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1 Abstract 

Currently, when deploying guided parachutes, an educated forecast for wind velocity is 

input into the guidance software before it is deployed, and is corrected using GPS data. Since 

wind velocity is variable during parachute descent, real time wind velocity data would markedly 

improve the parachute’s landing accuracy. To solve this problem, the team designed a 

mechanical folding arm to extend a sensor package into the free-stream wind in order to 

accurately measure the wind velocity in real time and transmit the data to the parachute’s 

guidance unit.  A finite element analysis simulation study using SolidWorks Flow Simulation was 

conducted to determine the flow field around a parachute payload in order to properly size the 

length of the mechanical folding arm.  The wind sensor package was comprised of five Kiel 

probes – a shrouded variation of standard pitot probes – arranged orthogonally so as to 

determine windspeed in the three Cartesian directions.  The folding mechanical arm was 

powered by hydraulic pressure. When an internal hose is pressurized, the arm extends, and 

when the hose is depressurized, the arm retracts, with the help of springs. Testing of the sensor 

package yielded a series of equations which can be used to determine windspeed component 

data from the raw pressure readings of the sensors. 
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5 Introduction and Background 

In today’s army, the use of aerial delivery (or airdrops using parachutes) is quite 

common.  In Afghanistan, a combination of poor infrastructure and the threat of Improvised 

Explosive Devices (IEDs) make aerial delivery the safest method of delivering supplies to forces 

operating in remote locations.1 “Reducing the landing zone size makes recovery less dangerous 

for ground-based military units, who often cross hazardous areas to reach supply drops.”2  In 

situations such as the one in Haiti after the 2010 earthquake, in which the main port was 

destroyed and the main airport immensely crowded, airdrops became an effective way of 

quickly delivering supplies where they were needed.3 In most cases the use of round, unguided 

parachutes is acceptable because the available landing area is large and does not require 

pinpoint accuracy on part of the air drop.  However, in many instances, guided parachutes are 

needed when the desired target area is small.  Parafoils have the ability to maneuver 

themselves autonomously in order to land at a small, specific area.  However, the weakness 

inherent in their guidance systems is that they do not have the ability to measure real time 

wind velocities, and therefore no ability to adjust for the wind’s effect on the parachute’s 

trajectory. Currently, before the aircraft takes off, expected windspeeds are measured at the 

base or from meteorological forecasts and uploaded to the guidance unit for the parafoil.  

These often-inaccurate estimates may lead a supply drop off-course in the event of unexpected 

wind changes. 

5.1 Project Objectives 

The Natick Soldier Research, Development, and Engineering Center’s (NSRDEC) 

Airdrop/Aerial Delivery Directorate is tasked with “conducting research and engineering in 



military parachuting and airdrop systems to: increase aircraft/airborne force survivability; 

improve airdrop accuracy and functional reliability; reduce personnel injuries/casualties; and 

lower the cost to develop, produce and maintain these complex systems.”4 This division, which 

created the Joint Precision Airdrop System (JPADS) challenged our group to develop a real-time, 

on-board wind velocity acquisition system to be placed on the parachute payload.  Data from 

this system would be transmitted to the Airborne Guidance Unit (AGU), which would use this 

data to make course corrections to the parachute system, thereby increasing accuracy. 

NSRDEC provided the team a variety of design constraints. The main constraint was 

cost; the production version of our design must cost no more than one-thousand dollars. 

Furthermore, the system had to: 1) be no larger than a cubic foot, 2) be able to integrate with 

all parafoil systems in the Army’s inventory, 3) withstand the large stresses caused by the 

opening shock of the parafoil and the large shock cause by landing, 4) be reusable, 5) be as light 

as possible and 6) provide wind data from parachute launch to when the parachute was 

approximately ten feet above ground level, during what is known as ‘terminal maneuvers’.  

Additionally, the arm must retract quickly (on the order of 1-2 seconds) after terminal 

maneuver data is collected, to protect the sensor package from damage upon landing. 

Given these constraints and objectives, the team proceeded to perform a literature 

search to see what experiments or research had been previously conducted. We started with 

JPADS, which was a study that had been performed by the Army to develop a guidance system 

that would be able to account for wind velocity.  RoboTek and Wamore each developed a 

system that used a pair of CSI Wireless Vector dual-Global Positioning System (GPS) receivers in 

order to calculate the wind velocity.5  These systems were designed for parafoils with payloads 
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of 2,000 lbs up to payloads of 42,000 lbs.  After continuing our research, we found that the 

NASA had developed a sensor system for their crew reentry vehicle the X-38 called the Flush Air 

Data System or FADS.6  FADS consists of a 9 sensor arrangement in a cruciform pattern with one 

in the middle, two each to left, right, top and bottom. With that arrangement, the X-38 was 

able to measure wind from any direction. Keeping the JPADS and X-38 in mind, we proceeded 

to search for any commercial system that contained a sensor system capable of fulfilling our 

requirements. However, due to the uniqueness of the requirements there was no commercially 

available system that could be used or modified for use. 

5.2 US Military Precision Airdrop 

5.2.1 Precision Airdrop Systems 

The U.S. Army, along with the U.S. Air Force, has been developing Precision Airdrop 

Systems (PADS) to increase the accuracy and safety of airdrop missions.7  PADS development 

began in 1997 in order to address the high-altitude ballistic payload accuracy problems during 

humanitarian aid missions in Bosnia-Herzegovina from 1993-1995.  The program was 

accelerated in late 2001 after similar accuracy problems were observed in Afghanistan.8 

The initial objective of the PADS program was to develop a portable data processing 

system that allowed for ground and in-flight mission planning for ballistic airdrops.  The PADS 

system is connected to the aircraft in order to obtain real-time wind data, both from the 

airplane’s sensors and GPS dropsondes hand-launched from the aircraft.  This real-time data is 

combined with weather and wind forecasts to calculate an estimated release point for ballistic 

airdrops to ensure their accurate arrival at the drop zone.9 
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 The operational requirements of PADS have been expanded to include 

autonomously guided airdrop systems, along with 802.11g wireless communication hardware.   

PADS was first integrated with the Precision and Extended Glide Airdrop System (PEGASYS), a 

guided airdrop system, in order to form the U.S. Department of Defense (DOD) JPADS program.  

The PEGASYS system consists of a parachute canopy (usually a ram-air chute), AGU, and a 

rigging platform.  The PADS hardware and software package allows for pre-flight programming 

planning along with simple in-flight mission, threat, environment and terrain changes.  This 

capability allows for an immediate reaction by the user to any deviation from the original 

mission plan, and can even be used to program flight paths around obstacles. 

The current JPADS capability is for loads between 2,000 and 42,000 pounds from 

altitudes up to 25,000 feet mean sea level (MSL).  The JPADS objective is to provide the 

capability to deliver payloads ranging from 200-60,000 pounds at altitudes up to 35,000 feet 

MSL via autonomously guided airdrop from C-130, C-17, and other aircraft to multiple ground 

impact points within a 50-100 meter Circular Error Probable (CEP). 

The proliferation of Man Portable Air Defense Systems (MANPADS) and Improvised 

Explosive Devices (IEDs) presents a significant threat to both air and ground personnel on 

resupply missions, particularly those in hostile areas.  American and Allied aircraft cannot meet 

accuracy standards when higher than 2000 feet above ground level (AGL), and dropping from 

below this threshold causes the aircraft to become a target of small arms, Anti-Aircraft Artillery 

(AAA), and MANPADS threats.  JPADS allows aircraft to release payloads at higher altitudes than 

non-precision airdrop, and autonomous payloads have the in-flight capability to adjust to 

dynamic weather conditions.  Deploying from high altitudes makes it difficult to locate the 
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aircraft by sight or sound, even in high visibility conditions.  Due to the high glide ratio and 

maneuverability of ram-air parachutes, the payload can be released from any point within a 

relatively large area and still have the ability to guide itself to the impact point.  Even if the 

aircraft is seen and/or heard, the observer has no way to determine the impact point of the 

payload.  The capability of JPADS to deploy from a high altitude and potentially long standoff 

distance and accurately guide itself to the impact point significantly reduces the risk to both the 

aircrews and the ground assets by minimizing their exposure to enemy combatants. 

5.2.2 Wind Information and Forecasting 

JPADS guidance assumes the wind velocity at any point of the trajectory is known.  

Currently there are several methods used to obtain wind information while en route to the 

drop point: download forecast wind data from an external source, pilot reports from the 

aircraft, dropsondes released by the carrier aircraft or another aircraft, or instrumented 

balloons released by personnel near the desired impact point.  

When a transceiver is available, the JPADS mission planner (JPADS-MP) can be linked to 

a secure satellite communications network in order to receive weather information.  Weather 

information can be downloaded from the Joint Air Force Army Weather Information Network 

(JAAWIN), a database maintained by the US Air Force Weather Agency (AFWA).  Downloaded 

weather forecast information typically includes a 3-dimensional cube (100x100 km2 by 40-50 

x103 ft) of data centered over the desired impact point. 

The JPADS-MP can also interface with the carrier aircraft’s communications systems to 

receive wind information from the pilot, GPS dropsondes, ground-based radiosondes, or other 

similar instrumentation.  This capability allows the mission planner to supplement the 
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downloaded forecast data with near real-time wind information to more accurately plan the 

airdrop. 

5.3 Windspeed Sensing 

As the real-time wind profile deviates from the forecast profile due to natural weather 

fluctuations, airdrop error can be very large.  This deviation increases the risk to ground 

personnel attempting to recover the payload during combat resupply operations.  As a result, it 

is desirable to include sensing equipment in the guidance payload in order to incorporate real-

time wind and heading information to refine the flight path of the payload.  Common 

windspeed instrumentation includes pitot probes or some form of anemometer. 

5.3.1 Anemometry 

Anemometers are most commonly used in static weather stations, and generally use the 

angular velocity of an attached bluff body (such as a windmill) to determine the velocity of the 

fluid flow.  Design and construction of these basic anemometers is simple and inexpensive, 

though the moving parts decrease the durability relative to other wind sensing methods.  

Calibration and data analysis is also simple. 

A variation on the traditional windmill anemometers is the hot wire anemometer.  This 

type of anemometer uses a very thin electricity carrying wire exposed to ambient air.  

Resistance of the wire causes it to heat up above ambient temperature, and air flowing over 

the wire has a cooling effect.  Because the resistance of most metals is dependent on 

temperature, a relation can be created between the resistance of the wire and the wind 

velocity.  Hot wire anemometers can be very accurate and have a high sampling rate, though 

they are very delicate. 
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Sonic and Laser Doppler anemometers use similar concepts to measure wind velocity.  

Laser Doppler anemometers uses two laser beams, one that travels into particles in the air and 

one that remains inside the instrument.  Particles flowing in the air scatter the external beam, 

creating a Doppler effect that is measured by a detector.  This scattered light is compared to 

the reference beam and used to calculate the velocity of the air.  Sonic anemometers use 

coupled transducers to measure the time it takes for sound pulses to travel the gap between 

them.  The speed of sound will vary based on the wind velocity, allowing one to calibrate the 

data to obtain velocity measurements.  Laser Doppler anemometers are fairly complex and 

expensive relative to other methods, but have excellent resolution.  Sonic anemometers have 

no moving parts, but support struts often distort the flow, requiring wind tunnel calibration to 

minimize the effects. 

5.3.2 Pitot Probes 

The most basic pitot probe is a tube facing directly into the fluid flow.  The tube is 

attached to a pressure transducer, which measures the stagnation pressure, pt, of the fluid 

flow.  Incorporating the static pressure, ps, the Bernoulli equation (shown below) is used to 

calculate the velocity of the fluid flow. 

ܸ ൌ ටଶሺିೞሻఘ   

 Basic pitot probes are not able to account for changes in the yaw or pitch angle.  If the 

head is not parallel to the fluid flow, errors will be present in the stagnation pressure readings.  

If the orientation of the probe is fixed or measured by an external sensor, correction factors can 

be applied to the readings.  Kiel probes are a modification of the basic pitot probe, and are used 

to measure the stagnation pressure in fluid flow where the angle is not known or varies during 
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sampling.  Within certain limits, ±48° yaw angle, ±45° pitch angle for the probes used in this 

project, the Kiel probe is completely insensitive to the flow direction (see Appendix E for full 

data sheets on United Sensor Kiel probes).10 

 Pitot probes have several significant advantages over other wind sensing 

instrumentation.  Pitot probes are simple to construct, robust, inexpensive, and generally do 

not require calibration.  These advantages, along with the Kiel probe’s relative insensitivity to 

flow direction, led us to choose Kiel probes as our primary wind sensing instrumentation. 
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6 Design Process 
6.1  Alternative Design Concepts - Structural 

After completing our literature search and commercial products review, we 

brainstormed several deployment systems for four separate concepts as well as four separate 

sensor systems. After considering the explicit constraints, we decided that an articulated arm 

mounted on the cargo system utilizing an array of Kiel probes would provide the lowest cost 

and the highest reliability suitable for NSRDEC’s purposes. The Kiel probes were selected due to 

their ability to obtain accurate readings even at high angles of yaw and pitch. The articulated 

arm was selected because it was the least complicated deployment method and was mostly 

mechanical in nature leading to reduced cost and improved reliability as well as easier design. 

We then proceeded to construct a demonstrator suitable for proving that the concept 

was in fact practical and effective. The construction only used commercially available non-

military specification materials. Our testing included placing individual Kiel probes, the Kiel 

probe array in their container, the arm and the entire system into a closed wind tunnel at 

approximately sixty miles per hour windspeed. 

During the brainstorming phase of the project, we looked at four possible structural 

designs and four sensor designs.  The structures were an extendable arm, a trailing glider, using 

the drogue chute or the parafoil itself, and having the sensors dangling from the payload.  The 

sensor ideas were a hot-wire/hot-film anemometer, using ducted fans, using one 3-D pitot 

tube, or using five separate pitot tubes.  After analyzing the pros and cons of each, we 

narrowed the choices down to one structure and one sensor. 
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The extendable arm concept was promising because there were many possibilities for 

adaptation.  There would be a mounted arm on the AGU, which could be extended into the free 

stream and then retracted (see Figure 1).  It could be used with hydraulics or pneumatics, and 

could be telescoping or folding, allowing for many options.  One of the foreseen complications 

with this design choice was that the arm might be slow to extend or retract, which was not an 

issue for the extension as that process was not time sensitive, but retraction must occur in 

approximately 1/3 to 1 second since the sensor system must remain deployed until 10 feet AGL. 

In order to nullify this issue in the pneumatic and hydraulic systems a high pressure reservoir 

could be used, however, this would incur a weight and size penalty to the design since the 

reservoir would need to be a large tank of compressed gas or liquid. 

 

Figure 1  - Early rendering of the extendible arm concept 

The second idea was to have a glider that would trail behind the parafoil system (see 

Figure 2).  It would be attached to the AGU via a tether, and would glide behind it carrying the 

sensors.  The benefit of this system would be that it easily avoids wake effects from the 

payload, it would be extendable and retractable using the tether and it would keep the sensors 
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from being damaged.  The problem with this design was that the speed of the parachute 

system is so slow that a typical glider would stall, and to compensate for this, the wings would 

need to be much larger and this would result in greater weight and size.  Furthermore, the 

glider would be difficult to stabilize, and any destabilization would lead to false sensor readings.  

Finally, the glider would need to be durable enough to survive the landing, and this too would 

add additional weight. 

 

Figure 2 - Early rendering of the trailing glider concept 

When the payload is released from the aircraft, a drogue chute is first deployed. The 

drogue chute is a small circular parachute which pulls out the main parafoil or parachute from 

where it is stored; however, after the deployment of the main parachute it serves no further 

purpose on the drop. Therefore, we thought that putting the sensor on the apex of the drogue 

chute would have many advantages (see Figure 3).  It would be in the free stream, above any 

wake effects, it would be very cheap to implement, and the chute should help prevent the 

sensor from breaking upon landing.  The problem was that the drogue chute is manufactured to 
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collapse once the main parachute has deployed, so drogue deployment system was quickly 

deemed impossible. 

 

Figure 3 - Early rendering of drogue chute sensor package 

The last concept for the structure was to have the sensor dangling from underneath the 

payload (see Figure 4).  This would guarantee free stream wind, and could be retracted and 

extended using a winch.  The problem is that no matter how it is deployed, there was no way to 

ensure it did not get crushed by the payload upon impact.  We looked into releasing the sensor 

package at a calculated point prior to impact, but the likelihood of the structure and the 

sensors being damaged or destroyed was still very high. 

 

Figure 4 - Early rendering of dangling sensor package 
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6.2 Alternative Design Concepts - Sensors 

For the sensor used to measure the windspeed, one of the options we explored was 

hot-wire/hot-film anemometers (see Figure 5).  They measure resistance differences due to 

forced convection, and are very compact and accurate.  The problem with this type of sensor is 

that it cannot determine the direction of the wind, which is needed for the parafoil order to 

compensate properly.  Therefore, two sensors would be needed to measure each windspeed 

component.  Additionally, these products were outside our price range. 

 

Figure 5 - Hot-wire anemometer diagram11 

Another sensor system considered was ducted fans to measure windspeed (see Figure 

6).  The incoming wind spins the fan, which creates a measurable voltage that can be used to 

calculate the windspeed.  A total of three fans would be needed, one for each direction.  This 

arrangement would be bulky and difficult to extend into the free stream.  Furthermore, 

additional equipment may be required to determine wind direction 
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Figure 6 - Concept rendering of ducted fan sensor 

The last two sensor systems use a combination of pitot probes and pressure transducers 

to measure the windspeed.  There are three-dimensional pitot probes commercially available, 

which would be perfect for our applications (see Figure 7).  This system is very light and small, 

and has the ability to separate and record windspeed in all three directions in one convenient 

package.  However, the cost of the three-dimensional pitot probe was prohibitive.  Therefore, 

the team considered using five different pitot tubes to accomplish the same goal (see Section 

7.4).  The downside is that the system must be manually assembled, and a holder would need 

to be specially manufactured, but the cost would be much lower and it would achieve the same 

end result as the three-dimensional pitot probe. One problem was that some sort of calibration 

would have to be determined in order to sum all of the inputs and resolve them into three 

Cartesian components. 

 
Figure 7 - United Sensor 3D pitot probe, model DC 
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6.2.1 Pressure Transducers 

Use of pitot probes required the incorporation of pressure transducers in order to 

digitize stagnation pressure into a measurable voltage.  Because the goal of this project is to 

measure windspeed in all three directions, it would require at least five transducers to collect 

accurate data.  These five sensors would have to transmit windspeed values to a single 

transmitter, which would process the data and pass it on to the AGU.  For testing purposes, we 

required a data logger instead of a transmitter in order to collect the voltage outputs from the 

sensor package.  From our literature search, our team discovered that the cost of a 

commercially available data logger with at least five channels is nearly as much as our total 

budget (~$600).  Our team lacked the expertise to build our own data logger from a slightly less 

expensive (~$400) component supplier. 

The team decided to procure airspeed sensors from Eagle Tree Systems, who offer the 

Airspeed Microsensor, a compact sensor package that reads the pressure differential between a 

static port and a pitot probe.  An image of the Airspeed Microsensor is shown in Figure 8.  

Though a static pressure source can be shared, each of the pitot probes used in our sensor 

package requires a pressure transducer.  Eagle Tree Systems also offers the eLogger, a data 

logger and software package compatible with the Airspeed Microsensors.  Unfortunately, 

software and hardware limitations prevent the use of more than one Airspeed Microsensor per 

eLogger, so a logger must be purchased for each sensor.  This limitation adds significant cost to 

the complete sensor package, with each eLogger costing approximately $70 and Airspeed 

Microsensor costing approximately $40.  For evaluation purposes, a single eLogger was 

purchased, along with several Airspeed Microsensors.  
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Figure 8 - EagleTree Airspeed Microsensor17 

Our testing of the Eagle Tree Systems products revealed several shortcomings of the 

system.  Our team discovered that the Airspeed Microsensors could be daisy-chained together, 

allowing multiple sensors to be attached to the eLogger.  Unfortunately, the eLogger cannot 

differentiate between airspeed sensors, and instead reads all attached sensors as the same 

channel.  This discovery means that the team would have to purchase multiple eLoggers in 

order to record data from the final sensor package.  Additionally, wind tunnel testing showed 

that the Airspeed Microsensors are not accurate enough for use on this project.  The sensors 

consistently read flow velocities at least ten feet per second slower than actual flow velocity of 

the tunnel.  Velocity measurements from the Airspeed Microsensors were compared to 

measurements using the water manometer, which were comparable to the calibration curve 

provided with the wind tunnel.   All purchased sensors read the same velocity, and 

communications with the Eagle Tree Systems did not produce any solution.  Due to these 

shortcomings, the Eagle Tree sensors were not included in the final design. 
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7 Final Design and Construction 
7.1 Final Design 

After conducting research, exploring different options, and examining commercial 

products we finalized our design. The STINGER is a folding arm (see Section 7.3) that consists of 

four segments, each with different lengths such that they can fold up into a square shape; the 

arm segments are made out of square Aluminum tubing. At each joint, screws and washers are 

used to reduce the contact friction between the two segments of arm and to prevent binding 

on the screws themselves. Inside of the arm runs a flexible, expandable hose similar to a fire 

hose. This hose is inflated by a hydraulic pump and reservoir that are mounted on the base of 

the STINGER. When the arm needs to extend, the reservoir is emptied by the pump and the fire 

hose filled causing the arm to extend as the filling of the hose forces the arms to open. When 

the arm needs to retract, the pump reverses and the reservoir is refilled. Furthermore, at each 

joint is a spring that prevents the arm from opening by itself, but is weak enough such that 

when the fire hose is filled, the arm can open. The reason for this design is that the springs will 

cause the arm to retract far quicker than any other system simple system we could devise. The 

STINGER is mounted to the payload by means of a dual plate mechanism with one plate 

mounted to the base of the STINGER and the other mounted on the far side of the straps on the 

payload.  

The sensor system is attached to the far end of the STINGER by means of a holster 

device that also contains the pressure transducers necessary to determine windspeed. The 

sensor system itself is an array of five Kiel probes mounted in a holding device which keeps 

them in a fixed position with one facing forward, one left, one right, one up and one down. The 
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Kiel probes were chosen because they do not record any windspeed beyond a certain yaw and 

pitch. In our case, we only want each Kiel probe to measure the wind in the direction it’s facing. 

7.2 Computational Fluid Dynamics Simulations 

It was determined that in order to obtain accurate readings of the windspeed 

surrounding the parachute system, the airspeed sensor(s) would have to be displaced an 

appropriate distance from the bluff body of the cargo.  To determine the distance that would 

provide approximately accurate results, an analog of the system was analyzed in a 

Computational Fluid Dynamics (CFD) program (SolidWorks Flow Simulation 2010). 

With input from NSRDEC, the dimensions of an appropriate parachute system were 

detailed.  The system analyzed was the Firefly 2k, shown in Figure 9 below.  Figure 10 shows the 

parachute system analog developed by the MQP team in SolidWorks for fluid analysis.  Note 

the absence of straps and other extraneous features.  These components were omitted 

because their presence would not greatly affect the analysis results, and their behaviors cannot 

be properly modeled with solid geometry.   
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Figure 9 – The Firefly 2k system, was chosen for analysis12 

 

 

Figure 10 – Analog model, with dimensions, of the Firefly 2k system, provided by NSRDEC.  

Table 1 – Dimension data for Firefly 2k system 

AGU 
Height 

AGU 
Width 

AGU 
Depth 

Load 
Height 

Load 
Width 

Load 
Depth 

Rigging 
Angle 

Separation 

7.0 in 15.0 in 23.0 in 83.0 in 48.0 in 48.0 in 7° 105.0 in 
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Once the analog model was completed, it was analyzed in SolidWorks Flow Simulation.  

The free stream for the simulation was set to 50 ft/s in the +x-direction and 20 ft/s in the +y-

direction.  This data was again provided by NSRDEC as a reasonable approximation of the speed 

of a Firefly 2k system in flight.  The air density was set to 9.3 psi, which is the density at an 

altitude of 12,000 ft – the Firefly’s mean altitude.   

Once run, the flow simulation was post-processed and analyzed.  First, images and 

videos were captured to further augment the team’s understanding.  Selected images are 

shown below in Figure 11 and Figure 12. 
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Figure 11 - Velocity plot from CFD analysis 

 
Figure 12 - Top-down view of cargo flow

Next, the data was analyzed to determine how far from the system one would have to 

mount the sensors to reach an approximate measurement of the free stream flow.  First, an 

“approximate measurement” was defined to be within 5% of the prescribed free stream in any 

direction.  Recall that the free stream was set to 50 ft/s in the x-direction, and 20 ft/s in the y-

direction.  Therefore, an acceptable free stream value would be one between 47.5 and 52.5 ft/s 

in the x-direction, and between 19 and 21 ft/s in the y-direction. 

 

 



 Table 2 – Acceptable Velocity Calculations 

 Free Stream 
Value 

Acceptable 
Error Range 

Acceptable 
Measurement Range 

X-Direction 50 ft/s ± 2.5 ft/s 47.5-52.5 ft/s 
Y-Direction 20 ft/s ± 1 ft/s 19-21 ft/s 
 

Next the team had to decide where on the system to take measurements for fluid 

velocity.  It was physically possible to mount an extension mechanism on nearly any face of the 

cargo or AGU, but it may not have been practical for some locations.  Below is a list of locations 

that were excluded from testing: 

• No measurements are taken from the back side of the system, because the back side 

will always have more wake effects than the front side. 

• No measurements are taken between the Cargo and AGU because of high wake effects 

and interference from straps and other system components. 

• No measurements are taken in locations such that the extension mechanism would 

point down from the cargo unit or AGU (in case of a failed retraction, this would surely 

result in the destruction of the mechanism). 

In addition, certain measurement locations were discarded after a simple visual 

inspection of the flow simulation results.  In the end, only the following locations were 

considered for mounting an extension mechanism: 
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Table 3 – Possible mounting locations for extension mechanism 

Cargo AGU 
Left/right side, pointing forward Left/right side, pointing forward 
Front side, pointing left/right Front side, pointing left/right 
Bottom side, pointing forward Bottom side, pointing forward 
Bottom side, pointing left/right Bottom side, pointing left/right 
Center, pointing forward  

 

Before measurement began, certain assumptions were made.  It was first assumed that 

results are symmetrical for both the left and right sides.  Therefore, only one set of 

measurements needed to be made for those locations.  Second, it was assumed that the 

normal distance between the face on which the arm is mounted and the sensor is negligible.  

Therefore, measurements can be taken directly on these planes.   

One of the post-processing tools available in SolidWorks Flow Simulation – called XY Plot 

– allows one to take measurements of nearly any property (i.e. velocity, pressure, etc) along a 

line drawn in space, and then plot the results of those measurements against distance. Using 

this tool allowed the team to determine the minimum distance from the system at which the 

free stream velocity reached an acceptable value, as described above.   

A number of evenly spaced lines were drawn on each possible mounting point, in the 

appropriate direction (see Figure 13).  Data on the x- and y-components of velocity were then 

extracted from these lines using the XY plot tool and plotted in Microsoft Excel, along with the 

acceptable range of free-stream measurements.  An example of these results can be seen in 

Figure 15 and Figure 16, and the complete collection of results can be found in Appendix A. 



 

Figure 13 - Measurement lines in SolidWorks Flow Simulation 

 

Figure 14 - Measurement lines for an extension mechanism mounted on the front of the cargo, facing right 
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Figure 15 – X-component of windspeed 
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Figure 16 – Y-component of windspeed 

Note that the dashed lines in the above figures represent the range in which the free 

stream measurement is deemed acceptable (± 5%).  The solid lines represent the windspeed 

data taken from the sketched lines.  Each color represents a different line.  In interpreting the 

charts that were created, the results were considered acceptable only when data from all axes 

converge to within the acceptable limits.  In this way, an extension mechanism can be placed on 

any point of the specified face.  No additional factor of safety is introduced. 

Table 4 - Necessary extension distances from various faces and directions from system. 

X-Dir Y-Dir X-Dir Y-Dir X-Dir Y-Dir X-Dir Y-Dir X-Dir Y-Dir
Cargo 6.5 9.5 4 4.75 6 5.5 6 3.5 6.25 9.5
AGU 0.75 6.25 0.75 6 1 5.75 1 5.75 - -

Left/right side,     
pointing forward

Front side,          
pointing left/right

Bottom side,       
pointing forward

Bottom side,        
pointing left/right

Center,             
Pointing forward

 
The results of the graphs were compared, (as in Table 4) and it was determined that, to 

minimize the necessary extension distance, an extension mechanism should be mounted on the 
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front side of the cargo pallet, and extend to the left or right – perpendicular to the free stream.  

This mechanism would have to extend at least 4.75 feet (or 57 inches) from the system.   

Note that the X-Dir and Y-Dir columns in Table 4 signify the data only when the 

respective component is taken into account.  For example, the horizontal velocity component 

of airspeed reaches a reasonable approximation of the free stream less than a foot away from 

the AGU in most cases, but the vertical component is still unsteady many feet away.  Therefore, 

the total velocity component is not acceptable at that point.   

7.3 Extension Mechanism 

In finalizing the design for the extension mechanism, all of the practical knowledge that 

the team had gained during the design process was utilized.  In researching commercially-

available linear actuators, we learned that many aspects of such products are unsuitable for our 

needs.  First, most linear actuators do not telescope, meaning that the retracted length is only 

half of the maximum possible extension length, which itself is usually far too short to reach our 

free stream distance (discussed in Section 7.2).  In addition, the opening and closing speeds of 

commercially-available linear actuators were far slower than the 1-2 seconds the team needed, 

and weighed much more than was feasible for the parachute system to carry.   

By this point, it was becoming apparent that the team would have to design and build a 

specialized extension mechanism to meet the project’s needs.  This mechanism would have to 

be lightweight, and have a retracted length which was a small fraction (one-quarter to one-

third) of the extended length.  It would also have to quickly extend to 60 inches, and retract just 

as fast.  Assuming that a multi-shafted telescoping actuator would be too complex to design 

and construct during the scope of the project, the team came up with a multi-jointed extender, 

which would fold into the shape of a rectangle.  This extension mechanism – shown in Figure 17 
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– was christened the S.T.I.N.G.E.R. (short for Sensor Translating Integrated Navigation and 

Guidance Extender/Retractor) 

 

 

Figure 17 - Early rendering of the S.T.I.N.G.E.R. 

It was originally planned that the STINGER would be operated by a series of motors, 

possibly including gears and chains to augment the mechanical advantage of the system.  

However, it was soon discovered that the torques required to move the arm sections were too 

great for any motors which would be small and/or inexpensive enough to suit the project’s 

constraints.    

To overcome the challenges of extending the arm, the team met with Professor Eben 

Cobb, from the Mechanical Engineering Department at Worcester Polytechnic Institute.  

Through our discussions with Professor Cobb, the team arrived at a promising design idea, 

which was called a “flexible kinematic device” or simply the “fire hose.”  In essence, this device 

uses hydraulic pressure to straighten a length of hose fitted inside the STINGER arm.  The high 

pressure inside the tubing causes any bends to straighten, thereby extending the arm to its 

maximum length.  To retract the arm, the sections will also be fitted with springs, which will 

force the arm closed when the hose is depressurized.  Some preliminary renderings are shown 

in Figure 18 and Figure 19 below. 
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Figure 18 - Cross-section of pressurized and extended fire hose system 

 

Figure 19 - Depressurized, retracted STINGER, held closed by springs (with cross section) 

A high-strength, low weight aluminum (6061 Alloy) was selected for constructing the 

arm, to keep loading on the joints to a minimum.  This material has a linear density of 0.225 

lbs/ft, making it perfectly acceptable for this project.  Once obtained, the aluminum stock was 

cut to pre-determined lengths, as illustrated in Figure 20.  A full photo journal of the 

construction of the arm can be found in 11Appendix B.  Springs, bolts, and other miscellaneous 

materials were also gathered, while most tools were already on-hand.   
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Figure 20 - Arm section lengths (in inches) 

A further advantage of having multiple arm segments means that the individual arm 

segments can be interchanged with minimal effort. The STINGER was designed for the Firefly, 

but by switching arm segments the total length can be extended allowing for deployment on 

larger payload systems which have correspondingly larger wake envelopes. Besides the ability 

to increase length for use in other parafoils, individual segments allow for easy replacement 

and maintenance; if one of the segments has a flaw jus that segment could be replaced instead 

of having to replace the whole system. 

7.4 Sensor Package 

With the extension mechanism constructed, the team next needed a device which 

would contain the sensor package, consisting of the Kiel probes and transducers discussed 

above. This device would have to connect to both the STINGER mechanism, and a wind tunnel 

testing rig.  It would also have to be relatively aerodynamic, so as not to induce any large wake 

effects around the sensors.  Also, the device would have to securely hold the Kiel probes in 

their respective orientations (facing up, down, left, right, and forward) even in turbulence.   
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Given the dimensions of the selected Kiel probes, the holding device was designed in 

SolidWorks.  It was designed such that four six-inch probes could fit longitudinally in the device 

(see Figure 21), and one probe would protrude axially from the cylinder.  The seating sockets at 

the front of the device fit the shrouds over the tips of the probes, keeping them properly 

aligned (see Figure 22).  A number of ribs inside the holding device provide structural stability, 

and also hold the probes in place at multiple points.  Finally, the flanges on top will allow for 

simple connections to any flat plate with 3/8-inch holes.  The testing rig, discussed later, was 

designed specifically to mate with these flanges.   

 
Figure 21 - Secured longitudinal probes (cross-section) 

 

Figure 22 - Seating sockets to keep probes aligned 

Once the part was designed, the team was able to quickly fabricate a prototype using a 

technology called 3D Printing.  To begin, the SolidWorks CAD file was converted to a format 

called Stereo Lithography (.STL).  This file format converts the model into a number of triangles 

comprising the positive and negative space of the part.  This file was then sent to a contact at 
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SolidWorks Corporation, who was kind enough to offer the use of their 3D printer, free of 

charge.  A 3D printer (in our case, a ZCorp ZPrinter 350) works by printing a single layer of these 

triangles at a time – at a thickness of only 0.01 inches.  The positive space of the model – that 

which contains actual material – is printed with a gel-like acrylonitrile butadiene styrene (ABS) 

plastic, while the negative – or empty – space is printed with paraffin wax.  Once the plastic in 

the finished product sets, the part is heated in a saline bath until the wax melts away, leaving 

only the desired part (see Figure 23).  The entire manufacturing time of this part was less than 4 

hours. 

 
Figure 23 - 3D-printed model of holding device 

7.5 Test Stand 

Once we had completed the holding device, we needed a method of stabilizing the 

device in the wind tunnel so that we could test it. Thus we developed a SolidWorks model of 

our test stand which can be seen in Figure 24 below.  With the SolidWorks model in hand, the 

part was machined, with assistance from Neil Whitehouse, in Higgins Labs.   
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Figure 24 - Test stand used to secure the sensor package during wind tunnel testing. 

As can be seen the test stand bolts into the 3/8” holes present on the sensor package 

holder and transitions into a steel rod.  This rod passes through a narrow channel in the top of 

the wind tunnel (see Figure 25) and is securely fastened to the tunnel’s structure.   

 

Figure 25 - Test stand channel in the top if the Higgins Discovery Classroom wind tunnel. 

7.6 Wind Tunnel Port Cover 

In addition to the test stand, we also designed a custom wind tunnel port in SolidWorks 

so that we would be able to securely place a single Kiel probe into the test section of the wind 

tunnel. Once again, Neil Whitehouse kindly machined the necessary part from a CAD model we 
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prepared for him.  The final product may be seen in Figure 26 below.  Note the small-bore hole 

through the center for inserting a probe.  

 

Figure 26 - Custom-machined wind tunnel port for testing single Kiel probes. 

7.7 Mounting Rig 

After developing the STINGER arm itself, the team turned its attention towards 

designing a mounting mechanism to connect the extension mechanism to the Firefly system.  A 

loaded Firefly cargo pallet could come in any shape or size. Therefore, the mounting 

mechanism would have to be extremely versatile, with the ability to attach to nearly any 

shaped load.  After studying the configuration of a loaded system, as seen in Figure 27, the 

team realized that every Firefly system will have one component in common: the straps.  Using 

these straps as a base, the team devised an ingeniously simple method for securing the wind 

sensing system to the cargo pallet. 
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Figure 27 - A loaded Firefly 2k JPADS system, ready for drop13 

The team designed a series of plates, bolted together on either side of the straps, to 

secure the extension mechanism in place (see Figure 28).  One plate would be welded or 

otherwise secured to the STINGER, while the other would be inserted behind the straps of the 

cargo pallet.  This design is extremely simple and effective since the mounting mechanism 

works for all payloads regardless of the size and shape. 

 

Figure 28 - Conceptual rendering of mounting mechanism in an exploded view  

Windspeed Data Acquisition for Autonomously-Guided Cargo Parachutes  Page 33 
 



Windspeed Data Acquisition for Autonomously-Guided Cargo Parachutes  Page 34 
 

8 Testing 

8.1 Wind Tunnel 

Once the construction of the test stand, the porthole and the holding device had been 

completed, and the Kiel probes had arrived we needed to test our system.   Single probes were 

tested using the Discovery Lab wind tunnel.  The full sensor package could not be tested in the 

Discovery Lab because there was only a few centimeters clearance between the sensors and 

the wall when not oriented normal to the flow, which is not desirable for testing.  Full sensor 

testing was carried out in the Higgins Fluids Laboratory wind tunnel due to its larger test 

section.  A water manometer was used to take pressure readings. 

8.1.1 Single Kiel Probe 

First, the team decided to individually test the Kiel probes to make sure that they were 

not defective in any way.  We placed a single Kiel probe in the test section of the wind tunnel, 

using the custom designed port cover discussed in Section 7.5, and, using plastic tubing, we 

connected it to the water monometer. When it was connected, we varied the windspeed of the 

tunnel and the angle of attack of the Kiel probe, in order to determine the behavior of the 

probes.  A sample of our test results follow, and the full set of data is available in 11Appendix C. 
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Figure 29 - Test results of single probe at normal orientation to flow 

 
Table 5 - Test results of single probe at normal orientation to flow 

Normal Orientation     
Tunnel Motor Speed (Hz) 0.00 0.20 0.40 0.60 
Control Pressure (in H2O) 31.85 31.3 29 25.6 
Measured Pressure  (in H2O) 31.85 31.5 29.4 26.8 
Difference ΔP 0 -0.2 -0.4 -1.2 
Calculated Windspeed 7.285831 7.245688 7 6.683313 

 

The results of our testing with the single Kiel probes and the water monometer showed 

the probes were in fact giving us the correct velocity and were also not giving us any results 

when they were turned past their pitch limit. In the 60° and the 90° pitch experiments, some 

small value of velocity was recorded despite being past the pitch limit of the Kiel probe.  We 

determined this to be a result of suction caused by high-speed flow. 

8.1.2 Full Sensor Package Testing 

Once we had ascertained that the single Kiel Probes were in fact accurate, the team 

proceeded to test all five Kiel probes while mounted in the holding device. The testing was 

conducted in the large closed-circuit wind tunnel in the Higgins Fluids Lab, which was large 
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enough to accommodate the full sensor package.  The group tested the whole sensor system at 

varying speeds and orientations, similarly to the single probe tests.  We tested multiple 

combinations of pitch and yaw at various values in order to properly test the abilities of all five 

Kiel probes.  A sample of the resultant data is shown below, and the entirety of the test results 

are available in Appendix D. 
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Figure 30 - Test results of sensor package at normal orientation to flow 

Table 6- Test results of sensor package at normal orientation to flow 

Normal Orientation
Tunnel Motor 
Speed (Hz) 0 20 40 60 

 Pressure 
Measurement 

Pressure 
Difference 

Pressure 
Measurement 

Pressure 
Difference 

Pressure 
Measurement 

Pressure 
Difference 

Pressure 
Measurement 

Pressure 
Difference 

Front 31.8 0 31.2 0.6 29.2 2.6 25.9 5.9

Right 31.8 0 31.9 -0.1 32.8 -1.0 34.4 -2.6

Left 31.8 0 31.9 -0.1 32.8 -1.0 34.4 -2.6

Top 31.8 0 32 -0.2 33.1 -1.3 35 -3.2

Bottom 31.8 0 32 -0.2 33.1 -1.3 35 -3.2

 

 The results of our testing of the entire sensor system demonstrated that our 

arrangement and recordings were in fact accurate; the main issue that remains for the sensor 
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system is to develop an algorithm that would take all of the inputs from the five Kiel probes and 

properly compensate for the angles involved and output the three components of the total 

wind velocity. 

In compiling the data from our testing, the team noticed that, no matter what the speed 

of the wind tunnel, the front-facing probe always measured a constant speed across all 

orientations, to three significant figures (see Figure 31 and 11Appendix D). 
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Figure 31 - Data showing consistent windspeed readings from front-facing probe 

8.2 STINGER Deployment Testing 

Once fabrication of our prototype deployment mechanism was completed, it was 

necessary to test its functionality to determine if it satisfies the project requirements.  The 

project requires the arm deploy into the free stream within a reasonable amount of time (≈1 

minute) and remain rigid for the duration of the flight.  Prior to landing, the arm must retract 

quickly (2-3 seconds maximum) in order to prevent damage during landing. 
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Several types springs were considered for use with arm retraction, particularly linear 

springs and torsion springs.  After encountering difficulties attaching the torsion springs to the 

arm in a way that would not hinder their operation, it was decided to use linear springs for our 

prototype.  Three springs were used, sourced from McMaster Carr, each with a spring constant 

of 17.75 lb/in (see full specifications in Figure 32).  Once the springs were attached, the arm 

was manually deployed in order to test the retraction speed of the arm.  After multiple tests, it 

was determined that the arm easily satisfies the performance requirements of the project with 

a very fast retraction time of 0.78 seconds.  It should be noted, however that this quick and 

violent retraction time may cause damage to the sensor package, and should be further 

studied. 

 

Figure 32 - Specifications of McMaster Carr extension springs. 

Once we determined that the retraction method satisfied the project requirement, we 

moved to testing the extension of the deployment arm.  Deployment time is not as crucial as 

retraction time, as there is no risk of damage to the sensor package if the arm does not deploy 
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quickly, though it is desirable to have a reasonably short deployment (≈30 seconds).  Due to 

budget and time constraints, our group was unable to locate and purchase a reservoir and 

pump that satisfied the project requirements (low power, low cost, low weight).  In order to 

test the effectiveness of our hydraulic deployment method, we constructed our own piston 

since the water pressure of a household faucet is insufficient for our needs.  Our group 

constructed a manual piston using a PVC pipe, a garden hose adapter, and a piston cup sourced 

from McMaster Carr.  Reservoir volume was determined by measuring the volume of the hose 

used in our deployment arm, and adding a small factor of safety to account for hose 

deformation and compressibility.  The length of the hose used in the arm is 120 inches, with an 

inner diameter of 5/8”.  Using a factor of safety of 20%, the volume of water to be used in 

extension is: 

ܸ ൌ ൬ߨ ቀௗଶቁଶ ൰ܮ ܨ ൌ ൬ߨ ቀ ହଵቁଶ 120൰ 1.20 ൌ  44.2 in3 
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9 Future Work  

During testing and fabrication, our group noticed many areas of improvement that we 

were unable to act upon with the given time and budget constraints.  There are several areas 

for improvement in all aspects of the project, and many ideas that we wished we had the time 

to expand on. 

 The primary area of improvement is in our sensing package.  We found in our testing 

that Kiel probes may not be the correct instrumentation choice for this application.  Future 

work should include more testing to validate our conclusion, including a new test setup for 

testing the full sensor package.  A wind tunnel section with the ability to simulate wind gusts 

from a different direction than the nominal flow would be ideal for validating our sensor 

package.  Whether this is accomplished by ducting air around to the side or some other 

method, it will be a challenging design project but will allow for more conclusive results on the 

use of Kiel probes for our application.  If further testing reaffirms our conclusions about the Kiel 

probes, our sensor package needs to be redesigned in order to accommodate both pitot-static 

probes and an inertial sensor in order to provide the accurate real-time wind data needed by 

the guidance unit. 

Another area of future work is a more in-depth look at the design of the probe shroud 

itself.  Flow simulations should be carried out in order to determine if any of the probes in the 

current configuration interfere with the measurements of the rest of the sensor package.  The 

current configuration was designed with aerodynamics in mind, but we feel this analysis should 

take place in order to make any necessary changes to increase the accuracy of the readings. 

More work must also be done on the extension/retraction mechanism itself.  Much of our 

time was spent trying to determine how to best deploy our sensor package to the free stream, 
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and we chose what we felt was the best solution.  If it is decided to keep the segmented arm 

concept, there are many possible areas of refinement and analysis.  Due to power, size, and 

budget constraints our group settled on using hydraulics (utilizing pressurized water) to extend 

the arm, and linear springs to retract it.  While this approach demonstrated that the concept of 

using a retracting arm as a deployment method is feasible, it may be a more complex system 

than is necessary.  In order to decrease the total size of our deployment system, research into 

servomotors and other hydraulic systems, or even having specialized units designed for this 

application should be undertaken. 

Further work must also be done on the aerodynamic analysis and design of the extended 

arm.  Though every effort was made to keep the arm as small as possible in order to produce 

the least amount of drag, no analysis was done on the effect of the extended arm on the flight 

dynamics of the cargo system.  We do not want the extended arm to induce oscillations of the 

system, so a more streamlined shape may be required based on the results of the analysis.  Also 

feasible would be a device that extended to the opposite side of our sensor package in order to 

balance out the torque created by the sensor arm. 

The final area of future work would be incorporating the electronics into our sensor 

package.  Pressure transducers are required for all the probes included on the sensor package, 

and an inertial sensor to determine the orientation of the sensor package is also necessary.  A 

method of transmitting the data from our sensors to the guidance unit is needed, and the most 

appropriate method would be wireless transmission. 
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10 Conclusions 

Our project covered a large array of options for both our extension mechanism and 

sensor systems. We initially started out with a massive variety of options, sixteen to be precise. 

We first narrowed down our sensor system choices from four down to one; we started by 

examining the capabilities and weaknesses of each sensor system. Two of the systems were 

discarded due to their fragileness and sensitive, in other words we did not feel that they were 

sturdy enough to withstand the landing shock and be reusable easily. One of the sensor 

systems was discarded because its cost was several times the budget for our entire project. The 

final sensor system, Kiel probes, was chosen not only by the elimination of the options but also 

due to its sensitivity of its yaw and pitch. With our sensor system chosen we then developed a 

holder device, created via 3-D printing that would secure the Kiel probes in a fixed orientation 

and also allow the sensors to be easily attached to our extension mechanism. 

With the sensor system selected and their container constructed, we started to narrow 

down the possible options for our extension mechanism. We quickly eliminated some of them 

due to their glaring weaknesses and the difficulty involved in building them. We then selected 

the extending arm concept, an arm composed of multiple segments that folded upon each 

other in order to fulfill the size requirement. It consists of four segments that fold into a square. 

After multiple initial design iterations, the team eventually settled on a flexible kinematic 

deployment method, consisting of the small ‘fire hose’ inside the arm which would be filled 

with a hydraulic fluid, causing the hose to expand and force the arm to straighten. In order to 

retract the arm, the process would be reversed and the fluid withdrawn from the hose, at 

which point the springs positioned at each joint would contract causing the arm to retract. The 

springs would cause the arm to resume its initial position quickly before the impact with the 
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ground.  The final assembled system – both in the retracted and extended position, is 

illustrated in Figure 33 and Figure 34, respectively. 

 

Figure 33 - Retracted assembly: With the plunger of the test pump in the depressurized poistion, the springs force the arm to 
fold and retract. 

 

Figure 34 - Assembly extended: with the fire hose pressurized by the test pump, the arm is forced to extend, carrying the 
sensor package more than five feet away from its starting position. 
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Appendix A - CFD Simulation Data and Results 

A.i Requirement 

Each separate component of velocity must be within 5% of free-stream velocity   

X-Component 

Horizontal Free Stream Value: 50 ft/s 

Acceptable Error Range:  ± 2.5 ft/s 

Acceptable Measurement Range: 47.5-52.5 ft/s 

Y-Component  

Vertical Free Stream Value: 20 ft/s 

Acceptable Error Range:  ± 1 ft/s 

Acceptable Measurement Range: 19-21 ft/s 

A.ii Assumptions 

The normal distance between the face on which the arm is mounted and the sensor is 

negligible.  Therefore, measurements can be taken directly on these planes.  Results are 

symmetric for left and right sides. 

A.iii Measurement Locations   

• On planes of sides of cargo container (left and right sides assumed symmetric) 

• Velocity components measured on axes spaced 12" apart on Cargo, 2 1/3" apart on AGU 

• Measurements around cargo are taken from 12’ in front, 8’ to sides 

• Measurements around AGU are taken 5' (60") to all sides, An additional measurement plane 

passes vertically through the center of the cargo container. 

• No measurements are taken from the back side of the system, because the back side will 

always have more wake effects than the front side. 
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• No measurements are taken between the Cargo and AGU because of high wake effects and 

interference from straps and other system components (not modeled). 

• Measurements are not taken in locations such that the extension mechanism points down 

from the cargo unit or AGU (in case of a failed retraction, this would surely result in the 

destruction of the mechanism).  

All Possible Locations  

Table 7 - All possible locations of extension mechanism placement 

Cargo AGU

Left/Right, Forward Back, Up Left/Right, Forward Back, Up 

Left/Right, Down Bottom, Front Left/Right, Down Bottom, Front 

Left/Right, Back Bottom, Back Left/Right, Back Bottom, Back 

Left/Right, Up Bottom, Left/Right Left/Right, Up Bottom, Left/Right

Front, Left/Right Top, Front Front, Left/Right Top, Front 

Front, Down Top, Left/Right Front, Down Top, Left/Right 

Front, Up Top, Rear Front, Up Top, Rear 

Back Left/Right Center, Forward Back Left/Right Center, Forward 

Back Down Center, Rear Back Down Center Rear 

  

Existing Locations After Adherence to Above Criteria:   

Table 8 - Possible locations after removal of illogical placements. 

Cargo AGU

Left/Right, Forward Left/Right, Forward

Front, Left/Right Left/Right, Up

Bottom, Forward Front, Left/Right

Bottom, Left/Right Front, Up
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Top, Forward Bottom, Front

Top, Left/Right Bottom, Left/Right

  Top, Forward

Remaining Locations After Visual Inspection of Flow Simulation Results:     

Table 9 - Final placement possibilities 

Cargo AGU

Left/Right, Forward Left/Right, Forward

Front, Left/Right Front, Left/Right

Bottom, Forward Bottom, Front

Bottom, Left/Right Bottom, Left/Right

Cargo Center, Forward  

  

A.iv Data Interpretation 

Results are considered acceptable only when data from all axes converge to within 

acceptable limits, described above.  In this way, an extension mechanism can be placed on any 

point of the specified face.  No additional factor of safety is introduced. 

  

A.v Data 

Cargo  

Left Side/Right Side, Facing Forward  
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Front Side, Facing Left/Right 
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Bottom Side, Facing Front 
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Bottom Side, Facing Left/Right 
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Center, Facing Forward 
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 AGU 

Left Side/Right Side, Facing Forward  
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Front Side, Facing Left/Right 
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 Bottom Side, Facing Front 
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 Bottom Side, Facing Left/Right 

  

Windspeed Data Acquisition for Autonomously-Guided Cargo Parachutes  Page 58 
 



A.vi Results 

Cargo  

Left Side/Right Side, Facing Front 

X-Component 

Acceptable Extension Length: 6.75 ft 

Y-Component 

Acceptable Extension Length: 8.5 ft 

Overall (maximum value): 8.5 ft 

  

Front Side, Facing Left/Right 

 X-Component 

Acceptable Extension Length: 4 ft 

Y-Component 

Acceptable Extension Length: 4.75 ft 

Overall (maximum value): 4.75 ft 
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Bottom Side, Facing Front 

X-Component 

Acceptable Extension Length: 6 ft 

Y-Component 

Acceptable Extension Length: 5.5 ft 

Overall (maximum value): 6 ft 

 

Bottom Side, Facing Left/Right 

X-Component 

Acceptable Extension Length: 6 ft 

Y-Component 

Acceptable Extension Length: 3.5 ft 

Overall (maximum value): 6 ft 
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Center, Facing Forward 

X-Component 

Acceptable Extension Length: 6 .75ft 

Y-Component 

Acceptable Extension Length: 10 ft 

Overall (maximum value): 10 ft 

  

AGU  

Left Side/Right Side, Facing Forward 

X-Component 

Acceptable Extension Length: 0.75 ft 

Y-Component 

Acceptable Extension Length: > 5ft 

Overall (maximum value): > 5 ft 
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Front Side, Facing Left/Right 

 X-Component 

Acceptable Extension Length: 0.75 ft 

Y-Component 

Acceptable Extension Length: > 4 ft 

Overall (maximum value): > 4 ft 

 

 

   

Bottom Side, Facing Front 

 X-Component 

Acceptable Extension Length: 1 ft 

Y-Component 

Acceptable Extension Length: > 5 ft 

Overall (maximum value): > 5 ft 
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Bottom Side, Facing Left/Right 

 X-Component 

Acceptable Extension Length: 0.75 ft 

Y-Component 

Acceptable Extension Length: > 5 ft 

Overall (maximum value): > 5 ft 
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Appendix B - STINGER Arm Construction Photo Journal
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Figure 38 - Cutting aluminum stock Figure 35 - Arm construction workspace set up 

  

Figure 39 - Cutting complete Figure 36 - Alignment holes drilled before cut 

  

Figure 40 – Rough edges Figure 37 - Alignment holes complete 



 

Figure 41 - Smoothing cut edges with metal file 

 

Figure 42 - Deburring and refining edges 

 

Figure 43 - Smoothed edges 

 

 

Figure 44 - Repeat... 

 

Figure 45 - Cutting out tabs 

 

Figure 46 - Removing tabs 
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Figure 47 - Tabs removed 

 

Figure 48 - Drilling joint holes 

 
Figure 49 – Inner joint hardware 

 

 
Figure 50 - Outer joint hardware 

 
Figure 51 - Spring attachment 1 

 
Figure 52 - Spring attachment 2 
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Figure 53 - Completed joint (extended) 

 
Figure 54 - Completed arm assembly
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Appendix C - Single Probe Test Data 
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Figure 55 - Test results of single probe at 30° pitch with respect to flow 

Table 10 - Test results of single probe at 30° pitch with respect to flow 

30° Orientation     
Tunnel Motor Speed (Hz) 0 0.2 0.4 0.6 
Control Pressure (in H2O) 31.85 31.15 29 25.6 
Measured Pressure  (in H2O) 31.85 31.25 29.4 26.15 
Difference ΔP 0 -0.1 -0.4 -0.55 
Calculated Windspeed 7.285831 7.216878 7.00 6.601767 
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Figure 56 - Test results of single probe at 60° pitch with respect to flow 

 

Table 11 - Test results of single probe at 60° pitch with respect to flow 

60° Pitch     
Tunnel Motor Speed (Hz) 0 0.2 0.4 0.6 
Control Pressure (in H2O) 31.85 31.15 29 25.6 
Measured Pressure  (in H2O) 31.85 31.7 30.9 29.65 
Difference ΔP 0 -0.55 -1.9 -4.05 
Calculated Windspeed 7.285831 7.268654 7.17635 7.029699 
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90° Pitch
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Figure 57 - Test results of single probe at 90° pitch with respect to flow 

Table 12 - Test results of single probe at 90° pitch with respect to flow 

90° Pitch     
Tunnel Motor Speed (Hz) 0 0.2 0.4 0.6 
Control Pressure (in H2O) 31.85 31.15 29 25.6 
Measured Pressure  (in H2O) 31.85 31.7 32 32.7 
Difference ΔP 0 -0.55 -3 -7.1 
Calculated Windspeed 7.285831 7.268654 7.3029674 7.382412 
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Appendix D - Full Sensor Package Test Data 
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Figure 58 - Test results of sensor package at 30° pitch with respect to flow 

Table 13 - Test results of sensor package at 30° pitch with respect to flow 

30° Pitch
Tunnel Motor 
Speed (Hz) 

0 20 40 60

 Pressure 
Measurement 

Pressure 
Difference  

Pressure 
Measurement 

Pressure 
Difference 

Pressure 
Measurement 

Pressure 
Difference  

Pressure 
Measurement 

Pressure 
Difference 

Front 31.8 0 31.1 0.7 29.2 2.6 25.9 5.9

Right 31.8 0 32.1 -0.3 33.3 -1.5 35.0 -3.2

Left 31.8 0 32.1 -0.3 33.3 -1.5 35.0 -3.2

Top 31.8 0 32.3 -0.5 34.2 -2.4 37.2 -5.4

Bottom 31.8 0 31.6 0.2 31.8 0.0 32.2 -0.4
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Figure 59 - Test results of sensor package at 30° yaw with respect to flow 

Table 14 - Test results of sensor package at 30° yaw with respect to flow 

30° Yaw
Tunnel Motor 
Speed (Hz) 

0 20 40 60

 Pressure 
Measurement 

Pressure 
Difference  

Pressure 
Measurement 

Pressure 
Difference 

Pressure 
Measurement 

Pressure 
Difference  

Pressure 
Measurement 

Pressure 
Difference 

Front 31.8 0 31.1 0.7 29.2 2.6 25.9 5.9

Right 31.8 0 31.5 0.3 30.6 1.2 30.0 1.8

Left 31.8 0 32.3 -0.5 35.1 -3.3 38.7 -6.9

Top 31.8 0 0 31.8 34.3 -2.5 37.4 -5.6

Bottom 31.8 0 32.4 -0.6 34.3 -2.5 37.4 -5.6
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Figure 60 - Test results of sensor package at 30° pitch and 30° yaw with respect to flow 

Table 15 - Test results of sensor package at 30° pitch and 30° yaw with respect to flow 

30° Pitch, 30° Yaw
Tunnel Motor 
Speed (Hz) 

0 20 40 60

 Pressure 
Measurement 

Pressure 
Difference  

Pressure 
Measurement 

Pressure 
Difference 

Pressure 
Measurement 

Pressure 
Difference  

Pressure 
Measurement 

Pressure 
Difference 

Front 31.8 0 31.1 0.7 29.2 2.6 25.9 5.9

Right 31.8 0 31.8 0 31.6 0.2 31.2 0.6

Left 31.8 0 32.4 -0.6 34.8 -3.0 39.1 -7.3

Top 31.8 0 32.5 -0.7 35 -3.2 39.3 -7.5

Bottom 31.8 0 31.9 -0.1 32.5 -0.7 33.4 -1.6
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Appendix E - Data Sheets 

E.i United Sensor Kiel Probes 
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