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surveys. The purpose defines the limits of the survey and must maintain the focus of the

experts.

As presented in Appendix A, the purpose of the example survey is to predict the
structural integrity of two barrier configurations; a floor/ceiling assembly without
membrane protection and another with membrane protection and varying live and fuel
loads. The unprotected assembly does not have a ceiling, exposing the floor joists

directly to the room beneath, while the protected assembly has a gypsumboard ceiling.

Experts are asked to assign probabilistic values at incremental time steps, based
upon whether the assembly has failed. Probabilistic values are assigned based upon
expected fire growth and the corresponding impact on the assembly, until there is 100%
certainty that total collapse has occurred.  Total collapse is reached mean when the
assembly has reached a condition where it can no longer support load. This clearly

defines the endpoint of the exercise.

10.2.2. Establish the scenarios.

Step #2 - Create an adequate number of scenarios to represent the possible

combinations of controlling factors.

An adequate number of scenarios are developed to cover the range of factors
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which influence performance of the assembly. Since expert surveys are intended to fill
voids in data or modelling, the scenarios should be representative of real life
configurations, including fuel loads, structural loads, openings and construction details.
Data, where available, can be used to develop the appropriate range, as in the case of the
low and high values for live and fuel loads. Where data does not exist, information can

be provided from reference material, as in the case of the furniture arrangement.

For the example survey, two sets of four scenarios are developed to determine the
effect on time to failure when gypsumboard is attached to the underside of the floor joists.v
Eight scenarios in all are established; Scenarios #1-4 without gypsum board and scenarios

#5-8 with 1/2" gypsum board as the ceiling in the room of fire origin.

Details of the room settings are also provided. The room of origin is a ground
floor sleeping room with a window entirely above finished grade. A single door into the
room from the adjoining space is assumed to be open. The contents of the sleeping room
represent the fuel load. Directly above the sleeping room is the living room. The living

room is furnished, with the contents being supported by the floor joists which are exposed

to the fire.

10.2.3. Variables and constants

Step #3 - Identify all variables and constants which the experts will use in
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their substantiation.

VARIABLES

Selection of the variables is important to achieving the goal of the exercise. The
variations between scenarios should consist of factors which, when considered by the
experts, will influence probabilities assigned to failure. The more sensitive the outcome

is to the variable, the more likely a broad range of responses will be given.

Following is a discussion of the variables and their importance to the outcome of

the exercise.

Dead Load - The dead load of the assembly is the actual weight of the building
materials. Dead load is given in Ibs/ft’ and for the assembly it consists of the weight of
the joists, plywood subfloor, linoleum or hardwood finished floor and the gypsum board

for the protected assembly. ASCE 7 [13] was used to determine the weights of the

construction materials.

Live Load - The live load is the actual weight of the contents of living room. Two
different furnishing packages were selected, one with sparse contents representing a low
live load and other with dense contents representing a high live load. The combination

of dead and live load represent the total load on the assembly.
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Fuel Load - The fuel load is calculated from the mass and type of the contents in the
sleeping room. Two bedroom configurations were selected to represent typical layouts.
The low fuel load setting consists of sparse accommodations where ignition of the various
pieces would not occur rapidly. The high fuel load setting consists of a densely arranged

package of furnishings.

Ceiling - The ceiling of the sleeping room was selected to measure the effect of a
gypsumboard membrane on delaying structural failure. Gypsumboard is a good barrier
to the prevention of spread of fire to the framing members, although eventually it will fail

if the fuel load is significant.

The following table illustrates the combinations of variables that the experts
evaluated.

TABLE 10.1

DESCRIPTION OF ROOM SCENARIOS

SCEN- UNPROTECTED PROTECTED LOW FUEL HIGH FUEL LOW LIVE HIGH LIVE
ARIO Ww/0 GB W/ GB LOAD LOAD LOAD LOAD

1 X X X

2 X X X

3 X X X

4 X X X

S X X X

6 X X X

7 X X X

8 X X X

e
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CONSTANTS

Certain aspects are held constant to allow the experts to focus on the factors
having greatest impact on the expected performance. The following constants are
critical to the exercise; room dimensions, ceiling height, wall construction, door and
window opening dimensions and whether they are opened or closed. Varying these

parameters complicates the exercise.

10.2.4. Evaluate the available models.

Step #4 - Utilize current methods or models for the prediction of time to

failure of the scenarios.

The experts should be provided with as much empirical data as possible,
establishing common understanding and eliminating subjectivity. The most appropriate
prediction techniques applicable to the scenarios should be selected. The results produced
by the models are used by the experts as guides to assist in assigning probabilities. It is
not necessary that the expert's assigned time to failure matches that of the methodology.
If it does match, this is sign that there may be a misunderstanding in the instructions.
The failure point of the selected methodology may not match the failure point described
in the purpose. It is important that the instructions provide a clear description of the
methodology, allowing the experts to rationalize their results against the theory and the

calculated or predicted time.
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For the purpose of the example survey the following models were selected:

Weoste/Schaffer model

The model, developed by Woeste and Schaffer [42] to predict the fire endurance
of exposed wood joists, was used to approximate the time to failure in scenarios #1 -4.
This model is sensitive to the live load, but not to the effect of varying the fuel load. The
fire used in the development of the model was the ASTM E 119 exposure. The room fire
growth curves were not expected to follow time vs. temperature curve given in ASTM E
119. The engineering judgment of the experts was critical in converting the results of the

model to the results expected from the room conditions.

Component Additive Method

As discussed, the CAM method is derived from an evaluation of a series of ASTM
E 119 fire tests involving gypsumboard membranes. The time assigned by CAM is not
necessarily associated with structural failure of the assembly, but may be due to heat or
flame transmission. Thus, the CAM predicted time to failure is only a relative value used
by the experts as rationale for their answers. It is correct, however, to assume that the
structural elements used in the derivation of CAM were loaded to create maximum

allowable stresses in the floor joists.

10.2.5. Documentation.
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Step #5 - Develop complete written instructions, with substantiating data to

support the failure times assigned.

Providing clear and concise instructions to the experts is necessary to establish a
common understanding of the exercise. The instructions must state the purpose of the
survey and its intended application. Complete details of the scenarios including graphics
are essential. The experts should be given a means to contact the surveyor with

questions.

For the example survey, a complete set of instructions with illustrations were
provided. Detailed drawings showing the sleeping room furniture packages and the living
room contents are provided. A section of the floor/ceiling assembly and the wall
assembly is also provided. The open door and window location are identified. Appendix

A contains the complete set of instructions provided to the experts.

The experts are asked to complete a worksheet containing 8 identical time lines
vs. probability of failure, for each of the scenarios. A sample time line was provided to
give the experts direction in how to phrase the questions needed to complete the exercise.
There is no time limit imposed for a response and the experts are encouraged to contact

the author with questions.
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10.2.6. Choosing and surveying experts

Step #6 - Survey those experts who are knowledgeable and comfortable in

assigning probabilities.

Predicting the performance of a floor/ceiling assembly under fire exposure requires
an understanding of both structural and fire protection engineering. A structural engineer
might define performance in terms of the structural integrity of the assembly. A heat
transfer expert might define performance as the assembly's ability to transfer energy and
a fire service professional might define it in terms of containing the fire to the originating
side of the assembly. Each of these expectations are appropriate when designing or
evaluating a barrier for fire performance. The ASTM E 119 fire test failure criteria
incorporates each of these failure modes in determining an assembly's fire endurance

rating.

Experts for the example survey were selected from Governmental Agencies,
academic institutions and industry. Most had a good to excellent understanding of the
behavior of wood when exposed to fire. Overall, their knowledge of structural behavior
was not as great, although it was more than adequate. Thirteen individuals in the United
States and Canada were identified as having a good background in the combination of
disciplines. Of these, six responded to the survey. Of the six, four appeared to

understand the directions and showed logical answers. There was apparently some



118

misinterpretation on the part of the other two experts. A compilation of the six responses

is provided in Appendix B.

10.2.7. Re-survey.

Step #7 - Refine the question and repeat the exercise if probabilities assigned

indicate a misunderstanding.

The process of a probability analysis utilizing expert judgment often requires more
than one iteration of questioning. Ideally, the experts would be centrally located so that
a number of meetings could be held to discuss questions. This would assure that

everyone had a common understanding of the purpose and expected results.

It is likely, particularly in the case where the experts cannot meet as a group, that
a re-survey is appropriate. If assigned probabilities are inconsistent within an expert's

response or if large discrepancies appear between experts, a re-survey is warranted.

Because of the time commitment required of the experts to fairly and accurately
complete the survey, a second iteration could not be performed. The intent of the
example survey was to aid the author in developing a procedure, executing it and
determining appropriate improvements. It is not the intent to analyze the results provided

by the experts.
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CONCLUSIONS

The task requested of the experts was challenging. It is likely that the many
scenarios presented demanded an excessive time commitment on the part of the experts.
A total of four scenarios would possibly have been more manageable and still have

permitted the development of a logical response.

In the absence of a group meeting to unify understanding of the purpose, more
detailed instructions should have been provided for clarification. An example specific to
the exercise and containing the reasoning for assigning each probability to the time

interval, may have resulted in more consistent results.

A further complication of the survey was that both models were based upon
ASTM E 119 fire rather than the real fire. This conversion may have been easier had a
fire growth curve been provided from a current computer model. This would have
permitted a side-by-side comparison between the ASTM E 119 curve and the real fire

curve.
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APPENDIX A

INSTRUCTIONS

INTRODUCTION

The Building Firesafety Engineering Method' combines engineering judgment with
probability techniques to evaluate the expected fire performance of a room, space or
building. An experienced fire protection engineer can, with the aid of available analytical
methods, apply subjective reasoning to a given situation and assign probabilities
associated with the outcome of the event. The probability value expresses a degree of
belief and not a statistical frequency. The following exercise is intended to establish,
through expert judgment, the zone of confidence in predicting the performance of a

specific solid sawn joist, floor/ceiling assembly time to failure.

The following graph represents the expected range of results for this exercise. The
scenario, times and probabilities indicated are for illustrative purposes only. Please do

not be bound by the values indicated.

CONDITIONS: FUEL LOAD - LOW
LIVE LOAD - HIGH
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GRAPH #1 - PROBABILITY ENVELOPE



FLOOR PLANS

In order to structure the opinions of the experts, a well defined set of scenarios
must be presented. For this exercise, a typical single family dwelling provides the setting.
A basement bedroom located beneath the living room is the room of fire origin. Figures
1 and 2 of Exhibit A illustrate two basement furniture arrangements representing
somewhat different fuel loads. Figures 3 and 4 of Exhibit A illustrate somewhat different
furniture live load arrangements of the living room, which is located above the bedroom.
These specific conditions represent the environment for the scenarios. Figure 5 of Exhibit
A is a cross-section of a typical exterior wall which encloses the room. A description

of the furniture is provided.

ASSEMBLY CONSTRUCTION

Four (4) floor/ceiling assemblies have been selected as representative of single
family construction. Both assemblies consist of 2" x 10" sawn joist with 19/32" tongue

and groove plywood floor sheathing. The ceiling and floor coverings vary as shown in

Table 1.



TABLE 1 - ASSEMBLIES

WEIGHT (PSF) FLOOR CEILING
COVERING
ASSEMBLY 7.6 LINOLEUM UNPROTECTED
A
ASSEMBLY 10.1 HARDWOOD UNPROTECTED
B
ASSEMBLY 8.7 LINOLEUM 172" GYP.
C BOARD
ASSEMBLY 113 HARDWOOD 1/2" GYP.
D BOARD
TIME TO FAILURE

Table 2 provides a summary of the eight combinations of live and dead load, fuel

load and assembly construction.

Times to failure are provided based upon the

methodology cited. Information on the development of t, can found in Exhibit B.

ASSIGNING PROBABILITIES

Utilizing the scenarios, assign probabilities of failure to the various times. A zero

(0) represents your belief that it is certain that failure will not occur, and a one )

represent your belief that failure will occur. Fire in the room has reached flashover at

time zero (0). Using the time frames in Exhibit C, record your degree of belief that

failure will have occurred at each of the time intervals presented. Failure is defined as

the collapse of the floor/ceiling assembly and contents into the bedroom.



— e
SCENARIO | ASSEMBLY FUEL LIVE LOAD
TYPE LOAD (PSF)
(FLOOR ABOVE)
- =

#1 A FIG. 1 14
" A FIG. 2 14 9.0 3034 219 Voo
# B FIG. 1 120 21 7451 184 Woests’
“ B FIG. 2 120 2.1 7451 184 Wousts?
#s c FIG. 1 14 101 3408 4 CAM?
#5 il c FIG. 2 14 10.1 3405 40 CAM®
#7 || D FIG. 1 120 233 7856 ] caM’®
“s || D FIG. 2 120 233 7856 4 CAN®

EXAMPLE:

With each of the specific scenarios, ask yourself the following question; "Given
a time of X minutes the probability that the assembly has failed is ____ (0 to 1)".

t; (min.) 4 |8 12 16 | 20 24 | 28 32 |36 |40
Probability
of failue {9 | 2 | _2 ? |2 ? |2 (2|2
©Oto1) - - e e e e e B
FINAL STEP

Please return the results of Exhibit B to me. I will inform you of the results of

the group analysis when it is completed. Thank you.
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FURNISHING DESCRIPTION
Mattress - polyurethane foam padding, polyolefin fabric, wood frame.
Chairs - polyurethane foam padding, cotton fabric, wood frame.
Tables/chairs - wood frame.

Chest/desk

wood frame.



EXHIBIT B

DEVELOPMENT OF TIME TO FAILURE (t,)

Two methods are utilized in the development of t,, For unprotected assemblies,
the equation developed by Schaffer and Woeste? was utilized. Since a correlation has
not been developed for protected assemblies, the Component Additive Method® was
selected. The Schaffer/Woeste equation requires various input parameters for

determining the time to failure. It should be noted that the CAM does not require

numerical inputs, but bases results upon the actual materials utilized in the assembly.

The species of wood selected is Douglas Fir West Inland which has a Modulus
of Rupture (3) of 7713 psi. It is appropriate to reduce the MOR for size factor and

seasoning. The size factor (F) in accordance with the NDS (4) is:

For a 2"x10" with an actual depth of 9.25 inches, F = 0.8435. The seasoning
adjustment factor in accordance with the ASTM (3) permits a 25% increase in the
published MOR. Therefore, the assumed MOR for the purpose of predicting fire

endurance is:

MOR,; = 7713 psi x 0.8345 x 1.25 = 8135 psi

The clear span of the floor joist from the exterior wall to the interior bearing



wall is assumed to be 13'-0". The flexural formula:

2
u=rE
8

is used to calculate the actual moments presented in Table 2.

UNPROTECTED ASSEMBLIE

The values of t; presented in Table 2 for unprotected floor/ceiling assemblies

were calculated from the following equation developed by Schaffer and Woeste®.

‘= 2Cd(d+b)+6MKy[B-y2Cd(d+b)+6MKy|B*-4V*(b+d)(bd>-6M|B)
S

2C%(b+4d)
where:
£ B+2)
bd
M= applied bending moment (ft-1b)
d= joist depth (in.)
C= char rate (in./min.)
t= time duration of fire (min.)
B= joist MOR (psi)
b= initial joist width (in.)
Y= fire performance factor

The value for char rate was selected as 0.03 in/min. The fire performance

factor, ¥, is 0.17.



COMPONENT ADDITIVE METHOD

The Component Additive Method was developed as an alternative to full scale
assembly ratings. Prior to the acceptance of the CAM in the model building codes, all
assemblies required testing in accordance with ASTM E 119. This is prohibitively
expensive given the number of possible combinations of components. The following

tables are utilized in the development of the Time to Failure values.

" TIME ASSIGNED TO PROTECTIVE MEMBRANES ﬂ

|| Description of Finish Time (min) Il
% inch douglas fir plywood, phenolic bonded 5
% inch Douglas fir plywood, phenolic bonded 10
% inch Douglas fir plywood, phenolic bonded 15
% inch gypsum board 10
%2 inch gypsum board 15
% inch gypsum board 20
Y2 inch Type X gypsum board 25
% inch Type X gypsum board 40
Double 3 inch gypsum board 25
Y2 + % inch gypsum board 35
Double 2 inch gypsum board 40




|! Description of Frame Time (min) H

Unprotected wood studs, 16 inches on center 20
Unprotected wood joists, 16 inches on center 10
Wood roof and floor truss assemblies, 24 5
inches on center
—

For the scenarios presented in Table 2, the t; value was determined as follows:

Floor joist, 16" OC 10 min.
1/2" gypsum board 15 min,
25 min.



EXHIBIT C

SCENARIO #1 - ULFLLLL (Unprotected, low fuel load, low live load)

of failure

t; (min.) 4 8 12 16 20 24 28 32 36 40
Probability
of failure
SCENARIO #2 - UHFLLLL (Unprotected, high fuel load, low live load)
t; (min.) 4 8 12 16 20 24 28 32 36 40
Probability
of failure
SCENARIO #3 - ULFLHLL (Unprotected, low fuel load, high live load)
t; (min.) 4 8 12 16 20 24 28 32 36 40
Probability
of failure
SCENARIO #4 - UHFLHLL (Unprotected, high fuel load, high live load)
t; (min.) 4 8 12 16 20 24 28 32 36 40
Probability
of failure
SCENARIO #5 - PLFLLLL (Protected, low fuel load, low live load)
t; (min.) 6 12 18 24 30 36 42 48 54 60
Probability
of failure
SCENARIO #6 - PHFLLLL (Protected, high fuel load, low live load)
te (min.) 6 12 18 24 30 36 42 48 54 60
Probability
of failure
SCENARIO #7 - PLFLHLL (Protected, low fuel load, high live load)
t; (min.) 6 12 18 24 30 36 42 48 54 60
Probability
of failure
SCENARIO #8 - PHFLHLL (Protected, high fuel load, high live load)
t; (min.) 6 12 18 24 30 36 42 48 54 60
Probability




APPENDIX B

| SCENARIO #1 - UNPROTECTED, LOW FUEL LOAD, LOW LIVE LOAD

Time to Failure, tf (min.)
1 0 0 0 2 3 4 4 4 4 4
2 0 0 0 0 1 2 6 8 1 1
3 0 0 0 1 3 7 9 1 1 1
4 0 0 0 0 1 1 1 1 1 1
5 0 0 0 0 0 1 1 1 1 1
6 0 0 0 0 0 5 95 1 1 1

SCENARIO #2- UNPROTECTED, HIGH FUEL LOAD, LOW LIVE LOAD

Time to Failure, tf (min.)

20

2 0 0 0 1 15 5 7 1 1 1
3 0 0 1 3 9 9 1 1 1 1
4 0 0 1 1 1 1 1 1 1 1
5 0 0 0 1 1 1 1 1 1 1




SCENARIO #4- UNPROTECTED, HIGH FUEL LOAD, HIGH LIVE LOAD ‘

Time to Failure, tf (min.)
1 0 2
2 0 1 3 v 9 1 1 1 1 1
3 0 0 1 3 7 9 1 1 1 1
4 0 1 1 1 1 1 1 1 1 1
5 0 0 0 1 1 1 1 1 1 1
6 0 0 0 0 .14 99 1 1 1 1

SCENARIO #5-PROTECTED, LOW FUEL LOAD, LOW LIVE LOAD

Time to Failure, tf (min.)

2 0 0 0 0 0 0 0 0 1 3
3 0 (] 0 2 4 8 1 1 1 1
4 0 0 0 0 0 1 1 1 1 1
5 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 95 1 1 1

SCENARIO #6 -PROTECTED, HIGH FUEL LOAD, LOW LIVE LOAD

Time to Failure, tf (min.)

6 12 18 24 30 36 42 48 54 60
1 0 0 0 2 4 .6 3 1 1 1
2 0 0 0 0 0 0 0 1 3 5
3 0 0 0 3 5 9 1 1 1 1
4 0 0 0 0 1 1 1 1 1 1
5 0 0 0 0 0 0 0 1 1 1
6 0 0 0 0 0 39 1 1 1 1




SCENARIO #7-PROTECTED, LOW FUEL LOAD, HIGH LIVE LOAD

Time to Failure, tf (min.)

30 36
2 0 0 0 0 0 1 3 5 7 9
3 0 0 0 3 5 9 1 1 1 1
4 0 0 0 1 1 1 1 1 1 1
5 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 5 1 1 1 1
R —_—_—_————— S — —_—

SCENARIO #8 - PROTECTED, HIGH FUEL LOAD, HIGH LIVE LOAD

Time to Failure, tf (min.)

6 12 18 24 30 36 42 48 54 60
1 0 0 2 4 6 .8 1 1 1 1
2 0 0 0 0 0 1 3 S 7 1
3 0 0 0 4 9 1 1 1 1 1
4 0 0 0 1 1 1 1 1 1 1
5 0 0 1 0 0 0 1 1 1 1
6 0 0 0 0 0.03 98 1 1 1 1




