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SUMMARY 

Microelectromechanical systems (MEMS) are integrated mechanical and 

electrical devices that can range from sensors, valves, gears, mirrors, to actuators, and are 

fabricated on silicon wafers with features micrometers in size.  They are built using 

techniques similar to those used for microelectronics.  MEMS devices have potential 

applications for a range of industries: automotive, aerospace, medical, and many others.  

Due to this variety of applications, a great deal of work has been done on improving the 

quality and the functionality of the MEMS components available.  However, before more 

advancements can be made, the behavior of MEMS sensors must be fully understood.  

Without this basic knowledge of how and why MEMS components and devices react the 

way they do when they are designed in a specific manner and fabricated using different 

materials, it is impossible to predict how MEMS systems will behave, and their behavior 

can only be reliably observed using physical experimentation.  Experimentation can be 

expensive and time consuming since MEMS components are very fragile and even the 

most robust MEMS device is very vulnerable to external influences which can induce 

mechanical and structural failures.  Therefore, gaining a better understanding of the 

behavior of MEMS devices is essential. 

The purpose of this thesis was to model a folded spring supporting MEMS 

gyroscope, a type of inertial sensor that measures rates of angular acceleration.  This 

modeling was performed using analytical, computational, and experimental solutions 

(ACES) methodology.  The analytical and computational results were compared with 

preliminary experimental results.  The first step was to develop an analytical model of the 
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behavior of the proof masses, by examining motion of the folded springs that support the 

proof masses.  Then in order to extend the capabilities of the analytical method used to 

model the folded springs, its components were modeled using computational method.  

Finally, selected characteristics of parts of the microgyroscope were observed 

experimentally.  More specifically, folded springs supporting proof masses of a MEMS 

gyroscope were modeled analytically and computationally to determine their 

deformations due to typical forces generated during functional operation of a 

microgyroscope.  Also, preliminary measurements of parameters characterizing and 

influencing functional operation of the microgyroscope were made using laser vibrometer 

method and optoelectronic laser interferometric microscope (OELIM) method.  These 

methods provide very high spatial resolution data with nanometer measurement accuracy 

that are acquired in full-field-of view, remotely and non-invasively, in near real-time.  As 

such, these methods are particularly suitable for experimental investigations of 

microgyroscopes, or other MEMS. 

Comparison of the analytical and computational results with the preliminary 

experimental results shows acceptable correlation within the uncertainty limits.  This 

correlation indicates viability of the methodology used in this thesis as a potential tool 

that may facilitate improvements of the existing microgyroscopes and development of 

new designs in the future. 
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NOMENCLATURE 

amax maximum acceleration of the proof mass 
a(t) sinusoidal in-plane acceleration of the proof mass  
b damping 
b width of sections AB and CD of the Sandia microgyro folded 

spring 
b150 width of the Analog Devices ADXRS150 microgyro spring 
bBC width of section BC of the microgyro folded spring 
c1,2 torsional coefficients for uniform rectangular bars 
f cyclic frequency 
h thickness of the microgyro folded spring 
h150 thickness of the Analog Devices ADXRS150 microgyro spring 
h(x) characteristic function 
k spring constant 
ky,z shape factor 
m mass 
r radial position 
t time 
v in-plane velocity 
v(t) sinusoidal velocity of the proof mass 
x position along the length of section BC of the folded spring 
x(t) sinusoidal motion of the proof mass of the Sandia microgyro 
y(t) output of the system 
z position along the lengths of sections AB and CD of the folded 

spring 

A cross sectional area 
Ab cross sectional area of sections AB and CD of the folded spring 
Ac cross sectional area of section BC of the folded spring 
Ao amplitude of the illumination intensity in the object beam 
Ar amplitude of intensity in the reference beam 
Ax,y,z forces acting at point A of the folded spring 
ABx,y,z internal forces acting thru section AB of the folded spring 
B amplitude of oscillation of the proof mass, bias limit 
Bx,y,z forces acting at point B of the Sandia microgyro folded spring 
BCx,y,z internal forces acting thru section BC of the folded spring 
BMM bulk micromachining 
Cx,y,z forces acting at point C of the folded spring 
CDx,y,z internal forces acting thru section CD of the folded spring 
D1,2,3,4,5 frequency domain signals 
E modulus of elasticity 
Fxmax in-plane force, due to the motion of the proof mass acting on the 

folded spring 
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Fx,y,z arbitrary forces in the three Cartesian directions applied to the 
folded spring 

Fx(t) time varying in-plane force acting on the folded spring 
F force vector 
Fc Coriolis force 
Fc magnitude of the Coriolis force 
Fi external forces 
FEM finite element method 
FFT fast Fourier transform 
FRF frequency response function 
G shear modulus 
H angular momentum 
I moment of inertia 
Ibx,y moment of inertia for sections AB and CD of the folded spring 
Icy,z moment of inertia for section BC of the folded spring 
In (x,y) irradiance distribution of the nth sequential frame 
Io (x,y) irradiance distribution of the object beam 
Ir (x,y) irradiance distribution of the reference beam 
Iy moment of inertia area for motion in the in-plane direction 
Iz moment of inertia for motion in the out-of-plane direction 
IC integrated circuit 
IFFT inverse fast Fourier transform 
J polar moment of inertia 
Jb polar moment of inertia for sections AB and CD of the folded 

spring 
Jc polar moment of inertia for section BC of the folded spring 
L length of a beam 
L150 length of the Analog Devices ADXRS150 microgyro spring 
Lf length of the fingers of the electrostatic combdrives of the 

microgyro 
LAB length of section AB of the folded spring 
LBC length of section BC of the folded spring 
LCD length of section CD of the folded spring 
M internal bending moment  
MAx,y,z moments acting at point A of the folded spring 
MABx,y internal moments acting thru section AB of the folded spring 
MBx,y,z moments acting at point B of the folded spring 
MBCy,z internal moments acting thru section BC of the folded spring 
MCx,y,z moments acting at point C of the folded spring 
MCDx,y internal moments acting thru section CD of the folded spring 
M(x) bending moment acting along a section of the folded spring 
MEMS microelectromechanical systems 
N axial load 
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PX precision limit of a system of the entire set of data representing a 
parameter 

PZT piezoresistive transducer 
SX precision index of a population 
SMM surface micromachining 
T torque 
T magnitude of a torque 
TABz internal torque acting thru section AB of the folded spring 
TBCx internal torque acting thru section BC of the folded spring 
TCDz internal torque acting thru section CD of the folded spring 
Ui internal strain energy of a body 
Ux total RSS uncertainty 
UAB strain energy of section AB of the folded spring 
UAL strain energy due to axial loading 
UBC strain energy of section BC of the folded spring 
UBM strain energy due to bending moments 
UCD strain energy of section CD of the folded spring 
UTM strain energy due to torsional moments 
UTS strain energy due to transverse shear loading 
V shear force 
We external work 
X an independent parameter 
Xi a dependent parameter 
X mean value of the variable X 

δX(  ) uncertainty in X 
ν poison’s ratio 
ρ density 
σ standard deviation of a variable 
τ period of oscillation of the proof mass of the microgyro 
ω angular speed of the oscillating proof mass 
φ phase difference between two beams 

∆analyt analytical deformation 
∆comp computational deformation 
∆expr experimental deformation 
∆dx,y,z deformation of the cantilever beam in all three Cartesian 

coordinate directions 
∆k total displacement of a body in the direction k 
∆x(t) time dependent in-plane displacement of folded spring 
∆Bx,y,z total displacement at point B of the folded spring in all three 

Cartesian directions 
∆Cx,y,z total displacement at point C of the folded spring in all three 

Cartesian directions 
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∆Dx,y,z total displacement at point D of the folded spring in all three 
Cartesian directions 

∆θn finite phase difference imposed between sequential frames 
Ω fringe-locus function 
Ω angular velocity 
dy/dx slope of a section of the folded spring 

( ) ( )∂∂  partial derivative 
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1.  OBJECTIVES 

The objectives of this thesis were to model folded springs supporting proof 

masses of a MEMS gyroscope and to develop a preliminary set of parameters 

characterizing these springs in as-fabricated-state, using the state of the art developments 

in the field of ACES methodology.  The ACES methodology combines analytical, 

computational, and experimental solutions to obtain results in cases where they will be 

impossible or, at best, difficult to obtain using any one of the solutions alone. 
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2.  INTRODUCTION 

This chapter presents general background information on MEMS technology and 

devices.  Then a discussion of MEMS fabrication processes is provided.  Next, inertial 

sensors are introduced, and then how conventional and MEMS gyroscopes operate is 

explained. 

2.1.  MEMS background 

Microelectromechanical systems (MEMS) technology is a revolutionary enabling 

technology (ET), which is based on manufacturing processes that have their roots in 

photolithographic processing used in microelectronics for fabrication of integrated 

circuits (ICs) (Pryputniewicz, 1999, 2001).  Today, MEMS defines both the 

methodologies to make the microelectromechanical systems and the systems themselves 

(Pryputniewicz, et al., 2003).  MEMS combine mechanical and electrical components 

into single devices (Gad-el-Hak, 2002).  MEMS fabrication is based on the capability of 

making controllable mechanical structures that are moveable, and the required electronic 

components out of silicon and its derivatives using modified IC fabrication techniques.  

The first MEMS device was made by R. T. Howe in 1982 (Muller, 2000).  He 

demonstrated a technique of how to fabricate microbeams from polycrystalline silicon 

films; using this technique, a prototype of the first fully integrated MEMS, where both 

the mechanical and electrical components were fabricated on the same substrate, a 
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chemical vapor sensor, was built (Muller, 2000).   This development provided a basis for 

more research that became the broad field of MEMS. 

MEMS components are currently replacing conventionally designed and built 

devices because of their small size, relatively low cost, and relatively high performance.  

The small size of the MEMS devices is a plus because it saves space, allowing the “real 

estate” to be used more efficiently, and this saves money.  Individual MEMS components 

are expensive to fabricate; however, due to the fact that MEMS devices are batch 

fabricated, where hundreds or thousands are produced at the same time, the cost goes 

down, making the devices less expensive than conventionally fabricated devices 

(Pryputniewicz and Furlong, 2002). 

Currently there are several different types of MEMS available: accelerometers, 

gyroscopes, pressure, temperature, and humidity sensors, micromirrors, micro-heat 

exchangers, microfluidics, micropumps, etc.  These MEMS devices are being used for 

many different applications such as airbag deployment, keyless entry systems, high 

definition optical displays, scanning electron microscope tips, various medical and 

biological applications, diode lasers, miniature gas chromatographs, high-frequency 

fluidic control systems, printing systems, and electronic cooling systems (Gad-el-Hak, 

2002; Pryputniewicz and Furlong, 2002; Bryzek, 1996).  Figure 2.1 (Madou, 1997) 

illustrates where MEMS are being used in automobiles: drive train/torque sensors, engine 

timing/position sensors, antilock brakes/acceleration sensors, engine management 

systems (EMS)/mass airflow sensors, temperature sensors, transmission sensors, air 

conditioning/humidity and sun/light sensors, automatic headlight control sensors, airbag 



 30

deployment sensors, seat control/load/force sensors, emission control/oxygen sensors, 

and active suspension/speed and pressure sensors. 

 
Fig. 2.1.  Possible MEMS sensor applications in automobiles (Madou, 1997). 
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2.2.  MEMS fabrication 

The earliest methods used to manufacture silicon structures such as MEMS 

devices made use of lithography and etch technology.  Chemical etching removes an 

unwanted section from the silicon structure.  When chemical etching and etch-stopping 

techniques, such as a masking film, are used together inventively, complex structures can 

be produced.  In 1982 when Howe made his microbeams, he used the now common 

technique of etching an underlying sacrificial layer.  The sacrificial layer has an increased 

level of phosphorus to enhance the etch rate in hydrofluoric acid (Muller, 2000).  Current 

methods for the fabrication of MEMS devices include: surface micromachining, bulk 

micromachining, as well as lithography, (Pryputniewicz and Furlong, 2002).  Most 

MEMS devices available currently are produced using either bulk or surface 

micromachining techniques. 

2.2.1.  Bulk micromachining 

The first appearance of using chemicals to etch a substrate protected otherwise by 

a mask was in the fifteenth century when acid and wax was used to etch and decorate 

armor; by the 1600’s chemical etching for the decoration of armor and weapons was 

common practice (Harris, 1976).  In 1822 photosensitive masks were introduced as 

lithography by Niépce and increased the tolerances of the etching to a new level (Madou, 

1997).  Bulk micromanufacturing, or micromachining, as it is known today, was 

developed from technology that was first used in the 1960s for microelectronic 
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applications, but this technology was improved upon and in the 1970s was being 

implemented to produce three-dimensional microstructures.  Bulk micromachining 

(BMM) is used for the production of microsensors and accelerometers; this technique 

removes material from a substrate, usually silicon, silicon carbide, gallium arsenide, or 

quartz, using a type of etching, either dry or wet, to produce desired three-dimensional 

structures (Hsu, 2002), typically for MEMS applications out of silicon.  Figure 2.2 

illustrates an example of a wet bulk micromachining process. 

 
Fig. 2.2.  Steps in the bulk micromachining process (Madou, 1997). 

Bulk micromachining can also be done using dry etchants; however, wet chemical 

etching is traditionally faster, than dry etching processes, having rates of about 1 
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µm/minute and allows the operator to select specific materials to etch preferentially.  Wet 

etchants that are used for isotropic etching, where the rate of material removal is the same 

in all crystallographic directions, are usually acids: Piranha (4:1, H2O2:H4SO4), buffered 

HF (5:1, NH4F:conc.HF), and HNA (HF/HNO3/ CH3COOH).  Anisotropic etchants, 

which etch in one crystallographic direction faster than in the other directions, are used 

for machining of microcomponents; there are many different types of chemicals that are 

used as anisotropic etchants: alkaline aqueous solutions such as KOH, NaOH, LiOH, 

CsOH, NH4OH, quaternary ammonium hydroxides, and alkaline organics like 

ethylenediamine, chlorine (trimethyl-2-hydroxyethyl ammonium hydroxide), and 

hydrazine with pyrocathechol or pyrazine (Madou, 1997). 

2.2.2.  Surface micromachining 

The first example of surface micromachining for an electromechanical purpose 

occurred in 1967 when Nathanson made an underetched metal cantilever beam for a 

resonant gate transistor (Nathanson, et al., 1967).  By the 1970’s plans were being 

developed for a metal magnetically actuated microengine; however, there were fatigue 

problems with metals, and due to the fatigue problem metals are rarely used as structural 

members in micromachining (Madau, 1997).  The present state of the micromachining 

method was introduced in the 1980’s by Howe and Muller (1982) where polysilicon was 

introduced as the primary material for the structural layers. 
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Surface micromachining (SMM) builds structures by patterning thin multiple 

layers deposited on a substrate (Pryputniewicz and Furlong, 2002).  This produces 

finished product using batch fabrication where no assembly is required.  SMM is usually 

based on low pressure chemical vapor deposition (LPCVD) of the structural, e.g., 

polysilicon, sacrificial, e.g., silicon dioxide, and photoresistive layers onto the substrate 

(Hsu, 2002).  These layers are then patterned using dry etching to make in-plane features, 

and wet etching removes the sacrificial layers used to support the structures during 

deposition (Madou, 1997). 

The most advanced of the SMM methodologies available today is the Sandia’s 

Ultra-planar MEMS Multi-level Technology (SUMMiT™) that allows fabrication of 

structures out of up to five structural layers, while other methodologies allow fabrication 

of structures comprising of up to three structural layers (Pryputniewicz, 2002).  The film 

stack used in the SUMMiT™ process is illustrated in Fig. 2.3 (Rogers and Sniegowski, 

1998; Sniegowski and Rogers, 1998).  Individuals who want to make use of Sandia’s 

micromachining capabilities can utilize the SUMMiT™-V software that allows design of 

MEMS using a component library, Fig. 2.4 (Pryputniewicz and Furlong, 2003; 

Pryputniewicz, et al., 2003). 

An example from the component library of the SUMMiTTM-V software is the 

anchor hinge; the top view of the hinge, which shows the layers necessary to build up the 

anchor using the SUMMiTTM process, is shown in Fig. 2.5.  If a cross section of the hinge 

anchor were taken along the line A-A shown in Fig. 2.5, the two-dimensional 

representation of the multi-layer structure of the hinge would be as shown in Fig. 2.6. 
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Fig. 2.3.  Film stack of the SUMMiTTM 

process. 

 
Fig. 2.4.  Optical components library of the 

SUMMiTTM design tools.

 
Fig. 2.5.  SUMMiTTM representation of the anchor hinge as selected 

from the component library (Pryputniewicz and Furlong, 2003). 

 
Fig. 2.6.  2D representation of the cross section of the anchor hinge 

along line A-A (Pryputniewicz and Furlong, 2003). 

A A
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As illustrated in Fig. 2.6, the SMM process produces movable parts such as mechanical 

pin joints, springs, gears, cranks, and sliders, along with enclosed cavities, and many 

other configurations (Madou, 1997; Pryputniewicz, 2002; Pryputniewicz and Furlong, 

2003).  These individual components can then be combined to produce complex 

mechanical systems. 

2.3.  Inertial sensors 

The largest market for inertial sensors is the automotive industry; inertial sensors 

are used in the antilock brakes, traction control, airbag deployment, stability control, and 

safety control systems of a car.  There are also many applications outside the automotive 

world; they include virtual reality, smart toys, industrial motion control, hard drive head 

protection systems, image stabilization, GPS receivers, and inertial navigational systems 

(Hsu, 2002). 

There are two basic inertial MEMS sensors: the MEMS accelerometer that 

measures linear acceleration, and the microgyroscope which measures rotational 

accelerations (Hanson, et al., 2001).  These inertial sensors can measure accelerations 

about a single axis or about multiple axes.  Examples of a single axis MEMS 

accelerometer and gyroscope are illustrated in Figs 2.7 and 2.8, respectively.  The 

accelerometer in Fig. 2.7 measures forces defined by Newton’s second law caused by a 

linear acceleration.  The tuning fork configuration microgyroscope, illustrated in Fig. 2.8, 
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measures angular acceleration due to the Coriolis forces acting on the vibrating masses; 

this will be discussed in more detail in Section 2.3.2. 

 
Fig. 2.7.  An example of a single axis accelerometer, 

ADXL190 (Steward and Saggal, 2002). 

 
Fig. 2.8.  A dual mass tuning fork microgyroscope. 
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Inertial sensors are made up of a combination of parts: proof masses, elastic 

springs, dampers, actuators, and a method for measuring displacements of the proof 

masses.  The purpose of the elastic springs is to provide the proof masses with support 

and to return the masses back to their original positions after linear acceleration, or 

rotation, has stopped.  The dashpot provides the damping for the system; this is usually 

done one of two ways: thin film and shear damping.  Thin film damping is achieved by 

using a thin gas film between two vibrating plates; through compression and friction, the 

film disperses the excess energy, thus adding damping to the system (Przekwas, et al., 

2001).  In other systems that have plates vibrating parallel to one another the film 

produces shear forces that dissipate energy; this type of damping is known as shear. 

There are several methods for determining displacements of the proof masses that 

are used in inertial sensors.  They are: piezoresistive, resonant frequency modulation, 

capacitive, floating-gate field-effect transistor (FET), strain FET, and tunneling-based.  

Piezoresistive sensing is used for inertial sensors that make use of single crystals or that 

are micromachined in bulk quantities.  The resonant frequency modulation method of 

sensing is used mostly for inertial sensors with very high sensitivities.  The capacitive 

sensing method is most commonly used for industrial purposes due to its relative 

insensitivity to temperature.  The floating-gate FET method of sensing is used to measure 

inertial forces, while the strain FET method measures strains in the packages of the 

inertial sensors.  Both methods have proven difficult to implement in industry.  The 

electron tunneling method is used when displacement must be measured accurately; this 

method however is still in developmental stages (Bergstrom and Li, 2002). 
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Principles of operation of conventional gyroscopes are presented in Section 2.3.1, 

while operation and examples of MEMS gyroscopes are discussed in Section 2.3.2.  This 

thesis focuses on the MEMS vibrating gyroscope shown in Fig. 2.8. 

2.3.1.  Conventional gyroscopes 

In 1852 Jean Bernard León Foucault named a wheel, or rotor, mounted in gimbal 

rings that allow the wheel to rotate freely in any direction, a gyroscope; almost any 

rotating mass can be considered as a gyroscope (Cordeiro, 1913).  The word gyroscope 

comes from the Greek words gyros and skopein that mean “rotation” and “to view,” 

respectively.  Conventional spinning gyroscopes function due to Newton’s 2nd law which 

states that angular momentum, H, of an object will remain the same unless a torque, T, is 

applied to that object; then, the rate of change of the angular momentum is equal to the 

magnitude of the torque, which can be expressed as 

dt
dHT = , (2.1) 

where 

ωH I=  (2.2) 

with I being the moment of inertia of the object and ω being the angular velocity.  The 

law of gyroscopics states that if the torque is applied perpendicular to the rotating axis of 

a spinning object the magnitude of the angular velocity cannot change, but the direction 

of ω can change.  This is illustrated in Fig. 2.9 and can be obtained by defining 
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θdd HH = , (2.3) 

where dθ is the angle that the rotating object moves due to the applied torque.  Then, 

substitution of Eq. 2.3 into Eq. 2.1 yields 

ΩHHHT ×===
dt
d

dt
d θ , (2.4) 

where Ω is the precession rate, or the angular velocity of the wheel perpendicular to the 

plane defined by the axis of rotation and the direction of the input torque of the rotating 

object, as shown in Fig. 2.9.  In Fig. 2.9 ω is the speed of the rotation about the spin axis, 

while Ω, the precession rate, is the speed of the rotation perpendicular to the spin axis. 

 
Fig. 2.9.  Illustration of the law of gyroscopics (Lawrence, 1998). 
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In the past, the name of “gyroscope” was reserved only for rotational sensors with 

spinning wheels, like the toy gyroscope that is illustrated in Fig. 2.10; presently, however, 

gyroscope refers to any instrument that measures rotation (Lawrence, 1998). 

 

Fig. 2.10.  Tedco "original" toy gyroscope 
(Gyroscopes Online, 2003).

The MEMS gyroscope, also known as microgyroscope, examined in this thesis, is 

a planar micromachined tuning fork gyroscope.  However, before it can be discussed, the 

macroscale tuning fork gyroscope has to be considered, Fig. 2.11.  A tuning fork 

configuration is a balanced system due to having two tines vibrating in anti-phase.  

Therefore, at the mount/junction of the two tines, there is no residual motion that could 

contribute to measurement errors (Lawrence, 1998). 

 
Fig. 2.11.  A tuning fork gyroscope (Lawrence, 1998). 
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A tuning fork gyroscope is governed by the Coriolis acceleration.  Coriolis 

acceleration was defined by Gaspard de Coriolis in 1835 as the acceleration that acts on 

an object that is rotating about and moving radially toward/away from a fixed point with 

constant angular ω, and radial, v, velocities, respectively (Lawrence, 1998).  Centrifugal 

acceleration and Coriolis acceleration are defined as 

rionlAcceleratCentrifuga 2ω−=  (2.5) 

and 

( ) ( )ΩΩ ×=×−= rvcelerationCoriolisAc &22 , (2.6) 

where r is the radial position, ω is the angular velocity, and v is the linear velocity, the 

time rate of change of the radial position (Hibbler, 1998).  If the tuning fork is rotated 

about its axis as the tines vibrate in their plane with a sinusoidally varying angular 

momentum, as shown in Fig. 2.11, the Coriolis acceleration will induce a sinusoidally 

varying precession about the axis of the tuning fork that will be proportional to the input 

rate (Lawrence, 1998); this will allow the angular acceleration to be measured. 

2.3.2.  MEMS gyroscopes 

The majority of MEMS gyroscopes have vibrating rather than rotating 

configurations.  Figure 2.12 shows an example of typical suspension configuration for a 

MEMS tuning fork gyroscope: this microgyro has straight flexural members that act as 

springs and support the proof masses.  The microgyroscope examined for this thesis is 

shown in Fig. 2.8, instead of the straight flexural members shown in Fig. 2.12, the Sandia 
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microgyro has folded springs; however operation of the two microgyro designs is very 

similar.  Figure 2.13 illustrates operation of the dual proof mass tuning fork 

microgyroscope shown in Fig. 2.12.  As illustrated in Fig. 2.13, the two proof masses are 

driven in anti-phase by the electrostatic combdrives. Each proof mass is actuated by two 

sets of combdrives: one outside and one inside, operating one at a time.  The outside 

combdrives are at the extreme ends of the dual mass microgyro, i.e., at the extreme left 

and right edges of the configuration shown in Figs 2.8, 2.12, and 2.13.  The inside 

combdrives are between the two proof masses.  The combdrives produce electrostatic 

forces and therefore can only pull the masses; they cannot push (Pryputniewicz, 2000).  

Therefore, an actuation cycle consists of four parts.  During part-1, when the actuation 

voltage is applied, the outside combdrives pull the proof masses toward themselves while 

simultaneously the flexures supporting the proof masses deform storing elastic energy. 

 
Fig. 2.12.  Dual mass micromachined tuning fork microgyro (Lawrence, 1998). 

A A

Section A-A
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Fig. 2.13.  Schemaitic of the operation of a MEMS tuning fork gyro (Lawrence, 1998). 

During part-2 of the actuation cycle, when the voltage on the outside combdrives is 

reduced, the flexures straighten and bring the proof masses to their original, neutral, 

positions.  At this point, actuation voltage is applied to the inside combdrives and the 

proof masses are pulled toward the inside while the flexures deform away from their 

equilibrium positions; this is part-3 of the actuation cycle.  During part-4, when the 

actuation voltage is reduced again, the flexures return the proof masses to their neutral 

positions. 

Typically, the 4-part actuation cycle is repeated a few thousand times per second.  

This vibration produces the in-plane velocity, v, necessary to define Coriolis acceleration 

described by Eq. 2.6.  If the vibrating proof masses are subjected to an angular velocity, 

Ω, Fig. 2.13, around the central axis of the two proof masses, then, using Eq. 2.6, the 

Coriolis force is defined as 

( )vF ×=⋅= ΩmcelerationCoriolisAcm 2c , (2.7) 

where Fc is the Coriolis force, and m is the mass of each of the vibrating masses.  The 

Coriolis force will cause one of the proof masses to raise out-of-plane away from the 

Substrate
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substrate while the other proof mass drop down toward the substrate.  The capacitive 

plates usually located under each of the proof masses and on the substrate under the proof 

masses sense the out-of-plane displacement as a change in voltage, which is then 

converted to an angular acceleration. 

There are a number of possibilities for other microgyro configurations.  As 

illustrated in Fig. 2.8, the microgyroscope proof masses are suspended using folded 

springs, while the microgyro proof masses illustrated in Fig. 2.12 are supported by 

straight flexural members.  Another example is the microgyroscope designed by Analog 

Devices, which includes additional flexural members/springs that isolate the gyroscope 

from sources of in-plane vibration other than the vibration driven by the combdrives 

(Analog Devices, 2003a, 2003b).  Sections 2.3.2.1 and 2.3.2.2 show some of the details 

of the microgyroscopes developed by Analog Devices. 

2.3.2.1.  ADXRS150 

The Analog Devices ADXRS150 is a ± 150 deg/sec yaw rate gyroscope (Analog 

Devices, 2003a).  Figure 2.14 shows the overall view of the ADXRS150.  A section of 

Fig. 2.14, highlighted by a rectangle, contains both proof masses of the microgyro and 

this is shown in Fig. 2.15.  The section highlighted in Fig. 2.15 emphasizes one of the 

proof masses.  This proof mass is shown in Fig. 2.16.  The section that is highlighted in 

Fig. 2.16 is illustrated in Fig. 2.17.  The section of the microgyroscope displayed in Fig. 
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2.17 does not show the folded springs attached to the proof masses with enough detail, 

therefore the area highlighted is enlarged in Fig. 2.18. 

 
Fig. 2.14.  The ADXRS150 gyroscope. 

 
Fig. 2.15.  The two proof masses of the ADXRS150 microgyro. 
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Fig. 2.16.  Detail of a proof mass of the ADXRS150. 

 
Fig. 2.17.  Detail of the lower right corner of a proof mass 

of the ADXRS150. 



 48

 
Fig. 2.18.  Two spring configurations of the ADXRS150. 

Figure 2.18 shows that there are two types of springs in the ADXRS150 

gyroscope, and Fig. 2.19 illustrates the spring highlighted by the dashed rectangle while 

Fig. 2.20 shows the spring highlighted by the solid rectangle.

 
Fig. 2.19.  Detail of the isolating spring 

for the ADXRS150 proof mass. 

 
Fig. 2.20.  Detail of the flexure for the 

ADXRS150 proof mass.
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The two sets of springs illustrated in Figs 2.19 and 2.20 were designed to perform 

separate tasks in the Analog Devices microgyroscope.  The spring illustrated in Fig. 2.19 

keeps the proof mass from “feeling” external vibrations that could introduce noise to the 

vibration controlled by the electrostatic combdrives; the spring in Fig. 2.20 acts like the 

flexures described in Section 2.3.2 and returns the proof mass to the neutral position 

during the actuation cycle. 

2.3.2.2. ADXRS300 

The ADXRS300 Analog Devices microgyro is a ± 300 deg/sec yaw rate 

gyroscope (Analog Devices, 2003b).  The overall view of ADXRS300 is displayed in 

Fig. 2.21.  The section of Fig. 2.21 highlighted by rectangle is one of the proof masses of 

the ADXRS300 microgyro, Fig. 2.22. 

 
Fig. 2.21.  The ADXRS300 gyroscope. 
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Fig. 2.22.  Detail of a proof mass of the ADXRS300. 

A section of Fig. 2.22, which is highlighted by a rectangle, is enlarged in Fig. 2.23 

to show details of the suspension springs. 

 
Fig. 2.23.  Detail of the two springs 
in a proof mass of the ADXRS300. 

Figure 2.23 shows that there are the same two types of springs in ADXRS300 as 

in the ADXRS150.  The springs in both of the microgyros have the same dimensions.  
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The dimensions for the flexural springs in Figs 2.21 and 2.24 are listed in Table 2.1 for 

reference purposes only, because the function of these springs is similar to the springs of 

the microgyro that is studied in this thesis.  Dimensions shown in Table 2.1 were 

measured, as a part of this thesis, using an optical microscope with the measurement 

resolution characterized by the least count of 0.5 µm. 

Table 2.1.  Measured dimensions of the flexural spring 
for the Analog Devices gyroscopes. 

Dimensions of the spring Value Units 
Length of the spring, L150 60.0 µm 
Width of the spring, b150 2.0 µm 
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3.  TEST SAMPLES 

The test samples studied in this thesis are MEMS gyroscopes from Sandia 

National Laboratories: the 10 kHz dual proof mass tuning fork microgyroscopes. 

3.1.  Sandia microgyroscope 

A representative microgyroscope from Sandia National Laboratories that was 

studied in this thesis is shown in Fig. 3.1.  This figure shows the actual MEMS gyroscope 

as it was observed under a microscope.  This microgyroscope has two vibrating proof 

masses that are driven by electrostatic combdrives, which are located on each vertical 

side, for the orientation shown in Fig. 3.1, of the proof masses, and each proof mass is 

supported by four folded springs, one at each corner. 

 
Fig. 3.1.  The Sandia dual-mass microgyro. 

Combdrives 

Proof mass 200 µm
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Figure 3.2 displays a magnified view of the highlighted section shown in Fig. 3.1, 

and illustrates typical folded springs supporting the proof masses, parts of the combdrives 

actuating these masses are also shown. 

  
Fig. 3.2.  Detail of the section of the Sandia microgyro, highlighted 

in Fig. 3.1, showing typical folded springs supporting proof 
masses, parts of the poof masses and combdrives are also shown. 

One of the folded springs is highlighted in Fig. 3.2 with a rectangle.  The folded 

spring was observed under a microscope and dimensions were measured, as a part of this 

thesis, the dimensions are shown in Fig. 3.3 and listed in Table 3.1.  In Table 3.1, the 

thickness of the folded spring is based on specifications characterizing the SUMMiTTM-V 

process (Sandia, 2003).  The lengths of sections AB and CD, as defined in Fig. 3.3 and 

Table 3.1, were measured from points A and D, respectively, to the midpoint of the width 

of section BC.  Also the length of section BC was measured between the midpoints of the 

widths of sections AB and CD.  This was done to reduce the error caused by an overlap of 

the sections at interfaces of sections AB and CD with section BC. 

50 µm 

Folded 
springs 



 54

As shown in Fig. 3.3, the proof mass attaches to the folded spring via an interface 

at point D.  The attachment at point D is such that the folded spring and the proof mass 

are in the same plane.  Furthermore, it was assumed, in order to facilitate analytical 

developments presented in this thesis, that there is no bending of the folded spring at the 

point of its attachment to the proof mass. That is, the folded spring and the proof ass at 

point D are subjected only to purely translational motion, there is no rotation.  Point A is 

where the folded spring is attached to the substrate via a fixed post. 

 
Fig. 3.3.  Dimensions of a representative folded spring comprising the suspension of the 

proof masses in the Sandia microgyroscope. 

Table 3.1.  Dimensions of the Sandia microgyro. 
Dimensions of the folded spring Value Units 
Length of section AB, LAB 111 µm 
Length of section BC, LBC 17 µm 
Length of section CD, LCD 98 µm 
Width of sections AB and CD, b 3 µm 
Width of section BC, bBC 10 µm 
Thickness of all of the sections, h 2.5 µm 
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3.2.  Materials 

The Sandia microgyro that was studied in this thesis is made from surface 

micromachined polysilicon.  The properties of this polysilicon are listed in Table 3.2 and 

were obtained from descriptions of the SUMMiTTM-V process (Pryputniewicz, 2002; 

Pryputniewicz and Furlong, 2002; Furlong and Pryputniewicz, 2001; Sandia, 2003). 

Table 3.2.  Material properties of polysilicon. 
Property Value Units 
Density, ρ 2.33 g/cm3 
Modulus of elasticity, E 160 GPa 
Poisson's ratio, µ 0.23   
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4.  METHODOLOGY 

Preliminary characterization of a MEMS gyroscope was done by studying 

deformations of the suspension that supports the proof masses.  The first step was to 

conduct background research on how MEMS devices, in general, and microgyros, in 

particular, are built, how meso, or conventional gyroscopes, and microscale gyroscopes 

function.  These background data on the past and current state-of-the-art gyroscope 

technology cultivated an understanding of how gyroscopes, in general, and more 

importantly, MEMS gyroscopes, function.  This information provided a starting point to 

begin analysis. 

Determining how MEMS gyroscopes function is based on the Analytical, 

Computational, and Experimental Solutions (ACES) methodology (Pryputniewicz, 1997; 

Pryputniewicz, et. al., 2001), Fig. 4.1. 

 

Fig. 4.1.  Configuration of the ACES methodology. 

As illustrated in Fig. 4.1, the ACES methodology utilized analytical, computational, and 

experimental methods.  The results from one, or two, of these methods are used to 
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facilitate solutions by the remaining methods.  Then computational and experimental 

results are compared to determine degree of correlation between them, which is used to 

verify, or validate, the process used. 

Sections 4.1 to 4.3 describe analytical, computational, and experimental, 

respectively, considerations used in this thesis to study the characteristics of 

microgyroscopes.  In order to accomplish this task, as the first step, the out of plane 

displacement of the folded springs that support each of the proof masses, were 

determined using a static analysis.  This was done analytically by deriving the three-

dimensional equations for the deformations of the folded springs. This derivation was 

based on energy methods and Castigliano’s second theorem in order to include shear 

effects.  For the equations that were derived to be useful, forces that are applied to the 

folded spring must be known.  Thus, all forces acting on the proof mass, that the folded 

springs support, must be taken into consideration: i.e., the forces produced by 

acceleration of the proof mass by the combdrives and the Coriolis forces produced by the 

angular acceleration that the microgyro may be subjected to. 

Once the forces that act on the folded springs were determined they were used in 

analytical equations to calculate deformations.  Then the deformations were also 

computed using finite element method (FEM), through the FEM software package 

COSMOS/M (2003). 

Once the analytical and computational results have been determined, the 

experimental analysis began by characterizing deformations of the folded springs, using 

the optoelectronic laser interferometric microscope (OELIM) method (Furlong and 
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Pryputniewicz, 2000, 2002; Pryputniewicz, et al., 2000, 2001; Steward and Saggal, 2002; 

Steward, et al., 2002, 2003a, 2003b; Steward, 2003).  The next step was to observe the 

out-of-plane behavior of the folded springs under selected excitation frequencies induced 

by a PZT shaker and measured using the laser vibrometer. 

The experimental results were then compared to the analytical and computational 

results in order to determine validity of the computational modeling and analytical 

methodology. 

4.1.  Analytical considerations 

The goal of the analytical section of the thesis is to derive an equation for 

deformations of the folded spring in all three-dimensions along the entire length of the 

spring.  Based on the assumption that the folded spring is a prismatic beam, with the 

same thickness as the proof mass, deformations of the folded spring were determined 

using Castigliano’s second theorem. 

4.1.1.  Castigliano’s second theorem 

Castigliano’s second theorem was presented in 1973 (Riley, et al., 1995) and 

published in 1979 by Alberto Castigliano, an Italian railroad engineer.  This theorem 

defines a way to calculate the slope and displacement at a point in a body with respect to 

the strain energy stored in it (Hibbler, 2000).  Castigliano’s second theorem is only 
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applicable to objects that are made from materials that behave linear elastically and are 

held at a constant temperature (Riley, et al., 1995).  As such, it is applicable to the 

developments of this thesis, because the folded springs of the microgyros considered 

satisfy these requirements. 

According to Castigliano’s theorem, if a body is subjected to external forces, Fig. 

4.2, then the external work, We, a function of the external loads, is equal to the internal 

strain energy of the body, Ui, which can be expressed by the following phenomenological 

equation: 

( )nFFFFWWU ,,,, 321eei K== , (4.1) 

where F1, F2, …, Fn represent the external forces.  If one of these forces is increased by 

an infinitesimal amount, dFk, the work will also increase by a corresponding infinitesimal 

amount.  Therefore, the strain energy will become 

k
k

i
iki F

F
UUUU dd

∂
∂

+=+ . (4.2) 

 
Fig. 4.2.  Body subjected to a number of external forces. 
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However, Eq. 4.2 depends on the order that the forces are applied to the body.  In 

order to make Eq. 4.2 independent of the order that the forces are applied, ∆k is 

introduced as the total displacement of the body due to all of the forces F1, F2, …, Fn in 

the direction of Fk, and the infinitesimal increase in the strain energy is defined as 

kkk ∆= FU dd , (4.3) 

due to the change in forces.  Now, substituting the definition of dUk from Eq. 4.3 into Eq. 

4.2, it can be written that (Hibbler, 2000) 

k
k

i
kk F

F
U

F dd
∂
∂

=∆ , (4.4) 

where 

k

i
k F

U
∂
∂

=∆ . (4.5) 

4.1.2.  Internal strain energies 

Equation 4.5 will be used to solve for the displacements of the folded springs that 

support the proof masses of the microgyroscopes; however, in order to use Eq. 4.5, the 

internal strain energies have to be defined for a spring.  The internal strain energy of a 

spring is calculated as the sum of the individual strain energies, i.e., 

TMTSBMALi UUUUU +++= , (4.6) 

where UAL, UBM, UTS, and UTM are as defined in Eq. 4.7 to 4.10, respectively. 
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The strain energy component defined by the axial loading acting through the 

length of the beam L, UAL, is calculated as 

∫=
L

dx
AE0

2

AL 2
NU , (4.7) 

where N is the axial load, A is the cross sectional area, E is the modulus of elasticity, and 

L is the length of the beam. 

The strain energy component defined by the bending moment over L, UBM, is 

calculated as 

∫=
L

dx
EI0

2

BM 2
MU , (4.8) 

where M is the internal bending moment. 

The transverse shear loading component of the strain energy along L, UTS, is 

defined as 

∫
⋅

=
L zy dx

GA
k

0

2
,

TS 2
V

U , (4.9) 

where ky,z is the shape factor, which is defined for multiple cross sections in Table 4.1, V 

is the shear force, and G is the shear modulus.   

Table 4.1.  Shape factor values when y and z are the centroidal 
principle axes of the cross section (Cook and Young, 1985). 

Cross section type ky kz 
Rectangle 1.20 1.20 
Solid circle 1.11 1.11 
Thin-walled cylinder 2.00 2.00 
I-section, web parallel to z-axis 1.20 1.00 
Closed thin-walled section 1.00 1.00 



 62

The final component of the strain energy is due to the torsional moment acting 

through the length of the beam L, UTM, and it is calculated as 

dx
GJ

L
∫=
0

2

TM 2
TU , (4.10) 

where T is the torque acting through the length of the beam, while J is the polar moment 

of inertia of the cross sectional area of the spring and is calculated (Riley, et al., 1995) as 

∫+∫=
AA

dAydAxJ 22 . (4.11) 

4.1.3.  Energy analysis of the single fold spring 

For the folded spring that is illustrated in Fig. 4.3, application of Castigliano’s 

theorem has to be modified since the folded spring can be divided into three beams, or 

sections that will be called AB, BC, and CD, as labeled in Fig. 4.3.  Therefore, the 

equation for the internal strain energy of the folded spring will be a sum of the strain 

energies of all three sections, i.e., 

CDBCABi UUUU ++= , (4.12) 

where the strain energies of the individual sections are defined as 

TMABTSABBMABALABAB UUUUU +++= , (4.13) 

TMBCTSBCBMBCALBCBC UUUUU +++= , (4.14) 

and 

TMCDTSCDBMCDALCDCD UUUUU +++= , (4.15) 
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respectively. 

4.1.3.1.  Reaction forces and moments 

In order to calculate the internal strain energies, and then the displacements using 

Eq. 4.5, the reaction forces and moments of the folded spring at point A, Fig. 4.3, have to 

be determined, based on which the forces, moments, and torques acting on each of the 

three sections: AB, BC, and CD, can be derived. 

 
Fig. 4.3.  Free body diagram for the folded spring. 

Based on Fig. 4.3 and on the free body diagram of section AB of the folded spring, Fig. 

4.4, Cartesian components of the reaction force at A can be defined as 

xx FA = , (4.16) 

yy FA = , (4.17) 

and 
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zz FA = , (4.18) 

while components of the reaction moment can be shown to be 

( )CDAByAx LLFM −= , (4.19) 

( ) BCzABCDxAy LFLLFM −−= , (4.20) 

and 

BCyAz LFM = . (4.21) 

 
Fig. 4.4.  Free body diagram of section AB. 

Using the reaction forces and moments at point A, as defined by Eqs 4.16 to 4.21, the 

forces and moments at point B for section AB, Fig. 4.4, were derived to be 

xxx FAB == , (4.22) 

yyy FAB == , (4.23) 

zzz FAB == , (4.24) 

CDyBx LFM −= , (4.25) 

BCzCDxBy LFLFM −= , (4.26) 
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and 

BCyBz LFM = . (4.27) 

Also using Fig. 4.3 and the free body diagram of section CD of the folded spring, Fig. 

4.5, Cartesian components of the reaction force at C can be defined as 

xx FC = , (4.28) 

yy FC = , (4.29) 

and 

zz FC = , (4.30) 

while components of the reaction moment can be shown to be 

CDyCx LFM = , (4.31) 

CDxCy LFM = , (4.32) 

and 

0=CzM . (4.33) 

 
Fig. 4.5.  Free body diagram of section CD. 
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4.1.3.2.  Deformations at point D while considering only the cantilever CD of the 
folded spring 

Before proceeding with the derivation of an equation for deformations at point D 

while considering the entire folded spring, derivation of an equation for deformations at 

the point of force application on the folded spring represented only by the cantilever 

section CD will be made.  For this derivation, the cantilever will be fixed at point C and 

loaded at point D, Fig. 4.6. 

 
Fig. 4.6.  Free body diagram for a part of section CD. 

Based on the free body diagram shown in Fig. 4.6, the shear forces acting on section CD 

are 

xxx FCCD == , (4.34) 

yyy FCCD == , (4.35) 

zzz FCCD == , (4.36) 

and the reaction moments are 

( ) ( )CDyCDx LzFzM −= , (4.37) 
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( ) ( )zLFzM CDxCDy −= , (4.38) 

( ) 0=zTCDz . (4.39) 

Therefore, using Eqs 4.15, and 4.7 to 4.10, an equation for the internal strain energy of 

section CD, can be derived to be 

∫∫ +∫ +
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. (4.40) 

where for a rectangular cross section, ky,z is equal to 6/5, and Ab is the cross sectional area 

of sections AB and CD, i.e., 

bhAb = , (4.41) 

Ibx the moment of inertia for sections AB and CD in the out-of-plane direction of motion, 

12

3hbIbx = , (4.42) 

Iby is the moment of the inertia for sections AB and CD in the in-plane direction of 

motion,  

12

3bhIby = , (4.43) 

and Jb is the polar moment of inertia for sections AB and CD.  For the case of a 

rectangular cross section, the polar moment of inertia is defined by (Beer and Johnston, 

1992) as 

3
1bhcJb = , (4.44) 
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where b is the width of the beam, h is the thickness, and c1 is the torsional coefficient for 

a rectangular beam that is defined in Table 4.2 based on the ratio of the width to 

thickness.  

Table 4.2.  Torsional coefficients for uniform 
rectangular bars (Beer and Johnston, 1992). 

b/h c1 b/h c1 
1.0 0.208 3.0 0.267 
1.2 0.219 4.0 0.282 
1.5 0.231 5.0 0.291 
2.0 0.246 10.0 0.312 
2.5 0.258 ∞ 0.333 

Equation 4.40 has six terms instead of four found in Eq. 4.13 because in Eq. 4.13 the 

vectors of the forces, moments, and torques are used, while in Eq. 4.40 the individual 

components are included.  Equations 4.40 and 4.34 to 4.39 can be substituted into Eq. 4.5 

to obtain the x-component of deformation at point D, at the end of section CD, to be 
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Equation 4.45 can be simplified to 

b
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Finally, using the forces, moments, and torques defined by Eqs 4.34 to 4.39, equations 

defining y-component and z-component of deformation at point D can be derived by 

substituting Eq. 4.40 into Eq. 4.5 and solving to obtain 

b

CDy

bx

CDy

y

CD

GA
LF

EI
LF

F
U

5
6

3

3

dy +=
∂

∂
=∆ , (4.47) 

and 

b

CDz

z

CD

EA
LF

F
U

=
∂

∂
=∆dz . (4.48) 

Results obtained from Eqs 4.46 to 4.48, modeling deformations at the point D, on the 

cantilever section CD representing the folded spring, will be compared with the 

computational results for the same representation of the folded spring. 

4.1.3.3.  Deformations at point B 

The next step was to derive the deformation of the entire folded spring.  This was 

done by taking the reaction forces and moments derived for the section AB and deriving 

the shear and moment equations for the section AB using a free body diagram of a part of 

the section of an arbitrary length along the z-axis, Fig. 4.7.  Based on the free body 

diagram of Fig. 4.7, the shear forces acting on section AB are 

xxx FAAB == , (4.49) 

yyy FAAB == , (4.50) 

zzz FAAB == , (4.51) 
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and the reaction moments are 

( ) ( )zLLFzM CDAByABx −−= , (4.52) 

( ) ( ) BCzABCDxABy LFzLLFzM −+−= , (4.53) 

( ) BCyABz LFzT = . (4.54) 

 
Fig. 4.7.  Free body diagram for the cut of section AB. 

Using the forces, moments, and torques that are described by Eqs 4.49 to 4.54 an 

equation for the internal strain energy of section AB can be written, based on Eqs 4.13 

and 4.7 to 4.10, to be 
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The x-component of deformation at point B of section AB, ∆Bx, can be determined 

by substituting Eq. 4.55 into Eq. 4.5, i.e., 
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Equation 4.56 can be simplified to 
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The forces, moments, and torques, Eqs 4. 49 to 4.54, the equation that defines the 

internal strain energies for Section AB, Eq. 4.55, and the definition of Castigliano’s 

theorem, Eq. 4.5, that were used to derive the equation for displacement in the x-direction 

are also used to derive the relationships describing deformations in the y-direction and z-

direction, i.e., 
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and 
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respectively. 

4.1.3.4.  Deformations at point C 

Based on the deformations at point B, deformations at point C of Section BC can 

be derived.  As for the displacement at point B, the shear and moment equations for 

section BC are derived using a free body diagram at a point of the section of an arbitrary 

length along the x-axis, Fig. 4.8.  Based on the free body diagram, displayed in Fig. 4.8, 

the shear forces acting on section BC are 

xxx FBBC == , (4.60) 

yyy FBBC == , (4.61) 

zzz FBBC == , (4.62) 

and the reaction moments are 

( ) CDyBCx LFxT −= , (4.63) 

( ) ( )BCzCDxBCy LxFLFxM −+= , (4.64) 

( ) ( )xLFxM BCyBCz −= . (4.65) 

Using Eqs 4.60 to 4.65, a relationship for the internal strain energy of section BC, based 

on Eqs 4.14 and 4.7 to 4.10 can be derived to be 
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where Ac is the cross sectional area of section BC, i.e., 

hbA BCc = . (4.67) 

 
Fig. 4.8.  Free body diagram for a part of section BC. 

Icy is the moment of inertia for section BC in the in-plane direction of motion 

12

3
BC

cy
hb

I = , (4.68) 

Icz is the moment of inertia for section BC in the out-of-plane direction of motion 

12

3hb
I BC

cz = , (4.69) 

and Jc is the polar moment of inertia for sections BC, which is calculated as 

3
1 hbcJ BCc = , (4.70) 
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where c1 is defined in Table 4.2.  Now, Eq. 4.66 and Eqs 4.60 to 4.65 will be used in Eq. 

4.5 to obtain the displacements at the end of section BC, point C, first in the x-direction, 

i.e., 
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Equation 4.71 can be simplified to 
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Again, using the forces, moments, and torques defined by Eqs 4.60 to 4.65, equations 

defining y-component and z-component of deformation at point C can be derived by 

substituting Eq. 4.66 into Eq. 4.5 and solving to obtain 
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and 
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4.1.3.5.  Deformations at point D while considering the entire folded spring 

Deformations at point D of Section CD can be determined following procedures 

used to determine displacements at points B and C.  However this was already done in 

Section 4.1.3.2.  In order to obtain the deformation in the x-direction at point D for the 

entire folded spring, the deformation at point D for the cantilever beam, Eq. 4.46, was 

added to the deformation at point C, Eq. 4.72, i.e., 

dxCxDx ∆+∆=∆ , (4.75) 

Equation 4.75 can be simplified to 
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The procedure used to derive Eq. 4.76 was followed in order to obtain deformations at 

point D in the y and z directions, i.e., 
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Comparing Eqs 4.76 to 4.78 with Eqs 4.46 to 4.48 is should be noted that complexity of 

equations increases when deformations at point D are determined while considering the 

entire folded spring, rather than its representation as a cantilever.  Detailed determination 

of deformations of the folded spring of the microgyro, based on Eqs 4.76 to 4.78, is 

included in Appendix A. 

4.1.4.  Determination of forces acting on the folded spring 

Forces used in equations for deformations, which were derived in Section 4.1.3, 

must be determined.  Because of the nature of the functional operation of the 

microgyroscopes studied in this thesis, the forces acting in the x, i.e., in-plane, and y, i.e., 

out-of-plane, directions were calculated, while the force in the z-direction was assumed to 
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be zero.  The force that acts on the folded springs in the x-direction is due to the vibration 

of the proof masses.  Therefore, in order to calculate this force, Newton’s second law was 

applied, i.e., 

4
)(tmaFspring = , (4.79) 

where for the case of the microgyroscope, m is the total mass of the proof mass, and a(t) 

is the time dependent acceleration that is acting on the proof mass.  In order to obtain the 

force that acts on each of the four folded springs that support a single proof mass, it was 

assumed that each spring evenly shares the force; therefore, the total force is divided by 

four in order to obtain the force for a single spring.   

The acceleration acting on the proof masses was obtained by evaluating double 

time derivative of the equation of sinusoidal motion of the proof masses, i.e., 

( ) ( )tBtx ωsin= , (4.80) 

( ) ( ) ( )tBtx
dt
dtv ωω cos== , (4.81) 

( ) ( ) ( ) ( )tBtx
dt
dtv

dt
dta ωω sin2

2

2
−=== , (4.82) 

where x, v, and a, are the instantaneous position, speed, and acceleration, respectively, of 

the proof mass, B is the amplitude of the oscillation, ω is the angular speed of oscillation, 

and t is time.  For the motion of the proof mass it is assumed that the maximum 

amplitude of the displacement of the proof mass is defined as 

3
2

−= fL
B , (4.83) 
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where Lf is the length of the combdrive fingers.  Three micrometers less than half of the 

finger length are used because if the proof mass moved half the finger length, the fingers 

might stick and the microgyro would fail.  The angular speed of the motion of the proof 

mass was calculated as 

fπω 2= , (4.84) 

where f is the cyclic frequency of the vibration of the proof mass.   

Based on Eq. 4.82, the maximum acceleration will be obtained when sin(ωt) will 

be equal to one; therefore the maximum acceleration “felt” by the proof mass of the 

gyroscope will be 

2
max ωBa = . (4.85) 

By substituting 4.85 into 4.79, the maximum force acting on the proof mass is calculated 

to be 

4
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−

==
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mBF , (4.86) 

and then applied to the folded spring in order to determine in-plane deformation in the x-

direction. 

The force that acts on the folded springs in the y-direction is the Coriolis force, 

Eq. 2.7.  Based on literature addressing MEMS gyroscopes, angular velocities that 

microgyroscopes are subjected to can range from 0 rad/sec to ±6π rad/sec, or 0˚/s to 

±1080˚/s (Analog Devices, 2003a, 2003b; Fujita, et al., 1997; Geiger, et al., 1998; 

Hedenstierna, et al., 2001; Kuisma, et al., 1997).  However, most of the angular rates are 
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lower, on the order of 100˚/s, and this is the angular acceleration that was applied to Eq. 

2.7.  The average in-plane velocity, in Eq. 2.7, is defined as 

τ
Bv 4

= , (4.87) 

where τ is the period of the vibration of the proof mass.  Only a quarter of the period is 

used in this case because the proof mass moves, traversing the amplitude defined by Eq. 

4.83, four times during a single cycle.  Therefore, the distance B is traveled ever quarter 

of the period.  The period is calculated as the reciprocal of the cyclic frequency, i.e., 

f
1

=τ . (4.88) 

The values necessary to solve for the maximum in-plane acceleration, the in-plane 

velocity, the in-plane force acting on the folded springs, and the Coriolis force acting on 

the folded springs are listed in Table 4.3.  A detailed determination of the forces that are 

applied to the folded spring from Sandia is included in Appendix B. 

Table 4.3.  Values necessary to calculate the forces acting on the folded spring. 
Description and symbol Value 
Calculated total mass of the proof mass, m 1.25502 nkg 
Measured length of the comb drive fingers, Lf 40.0 µm 
Operational frequency of the proof mass, f 10.0 kHz 
Angular rate, ω 1.7533 rad/sec 
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4.1.5.  Uncertainty analysis 

An uncertainty analysis was done on the displacements that were derived in 

Section 4.1.3 for the folded springs that support the proof masses of the Sandia 

microgyro.  This was done to determine by how much the deformation of the folded 

spring could vary due to assumptions and approximations that were used in the analytical 

calculations.  That is, the uncertainty analysis gives basis for determination of how good 

the analytical results are (Pryputniewicz, 1993). 

The uncertainty analysis that was conducted in this thesis was performed based on 

the root-sum-square (RSS) approach (Pryputniewicz, 1993), which assumes a Gaussian 

distribution in the values of the uncertainty for the variables that are considered. 

For multiple measurements of a single parameter, X, the total RSS uncertainty, δX, 

is defined as 

( ) 2
122

XX PB +=δ , (4.89) 

where B is the bias limit and PX is the precision of the entire set of data for the parameter 

X.   

However, for the case of a result that is calculated from many individual 

variables, a general uncertainty analysis must be done using the RSS approach.  For this 

case, each independent parameter, Xi, will have (Coleman and Steele, 1989) associated 

with it 

0=B . (4.90) 

Therefore, based on Eq. 4.90, Eq. 4.89 reduces to 
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ii XX P=δ . (4.91) 

Using Eq. 4.91, general uncertainty analysis begins by writing a phenomenological 

equation expressing the dependent parameter, uncertainty of which is to be determined, in 

terms of its independent parameters X1, X2,…, Xn (Pryputniewicz, 1993), i.e., 

( )nXXXXX ,,, 21 K= . (4.92) 

Based on Eq. 4.92, the uncertainty δX can be calculated, using, e.g., the RSS approach, to 

be 
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where the δXi parameters represent uncertainties of the individual independent 

parameters, Xi. 

Using Eqs 4.92 and 4.93, the uncertainty analyses were performed for the 

deformations at point D of the folded spring.  For example, using the explicit definition 

of the x-component of deformation at point D, given by Eq. 4.76, the corresponding 

phenomenological equation is written as 

( )GEIIAALLLFF cybycbCDBCABzx ,,,,,,,,,,DxDx ∆=∆ . (4.94) 

The next step is to write the phenomenological equations for each of the variables 

in Eq. 4.94 that themselves are functions of their own independent parameters.  This is, 

( )amFF xx ,= , (4.95) 

where 

( )ρ,proofVmm = , (4.96) 
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and 

( )ω,Baa = . (4.97) 

In Eqs 4.96 and 4.97, we have 

( )hAVV proofproofproof ,= , (4.98) 

( )fLBB = , (4.99) 
and 

( )fωω = . (4.100) 

Also in Eq. 4.94, we have 

( )hbAA bb ,= , (4.101) 

( )hbAA BCcc ,= , (4.102) 

( )hbII byby ,= , (4.103) 

( )hbII BCcycy ,= , (4.104) 
and 

( )µ,EGG = . (4.105) 

Using Eq 4.93, uncertainties in parameters defined by Eqs 4.94 to 4.105 can be 

determined. Once these uncertainties are known, they can be used to determine the 

overall uncertainty (Pryputniewicz, 1993) in the x-component of deformation at point D, 

i.e., 
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The procedure used to derive Eq. 4.106 was followed to obtain overall 

uncertainties in the y-component and z-component of deformations at point D.  The 

phenomenological relationships, based on Eqs 4.77 and 4.78 are 

( )GEJJIIAALLLF cbczbxcbCDBCABy ,,,,,,,,,,,DyDy ∆=∆ , (4.107) 

( )GEIIAALLLFF cybycbCDBCABzx ,,,,,,,,,,DzDz ∆=∆ , (4.108) 

respectively.  Based on Eqs 4.107 and 4.108, the overall uncertainties in the y-direction 

and z-direction are 
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and 
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respectively.  Values of uncertainties for the individual variables that were used to obtain 

the overall uncertainties in the three components of deformations at point D of the folded 

spring are listed in Table 4.4. 

Table 4.4.  Values and initial uncertainties of parameters 
characterizing the folded spring. 

Variable Units Value Uncertainty 
Fx N 0 0 
LAB µm 111 0.5  
LBC µm 17 0.5 
LCD µm 98 0.5 
b µm 3 0.5 

bBC µm 10 0.5 
h µm 2.5 0.5 
Lf µm 40 0.5 
f kHz 10 0.5 
ω rad/sec 1.745 0.0005 
E GPa 160 5 
ρ g/cm3 2.330 0.005 
µ  0.23 0.005 
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The uncertainties for the measured dimensions were initially taken to be the resolution of 

the microscope used, the uncertainty for the thickness was taken to be 0.5 µm as a “safety 

factor,” uncertainties in the material properties were taken from the tolerances set by 

Sandia (2003), all other uncertainties were taken as half of the least significant digit of 

the value (Pryputniewicz, 1993).  Detailed determination of the uncertainties is included 

in Appendix C. 

4.2. Computational considerations 

The purpose of the computational considerations was to determine displacements, 

at the point where the forces were applied, using the finite element method (FEM).  The 

procedure was to first draw the folded spring in a CAD package, e.g., SolidWorks (2001) 

software, illustrated in Fig. 4.9.  Once the model was complete it was imported into the 

FEM software used, COSMOS/M (2003), for this thesis.  Using COSMOS/M software, 

material properties of the folded spring, resultant forces from the proof mass acting on 

the face at point D, and boundary conditions, that the folded spring was fixed over the 

face at point A, the model was meshed using 2 different types of elements: 1) linear 

tetrahedral solid elements which have four corner nodes and six edges and 2) parabolic 

tetrahedral elements which have four corner nodes, six edges, and six mid-side nodes, 

Fig. 4.10. 

When the FEM model was completed, a convergence analysis was performed 

starting with the minimum allowable number of solid elements and ending when changes 
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between deformations corresponding to the two most recent dicretizations were below 

0.1%.  Results of the convergence analyses are discussed in Section 5.2. 

 
Fig. 4.9.  SolidWorks representation of the folded spring used in the Sandia microgyro. 

 
Fig. 4.10.  Solid parabolic tetrahedral element mesh of the folded spring. 
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4.3.  Experimental considerations 

The purpose of the experimental study of the folded spring was to test how well 

the analytical and computational models compare to what happens in the real world.  This 

was done by using a laser vibrometer to measure displacements of the proof mass as the 

microgyroscope is shaken out-of-plane by a PZT shaker.  The displacements measured by 

the vibrometer were then compared to displacements calculated analytically.  After this 

was completed, shapes of the microgyros were characterized using optoelectronic laser 

interferometeric microscope (OELIM) methodology.  The laser vibrometer method is 

described in Section 4.3.1 while the OELIM methodology is presented in Section 4.3.2. 

4.3.1.  Laser vibrometer method 

Displacements were measured using laser vibrometer setup (Polytech, 2001), Fig. 

4.11.  The way the laser vibrometer was used was that a signal generator sends a 

sinusoidal voltage to the piezoelectric transducer (PZT) shaker driver, the driver sends a 

signal to the PZT, and the PZT shakes the microgyroscope die which is attached to a 

mirror, which is itself mounted on the PZT, Fig. 4.12.  The vibrometer laser was then 

focused on the object to be measured, either the proof mass or the mirror; the decoder 

would then compare the signal from the object to the reference beam, and obtain a 

voltage that corresponds to a displacement by the conversion factor of 50 nm/Volt.  The 

signal from the decoder was then entered into a signal analyzer where the frequency and 
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the time-domain responses were analyzed to obtain the displacement response of the 

microgyroscope.  A schematic diagram of the vibrometer setup is illustrated in Fig. 4.13. 

The frequency response obtained from the vibrometer when the mirror is observed is the 

response of the mirror, the adhesive that attaches the mirror to the PZT, which for this 

case was super glue, the PZT shaker, the PZT driver, and the signal that is produced by 

the signal analyzer.  The signal obtained from the proof mass is the frequency response of 

the proof mass of the microgyro, the substrate of the die that the microgyro is located on, 

the adhesive that was used to attach the die to the mirror, and the response of all of the 

components that are viewed by the signal obtained from the mirror. 

 
Fig. 4.11.  Laser vibrometer setup. 

Microgyro 

Decoder 
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Fig. 4.12.  Close-up of the mounted microgyro 

 
Fig. 4.13.  Schematic diagram of the laser vibrometer setup. 
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A check of how the system works was done first by obtaining the frequency 

response function (FRF) of the substrate/proof mass in order to check whether the 

substrate/proof mass cleanly transmitts the input signal from the PZT and mirror, or if it 

changes the signal. 

The system illustrated in Fig. 4.14 will be used to explain how the FRF can be 

calculated. 

 
Fig. 4.14.  Block diagram of a system in the time-domain. 

In Fig. 4.14 x(t) is the input to the system, h(t) is the characteristic function of what 

happens in the system in the time-domain, and y(t) is the outupt of the system.  For the 

time-domain, the relationship between the input, characteristic function, and output is 

described by a convolution integral 

( ) ( ) ( )∫ −=
∞

∞−
τττ dtxhty , (4.111) 

where τ is the integration variable.  Convolution is defined as an integral which expresses 

the amount of overlap of one function as it is shifted over another function (Weisstein, 

1999; Jeffrey, 2002).  For many applications it is easier to deal with the frequency 

response of a system rather than the time-domain.  The block diagram for the frequency 

domain for the system is illustrated in Fig. 4.15. 

h(t) x(t) y(t) 
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Fig. 4.15.  The block diagram for a system in the frequency-domain. 

When a function is changed from the time domain to the frequency domain it is 

transfomed using the following equation: 

( ) ( )∫=
∞

∞−

− dtetyfy tfjπ2 . (4.112) 

Based on Eq. 4.112, Eq. 4.111 can be re-written as 

( ) ( ) ( ) dtedtxhdtety tfjtfj ππ τττ 22 −
∞

∞−

∞

∞−

∞

∞−

− ∫ 





∫ −=∫ , (4.113) 

or 

( ) ( ) ( ) τττ ππ ddtetxhdtety tfjtfj






∫ −∫=∫
∞

∞−

−
∞

∞−

∞

∞−

− 22 . (4.114) 

If a temporary function, σ = t - τ, is introduced into Eq. 4.114 it changes to 

( ) ( ) ( ) τσστ σπτππ ddexehdtety fjfjtfj






∫∫=∫
∞

∞−

−−
∞

∞−

∞

∞−

− 222 , (4.115) 

( ) ( ) ( ) ττ τπ dehfxfy fj2−
∞

∞−
⋅∫= . (4.116) 

Based on the definition of the conversion from the time domain to the frequency domain, 

Eq. 4.116 can be simplified to the form (Furlong, 1993) 

( ) ( ) ( )fhfxfy ⋅= . (4.117) 

h(f) x(f) y(f) 
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Equation 4.117 proves that if two functions are convolved in the time domain they 

are multiplied by the frequency domain (Brigham, 1988).  The experimental setup that 

was illustrated in Figs 4.11 to 4.13 can be also modeled as a mass-spring-damper system, 

since each electrical or mechanical part of the total experimental system can be modeled, 

based on the force-voltage analogy as a mass/inductance, spring/inverse of the capacitor, 

and damper/resistor system, (Ogata, 1978) Fig. 4.16.  Another way of illustrating the 

system is using a block diagram similar to that in Fig. 4.17. 

k

m

k

b

k

b

b

m

m

Signal generator, D1

PZTdriver, PZT and mirror, D2

Substrate and microgyro, D3

 
Fig. 4.16.  Schematic diagram of the experimental system, where m is the 

mass, k is the spring, b is the damper. 

PZT driver, PZT and mirror, D2 
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Fig. 4.17.  Block diagram for the experimental system. 

As shown in Figs 4.16 and 4.17, the frequency response from the signal generator and 

cable, D1, acts as a driver for the PZT driver, PZT, and mirror, for which the FRF is A1, 

and the product of D1 and A1 produces D2; then D2 acts as the driver for the 

substrate/proof mass, for which the FRF is A2, and the product of the D2 and A2 produces 

the output, D3.  In order to obtain the FRF of just the substrate/proof mass it is necessary 

to remove the extra components: the mirror, PZT, PZT driver, and signal from the signal 

generator.  This is done by de-convolving the three frequency responses from one 

another.  This is achieved by solving the equation for D3, which is defined in Fig. 4.17, to 

determine A2, i.e., 

2

3
2 D

D
A = . (4.118) 

Once this deconvolved signal is obtained the inverse fast Fourier transform (IFFT) of the 

signal is taken in order to obtain the response of the substrate/proof mass in the time 
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domain.  In order to obtain the amplitude of displacement that the proof mass experiences 

due to the excitation, both the mirror and the substrate/proof mass have to be observed in 

the time-domain.  The difference between the two responses provides the displacement of 

the substrate/proof mass. 

4.3.2. OELIM methodology 

Optoelectronic laser interferometric microscope (OELIM) methodology is the 

state-of-the-art methodology for studies of MEMS in full field of view.  The OELIM is 

based on the optoelectronic holography (OEH) method that is described in Section 

4.3.2.1. 

4.3.2.1.  Opto-electronic holography 

Advances in the phase step hologram interferometry, speckle metrology, and 

computer technology allowed development of a system for direct electronic recording of 

holograms and transmission of holographic interferograms by television systems for real-

time display of fringes (Pryputniewicz, 1985; Furlong, 1999; Brown and Pryputniewicz, 

2000; Pryputniewicz, et. al, 2000).  This opto-electronic holography (OEH) system, in 

addition to other electronic and optical components, consists of a modified speckle 

interferometer, which produces speckles large enough to be resolved by a TV camera 

(Pryputniewicz, et. al, 2001).  The output of the TV camera is fed to a system that 
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computes and stores the magnitude and phase, relative to the reference beam, of each 

picture element in the image of the illuminated object. 

Any of the usual phenomena that generate characteristic fringes in hologram 

interferometry will do so in this process also, and the characteristic fringe functions will 

be impressed on the magnitudes of the values stored. 

4.3.2.1.1.  Fundamentals of OEH 

There are a number of experimental methods used to study displacements and 

deformation of objects.  These methods are primarily based on the use of mechanical 

probes, strain gauges, and accelerometers and, in general, are invasive because they may 

affect response of the component to the load.  In 1965, however, the method of hologram 

interferometry was invented (Powell and Stetson, 1965) and provided means by which 

holograms of objects could be readily recorded.  Quantitative interpretation of 

interference fringes has traditionally been tedious and prone to considerable inaccuracy.  

This has led to the use of heterodyne and phase step methods to read out the 

interferometric fringes produced during reconstruction of holograms of vibrating objects.  

Although these methods (Ineichen and Mastner, 1980; Stetson, 1970, 1982; Hariharan 

and Oreb, 1986; and Pryputniewicz, 1988) allowed high accuracy, 1/1000 and 1/100 of 

one fringe, respectively, in measurements of local phase differences, they still required 

physical recording of a permanent hologram in some type of photosensitive medium, 

which requires lengthy processing.  Therefore, these methods, which require lengthy 
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processing, do not qualify for fully automated hologram analysis.  To overcome this 

drawback, an automated method for processing of vibration fringes has been developed 

(Stetson and Brohinsky, 1988).  In this method, measurements of irradiances produced by 

mutual interference of the object and reference fields are made electronically by a 

detector array.  Processing of this interferometric information and display of the 

computational results are carried out concomitantly with measurements of irradiation.  

Because this method does not depend on recording of holograms in a conventional media, 

but rather relies on electronic acquisition, processing, and display of optical interference 

information, it is called OEH, also referred to as Electronic Holography, or TV 

Holography (Pryputniewicz, 1990). 

The OEH method allows automated processing of fringes of statically and 

dynamically loaded objects (Stetson and Brohinsky, 1988; Pryputniewicz and Stetson, 

1989).  In this method, measurements of irradiances produced by mutual interference of 

the object and the reference fields are made electronically by a CCD camera, Fig. 4.18. 

In the following sections, application of OEH to static measurements is described. 

4.3.2.1.2. Electronic processing of holograms 

The OEH system is capable of performing either static or dynamic measurements. 

In the discussion that follows, static measurements are implemented by the double-

exposure method.  The double-exposure method was utilized in this project to perform 
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measurements on the MEMS gyroscope.  More specifically, “static” double-exposure 

method was used to study shape and static deformations of the microgyroscopes. 

 
Fig. 4.18.  The OEH system: BS is the beam splitter, M1 and M2 are the mirrors, PS1 and 
PS2 are the phase steppers, SE1 and SE2 are the spatial filter beam expander assemblies, 
BR is the object beam rotator, SI is the speckle interferometer, CCD is the camera, and 

K1 and K2 are the directions of illumination and observation vectors, respectively. 

4.3.2.1.2.1.  Double-exposure method 

Static measurements are characterized by recording “single-exposure” holograms 

of an object at different states of stress (Pryputniewicz, et. al, 2001).  As a result of 

interference between a set of two “single-exposure” holograms, fringes form, if there are 

any optical path differences between the corresponding points on the object as recorded 

in the two holograms. 
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In OEH, this process is carried out by recording sequential frames of images of 

the object corresponding to the two states of stress (Pryputniewicz, 1983).  Typically, 

four (or more) sequential frames are recorded, with a finite phase step - imposed on the 

reference beam - between each frame, for every single-exposure image of the object.  In 

the following discussion, in order to simplify derivation of equations describing the OEH 

process for static measurements, the object will be initially unstressed; results would be 

the same if the object was stressed initially but mathematics would be much more 

complicated (Pryputniewicz, et. al, 2001). 

The image of an unstressed (i.e., unloaded) object can be described by the 

irradiance distribution for the n-th sequential frame, In(x, y), the irradiance at the detector 

array of a CCD camera in the OEH system setup, as 

( ) ( ) ( ) ( ) ( ) ( )[ ]nroron yxyxAyxAyxIyxIyxI θφ ∆+∆++= ,cos,,2,,, , (4.119) 

while the corresponding image of the stressed (i.e., loaded) object can be described by the 

irradiance distribution, In
’(x, y), as 

( ) ( ) ( )
( ) ( ) ( ) ( )[ ]nro

ron

yxyxyxAyxA

yxIyxIyxI

θφ ∆+Ω+∆′′
+′+′=′

,,cos,,2

,,,
. (4.120) 

In Eqs 4.119 and 4.120, x and y identify coordinates of the detectors in the array, Io and Ir 

are irradiances of the object and reference beams, respectively, ∆φ is the phase difference 

between these beams, ∆θn is the finite phase step imposed on the reference beam between 

sequential frames recording individual images, and Ω is the fringe-locus function, 

constant values of which define fringe loci on the surface of the object. 
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Since I and I′ are measured at known coordinates x and y, Eqs 4.119 and 4.120 

contain four unknowns, i.e., irradiances (which are squares of the amplitudes) of the two 

fields, the phase difference between these fields, and the fringe-locus function.  The goal 

of the analysis is to determine Ω because it is related directly to displacements and 

deformations of the object. 

In OEH, ∆φ is eliminated by recording sequentially four image frames with an 

introduction of a 90˚ phase step between each frame.  That is, ∆θn, appearing in Eqs 

4.119 and 4.120 takes on the values of 0˚, 90˚, 180˚, and 270˚.  This process can be 

represented by two sets of four simultaneous equations corresponding to Eqs 4.119 and 

4.120, respectively, i.e., 

( )°+∆++= 0cos21 φroro AAIII , (4.121) 

( )°+∆++= 90cos22 φroro AAIII , (4.122) 

( )°+∆++= 180cos23 φroro AAIII , (4.123) 

( )°+∆++= 270cos24 φroro AAIII , (4.124) 

and 

( )°+Ω+∆′++′=′ 0cos21 φroro AAIII , (4.125) 

( )°+Ω+∆′++′=′ 90cos22 φroro AAIII , (4.126) 

( )°+Ω+∆′++′=′ 180cos23 φroro AAIII , (4.127) 

( )°+Ω+∆′++′=′ 270cos24 φroro AAIII , (4.128) 

where the arguments (x, y) were omitted for simplification.  Evaluation of Eqs 4.121 to 

4.128 yields 
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φ∆++= cos21 roro AAIII , (4.129) 

φ∆++= sin22 roro AAIII , (4.130) 

φ∆−+= cos23 roro AAIII , (4.131) 

φ∆−+= sin24 roro AAIII , (4.132) 

and 

( )Ω+∆′++′=′ φcos21 roro AAIII , (4.133) 

( )Ω+∆′++′=′ φsin22 roro AAIII , (4.134) 

( )Ω+∆′−+′=′ φcos23 roro AAIII , (4.135) 

( )Ω+∆′−+′=′ φsin24 roro AAIII . (4.136) 

It should be noted that systems of equations similar to Eqs 4.129 to 4.132 and Eqs 

4.133 to 4.136 could be obtained using any value of the phase step, however, use of the 

90˚ phase step results in the simplest computations. 

Subtracting Eqs 4.129 and 4.131 as well as Eqs 4.130 and 4.132 we obtain, for the 

unstressed object, the following set of two equations: 

( ) φ∆=− cos431 ro AAII , (4.137) 

and 

( ) φ∆=− sin442 ro AAII . (4.138) 

Following the above procedure and subtracting Eqs 4.133 and 4.135 as well as 4.134 and 

4.136, a set of two equations is obtained for the stressed object, i.e., 

( )Ω+∆′=




 ′−′ φcos431 ro AAII , (4.139) 
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and 

( )Ω+∆′=




 ′−′ φsin442 ro AAII . (4.140) 

Addition of Eqs 4.137 and 4.139 yields 

( ) ( )Ω+∆′+∆=




 ′−′+− φφ cos4cos43131 roro AAAAIIII . (4.141) 

Because object displacements and deformations are small, it can be assumed that 

oo AA ≈′ .  Therefore, Eq. 4.141 becomes 

( ) ( )[ ]Ω+∆+∆=




 ′−′+− φφ coscos43131 ro AAIIII . (4.142) 

Recognizing that cos( ) cos cos sin sin∆ Ω ∆ Ω ∆ Ωφ φ φ+ = − , Eq. 4.142 can be written as  

( ) ( )[ ]Ω∆−∆Ω+=




 ′−′+−= sinsincoscos1431311 φφro AAIIIID . (4.143) 

In a similar way, addition of Eqs 4.138 and 4.140 simplifies to 

( ) ( )[ ]Ω∆+∆Ω+=




 ′−′+−= sincossincos1442422 φφro AAIIIID . (4.144) 

Finally, addition of the squares of Eqs 4.133 and 4.144 yields 

( )[ ]{ }
( )[ ]{ }2

22
2

2
1

sincossincos14

sinsincoscos14

Ω∆+∆Ω+

+Ω∆−∆Ω+=+

φφ

φφ

ro

ro

AA

AADD
, (4.145) 

which reduces to  

( )[ ]Ω+Ω+=+ 22222
2

2
1 sincos116 ro AADD , (4.146) 

wherefrom 

( )Ω+=+ cos132 222
2

2
1 ro AADD . (4.147) 
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Furthermore, recognizing that ( ) 





 Ω

=Ω+
2

cos2cos1 2 , Eq 4.147 can be reduced to  

( ) 





 Ω

=+
2

cos82
2

2
1 ro AADD , (4.148) 

which represents the static viewing image displayed by the OEH.  In Eq. 4.148, Ω is the 

fringe-locus function corresponding to the static displacements and/or deformations of 

the object.  The fringe-locus function can be determined by processing the sequential 

OEH images as described below. 

In order to obtain data from the OEH images, we will again employ Eqs 4.127 to 

4.136 and follow the procedure used to derive Eq. 4.147.  The result of this procedure is 

( ) ( )[ ]Ω∆+∆Ω−=




 ′−′−−= sinsincoscos1431313 φφro AAIIIID , (4.149) 

( ) ( )[ ]Ω∆−∆Ω−=




 ′−′−−= sincossincos1442424 φφro AAIIIID , (4.150) 

Equations 4.149 and 4.150 lead to 

( )Ω−=+ cos132 222
4

2
3 ro AADD . (4.151) 

Subtracting Eq 4.151 from Eq 4.147 we obtain 

( ) ( ) ( ) ( )Ω−−Ω+=+−+= cos132cos132 22222
4

2
3

2
2

2
1 roro AAAADDDDD  

or 

Ω= cos64 22
ro AAD . (4.152) 

Starting with Eqs 4.137 to 4.140, we can also determine (Pryputniewicz, 1983) 

( ) ( )[ ]Ω∆+∆Ω+=




 ′−′+−= cossincossin1442311 φφro AAIIIIN , (4.153) 
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( ) ( )[ ]Ω∆−∆Ω+=




 ′−′+−= coscossinsin1431422 φφro AAIIIIN , (4.154) 

( ) ( )[ ]Ω∆−∆Ω−=




 ′−′+−= cossincossin1442313 φφro AAIIIIN , (4.155) 

( ) ( )[ ]Ω∆+∆Ω−=




 ′−′+−= coscossinsin1431424 φφro AAIIIIN , (4.156) 

( )Ω+=+ sin132 222
2

2
1 ro AANN , (4.157) 

( )Ω−=+ sin132 222
4

2
3 ro AANN , (4.158) 

and 

( ) ( ) Ω=+−+= sin64 222
4

2
3

2
2

2
1 ro AANNNNN . (4.159) 

Finally, dividing Eq. 4.159 by Eq. 4.152, we obtain 

Ω
Ω

=
cos64
sin64

22

22

ro

ro

AA
AA

D
N , (4.160) 

from which it follows that 







=Ω −

D
N1tan . (4.161) 

It should be noted that Ω, computed from Eq. 4.161, is a spatial function that depends on 

coordinates x and y.  Therefore, its values are determined for every coordinate pair (x, y) 

in the object space.  Once the values of Ω are determined, they can be used to compute 

object displacements as discussed in Section 4.3.2.1.2.2. 
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4.3.2.1.2.2. Determination of displacements based on the fringe-locus function 

As described in Section 4.3.2.1.2.1, images recorded by the CCD are processed by 

the image-processing computer (IP) to determine the fringe-locus function, Ω, constant 

values of which define fringe loci on the surface of object under investigation.  The 

values of Ω relate to the system geometry and the unknown vector L, defining 

deformations, via the relationship (Pryputniewicz, 1995a; Furlong and Pryputniewicz, 

2000) 

( ) LKLKK •=•−=Ω 12 , (4.162)  

where K is the sensitivity vector defined in terms of vectors K1 and K2 identifying 

directions of illumination and observation, respectively, in the OEH system, Fig. 4.19. 

Quantitative determination of structural deformations due to the applied loads can 

be obtained, by solving a system of equations similar to Eq. 4.162, to yield 

(Pryputniewicz, 1995a) 

[ ] ( )Ω=
− T1T ~~~ KKKL , (4.163)  

where T~K represents the transpose of the matrix of the sensitivity vectors K.  Equation 

4.163 indicates that deformations determined from interferograms are functions of K and 

Ω, which have spatial, i.e., (x,y,z), distributions over the field of interest on the object 

being investigated.  Equation 4.163 can be represented by a phenomenological equation 

(Pryputniewicz, 1993) 

( )Ω= ,KLL , (4.164)  

based on which the RSS-type uncertainty in L, i.e., Lδ , can be determined to be 
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2/122






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









 Ω

Ω∂
∂

+







∂
∂

= δδδ LK
K
LL , (4.165)  

where KL ∂∂ / and Ω∂∂ /L  represent partial derivatives of L with respect to K and Ω, 

respectively, while Kδ and Ωδ  represent the uncertainties in K and Ω, respectively.  It 

should be remembered that K, L, and Ω are functions of spatial coordinates (x,y,z), i.e., K 

= K(x,y,z), L = L(x,y,z), and Ω = Ω(x,y,z), respectively, when performing partial 

differentiations. 

 
Fig. 4.19.  Single-illumination and single-observation geometry of a fiber optic based 

OEH system: LDD is the laser diode driver, LD is the laser diode, OI is the optical 
isolator, MO is the microscope objective, DC is the fiber optic directional coupler, PZT1 

andand PZT2 are the piezoelectric fiber optic modulators, IP is the image-processing 
computer, IT is the interferometer, OL is the objective lens, CCD is the camera, while K1 

and K2 are the directions of illumination and observation, respectively. 
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After evaluating, Eq. 4.165 indicates that Lδ is proportional to the product of the 

local value of L with the RSS value of the ratios of the uncertainties in K and Ω to their 

corresponding local values, i.e., 

2/122




















Ω
Ω

+





∝

δδδ
K
KLL . (4.166)  

For typical geometries of the OEH systems used in recording of interferograms, 

the values of KK /δ are less than 0.01.  However, for small deformations, the typical 

values of ΩΩ /δ are about one order of magnitude greater than the values for KK /δ .  

Therefore, the accuracy with which the fringe orders are determined influences the 

accuracy in the overall determination of deformations (Pryputniewicz, 1981).  To 

minimize this influence, a number of algorithms for determination of Ω were developed.  

Some of these algorithms require multiple recordings of each of the two states, in the case 

of double-exposure method, of the object being investigated with introduction of a 

discrete phase step between the recordings (Furlong, 1999; Pryputniewicz, 1995b; 

Furlong and Pryputniewicz, 2000). 

4.3.2.2. OELIM methodology 

Deformations of microgyroscopes were determined, in this thesis, using 

optoelectronic laser interferometric microscope (OELIM) methodology, which is based 

on the OEH method (Section 4.3.2.1), but specifically implemented for the study of 

MEMS (Brown and Pryputniewicz, 2000).  In OELIM, a beam of collimated coherent 
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light is brought into the system and is directed into a spatial filter (SF) assembly 

consisting of a microscope objective and a pinhole filter, Fig. 4.20.  The resulting, 

expanded, light field is then collimated by lens L1, and redirected by the directional beam 

splitter (DBS) through the long distance microscope objective lens (MO) to illuminate the 

microgyroscope (Pryputniewicz, et al., 2000).  In the OELIM configuration shown in Fig. 

4.20, the proximal beam splitter (PBS) is placed close to the MEMS.  The reflected light 

is transmitted back through MO, DBS, and the relay lens to the CCD camera.  The CCD 

camera captures images of the microgyroscope to measure its shape, or as it deforms 

during functional operation.  The images are then analyzed and shape or deformation 

fields are determined. 

 
Fig. 4.20.  Microscope based optical configuration of the OELIM 

system: SF is the spatial filter/beam expander, L1 is the 
illumination optics, DBS is the directional beam splitter, MO is the 
microscope objective, PBS is the proximal beam splitter, CCD is 

the host computer controlled image acquisition camera 
(Pryputniewicz, et al., 2000). 
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4.3.2.3.  OELIM system and procedure 

The optical and electronic configurations of the OELIM system are shown in Figs 

4.20 and 4.21, respectively.  In the OELIM system, the laser output is divided into two 

beams by means of a beam splitter.  One of these beams is directed via a piezoelectrically 

driven mirror and is shaped by the spatial filter beam expander assembly to illuminate the 

object uniformly; this mirror can be driven at the same frequency as the object excitation 

to provide bias vibration, when studying MEMS during their functional operation.  The 

other beam, also spatially filtered and expanded, is directed toward the reference input of 

the speckle interferometer by another piezoelectrically driven mirror that introduces 90˚ 

phase steps between consecutive frames.  The speckle interferometer combines the object 

beam with the reference beam and directs them collinearly toward the detector array of 

the CCD camera (Steward and Saggal, 2002; Steward, et al., 2002). 

 
Fig. 4.21.  Electronic configuration of the OELIM system. 
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In the OELIM system, the CCD camera detects the interference pattern and sends 

it to the pipeline processor, Fig. 4.21.  In the processor, the sequential frames are 

analyzed. All computations, relating to image analysis, are done in a pipeline processor, 

which operates under control of a host computer.  The host computer also controls 

excitation of the object, coordinates it with the bias vibration imposed on the object, and 

keeps track of the 90° phase stepping between the frames. 

By operating on each input image and its three predecessors, the pipeline 

processor produces a hologram, and this hologram may be viewed concomitantly on the 

TV monitor.  The resulting electronic holograms are then processed by the host computer 

to determine spatial distribution of the displacement/deformation vectors that can be 

viewed directly on the computer monitor.  The microscope setup that was used to 

measure the shape of the microgyro is illustrated in Figs 4.22 and 4.23. 

 
Fig. 4.22.  OELIM microscope setup. 

 
Fig. 4.23.  Close-up of the microscope 

setup.
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5.  RESULTS AND DISCUSSION 

This thesis makes use of the ACES methodology to determine deformations of 

MEMS gyroscopes.  Therefore, the results were obtained using the analytical, 

computational, and experimental solutions methodology that was described in Chapter 4.  

These results are presented in this chapter beginning with the analytical displacement 

calculations for a folded spring, which are complemented by the computational FEM 

analyses done in COSMOS/M, and then followed by the preliminary experimental 

results.  When presenting analytical, computational, and experimental results, selected 

comparisons between these results were made to determine degrees of correlation, subject 

to the uncertainty limits. 

5.1.  Analytical results 

Because of inherent differences that usually are found between analytical and 

computational results of the same object, due to assumptions and approximations used 

while developing models, two different cases, addressing modeling of the folded spring, 

were considered in this thesis.  The first case, addressing model of the folded spring 

represented only by a cantilever section CD, was used to establish degree of correlation 

between the analytical and computational results on a relatively simple structure such as a 

cantilever.  Clearly, of this case, when the analytical model and computational model are 

properly developed and solved, differences between the corresponding results should be 

“zero.” 
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In the second case, addressing the entire folded spring, assumptions and 

approximations used to develop the analytical model may not be the same as those used 

in the commercial FEM code used for the computational solutions.  Therefore, finite 

differences may be obtained when comparing results of analytical and computational 

solutions for deformations of the folded spring.  Analytical results presented in this 

section comprise of deformations at point D of the cantilever beam alone, at point D 

considering the entire folded spring, and the uncertainty analysis of these deformations, 

discussed in Sections 5.1.1 and 5.1.2, respectively. 

5.1.1. Analytically determined deformations at point D 

Analytical results were obtained by applying the force in the x, i.e., in-plane 

direction, Eq. 4.86, and the Coriolis force, Eq. 2.7, to the folded spring.  The force in the 

x, or the in-plane direction, is due to the oscillatory motion of the proof mass.  Therefore, 

the force calculated for the in-plane displacement is time varying, i.e., Fx(t), leading to 

time varying displacement ∆x(t).  In order to obtain the Fx(t), the displacement of the 

proof mass had to be calculated first, using Eq. 4.80, the motion of the proof mass over 

five periods of oscillation is illustrated in Fig. 5.1.   

After the displacements were calculated the time derivative of Eq. 4.80 was taken 

to obtain the speed of the proof mass expressed by Eq. 4.81, with the results displayed in 

Fig. 5.2.  In order to determine the force applied to the folded springs that support the 

proof masses of the microgyro, acceleration the proof mass was calculated based on Eq. 
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4.82, Fig. 5.3. 
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Fig. 5.1.  Sinusoidal displacements, as a function of time, for the proof mass of the 
microgyro resonating at 10 kHz. 
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Fig. 5.2.  Speed, as a function of time, for the proof mass of the microgyro 
resonating at 10 kHz. 
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Fig. 5.3.  Acceleration, as a function of time, for the proof mass of the 
microgyro resonanting at 10 kHz. 

For many applications, the acceleration of an object is represented in g’s, i.e., 

multiples of gravitational acceleration.  Figure 5.4 illustrates acceleration of the proof 

mass of the microgyro in g’s. 

Using accelerations illustated in Figs 5.3 and 5.4, the time dependent in-plane 

force acting on the individual folded springs was calculated, using Eq. 4.79, and is 

illustrated in Fig. 5.5.  The time dependent in-plane force, Fx(t), was used to determine 

the x-component and z-component of the displacement defined by Eqs 4.76 and 4.78, 

respectively, with the results displayed in Figs 5.6 and 5.7, respectively.  The magnitude 

of the x-component of these displacements varies from -21 µm to +21 µm, while the 

magnitude of the z-component of the displacements ranges from -2.4 µm to +2.4 µm. 
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Fig. 5.4.  Acceleration in g’s, as a function of time, for the proof mass of the 
microgyro resonanting at 10 kHz. 
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Fig. 5.5.  Time dependent in-plane force acting on the folded spring of the microgyro. 
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Fig. 5.6.  Time dependent x-component of displacement at point D, of the folded 
spring at the proof mass, of the microgyroscope resonanting at 10 kHz. 
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Fig. 5.7.  Time dependent z-component of displacement, at point D on the folded spring 
at the proof mass, of the microgyroscope resonanting at 10 kHz. 
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Based on the results shown in Fig. 5.5 and the results obtained using Eq. 2.7, 

forces used in the analytical and computational determinations of the deformations at 

point D on the folded spring are as listed in Table 5.1, where the force in the z-direction 

was assumed to be zero, for this application. 

Table 5.1.  Forces applied to the analytical equations. 
Force Value 
x-direction, Fx 21.075 µN 
y-direction, Fy 0.744747 nN
z-direction, Fz 0.0 

The displacements at the point of force application, point D, for the cantilever beam 

representing the folded spring, derived in Section 4.1.3.2, were determined using the 

forces listed in Table 5.1 and Eqs 4.46 to 4.48 with results summarized in Table 5.2.  

Displacements at point D while considering the entire folded spring were determined 

using the forces listed in Table 5.1 and Eqs 4.76 to 4.78 with results summarized in Table 

5.3  

Table 5.2.  Displacements at point D based on the analytical 
considerations of the cantilever beam. 
Direction Value 
x-displacement, ∆dx 10.6719 µm 
y-displacement, ∆dy 0.5434 nm 
z-displacement, ∆dz 0 µm 
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Table 5.3.  Displacements at point D based on the analytical 
considerations of the entire folded spring. 

Direction Value 
x-displacement, ∆Dx 21.4583 µm 
y-displacement, ∆Dy 1.1314 nm 
z-displacement, ∆Dz -2.4268 µm 

Based on Eqs 4.76 to 4.78, in Table 5.3 there is displacement in the z-direction, for the 

folded spring, even without force acting directly in the z-direction, because of bending 

effects in Section BC, due to the force in the x-direction.  However, based on Eqs 4.46 to 

4.48, there is no deformation in the z-direction because the cantilever does not produce 

any twisting; therefore, there is no deformation in the z-direction.  The values shown in 

Tables 5.2 and 5.3 will be used for comparisons with the computational results.   

5.1.2.  Uncertainty analysis of the analytically determined deformations at point D 

In order to determine how good the analytical results obtained in Section 5.1.1 

are, an uncertainty analysis was performed.  This analysis was performed for all three 

Cartesian components of the deformations at point D, based on Eqs 4.76 to 4.78, Section 

4.1.5.  Initial evaluation of the overall uncertainties in ∆Dx, ∆Dy, and ∆Dz was based on the 

values of the independent parameters and their uncertainties as listed in Table 4.4.  

Results for this first case of determination of uncertainties in deformations at point D are 

summarized in Table 5.4 and indicate that percent overall uncertainties for all three 

deformations were above 55%.  The percent overall uncertainties are based on the 



 118

analytically determined deformations at point D listed in Table 5.3.  The largest 

individual contributors to the overall uncertainty were due to the uncertainty in the 

thickness for the deformations in the out-of-plane direction and due to the uncertainty in 

width of Sections AB and CD for the deformations in the in-plane directions. 

Table 5.4.  Summary of overall uncertainties in the deformations at 
point D, for the first case. 

Calculated uncertainty Percent uncertainty Largest contributor 
δ∆Dx 12.51 µm 58.29% δb 
δ∆Dy 0.72 nm 61.60% δh 
δ∆Dz 1.42 µm 58.49% δb 

Since the overall uncertainties in the first case were too high they had to be 

reduced.  This reduction can only be achieved by optimizing uncertainties in the 

independent parameters without any changes in the nominal values of these parameters 

(Pryputniewicz, 1993).  For example, to reduce the overall uncertainty in ∆Dy, the 

uncertainty in the thickness, which was established to be the largest contributor to δ∆Dy, 

was reduced to 0.125 µm representing 5% of the nominal value, i.e., current industry 

practice for the tolerance in fabricating the thickness.  In order to reduce the overall 

uncertainties in ∆Dx and ∆Dz, the uncertainty in the width, b, was also decreased, to 0.25 

µm.  This was done because this uncertainty may be assumed to be half of the least 

significant digit, (i.e., the least count) in the resolution that is equal to 0.5 µm.  Realizing 

that width and length are measured using the same microscope, uncertainties in all width 

and length dimensions were assumed to be equal to 0.25 µm, as summarized in Table 5.5.  
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The values of Table 5.5 were used to determine overall uncertainties in deformations at 

point D, for the second case, Table 5.6. 

Table 5.5.  Values and uncertainties used during determination of 
overall uncertainties in deformations at point D, for the second case. 

Variable Units Value Uncertainty 
LAB µm 111 0.25  
LBC µm 17 0.25 
LCD µm 98 0.25 
b µm 3 0.25 

bBC µm 10 0.25 
h µm 2.5 (0.05h) = 0.125 
Lf µm 40 0.25 

Table 5.6.  Overall uncertainties in the deformations at point D, for the second case. 
Calculated uncertainty Percent uncertainty Largest contributor 
δ∆Dx 5.98 µm 27.85% δb 
δ∆Dy 0.21 nm 17.67% δh 
δ∆Dz 0.68 µm 27.94% δb 

Using the values of uncertainties of the second case Table 5.5 reduced δ∆Dy to about 18% 

with δh contributing most to the overall uncertainty, while δ∆Dx and δ∆Dz were reduced to 

about 28% with δb contributing the most to the corresponding values in the overall 

uncertainties, Table 5.6.  These changes were expected since for the out-of-plane 

deformations, the largest contributor to the overall uncertainty is the thickness: due to the 

fact that thickness is cubed in the equations for moment of inertia.  Therefore, a change of 

the uncertainty in thickness should produce a large change in the overall uncertainty.  The 
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same is true for the in-plane deformations in the x and z directions: the width is cubed in 

the moment of inertia; therefore, a reduction of the uncertainty in width produced a large 

change in the overall uncertainty.  Examination of the results summarized in Table 5.6 

indicates that all overall uncertainties reduced substantially when compared with the 

results summarized in Table 5.4.  Specifically δ∆Dy reduced from about 62% to about 

18%. 

The uncertainties of the second case were still large; therefore, to reduce the 

uncertainties even more, the uncertainty in the thickness was reduced to 1% of the total 

thickness, i.e., to 0.025 µm.  This was done since 1% of the total thickness is the 

tolerance in thickness that is becoming a practice in fabrication processes for MEMS.  

Using this value for the uncertainty in thickness, the overall uncertainties for a third case 

were determined, Table 5.7.  The reduction in the uncertainty of the thickness reduced the 

uncertainty for the deformation in the y-direction to about 10%.  The largest contributors 

to the overall uncertainties were the width for all three Cartesian directions, x, y, and z.  

Therefore, in order to reduce the overall uncertainties in the deformations at point D the 

uncertainties in width and length will have to be reduced again, subject to ability to 

obtain them using fabrication processes available for making MEMS. 

Table 5.7.  Overall uncertainties in the deformations at point D, for the third case. 
Calculated uncertainty Percent uncertainty Largest contributor 
δ∆Dx 5.98 µm 26.96% δb 
δ∆Dy 0.12 nm 10.12% δb 
δ∆Dz 0.68 µm 27.07% δb 
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5.2.  Computational results 

The first set of computational results obtained in COSMOS/M that will be 

discussed are those for the deformations of just the cantilever section CD representing the 

folded spring.  The results in the x-direction will be presented first.  Before the 

deformations were computed, convergence analyses were performed to establish proper 

meshing, i.e., discretization, of the cantilever.  This was done using both linear and 

parabolic tetrahedral elements.  For the linear tetrahedral elements it took about 20,000 

elements to properly discretize the cantilever to reach convergence, meaning that the 

difference between the two most recent discretizations was less than 0.1%; however for 

the parabolic tetrahedral elements it only took about 7,000 elements. 

Results of the convergence analyses for the force acting in the x-direction are 

summarized in Table 5.8 and illustrated in Fig. 5.8 for linear tetrahedral elements and in 

Table 5.9 and Fig. 5.9 for parbolic tetrahedral elements.  Using the COSMOS/M model 

of the cantilever comprising of 20,000 linear tetrahedral solid elements, deformation field 

due to the force acting in the x-direction was determined, indicating maximum 

deformation of 10.66 µm at the point of force application, and using 6,664 parabolic 

tetrahedral solid elements, the deformation field was determined, Fig. 5.10, indicating a 

maximum deformation of 10.66 µm at point D. 

The results obtained computationally in COSMOS/M for the deformations in the 

y, i.e., the out-of-plane direction, for the cantilever using linear and parabolic tetrahedral 

solid elements will now be reviewed.  Again, convergence indicates that the folded 

spring, subjected to a force in the y-direction, requires about 20,000 elements to properly 
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discretize it for the linear elements, Table 5.10 and Fig. 5.11, while only about 7,000 

elements for the parabolic elements, Table 5.11 and Fig. 5.12. 

Table 5.8.  Convergence of the maximum values of the 
deformation component in the x-direction for the cantilever using 

linear tetrahedral elements. 
Number of elements Displacement, µm 

188 1.2439 
252 2.0705 
353 2.988 
768 5.2284 

1,433 6.0965 
6,664 8.3394 

13,997 10.66 
23,317 10.661 
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Fig. 5.8.  Convergence of the maximum deformations in the x-direction, due to 
the force in the x-direction, for the cantilever using linear tetrahedral elements. 
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Table 5.9.  Convergence of the maximum values of the deformation component in 
the x-direction for the cantilever using parabolic tetrahedral elements. 

Number of elements Deformation, µm 
188 10.627 
353 10.649 
768 10.651 

1,786 10.655 
4,494 10.659 
6,664 10.659 
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Fig. 5.9.  Convergence of the maximum deformations in the x-direction, due to the 

force in the x-direction, for the cantilever using parabolic tetrahedral elements. 

Using the COSMOS/M model of the cantilever beam comprising of 20,000 linear 

tetrahedral solid elements, deformation field due to the force acting in the y-direction was 

determined, indicating maximum deformation of 0.54 nm at the point of force 

application, and using 6,664 parabolic tetrahedral solid elements, the deformation field 

was determined, Fig. 5.13, indicating a maximum deformation of 0.54 nm at point D. 
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Fig. 5.10.  COSMOS/M determined deformation field in the x-direction 

due to the force in the x-direction, for the cantilever using 6,664 parabolic 
tetrahedral solid elements. 

Table 5.10.  Convergence of the maximum values of the deformation component 
in the y-direction for the cantilever using linear tetrahedral elements. 

Number of elements Deformation, nm 
188 0.0557 
252 0.085428 
353 0.13442 

1,433 0.23037 
6,664 0.39804 

13,997 0.54278 
23,317 0.54278 

Results from the convergence analyses will be compared with the analytical 

deformations that are summarized in Table 5.2.  The convergence results illustrate that 

the parabolic tetrahedral solid elements converge faster than the linear tetrahedral 

elements, because of this the convergence analyses for the entire folded spring were done 

using only the parabolic tetrahedral solid elements. 
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Fig. 5.11.  Convergence of the maximum deformations in the y-direction, due to the force 

in the y-direction, for the cantilever using linear tetrahedral elements. 

Table 5.11.  Convergence of the maximum values of the 
deformation component in the y-direction for the cantilever using 

parabolic tetrahedral elements. 
Number of elements Deformation, nm 

188 0.54113 
353 0.5418 
768 0.54228 

1,786 0.5426 
4,494 0.54266 
6,664 0.54271 

Results of convergence analysis of deformations for the entire folded spring due 

to the force acting in the x-direction are summarized in Table 5.12 and displayed in Fig. 

5.14.  These results indicate that, as the number of elements representing the folded 

spring increases, the maximum value of the deformation in the direction of the applied 

force also increases at a decreasing rate, reaching 19.58 µm when 17,000 parabolic 
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tetrahedral solid elements are used.  Using the COSMOS/M model of the folded spring 

comprising of 17,000 parabolic tetrahedral solid elements, deformation field due to the 

force acting in the x-direction was determined, Fig. 5.15, indicating maximum 

deformation of 19.58 µm at the point of force application. 

The results obtained computationally in COSMOS/M for the deformation in the y, 

out-of-plane, direction will now be discussed.  Again, convergence indicates that the 

entire folded spring, subjected to a force in the y-direction, requires about 17,000 

elements to properly discretize it, Table 5.13 and Fig. 5.16. 

COSMOS/M determined deformation field of the spring, defined about 17,000 

elements and loaded by a force acting in the y-direction is displayed in Fig. 5.17 

indicating that the maximum deformation of 0.001098 µm is at the point of force 

application. 
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Fig. 5.12.  Convergence of the maximum deformations in the y-direction, due to the force 

in the y-direction, for the cantilever using parabolic tetrahedral elements. 
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Fig. 5.13.  COSMOS/M determined deformation field in the y-direction 

due to the force in the y-direction, for the cantilever using 6,664 parabolic 
tetrahedral solid elements. 

Table 5.12.  Convergence of the maximum values of the deformation 
component in the x-direction for the entire folded spring of the microgyro, 

using parabolic tetrahedral elements. 
Number of elements Deformation, µm 

346 19.394 
569 19.456 
812 19.475 

1,263 19.495 
1,952 19.520 
5,245 19.545 

11,501 19.569 
17,285 19.582 

Now the results obtained computationally in COSMOS/M for the deformation in 

the z-direction, due to the force in the x-direction, will be presented.  Results of 

convergence analysis for this case are summarized in Table 5.14 and displayed in Fig. 

5.18.  These results indicate that about 17,000 elements adequately discretize the folded 
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spring.  Deformation field for this case is shown in Fig. 5.19 displaying the maximum 

value of -2.282 µm. 
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Fig. 5.14.  Convergence of the maximum deformations in the x-direction, due 
to the force in the x-direction, for the entire folded spring of the microgyro. 

 
Fig. 5.15.  COSMOS/M determined deformation field in the x-direction 

due to the force in the x-direction for the entire folded spring using 17,285 
parabolic tetrahedral solid elements. 
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Table 5.13.  Convergence of the maximum values of deformation component 
in the y-direction for the entire folded spring of the microgyro, using parabolic 

tetrahedral elements. 
Number of elements Deformation, nm 

346 1.0767 
512 1.0806 

1,086 1.0858 
1,263 1.0874 
1,746 1.0892 
1,952 1.0900 
3,056 1.0940 
5,245 1.0947 

11,501 1.0967 
17,285 1.0981 
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Fig. 5.16.  Convergence of the maximum deformations in the y-direction, due 
to the force in the y-direction, for the entire folded spring of the microgyro. 

The convergence analyses for the entire folded spring, done with parabolic 

tetrahedral solid elements for all three Cartesian coordinate directions, took about 17,000 

elements.  This increase in the number of elements needed to properly discretize the 

model of the entire folded spring, when compared to the 6,664 elements necessary to 
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discretize the cantilever, makes sense, since the model increased in complexity when 

sections AB and BC were added to the cantilever, section CD.  Therefore the number of 

elements necessary to discretize the FEM model had to increase to account for the 

additional complexity. 

 
Fig. 5.17.  COSMOS/M determined deformation field in the y-
direction due to the force in the y-direction for the entire folded 

spring using 17,285 prabolic tetrahedral elements. 

Table 5.14.  Convergence of the maximum values of deformation 
component in the z-direction for the entire folded spring of the microgyro, 

using parabolic tetrahedral elements. 
Number of elements  Deformation, µm 

346 -2.2570 
569 -2.2708 
812 -2.2723 

1,263 -2.2740 
1,952 -2.2760 
3,056 -2.2775 
5,245 -2.2786 

11,501 -2.2808 
17,285 -2.2815 
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Fig. 5.18.  Convergence of the maximum deformations in the z-direction, due to the force 

in the x-direction, for the entire folded spring of the microgyro. 

 
Fig. 5.19.  COSMOS/M determined deformation field in the z-direction 

due to the force in the x-direction for the entire folded spring using 17,285 
parabolic tetrahedral elements. 
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5.3. Comparison of the analytical and computational results 

A comparison of the deformation values found analytically and computationally 

for the spring was done using percent difference calculated according to the following 

equation: 

%100
analyt

analytcomp ⋅
∆

∆−∆
=ferencePercentDif , (5.1) 

where ∆comp is the deformation obtained computationally, and ∆analyt is the deformation 

obtained from the analytical considerations.  The percentage difference based on Eq. 5.1 

provides a convenient way of indicating whether computational results are under 

representing or over representing the analytical results, because of the sign of the results 

obtained.  That is, a negative percent difference indicates that the computational result 

under represents the corresponding analytical result and a positive percent difference 

indicates over representation of the analytical result. 

The computationally determined x-component of displacement for the cantilever 

representation of the folded spring, based on the linear and parabolic tetrahedral solid 

elements, will now be compared to the analytically calculated displacement in the x-

direction using the values of Tables 5.2, 5.8, and 5.9, and applying these values to Eq. 

5.1.  Results of the comparison are summarized in Tables 5.15 and 5.16 and illustrated in 

Figs 5.20 and 5.21. 

Based on Tables 5.15 and 5.16 and Figs 5.20 and 5.21, at convergence the percent 

differences between the analytical and computational displacements for the linear and 
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parabolic tetrahedral solid elements reached about -0.1%, using 23,317 linear and 6,664 

parabolic elements, respectively. 

Table 5.15.  COSMOS/M percent differences for cantilever deformations 
in the x-direction using linear tetrahedral solid elements. 

Number of elements Deformation, µm Percent difference, % 
188 1.2439 -757.935 
252 2.0705 -415.424 
353 2.988 -257.157 
768 5.2284 -104.113 

1,433 6.0965 -75.049 
6,664 8.3394 -27.969 

10,761 9.1918 -16.102 
13,997 10.66 -0.111 
23,317 10.661 -0.102 
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Fig. 5.20.  Percent differences between COSMOS/M and analytically determined 
x-components of deformation for the cantilever due to the force in the x-direction, 

using linear tetrahedral solid elements. 
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Table 5.16.  COSMOS/M percent differences for cantilever deformations in 
the x-direction using parabolic tetrahedral solid elements. 

Number of elements Deformation, µm Percent difference, % 
188 10.627 -0.422 
353 10.649 -0.215 
768 10.651 -0.196 

1,786 10.655 -0.158 
4,494 10.659 -0.121 
6,664 10.659 -0.121 

The computationally determined y-component of displacement for the cantilever, 

based on the linear and parabolic tetrahedral solid elements, will now be compared to the 

analytically calculated displacement in the y-direction using the values of Tables 5.2, 

5.10, and 5.11, and applying these values to Eq. 5.1.  Results of the comparison are 

summarized in Tables 5.17 and 5.18 and illustrated in Figs 5.22 and 5.23. 
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Fig. 5.21.  Percent differences between COSMOS/M and analytically determined 
x-components of deformation for the cantilever due to the force in the x-direction, 

using parabolic tetrahedral solid elements. 
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Table 5.17.  COSMOS/M percent differences for cantilever deformations in 
the y-direction using linear tetrahedral solid elements. 

Number of elements Deformations, nm Percent difference, % 
188 0.0557 -875.619 
252 0.085428 -536.115 
353 0.13442 -304.270 

1,433 0.23037 -135.890 
6,664 0.39804 -36.524 

10,761 0.45019 -20.709 
13,997 0.54278 -0.118 
23,317 0.54278 -0.118 
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Fig. 5.22.  Percent differences between COSMOS/M and analytically determined 
y-components of deformation for the cantilever due to the force in the y-direction, 

using linear tetrahedral solid elements. 

Based on Tables 5.17 and 5.18 and Figs 5.22 and 5.23, at convergence the percent 

difference between the analytical and computational displacements for 23,317 linear and 

6,664 parabolic tetrahedral solid elements reached about -0.1%, respectively.  Since it 

took the linear elements about 3.5 times more elements to converge than it took the 
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parabolic elements to properly discretize, the parabolic elements reach convergence faster 

than the linear elements. 

Table 5.18.  COSMOS/M percent differences for cantilever deformations in 
the y-direction using parabolic tetrahedral solid elements. 

Number of elements Deformations, nm Percent difference, % 
188 0.54113 -0.423 
353 0.5418 -0.299 
768 0.54228 -0.210 

1,786 0.5426 -0.151 
4,494 0.54266 -0.140 
6,664 0.54271 -0.131 
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Fig. 5.23.  Percent differences between COSMOS/M and analytically determined 
y-components of deformation for the cantilever due to the force in the y-direction, 

using parabolic tetrahedral solid elements. 
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Results shown in Tables 5.17 and 5.18 and Figs 5.22 and 5.23 show that, at 

convergence, percent differences between the computational results based on the linear 

and parabolic tetrahedral solid elements and the analytical results are about -0.1%.   

Therefore, results shown in Tables 5.15 to 5.18 and Figs 5.20 to 5.23 indicate that, 

both, linear and parabolic tetrahedral solid element discretization of the folded spring is 

appropriate for this application.  However, since the parabolic elements require fewer 

elements, only 6,664 elements compared to 23,317 linear elements, the parabolic 

elements are more desirable.  These results also indicate that Castigliano’s second 

theorem and energy methods are a valid way to model deformations of the cantilever, and 

therefore the entire folded spring. 

The computationally determined x-component of deformation for the entire folded 

spring will now be compared to the analytically calculated deformation in the x-direction 

using the values of Tables 5.3 and 5.12 and applying these values to Eq. 5.1.  Results of 

the comparison are summarized in Table 5.19 and Fig. 5.24.  Based on Table 5.19 and 

Fig. 5.24, at convergence, which occurs with 17,285 parabolic tetrahedral solid elements, 

the percent difference maximum deformations of the entire folded spring, determined 

analytically and computationally using parabolic tetrahedral elements, reached about -

8.7%. 

Convergence for the deformations in the y-direction, Fig. 5.16, will now be 

compared to the analytically calculated deformations in the y-direction using Eq. 5.1.  

The percent differences calculated using Eq. 5.1, based on the values in Tables 5.3 and 

5.13 are shown in Table 5.20 and Fig. 5.25.  Based on the information in Table 5.20 and 
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Fig. 5.25, at convergence, using 17,285 parabolic tetrahedral solid elements, the percent 

difference between the analytical and computational displacements in the y-direction 

reached -2.9%. 

Table 5.19.  Percent differences between maximum deformations of the 
entire folded spring based on the analytical and COSMOS/M results for 

the x-component of deformation. 
Number of elements Deformation, µm Percent difference, % 

346 19.394 -9.62 
569 19.456 -9.33 
812 19.475 -9.24 

1,263 19.495 -9.15 
1,952 19.520 -9.03 
5,245 19.545 -8.92 

11,501 19.569 -8.80 
17,285 19.582 -8.74 
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Fig. 5.24.  Percent differences between COSMOS/M and analytically 

determined x-components of deformation for the entire folded spring due to 
the force in the x-direction, using parabolic tetrahedral solid elements. 
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Table 5.20.  Percent differences between maximum deformations of the 
entire folded spring based on the analytical and COSMOS/M results for 

the y-component of deformation. 
Number of elements Displacement, nm Percent difference, % 

346 1.0767 -4.83 
512 1.0806 -4.49 

1,086 1.0858 -4.03 
1,263 1.0874 -3.89 
1,746 1.0892 -3.73 
1,952 1.0900 -3.66 
3,056 1.0940 -3.31 
5,245 1.0947 -3.24 

11,501 1.0967 -3.07 
17,285 1.0981 -2.94 
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Fig. 5.25.  Percent differences between COSMOS/M and analytically 

determined y-components of deformation for the entire folded spring due to 
the force in the y-direction, using parabolic tetrahedral solid elements. 

Convergence for the deformations in the z-direction, Fig. 5.18, will now be 

compared to the analytically calculated displacements in the z-direction using Eq. 5.1.  
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The percent difference calculated using the values in Tables 5.2 and 5.14 are shown in 

Table 5.21 and Fig. 5.26.  Based on Table 5.21 and Fig. 5.26, at convergence, using 

17,285 parabolic tetrahedral solid elements, the percent difference between the analytical 

and computational displacements in the z-direction reached -6%. 

Table 5.21.  Percent differences between maximum deformations of the 
entire folded spring based on the analytical and COSMOS/M results for 

the z-component of deformation. 
Number of elements Displacement, µm Percent difference, % 

346 -2.2570 -7.00 
569 -2.2708 -6.43 
812 -2.2723 -6.37 

1,263 -2.2740 -6.30 
1,952 -2.2760 -6.21 
3,056 -2.2775 -6.15 
5,245 -2.2786 -6.11 

11,501 -2.2808 -6.02 
17,285 -2.2815 -6.00 

The percent differences between the analytical and computational methodology 

range from -2.9% to -8.7% for the deformations in the y and x-directions, respectively.  

The differences between the two methods could stem from numerous assumptions that 

were made during the derivation of the equations for the deformations of the folded 

spring; however, since the percent differences between the analytical and computational 

results for the cantilever were around 0.1% in both the x and y-directions, the error 

between the two methods must have been introduced when modeling the interfaces 

between the coupler, section BC, and sections AB and CD. 
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Fig. 5.26.  Percent differences between COSMOS/M and analytically 

determined z-components of deformation for the entire folded spring due to 
the force in the x-direction, using parabolic tetrahedral solid elements. 

Another reason that could have caused the differences between the analytically 

and computationally calculated deformations is that the equations derived using 

Castigliano’s second theorem did not include interactions between the forces and 

deformations in all directions.  For example: the equation for the displacement in the x-

direction, does not include any factor due to the force in the y-direction; however when a 

force in the y-direction was applied in COSMOS/M, there was a deformation, on the 

order of 0.1 nm, that occurred in both the x and the z-directions.  Conversely, when a 

force in the x-direction was applied to the folded spring in COSMOS/M, there was a 

small component of deformation that occurred in the y-direction.  A way to improve the 

correlation between the analytical and computational results would be to determine a 
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procedure to include these interactions between the deformations in the x, y, and z-

directions. 

5.4.  Experimental results 

The main purpose for obtaining experimental results was to validate the analytical 

and computational results and/or to facilitate their interpretation.  The experimental 

results for the deformation of the folded springs were obtained using the vibrometer 

method, described in Section 4.3.1, and the results for the shape of the microgyroscopes: 

proof masses and folded springs, obtained using the OELIM methodology, described in 

Section 4.3.2, are presented in Sections 5.4.1 and 5.4.2, respectively. 

5.4.1.  Vibrometer results 

The fist step of the vibrometer experiment was to determine at which frequencies 

the microgyroscope would be excited: peak-to-peak signal amplitude of 25 mV was 

produced by the signal generator for all the measurements.  This was done by first 

exciting the system with a randomly swept signal for the frequency range, including 10 

kHz, which is the operational frequency of the microgyro design considered in this thesis, 

as described in Section 3.  Knowing this, the frequency range was subdivided into four 

divisions and four linear sweeps of the frequencies in the ranges corresponding to these 

divisions were applied to the system, Table 5.22.  Using information from the vibrometer, 
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an average of fifty data samples was taken by the signal analyzer and used to obtain the 

mean peak frequency for each of the frequency ranges, Table 5.22.  An average was 

taken of the four peaks in each of the four subdivisions, to obtain the frequency that 

would be used to excite the system, in Table 5.22.  As described in Section 4.3.1, the 

system was excited using each of the four frequencies, listed in Table 5.22. 

Table 5.22.  Frequency sampling. 
Linear sweep 
frequency 
ranges 

Mean peak 
kHz 

Average frequency 
kHz 

3.816 
3.496 
4.328 

1-5 kHz 

3.24 

3.752 

6.824 
9.768 
6.888 

5-10 kHz 

6.696 

7.528 

10.728 
14.504 
10.472 

10-15 kHz 

10.152 

11.432 

15.784 
16.296 
15.464 

15-17 kHz 

15.848 

15.848 

For the first of the frequencies, the signals coming from the mirror and the 

substrate/proof mass were recorded in the signal analyzer, and these two frequency 

responses were de-convolved to obtain the FRF of the substrate/proof mass, Fig. 5.27.  If 
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the IFFT of the FRF of the substrate/proof mass produced a flat curve with an amplitude 

approximately one, then it would imply that the substrate/proof mass transmits the signal 

from the PZT without modifying it.  However, according to Fig. 5.27, the FRF is a 

random function of magnitude greater than one, which means that the signal measured on 

the substrate/proof mass has been altered by its transmission “path” from the PZT. 
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Fig. 5.27.  Deconvolved frequency response for the proof mass at the input 

frequency of 3.752 kHz. 

The next step was to obtain the time-domain responses of the mirror and the 

substrate/proof mass, Fig. 5.28, based on which deformations of the substrate/proof mass 

can be determined.  The signal from the mirror was then subtracted from the signal from 

the proof mass in order to obtain the net motion of the substrate/proof mass.  This 

difference is illustrated in Fig. 5.29.   



 145

0
1
2
3
4
5
6
7
8
9

10

0 0.2 0.4 0.6 0.8 1 1.2 1.4
TIME, ms

AM
PL

IT
U

D
E,

 m
V

Proof mass
Mirror

 
Fig. 5.28.  Comparison of the proof mass and mirror time responses for the 

input signal at 3.752 kHz. 
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Fig. 5.29.  Difference between the substrate/proof mass and mirror responses 

for the input signal at 3.752 kHz. 
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Using the data of Fig. 5.29, an average was taken of the absolute values for all of 

the data points in the difference between the proof mass and mirror responses; this value 

was then used as the amplitude of the oscillation of the substrate/and proof mass in 

Section 5.4.1.1.  This average value was calculated to be 0.0347 nm. 
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Fig. 5.30.  Comparison of the proof mass and mirror time responses for the 

input signal at 7.528 kHz. 

The time-domain responses off of the mirror and the substrate/proof mass for the 

second excitation frequency of 7.528 kHz are shown in Fig. 5.30.  Using the two curves 

of Fig. 5.30, the signal from the mirror was subtracted from the signal from the proof 

mass in order to obtain the net motion of the substrate/proof mass.  This difference is 

illustrated in Fig. 5.31.  Using the data illustrated in Fig. 5.31, an average was taken of 

the absolute values for all of the data points in the difference between the proof mass and 

mirror responses; this value was then used as the amplitude of the oscillation of the 
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substrate/and proof mass in Section 5.4.1.1.  This average value, from Fig. 5.31, was 

calculated to be 0.0563 nm. 

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
TIME, ms

D
EF

O
R

M
AT

IO
N

, n
m

 
Fig. 5.31.  Difference between the substrate/proof mass and mirror responses 

for the input signal at 7.528 kHz. 

The time-domain responses off of the mirror and the substrate/proof mass for the 

third excitation frequency of 11.432 kHz are shown in Fig. 5.32.  Using the two curves of 

Fig. 5.32, the signal from the mirror was subtracted from the signal from the proof mass 

in order to obtain the net motion of the substrate/proof mass.  The difference is illustrated 

in Fig. 5.33.  Using the data illustrated in Fig. 5.33, an average was taken of the absolute 

values for all of the data points in the difference between the proof mass and mirror 

responses; this value was then used as the amplitude of the oscillation of the substrate/and 

proof mass in Section 5.4.1.1.  This average value was calculated to be 0.1007 nm. 
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Fig. 5.32.  Comparison of the proof mass and mirror time responses for the 

input signal the 11.432 kHz. 
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Fig. 5.33.  Difference between the substrate/proof mass and mirror responses 

for the input signal at 11.432 kHz. 
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Fig. 5.34.  Comparison of the proof mass and mirror time responses for the 

input signal at 15.848 kHz. 

The time-domain responses off of the mirror and the substrate/proof mass for the 

fourth excitation frequency of 15.848 kHz are shown in Fig. 5.34.  Subtracting the 

“mirror” curve from the “proof mass” curve, net motion of the substrate/proof mass is 

determined, Fig. 5.35. 

Using the data illustrated in Fig. 5.35, an average was taken of the absolute values 

for all of the data points in the difference between the proof mass and mirror responses; 

this value was then used as the amplitude of the oscillation of the substrate/and proof 

mass in Section 5.4.1.1.  This average value, from Fig. 5.35, was calculated to be 0.1738 

nm. 
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Fig. 5.35.  Difference between the substrate/proof mass and mirror responses 

for the input signal at 15.848 kHz. 

5.4.1.1.  Comparison of the laser vibrometer and analytical results 

In order to compare the information gathered from the laser vibrometer, described 

in Section 5.4.1, to deformations calculated analytically, the deformations had to be 

calculated using Eq. 4.77, the equation for the deformation in the y-direction.  From the 

results shown in the Section 5.4.1, the motion of the substrate/proof mass is not a simple 

sinusoidal motion, Fig. 5.28.  However for comparison, the motion was assumed to be a 

sinusoidal, with the amplitude based on the average of the absolute value of the 

difference in the time-domain responses of the mirror and the substrate/proof mass; these 

values were then applied to Eqs 4.79 thru 4.86, and the force was calculated.  This force 

was then applied to Eq. 4.77, and the deformation in the y-direction was calculated.  The 

experimental data used in the calculations of the forces and deformations, and results of 
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these calculations are presented in Table 5.23.  Once the analytically calculated 

deformations were obtained, they were compared to the experimental maximum 

deformation using a relationship similar to Eq. 5.1, i.e., 

%100
exper

analytexper ⋅
∆

∆−∆
=ferencePercentDif , (5.2) 

where ∆exper is the experimentally obtained amplitude of the deformation, and ∆analyt is the 

deformation obtained from Eq. 4.77.  This comparison is also shown in Table 5.23.  The 

results shown in Table 5.23 indicate that there is a difference between the analytically 

calculated deformations and those found using the vibrometer of -10.5%.  This difference 

is in good agreement with the uncertainty shown in Table 5.7. 

Table 5.23.  Representative comparison of experimental 
and analytical deformations. 

Excitation frequency, kHz 7.528 
Amplitude, nm 0.0563 
Calculated force, nN 0.0396 
Analytical displacement, nm 0.0623 
Percent difference, % -10.52 

5.4.2. OELIM results 

Because of to the difference between the analytical results and experimental 

displacements found using the laser vibrometer, it was necessary to determine the actual 

shape of the microgyro is.  This is important because the spring was modeled analytically 

and computationally as a flat structure that is parallel to the substrate and at the same 
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level as the proof mass.  If this is not the case, then there may be errors between the 

analytical, computational, and experimental results. 

5.4.2.1.  Dual proof mass results 

The entire microgyroscope was observed first, and interferograms of both of the 

proof masses were recorded, Fig. 5.36.  These interferograms were then analyzed to 

determine the shape of the proof masses and the corresponding mechanisms supporting 

them.  Figure 5.37 shows a two-dimensional representation of the shape, i.e., 

deformations of the proof masses and the folded springs supporting them, indicating 

maximum deformations on the order of 0.58 µm, at room temperature.  The contours of 

the two proof masses are also illustrated as three-dimensional wireframe and color 

representations, Figs 5.38 and 5.39, respectively. 

 
Fig. 5.36.  Representative OELIM interferogram of the microgyro at room temperature. 
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Results displayed in Figs 5.36 to 5.39 give good representation of deformation 

fields.  Frequently, however, while characterizing microgyroscopes, detailed trace-like 

information about deformations along a specific line, across the microgyroscope, is 

needed.  This information can be easily extracted from the OELIM data.  For example, 

deformations along the horizontal line H-H, shown in Fig. 5.39, are displayed in Fig. 

5.40.  This trace indicates that the displayed deformations of the proof masses themselves 

are on the order of 0.1 µm, or about 100 nm.  These deformations, although very small on 

the absolute scale, have significant influence on functional performance of 

microgyroscopes (Hanson, et al., 2001). 

 
Fig. 5.37.  Two-dimensional color representation of the shape 

of the microgyroscope. 
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Fig. 5.38.  Three-dimensional wireframe representation of the 

shape of the microgyroscope. 

 
Fig. 5.39.  Three-dimensional color representation of the shape 

of the microgyroscope. 
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Fig. 5.40.  Deformations along line H-H, shown in Fig. 5.39, across both proof masses of 

the microgyroscope. 

Another area of interest for this thesis is that of the deformations of the folded 

spring.  So, if there is a difference between the proof mass elevation and that of the 

folded spring it may lead to differences between the analytical and experimental results.  

In addition, a source of possible differences may be due to mismatch between elevations 

of teeth in the combdrives used to actuate the proof masses during functional operation of 

the microgyroscopes (Hanson, et al., 2001). 

Preliminary results showing mismatch between teeth of a combdrive 

corresponding to the left proof mass of a microgyroscope are presented in Section 

5.4.2.2, while those for representative folded springs are presented in Section 5.4.2.3. 
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5.4.2.2.  Results for the left proof mass of the microgyroscope 

In order to examine the way the springs interact with the proof masses, the 

microscope was focused at higher magnification than that used to obtain results presented 

in Section 5.4.2.1.  Because the field of view of the camera used decreases as 

magnification increases; one proof mass was recorded at a time.  In fact, to obtain 

detailed information on the deformations of the proof masses and the folded springs, 

three sets of interferograms were taken for each of the proof masses: the proof mass 

itself, the upper part of the proof mass and the two top springs, and then the lower part of 

the proof mass and the two bottom springs. 

The left proof mass was observed first, and the interferograms of the proof mass 

itself were recorded, Fig. 5.41.  The interferograms were analyzed to obtain the shape of 

the left proof mass.  Figure 5.42 shows a two-dimensional color representation of the 

deformations of the left proof mass.  The deformations of the left proof mass are also 

illustrated as three-dimensional wireframe and color representations, Figs 5.43 and 5.44, 

respectively.  The results shown in Figs 5.41 to 5.44 indicate that deformations of the left 

proof mass are approximately 0.1 µm, or 100 nm.  However this does not show the area 

of interest, the folded spring, very well, so the upper part of the left proof mass was 

observed next, and the corresponding interferograms were recorded, Fig. 5.45. 
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Fig. 5.41.  Representative OELIM interferogram 

of the left proof mass of the microgyro. 

 
Fig. 5.42.  Two-dimensional color representation of 

deformations of the left proof mass. 



 158

 
Fig. 5.43.  Three-dimensional wireframe representation 

of deformations of the left proof mass. 

 
Fig. 5.44.  Three-dimensional color representation of 

deformations of the left proof mass. 
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These interferograms were analyzed to obtain the shape of the upper part of the 

left proof mass and the two top folded springs.  Figure 5.46 shows the two-dimensional 

color representation of the deformations of the upper part of the left proof mass, it looks 

like there are missing teeth in the combdrives; however, this is a result of “resolution” 

while analyzing the images.  The deformations are also illustrated as three-dimensional 

wireframe and color representations of the upper part of the left proof mass, Figs 5.47 

and 5.48, respectively.  The results shown in Figs 5.45 to 5.48 indicate that the upper part 

of the left proof mass are approximately 0.1 µm or 100 nm, as presented earlier in this 

section.  However, deformations of the folded springs themselves are about 0.15 µm or 

150 nm from the points on the substrate to the parts where they are attached to the proof 

mass. 

 
Fig. 5.45.  Representative OELIM interferogram of the 

upper part of the left proof mass of the microgyro. 
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Fig. 5.46.  Two-dimensional color representation of 

deformations of the upper part of the left proof mass. 

 
Fig. 5.47.  Three-dimensional wireframe representation of 

deformations of the upper part of the left proof mass. 
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Fig. 5.48.  Three-dimensional color representation of 
deformations of the upper part of the left proof mass. 

To obtain similar information about deformation of the folded springs at the 

bottom of the left proof mass, OELIM interferograms of the lower part of the left proof 

mass were recorded, Fig. 5.49.  The interferograms were analyzed to obtain deformations 

of the lower part of the left proof mass and the two bottom folded springs.  Figure 5.50 

shows the two-dimensional color representation of deformations of the bottom part of the 

left proof mass.  The deformations are also illustrated as three-dimensional wireframe 

and color representations of the bottom part of the left proof mass, Figs 5.51 and 5.52, 

respectively. 

To obtain detailed information on local deformations of the left proof mass, 

deformations were determined along the vertical line V-V, Fig. 5.52.  It should be noted 

that the line V-V starts at the bottom of a lower left spring, traverses the length of the 
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spring and combdrive, and ends at the top of the combdrive.  Deformations measured 

along the line V-V are displayed in Fig. 5.53. 

 
Fig. 5.49.  Representative OELIM interferogram of the 

lower part of the left proof mass of the microgyro. 

 
Fig. 5.50.  Two-dimensional color representation of 

deformations of the lower part of the left proof mass. 
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Fig. 5.51.  Three-dimensional wireframe representation of 

deformations of the lower part of the left proof mass. 

 
Fig. 5.52.  Three-dimensional color representation of 
deformations of the lower part of the left proof mass. 
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Fig. 5.53.  Deformations along line V-V, shown in Fig. 5.52, of the left proof 

mass of the microgyro. 

Based on the information shown in Fig. 5.53, deformations of the proof mass and 

the folded spring amount to about 0.2 µm.  This trace clearly shows that the folded spring 

is not flat and its ends are at different elevations.  Also using trace information, mismatch 

was determined for one of the combdrives.  This, and other combdrives, consists of two 

sets of fingers: one set is fixed to the substrate and the other is an integral part of the 

proof mass.  Deformations of the fixed set of the teeth and the movable, i.e., attached to 

the proof mass, set of teeth of a combdrive are displayed in Fig. 5.54. 

Figure 5.54 shows that there is a mismatch in elevation between the two sets of 

teeth in the combdrive that ranges from about 0.05 µm to 0.11 µm.  This means that the 

combdrive is not perfectly aligned.  This misalignment produces electrostatic forces that 

do not meet the design specifications, and this causes the microgyro to not function as 
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designed.  Interferograms were also obtained for the right proof mass, however since they 

show the same type of information that results in similar mismatch, they were placed in 

Appendix D, Section D.1. 
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Fig. 5.54.  Deformations of the fixed and moveable sets of teeth of the combdrive of the 

left proof mass. 

5.4.2.3. Individual folded spring results 

Although the interferograms of Section 5.4.2.3 provided information on the 

folded springs, more detailed representation of their deformations is needed.  Therefore, 

the folded springs were observed at a higher magnification so that their deformations can 

be determined in detail.  Figure 5.55 identifies the folded springs and indicates the order 

in which they were examined.  Based on Fig. 5.55, springs 1 to 4 support the left proof 
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mass, while springs 5 to 8 support the right proof mass.  Spring 1, at the upper right 

corner of the left proof mass, was observed first, and the interferograms were recorded, 

Fig. 5.56.  These interferograms were analyzed to obtain the shape of Spring 1 of the 

microgyro.  Figure 5.57 shows the two-dimensional color representation of deformations 

of the Spring 1.  The deformations of Spring 1 are also illustrated as three-dimensional 

wireframe and color representations, Figs 5.58 and 5.59, respectively. 

 
Fig. 5.55.  Folded springs of the microgyro. 

Results shown in Figs 5.56 to 5.59 indicate deformations of approximately 0.14 

µm.  These deformations are large when compared with the overall thickness of the 

folded spring equal to 2.5 µm.  Using the results of Figs 5.56 to 5.59, two traces were 

obtained along the lengths of the folded springs, indicated by lines AB and CD that run 
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along the lengths of the two arms of the folded spring, as shown in Fig. 5.59.  The 

deformations found along the traces are displayed in Fig. 5.60. 

 
Fig. 5.56.  Representative OELIM interferogram 

of Spring 1 of the microgyro. 

 
Fig. 5.57.  Two-dimensional color representation of 

deformations of Spring 1 of the microgyro. 
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Fig. 5.58.  Three-dimensional wireframe representation 

of deformations of Spring 1 of the microgyro. 

 
Fig. 5.59.  Three-dimensional color representation of 

deformations of Spring 1 of the microgyro. 
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Fig. 5.60.  Deformations along both arms of Spring 1. 

In Fig. 5.60, key points indicate where the folded spring attaches to the post in 

Section AB, and where it joins the proof mass in Section CD.  These data show that 

Section AB of the spring deforms approximately 0.126 µm or 126 nm, while section CD 

of the spring deforms approximately 0.15 µm or 150 nm with respect to the point where it 

joins the proof mass.  Because of the magnitude of deformations of Spring 1, it is 

important to examine all of the springs that support the left proof mass. 

The second spring, Spring 2, at the upper left corner of the left proof mass was 

observed next, and the interferograms were recorded, Fig. 5.61.  These interferograms 

were then analyzed to obtain the shape of Spring 2 of the microgyro.  Figure 5.62 shows 

the two-dimensional color representation of deformations of the Spring 2.  These 

deformations are also illustrated as three-dimensional wireframe and color 

Proof mass begins 

Folded spring joins extension of the 
proof mass

Folded spring attaches 
to the post 
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representations, Figs 5.63 and 5.64, respectively.  The results displayed in Figs 5.61 to 

5.64 show that deformations of Spring 2 are approximately 0.15 µm or 150 nm. 

 
Fig. 5.61.  Representative OELIM interferogram 

of Spring 2 of the microgyro. 

 
Fig. 5.62.  Two-dimensional color representation of 

deformations of Spring 2 of the microgyro. 
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Fig. 5.63.  Three-dimensional wireframe representation 

of deformations of Spring 2 of the microgyro. 

 
Fig. 5.64.  Three-dimensional color representation of 

deformations of Spring 2 of the microgyro. 
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The third spring, Spring 3, at the lower left corner of the left proof mass was 

observed next, and the interferograms were recorded, Fig. 5.65.  These interferograms 

were analyzed to obtain the shape of Spring 3 of the microgyro.  Figure 5.66 shows the 

two-dimensional color representation of deformations of the Spring 3.  These 

deformations are also illustrated as three-dimensional wireframe and color 

representations, Figs 5.67 and 5.68, respectively.  The results displayed in Figs 5.65 to 

5.68 show that deformations of Spring 3 are approximately 0.19 µm or 190 nm.  Figure 

5.68 also shows that there is some twisting in the folded spring; this factor is not included 

in either analytical or computational models of the folded spring, at this time. 

 
Fig. 5.65.  RepresentativeOLIEM interferogram of 

Spring 3 of the microgyro. 
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Fig. 5.66.  Two-dimensional color representation of 

deformations of Spring 3 of the microgyro. 

 
Fig. 5.67.  Three-dimensional wireframe representation 

of deformations of Spring 3 of the microgyro. 
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Fig. 5.68.  Three-dimensional color representation of 

deformations of Spring 3 of the microgyro. 

Finally, the fourth spring, Spring 4, at the lower right corner of  the left proof 

mass was observed, and the interferograms of the spring were recorded, Fig. 5.69.  These 

interferograms were analyzed to obtain shape of Spring 4 of the microgyro.  Figure 5.70 

shows the two-dimensional color representation of deformations of the Spring 4.  These 

deformations are also illustrated as three-dimensional wireframe and color 

representations, Figs 5.71 and 5.72, respectively.  Using the data displayed in Fig. 5.72, 

two traces were obtained along the lengths of the folded springs, indicated by lines AB 

and CD that run along the lengths of the two arms of the folded spring.  The deformations 

found along the traces are illustrated in Fig. 5.73. 
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Fig. 5.69.  Representative OLIEM interferogram 

of Spring 4 of the microgyro. 

 
Fig. 5.70.  Two-dimensional color representation of 

deformations of Spring 4 of the microgyro. 
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Fig. 5.71.  Three-dimensional wireframe representation 

of deformations of Spring 4 of the microgyro. 

 
Fig. 5.72.  Three-dimensional color representation of 

deformations of Spring 4 of the microgyro. 
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Fig. 5.73.  Deformations along both arms of Spring 4. 

In Fig. 5.73, key points indicate where the folded spring attaches to the post in 

Section AB, and where it joins the proof mass in Section CD.  The results of Fig. 5.73 

show that Section AB of the spring deforms approximately 0.133 µm or 133 nm.  Section 

CD of the spring deforms approximately 0.175 µm or 175 nm.  Just as in Fig. 5.68 for 

Spring 3, Fig. 5.72 shows that there is some twisting in Spring 4.  This twisting is due to 

the fact that the connection of the folded spring to the proof mass does not occur in the 

same plane; therefore, moments are introduced to the folded spring at the interface and 

these induce twisting. 

Interferograms were also obtained for Springs 5 to 8 supporting the right proof 

mass.  However, since these interferograms show the same type of information as those 
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Folded spring joins extension 
of the proof mass 

Folded spring attaches 
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shown in Figs 5.56 to 5.73, and indicate deformations of the folded spring of up to 200 

nm, they are included in Section D.2. 

Based on the information in this section, and Sections 5.4.2.1 and 5.4.2.2, it is 

clear that the folded springs, and even the proof masses of the microgyroscope are not 

entirely flat and all in the same plane.  Due to these deformations, operational 

functionality of the microgyro may be altered.  In some cases, the folded springs 

themselves are twisted as a result of fabrication processes.  These deformations of various 

components of the microgyroscope could be contributing to the difference between the 

experimental and analytical results presented in this thesis. 

To better understand the influence that residual deformations of various 

components of the microgyroscopes have on their functional operation, more detailed 

study of these deformations should be conducted in the future.  This study could also 

include effects that parameters characterizing various steps in the fabrication process 

have on the performance of the microgyroscopes (Hanson, et al., 2001). 
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6.  CONCLUSIONS AND RECOMMENDATIONS 

In this thesis, fundamentals of operation of conventional and MEMS gyroscopes 

were discussed.  A surface micromachined tuning fork MEMS gyroscope from Sandia 

National Laboratories was examined.  The Sandia microgyro has a dual proof mass 

configuration in which each proof mass is supported by folded springs at every one of its 

four corners.  Deformations of folded springs of the microgyro were modeled using 

analytical and computational methods.  In addition, preliminary measurements of 

parameters characterizing and influencing functional operation of the microgyroscope 

were made using laser vibrometer method and optoelectronic laser microscope (OELIM) 

method.  These methods provide very high spatial resolution data with nanometer 

measurement accuracy that are acquired in full-field-of-view, remotely and 

noninvasively, in near real-time.  As such, these methods are particularly suitable for 

experimental investigations of microgyroscopes, or other MEMS. 

The analytical deformation equations were derived for all three Cartesian 

coordinate directions using Castigliano’s second theorem and the strain energies of 

prismatic beams for two cases: 1) a cantilever representation of the folded spring and 2) 

the entire folded spring.  The 3D representation of the geometry considered was 

developed in SolidWorks and then modeled in COSMOS/M following convergence 

analyses.  The analytical and computational results for the deformations of the cantilever 

compared within 0.1%, indicating good correlation between the analytical and 

computational solutions used, while percent differences for deformations for the entire 

folded spring ranged from -2.9% for the deformation in the y-direction to -8.7% for the 



 180

deformation in the x-direction.  The differences between the results obtained using 

analytical and computational models for the folded spring was most probably introduced 

in modeling the interfaces between section BC and sections AB and CD. 

Experimental deformations were obtained using the laser vibrometer.  When the 

deconvolved frequency response of the substrate/proof mass was converted to the time 

domain and the maximum deformation amplitude was compared to analytically 

calculated deformations, the differences between the analytical and experimental results 

were on the order of 10% and are in agreement with the uncertainty limits.  One cause of 

these differences maybe related to the fact that the microgyroscopes, studied in this thesis 

are not perfectly planar structures, as the theory assumes.  For this reason, the shapes of 

the microgyroscope and the folded springs were measured using the OELIM 

methodology.  Quantitative interpretation of the OELIM interferograms of the 

microgyroscopes indicated that deformations of the microgyroscope can be as much as 

200 nm, which is 8% of the thickness of 2.5 µm of the proof masses and the 

corresponding folded springs.  The deformations indicate that the folded springs and 

proof masses they support are not in the same plane.  Therefore, during operation, the 

microgyros may be subjected to loads that are not anticipated during design and 

corresponding analyses, which assume the microgyros to be planar structures.  

Consideration of the effects that the experimentally determined non-planarity of the 

microgyros may on their functional operation should be made as a follow up of this 

thesis. 
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This thesis only began development of a methodology for modeling the 

microgyroscope.  The next step would be to incorporate into the analytical model the fact 

that the folded springs and proof mass are not located in the same plane.  This requires 

addition of moments at the interface between the folded spring and the proof mass, at 

point D.  The interfaces between section BC and sections AB and CD should also be re-

evaluated.  As these changes are implemented into the analytical and computational 

models, the laser vibrometer experiments should be conducted in order to determine 

which error: the non-planarity of the folded springs and proof mass, or the modeling of 

the interfaces, contribute most to the differences between the analytical and the 

experimental results. 

Another step would be to analytically and/or computationally determine the 

influence that residual deformations of various components of the microgyroscope have 

on its operational performance.  The experiments should also be performed to evaluate 

designs of the microgyroscopes different than the design considered in this thesis to 

ensure that the differences observed are not due to the characteristics of a specific design.  

Once these additional experiments are completed, and causes of the differences between 

the analytical, computational, and experimental results are understood, the methodology 

used in this thesis might become useful to model behavior of the suspension of the proof 

masses.  At that stage of its development, this methodology may facilitate improvement 

of existing designs and development of new designs of gyroscopes. 
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APPENDIX A.  ANALYTICAL DETERMINATION OF DEFORMATIONS OF 
FOLDED SPRINGS OF THE SANDIA MICROGYRO 

In order to derive equations for deformations of the folded springs at point D 

where the force is applied, a methodology based on energy methods and Castigliano’s 

second theorem was used.  In order to begin, internal energy of the folded spring had to 

be determined.  The internal energies need to take into account strain energies due to the 

axial loading, bending moments, transverse shear forces, and torsional moments.  

Equations A.1 to A.4 define the four strain energy components.  The strain energy due to 

axial loading is defined as 

∫=
L

0

2

AL dx
2AE
NU , (A.1) 

where N is the axial load, A is the cross sectional area, E is the modulus of elasticity of 

the material, and L is the length of the beam.  The strain energy due to the moment is 

∫=
L

0

2

BM dx
2EI
MU , (A.2)

 
where M is the internal moment and I is the moment of inertia of the beam.  The strain 

energy due to the transverse shear loading is given by 

∫=
L

0

2
s

TS dx
2GA

Vf
U , (A.3) 

where V is the shear force acting in the beam, fs is the shape factor which for a 

rectangular cross section is equal to 6/5, and G is the shear modulus of the material.  The 

strain energy due to the torque is calculated using 

∫=
L

0

2

TM dx
2GJ
TU , (A.4) 
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where T is the torque acting on the beam and J is the polar moment of inertia of the beam.  

The internal energy is calculated as a sum of individual strain energies, i.e., 

TMTSBMALi UUUUU +++= . (A.5) 

To facilitate derivation of the governing equations, the folded spring was divided 

into three beams: AB, BC, and CD.  Therefore, Eq. A.5 becomes a sum of the strain 

energies of all three sections, i.e., 

CDBCABi UUUU ++= , (A.6) 

where each of the section energies is calculated using 

TMabTSabBMabALabAB UUUUU +++= , (A.7) 

TMbcTSbcBMbcALbcBC UUUUU +++= , (A.8) 

and 

TMcdTScdBMcdALcdCD UUUUU +++= , (A.9) 

respectively. 

In order to calculate the internal energies, equations defining the forces, moments, 

and torques acting on each of the sections of the beam, and the forces, moments, and 

torques acting through each of the three sections were derived. 

A.1.  Reaction forces and moments of the folded spring 

The first step in the derivation of an equation for determination of deformations of 

the folded spring was to calculate the reaction forces and moments occurring at the fixed 

end, i.e., at point A, Fig. A.1. 



 190

 
Fig. A.1.  Free body diagram of the folded spring. 

Using the free body diagram in Fig. A.1, the equations for static equilibrium can 

be written for the forces and moments acting at point A.  Equations A.10 to A.15 define 

the Cartesian components of the reaction force acting at point A, i.e., 

∑ −== xxx AF0F , (A.10) 

xx FA = , (A.11) 

∑ −== yyy AF0F , (A.12) 

yy FA = , (A.13) 

and 

∑ −== zzz AF0F , (A.14) 

zz FA = , (A.15) 

while the components of the reaction moment can be shown to be 

( )∑ −+−== AxzABCDyxA M0FLLF0M , (A.16) 

( )CDAByAx LLFM −= , (A.17) 
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( )∑ −+−== AyBCzABCDxyA MLFLLF0M , (A.18) 

( ) BCzABCDxAy LFLLFM −−= , (A.19) 

and 

∑ −+== AzxBCyzA M0FLF0M , (A.20) 

BCyAz LFM = . (A.21) 

Equations A.10 to A.21 will be used to calculated forces acting on each of the sections of 

the folded spring, i.e., the sections AB, BC, and CD. 

A.2.  Deformations at point B 

In order to derive the equation for deformation at point B, the forces, moments, 

and torques acting along and through section AB had to be determined, as discussed in 

Sections A.2.1 to A.2.3. 
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A.2.1.  Reaction forces and moments of section AB 

Reaction forces at point B were derived using the free body diagram of Fig. A.2. 

 
Fig. A.2.  Free body diagram of section AB. 

Using the free body diagram of Fig. A.2, equations for static equilibrium, in 

Cartesian coordinates, can be written for the forces and moments acting at point B to be 

∑ −== xxx AB0F , (A.22) 

xxx FAB == , (A.23) 

∑ −== yyy AB0F , (A.24) 

yyy FAB == , (A.25) 

∑ −== zzz AB0F , (A.26) 

zzz FAB == , (A.27) 

∑ −++== AxzAByBxxB M0ALAM0M , (A.28) 

( ) CDyAByCDAByAByAxBx LFLFLLFLA-MM −=−−== , (A.29) 

∑ −++== AyzABxByyB M0ALAM0M , (A.30) 
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( ) ABxBCzABCDxABxAyBy LFLFLLFLAMM +−−=+= , (A.31) 

BCzCDxBy LFLFM −= , (A.32) 

and 

∑ −++== AzxyBzzB M0A0AM0M , (A.33) 

BCyAzBz LFMM == . (A.34) 

Now that the reaction forces for section AB were derived, the internal forces, moments, 

and torques that are acting through section AB can be derived, as shown in Section A.2.2. 

A.2.2.  Internal forces and moments of section AB 

The forces, moments, and torques acting through section AB were derived using 

the free body diagram for the cut at an arbitrary position z within the section AB, Fig. 

A.3.  Based on the free body diagram of Fig. A.3, the shear forces acting through section 

the AB are 

∑ −== xxx AAB0F , (A.35) 

xxx FAAB == , (A.36) 

∑ −== yyy AAB0F , (A.37) 

yyy FAAB == , (A.38) 

∑ −== zzz AAB0F , (A.39) 

zzz FAAB == , (A.40) 

and the moments acting thru the section AB are 
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∑ −++== AxzyABxxAB M0AzAM0M , (A.41) 

( ) zFLLFzA-MM yCDAByyAxABx −−== , (A.42) 

∑ −+−== AyzxAByyAB M0AzAM0M , (A.43) 

( ) zFLFLLFzA-MM xBCyABCDxxAyABy +−−== , (A.44) 

∑ −+−== AzxyAByzAB M0BzBT0M , (A.45) 

BCyAzABz LFMT == . (A.46) 

 
Fig. A.3.  Free body diagram of the cut of section AB. 

A.2.3. Derivation of the deformations at point B 

Using the forces, moments, and torques, defined by, Eqs A.35 to A.46, the 

equations for the internal energy for section AB in terms of the individual components of 

the strain energy can be written as 

omentSETorsionalM
ShearSETransverseentsSEBendingMomngSEAxialLoadiU AB +++= . (A.47) 

z
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Substituting Eqs A.1 to A.4 and Eqs A.35 to A.46 into Eq. A.47 we obtain 

∫ ∫ ∫++

∫ +∫ ∫ ++=

ABL

0

ABL

0

ABL

0 b

2
ABz

b

2
y

b

2
x

ABL

0 by

2
AByABL

0

ABL

0 by

2
ABx

b

2
z

AB

dz
2GJ
T

dz
2GA

AB5
6

dz
2GA

AB5
6

dz
2EI

M
dz

2EI
M

dz
E2A

AB
U

. (A.48) 

In order to determine, e.g., the x-component of displacement at point B on the 

beam, partial derivative of the internal energy of section AB has to be taken with respect 

to the force, Fx, acting in the direction of the desired displacement, i.e., 

BxAB
x

∆U
F

=
∂

∂ , (A.49) 

Therefore, Eq. A.49 yields 

∫ ∫ 







∂

∂
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x
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0
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0
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0
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z
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z
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dzT
FGJ

T
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F5GA

6AB
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F5GA

6AB
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FEI

M
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FEI

M
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FEA
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∆

, (A.50) 

After the derivatives are taken, Eq. A.31 becomes 

( ) ( )

( ) ( )

( ) ( ) ( )∫ ∫+∫ +

∫ ++−
−+−

∫ ∫ ++=

ABL

0

ABL

0 b

BCy

b

yABL

0 b

x

ABL

0
ABCD

by

BCzABCDx

ABL

0

ABL

0 by

ABx

b

z
Bx

dz0
GJ

LF
dz0

5GA

6F
dz1

5GA
6F

dzzLL
EI

LFzLLF

dz0
EI

M
dz0

EA
AB

∆

, (A.51) 

which simplifies to 
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( ) ( )

( )∫

∫ +
+−−+−

=

ABL

0 b

x

ABL

0 by

ABCDBCz
2

ABCDx
Bx

dz1
5GA

6F

dz
EI

zLLLFzLLF
∆

. (A.52) 

Once the integral is taken, Eq. A.52 simplifies to the equation for the x-component of 

deformation at point B, i.e., 

( )

( )CDAB
2

AB
by

BCz

b

ABx2
CDABCD

2
AB

3
AB

by

x
Bx

LL2L
2EI

LF

5GA
L6F

LL3LL3L
3EI

F
∆

−

+++−=

. (A.53) 

To find the displacement in the y-direction at point B, partial derivative of the 

internal energy of section AB was taken with respect to Fy yielding 

ByAB
y

∆U
F

=
∂

∂ , (A.54) 

which becomes 
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FEA
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∆

. (A.55) 

After the derivatives are taken, Eq A.55 takes the form 

( )
( )

( )

( ) ( )

( ) ( )∫ ∫+

∫ +∫ +

∫ ∫ +−−
−−

+=
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, (A.56) 
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which simplifies to 

( )
∫ ∫+∫ +

−−
=

ABL

0

ABL

0 b

2
BCy

b

yABL

0 bx

2
CDABy

By dz
GJ

LF
dz

5GA

6F
dz

EI

zLLF
∆ . (A.57) 

After Eq. A.57 is integrated, the y-component of deformation at point B can be expressed 

as 

( )

b

AB
2

BCy

b

ABy2
CDABCD

2
AB

3
AB

bx

y
By

GJ

LLF

5GA

L6F
LL3LL3L

3EI

F
∆ +++−=

. (A.58) 

The displacement in the z-direction at point B was found by taking the partial 

derivative of the internal energy of section AB with respect to Fz, i.e., 

BzAB
z

∆U
F

=
∂
∂ , (A.59) 

which can be represented as 
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. (A.60) 

After the derivatives are taken, Eq A.60 becomes 

( ) ( )

( ) ( ) ( )∫∫ +
−+−

∫ ∫ ++=
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0 b

BCyABL

0
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by

BCzABCDx
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b
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M
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, (A.61) 

which simplifies to 
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( )
∫

++−
∫ +=

ABL

0 by

2
BCzABCDBCxABL

0 b

z
Bz dz

EI
LFzLLLF-

dz
EA

F
∆ , (A.62) 

and after integration, the z-component of deformation at point B becomes 

( )
by

AB
2

BCz

by

ABCD
2

ABBCx

b

ABz
Bz EI

LLF
2EI

LL2LLF
EA

LF
∆ +

−
+= . (A.63)

 

A.3.  Deformations at point C 

Equation for deformations at point C were derived next.  In order to do this, the 

forces, moments and torques acting along and through section BC had to be determined, 

as presented in Section A.3.1. 

A.3.1.  Reaction forces and moments of section BC 

Reaction forces at point C were determined using the free body diagram of Fig. 

A.4.  Using the free body diagram of Fig. A.4, equations for static equilibrium, in 

Cartesian coordinates, can be written for the forces and moments acting at point C as 

∑ −== xxx BC0F , (A.64) 

xxx FBC == , (A.65) 

∑ −== yyy BC0F , (A.66) 

yyy FBC == , (A.67) 

∑ −== zzz BC0F , (A.68) 
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zzz FBC == , (A.69) 

∑ −++−== CxzyBxxB M0C0CM0M , (A.70) 

CDyBxCx LFMM −== , (A.71) 

∑ −++−== CyBCzxByyB MLC0CM0M , (A.72) 

CDxBCzBCzCDxBCzByCy LFLFLFLFLCMM =+−=+= , (A.73) 

and 

∑ −++−== BzBCyxCzzB MLC0CM0M , (A.74) 

0LFLFLCMM BCyBCyBCyBzCz =−=+= . (A.75) 

 
Fig. A.4.  Free body diagram of section BC. 
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A.3.2.  Internal forces and moment of section BC 

The forces, moments, and torques acting through section BC were derived using 

the free body diagram for a part of section BC of arbitrary length in the x-direction, Fig. 

A.5. 

 
Fig. A.5.  Free body diagram for a part of section BC. 

Based on the free body diagram of Fig. A.5, the shear forces acting through the 

section BC are determined to be 

∑ −== xxx BBC0F , (A.76) 

xxx FBBC == , (A.77) 

∑ −== yyy BBC0F , (A.78) 

yyy FBBC == , (A.79) 
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∑ −== zzz BBC0F , (A.80) 

zzz FBBC == , (A.81) 

and the moments acting thru section BC are 

∑ −++== BxzyBCxxBC M0B0BT0M , (A.82) 

CDyBxBCx L-FMT == , (A.83) 

∑ −++== ByzxBCyyBC MxB0BM0M , (A.84) 

( )BCzCDxzBCzCDxzByBCy L-xFLFxFLF-LFxBMM +=+=+= , (A.85) 

and 

∑ −++== BzxyBCzzBC M0BxBM0M , (A.86) 

( )x-LFxF-LFxBMM BCyyBCyyBzBCz ==+= . (A.87) 

A.3.3.  Derivation of the deformations at point C 

Using the forces, moments, and torques defined by, Eqs A.76 to A.87, equations 

defining deformations at point C will be derived.  To do this partial derivative of the 

internal energy of section AC, not just that of the coupler section BC, has to be taken with 

respect to the force, Fx, acting in the direction, x, of the desired displacement.  This 

means that the partial derivative of the internal energy of section BC has to be added to 

the deformation already determined at point B, i.e., 

( ) CxBC
x

BxBCAB
x

AC
x

∆U
F

∆UU
F

U
F

=
∂

∂
+=+

∂
∂

=
∂

∂ . (A.88) 

Therefore, based on Eq. A.88, 
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. (A.89) 

After the derivatives are taken, Eq A.89 becomes 
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which simplifies to 
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Integrating Eq. A.91, the x-component of deformation at point C can be written as 

cy

2
BCCDz

cy

BC
2

CDx

c

BCx
BxCx 2EI

LLF
EI

LLF
EA

LF
∆∆ −++= . (A.92) 

Equation A.92 simplifies to 
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Displacement in the y-direction at point C is derived by taking partial derivative 

of the internal energy of section AC with respect to Fy, i.e., 
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which yields 
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After the derivatives are taken, Eq A.95 becomes 
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which simplifies to 
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After integration, Eq. A.97 becomes 
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and simplifies to the following equation for the y-component of deformation at point C: 

( )

c

BC
2

BCy

c

BCy

cz

3
BCy

b

AB
2

BCy

b

ABy2
CDABCD

2
AB

3
AB

bx

y
Cy

GJ

LLF

5GA

L6F

EI

LF

GJ

LLF

5GA

L6F
LL3LL3L

3EI

F
∆

+++

+++−=

. (A.99) 

Displacement in the z-direction at point C is derived by taking partial derivative 

of the internal energy of section AC with respect to Fz, which can be expressed as 
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and represented by 
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After the derivatives are taken, Eq A.101 becomes 
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which simplifies to 
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After integration, Eq. A.103 becomes 
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and simplifies to the equation for the z-component of deformation at point C, which is 
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A.4.  Deformations at point D 

The final step is to derive the equation for deformations at point D, where the 

force is applied.  In order to do this the forces, moments and torques acting along and 

through section CD have to be derived, as presented in Section A.4.1. 

A.4.1.  Internal reaction forces and moments for section CD 

The forces, moments, and torques acting through section CD were derived using 

the free body diagram for a part of the section of an arbitrary length along the z-axis, Fig. 

A.6. 

 
Fig. A.6.  Free body diagram for a part of section CD. 

Based on the free body diagram in Fig. A.6, the shear forces acting through 

section CD are 

∑ −== xxx CCD0F , (A.106) 

xxx FCCD == , (A.107) 
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∑ −== yyy CCD0F , (A.108) 

yyy FCCD == , (A.109) 

∑ −== zzz CCD0F , (A.110) 

zzz FCCD == , (A.111) 

and the moments acting thru section CD are 

∑ +−+−== 0CzCTM0M zyCDxCxxCD , (A.112) 

( )CDyyCxCDx L-zFzCMM =+= , (A.113) 

∑ −++−== 0CzCMM0M zxCDyCyyCD , (A.114) 

( )z-LFzCMM CDxxCyCDy =−= , (A.115) 

and 

∑ +++−== 0C0CTM0M xyCDzCzzCD , (A.116) 

0MT CzCDz == . (A.117) 

A.4.2.  Derivation of the deformations at point D 

Using the forces, moments, and torques defined by Eqs A.106 to A.117, 

deformations at point D, where the forces are being applied, will be derived.  To do this 

partial derivative of the internal energy of the entire beam AD, not just that of the section 

CD, will be taken with respect to the force, Fx, acting in the direction, x, of the desired 

displacement.  This means that partial derivative must be taken of the internal energy of 

section CD and added to the deformation determined in Section A.3.3 for point C, i.e., 
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According to Eq. A.118, 
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After the derivatives are taken, Eq A.119 becomes 
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which simplifies to 
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After integration, Eq. A.121 becomes 
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and simplifies to the equation for the x-component of deformation at point D 
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To find the deformation in the y-direction at point D, partial derivative of the 

internal energy of the entire beam, section AD, was taken with respect to Fy, to obtain 
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which yields 
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After the derivatives are taken, Eq A.125 becomes 
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which simplifies to 
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After integration, Eq. 127 becomes 
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and simplifies to the equation for the y-component of deformation at point D 



 209

( )

b

CDy

bx

3
CDy

c

BC
2

BCy

c

BCy

cz

3
BCy

b

AB
2

BCy

b

ABy2
CDABCD

2
AB

3
AB

bx

y
Dy

5GA

L6F

3EI

LF

GJ

LLF

5GA

L6F

EI

LF

GJ

LLF

5GA

L6F
LL3LL3L

3EI

F
∆

++++

++++−=

. (A.129) 

Finally, to find the deformation in the z-direction at point D, partial derivative of 

the internal energy of section AD was taken with respect to Fz, i.e., 
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Equation A.130 can be expanded to 
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After the derivatives are taken, Eq A.131 becomes 

( ) ( ) ( )

( ) ( ) ( )∫ ∫+∫ +

∫ +∫ ∫ +++=

CDL

0

CDL

0 b

CDz

b

yCDL

0 b

x

CDL

0 by

CDyCDL

0

CDL

0 by

CDx

b

z
CzDz

dz0
GJ
T

dz0
5GA

6F
dz0

5GA
6F

dz0
EI

M
dz0

EI
M

dz1
EA

F
∆∆

, (A.132) 

which simplifies to 
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After integration, Eq. A.133 becomes 
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CzDz += , (A.134) 

and simplifies to the equation for the z-component deformation at point D 
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A.5.  Determination of deformations at point D 

Using Eqs A.123, A.129, and A.135 deformations at point D will be determined 

utilizing forces calculated in Appendix B and polysilicon as the material. 

Equations A.136 to A.139 define the material properties of the polysilicon used in 

the modeling of the folded spring, 

E = 160 GPa   , (A.136) 

ν = 0.23   , (A.137) 

ρ = 2.33 g/cm3   , (A.138) 

( )ν12
EG
+

=  G = 65 GPa   . (A.139) 

Equations A.140 to A.145 define dimensions of the folded spring used in this 

analysis, 

LAB = 98 µm   , (A.140) 

LBC = 17 µm   , (A.141) 

LCD= 111 µm   , (A.142) 

b = 3 µm   , (A.143) 

bBC = 10 µm   , (A.144) 

h = 2.5 µm   . (A.145) 
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Equations A.146 to A.148 define the forces derived in Appendix B that were 

applied to the folded spring 

Fx = 21.0572 µN   , (A.146) 

Fy = 0.000744747 µN   , (A.147) 

Fz = 0 µN   . (A.148) 

The cross sectional areas of sections AB and CD are defined as 

bhA b = , (A.149) 

the cross sectional area of section BC is defined as 

hbA BCc = , (A.150) 

the polar moments of inertia of sections AB and CD are defined as 

3
b bh219.0J ⋅= , (A.151) 

the polar moment of inertia of section BC is defined as 
3

BCc hb282.0J ⋅= , (A.152) 

the moments of inertia of sections AB and CD are defined as 

12
bhI

3

bx = , (A.153) 

12
hbI

3

by = , (A.154) 

and the moments of inertia of section BC are defined as
 

12
hb

I
3

BC
cz = , (A.155) 

12
hb

I
3

BC
cy = . (A.156)
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Using, Eqs A.136 to A.156 and A.123, A.129, and A.135, the deformations at point D are 

calculated to be 
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or 

µm4583.21106 =⋅Dx∆ , (A.157) 
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or 

nm17257.1109 =⋅Dy∆ , (A.158) 

and 
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µm4268.2106 −=⋅Dz∆ . (A.159) 
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The time dependent in-plane force, defined by Eq. B.22, will be applied to Eqs. 

A.123 and A.135, defining deformations in the x-direction and z-direction, respectively.  

The range of time used for these calculations is 

t = 0, 0.001…0.5 ms   , (A.160) 

which represents five cycles of vibration of the proof mass resonating at 10 kHz.  The 

other values necessary to solve for the time dependent force are the frequency of the 

motion of the proof mass 

f = 10·103 Hz   , (A.161) 

the length of the combdrive fingers 

µm40Lf = , (A.162) 

the amplitude of the motion of the proof mass 

3
2

L
B f −=

 
µm17B = , (A.163) 

the angular speed of the motion of the proof mass
 

f2πω ⋅=  sec
rad102832.6ω 4×= , (A.164) 

the mass of the proof mass 

m = 1.25502 µg   , (A.165) 

the sinusoidal time-dependent acceleration of the proof mass 

( ) ( )][ 326 10tωsinω10Ba(t) −− ⋅⋅⋅⋅⋅−=    , (A.166) 

the sinusoidal time-dependent force acting on the folded spring 

( ) ( )
4

tmatFx = , (A.167) 
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the sinusoidal time-dependent displacement, in the x-direction, of the folded spring at 

point D 

( ) ( ) ( ) ( )

( ) ( ) ( )

( )
b

CDx

by

3
CDx

cy

2
BCCDz

cy

BC
2

CDx

c

BCx
CDAB

2
AB

by

BCz

b

ABx2
CDABCD

2
AB

3
AB

by

x
Dx

5GA
L6F

3EI
LtF

2EI
LLF

EI
LLtF

EA
LtF

LL2L
2EI

LF

5GA
Lt6F

LL3LL3L
3EI

tF
t∆

+

+−++−

+++−=

 

or 

( ) ( ) 6
µm 10tt ⋅= DxDx ∆∆ , (A.168) 

and the sinusoidal time-dependent displacement, in the z-direction, of the folded spring at 

point D 

( ) ( ) ( )

( )
EA

LF
A5
L6F

3EI
LF

2EI
LLtF

EI
LLF

2EI
LL2LLtF

EA
LF

t∆

b

CDz

c

BCz

cy

3
BCz

cy

2
BCCDx

by

AB
2

BCz

by

ABCD
2

ABBCx

b

ABz
Dz

+++

−+
−

+=

G

 

or 

( ) ( ) 6
µm 10tt ⋅= DzDz ∆∆ . (A.169) 

Equation A.168 is represented graphically in Fig. A.7 for five periods of oscillation, and 

Eq. A.169 is represented in Fig. A.8. 
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Fig. A.7.  Sinusoidal motion of the spring in the x-direction. 
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Fig. A.8.  Sinusoidal motion of the spring in the z-direction. 
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APPENDIX B.  DETERMINATION OF FORCES ACTING ON THE FOLDED 
SPRING OF THE MICROGYRO 

In order to obtain deformations at point D, where the force is applied, Eqs A.85, 

A.91, and A.97 should be used.  Forces used in these equations had to be determined.  

Because of the nature of the functional operation of the microgyroscopes studied in this 

thesis, forces acting in the x, i.e., in-plane, and y, i.e., out-of-plane, directions were 

calculated, while the force in the z-direction was assumed to be zero. 

B.1.  Derivation of the in-plane force acting on the folded springs 

The first step in determining the force acting at point D in the x-direction was to 

find the area of the proof mass, including the fingers of the combdrives attached to the 

proof mass, where the length of the combdrive fingers is 

µm40Lf = . (B.1) 

Using this length and other measured dimensions the area for the proof mass was 

calculated to be 

( )2
shuttle 500A =  

25
shuttle µm105.2A ×= , (B.2) 

( )
4
4π62A

2
2

holes =
 

24
hole µm10831.4A ×= , (B.3) 

( )4L227A fcombs ⋅⋅=  
23

combs µm1064.8A ×= , (B.4) 

( ) ( ) ( ) ( )8135410204Aextra ⋅⋅+⋅⋅=  
23

extra µm1012.5A ×= , (B.5) 

extracombsholesshuttleproof AAAAA ++−=  
25

proof µm10155.2A ×= . (B.6) 
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The area calculated in Eq. B.6 was then multiplied by the thickness, Eq. B.7, in order to 

obtain the volume 

µm5.2h = , (B.7) 

hAV proofproof =  
35

proof µm10386.5V ×= . (B.8) 

Using the volume of the proof mass and the density of the polysilicon, Eq. B.9, the mass 

of the proof mass was calculated as, 

3cmg2.33ρ = , (B.9) 

( ) ρ10Vm
36-

proof=  µg25502.110m 9 =⋅ . (B.10) 

The in-plane force, Fx, was calculated using the mass of the proof mass, Eq. B.10.  

This was done starting with the sinusoidal motion of the proof mass.  In order to 

determine sinusoidal motion, time period was defined as 

t = 0, 0.001…0.5 ms   . (B.11) 

The other parameters necessary to solve for the time dependent force are the resonance 

frequency of the proof mass 

f = 10·103 Hz   , (B.12) 

the amplitude of the motion of the proof mass, B, defined as half the length of the comb 

drives minus 3 µm to insure that there will be no bottoming out 

3
2

L
B f −=

 
µm17B = , (B.13) 

the angular speed of the motion of the proof mass
 

f2πω ⋅=  sec
rad102832.6ω 4×= , (B.14) 

and the period of the oscillations of the proof mass determined to be 
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f
1τ =

 
sec101τ 4−×= . (B.15) 

Using Eqs B.11, B.13, and B.14, the displacement of the proof mass as a function of time 

can be determined to be 

( )][ 3-10tωBsinx(t) ⋅= . (B.16) 

Equation B.16 is represented in Fig. B.1 for five periods of oscillation.  Velocity of the 

proof mass was calculated by taking a time derivative of the Eq. B.16, i.e., 

( ) ( )[ ]36 10ωcosω10Bv(t) −− ⋅⋅⋅⋅= t . (B.17) 

The velocity determined from Eq. B.17 is represented in Fig. B.2 for five periods of 

oscillation.  Acceleration of the proof mass can be calculated by taking a time derivative 

of Eq. B.17, or the second time derivative of Eq. B.16, with the result given by 

( ) ( )[ ]326 10ωsinω10Ba(t) −− ⋅⋅⋅⋅−= t , (B.18) 

which is displayed in Fig. B.3.  Accelerations can also be represented in terms of g’s by 

81.9
a(t)

(t)a g = , (B.19) 

which gives the results in multiples of gravitational acceleration, Fig. B.4.  The maximum 

acceleration will be obtained when sin(ωt) becomes equal to one; therefore the maximum 

acceleration felt by the proof mass of the gyroscope will be 

2
max Bωa =  2

4
max s

m10711.6a ×= , (B.20) 

or in g’s 

81.9
a

a max
gs =

 
g10841.6a 3

gs ×= . (B.21) 
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Using the maximum acceleration defined by Eqs B.20 and B.21, the maximum force 

acting on the spring will be one quarter of the maximum force acting on the proof mass.  

This is the case because it was assumed that each of the four springs, that support the 

proof mass in each of the four corners, will evenly carry the load.  Therefore, the 

maximum force is calculated as 

4
ma

F max
xmax =

 
µN0572.1210F 6

x =⋅ , (B.22) 

while the time dependent equation for the force is 

( ) ( )
4

tmatFx =
 

( ) ( ) 6
xµNx 10tFtF ⋅= ; (B.23) 

the behavior of the force calculated in Eq. B.23 is illustrated in Fig. B.5. 
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Fig. B.1.  Sinusoidal displacement of the proof mass in the x-direction. 
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Fig. B.2.  Sinusoidal speed of the proof mass in the x-direction. 
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Fig. B.3.  Sinusoidal acceleration of the proof mass in the x-direction. 
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Fig. B.4.  Sinusoidal acceleration, in g's, of the proof mass in the x-direction. 
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Fig. B.5.  Sinusoidal force acting on the folded spring in the x-direction. 
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B.2.  Derivation of the out-of-plane force, Coriolis force, acting on the folded springs 

The first step in determining the Coriolis force is to calculate the in-plane velocity 

acting on the proof mass, i.e., 

τ
4Bv =  s

m68.0v = . (B.24) 

The angular speed that the microgyro is subjected to for the purpose of these calculations 

is 100 deg/sec, 

360
2π100Ω =

 sec
rad74533.1Ω = . (B.25) 

Using Eqs B.10, B.24, and B.25, the out-of-plane Coriolis force acting on the folded 

spring can be calculated from Eq. 2.7 to be 

Ωvm2Fc ×⋅= , (B.26) 

Ωvm2Fc ⋅⋅=  nN978986.210F 9
c =⋅ . (B.27) 

Therefore, the Coriolis force acting on a single folded spring is 

4
F

F c
y =  nN7447.010F 9

y =⋅ . (B.28) 
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APPENDIX C. DETERMINATION OF UNCERTAINTIES IN THE 
DEFORMATION OF THE FOLDED SPRING 

A RSS (root-sum-square) type uncertainty analysis was done on the deformations 

that were determined in Appendix A for the folded springs that support the proof masses 

of the Sandia microgyro.  This was done to determine how good the results are. 

C.1.  Uncertainty analysis of deformation in the x-direction 

The first step was to obtain the values and uncertainties of all of the parameters 

that are included in the equation for the displacement in the x-direction.  Equations C.1 to 

C.6 define the dimensions of the model of the folded spring used in this analysis 

LAB = 98 µm   , (C.1) 

LBC = 17 µm   , (C.2) 

LCD= 111 µm   , (C.3) 

b = 3 µm   , (C.4) 

bBC = 10 µm   , (C.5) 

and 

h = 2.5 µm   . (C.6) 

Equations C.7 to C.9 define the material properties of the polysilicon used in the 

modeling of the folded spring 

E = 160 GPa   , (C.7) 

ν = 0.23   , (C.8) 

and 
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ρ = 2.33 g/cm3   . (C.9) 

Equations C.10 to C.18 define in the parameters nominal values of which are defined in 

Eqs C.1 to C.9, respectively, 

δLAB = 0.25 µm   , (C.10) 

δLBC = 0.25 µm   , (C.11) 

δLCD= 0.25 µm   , (C.12) 

δb = 0.25 µm   , (C.13) 

δbBC = 0.25 µm   , (C.14) 

δh = 0.01h µm δh = 0.025 µm   , (C.15) 

δE = 5 GPa   , (C.16) 

δν = 0.005   , (C.17) 

and 

δρ = 0.5 g/cm3   . (C.18) 

The values and uncertainties defined in Eqs C.1 to C.18 were used to calculate the overall 

uncertainties in deformations at point D.  The first uncertainty to be calculated was for 

the deformation in the x-direction.  This was done by starting with the equation for the 

deformation in the x-direction, i.e., 

( )

( )

b

CDx

by

3
CDx

cy

2
BCCDz

cy

BC
2

CDx

c

BCx
CDAB

2
AB

by

BCz

b

ABx2
CDABCD

2
AB

3
AB

by

x
Dx

5GA
L6F

3EI
LF

2EI
LLF

EI
LLF

EA
LF

LL2L
2EI

LF

5GA
L6F

LL3LL3L
3EI

F
∆

+

+−++−

+++−=

. (C.19) 
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Using Eq. C.19, the phenomenological relationship for the deformation in the x-direction 

was derived to be 

( )GE,,I,I,A,A,L,L,L,F,F∆∆ cybycbCDBCABzxDxDx = , (C.20) 

where each of the parameters that define ∆Dx are written as the following functions in 

terms of their own independent parameters that define them: 

( )am,FF xx = , (C.21) 

( )ρ,Vmm proof= , (C.22) 

( )h,AVV proofproofproof = , (C.23) 

( )ωB,aa = , (C.24) 

( )fωω = , (C.25) 

( )fLBB = , (C.26) 

( )hb,AA bb = , (C.27) 

( )h,bAA BCcc = , (C.28) 

( )hb,II byby = , (C.29) 

( )h,bII BCcycy = , (C.30) 

( )νE,GG = . (C.31) 

Parameters appearing in Eqs C.21 to C.31, and their uncertainties, are defined in Eqs 

C.32 to C.49 

Hz1001f 3×= , (C.32) 

Hz105.0δf 3×= , (C.33) 
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Lf = 40 µm   , (C.34) 

δLf = 0.25 µm   , (C.35) 

Lshuttle = 500 µm   , (C.36) 

δLshuttle = 0.25 µm   , (C.37) 

dholes = 4 µm   , (C.38) 

δdholes = 0.25 µm   , (C.39) 

bfingers = 4 µm   , (C.40) 

δbfingers = 0.25 µm   , (C.41) 

extra1 = 20 µm   , (C.42) 

δextra1 = 0.25 µm   , (C.43) 

extra2 = 10 µm   , (C.44) 

δextra2 = 0.25 µm   , (C.45) 

extra3 = 135 µm   , (C.46) 

δextra3 = 0.25 µm   , (C.47) 

extra4 = 8 µm   , (C.48) 

δextra4 = 0.25 µm   . (C.49) 

Using the parameters and their uncertainties, defined by Eqs C.21 to C.31 and Eqs C.32 

to C.49, overall uncertainty in the deformation in the x-direction was determined as 

described in the following discussion. 

The area of the proof mass and the uncertainty in the area were determined as 

2
shuttleshuttle LA =  

27
shuttle m105.2A −×= , (C.50) 

shuttleshuttleshuttle δLL2δA ⋅=  
210

shuttle m105.2δA −×= , (C.51) 
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4
πd

64A
2

holes2
holes =

 
28

holes m108305.4A −×= , (C.52) 

holes
holes2

holes δd
4

πd
642δA ⋅=  

29
holes m100381.6δA −×= , (C.53) 

( )2fingersfcombs bL227δA ⋅=  
29

combs m1064.8δA −×= , (C.54) 

( )2ffingers δLb227δAcombsδLf ⋅⋅= , (C.55) 

( )2fingersf δbL227ingersδAcombsδbf ⋅⋅= , (C.56) 

ingersδAcombsδbfδAcombsδLfδAcombs +=  

or 

210
combs m104269.5δA −×= , (C.57) 

( ) ( )4321extra δextraextra4δextraextra4A ⋅+⋅=  
29

extra m1012.5A −×= , (C.58) 

( )2
12 δextraextra4tra1δAextraδex ⋅= , (C.59) 

( )2
21 δextraextra4tra2δAextraδex ⋅= , (C.60) 

( )2
34 δextraextra4tra3δAextraδex ⋅= , (C.61) 

( )2
43 δextraextra4tra4δAextraδex ⋅= , (C.62) 

tra4δAextraδextra3δAextraδextra2δAextraδextra1δAextraδexδAextra +++=  

or 

210
extra m103707.1δA −×= , (C.63) 

extracombsholesshuttleproof AAAAA ++−=  

or 

27
proof m101545.2A −×= , (C.64) 
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and 

2
extra

2
combs

2
holes

2
shuttleproof δAδAδAδAδA ++−=  

or 
29

proof m100692.6δA −×= . (C.65) 

The angular speed and the amplitude of the motion of the proof mass and their 

uncertainties were determined as 

f2πω ⋅=  sec
rad102832.6ω 4×= , (C.66) 

( )2δf2πδω ⋅=  sec
rad101416.3δω 3×= , (C.67)

 

( )6f 103
2

L
B −×−=

 
m107.1B 5−×= , (C.68)

 

2

fδL
2
1δB 






=

 
m1025.1δB 7−×= . (C.69) 

Using Eqs C.66 to C.69, the maximum acceleration of the proof mass and the uncertainty 

in the acceleration were determined to be 

2ωBa =  s
m107113.6a 4×= , (C.70) 

( )22 δBωδaδB ⋅= , (C.71) 

( )2δωB2ωδaδω ⋅⋅= , (C.72) 

δaδωδaδBδa +=  s
m107294.6δa 3×= . (C.73) 

The mass of the proof mass and the uncertainty in the mass were determined by finding 

the nominal value and uncertainty in the volume, i.e.,
 

hAV proofproof =  
35

proof µm10386.5V ×= , (C.74) 
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( )2
proofδAhroofδVproofδAp ⋅= , (C.75) 

( )2
proof δhAδVproofδh ⋅= , (C.76) 

δVproofδhroofδVproofδApδVproof +=
 

or 

314
proof m106101.1δV −×= , (C.77) 

which yielded 

ρVm proof=  kg10255.1m 9−×= , (C.78) 

( )2
proofδVρδmδVproof ⋅= , (C.79) 

( )2
proof δρVδmδρ ⋅= , (C.80) 

δmδρδmδVproofδm +=  kg107516.3δm 11−×= . (C.81) 

The values for the cross sectional area of sections AB and CD were calculated as 

hbA b =  
212

b m105.7A −×= , (C.82) 

( )2δbhδAbδb ⋅= , (C.83) 

( )2bδδδAbδh = , (C.84) 

δAbδhδAbδbδA b +=  
213

b m102948.6δA −×= . (C.85) 

The values for the cross sectional are of section BC were calculated as 

BCc hbA =  
211

c m105.2A −×= , (C.86) 

( )2
BCδbhδAcδbBC ⋅= , (C.87) 

( )2
BCδhbδAcδh = , (C.88)
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δAcδhδAcδbBCδAc +=  
213

c m107315.6δA −×= , (C.89)
 

The moment of inertia for bending in the in-plane direction for sections AB and CD, and 

the corresponding uncertainty were calculated as 

12
hbI

3

by = , (C.90) 

22
δb

4
hbδIbyδb 










= , (C.91) 

23
δh

12
bδIbyδh 










= , (C.92) 

δIbyδhδIbyδbδIby += . (C.93) 

The moment of inertia for bending in the in-plane direction for section BC and its 

uncertainty were calculated as 

12
hb

I
3

BC
cy = , (C.94) 

2

BC

2
BC δb
4

hb
δIcyδbBC














= , (C.95) 

23
BC δh
12

b
δIcyδh














= , (C.96) 

δIcyδhδIcyδbBCδIcy += . (C.97) 

The shear modulus and the uncertainty were calculated as 

( )ν12
EG
+

=
 

G = 65 GPa   , (C.98) 
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( )
2

δE
ν12

1δGδE 







+

= , (C.99) 

( )

2

2
δν

ν12

EδGδν












+
−= , (C.100)

 

δGδνδGδEδG +=  δG = 0.335 GPa   . (C.101) 

Finally the force in the x-direction and its uncertainty were determined to be 

4
maFx =

 
µN0572.1210F 6

x =⋅ , (C.102)
 

2
δa

4
mδFxδa 






= , (C.103) 

2
δm

4
aδFxδm 






= , (C.104) 

δFxδmδFxδaδFx +=  µN2032.210δF 6
x =⋅ . (C.105) 

The uncertainty for the force in the z-direction was set to zero, i.e., 

N0Fz = , (C.106) 

N0δFz = . (C.107) 

Using all of the independent parameters and their uncertainties, defined in Eqs 

C.32 to C.107, overall uncertainty in deformation in the x-direction was determined.  This 

was done by first calculating components of the overall uncertainty due to each of the 

parameters in the phenomenological relationship, given by C.20, for the deformation in 

the x-direction, i.e., 
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2

x
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L
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, (C.108) 

( )
2

z

2

CDAB
2

AB δFLL2L



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






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
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



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cy

BCCD

by
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2EI

LL
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L

δ∆DxδFz , (C.109) 

( )

( )
2

CDAB
zx

2
CDCDAB

2
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x

δL22L
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L3LL63L
F
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, (C.110) 
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2

BCCDz
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( )
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x
22
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Equations C.108 to C.118 were combined to determine the overall uncertainty in 

deformation in the x-direction, i.e., 

(
) 21δ∆DxδGδ∆DxδEδ∆DxδIcyδ∆DxδIbyδ∆DxδAcδ∆DxδAb

δ∆DxδLCDδ∆DxδLBCδ∆DxδLABδ∆DxδFzδ∆DxδFxδ∆Dx

+++++

+++++=
 

or 

µm78856.5106 =⋅Dxδ∆ . (C.119) 

Using the value of overall uncertainty in ∆Dx determined in Eq. C.119 and the value of 

the deformation based on Eq. A.122. i.e., 

µm4583.21106 =⋅Dx∆ , (C.120) 
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the percent overall uncertainty in the x-component of the deformation at point D was 

calculated as 

100
∆
δ∆

y∆Uncertaint%
Dx

Dx
Dx ⋅=  %9758.26y∆Uncertaint% Dx = . (C.121) 

The result shown in Eq. C.121 means that the uncertainty calculated in Eq. C.119 for the 

deformation in the x-direction is 28% of the nominal value of the deformation.  In order 

to see which of the independent parameters contributed most to the overall uncertainty, 

percent contributions to the uncertainty of each of the individual uncertainties were 

calculated as 

100
δ∆

δ∆DxδFxδ∆DxδFx%
2

Dx
⋅=  %0442.15δ∆DxδFx% = , (C.122) 

100
δ∆

δ∆DxδFzδ∆DxδFz%
2

Dx
⋅=

 

%0δ∆DxδFz% = , (C.123) 

100
δ∆

δ∆DxδLABδ∆DxδLAB%
2

Dx
⋅=

 

%109932.2δ∆DxδLAB% 6−×= , (C.124) 

100
δ∆

δ∆DxδLBCδ∆DxδLBC%
2

Dx
⋅=

 

%101315.1δ∆DxδLBC% 5−×= , (C.125) 

100
δ∆

δ∆DxδLCDδ∆DxδLCD%
2

Dx
⋅=

 

%0617.0δ∆DxδLCD% = , (C.126) 

100
δ∆

δ∆DxδAbδ∆DxδAb%
2

Dx
⋅=

 

%104642.2δ∆DxδAb% 6−×= , (C.127) 

100
δ∆

δ∆DxδAcδ∆DxδAc%
2

Dx
⋅=

 

%107329.1δ∆DxδAc% 11−×= , (C.128) 

100
δ∆

δ∆DxδIbyδ∆DxδIby%
2

Dx
⋅=

 

%8804.84δ∆DxδIby% = , (C.129) 
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100
δ∆

δ∆DxδIcyδ∆DxδIcy%
2

Dx
⋅=

 

%109914.2δ∆DxδIcy% 4−×= , (C.130) 

100
δ∆

δ∆DxδEδ∆DxδE%
2

Dx
⋅=

 

%0134.0δ∆DxδE% = , (C.131) 

100
δ∆

δ∆DxδGδ∆DxδG%
2

Dx
⋅=

 

%101964.9δ∆DxδG% 9−×= . (C.132) 

In order to ensure that the percent uncertainties were calculated properly, the values 

calculated in Eqs C.122 to C.132 were added together to make sure that they yield 100%, 

i.e., 

δ∆DxδGδ∆DxδEδ∆DxδIcyδ∆DxδIbyδ∆DxδAcδ∆DxδAb
δ∆DxδLCDδ∆DxδLBCδ∆DxδLABδ∆DxδFzδ∆DxδFx%δ Dx

%%%%%%
%%%%%∆

+++++
+++++=  

or 

%100∆ =Dx%δ . (C.133) 

Based on the results of Eqs C.122 to C.133, the uncertainty in Iby, given by Eq. 

C.129, produces the largest contribution to the overall uncertainty in the deformation in 

the x-direction, amounting to 85%.  The next step was to check the overall uncertainty in 

Iby to see which one of the independent parameters contributes most to its value, 

100
δI

δIbyδb
δIbyδb%

2
by

⋅=

 

%8403.99δIbyδb% = , (C.134) 

100
δI

δIbyδh
δIbyδh%

2
by

⋅=

 

%1597.0δIbyδh% = . (C.135) 

The results of Eqs C.134 and C.135 were added together to check that they added up to 

100%, 

δIbyδh%δIbyδb%δI% by +=  %100δI% by = . (C.136) 
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Equations C.134 to C.136 show that the uncertainty in the width contributes over 99.8%, 

Eq. C.134, to the overall uncertainty of Iby.  Since Iby is the largest contributor to the 

overall uncertainty in the deformation in the x-direction, the width contributes the most to 

the overall uncertainty in the deformation.  Therefore, in order to reduce overall 

uncertainty in ∆Dx, contributions due to the uncertainty in width must be reduced, i.e., δb 

must be lowered. 

C.2.  Uncertainty analysis of deformation in the y-direction 

Since all of the independent parameters were defined in Section C.1, the first step 

was to obtain the phenomenological equation for the deformation in the y-direction, i.e., 

( )GE,,J,J,I,I,A,A,L,L,L,F∆∆ cbczbxcbCDBCAByDyDy = , (C.137) 

where each of the parameters that define ∆Dy are written with respect to their own 

independent parameters that define them: 

( )Ωv,m,FF yy = , (C.138) 

( )ρ,Vmm proof= , (C.139) 

( )τB,vv = , (C.140) 

( )fLBB = , (C.141) 

( )fττ = , (C.142) 

( )hb,AA bb = , (C.143) 

( )h,bAA BCcc = , (C.144) 
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( )hb,II bxbx = , (C.145) 

( )h,bII BCczcz = , (C.146) 

( )hb,JJ bb = , (C.147) 

( )h,bJJ BCcc = , (C.148) 

and 

( )νE,GG = . (C.149) 

Out of Eqs C.138 to C.149, m, Β, Ab, Ac, and G are defined in the derivation of the overall 

uncertainty in the deformation in the x-direction and given by Eqs C.22, C.26 to C.28, 

and C.31, respectively, while other parameters will be defined in the discussion that 

follows. 

The angular velocity that the microgyroscope was subjected to is defined as 

360
2π100Ω =

 sec
rad74533.1Ω = , (C.150) 

with an uncertainty of 

0δΩ = . (C.151) 

The period of the oscillation of the proof mass and the uncertainty in the period are 

calculated as 

f
1τ =

 
sec101τ 4−×= , (C.152) 

2

2
δf

f
1-δτ 








=

 
s105δτ 6−×= . (C.153) 

The velocity of the in plane oscillation of the proof mass and the uncertainty are defined 

as 
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τ
4Bv =  s

m68.0v = , (C.154) 

2
δB

τ
4δvδB 






= , (C.155) 

2

2
δτ

τ
4B-δvδτ 








= , (C.156) 

δvδτδvδBδv +=  s
m0344.0δv = . (C.157) 

The moment of inertia for bending in the out-of-plane, y, direction for sections AB and 

CD were calculated as 

12
bhI

3

bx = , (C.158) 

23
δb

12
hδIbxδb 










= , (C.159) 

22
δh

4
bhδIbxδh 










= , (C.160)

 

δIbxδhδIbxδbδIbx += . (C.161) 

The moment of inertia for bending in the y-direction for section BC was calculated as 

12
hb

I
3

BC
cz = , (C.162)

 

2

BC

3
δb

12
hδIczδbBC 










= , (C.163) 

22
BC δh

4
hb

δIczδh













= , (C.164)

 

δIczδhδIczδbBCδIcz += . (C.165) 
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The polar moment of inertia and its uncertainty for sections AB and CD were calculated 

as 

3
b bh219.0J ⋅= , (C.166) 

( )23δbh219.0δJbδb ⋅= , (C.167) 

( )22δhbh219.03δJbδh ⋅⋅= , (C.168) 

δJbδhδJbδbδJ b += . (C.169) 

The polar moment of inertia and the corresponding uncertainty for section BC was 

calculated as 

3
BCc hb282.0J ⋅= , (C.170) 

( )2BC
3δbh282.0δJcδbBC ⋅= , (C.171) 

( )22
BC δhhb282.03δJcδh ⋅⋅= , (C.172) 

δJcδhδJcδbBCδJ c += . (C.173) 

Finally, the Coriolis force in the y-direction and the uncertainty in the force were 

determined as 

2
ΩvmFy

⋅⋅
=  nN7447.010Fy 9 =⋅ , (C.174) 

2
δm

2
ΩvδFyδm 






 ⋅

= , (C.175) 

2
δv

2
ΩmδFyδv 






 ⋅

= , (C.176)
 

2
δΩ

2
vmδFyδΩ 






 ⋅

= , (C.177) 



 240

δFyδΩδFyδvδFyδmδFy ++=  nN057.010δFy 9 =⋅ . (C.178) 

Using the independent parameters and uncertainties defined by Eqs C.32 to C.101 and C. 

151 to C.179, overall uncertainty in deformation in the y-direction was calculated.  This 

was done by calculating components of the overall uncertainty due to each of the 

parameters in the phenomenological relationship, given by C.137, for deformation in the 

y-direction, i.e., 

( )
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( )
2

AB

2
yy

2
CDCDAB

2
AB

y

δL
FF

L3LL63L
F













+

++−











=

b

BC

b

bx

GJ

L

5GA

6

3EI
δ∆DyδLAB

, (C.180) 
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and 
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Equations C.179 to C.190 were combined to calculate the overall uncertainty in 

deformation in the y-direction, i.e., 
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(
) 21δ∆DyδGδ∆DyδEδ∆DyδJcδ∆DyδJbδ∆DyδIczδ∆DyδIbxδ∆DyδAc

∆DyδAbδ∆DyδLCDδ∆DyδLBCδ∆DyδLABδ∆DyδFyδ∆Dy

++++++

+++++=
 

or 

nm1186.0109 =⋅Dyδ∆ .
 

(C.191) 

Using the value of overall uncertainty in ∆Dy determined in Eq. C.191 and the value of 

the deformation based on Eq. A.128, i.e., 

nm17257.1109 =⋅Dy∆ , (C.192) 

the percent overall uncertainty in the y-component of the deformation at point D was 

calculated as 

100
∆

δ∆
y∆Uncertaint%

Dy

Dy
Dy ⋅=  %1155.10y∆Uncertaint% Dy = .

 
(C.193) 

The results calculated by Eq. C.193 show that the percent overall uncertainty in 

deformation in the y-direction is 10.1% of the nominal value of the deformation.  In order 

to see which independent parameter contributed most to the overall uncertainty, percent 

contributions to the uncertainty of each of the individual uncertainties were calculated as 

100
δ∆

δ∆DyδFy
δ∆DyδFy%

2
Dy

⋅=

 

%6936.33δ∆DyδFy% = , (C.194) 

100
δ∆

δ∆DyδLAB
δ∆DyδLAB%

2
Dy

⋅=

 

%102271.1δ∆DyδLAB% 4−×= , (C.195) 

100
δ∆

δ∆DyδLBC
δ∆DyδLBC%

2
Dy

⋅=

 

%0219.0δ∆DyδLBC% = , (C.196) 

100
δ∆

δ∆DyδLCD
δ∆DyδLCD%

2
Dy

⋅=

 

%4037.0δ∆DyδLCD% = , (C.197) 
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100
δ∆

δ∆DyδAb
δ∆DyδAb%

2
Dy

⋅=

 

%103414.7δ∆DyδAb% 6−×= , (C.198) 

100
δ∆

δ∆DyδAc
δ∆DyδAc%

2
Dy

⋅=

 

%10499.4δ∆DyδAc% 10−×= , (C.199) 

100
δ∆

δ∆DyδIbx
δ∆DyδIbx%

2
Dy

⋅=

 

%7096.65δ∆DyδIbx% = , (C.200) 

100
δ∆

δ∆DyδIcz
δ∆DyδIcz%

2
Dy

⋅=

 

%107151.3δ∆DyδIcz% 6−×= , (C.201) 

100
δ∆

δ∆DyδJb
δ∆DyδJb%

2
Dy

⋅=

 

%0556.0δ∆DyδJb% = , (C.202) 

100
δ∆

δ∆DyδJc
δ∆DyδJc%

2
Dy

⋅=

 

%0321.0δ∆DyδJc% = , (C.203) 

100
δ∆

δ∆DyδE
δ∆DyδE%

2
Dy

⋅=

 

%0819.0δ∆DyδE% = , (C.204) 

100
δ∆

δ∆DyδG
δ∆DyδG%

2
Dy

⋅=

 

%103955.1δ∆DyδG% 3−×= . (C.205) 

In order to ensure that the percent uncertainties were calculated properly the values 

determined in Eqs C.194 to C.205 were added together to make sure that the sum yields 

100%, i.e., 

δ∆DyδGδ∆DyδE
δ∆DyδJcδ∆DyδJbδ∆DyδIczδ∆DyδIbxδ∆DyδAc

∆DyδAbδ∆DyδLCDδ∆DyδLBCδ∆DyδLABδ∆DyδFy%δ Dy

%%
%%%%%

%%%%%∆

+
+++++

+++++=

 

or 

%100∆ =Dy%δ . (C.206) 



 244

Based on the results of Eqs C.194 to C.206, the uncertainty in Ibx produces the 

largest contribution to the overall uncertainty in deformation in the y-direction, 

amounting to 66%.  The next step was to check the overall uncertainty in Ibx to see which 

one of the independent parameters contributes most to δIbx, 

100
δI

δIbxδbδIbxδb%
2

bx
⋅=

 

%5269.88δIbxδb% = , (C.207) 

100
δI

δIbxδhδIbxδh%
2

bx
⋅=

 

%4731.11δIbxδh% = . (C.208) 

Sum of the results given by Eqs C.208 and C.209, 

δIbxδh%δIbxδb%δI% by +=  %100δI% by = , (C.209) 

is 100% indicating that the percentage uncertainties contributing to %δIbx were 

determined properly.  Furthermore, Eqs C.207 to C.209 show that the uncertainty in the 

width contributes over 88% to the overall uncertainty in Ibx.  Since Ibx is the largest 

contributor to the overall uncertainty in ∆Dy, the width contributes the most to the overall 

uncertainty in the deformation.  Therefore, in order to reduce δ∆Dy, δb should be reduced 

subject to the limitations of the fabrication process used. 

C.3.  Uncertainty analysis of the deformation in the z-direction 

All of the independent parameters needed for determination of overall uncertainty 

in deformation in the z-direction were defined in Section C.1; therefore, the first step was 

to obtain the phenomenological relationship for the deformation in the z-direction, i.e., 
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( )GE,,I,I,A,A,L,L,L,F,F∆∆ cybycbCDBCABzxDzDz =  (C.210) 

where each of the parameters that define ∆Dz are written with respect to the independent 

parameters that define them as 

( )am,FF xx = , (C.211) 

( )ρ,Vmm proof= , (C.212) 

( )h,AVV proofproofproof = , (C.213) 

( )ωB,aa = , (C.214) 

( )fωω = , (C.215) 

( )fLBB = , (C.216) 

( )hb,AA bb = , (C.217) 

( )h,bAA BCcc = , (C.218) 

( )hb,II byby = , (C.219) 

( )h,bII BCcycy = , (C.220) 

and 

( )νE,GG = . (C.221) 

The independent parameters defined by Eqs C.211 to C.221 and the corresponding 

uncertainties were defined in the derivation of the uncertainty for the displacement in the 

x-direction, Eqs C.32 to C.107.  Using the independent parameters and uncertainties from 

Eqs C.32 to C.107, overall uncertainty in deformation in the z-direction was calculated.  

This was done by calculating components of the overall uncertainty due to each of the 
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parameters in the phenomenological equation, given by Eq. C.210, for the deformation in 

the z-direction, i.e., 
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Equations C.222 to C.232 were combined to calculate the overall uncertainty in 

deformation in the z-direction 

(
) 21δ∆DzδGδ∆DzδEδ∆DzδIcyδ∆DzδIbyδ∆DzδAcδ∆DzδAb

δ∆DzδLCDδ∆DzδLBCδ∆DzδLABδ∆DzδFzδ∆DzδFxδ∆Dz

+++++

+++++=
 

or 

µm678104.0106 =⋅Dzδ∆ . (C.233) 

Using the value of overall uncertainty in ∆Dz determined in Eq. C.233 and the value of the 

deformation based on Eq. A.134, i.e., 

µm4268.2106 −=⋅Dz∆ , (C.234) 

the percent overall uncertainty in the z-component of the displacement at point D was 

calculated as 

100
∆
δ∆

y∆Uncertaint%
Dz

Dz
Dz ⋅=

 
%0716.27y∆Uncertaint% Dz = . (C.235) 

The result given by Eq C.235 show that the percent overall uncertainty in deformation in 

the z-direction is about 27% of the nominal value of the deformation.  In order to see 
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which independent parameter contributed most to the overall uncertainty, percent 

contributions to the uncertainty of each of the individual parameters were calculated as 

100
δ∆
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2
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%0δ∆DzδG% = . (C.246) 
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In order to ensure that the percent uncertainties were calculated properly the values 

calculated in Eqs C.236 to C.246 were added together to make sure that the sum yields 

100%, i.e., 

δ∆DzδGδ∆DzδE
δ∆DzδIcyδ∆DzδIbyδ∆DzδAc∆DzδAb

δ∆DzδLCDδ∆DzδLBCδ∆DzδLABδ∆DzδFzδ∆DzδFx%δ Dz

%%
%%%%

%%%%%∆

+
++++

+++++=
 

or 

%100∆ =Dz%δ . (C.247) 

Based on the results of Eqs C.236 to C.247 the uncertainty in Iby produces the largest 

contribution to the overall uncertainty in deformation in the z-direction, amounting to 

85%.  The next step was to check the overall uncertainty in Iby to see which one of 

independent parameters contributes most to δIby, 

100
δI

δIbyδb
δIbyδb%

2
by

⋅=

 

%8403.99δIbyδb% = , (C.248) 

100
δI

δIbyδh
δIbyδh%

2
by

⋅=

 

%1597.0δIbyδh% = . (C.249) 

Results of Eqs C.248 and C.249 were added together to check that they add up to 100%, 

δIbyδh%δIbyδb%δI% by +=  %100δI% by = . (C.251) 

Equations C.249 to C.251 show that the uncertainty in the width contributes over 99% to 

the overall uncertainty of Iby.  Since Iby is the largest contributor to the overall uncertainty 

in the deformation in the z-direction, δb contributes most to the overall uncertainty in the 

deformation.  One way to reduce the magnitude of this contribution is to use better means 
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for measuring the width, resulting in dimensions characterized by the least count lower 

than 0.5 µm. 
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APPENDIX D.  EXPERIMENTAL RESULTS 

D.1.  OELIM determination of deformations of the right proof mass of the 
microgyro 

Following the procedure used to obtain results presented in Section 5.4.2.2, 

deformations of the right proof mass were determined, Figs D.1 to D.12. 

 
Fig. D.1.  Representative OELIM interferogram 

of the right proof mass of the microgyro. 
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Fig. D.2.  Two-dimensional color representation of 

deformations of the right proof mass. 

 
Fig. D.3.  Three-dimensional wireframe representation 

of deformations of the right proof mass. 
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Fig. D.4.  Three-dimensional color representation of 

deformations of the right proof mass. 

 
Fig. D.5.  Representative OELIM interferogram of the 

upper part of the right proof mass of the microgyro. 
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Fig. D.6.  Two-dimensional color representation of 

deformations of the upper part of the right proof mass. 

 
Fig. D.7.  Three-dimensional wireframe representation of 

deformations of the upper part of the right proof mass. 
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Fig. D.8.  Three-dimensional color representation of 

deformations of the upper part of the right proof mass. 

 
Fig. D.9.  Representative OELIM interferogram of the 

lower part of the right proof mass of the microgyro. 
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Fig. D.10.  Two-dimensional color representation of 

deformations of the lower part of the right proof mass. 

 
Fig. D.11.  Three-dimensional wireframe representation of 

deformations of the lower part of the right proof mass. 
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Fig. D.12.  Three-dimensional color representation of 
deformations of the lower part of the right proof mass. 

D.2.  OELIM determination of deformations of the folded springs supporting the 
right proof mass of the microgyro 

The folded springs that support the right proof mass, Springs 5 to 8, were also 

observed at an even higher magnification than that used to obtain the results presented in 

Sections 5.4.2.2 and D.1.  The results obtained for these springs are illustrated in Figs 

D.13 to D.28. 
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Fig. D.13.  Representative OELIM interferogram of 

Spring 5 of the microgyro. 

 
Fig. D.14.  Two-dimensional color representation of 

deformations of Spring 5 of the microgyro. 



 259

 
Fig. D.15.  Three-dimensional wireframe representation 

of deformations of Spring 5 of the microgyro. 

 
Fig. D.16.  Three-dimensional color representation of 

deformations of Spring 5 of the microgyro. 
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Fig. D.17.  Representative OELIM 

interferogram of Spring 6 of the microgyro. 

 
Fig. D.18.  Two-dimensional color representation of 

deformations of Spring 6 of the microgyro. 
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Fig. D.19.  Three-dimensional wireframe representation 

of deformations of Spring 6 of the microgyro. 

 
Fig. D.20.  Three-dimensional color representation of 

deformations of Spring 6 of the microgyro. 
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Fig. D.21.  Representative OELIM 

interferogram of Spring 7 of the microgyro. 

 
Fig. D.22.  Two-dimensional color representation of 

deformations of Spring 7 of the microgyro. 
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Fig. D.23.  Three-dimensional wireframe representation 

of deformations of Spring 7 of the microgyro. 

 
Fig. D.24.  Three-dimensional color representation of 

deformations of Spring 7 of the microgyro. 
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Fig. D.25.  Representative OELIM 

interferogram of Spring 8 of the microgyro. 

 
Fig. D.26.  Two-dimensional color representation of 

deformations of Spring 8 of the microgyro. 
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Fig. D.27.  Three-dimensional wireframe representation of 

deformations of Spring 8 of the microgyro. 

 
Fig. D.28.  Three-dimensional color representation of 

deformations of Spring 8 of the microgyro. 


