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Abstract

An overview of our calculations for the Extended Kalman filter

1 Introduction

To estimate the position of our robots, we will be using an Extended Kalman Filter (EKF). For the
prediction step, we will be using the velocity of the wheels calculated from the encoders. For the
correction step, we will be using the Arducam readings.

The wheel velocities will be notated by VR and VL for right and left respectively. The Arducam
will be returning the distances from an AprilTag in the camera frame (xc, yc) and the yaw (γ), the
angle between the camera x-axis and the heading of the robot with the AprilTag. A visualization of

this can be seen in Figure 1. The global pose that we’re estimating is in the form of

xk

yk
θk


2 Prediction Step

From [WB95], we have the following equations for the prediction step.

x̂−
k = f(x̂k−1, uk−1, 0) (1)

P−
k = AkPk−1A

T
k +WkQk−1W

T
k (2)

The f function in Equation 1 calculates the predicted current pose of the robot with the previous
pose (x̂k−1), the control input (uk−1), and some weights representing the zero-mean process noise wk

in our calculations. For the prediction step, f can be approximated by setting wk to 0. To find f we’d
need the angular velocity and rotational velocity of the differential which can be determined by:

ω =
VR − VL

b

v =
VR + VL
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The equations used to calculate f are as follows:

xk = xk−1 +∆t
VR + VL

2
cos θk−1

yk = yk−1 +∆t
VR + VL

2
sin θk−1

θk = θk−1 +∆t
VR − VL

b
The weights would be added to the variables VR and VL. However, to avoid clutter we are going

to state that VR = VR + WR and the same for VL. b is the wheel track. The matrix version of these
equations is as follows:

f =

xk

yk
θk

 =

1 0 0
0 1 0
0 0 1

xk−1

yk−1

θk−1

+

∆t cos θk−1

2
∆t cos θk−1

2
∆t sin θk−1

2
∆t sin θk−1

2
∆t
b −∆t

b

[
VR +WR

VL +WL

]
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Figure 1: AprilTag measured values

Matrix A in Equation 2 is the Jacobian matrix of partial derivatives of f w.r.t. the pose,

A =

1 0 −∆tVR+VL

2 sin θk−1

0 1 ∆tVR+VL

2 cos θk−1

0 0 1


Matrix W is the Jacobian matrix of partial derivatives of f w.r.t. our weights WR and WL,

W =

∆t cos θk−1

2 ∆t cos θk−1

2

∆t sin θk−1

2 ∆t sin θk−1

2
∆t
b −∆t

b


P will be initialized as

1 0 0
0 1 0
0 0 1

 and Q will consist of the variance of the weights:

Q =

[
σ2
WR

0
0 σ2

WL

]

3 Correction Step

Using the paper [WB95], we have the following equations for the correction steps.

Kk = P−
k HT

k (HKP−
k HT

k + VkRkV
T
k )−1 (3)

x̂k = x̂−
k +Kk(zk − h(x̂−

k , 0)) (4)

Pk = (I −KkHk)P
−
k (5)

The h function in Equation 4 relates the current prediction of the robot’s pose to the camera
measurements, which is the distance range and the bearing angle as shown in the following equations:

d =
√
(y2 − yk)2 + (x2 − xk)2

ϕ = θk − arctan (
y2 − yk
x2 − xk

)

The derivation of ϕ can be seen in Figure 3 and in the following equation:

tan (θk − ϕ) =
y2 − y1
x2 − x1
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Figure 2: Rotation Matrix Illustration

Figure 3: Illustration for ϕ. With θk = 40o, ϕ = −15o (The dotted range is to the left of the solid
y-axis), y2 − yk = 1.09, and x2 − xk = 0.77.

x2 and y2 are the pose predictions of the other robot that the camera sees. This will be communicated
over Bluetooth. There will also be weights attached to each x2, xk, y2, yk, and θk. These weights aren’t
in the equations to avoid clutter so they’ll be expressed as x2 = x2 + Vx2 and so on.

The matrix H in Equations 3 and 5 are calculated by finding the Jacobian matrix of partial
derivatives of the function h w.r.t. the pose:

H =

[
− x2−xk√

(y2−yk)2+(x2−xk)2
− y2−yk√

(y2−yk)2+(x2−xk)2
0

− y2−yk

(y2−yk)2+(x2−xk)2
− x2−xk

(y2−yk)2+(x2−xk)2
1

]

The matrix V in Equation 3 is the Jacobian matrix of partial derivatives of the function h w.r.t

v =
[
Vxk Vyk Vθk Vx2 Vy2

]T
:

V =

(x2 − xk) cos (90− θk) −(y2 − yk) sin (90− θk) (x2 − xk) sin (90− θk) + (y2 − yk) cos (90− θk)
(x2 − xk) sin (90− θk) (y2 − yk) cos (90− θk) −(x2 − xk) cos (90− θk + (y2 − yk) sin (90− θk

0 0 −θ2 + θk


The matrix R will be a diagonal covariance matrix consisting of the variances of the weights:

R =

σ2
Wx

0 0
0 σ2

Wy
0

0 0 σ2
Wθ


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