/non-RIP; 2) compare the performance of PLM with `1

minimization; 3) check whether PLM prefers an ΩP including indices corresponding to larger

entries. Furthermore, we test PLM on real visual data.

The main findings are that: 1) PLM is better than `1 minimization to reconstruct sparse vectors

from fewer measurements; 2) when a subset C of column vectors in the measurement matrix

is enforced to get close to each other, even sometimes to be identical, PLM has much higher

probability than `1 minimization to reconstruct sparse vectors from such corrupted systems, as

long as ΩP overlaps in some way with C; 3) to make improvements on `1 minimization, all that

PLM requires is ΩP overlaps with the support of the signal. It is not sensitive to how large the

entries with indices in ΩP , and is tolerant with false alarms, which means spurious indices are

included in ΩP . The test on the reconstruction of real visual data shows that PLM is able to

reconstruct an image from the corrupted measurement matrix, when `1 minimization fails.

For `1 minimization, CVXPY [27], a Python embedded package, is applied. For PLM, our

proposed PLM-ALM is applied. The experiments are conducted using Python.
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5.1 Synthetic data

The focus of our experiments on synthetic data is to explore how PLM performs covering a

wide range of less/non-RIP conditions. To be precise, there are two ways to cause a random

matrix being less/non-RIP. One way is to use fewer number of measurements, according to

Section 2.1.2. The other way is that some column vectors are close to each other, far away

from being orthogonal. We consider both types of less/non-RIP scenarios in our experiments.

To identify a successful reconstruction, support detection is our main concern, rather than the

reconstruction error measured by ‖x−u‖p. We propose the support-detection-based evaluation

metrics and detail it in Section 5.1.2.

The experimental group consists of:

• `1 minimization, as the baseline,

• PLM-2, in which |ΩP2| = 2,

• PLM-3, in which |ΩP3| = 3, consisting of ΩP2 and a spurious index,

• PLM-s, in which ΩPs = supp(u). It is the best case that one can expect on reconstructing

sparse signals through any optimization. Note, to do that, we assume that an oracle tells

us the supp(u).

5.1.1 Less/non-RIP Matrix Generation

RIP with δ2s is a property such that, for all the subsets of column vectors in A with the

cardinality not larger than 2s, any pair in such subset should be almost perpendicular to each

other. Therefore, we consider that the smaller the angle between two column vectors is, the less

RIP the matrix is. Therefore, we make use of the spherical coordinate system [32] to generate

less/non-RIP matrices as follows:

1. generate the random matrix A ∈ Rm×N with independent Gaussian entries;

2. select a set C of column vectors from A uniformly at random;

3. select one column vector in C as the central vector, give it polar angle a0 with m − 1

entries
i.i.d.∼ U (0, π/2);

4. generate |C| − 1 polar angles, each aj (j 6= 0) with m− 1 entries
i.i.d.∼ U (0, π/2);
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5. set the radius r = 1, entries in the central vector is the Cartesian coordinates retrieved

from r and a0;

6. select a constant 0 ≤ µ ≤ 1 as distance indicator, for the rest vectors in C, entries of each

is the Cartesian coordinates retrieved from r and a0 + µ aj.

We would like to point out that the degree of less/non-RIP is not deterministic. And we call

columns in C as corrupted columns.

5.1.2 Evaluation Metric

Recognizing the support of the interested signal is the most important thing for our approach.

However, considering that the iteration time and the return from CVXPY includes ignorable

entries rather than absolute 0 (as shown in Figure 5.1 (b)), we need to provide tolerances for

the approximations rather than exact reconstructions and the threshold for such tolerances

should be considered (as shown in Figure 5.1 (c)). Furthermore, we notice that when all the

columns in C are identical and C ∩ J = Q 6= ∅, the reconstructed vector through CVXPY is a

vector in which all the entries with indices in C have the same value. Especially, if C == J, the

reconstructed vector may have the right support but also large errors (as shown in Figure 5.1

(d)).

With the above concerns, we give our evaluation metric as follows: Let Ju denote the support

of the actual signal u, Jx denote the support of the minimizer x. We define the minimizer x as

the reconstruction of u if the following properties are satisfied:

Ju ⊆ Jx;

max
i∈Jx\Ju

|xi| /min
i∈Jx
|xi| ≤ α;

no identical items in{xi, i ∈ C}.

We would like to point out that the first two properties for evaluating an acceptable reconstruc-

tion are available for other cases, while the third one is mainly with respect to the behavior

pattern of CVXPY.

31



Figure 5.1: The original sparse signal and the reconstructed vectors.

5.1.3 Experiments Setting and Results

Parameters in all the experiments are set to be ρ = 1.01, ε = 10−8, iteration ≤ 1000, α = 0.01.

PLM-2 is given ΩP2 = {7, 17}. PLM-3 is given ΩP3 = {0, 7, 17}, in which the item “0” is a

spurious index. We conduct the experiments as follows:

1. Experiment on m/s: While s increases, m must also increase sufficiently for satisfying the

RIP. For a random matrix A ∈ Rm×N , when m/s is not sufficient, it no longer satisfies the

RIP with high probability. Accordingly, the reconstruction frequency via `1 minimization

is supposed to decrease when s increases. We want to use this experiment to explore how

PLM performs when s increases, and whether it is better than `1 minimization in this

scenario.

(a) fix the random matrix A ∈ 50× 200 with entries
i.i.d.∼ N (0, 1);

(b) given |J| = s, enforce ΩP ⊆ J, then select the remaining portion of the support,
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J \ ΩP , uniformly at random, and sample a u on J with entries
i.i.d.∼ U (−1, 1), then

run the experimental group on u and A;

(c) repeat 50 times for each s ∈ {2, . . . , 20};

2. Experiment on angle distance: While the angle distance decreases, A becomes less/non-

RIP. In this experiment, we are interested in two things. First, how PLM and `1 min-

imization perform when the angle distance decreases. To explore the first interest, we

make the distance indicator µ change from 0 to 1 evenly and the step size be 0.02. Sec-

ond, how PLM performs when the intersection of C and ΩP becomes smaller. To explore

the second interest, we discuss four settings, C == ΩP , ΩP ⊂ C, (ΩP ∩ C) ⊂ ΩP , and

ΩP ∩ C = ∅.

(a) make C1 = ΩP2;

(b) select C2 such that ΩP2 ⊂ C2, |C2| = 25;

(c) make C3 = C2 \ {7}, |C2| = 24;

(d) make C4 = C2 \ ΩP2, |C2| = 23;

(e) changing µ from 0 to 1 with the step size being 0.02, correspondingly generate a

sequence of less/non-RIP A′C1 from A with respect to C1, then A′C2 , A′C3 , A′C4 ;

(f) fix s = 8, generate 50 u following the way in 2(b);

(g) run the experimental group with the above 50 u on each matrix in A′C1 , A′C2 , A′C3

and A′C4 ;

3. Experiment on
∑
i∈ΩP

|xi|/‖x‖: A small ratio indicates entries in ΩP is not significant in x.

Through this experiment, we want to explore whether PLM prefers an ΩP with indices

corresponding to larger entries.

(a) fix A, and make s = 15;

(b) generate u as the way in 2(b), then run the experimental group on A. Repeat 500

times.

The results are shown in Figures 5.2-5.7. Given a random matrix, partial `1 minimization is

more capable than `1 minimization when m is too small compared with s. When the mea-

surement matrix is no more a random matrix and corrupted columns are involved, partial `1
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minimization is more tolerant than `1 minimization, within the conditions of interest (high-

lighted in grey in Figure 5.2-5.5). Here, the condition of interest means a condition that PLM-s

is able to fulfill uniform reconstruction, that is the reconstruction frequency equals to 100%.

As the intersection between ΩP and C decreases, the performance of partial `1 minimization

gradually approaches `1 minimization. The fluctuation of `1 minimization in Figure 5.3 be-

tween µ = 0.42 and µ = 0.7, and the steeper slope of the partial-`1-reconstruction in Figure 5.5

(µ ≤ 0.18) and Figure 5.6 (µ ≤ 0.08) may be because u is randomly generated, in terms of the

support and entries, and the value of µ is just an approximation to the degree of less/non-RIP.

The advantage of PLM shown in Figure 5.2 is not as obvious as the one exhibited in Figures

5.3-5.6. A possible reason is that fewer number of measurements causes the measurement ma-

trix to become less/non-RIP globally, while corrupted columns only have regional influence. It

is the implication of “restricted” in RIP. A good feature of PLM as shown in Figure 5.7 is that

it does not discriminate ΩP with indices corresponding to small entries.

Figure 5.2: The reconstruction frequency (50 runs) versus the sparsity s. When s increases, the
fixed Gaussian matrix no longer satisfies satisfy RIP with high probability. PLM-2 and PLM-3
both have higher reconstruction frequency than `1 minimization as m/s get smaller. PLM-3
performs almost as well as PLM-2, even though it is provided a spurious index. PLM-s is able to
keep 100% reconstruction even when all the other three optimization solvers completely fails. In
fact, PLM-s exhibits the capability of `0 minimization if the computational complexity to solve
it were not a issue. The gap between PLM-s and `1 minimization shows that `1 minimization
asks for more resources to guarantee a uniform reconstruction. PLM-2 and PLM-3 both display
improvements on `1 minimization.
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Figure 5.3: The reconstruction frequency (50 runs) versus the angle distance indicator µ, when
C == ΩP2 and s = 8. PLM-2, PLM-3 and PLM-s all perform extremely well than `1 minimiza-
tion. PLM-2 and PLM-3 perform as well as PLM-s. This exhibits how the ΩP can relax the RIP
requirement on A. The reconstruction frequency of `1 minimization has obvious fluctuation
between µ = 0.42 and µ = 0.7.

Figure 5.4: The reconstruction frequency (50 runs) versus the angle distance indicator µ, when
ΩP2 ⊂ C and s = 8. In this experiment, ΩP2 are included in C. To compare the performance
among the experimental group, we only concern the range that PLM-s has stable uniform
reconstruction, highlighted in grey. PLM-2 and PLM-3 perform overwhelming better than `1

minimization between µ = 0.6 and µ = 1. However, the steep jump at µ = 0.02 shows in
PLM-2, PLM-3 and PLM-s needs further study. Note, the range of the grey area is narrower
compared to Figure 5.3, Figure 5.5, and Figure 5.6. This is because in this setting, more
columns are corrupted than other settings. This is exactly the expected phenomena in the
less/non-RIP case.
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Figure 5.5: The reconstruction frequency (50 runs) versus the angle distance indicator µ, when
C∩ΩP2 = 7 and s = 8. In this experiment, C and ΩP2 only overlap. The other freed direction is
supposed to be useless. However, the reconstruction frequency of PLM-2 is 100% when the 7th

column is identical to other 23 columns rather than the 17th column. For comparison, we only
concern the range that PLM-s has stable uniform reconstruction, highlighted in grey. PLM-2
and PLM-3 reach higher reconstruction frequency than `1 minimization between µ = 0.28 and
µ = 0.56. After that, PLM-2, PLM-3 and `1 minimization are almost the same. The general
trend in this experiment shows the reconstruction frequency increases while the angle distance
indicator µ increases as well. This shows that our method to generate less/non-RIP matrices
is reasonable.

Figure 5.6: The reconstruction frequency (50 runs) versus the angle distance indicator µ, when
C ∩ ΩP2 = ∅ and s = 8. For comparison, we only concern the range that PLM-s has stable
uniform reconstruction, highlighted in grey. When ΩP2 has no relations with C, PLM-2, PLM-3
and `1 minimization perform almost the same. This shows that setting part of directions free
may at least do not make things worse, and as long as the freed directions have relations with
the corrupted sets, it can help the optimization solver be more reliable.
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Figure 5.7: The PLM-reconstruction versus
∑
i∈ΩP

|xi|/‖x‖, with s = 15. As the ratio increases,

there is no trend on the PLM-reconstruction, no matter under a random matrix or less/non-
RIP matrix. As the reconstructed vector u is randomly generated, the upper bound of the
ratio in 500 runs is 31.6%. It is safe to say that at the range

∑
i∈ΩP

|xi|/‖x‖ ≤ 31.6%, the

partial-`1-reconstruction is not sensitive to how large the entries with indices in ΩP .

5.2 Image Data

This section is an implementation of the general sampling process (see details in Section 2.3) in

CS. Many of the wavelet transforms are very efficient to compress images. As our formulation

and solver are limited in real number domain, here we use the discrete cosine tranform(DCT)

as Ψ, a compression methodology used in JPG (a commonly used method of lossy compression

for digital images) [39]. The Gaussian matrix with entries
i.i.d.∼ N (0, 1) is used as Φ. Then m

rows are uniformly, and randomly picked up from Φ to formulate Φ∗ as our sensing matrix. The

correspondingly less/non-RIP A′ for this experiment is generated by enforcing part of column

vectors to be identical. Before acquiring measurements, we preprocess the 2D-image data as

follows:

1. transform a 2D pixel image into the frequency domain via 2D-DCT, to get a compressible

representation;

2. preserve the s significant coefficient in the 2D compressible representation, and shrink all

the other entries to be 0;
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3. flatten the 2D sparse representation as a vector, that is u.

Here, u is our input signal to be reconstructed. In this experiment, N = 2000, s = 168 =

0.084N, m = 504 = 3s, and |ΩP | = 5 = 0.03s. The reconstruction from a corrupted measure-

ment matrix via our optimization solver exactly shows the original pattern, while the recon-

struction via CVXPY blurs the shape. Compared with the number of significant coefficients,

the cardinality of ΩP is very small, but it is enough to improve the performance of the classic

`1 minimization.

Figure 5.8: The reconstruction of preprocessed image data. The disturbed column set in A′ is
{1, . . . , 10}. (a) the original 1024 × 1024 image data in the time domain. (b) limited by the
memory and computing efficiency of the algorithms, only part of the original image is kept as the
signal of interest, N = 40×50. (c) locations of significant coefficients in frequency domain. (d)
ΩP = {1, . . . , 5}, reconstruction via PLM-ALM, with ρ = 1.01, ε = 1e−8, iteration ≤ 1000. (e)
reconstruction via CVXPY. While the reconstruction via CVXPY is blurry, the reconstruction
via PLM-ALM is clearly recognizable.
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Chapter 6

Discussion

6.1 Conclusion

We have presented a novel optimization approach, called partial `1 minimization (PLM), for a

sparse signal reconstruction from undersampled measurements. It is an approach to combine

the convexity of `1 minimization and the robustness of `0 minimization. The empirical results

demonstrate that PLM is more reliable than `1 minimization when RIP is not satisfied. To

make such performance improvements, PLM requires only minor information about the support,

which is allowed to include spurious indices.

6.2 Future Work

We propose two directions of the future work:

First, the pattern as shown in the synthetic experiments should explained in a theoretical way.

We would like to prove the δ2s upper bound for guaranteeing uniform reconstruction via PLM.

Second, the limitation of the proposed optimization solver has been shown based on the ex-

periments on image data. As PLM can be solved by most existing solvers for `1 minimization

with straightforward modifications, we can try another scheme to speed up the computing.

Third, as shown in the experiments on the synthetic data, PLM-s displays the best case that

we can expect to deal with less/non-RIP A. How to modify TLM to be a convex optimization

problem is a key goal. Prof. Randy Paffenroth has conjectured that given a sufficiently large
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ε ∈ R+, the nonconvex TLM can be transformed into a convex problem as follows:

min
x∈RN

‖x‖1 − max
z∈RN

‖Dr(z) x‖1

subject to |Ax− y| ≤̇ ε,

where, ≤̇ means “point-wise smaller than”. We will attempt to further verify this conjecture

empirically and theoretically.

40



Bibliography

[1] Candès, Emmanuel J. “The restricted isometry property and its implications for compressed

sensing.” Comptes Rendus Mathematique 346.9 (2008): 589-592.

[2] Candès, Emmanuel J., and Michael B. Wakin. “An introduction to compressive sampling.”

IEEE Signal Processing Magazine 25.2 (2008): 21-30.

[3] Foucart, Simon, and Holger Rauhut. A mathematical Introduction to Compressive Sensing.

Vol. 1. No. 3. Boston: Birkhäuser, 2013.
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