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SUMMARY

Microelectromechanical systems (MEMS) are integrated mechanical and
electrical devices that can range from sensors, valves, gears, mirrors, to actuators, and are
fabricated on silicon wafers with features micrometers in size. They are built using
techniques similar to those used for microelectronics. MEMS devices have potential
applications for a range of industries: automotive, aerospace, medical, and many others.
Due to this variety of applications, a great deal of work has been done on improving the
quality and the functionality of the MEMS components available. However, before more
advancements can be made, the behavior of MEMS sensors must be fully understood.
Without this basic knowledge of how and why MEMS components and devices react the
way they do when they are designed in a specific manner and fabricated using different
materials, it is impossible to predict how MEMS systems will behave, and their behavior
can only be reliably observed using physical experimentation. Experimentation can be
expensive and time consuming since MEMS components are very fragile and even the
most robust MEMS device is very vulnerable to external influences which can induce
mechanical and structural failures. Therefore, gaining a better understanding of the
behavior of MEMS devices is essential.

The purpose of this thesis was to model a folded spring supporting MEMS
gyroscope, a type of inertial sensor that measures rates of angular acceleration. This
modeling was performed using analytical, computational, and experimental solutions
(ACES) methodology. The analytical and computational results were compared with

preliminary experimental results. The first step was to develop an analytical model of the



behavior of the proof masses, by examining motion of the folded springs that support the
proof masses. Then in order to extend the capabilities of the analytical method used to
model the folded springs, its components were modeled using computational method.
Finally, selected characteristics of parts of the microgyroscope were observed
experimentally. More specifically, folded springs supporting proof masses of a MEMS
gyroscope were modeled analytically and computationally to determine their
deformations due to typical forces generated during functional operation of a
microgyroscope. Also, preliminary measurements of parameters characterizing and
influencing functional operation of the microgyroscope were made using laser vibrometer
method and optoelectronic laser interferometric microscope (OELIM) method. These
methods provide very high spatial resolution data with nanometer measurement accuracy
that are acquired in full-field-of view, remotely and non-invasively, in near real-time. As
such, these methods are particularly suitable for experimental investigations of
microgyroscopes, or other MEMS.

Comparison of the analytical and computational results with the preliminary
experimental results shows acceptable correlation within the uncertainty limits. This
correlation indicates viability of the methodology used in this thesis as a potential tool
that may facilitate improvements of the existing microgyroscopes and development of

new designs in the future.
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7 of the microgyro.

Three-dimensional color representation of deformations of Spring 7 of
the microgyro.

Representative OELIM interferogram of Spring 8 of the microgyro.

Two-dimensional color representation of deformations of Spring 8 of
the microgyro.

Three-dimensional wireframe representation of deformations of Spring
8 of the microgyro.
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the microgyro. 265
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1. OBJECTIVES
The objectives of this thesis were to model folded springs supporting proof
masses of a MEMS gyroscope and to develop a preliminary set of parameters
characterizing these springs in as-fabricated-state, using the state of the art developments
in the field of ACES methodology. The ACES methodology combines analytical,
computational, and experimental solutions to obtain results in cases where they will be

impossible or, at best, difficult to obtain using any one of the solutions alone.
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2. INTRODUCTION
This chapter presents general background information on MEMS technology and
devices. Then a discussion of MEMS fabrication processes is provided. Next, inertial
sensors are introduced, and then how conventional and MEMS gyroscopes operate is

explained.

2.1. MEMS background

Microelectromechanical systems (MEMS) technology is a revolutionary enabling
technology (ET), which is based on manufacturing processes that have their roots in
photolithographic processing used in microelectronics for fabrication of integrated
circuits (ICs) (Pryputniewicz, 1999, 2001). Today, MEMS defines both the
methodologies to make the microelectromechanical systems and the systems themselves
(Pryputniewicz, et al., 2003). MEMS combine mechanical and electrical components
into single devices (Gad-el-Hak, 2002). MEMS fabrication is based on the capability of
making controllable mechanical structures that are moveable, and the required electronic
components out of silicon and its derivatives using modified IC fabrication techniques.
The first MEMS device was made by R. T. Howe in 1982 (Muller, 2000). He
demonstrated a technique of how to fabricate microbeams from polycrystalline silicon
films; using this technique, a prototype of the first fully integrated MEMS, where both

the mechanical and electrical components were fabricated on the same substrate, a
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chemical vapor sensor, was built (Muller, 2000). This development provided a basis for
more research that became the broad field of MEMS.

MEMS components are currently replacing conventionally designed and built
devices because of their small size, relatively low cost, and relatively high performance.
The small size of the MEMS devices is a plus because it saves space, allowing the “real
estate” to be used more efficiently, and this saves money. Individual MEMS components
are expensive to fabricate; however, due to the fact that MEMS devices are batch
fabricated, where hundreds or thousands are produced at the same time, the cost goes
down, making the devices less expensive than conventionally fabricated devices
(Pryputniewicz and Furlong, 2002).

Currently there are several different types of MEMS available: accelerometers,
gyroscopes, pressure, temperature, and humidity sensors, micromirrors, micro-heat
exchangers, microfluidics, micropumps, etc. These MEMS devices are being used for
many different applications such as airbag deployment, keyless entry systems, high
definition optical displays, scanning electron microscope tips, various medical and
biological applications, diode lasers, miniature gas chromatographs, high-frequency
fluidic control systems, printing systems, and electronic cooling systems (Gad-el-Hak,
2002; Pryputniewicz and Furlong, 2002; Bryzek, 1996). Figure 2.1 (Madou, 1997)
illustrates where MEMS are being used in automobiles: drive train/torque sensors, engine
timing/position sensors, antilock brakes/acceleration sensors, engine management
systems (EMS)/mass airflow sensors, temperature sensors, transmission sensors, air

conditioning/humidity and sun/light sensors, automatic headlight control sensors, airbag
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deployment sensors, seat control/load/force sensors, emission control/oxygen sensors,

and active suspension/speed and pressure sensors.

Drive Train
Torque Sensor

Engine Timing i
Position Sensor

Transmission
Position Sensor
Antilock Brakes
Accelerometer
Position Sensor

Air Conditioning

) Temperature
Engine Management 1 _—" Humidity
System (EMS) -~ 3 - Sun / Light
Mass Air Flow Sensor

Temperalure Sensors
Position Sensor

Automatic Headlight
Control
Sun / Light Sensor

y
Air Bag System
Accelerometer  ~

Seat Conirol

Temperalure Sensor Ees

Load / Force Sensor Aclive Suspension
Accelerometer
Position / Spesd
Prassure Sensor
Load/Force Sensor

Emissions Control ———
Oxygen Sensor

Fig. 2.1. Possible MEMS sensor applications in automobiles (Madou, 1997).
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2.2. MEMS fabrication

The earliest methods used to manufacture silicon structures such as MEMS
devices made use of lithography and etch technology. Chemical etching removes an
unwanted section from the silicon structure. When chemical etching and etch-stopping
techniques, such as a masking film, are used together inventively, complex structures can
be produced. In 1982 when Howe made his microbeams, he used the now common
technique of etching an underlying sacrificial layer. The sacrificial layer has an increased
level of phosphorus to enhance the etch rate in hydrofluoric acid (Muller, 2000). Current
methods for the fabrication of MEMS devices include: surface micromachining, bulk
micromachining, as well as lithography, (Pryputniewicz and Furlong, 2002). Most
MEMS devices available currently are produced using either bulk or surface

micromachining techniques.

2.2.1. Bulk micromachining
The first appearance of using chemicals to etch a substrate protected otherwise by
a mask was in the fifteenth century when acid and wax was used to etch and decorate
armor; by the 1600’s chemical etching for the decoration of armor and weapons was
common practice (Harris, 1976). In 1822 photosensitive masks were introduced as
lithography by Niépce and increased the tolerances of the etching to a new level (Madou,
1997). Bulk micromanufacturing, or micromachining, as it is known today, was

developed from technology that was first used in the 1960s for microelectronic
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applications, but this technology was improved upon and in the 1970s was being
implemented to produce three-dimensional microstructures. Bulk micromachining
(BMM) is used for the production of microsensors and accelerometers; this technique
removes material from a substrate, usually silicon, silicon carbide, gallium arsenide, or
quartz, using a type of etching, either dry or wet, to produce desired three-dimensional
structures (Hsu, 2002), typically for MEMS applications out of silicon. Figure 2.2

illustrates an example of a wet bulk micromachining process.

Deposit photoresist Open contacts

Silicon wafer

PIVIE] ] uviign

mask Deposit aluminum
= e —- - n:::ma:?:mnn:rﬁ:n:m-i
l I
Develop resist Pattern aluminum

Tzzz:mz_mzzmammmzz} !--m‘ﬂ“—“f_ _m—“-j

l l l l l l 1 an;;r:'cI;nt Pattern black oxide
[P e s

Anneal and oxidation Silicon etch
,_m?_._EFm_u_u

— _ | I |

Fig. 2.2. Steps in the bulk micromachining process (Madou, 1997).

Bulk micromachining can also be done using dry etchants; however, wet chemical

etching is traditionally faster, than dry etching processes, having rates of about 1
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pm/minute and allows the operator to select specific materials to etch preferentially. Wet
etchants that are used for isotropic etching, where the rate of material removal is the same
in all crystallographic directions, are usually acids: Piranha (4:1, H,O,:H4SO,), buffered
HF (5:1, NH4F:conc.HF), and HNA (HF/HNOs/ CH;COOH). Anisotropic etchants,
which etch in one crystallographic direction faster than in the other directions, are used
for machining of microcomponents; there are many different types of chemicals that are
used as anisotropic etchants: alkaline aqueous solutions such as KOH, NaOH, LiOH,
CsOH, NH4OH, quaternary ammonium hydroxides, and alkaline organics like
ethylenediamine, chlorine (trimethyl-2-hydroxyethyl ammonium hydroxide), and

hydrazine with pyrocathechol or pyrazine (Madou, 1997).

2.2.2. Surface micromachining

The first example of surface micromachining for an electromechanical purpose
occurred in 1967 when Nathanson made an underetched metal cantilever beam for a
resonant gate transistor (Nathanson, et al., 1967). By the 1970’s plans were being
developed for a metal magnetically actuated microengine; however, there were fatigue
problems with metals, and due to the fatigue problem metals are rarely used as structural
members in micromachining (Madau, 1997). The present state of the micromachining
method was introduced in the 1980°s by Howe and Muller (1982) where polysilicon was

introduced as the primary material for the structural layers.
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Surface micromachining (SMM) builds structures by patterning thin multiple
layers deposited on a substrate (Pryputniewicz and Furlong, 2002). This produces
finished product using batch fabrication where no assembly is required. SMM is usually
based on low pressure chemical vapor deposition (LPCVD) of the structural, e.g.,
polysilicon, sacrificial, e.g., silicon dioxide, and photoresistive layers onto the substrate
(Hsu, 2002). These layers are then patterned using dry etching to make in-plane features,
and wet etching removes the sacrificial layers used to support the structures during
deposition (Madou, 1997).

The most advanced of the SMM methodologies available today is the Sandia’s
Ultra-planar MEMS Multi-level Technology (SUMMIiT™) that allows fabrication of
structures out of up to five structural layers, while other methodologies allow fabrication
of structures comprising of up to three structural layers (Pryputniewicz, 2002). The film
stack used in the SUMMIT™ process is illustrated in Fig. 2.3 (Rogers and Sniegowski,
1998; Sniegowski and Rogers, 1998). Individuals who want to make use of Sandia’s
micromachining capabilities can utilize the SUMMIT™-V software that allows design of
MEMS using a component library, Fig. 2.4 (Pryputniewicz and Furlong, 2003;
Pryputniewicz, et al., 2003).

An example from the component library of the SUMMIT -V software is the
anchor hinge; the top view of the hinge, which shows the layers necessary to build up the
anchor using the SUMMIT™ process, is shown in Fig. 2.5. If a cross section of the hinge
anchor were taken along the line A-A shown in Fig. 2.5, the two-dimensional

representation of the multi-layer structure of the hinge would be as shown in Fig. 2.6.
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Fig. 2.5. SUMMIT™ representation of the anchor hinge as selected
from the component library (Pryputniewicz and Furlong, 2003).

Fig. 2.6. 2D representation of the cross section of the anchor hinge
along line A-A (Pryputniewicz and Furlong, 2003).

35



As illustrated in Fig. 2.6, the SMM process produces movable parts such as mechanical
pin joints, springs, gears, cranks, and sliders, along with enclosed cavities, and many
other configurations (Madou, 1997; Pryputniewicz, 2002; Pryputniewicz and Furlong,
2003). These individual components can then be combined to produce complex

mechanical systems.

2.3. Inertial sensors

The largest market for inertial sensors is the automotive industry; inertial sensors
are used in the antilock brakes, traction control, airbag deployment, stability control, and
safety control systems of a car. There are also many applications outside the automotive
world; they include virtual reality, smart toys, industrial motion control, hard drive head
protection systems, image stabilization, GPS receivers, and inertial navigational systems
(Hsu, 2002).

There are two basic inertial MEMS sensors: the MEMS accelerometer that
measures linear acceleration, and the microgyroscope which measures rotational
accelerations (Hanson, et al., 2001). These inertial sensors can measure accelerations
about a single axis or about multiple axes. Examples of a single axis MEMS
accelerometer and gyroscope are illustrated in Figs 2.7 and 2.8, respectively. The
accelerometer in Fig. 2.7 measures forces defined by Newton’s second law caused by a

linear acceleration. The tuning fork configuration microgyroscope, illustrated in Fig. 2.8,
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measures angular acceleration due to the Coriolis forces acting on the vibrating masses;

this will be discussed in more detail in Section 2.3.2.

__:__ = ___._ __ _.-T.___ — _‘Il
Fig. 2.7. An example of a single axis accelerometer,
ADXL190 (Steward and Saggal, 2002).

Fig. 2.8. A dual mass tuning fork microgyroscope.

37



Inertial sensors are made up of a combination of parts: proof masses, elastic
springs, dampers, actuators, and a method for measuring displacements of the proof
masses. The purpose of the elastic springs is to provide the proof masses with support
and to return the masses back to their original positions after linear acceleration, or
rotation, has stopped. The dashpot provides the damping for the system; this is usually
done one of two ways: thin film and shear damping. Thin film damping is achieved by
using a thin gas film between two vibrating plates; through compression and friction, the
film disperses the excess energy, thus adding damping to the system (Przekwas, et al.,
2001). In other systems that have plates vibrating parallel to one another the film
produces shear forces that dissipate energy; this type of damping is known as shear.

There are several methods for determining displacements of the proof masses that
are used in inertial sensors. They are: piezoresistive, resonant frequency modulation,
capacitive, floating-gate field-effect transistor (FET), strain FET, and tunneling-based.
Piezoresistive sensing is used for inertial sensors that make use of single crystals or that
are micromachined in bulk quantities. The resonant frequency modulation method of
sensing is used mostly for inertial sensors with very high sensitivities. The capacitive
sensing method is most commonly used for industrial purposes due to its relative
insensitivity to temperature. The floating-gate FET method of sensing is used to measure
inertial forces, while the strain FET method measures strains in the packages of the
inertial sensors. Both methods have proven difficult to implement in industry. The
electron tunneling method is used when displacement must be measured accurately; this

method however is still in developmental stages (Bergstrom and Li, 2002).
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Principles of operation of conventional gyroscopes are presented in Section 2.3.1,
while operation and examples of MEMS gyroscopes are discussed in Section 2.3.2. This

thesis focuses on the MEMS vibrating gyroscope shown in Fig. 2.8.

2.3.1. Conventional gyroscopes

In 1852 Jean Bernard Le6n Foucault named a wheel, or rotor, mounted in gimbal
rings that allow the wheel to rotate freely in any direction, a gyroscope; almost any
rotating mass can be considered as a gyroscope (Cordeiro, 1913). The word gyroscope
comes from the Greek words gyros and skopein that mean “rotation” and “to view,”
respectively. Conventional spinning gyroscopes function due to Newton’s 2™ law which
states that angular momentum, H, of an object will remain the same unless a torque, T, is
applied to that object; then, the rate of change of the angular momentum is equal to the

magnitude of the torque, which can be expressed as

dH
T=— , 2.1
7 (2.1)
where
H=/o (2.2)

with 7 being the moment of inertia of the object and @ being the angular velocity. The
law of gyroscopics states that if the torque is applied perpendicular to the rotating axis of
a spinning object the magnitude of the angular velocity cannot change, but the direction

of @ can change. This is illustrated in Fig. 2.9 and can be obtained by defining
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dH=Hdo (2.3)
where d@is the angle that the rotating object moves due to the applied torque. Then,

substitution of Eq. 2.3 into Eq. 2.1 yields

1-M_pg9% _nyya | (2.4)
dt dt

where Q is the precession rate, or the angular velocity of the wheel perpendicular to the
plane defined by the axis of rotation and the direction of the input torque of the rotating
object, as shown in Fig. 2.9. In Fig. 2.9 o is the speed of the rotation about the spin axis,

while Q, the precession rate, is the speed of the rotation perpendicular to the spin axis.

4

Input torque, T

Precession, Q2

dH=Hdoe

Spin axis, H = Cw

Fig. 2.9. Illustration of the law of gyroscopics (Lawrence, 1998).
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In the past, the name of “gyroscope” was reserved only for rotational sensors with
spinning wheels, like the toy gyroscope that is illustrated in Fig. 2.10; presently, however,

gyroscope refers to any instrument that measures rotation (Lawrence, 1998).

f\,;\
| S
\g Fig. 2.10. Tedco "original" toy gyroscope

l (Gyroscopes Online, 2003).

The MEMS gyroscope, also known as microgyroscope, examined in this thesis, is
a planar micromachined tuning fork gyroscope. However, before it can be discussed, the
macroscale tuning fork gyroscope has to be considered, Fig. 2.11. A tuning fork
configuration is a balanced system due to having two tines vibrating in anti-phase.
Therefore, at the mount/junction of the two tines, there is no residual motion that could

contribute to measurement errors (Lawrence, 1998).

Coriolis vibration

Tine vibration T

Tine

I I —1 | vibration
Torsional vibration L7 4

output .
Amplitude
proportional to

Fig. 2.11. A tuning fork gyroscope (Lawrence, 1998).
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A tuning fork gyroscope is governed by the Coriolis acceleration. Coriolis
acceleration was defined by Gaspard de Coriolis in 1835 as the acceleration that acts on
an object that is rotating about and moving radially toward/away from a fixed point with
constant angular ®, and radial, v, velocities, respectively (Lawrence, 1998). Centrifugal

acceleration and Coriolis acceleration are defined as
CentrifugalAcceleration = —»’r (2.5)

and

CoriolisAcceleration = —2(vxQ)=2(f xQ) , (2.6)

where r is the radial position, o is the angular velocity, and v is the linear velocity, the
time rate of change of the radial position (Hibbler, 1998). If the tuning fork is rotated
about its axis as the tines vibrate in their plane with a sinusoidally varying angular
momentum, as shown in Fig. 2.11, the Coriolis acceleration will induce a sinusoidally
varying precession about the axis of the tuning fork that will be proportional to the input

rate (Lawrence, 1998); this will allow the angular acceleration to be measured.

2.3.2. MEMS gyroscopes
The majority of MEMS gyroscopes have vibrating rather than rotating
configurations. Figure 2.12 shows an example of typical suspension configuration for a
MEMS tuning fork gyroscope: this microgyro has straight flexural members that act as
springs and support the proof masses. The microgyroscope examined for this thesis is

shown in Fig. 2.8, instead of the straight flexural members shown in Fig. 2.12, the Sandia
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microgyro has folded springs; however operation of the two microgyro designs is very
similar. Figure 2.13 illustrates operation of the dual proof mass tuning fork
microgyroscope shown in Fig. 2.12. As illustrated in Fig. 2.13, the two proof masses are
driven in anti-phase by the electrostatic combdrives. Each proof mass is actuated by two
sets of combdrives: one outside and one inside, operating one at a time. The outside
combdrives are at the extreme ends of the dual mass microgyro, i.e., at the extreme left
and right edges of the configuration shown in Figs 2.8, 2.12, and 2.13. The inside
combdrives are between the two proof masses. The combdrives produce electrostatic
forces and therefore can only pull the masses; they cannot push (Pryputniewicz, 2000).
Therefore, an actuation cycle consists of four parts. During part-1, when the actuation
voltage is applied, the outside combdrives pull the proof masses toward themselves while

simultaneously the flexures supporting the proof masses deform storing elastic energy.

4 1A

TR T T Y,

| Anchor point

Flexures
Electrostatic
~combdrive
N oty fa
Silicon Oscillating
wafer Pmass

> _ Capacitive
Substrate Section A-A \ pickoff plates

Fig. 2.12. Dual mass micromachined tuning fork microgyro (Lawrence, 1998).
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Fig. 2.13. Schemaitic of the operation of a MEMS tuning fork gyro (Lawrence, 1998).

During part-2 of the actuation cycle, when the voltage on the outside combdrives is
reduced, the flexures straighten and bring the proof masses to their original, neutral,
positions. At this point, actuation voltage is applied to the inside combdrives and the
proof masses are pulled toward the inside while the flexures deform away from their
equilibrium positions; this is part-3 of the actuation cycle. During part-4, when the
actuation voltage is reduced again, the flexures return the proof masses to their neutral
positions.

Typically, the 4-part actuation cycle is repeated a few thousand times per second.
This vibration produces the in-plane velocity, v, necessary to define Coriolis acceleration
described by Eq. 2.6. If the vibrating proof masses are subjected to an angular velocity,
Q, Fig. 2.13, around the central axis of the two proof masses, then, using Eq. 2.6, the
Coriolis force is defined as

F, = m- CoriolisAcceleration = 2m(Qxv) (2.7)

where F, is the Coriolis force, and m is the mass of each of the vibrating masses. The

Coriolis force will cause one of the proof masses to raise out-of-plane away from the
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substrate while the other proof mass drop down toward the substrate. The capacitive
plates usually located under each of the proof masses and on the substrate under the proof
masses sense the out-of-plane displacement as a change in voltage, which is then
converted to an angular acceleration.

There are a number of possibilities for other microgyro configurations. As
illustrated in Fig. 2.8, the microgyroscope proof masses are suspended using folded
springs, while the microgyro proof masses illustrated in Fig. 2.12 are supported by
straight flexural members. Another example is the microgyroscope designed by Analog
Devices, which includes additional flexural members/springs that isolate the gyroscope
from sources of in-plane vibration other than the vibration driven by the combdrives
(Analog Devices, 2003a, 2003b). Sections 2.3.2.1 and 2.3.2.2 show some of the details

of the microgyroscopes developed by Analog Devices.

2.3.2.1. ADXRS150
The Analog Devices ADXRS150 is a + 150 deg/sec yaw rate gyroscope (Analog
Devices, 2003a). Figure 2.14 shows the overall view of the ADXRS150. A section of
Fig. 2.14, highlighted by a rectangle, contains both proof masses of the microgyro and
this is shown in Fig. 2.15. The section highlighted in Fig. 2.15 emphasizes one of the
proof masses. This proof mass is shown in Fig. 2.16. The section that is highlighted in

Fig. 2.16 is illustrated in Fig. 2.17. The section of the microgyroscope displayed in Fig.
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2.17 does not show the folded springs attached to the proof masses with enough detail,

therefore the area highlighted is enlarged in Fig. 2.18.

“r_ iV
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S i ey I e M bt et ot 4 ﬂm}ﬂl“ A0 =

Fig. 2.15. The two proof masses f the ADXRIO microo.
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Fig. 2.16. Detail of a ro mass of the ADXRS150.

Fig. 2.17. Detail of the lower rght corner of a roof mass
of the ADXRS150.
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Fig. 2.18. Two spring conﬁgurationsof the ADXRS150.

Figure 2.18 shows that there are two types of springs in the ADXRS150
gyroscope, and Fig. 2.19 illustrates the spring highlighted by the dashed rectangle while

Fig. 2.20 shows the spring highlighted by the solid rectangle.

Fig. 2.19. Detail of the isolating spring Fig. 2.20. Detail of the flexure for the
for the ADXRS150 proof mass. ADXRS150 proof mass.
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The two sets of springs illustrated in Figs 2.19 and 2.20 were designed to perform
separate tasks in the Analog Devices microgyroscope. The spring illustrated in Fig. 2.19
keeps the proof mass from “feeling” external vibrations that could introduce noise to the
vibration controlled by the electrostatic combdrives; the spring in Fig. 2.20 acts like the
flexures described in Section 2.3.2 and returns the proof mass to the neutral position

during the actuation cycle.

2.3.2.2. ADXRS300
The ADXRS300 Analog Devices microgyro is a = 300 deg/sec yaw rate
gyroscope (Analog Devices, 2003b). The overall view of ADXRS300 is displayed in
Fig. 2.21. The section of Fig. 2.21 highlighted by rectangle is one of the proof masses of

the ADXRS300 microgyro, Fig. 2.22.

Fig. 2.21. The ADXRS300 gyroscope.
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Fig. 2.2&. rDetail of a proof mass (_)f the ADXRS300.

A section of Fig. 2.22, which is highlighted by a rectangle, is enlarged in Fig. 2.23

to show details of the suspension springs.

Fig. 2.23. Detail of the two springs
in a proof mass of the ADXRS300.

Figure 2.23 shows that there are the same two types of springs in ADXRS300 as

in the ADXRS150. The springs in both of the microgyros have the same dimensions.
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The dimensions for the flexural springs in Figs 2.21 and 2.24 are listed in Table 2.1 for
reference purposes only, because the function of these springs is similar to the springs of
the microgyro that is studied in this thesis. Dimensions shown in Table 2.1 were
measured, as a part of this thesis, using an optical microscope with the measurement

resolution characterized by the least count of 0.5 pm.

Table 2.1. Measured dimensions of the flexural spring
for the Analog Devices gyroscopes.

Dimensions of the spring | Value | Units
Length of the spring, L;s9 60.0 um
\Width of the spring, b;50 2.0 um
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3. TEST SAMPLES
The test samples studied in this thesis are MEMS gyroscopes from Sandia

National Laboratories: the 10 kHz dual proof mass tuning fork microgyroscopes.

3.1. Sandia microgyroscope
A representative microgyroscope from Sandia National Laboratories that was
studied in this thesis is shown in Fig. 3.1. This figure shows the actual MEMS gyroscope
as it was observed under a microscope. This microgyroscope has two vibrating proof
masses that are driven by electrostatic combdrives, which are located on each vertical
side, for the orientation shown in Fig. 3.1, of the proof masses, and each proof mass is

supported by four folded springs, one at each corner.

-
L

r
- B EEEEEEEWT
|

1

Proof'-rmas/é \
2y :;';'.-':]Q }l"?i' Ll

Fig. 3.1. The Sandia dual-mass microgyro.
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Figure 3.2 displays a magnified view of the highlighted section shown in Fig. 3.1,
and illustrates typical folded springs supporting the proof masses, parts of the combdrives

actuating these masses are also shown.

) [p) #) [a) [%)
Fig. 3.2. Detail of the section of the Sandia microgyro, highlighted
in Fig. 3.1, showing typical folded springs supporting proof
masses, parts of the poof masses and combdrives are also shown.

One of the folded springs is highlighted in Fig. 3.2 with a rectangle. The folded
spring was observed under a microscope and dimensions were measured, as a part of this
thesis, the dimensions are shown in Fig. 3.3 and listed in Table 3.1. In Table 3.1, the
thickness of the folded spring is based on specifications characterizing the SUMMIT™-V
process (Sandia, 2003). The lengths of sections AB and CD, as defined in Fig. 3.3 and
Table 3.1, were measured from points 4 and D, respectively, to the midpoint of the width
of section BC. Also the length of section BC was measured between the midpoints of the
widths of sections 4B and CD. This was done to reduce the error caused by an overlap of

the sections at interfaces of sections AB and CD with section BC.
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As shown in Fig. 3.3, the proof mass attaches to the folded spring via an interface
at point D. The attachment at point D is such that the folded spring and the proof mass
are in the same plane. Furthermore, it was assumed, in order to facilitate analytical
developments presented in this thesis, that there is no bending of the folded spring at the
point of its attachment to the proof mass. That is, the folded spring and the proof ass at
point D are subjected only to purely translational motion, there is no rotation. Point 4 is

where the folded spring is attached to the substrate via a fixed post.

b 4'—4—-— el
B
/ Cl |~ Lep — /

J B MA;‘%AMA,
2

45 R/ My,

A

F
Fig. 3.3. Dimensions of a representative folded spring comprising the suspension of the
proof masses in the Sandia microgyroscope.

Table 3.1. Dimensions of the Sandia microgyro.

Dimensions of the folded spring Value | Units
Length of section AB, L5 111 um
Length of section BC, Lgc 17 um
Length of section CD, L¢p 98 um
Width of sections AB and CD, b 3 um
Width of section BC, bgc 10 um
Thickness of all of the sections, & 2.5 um
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3.2. Materials
The Sandia microgyro that was studied in this thesis is made from surface
micromachined polysilicon. The properties of this polysilicon are listed in Table 3.2 and
were obtained from descriptions of the SUMMIT™-V process (Pryputniewicz, 2002;

Pryputniewicz and Furlong, 2002; Furlong and Pryputniewicz, 2001; Sandia, 2003).

Table 3.2. Material properties of polysilicon.

Property Value Units
Density, p 2.33 g/cm?®
Modulus of elasticity, E 160 GPa
Poisson's ratio, u 0.23
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4. METHODOLOGY

Preliminary characterization of a MEMS gyroscope was done by studying
deformations of the suspension that supports the proof masses. The first step was to
conduct background research on how MEMS devices, in general, and microgyros, in
particular, are built, how meso, or conventional gyroscopes, and microscale gyroscopes
function. These background data on the past and current state-of-the-art gyroscope
technology cultivated an understanding of how gyroscopes, in general, and more
importantly, MEMS gyroscopes, function. This information provided a starting point to
begin analysis.

Determining how MEMS gyroscopes function is based on the Analytical,
Computational, and Experimental Solutions (ACES) methodology (Pryputniewicz, 1997;

Pryputniewicz, et. al., 2001), Fig. 4.1.

Basic mechanical

ANALYTICAL > squations 5| Results VERIFY
COMPUTATIONAL »| Finite element »| Results >
method N A4
° Sufficient
EXPERIMENTAL »  OLIEM » Results Yesl

Fig. 4.1. Configuration of the ACES methodology.

As illustrated in Fig. 4.1, the ACES methodology utilized analytical, computational, and

experimental methods. The results from one, or two, of these methods are used to
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facilitate solutions by the remaining methods. Then computational and experimental
results are compared to determine degree of correlation between them, which is used to
verify, or validate, the process used.

Sections 4.1 to 4.3 describe analytical, computational, and experimental,
respectively, considerations used in this thesis to study the characteristics of
microgyroscopes. In order to accomplish this task, as the first step, the out of plane
displacement of the folded springs that support each of the proof masses, were
determined using a static analysis. This was done analytically by deriving the three-
dimensional equations for the deformations of the folded springs. This derivation was
based on energy methods and Castigliano’s second theorem in order to include shear
effects. For the equations that were derived to be useful, forces that are applied to the
folded spring must be known. Thus, all forces acting on the proof mass, that the folded
springs support, must be taken into consideration: i.e., the forces produced by
acceleration of the proof mass by the combdrives and the Coriolis forces produced by the
angular acceleration that the microgyro may be subjected to.

Once the forces that act on the folded springs were determined they were used in
analytical equations to calculate deformations. Then the deformations were also
computed using finite element method (FEM), through the FEM software package
COSMOS/M (2003).

Once the analytical and computational results have been determined, the
experimental analysis began by characterizing deformations of the folded springs, using

the optoelectronic laser interferometric microscope (OELIM) method (Furlong and
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Pryputniewicz, 2000, 2002; Pryputniewicz, et al., 2000, 2001; Steward and Saggal, 2002;
Steward, et al., 2002, 2003a, 2003b; Steward, 2003). The next step was to observe the
out-of-plane behavior of the folded springs under selected excitation frequencies induced
by a PZT shaker and measured using the laser vibrometer.

The experimental results were then compared to the analytical and computational
results in order to determine validity of the computational modeling and analytical

methodology.

4.1. Analytical considerations
The goal of the analytical section of the thesis is to derive an equation for
deformations of the folded spring in all three-dimensions along the entire length of the
spring. Based on the assumption that the folded spring is a prismatic beam, with the
same thickness as the proof mass, deformations of the folded spring were determined

using Castigliano’s second theorem.

4.1.1. Castigliano’s second theorem
Castigliano’s second theorem was presented in 1973 (Riley, et al., 1995) and
published in 1979 by Alberto Castigliano, an Italian railroad engineer. This theorem
defines a way to calculate the slope and displacement at a point in a body with respect to

the strain energy stored in it (Hibbler, 2000). Castigliano’s second theorem is only
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applicable to objects that are made from materials that behave linear elastically and are
held at a constant temperature (Riley, et al., 1995). As such, it is applicable to the
developments of this thesis, because the folded springs of the microgyros considered
satisfy these requirements.

According to Castigliano’s theorem, if a body is subjected to external forces, Fig.
4.2, then the external work, Wk, a function of the external loads, is equal to the internal

strain energy of the body, U;, which can be expressed by the following phenomenological

equation:
U, =W, =W.(F,,F,,F,,....F,) , (4.1)
where F, Fy, ..., F, represent the external forces. If one of these forces is increased by

an infinitesimal amount, dFy, the work will also increase by a corresponding infinitesimal
amount. Therefore, the strain energy will become

av,

k

Ui +dUk = Ui + dFk . (42)

F

Fig. 4.2. Body subjected to a number of external forces.
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However, Eq. 4.2 depends on the order that the forces are applied to the body. In
order to make Eq. 4.2 independent of the order that the forces are applied, Ay is
introduced as the total displacement of the body due to all of the forces Fy, F, ..., F, in
the direction of Fy, and the infinitesimal increase in the strain energy is defined as

dU, =dF, A, , (4.3)
due to the change in forces. Now, substituting the definition of dUy from Eq. 4.3 into Eq.

4.2, it can be written that (Hibbler, 2000)

oU;
dF. A, =—LdF, 4.4
kB oF, K 4.4)
where
oU.
A =—L . 4.5
<R, (4.5)

4.1.2. Internal strain energies
Equation 4.5 will be used to solve for the displacements of the folded springs that
support the proof masses of the microgyroscopes; however, in order to use Eq. 4.5, the
internal strain energies have to be defined for a spring. The internal strain energy of a
spring is calculated as the sum of the individual strain energies, i.e.,
U =U,\ +Ugy+U+Up; (4.6)

where Uar, Upm, Urs, and Upy are as defined in Eq. 4.7 to 4.10, respectively.
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The strain energy component defined by the axial loading acting through the

length of the beam L, Uay, is calculated as

L N2
AL _(I)ZAE

dx 4.7)

where N is the axial load, 4 is the cross sectional area, £ is the modulus of elasticity, and
L is the length of the beam.
The strain energy component defined by the bending moment over L, Ugy, is

calculated as

LM2
Upwm :I

de , (48)
0

where M is the internal bending moment.

The transverse shear loading component of the strain energy along L, Urs, is

deﬁned as
U —? »z_ : dx 4.9
TS 0 2GA ’ ( ’ )

where £, 1s the shape factor, which is defined for multiple cross sections in Table 4.1, V

is the shear force, and G is the shear modulus.

Table 4.1. Shape factor values when y and z are the centroidal
principle axes of the cross section (Cook and Young, 1985).

Cross section type ky k:

Rectangle 1.20 1.20
Solid circle 1.11 1.11
Thin-walled cylinder 2.00 2.00
I-section, web parallel to z-axis | 1.20 1.00
Closed thin-walled section 1.00 1.00
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The final component of the strain energy is due to the torsional moment acting

through the length of the beam L, Ury, and it is calculated as
Upy =[—dx , (4.10)

where T is the torque acting through the length of the beam, while J is the polar moment

of inertia of the cross sectional area of the spring and is calculated (Riley, et al., 1995) as

J=[x*dA+[y*dd . 4.11)
A A

4.1.3. Energy analysis of the single fold spring
For the folded spring that is illustrated in Fig. 4.3, application of Castigliano’s
theorem has to be modified since the folded spring can be divided into three beams, or
sections that will be called AB, BC, and CD, as labeled in Fig. 4.3. Therefore, the
equation for the internal strain energy of the folded spring will be a sum of the strain
energies of all three sections, i.e.,
U, =U,s+Ug+Uyy , (4.12)

where the strain energies of the individual sections are defined as

Uxs =Uaras * Ubmas + Ursas * Urva (4.13)

Ugc = Uase * Upmse + Urse + Uvse > (4.14)
and

Ucp = Uarep + Usmep + Ursep + Utmep > (4.15)
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respectively.

4.1.3.1. Reaction forces and moments
In order to calculate the internal strain energies, and then the displacements using
Eq. 4.5, the reaction forces and moments of the folded spring at point 4, Fig. 4.3, have to
be determined, based on which the forces, moments, and torques acting on each of the

three sections: AB, BC, and CD, can be derived.

Ay R/ My,

¥

Fig. 4.3. Free body diagram for the folded spring.

Based on Fig. 4.3 and on the free body diagram of section AB of the folded spring, Fig.

4.4, Cartesian components of the reaction force at 4 can be defined as
X X 5 (416)

A =F, (4.17)

and
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while components of the reaction moment can be shown to be

M 4, =Fy(LAB _LCD) >

MAy =Fx(LCD _LAB)_FZLBC >
and
M, = FyLBC
B}’
MB
¥
MBZ B A
P
5
{ My, V
B, MBX A R\
I~ L il

Fig. 4.4. Free body diagram of section 4B.

(4.18)

(4.19)

(4.20)

(4.21)

Using the reaction forces and moments at point 4, as defined by Eqs 4.16 to 4.21, the

forces and moments at point B for section AB, Fig. 4.4, were derived to be

B =4 =F ,
B, =4, =F, |,
B =4 =F ,
MBx__FyLCD >
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(4.23)

(4.24)

(4.25)

(4.26)



and

My

Z

= FyLBC

(4.27)

Also using Fig. 4.3 and the free body diagram of section CD of the folded spring, Fig.

4.5, Cartesian components of the reaction force at C can be defined as

C.=F.

C,=F
and

C.=F

while components of the reaction moment can be shown to be

MCx = FyLCD
MCy = FxLCD
and
C}’
MCJ
Mcx C

b

b

L
(afs]

Fig. 4.5. Free body diagram of section CD.
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(4.29)

(4.30)

(4.31)

(4.32)

(4.33)
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4.1.3.2. Deformations at point D while considering only the cantilever CD of the
folded spring

Before proceeding with the derivation of an equation for deformations at point D
while considering the entire folded spring, derivation of an equation for deformations at
the point of force application on the folded spring represented only by the cantilever
section CD will be made. For this derivation, the cantilever will be fixed at point C and

loaded at point D, Fig. 4.6.

.:‘_'jy CD},
M, MCD},
M, »
Cz {; - CD,
L T
c? /M, C
x cD;

Fig. 4.6. Free body diagram for a part of section CD.

Based on the free body diagram shown in Fig. 4.6, the shear forces acting on section CD

are
CD . =C =F (4.34)
CD,=C, =F, |, (4.35)
CD.=C.=F, |, (4.36)

and the reaction moments are

Mep(2)=F,(z—Lep) (4.37)
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MCDy(Z)zFx(LCD _Z) , (4.38)
T.,.(z)=0 . (4.39)
Therefore, using Eqs 4.15, and 4.7 to 4.10, an equation for the internal strain energy of

section CD, can be derived to be

L 2 L~ M 2
Uep = I CD. ?thz_,_ TD$d2+
0 2EAb 0 2E]bx0rby 0 2Elbxorby . (440)
L k CD Lep k CD L 2
TD Iz + ? dz + TD Tep: dz
o 2G4, ) 264 o 2GJ,

where for a rectangular cross section, k. is equal to 6/5, and A4, is the cross sectional area
of sections AB and CD, i.e.,

Ay =bh (4.41)

I, the moment of inertia for sections 4B and CD in the out-of-plane direction of motion,

bh’
=— 4.42
bx 12 ( )
I, 1s the moment of the inertia for sections 4B and CD in the in-plane direction of
motion,
hb’
by = 7 > (4.43)

and Jj, is the polar moment of inertia for sections AB and CD. For the case of a
rectangular cross section, the polar moment of inertia is defined by (Beer and Johnston,

1992) as

J, =cbh’® (4.44)
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where b is the width of the beam, /4 is the thickness, and ¢; is the torsional coefficient for
a rectangular beam that is defined in Table 4.2 based on the ratio of the width to

thickness.

Table 4.2. Torsional coefficients for uniform
rectangular bars (Beer and Johnston, 1992).

b/h Ci b/h Ci

1.0 0.208 | 3.0 | 0.267
1.2 0219 | 40 | 0.282
1.5 | 0.231 5.0 | 0.291
2.0 0.246 | 10.0 | 0.312
2.5 0.258 o0 0.333

Equation 4.40 has six terms instead of four found in Eq. 4.13 because in Eq. 4.13 the
vectors of the forces, moments, and torques are used, while in Eq. 4.40 the individual
components are included. Equations 4.40 and 4.34 to 4.39 can be substituted into Eq. 4.5

to obtain the x-component of deformation at point D, at the end of section CD, to be

Lep Lep
s, = ' CD. [GCDZ } g T Menn [OMCDX J e

“TOF. 3 A,E\ oF, o 1,.E | OF,

Lep M oM L
{ Loy [ Moy |y 76 CDOCD, A, (4.45)
LCDé. CD, (0CD, dz +LTD Tep. [ 0T cp, dz
o 5 A,G\ OF, o J,G\ OF,
Equation 4.45 can be simplified to
F_L 6F L
"= x™~CD + x—CD (446)

- 3El, 5G4,
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Finally, using the forces, moments, and torques defined by Eqs 4.34 to 4.39, equations
defining y-component and z-component of deformation at point D can be derived by

substituting Eq. 4.40 into Eq. 4.5 and solving to obtain

F L.} 6F.L
_Uep _Hyter  OEa (4.47)

Y OF,  3El, 5G4,

Ay

and

_Ue _Flep (4.48)
“=ToF. | EA,

z

Ag

Results obtained from Eqs 4.46 to 4.48, modeling deformations at the point D, on the
cantilever section CD representing the folded spring, will be compared with the

computational results for the same representation of the folded spring.

4.1.3.3. Deformations at point B
The next step was to derive the deformation of the entire folded spring. This was
done by taking the reaction forces and moments derived for the section 48 and deriving
the shear and moment equations for the section 4B using a free body diagram of a part of
the section of an arbitrary length along the z-axis, Fig. 4.7. Based on the free body

diagram of Fig. 4.7, the shear forces acting on section 4B are

AB = A =F, (4.49)
AB =4, =F, (4.50)
AB,= A =F, (4.51)
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and the reaction moments are

M 45 (2)=F(Lyp ~Lep —2) (4.52)
M 45, (2)=F(Lep ~Lyp +2)=F.Lye (4.53)
Typ.(2)=F,Lyc . (4.54)
AB,
Tia, Mz, A o,
ABZ%__.[/ f d A,
AB, M A, TR M,
A}’

Fig. 4.7. Free body diagram for the cut of section AB.

Using the forces, moments, and torques that are described by Eqs 4.49 to 4.54 an
equation for the internal strain energy of section 4B can be written, based on Eqs 4.13

and 4.7 t0 4.10, to be

Las AR 2 Laz M 2 Las M 2
B = J‘ z + J' ABz dz + J‘ ABy dz +
0 2EAb 0 2E]bxorby 0 bxor by

, (4.55)
LAB ky’z Asz Las ,ZAB 2 Lag T 2

0 2(;14[7 0 2GAb 0 2GJb
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The x-component of deformation at point B of section AB, Agy, can be determined

by substituting Eq. 4.55 into Eq. 4.5, i.e.,

Las Las
a, = U ' AB. (GABZ j gz F Man [GMABZ J s

OF, o EA, \ OF, o El,, \ OF,
Las M oM L4B AB ( 64B
any [ OV gy |, 76 AB, * \dz + (4.56)
L4B AB ( 0OAB Lag T T
J‘ E J Y dz + J‘ ABz (a ABz jdz
Equation 4.56 can be simplified to
F 3 ) 2\ O6F L,
Ap. =——\L,z;” =3L 3" Lop +3L 3L + —== 4
Bx 2E1, ( AB 4B Lcp 4Btcp ) 5G4,
L (4.57)
2ZBC L g0 = 2L L
261, ( AB AB CD)

The forces, moments, and torques, Eqs 4. 49 to 4.54, the equation that defines the
internal strain energies for Section 4B, Eq. 4.55, and the definition of Castigliano’s
theorem, Eq. 4.5, that were used to derive the equation for displacement in the x-direction

are also used to derive the relationships describing deformations in the y-direction and z-

direction, i.e.,

oU F 6F L 5
A =—28 = 2 (L > 3L, Lep +3L pLep” )+ —=
By aFy 3E]bx( AB 4B CD 4Btcp ) 5G4,
. (4.58)
ytpc 4B
GJ,
and
F L F L F L, L
Ag. _ U _Felap |, Filpe (LABz—szLAB)+—Z BC 4B | (4.59)
oF. EA,  2EI, : El,,
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respectively.

4.1.3.4. Deformations at point C
Based on the deformations at point B, deformations at point C of Section BC can
be derived. As for the displacement at point B, the shear and moment equations for
section BC are derived using a free body diagram at a point of the section of an arbitrary
length along the x-axis, Fig. 4.8. Based on the free body diagram, displayed in Fig. 4.8,

the shear forces acting on section BC are

BC, =B, =F, , (4.60)
BC, =B, =F, (4.61)
BC.=B.=F. (4.62)

and the reaction moments are

Ty (x)==F,Lep (4.63)
M g, (x)= F.Lep +F, (x_LBC) , (4.64)
Mg (x)=F,(Lyc —x) . (4.65)

Using Eqs 4.60 to 4.65, a relationship for the internal strain energy of section BC, based

on Eqs 4.14 and 4.7 to 4.10 can be derived to be

Lyc BC 2 Lyc M p? Lyc M, 2
po= ) odvt | 9 ey | BGE gy
0 ZEAC 0 2E1cyorcz 0 cyorez (4 66)
Lieg BC,>  Licg BC?  lucT,.’ ’
0. 5%y gy 188G dx+TC&dx

0o 5 2GA, 0 5 2GA, 0o 2GJ,
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where A. is the cross sectional area of section BC, i.e.,

A.=bgch . (4.67)
BC,
B
7t
MBC}, BC,
MBC‘Z
B

Fig. 4.8. Free body diagram for a part of section BC.

1., is the moment of inertia for section BC in the in-plane direction of motion

3
I, = h[i—‘;c , (4.68)
1. is the moment of inertia for section BC in the out-of-plane direction of motion
I, = M , (4.69)
12
and J. is the polar moment of inertia for sections BC, which is calculated as
J, =cbgeh’ (4.70)
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where ¢, is defined in Table 4.2. Now, Eq. 4.66 and Eqs 4.60 to 4.65 will be used in Eq.

4.5 to obtain the displacements at the end of section BC, point C, first in the x-direction,
1e.,

Lsc B B
ACx = ABx + aUBC = ABx + .[C Cx ‘ Cx d
oF, o EA, | OF,

L?C M pe, [ OM g, dx +L’TC M pe, [ OM g, dx +
o EI, | oF, o EI, \ oF,

, (4.71)
L?CQ. ch 8ch dx+LBC 6 . BCZ aBCZ dr+
0 5 GA |\ oF, OF

LTC Tpey [ OTpcy dx
o GJ.\ OF,

Equation 4.71 can be simplified to

05 GA,

= \r.3—3L,.°Ly, +3L L. |+ —2"48
Cx 2E]by( AB 4B +cp 48Lcp ) 5G4,
. (4.72)
F L F L FL..L.? F.L.>L
zLBC (LABz_zLABLCD)+ x“BC , TxBctcp _ Tz7BC TCD
2EI,, AE El, 2EI

<y

Again, using the forces, moments, and torques defined by Eqs 4.60 to 4.65, equations

defining y-component and z-component of deformation at point C can be derived by

substituting Eq. 4.66 into Eq. 4.5 and solving to obtain

— y

Aro =Ano + L2 =30 2L +3L L")+
Cy By oOF 3 Elbx( AB 4B *cD 4aBtcp )

y
6F L F L, °L F L.’ 6F.L
yAB_I_yBc AB+yBC+ yBC_I_ (4.73)
5G4, GJ, 3EI, 5G4,
2
FyLCD LBC
GJ

c

and
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A =A + al]BC — FZLAB + FXLBC
@R E4,  2FI,,

z

(LAB2 —2L 3 Lcp )+

2 2 3
FZLBC LAB _ FxLCDLAB + FZLBC
EI,, 2EI, 3EL,
6FZLBC
5G4,

+ . (4.74)

4.1.3.5. Deformations at point D while considering the entire folded spring
Deformations at point D of Section CD can be determined following procedures
used to determine displacements at points B and C. However this was already done in
Section 4.1.3.2. In order to obtain the deformation in the x-direction at point D for the
entire folded spring, the deformation at point D for the cantilever beam, Eq. 4.46, was
added to the deformation at point C, Eq. 4.72, i.e.,
Apy =Acx + A, (4.75)

Equation 4.75 can be simplified to

F 3 ) 2\ O6F L,
A, =—\L,,” —3L,,"L-, +3L L +—E L2 4
Dx 2E1by( AB 4B +cp 4B*CD ) 5G4,
F,Lpc 2 F.Lgc  F LBCLCD2
Z L —2L oL |+ —= + = — 4.76
> E]by ( AB AB CD) Ac E Elcy ( )

2 3
FzLBC LCD + FXLCD + 6FXLCD
2EI 3EI,, 5G4,

cy

The procedure used to derive Eq. 4.76 was followed in order to obtain deformations at

point D in the y and z directions, i.e.,
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F 3 2 2
Apy =Acy + Ay, :—y(LAB 3L, Lep +3L 3Ly )+

3EI,
6F L F L., L FL.> 6FL
y—AB n y*~BC 4B n y*~BC y*~BC +, (477)
5G4, GJ, 3EI 5GA,
2 3
FyLCD LBC n FyLCD n 6FyLCD
GJ, 3EI,. 5G4,

and

FZLAB + FxLBC

2
Ap, =Ac, Ay, = (LAB —2LcpLyp )+

2 2 3
Folge Lup _ Fileplpe n F-Lpc + (4.78)
El,, 2EI, 3El,,
OF, Lpc n FLep
5GA, EA,

Comparing Eqs 4.76 to 4.78 with Eqs 4.46 to 4.48 is should be noted that complexity of
equations increases when deformations at point D are determined while considering the
entire folded spring, rather than its representation as a cantilever. Detailed determination
of deformations of the folded spring of the microgyro, based on Eqs 4.76 to 4.78, is

included in Appendix A.

4.1.4. Determination of forces acting on the folded spring
Forces used in equations for deformations, which were derived in Section 4.1.3,
must be determined. Because of the nature of the functional operation of the
microgyroscopes studied in this thesis, the forces acting in the x, i.e., in-plane, and y, i.e.,

out-of-plane, directions were calculated, while the force in the z-direction was assumed to
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be zero. The force that acts on the folded springs in the x-direction is due to the vibration
of the proof masses. Therefore, in order to calculate this force, Newton’s second law was
applied, i.e.,

ma(t)
Fspring = 4

, (4.79)

where for the case of the microgyroscope, m is the total mass of the proof mass, and a(?)
is the time dependent acceleration that is acting on the proof mass. In order to obtain the
force that acts on each of the four folded springs that support a single proof mass, it was
assumed that each spring evenly shares the force; therefore, the total force is divided by
four in order to obtain the force for a single spring.

The acceleration acting on the proof masses was obtained by evaluating double

time derivative of the equation of sinusoidal motion of the proof masses, i.¢.,

x(t)= Bsin(wt) (4.80)
v(t)z%x(t)zBa)cos(a)t) , 4.81)
a(t):%v(t)zi—zzx(t):—B o sin(wr) | (“4.82)

where x, v, and a, are the instantaneous position, speed, and acceleration, respectively, of
the proof mass, B is the amplitude of the oscillation, @ is the angular speed of oscillation,
and ¢ is time. For the motion of the proof mass it is assumed that the maximum

amplitude of the displacement of the proof mass is defined as

L,
B = 7— 5 (483)
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where Lyis the length of the combdrive fingers. Three micrometers less than half of the
finger length are used because if the proof mass moved half the finger length, the fingers
might stick and the microgyro would fail. The angular speed of the motion of the proof
mass was calculated as

w=2rf (4.84)
where f'is the cyclic frequency of the vibration of the proof mass.

Based on Eq. 4.82, the maximum acceleration will be obtained when sin(wt) will
be equal to one; therefore the maximum acceleration “felt” by the proof mass of the

gyroscope will be

amax = B a)2 * (485)

By substituting 4.85 into 4.79, the maximum force acting on the proof mass is calculated

to be

F _ , (4.86)

and then applied to the folded spring in order to determine in-plane deformation in the x-
direction.

The force that acts on the folded springs in the y-direction is the Coriolis force,
Eq. 2.7. Based on literature addressing MEMS gyroscopes, angular velocities that
microgyroscopes are subjected to can range from 0 rad/sec to £67 rad/sec, or 0°/s to
+1080°/s (Analog Devices, 2003a, 2003b; Fujita, et al., 1997; Geiger, et al., 1998;

Hedenstierna, et al., 2001; Kuisma, et al., 1997). However, most of the angular rates are
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lower, on the order of 100°/s, and this is the angular acceleration that was applied to Eq.

2.7. The average in-plane velocity, in Eq. 2.7, is defined as

y="2 ) (4.87)

where 7 is the period of the vibration of the proof mass. Only a quarter of the period is
used in this case because the proof mass moves, traversing the amplitude defined by Eq.
4.83, four times during a single cycle. Therefore, the distance B is traveled ever quarter

of the period. The period is calculated as the reciprocal of the cyclic frequency, i.e.,
T=— . (4.88)

The values necessary to solve for the maximum in-plane acceleration, the in-plane

velocity, the in-plane force acting on the folded springs, and the Coriolis force acting on

the folded springs are listed in Table 4.3. A detailed determination of the forces that are

applied to the folded spring from Sandia is included in Appendix B.

Table 4.3. Values necessary to calculate the forces acting on the folded spring.

Description and symbol Value
Calculated total mass of the proof mass, m 1.25502 nkg
Measured length of the comb drive fingers, Lr 40.0 ym
Operational frequency of the proof mass, f 10.0 kHz
Angular rate, @ 1.7533 rad/sec
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4.1.5. Uncertainty analysis

An uncertainty analysis was done on the displacements that were derived in
Section 4.1.3 for the folded springs that support the proof masses of the Sandia
microgyro. This was done to determine by how much the deformation of the folded
spring could vary due to assumptions and approximations that were used in the analytical
calculations. That is, the uncertainty analysis gives basis for determination of how good
the analytical results are (Pryputniewicz, 1993).

The uncertainty analysis that was conducted in this thesis was performed based on
the root-sum-square (RSS) approach (Pryputniewicz, 1993), which assumes a Gaussian
distribution in the values of the uncertainty for the variables that are considered.

For multiple measurements of a single parameter, X, the total RSS uncertainty, oy,

1s defined as

5, =82 +PX2)% : (4.89)
where B is the bias limit and Py is the precision of the entire set of data for the parameter
X.

However, for the case of a result that is calculated from many individual
variables, a general uncertainty analysis must be done using the RSS approach. For this
case, each independent parameter, .X;, will have (Coleman and Steele, 1989) associated
with it

B=0 . (4.90)

Therefore, based on Eq. 4.90, Eq. 4.89 reduces to
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Sy =Py . (4.91)

Using Eq. 4.91, general uncertainty analysis begins by writing a phenomenological
equation expressing the dependent parameter, uncertainty of which is to be determined, in
terms of its independent parameters X;, X>,..., X, (Pryputniewicz, 1993), i.e.,

X=x(x,,X,,...X,) . (4.92)

Based on Eq. 4.92, the uncertainty oy can be calculated, using, e.g., the RSS approach, to

be

ox . Y (ox . Y x . V]
Oy =||—0 +|—0 +...+|—0 , 493
\ [(% SR e H “9%)

where the Jx; parameters represent uncertainties of the individual independent
parameters, X;.

Using Egs 4.92 and 4.93, the uncertainty analyses were performed for the
deformations at point D of the folded spring. For example, using the explicit definition
of the x-component of deformation at point D, given by Eq. 4.76, the corresponding
phenomenological equation is written as

Apy = Ape\Foo Fou L, Lye s Lep, Ay A, 1y, 1, E.G) (4.94)

cy?
The next step is to write the phenomenological equations for each of the variables

in Eq. 4.94 that themselves are functions of their own independent parameters. This is,

F,=F (ma) , (4.95)
where
m = m(Vproqf'sp) s (496)
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and

a= a(B,a))

In Eqs 4.96 and 4.97, we have

Vproof = proof (A proof » h ) ’

B-sl,) .

o=olf)

Also in Eq. 4.94, we have

and

Using Eq 4.93, uncertainties in parameters defined by Eqs 4.94 to 4.105 can be

A, = 4,(b,h)
A, = A4,(byc.h)
I, =1,,(b.h)
Loy =1, (byc.h)

G=G(E, u)

(4.97)

(4.98)

(4.99)

(4.100)

(4.101)
(4.102)
(4.103)
(4.104)

(4.105)

determined. Once these uncertainties are known, they can be used to determine the

overall uncertainty (Pryputniewicz, 1993) in the x-component of deformation at point D,

1e.,
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5A Dx —

2 2 2
Apy OF, | + Apy OF, | + OA py O, | +
oF oF oL .5

X z

2 2 2
SLpe | + OA px SLep | + A py A, | +
> (oA N ’
GTDXMCJ +( GIDX é]byJ J{@[—DX&WJ +
c by cy
1

2 2 A
OA b 5Ej {%DX 5G] }

1

(4.106)

oF oG

The procedure used to derive Eq. 4.106 was followed to obtain overall
uncertainties in the y-component and z-component of deformations at point D. The
phenomenological relationships, based on Eqs 4.77 and 4.78 are

Apy = Aoy (Fy L, LocLeps Ay Ao Dy 10 Jy I ESG) (4.107)
ADz :ADZ(FX’Fz7LAB7LBC’LCD’Ab9Acﬂlby9[cy’E’G) ’ (4108)

respectively. Based on Eqs 4.107 and 4.108, the overall uncertainties in the y-direction

and z-direction are

2 2 2
OA OA oA
o, - —é’Fj +[_&J +[_5L] .

(4.109)
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and

2 2 2
MNp, = A, OF, | + OAp, OF, | + A, Oy | +
oF, oF. oL .5

2 2 2
Ap, OLge | + OAp, SLep | + OAp, A, | +

2 2 2 >
aAﬁéAc +| o oy, | + %&cy +
oA o, o,

c cy

oA 2o )%
Dz éEj +[ Dz 5Gj :|

(4.110)

OFE oG

respectively. Values of uncertainties for the individual variables that were used to obtain
the overall uncertainties in the three components of deformations at point D of the folded

spring are listed in Table 4.4.

Table 4.4. Values and initial uncertainties of parameters
characterizing the folded spring.

Variable Units Value Uncertainty
F, N 0 0
Lyp gm 111 0.5
Lpc gm 17 0.5
Lep um 98 0.5
b pum 3 0.5
bpc gm 10 0.5
h Mm 2.5 0.5
Ly um 40 0.5
f kHz 10 0.5
w rad/sec 1.745 0.0005
E GPa 160 5
p g/em® 2.330 0.005
7] 0.23 0.005
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The uncertainties for the measured dimensions were initially taken to be the resolution of
the microscope used, the uncertainty for the thickness was taken to be 0.5 um as a “safety
factor,” uncertainties in the material properties were taken from the tolerances set by
Sandia (2003), all other uncertainties were taken as half of the least significant digit of
the value (Pryputniewicz, 1993). Detailed determination of the uncertainties is included

in Appendix C.

4.2. Computational considerations

The purpose of the computational considerations was to determine displacements,
at the point where the forces were applied, using the finite element method (FEM). The
procedure was to first draw the folded spring in a CAD package, e.g., SolidWorks (2001)
software, illustrated in Fig. 4.9. Once the model was complete it was imported into the
FEM software used, COSMOS/M (2003), for this thesis. Using COSMOS/M software,
material properties of the folded spring, resultant forces from the proof mass acting on
the face at point D, and boundary conditions, that the folded spring was fixed over the
face at point 4, the model was meshed using 2 different types of elements: 1) linear
tetrahedral solid elements which have four corner nodes and six edges and 2) parabolic
tetrahedral elements which have four corner nodes, six edges, and six mid-side nodes,
Fig. 4.10.

When the FEM model was completed, a convergence analysis was performed

starting with the minimum allowable number of solid elements and ending when changes
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between deformations corresponding to the two most recent dicretizations were below

0.1%. Results of the convergence analyses are discussed in Section 5.2.

Fig. 4.9. SolidWorks representation of the folded spring used in the Sandia microgyro.

Fig. 4.10. Solid parabolic tetrahedral element mesh of the folded spring.
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4.3. Experimental considerations

The purpose of the experimental study of the folded spring was to test how well
the analytical and computational models compare to what happens in the real world. This
was done by using a laser vibrometer to measure displacements of the proof mass as the
microgyroscope is shaken out-of-plane by a PZT shaker. The displacements measured by
the vibrometer were then compared to displacements calculated analytically. After this
was completed, shapes of the microgyros were characterized using optoelectronic laser
interferometeric microscope (OELIM) methodology. The laser vibrometer method is

described in Section 4.3.1 while the OELIM methodology is presented in Section 4.3.2.

4.3.1. Laser vibrometer method

Displacements were measured using laser vibrometer setup (Polytech, 2001), Fig.
4.11. The way the laser vibrometer was used was that a signal generator sends a
sinusoidal voltage to the piezoelectric transducer (PZT) shaker driver, the driver sends a
signal to the PZT, and the PZT shakes the microgyroscope die which is attached to a
mirror, which is itself mounted on the PZT, Fig. 4.12. The vibrometer laser was then
focused on the object to be measured, either the proof mass or the mirror; the decoder
would then compare the signal from the object to the reference beam, and obtain a
voltage that corresponds to a displacement by the conversion factor of 50 nm/Volt. The

signal from the decoder was then entered into a signal analyzer where the frequency and
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the time-domain responses were analyzed to obtain the displacement response of the
microgyroscope. A schematic diagram of the vibrometer setup is illustrated in Fig. 4.13.
The frequency response obtained from the vibrometer when the mirror is observed is the
response of the mirror, the adhesive that attaches the mirror to the PZT, which for this
case was super glue, the PZT shaker, the PZT driver, and the signal that is produced by
the signal analyzer. The signal obtained from the proof mass is the frequency response of
the proof mass of the microgyro, the substrate of the die that the microgyro is located on,
the adhesive that was used to attach the die to the mirror, and the response of all of the

components that are viewed by the signal obtained from the mirror.

Microgyro

Decoder

Fig. 4.11. Laser vibrometer setup.
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Fig. 4.12. Close-up of the mounted microgyro

DECODER
E—

INTEFEROMETER
—

PIT

REFEREMNCE
MIRROR
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-

SIGMNAL
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SIGMNAL GENERAT OR
|

— PLTDRIVER

Fig. 4.13. Schematic diagram of the laser vibrometer setup.
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A check of how the system works was done first by obtaining the frequency
response function (FRF) of the substrate/proof mass in order to check whether the
substrate/proof mass cleanly transmitts the input signal from the PZT and mirror, or if it
changes the signal.

The system illustrated in Fig. 4.14 will be used to explain how the FRF can be

calculated.

X(t) = h(t) =

Fig. 4.14. Block diagram of a system in the time-domain.

In Fig. 4.14 x(1) is the input to the system, /(?) is the characteristic function of what
happens in the system in the time-domain, and y(z) is the outupt of the system. For the
time-domain, the relationship between the input, characteristic function, and output is

described by a convolution integral

W(0)= [h(e—)dr | (4.111)

where 7is the integration variable. Convolution is defined as an integral which expresses
the amount of overlap of one function as it is shifted over another function (Weisstein,
1999; Jeffrey, 2002). For many applications it is easier to deal with the frequency
response of a system rather than the time-domain. The block diagram for the frequency

domain for the system is illustrated in Fig. 4.15.
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X(f) = h(f) ()

Fig. 4.15. The block diagram for a system in the frequency-domain.

When a function is changed from the time domain to the frequency domain it is

transfomed using the following equation:
oWf)= [ye)e ™ har . (4.112)

Based on Eq. 4.112, Eq. 4.111 can be re-written as

Ty(t)efzj”ftdt = T [ Ojoh(z')x(t - T)dT:| e Tt (4.113)
or
Ty(t)e_zj”ftdt = Th(r)[ Tx(t - T)e_z-/”-ftdt}dr . (4.114)

If a temporary function, o = ¢ - 7, is introduced into Eq. 4.114 it changes to

Ty(t)e_zj”ftdt = Th(r)[e_zj”ff Tx(a)e_zj”fado}df , (4.115)
W)= x(f) [hlc)- e dr . (4.116)

Based on the definition of the conversion from the time domain to the frequency domain,

Eq. 4.116 can be simplified to the form (Furlong, 1993)

w(f)=x(r)-n(f) - 4.117)
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Equation 4.117 proves that if two functions are convolved in the time domain they
are multiplied by the frequency domain (Brigham, 1988). The experimental setup that
was illustrated in Figs 4.11 to 4.13 can be also modeled as a mass-spring-damper system,
since each electrical or mechanical part of the total experimental system can be modeled,
based on the force-voltage analogy as a mass/inductance, spring/inverse of the capacitor,
and damper/resistor system, (Ogata, 1978) Fig. 4.16. Another way of illustrating the

system is using a block diagram similar to that in Fig. 4.17.

k
—A\VWW .
ml m —@ Signal generator, D 4

T

NN\

k
O - —
S S

PZT driver, PZT and mirror, D,

ANNN

<V
@_ m —’VW‘—/ Substrate and microgyro, D3
T

SIS S S

Fig. 4.16. Schematic diagram of the experimental system, where m is the
mass, k is the spring, b is the damper.

N
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Signal generator
input, D | an| PZTdriver, PZT, and
mirror response, A

D=D/ A,

Substrate and proof mass
response, A,

Fig. 4.17. Block diagram for the experimental system.

As shown in Figs 4.16 and 4.17, the frequency response from the signal generator and
cable, D;, acts as a driver for the PZT driver, PZT, and mirror, for which the FRF is 4,
and the product of D; and A4; produces D;; then D; acts as the driver for the
substrate/proof mass, for which the FRF is 4,, and the product of the D, and 4, produces
the output, D;. In order to obtain the FRF of just the substrate/proof mass it is necessary
to remove the extra components: the mirror, PZT, PZT driver, and signal from the signal
generator. This is done by de-convolving the three frequency responses from one
another. This is achieved by solving the equation for D3, which is defined in Fig. 4.17, to

determine 4, i.e.,

Ay ==, (4.118)

Once this deconvolved signal is obtained the inverse fast Fourier transform (IFFT) of the

signal is taken in order to obtain the response of the substrate/proof mass in the time
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domain. In order to obtain the amplitude of displacement that the proof mass experiences
due to the excitation, both the mirror and the substrate/proof mass have to be observed in
the time-domain. The difference between the two responses provides the displacement of

the substrate/proof mass.

4.3.2. OELIM methodology
Optoelectronic laser interferometric microscope (OELIM) methodology is the
state-of-the-art methodology for studies of MEMS in full field of view. The OELIM is
based on the optoelectronic holography (OEH) method that is described in Section

4.3.2.1.

4.3.2.1. Opto-electronic holography

Advances in the phase step hologram interferometry, speckle metrology, and
computer technology allowed development of a system for direct electronic recording of
holograms and transmission of holographic interferograms by television systems for real-
time display of fringes (Pryputniewicz, 1985; Furlong, 1999; Brown and Pryputniewicz,
2000; Pryputniewicz, et. al, 2000). This opto-electronic holography (OEH) system, in
addition to other electronic and optical components, consists of a modified speckle
interferometer, which produces speckles large enough to be resolved by a TV camera

(Pryputniewicz, et. al, 2001). The output of the TV camera is fed to a system that
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computes and stores the magnitude and phase, relative to the reference beam, of each
picture element in the image of the illuminated object.

Any of the usual phenomena that generate characteristic fringes in hologram
interferometry will do so in this process also, and the characteristic fringe functions will

be impressed on the magnitudes of the values stored.

4.3.2.1.1. Fundamentals of OEH

There are a number of experimental methods used to study displacements and
deformation of objects. These methods are primarily based on the use of mechanical
probes, strain gauges, and accelerometers and, in general, are invasive because they may
affect response of the component to the load. In 1965, however, the method of hologram
interferometry was invented (Powell and Stetson, 1965) and provided means by which
holograms of objects could be readily recorded. Quantitative interpretation of
interference fringes has traditionally been tedious and prone to considerable inaccuracy.
This has led to the use of heterodyne and phase step methods to read out the
interferometric fringes produced during reconstruction of holograms of vibrating objects.
Although these methods (Ineichen and Mastner, 1980; Stetson, 1970, 1982; Hariharan
and Oreb, 1986; and Pryputniewicz, 1988) allowed high accuracy, 1/1000 and 1/100 of
one fringe, respectively, in measurements of local phase differences, they still required
physical recording of a permanent hologram in some type of photosensitive medium,

which requires lengthy processing. Therefore, these methods, which require lengthy
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processing, do not qualify for fully automated hologram analysis. To overcome this
drawback, an automated method for processing of vibration fringes has been developed
(Stetson and Brohinsky, 1988). In this method, measurements of irradiances produced by
mutual interference of the object and reference fields are made electronically by a
detector array. Processing of this interferometric information and display of the
computational results are carried out concomitantly with measurements of irradiation.
Because this method does not depend on recording of holograms in a conventional media,
but rather relies on electronic acquisition, processing, and display of optical interference
information, it is called OEH, also referred to as Electronic Holography, or TV
Holography (Pryputniewicz, 1990).

The OEH method allows automated processing of fringes of statically and
dynamically loaded objects (Stetson and Brohinsky, 1988; Pryputniewicz and Stetson,
1989). In this method, measurements of irradiances produced by mutual interference of
the object and the reference fields are made electronically by a CCD camera, Fig. 4.18.

In the following sections, application of OEH to static measurements is described.

4.3.2.1.2. Electronic processing of holograms
The OEH system is capable of performing either static or dynamic measurements.
In the discussion that follows, static measurements are implemented by the double-

exposure method. The double-exposure method was utilized in this project to perform
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measurements on the MEMS gyroscope. More specifically, “static”” double-exposure

method was used to study shape and static deformations of the microgyroscopes.

g

Fs2 [ ]
¥
/L LASER
= x
K, SE2
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Fig. 4.18. The OEH system: BS is the beam splitter, M1 and M2 are the mirrors, PS1 and
PS2 are the phase steppers, SE1 and SE2 are the spatial filter beam expander assemblies,
BR is the object beam rotator, SI is the speckle interferometer, CCD is the camera, and
K, and K are the directions of illumination and observation vectors, respectively.

4.3.2.1.2.1. Double-exposure method
Static measurements are characterized by recording “single-exposure” holograms
of an object at different states of stress (Pryputniewicz, et. al, 2001). As a result of
interference between a set of two “single-exposure” holograms, fringes form, if there are
any optical path differences between the corresponding points on the object as recorded

in the two holograms.
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In OEH, this process is carried out by recording sequential frames of images of
the object corresponding to the two states of stress (Pryputniewicz, 1983). Typically,
four (or more) sequential frames are recorded, with a finite phase step - imposed on the
reference beam - between each frame, for every single-exposure image of the object. In
the following discussion, in order to simplify derivation of equations describing the OEH
process for static measurements, the object will be initially unstressed; results would be
the same if the object was stressed initially but mathematics would be much more
complicated (Pryputniewicz, et. al, 2001).

The image of an unstressed (i.e., unloaded) object can be described by the
irradiance distribution for the n-th sequential frame, 7,(x, y), the irradiance at the detector

array of a CCD camera in the OEH system setup, as
1,(x,y)= 1,06 )+ 1,(x, )+ 24, (x, )4, (x, y)cos[Aglx, y) +A6,] ,  (4.119)
while the corresponding image of the stressed (i.e., loaded) object can be described by the

irradiance distribution, 7, (x, y), as

!

)= 1, ()1 () w120

24, (x, )4, (x,)eos[Ag(x, y)+ Qx, y)+ A6, ]
In Eqs 4.119 and 4.120, x and y identify coordinates of the detectors in the array, /, and /,
are irradiances of the object and reference beams, respectively, A¢@ is the phase difference
between these beams, A6, is the finite phase step imposed on the reference beam between

sequential frames recording individual images, and Q is the fringe-locus function,

constant values of which define fringe loci on the surface of the object.
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Since 7 and /" are measured at known coordinates x and y, Eqs 4.119 and 4.120
contain four unknowns, i.e., irradiances (which are squares of the amplitudes) of the two
fields, the phase difference between these fields, and the fringe-locus function. The goal
of the analysis is to determine Q because it is related directly to displacements and
deformations of the object.

In OEH, A¢ is eliminated by recording sequentially four image frames with an
introduction of a 90° phase step between each frame. That is, A, appearing in Eqs
4.119 and 4.120 takes on the values of 0°, 90°, 180°, and 270°. This process can be
represented by two sets of four simultaneous equations corresponding to Eqs 4.119 and

4.120, respectively, i.e.,

I,=1,+1,+24,4, cos(Ag+0°) (4.121)
I,=1,+1.+2A4,4 cos(Ap+90°) , (4.122)
I, =1,+1.+24,4, cos(Ap+180°) (4.123)
I,=1,+1. +24,4, cos(Ap+270°) (4.124)
and
I[ =1 +1,+24. 4, cos(Ag+Q+0°) (4.125)
Iy=1)+1.+24 A cos(Ap+Q+90°) (4.126)
Iy=1+1.+24 A, cos(Ap+Q+180°) (4.127)
=1 +1 +24 A4 cos(Ap+Q+270°) (4.128)

where the arguments (x, y) were omitted for simplification. Evaluation of Eqs 4.121 to

4.128 yields
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I,=1,+1,+2A4,A4, cosA¢p (4.129)

I,=1,+1,+24,4, sinA¢ (4.130)
Iy=1,+1,-24,A4.cosAg (4.131)
I,=1,+1, 24,4 sinA¢ (4.132)
and
I =1 +1 +24 4 cos(Ap+Q) , (4.133)
Iy=1+1,+24 4, sin(Ag+Q) (4.134)
Li=1 +1 -24 A4 cos(Ag+Q) (4.135)
I =1 +1,-24' 4, sin(Ag+Q) . (4.136)

It should be noted that systems of equations similar to Eqs 4.129 to 4.132 and Eqs
4.133 to 4.136 could be obtained using any value of the phase step, however, use of the
90° phase step results in the simplest computations.

Subtracting Eqs 4.129 and 4.131 as well as Eqs 4.130 and 4.132 we obtain, for the

unstressed object, the following set of two equations:

(I, -1;)=44,4.cosAg , (4.137)
and

(I,-1,)=44,4 sinAp . (4.138)
Following the above procedure and subtracting Eqs 4.133 and 4.135 as well as 4.134 and

4.136, a set of two equations is obtained for the stressed object, i.e.,

(11' —13') =44, 4 cos(Ap+Q) | (4.139)
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and

[12' —14') — 44 4 sin(Ag+Q) . (4.140)
Addition of Eqs 4.137 and 4.139 yields

(1, —13)+(11' —13'j — 44,4 cosAg+44, A cos(Ap+Q) . (4.141)

Because object displacements and deformations are small, it can be assumed that

A! = A,. Therefore, Eq. 4.141 becomes

(1, - 1)+ (11' - 13') =44 4 [cosAg+cos(Ag+Q)] . (4.142)
Recognizing that cos(Ag+ Q) =cosAgcosQ—sinAgsinQ, Eq. 4.142 can be written as

D, =(I,- 1)+ (11, —13’) =44, 4. [(1+cosQ)cosAg—sinAgsinQ] . (4.143)
In a similar way, addition of Eqs 4.138 and 4.140 simplifies to

D,=(I,~1,)+ (12' - 14') =44 4 [(1+cosQ)sinAg +cosAgsinQ] . (4.144)

Finally, addition of the squares of Eqs 4.133 and 4.144 yields

D’ +D,” = {44,4, [(1+ cosQ)cos Ag —sin Agsin Q]}2 +

, (4.145)
{44, 4, [(1+ cosQ)sin Ag + cos Agsin Q]}z
which reduces to
D’ +D,” = 16A02A,2[(1+cos§2)2 +sin? Q] , (4.146)
wherefrom
D +D,” =324,°4.>(1+cosQ) . (4.147)

101



Furthermore, recognizing that (1 + cos Q) =2cos’ (%] , Eq 4.147 can be reduced to

JD2+D,%)=84 4 cos(%j , (4.148)

which represents the static viewing image displayed by the OEH. In Eq. 4.148, Q is the
fringe-locus function corresponding to the static displacements and/or deformations of
the object. The fringe-locus function can be determined by processing the sequential
OEH images as described below.

In order to obtain data from the OEH images, we will again employ Eqs 4.127 to

4.136 and follow the procedure used to derive Eq. 4.147. The result of this procedure is

D, =(1, —13)—(11' —13') =444 [(1-cosQ)cos A +sinAgsinQ] ,  (4.149)

D, =(1, —]4)—[12' —14’j =44,4,[(1-cosQ)sin Ag—cosAgsinQ] , (4.150)
Equations 4.149 and 4.150 lead to

Dy +D,>=324,°4,(1-cosQ) . (4.151)
Subtracting Eq 4.151 from Eq 4.147 we obtain

D=(D>+D,?)-(D> +D,?)=324,24>(1+cos Q) 324,74, (1 - cos Q)
or

D=6442 4% cosQ . (4.152)

Starting with Eqs 4.137 to 4.140, we can also determine (Pryputniewicz, 1983)

N, =(1, —]3)+(12’ —14'):4A0A,[(1+sinQ)cosA¢+sinA¢cosQ] , (4.153)
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N, =(1, —14)+(11' —13'j — 44 A [(1+5sinQ)sin Ag—cosAdcosQ] , (4.154)

N, =1, —13)+(12' —14') — 44,4 [(1-sinQ)cosAg—sinAgcosQ] , (4.155)

!

N4=(12—14)+(11 ) 44,4 [(1-sinQ)sinAg +cosAgcosQ] , (4.156)

N> +N,>=324,"4(1+sinQ) , (4.157)

N> +N,>=32474°(1-sinQ) , (4.158)
and

N =N+ N )- (V3 8 )=644,2 42 s5in0 (4.159)

Finally, dividing Eq. 4.159 by Eq. 4.152, we obtain

44,° 47 sinQ)
N_6 o & TN (4.160)
D 644,°4," cosQ

from which it follows that
Q:tan—l(ﬁj . (4.161)
D

It should be noted that Q2, computed from Eq. 4.161, is a spatial function that depends on
coordinates x and y. Therefore, its values are determined for every coordinate pair (x, )
in the object space. Once the values of (2 are determined, they can be used to compute

object displacements as discussed in Section 4.3.2.1.2.2.
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4.3.2.1.2.2. Determination of displacements based on the fringe-locus function

As described in Section 4.3.2.1.2.1, images recorded by the CCD are processed by
the image-processing computer (IP) to determine the fringe-locus function, Q, constant
values of which define fringe loci on the surface of object under investigation. The
values of Q relate to the system geometry and the unknown vector L, defining
deformations, via the relationship (Pryputniewicz, 1995a; Furlong and Pryputniewicz,
2000)

Q=(K,-K,)eL=KeL (4.162)
where K is the sensitivity vector defined in terms of vectors K; and K; identifying
directions of illumination and observation, respectively, in the OEH system, Fig. 4.19.

Quantitative determination of structural deformations due to the applied loads can
be obtained, by solving a system of equations similar to Eq. 4.162, to yield

(Pryputniewicz, 1995a)

L=[K"K]'K"Q) . (4.163)
where KT represents the transpose of the matrix of the sensitivity vectors K. Equation
4.163 indicates that deformations determined from interferograms are functions of K and
Q), which have spatial, i.e., (x,y,z), distributions over the field of interest on the object
being investigated. Equation 4.163 can be represented by a phenomenological equation
(Pryputniewicz, 1993)

L=L(K,Q) , (4.164)

based on which the RSS-type uncertainty in L, i.e., oL, can be determined to be
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oL Y (oL V]
OL=|| —K | +| —X2 , (4.165)
oK oQ
where JL /0K and 0L /0Q represent partial derivatives of L with respect to K and Q,
respectively, while 0K and X2 represent the uncertainties in K and €, respectively. It
should be remembered that K, L, and Q are functions of spatial coordinates (x,y,z), i.e., K

=K(x,y,2z), L = L(x,y,z), and Q = Q(x,y,z), respectively, when performing partial

differentiations.

Fig. 4.19. Single-illumination and single-observation geometry of a fiber optic based
OEH system: LDD is the laser diode driver, LD is the laser diode, OI is the optical
1solator, MO is the microscope objective, DC is the fiber optic directional coupler, PZT;
andand PZT) are the piezoelectric fiber optic modulators, /P is the image-processing
computer, /7 is the interferometer, OL is the objective lens, CCD is the camera, while K;
and K are the directions of illumination and observation, respectively.
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After evaluating, Eq. 4.165 indicates that oL is proportional to the product of the
local value of L with the RSS value of the ratios of the uncertainties in K and Q to their

corresponding local values, i.e.,

K (a0 1/2
(ML{(_) +(_j } . (4.166)
K Q

For typical geometries of the OEH systems used in recording of interferograms,
the values of JK /K are less than 0.01. However, for small deformations, the typical
values of X2/Qare about one order of magnitude greater than the values for 0K /K .
Therefore, the accuracy with which the fringe orders are determined influences the
accuracy in the overall determination of deformations (Pryputniewicz, 1981). To
minimize this influence, a number of algorithms for determination of Q were developed.
Some of these algorithms require multiple recordings of each of the two states, in the case
of double-exposure method, of the object being investigated with introduction of a
discrete phase step between the recordings (Furlong, 1999; Pryputniewicz, 1995b;

Furlong and Pryputniewicz, 2000).

4.3.2.2. OELIM methodology
Deformations of microgyroscopes were determined, in this thesis, using
optoelectronic laser interferometric microscope (OELIM) methodology, which is based
on the OEH method (Section 4.3.2.1), but specifically implemented for the study of

MEMS (Brown and Pryputniewicz, 2000). In OELIM, a beam of collimated coherent
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light is brought into the system and is directed into a spatial filter (SF) assembly
consisting of a microscope objective and a pinhole filter, Fig. 4.20. The resulting,
expanded, light field is then collimated by lens L1, and redirected by the directional beam
splitter (DBS) through the long distance microscope objective lens (MO) to illuminate the
microgyroscope (Pryputniewicz, et al., 2000). In the OELIM configuration shown in Fig.
4.20, the proximal beam splitter (PBS) is placed close to the MEMS. The reflected light
is transmitted back through MO, DBS, and the relay lens to the CCD camera. The CCD
camera captures images of the microgyroscope to measure its shape, or as it deforms
during functional operation. The images are then analyzed and shape or deformation

fields are determined.

CCD camera

lllumination optics/

Relay lens

spatial filter
L1 SF
DBS J— \Mirror
—
&
Object/MEMS gl T BS m

Fig. 4.20. Microscope based optical configuration of the OELIM
system: SF is the spatial filter/beam expander, L1 is the
illumination optics, DBS is the directional beam splitter, MO is the
microscope objective, PBS is the proximal beam splitter, CCD is
the host computer controlled image acquisition camera
(Pryputniewicz, et al., 2000).
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4.3.2.3. OELIM system and procedure

The optical and electronic configurations of the OELIM system are shown in Figs
4.20 and 4.21, respectively. In the OELIM system, the laser output is divided into two
beams by means of a beam splitter. One of these beams is directed via a piezoelectrically
driven mirror and is shaped by the spatial filter beam expander assembly to illuminate the
object uniformly; this mirror can be driven at the same frequency as the object excitation
to provide bias vibration, when studying MEMS during their functional operation. The
other beam, also spatially filtered and expanded, is directed toward the reference input of
the speckle interferometer by another piezoelectrically driven mirror that introduces 90°
phase steps between consecutive frames. The speckle interferometer combines the object
beam with the reference beam and directs them collinearly toward the detector array of

the CCD camera (Steward and Saggal, 2002; Steward, et al., 2002).

SPECKLE
INTERFEROMETER
PHASE STEPPER | TV MONITOR
CONTROLS PROCESSOR
OBJECT LOADING
CONTROLS
HOST
COMPUTER

COMPUTER MONITOR

Fig. 4.21. Electronic configuration of the OELIM system.
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In the OELIM system, the CCD camera detects the interference pattern and sends
it to the pipeline processor, Fig. 4.21. In the processor, the sequential frames are
analyzed. All computations, relating to image analysis, are done in a pipeline processor,
which operates under control of a host computer. The host computer also controls
excitation of the object, coordinates it with the bias vibration imposed on the object, and
keeps track of the 90° phase stepping between the frames.

By operating on each input image and its three predecessors, the pipeline
processor produces a hologram, and this hologram may be viewed concomitantly on the
TV monitor. The resulting electronic holograms are then processed by the host computer
to determine spatial distribution of the displacement/deformation vectors that can be
viewed directly on the computer monitor. The microscope setup that was used to

measure the shape of the microgyro is illustrated in Figs 4.22 and 4.23.

Fig. 4.22. OELIM microscope setup. Fig. 4.23. Close-up of the microscope
setup.
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5. RESULTS AND DISCUSSION

This thesis makes use of the ACES methodology to determine deformations of
MEMS gyroscopes. Therefore, the results were obtained using the analytical,
computational, and experimental solutions methodology that was described in Chapter 4.
These results are presented in this chapter beginning with the analytical displacement
calculations for a folded spring, which are complemented by the computational FEM
analyses done in COSMOS/M, and then followed by the preliminary experimental
results. When presenting analytical, computational, and experimental results, selected
comparisons between these results were made to determine degrees of correlation, subject

to the uncertainty limits.

5.1. Analytical results

Because of inherent differences that usually are found between analytical and
computational results of the same object, due to assumptions and approximations used
while developing models, two different cases, addressing modeling of the folded spring,
were considered in this thesis. The first case, addressing model of the folded spring
represented only by a cantilever section CD, was used to establish degree of correlation
between the analytical and computational results on a relatively simple structure such as a
cantilever. Clearly, of this case, when the analytical model and computational model are
properly developed and solved, differences between the corresponding results should be

“zero.”
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In the second case, addressing the entire folded spring, assumptions and
approximations used to develop the analytical model may not be the same as those used
in the commercial FEM code used for the computational solutions. Therefore, finite
differences may be obtained when comparing results of analytical and computational
solutions for deformations of the folded spring. Analytical results presented in this
section comprise of deformations at point D of the cantilever beam alone, at point D
considering the entire folded spring, and the uncertainty analysis of these deformations,

discussed in Sections 5.1.1 and 5.1.2, respectively.

5.1.1. Analytically determined deformations at point D

Analytical results were obtained by applying the force in the x, i.e., in-plane
direction, Eq. 4.86, and the Coriolis force, Eq. 2.7, to the folded spring. The force in the
x, or the in-plane direction, is due to the oscillatory motion of the proof mass. Therefore,
the force calculated for the in-plane displacement is time varying, i.e., Fy(2), leading to
time varying displacement Ay(?). In order to obtain the F\(?), the displacement of the
proof mass had to be calculated first, using Eq. 4.80, the motion of the proof mass over
five periods of oscillation is illustrated in Fig. 5.1.

After the displacements were calculated the time derivative of Eq. 4.80 was taken
to obtain the speed of the proof mass expressed by Eq. 4.81, with the results displayed in
Fig. 5.2. In order to determine the force applied to the folded springs that support the

proof masses of the microgyro, acceleration the proof mass was calculated based on Eq.
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4.82, Fig. 5.3.
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Fig. 5.1.

SPEED, m/s
=<
(e}

20

JANANANANA

IRVEVAVAVAY
VvV VLV

0 0.1 0.2 0.3 0.4

t
TIME, ms

Sinusoidal displacements, as a function of time, for the proof mass of the
microgyro resonating at 10 kHz.
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Fig. 5.2. Speed, as a function of time, for the proof mass of the microgyro

resonating at 10 kHz.
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Fig. 5.3. Acceleration, as a function of time, for the proof mass of the
microgyro resonanting at 10 kHz.

For many applications, the acceleration of an object is represented in g’s, 1.e.,
multiples of gravitational acceleration. Figure 5.4 illustrates acceleration of the proof
mass of the microgyro in g’s.

Using accelerations illustated in Figs 5.3 and 5.4, the time dependent in-plane
force acting on the individual folded springs was calculated, using Eq. 4.79, and is
illustrated in Fig. 5.5. The time dependent in-plane force, F\(?), was used to determine
the x-component and z-component of the displacement defined by Eqs 4.76 and 4.78,
respectively, with the results displayed in Figs 5.6 and 5.7, respectively. The magnitude

of the x-component of these displacements varies from -21 pum to +21 um, while the

magnitude of the z-component of the displacements ranges from -2.4 pum to +2.4 um.
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Fig. 5.4. Acceleration in g’s, as a function of time, for the proof mass of the
microgyro resonanting at 10 kHz.
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Fig. 5.5. Time dependent in-plane force acting on the folded spring of the microgyro.
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Fig.

Fig. 5.7. Time dependent z-component of displacement, at point D on the folded spring
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5.6. Time dependent x-component of displacement at point D, of the folded
spring at the proof mass, of the microgyroscope resonanting at 10 kHz.
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Based on the results shown in Fig. 5.5 and the results obtained using Eq. 2.7,
forces used in the analytical and computational determinations of the deformations at

point D on the folded spring are as listed in Table 5.1, where the force in the z-direction

was assumed to be zero, for this application.

Table 5.1. Forces applied to the analytical equations.
Force Value
x-direction, F 21.075 uN
y-direction, F 0.744747 nN
z-direction, F; 0.0

The displacements at the point of force application, point D, for the cantilever beam
representing the folded spring, derived in Section 4.1.3.2, were determined using the
forces listed in Table 5.1 and Eqs 4.46 to 4.48 with results summarized in Table 5.2.
Displacements at point D while considering the entire folded spring were determined

using the forces listed in Table 5.1 and Eqgs 4.76 to 4.78 with results summarized in Table

53

Table 5.2. Displacements at point D based on the analytical
considerations of the cantilever beam.

Direction Value
x-displacement, Agx | 10.6719 pm
y-displacement, Agy 0.5434 nm
z-displacement, A4, 0 um
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Table 5.3. Displacements at point D based on the analytical
considerations of the entire folded spring.

Direction Value

x-displacement, Apx | 21.4583 um
y-displacement, Apy 1.1314 nm
z-displacement, Ap, -2.4268 um

Based on Eqs 4.76 to 4.78, in Table 5.3 there is displacement in the z-direction, for the
folded spring, even without force acting directly in the z-direction, because of bending
effects in Section BC, due to the force in the x-direction. However, based on Eqs 4.46 to
4.48, there 1s no deformation in the z-direction because the cantilever does not produce
any twisting; therefore, there is no deformation in the z-direction. The values shown in

Tables 5.2 and 5.3 will be used for comparisons with the computational results.

5.1.2. Uncertainty analysis of the analytically determined deformations at point D
In order to determine how good the analytical results obtained in Section 5.1.1
are, an uncertainty analysis was performed. This analysis was performed for all three
Cartesian components of the deformations at point D, based on Eqs 4.76 to 4.78, Section
4.1.5. Initial evaluation of the overall uncertainties in Apy, Apy, and Ap, was based on the
values of the independent parameters and their uncertainties as listed in Table 4.4.
Results for this first case of determination of uncertainties in deformations at point D are
summarized in Table 5.4 and indicate that percent overall uncertainties for all three

deformations were above 55%. The percent overall uncertainties are based on the
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analytically determined deformations at point D listed in Table 5.3. The largest
individual contributors to the overall uncertainty were due to the uncertainty in the
thickness for the deformations in the out-of-plane direction and due to the uncertainty in

width of Sections 4B and CD for the deformations in the in-plane directions.

Table 5.4. Summary of overall uncertainties in the deformations at
point D, for the first case.

Calculated uncertainty | Percent uncertainty | Largest contributor
OApx 12.51 um 58.29% ob
OApy 0.72 nm 61.60% oh
OAp, 1.42 pm 58.49% ob

Since the overall uncertainties in the first case were too high they had to be
reduced. This reduction can only be achieved by optimizing uncertainties in the
independent parameters without any changes in the nominal values of these parameters
(Pryputniewicz, 1993). For example, to reduce the overall uncertainty in Ap,, the
uncertainty in the thickness, which was established to be the largest contributor to SApy,
was reduced to 0.125 pm representing 5% of the nominal value, i.e., current industry
practice for the tolerance in fabricating the thickness. In order to reduce the overall
uncertainties in Apx and Ap,, the uncertainty in the width, b, was also decreased, to 0.25
um. This was done because this uncertainty may be assumed to be half of the least
significant digit, (i.e., the least count) in the resolution that is equal to 0.5 um. Realizing
that width and length are measured using the same microscope, uncertainties in all width

and length dimensions were assumed to be equal to 0.25 um, as summarized in Table 5.5.
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The values of Table 5.5 were used to determine overall uncertainties in deformations at

point D, for the second case, Table 5.6.

Table 5.5. Values and uncertainties used during determination of
overall uncertainties in deformations at point D, for the second case.

Variable | Units | Value Uncertainty

Ly pm 111 0.25

Lpc gl 17 0.25

Lep pm 98 0.25
b pm 3 0.25

bsc Mm 10 0.25
h pm 25 (0.054) = 0.125
Ly pm 40 0.25

Table 5.6. Overall uncertainties in the deformations at point D, for the second case.

Calculated uncertainty | Percent uncertainty | Largest contributor
OApx 5.98 um 27.85% ob
OApy 0.21 nm 17.67% oh
O0Ap; 0.68 um 27.94% ob

Using the values of uncertainties of the second case Table 5.5 reduced 8Apy to about 18%
with oh contributing most to the overall uncertainty, while 0Apx and dAp, were reduced to
about 28% with 6b contributing the most to the corresponding values in the overall
uncertainties, Table 5.6. These changes were expected since for the out-of-plane
deformations, the largest contributor to the overall uncertainty is the thickness: due to the
fact that thickness is cubed in the equations for moment of inertia. Therefore, a change of

the uncertainty in thickness should produce a large change in the overall uncertainty. The
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same is true for the in-plane deformations in the x and z directions: the width is cubed in
the moment of inertia; therefore, a reduction of the uncertainty in width produced a large
change in the overall uncertainty. Examination of the results summarized in Table 5.6
indicates that all overall uncertainties reduced substantially when compared with the
results summarized in Table 5.4. Specifically 6Apy reduced from about 62% to about
18%.

The uncertainties of the second case were still large; therefore, to reduce the
uncertainties even more, the uncertainty in the thickness was reduced to 1% of the total
thickness, i.e., to 0.025 um. This was done since 1% of the total thickness is the
tolerance in thickness that is becoming a practice in fabrication processes for MEMS.
Using this value for the uncertainty in thickness, the overall uncertainties for a third case
were determined, Table 5.7. The reduction in the uncertainty of the thickness reduced the
uncertainty for the deformation in the y-direction to about 10%. The largest contributors
to the overall uncertainties were the width for all three Cartesian directions, x, y, and z.
Therefore, in order to reduce the overall uncertainties in the deformations at point D the
uncertainties in width and length will have to be reduced again, subject to ability to

obtain them using fabrication processes available for making MEMS.

Table 5.7. Overall uncertainties in the deformations at point D, for the third case.

Calculated uncertainty | Percent uncertainty | Largest contributor
OADpx 5.98 um 26.96% o
dApy 0.12 nm 10.12% ob
O0Ap, 0.68 um 27.07% ob
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5.2. Computational results

The first set of computational results obtained in COSMOS/M that will be
discussed are those for the deformations of just the cantilever section CD representing the
folded spring. The results in the x-direction will be presented first. Before the
deformations were computed, convergence analyses were performed to establish proper
meshing, i.e., discretization, of the cantilever. This was done using both linear and
parabolic tetrahedral elements. For the linear tetrahedral elements it took about 20,000
elements to properly discretize the cantilever to reach convergence, meaning that the
difference between the two most recent discretizations was less than 0.1%; however for
the parabolic tetrahedral elements it only took about 7,000 elements.

Results of the convergence analyses for the force acting in the x-direction are
summarized in Table 5.8 and illustrated in Fig. 5.8 for linear tetrahedral elements and in
Table 5.9 and Fig. 5.9 for parbolic tetrahedral elements. Using the COSMOS/M model
of the cantilever comprising of 20,000 linear tetrahedral solid elements, deformation field
due to the force acting in the x-direction was determined, indicating maximum
deformation of 10.66 um at the point of force application, and using 6,664 parabolic
tetrahedral solid elements, the deformation field was determined, Fig. 5.10, indicating a
maximum deformation of 10.66 um at point D.

The results obtained computationally in COSMOS/M for the deformations in the
¥, 1.e., the out-of-plane direction, for the cantilever using linear and parabolic tetrahedral
solid elements will now be reviewed. Again, convergence indicates that the folded

spring, subjected to a force in the y-direction, requires about 20,000 elements to properly
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discretize it for the linear elements, Table 5.10 and Fig. 5.11, while only about 7,000

elements for the parabolic elements, Table 5.11 and Fig. 5.12.

Table 5.8. Convergence of the maximum values of the
deformation component in the x-direction for the cantilever using
linear tetrahedral elements.

Number of elements |Displacement, um
188 1.2439
252 2.0705
353 2.988
768 5.2284
1,433 6.0965
6,664 8.3394
13,997 10.66
23,317 10.661
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Fig. 5.8. Convergence of the maximum deformations in the x-direction, due to
the force in the x-direction, for the cantilever using linear tetrahedral elements.
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Table 5.9. Convergence of the maximum values of the deformation component in
the x-direction for the cantilever using parabolic tetrahedral elements.

Number of elements Deformation, pm
188 10.627
353 10.649
768 10.651
1,786 10.655
4,494 10.659
6,664 10.659
10.665
10.660 -
£ 10.655 "
Z10.650 r/
B 10.645
%
O 10.640
L
0 10.635
10.630
10.625
0 1,000 2,000 3,000 4,000 5000 6,000

NUMBER OF ELEMENTS

Fig. 5.9. Convergence of the maximum deformations in the x-direction, due to the
force in the x-direction, for the cantilever using parabolic tetrahedral elements.

Using the COSMOS/M model of the cantilever beam comprising of 20,000 linear
tetrahedral solid elements, deformation field due to the force acting in the y-direction was
determined, indicating maximum deformation of 0.54 nm at the point of force
application, and using 6,664 parabolic tetrahedral solid elements, the deformation field

was determined, Fig. 5.13, indicating a maximum deformation of 0.54 nm at point D.
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x-Disp, ym
1.06Ge+001
! 9.770e+000
| 5.582e+000
7.994e+000
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| 2 FESe+000
1.776e+000

f 5.882e-001
* 0.0008+000

Fig. 5.10. COSMOS/M determined deformation field in the x-direction
due to the force in the x-direction, for the cantilever using 6,664 parabolic
tetrahedral solid elements.

Table 5.10. Convergence of the maximum values of the deformation component
in the y-direction for the cantilever using linear tetrahedral elements.

Number of elements Deformation, nm

188 0.0557

252 0.085428

353 0.13442

1,433 0.23037

6,664 0.39804

13,997 0.54278

23,317 0.54278

Results from the convergence analyses will be compared with the analytical
deformations that are summarized in Table 5.2. The convergence results illustrate that
the parabolic tetrahedral solid elements converge faster than the linear tetrahedral
elements, because of this the convergence analyses for the entire folded spring were done

using only the parabolic tetrahedral solid elements.
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Fig. 5.11. Convergence of the maximum deformations in the y-direction, due to the force
in the y-direction, for the cantilever using linear tetrahedral elements.

Table 5.11. Convergence of the maximum values of the
deformation component in the y-direction for the cantilever using
parabolic tetrahedral elements.

Number of elements | Deformation, nm
188 0.54113
353 0.5418
768 0.54228
1,786 0.5426
4,494 0.54266
6,664 0.54271

Results of convergence analysis of deformations for the entire folded spring due
to the force acting in the x-direction are summarized in Table 5.12 and displayed in Fig.
5.14. These results indicate that, as the number of elements representing the folded
spring increases, the maximum value of the deformation in the direction of the applied

force also increases at a decreasing rate, reaching 19.58 um when 17,000 parabolic

125



tetrahedral solid elements are used. Using the COSMOS/M model of the folded spring
comprising of 17,000 parabolic tetrahedral solid elements, deformation field due to the
force acting in the x-direction was determined, Fig. 5.15, indicating maximum
deformation of 19.58 um at the point of force application.

The results obtained computationally in COSMOS/M for the deformation in the y,
out-of-plane, direction will now be discussed. Again, convergence indicates that the
entire folded spring, subjected to a force in the y-direction, requires about 17,000
elements to properly discretize it, Table 5.13 and Fig. 5.16.

COSMOS/M determined deformation field of the spring, defined about 17,000
elements and loaded by a force acting in the y-direction is displayed in Fig. 5.17
indicating that the maximum deformation of 0.001098 um is at the point of force

application.

0 1,000 2,000 3,000 4,000 5,000 6,000
NUMBER OF ELEMENTS

Fig. 5.12. Convergence of the maximum deformations in the y-direction, due to the force
in the y-direction, for the cantilever using parabolic tetrahedral elements.
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9.044e-005
4 522e-005
-5.615e-009

Fig. 5.13. COSMOS/M determined deformation field in the y-direction
due to the force in the y-direction, for the cantilever using 6,664 parabolic
tetrahedral solid elements.

Table 5.12. Convergence of the maximum values of the deformation
component in the x-direction for the entire folded spring of the microgyro,
using parabolic tetrahedral elements.

Number of elements | Deformation, pm
346 19.394
569 19.456
812 19.475
1,263 19.495
1,952 19.520
5,245 19.545
11,501 19.569
17,285 19.582

Now the results obtained computationally in COSMOS/M for the deformation in
the z-direction, due to the force in the x-direction, will be presented. Results of
convergence analysis for this case are summarized in Table 5.14 and displayed in Fig.

5.18. These results indicate that about 17,000 elements adequately discretize the folded
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spring. Deformation field for this case is shown in Fig. 5.19 displaying the maximum

value of -2.282 pum.
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Fig. 5.14. Convergence of the maximum deformations in the x-direction, due
to the force in the x-direction, for the entire folded spring of the microgyro.
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Fig. 5.15. COSMOS/M determined deformation field in the x-direction
due to the force in the x-direction for the entire folded spring using 17,285
parabolic tetrahedral solid elements.
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Table 5.13. Convergence of the maximum values of deformation component
in the y-direction for the entire folded spring of the microgyro, using parabolic
tetrahedral elements.

Number of elements | Deformation, nm
346 1.0767
512 1.0806
1,086 1.0858
1,263 1.0874
1,746 1.0892
1,952 1.0900
3,056 1.0940
5,245 1.0947
11,501 1.0967
17,285 1.0981
1.104
1.099
£
c
v 1.094
Z
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Z 1.089
=
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Q 1.084 -
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Fig. 5.16. Convergence of the maximum deformations in the y-direction, due
to the force in the y-direction, for the entire folded spring of the microgyro.

The convergence analyses for the entire folded spring, done with parabolic
tetrahedral solid elements for all three Cartesian coordinate directions, took about 17,000
elements. This increase in the number of elements needed to properly discretize the

model of the entire folded spring, when compared to the 6,664 elements necessary to
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discretize the cantilever, makes sense, since the model increased in complexity when
sections AB and BC were added to the cantilever, section CD. Therefore the number of
elements necessary to discretize the FEM model had to increase to account for the

additional complexity.

y-Disp, pm
1.095e-003
I 9.517e-004
|| 8.654=-004
7.490e-004
6.326e-004
|| 9.162e-004
3.995e-004
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- 1.670e-004

~ 5.059e-005

‘,y/ I -5.581e-005

-1.822e-004
-2 966e-004

Fig. 5.17. COSMOS/M determined deformation field in the y-
direction due to the force in the y-direction for the entire folded
spring using 17,285 prabolic tetrahedral elements.

Table 5.14. Convergence of the maximum values of deformation
component in the z-direction for the entire folded spring of the microgyro,
using parabolic tetrahedral elements.

Number of elements Deformation, um

346 -2.2570

569 -2.2708

812 -2.2723
1,263 -2.2740
1,952 -2.2760
3,056 -2.2775
5,245 -2.2786
11,501 -2.2808
17,285 -2.2815
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Fig. 5.18. Convergence of the maximum deformations in the z-direction, due to the force
in the x-direction, for the entire folded spring of the microgyro.
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Fig. 5.19. COSMOS/M determined deformation field in the z-direction
due to the force in the x-direction for the entire folded spring using 17,285
parabolic tetrahedral elements.
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5.3. Comparison of the analytical and computational results
A comparison of the deformation values found analytically and computationally
for the spring was done using percent difference calculated according to the following

equation:

Acomp - Aanalyt
PercentDifference = ——— -100% (5.1

analyt

where Acomp 15 the deformation obtained computationally, and Agnaly: 1S the deformation
obtained from the analytical considerations. The percentage difference based on Eq. 5.1
provides a convenient way of indicating whether computational results are under
representing or over representing the analytical results, because of the sign of the results
obtained. That is, a negative percent difference indicates that the computational result
under represents the corresponding analytical result and a positive percent difference
indicates over representation of the analytical result.

The computationally determined x-component of displacement for the cantilever
representation of the folded spring, based on the linear and parabolic tetrahedral solid
elements, will now be compared to the analytically calculated displacement in the x-
direction using the values of Tables 5.2, 5.8, and 5.9, and applying these values to Eq.
5.1. Results of the comparison are summarized in Tables 5.15 and 5.16 and illustrated in
Figs 5.20 and 5.21.

Based on Tables 5.15 and 5.16 and Figs 5.20 and 5.21, at convergence the percent

differences between the analytical and computational displacements for the linear and
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parabolic tetrahedral solid elements reached about -0.1%, using 23,317 linear and 6,664

parabolic elements, respectively.

Table 5.15. COSMOS/M percent differences for cantilever deformations
in the x-direction using linear tetrahedral solid elements.

Number of elements Deformation, pm Percent difference, %
188 1.2439 -757.935
252 2.0705 -415.424
353 2.988 -257.157
768 5.2284 -104.113
1,433 6.0965 -75.049
6,664 8.3394 -27.969
10,761 9.1918 -16.102
13,997 10.66 -0.111
23,317 10.661 -0.102
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Fig. 5.20. Percent differences between COSMOS/M and analytically determined
x-components of deformation for the cantilever due to the force in the x-direction,
using linear tetrahedral solid elements.
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Table 5.16. COSMOS/M percent differences for cantilever deformations in
the x-direction using parabolic tetrahedral solid elements.

Number of elements | Deformation, um | Percent difference, %
188 10.627 -0.422
353 10.649 -0.215
768 10.651 -0.196
1,786 10.655 -0.158
4,494 10.659 -0.121
6,664 10.659 -0.121

The computationally determined y-component of displacement for the cantilever,
based on the linear and parabolic tetrahedral solid elements, will now be compared to the
analytically calculated displacement in the y-direction using the values of Tables 5.2,
5.10, and 5.11, and applying these values to Eq. 5.1. Results of the comparison are

summarized in Tables 5.17 and 5.18 and illustrated in Figs 5.22 and 5.23.
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Fig. 5.21. Percent differences between COSMOS/M and analytically determined
x-components of deformation for the cantilever due to the force in the x-direction,
using parabolic tetrahedral solid elements.
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Table 5.17. COSMOS/M percent differences for cantilever deformations in
the y-direction using linear tetrahedral solid elements.

Number of elements | Deformations, nm | Percent difference, %
188 0.0557 -875.619
252 0.085428 -536.115
353 0.13442 -304.270
1,433 0.23037 -135.890
6,664 0.39804 -36.524
10,761 0.45019 -20.709
13,997 0.54278 -0.118
23,317 0.54278 -0.118
100
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Fig. 5.22. Percent differences between COSMOS/M and analytically determined
y-components of deformation for the cantilever due to the force in the y-direction,
using linear tetrahedral solid elements.

Based on Tables 5.17 and 5.18 and Figs 5.22 and 5.23, at convergence the percent
difference between the analytical and computational displacements for 23,317 linear and
6,664 parabolic tetrahedral solid elements reached about -0.1%, respectively. Since it

took the linear elements about 3.5 times more elements to converge than it took the
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parabolic elements to properly discretize, the parabolic elements reach convergence faster

than the linear elements.

Table 5.18. COSMOS/M percent differences for cantilever deformations in
the y-direction using parabolic tetrahedral solid elements.

Number of elements | Deformations, nm | Percent difference, %
188 0.54113 -0.423
353 0.5418 -0.299
768 0.54228 -0.210
1,786 0.5426 -0.151
4,494 0.54266 -0.140
6,664 0.54271 -0.131
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Fig. 5.23. Percent differences between COSMOS/M and analytically determined
y-components of deformation for the cantilever due to the force in the y-direction,
using parabolic tetrahedral solid elements.
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Results shown in Tables 5.17 and 5.18 and Figs 5.22 and 5.23 show that, at
convergence, percent differences between the computational results based on the linear
and parabolic tetrahedral solid elements and the analytical results are about -0.1%.

Therefore, results shown in Tables 5.15 to 5.18 and Figs 5.20 to 5.23 indicate that,
both, linear and parabolic tetrahedral solid element discretization of the folded spring is
appropriate for this application. However, since the parabolic elements require fewer
elements, only 6,664 elements compared to 23,317 linear elements, the parabolic
elements are more desirable. These results also indicate that Castigliano’s second
theorem and energy methods are a valid way to model deformations of the cantilever, and
therefore the entire folded spring.

The computationally determined x-component of deformation for the entire folded
spring will now be compared to the analytically calculated deformation in the x-direction
using the values of Tables 5.3 and 5.12 and applying these values to Eq. 5.1. Results of
the comparison are summarized in Table 5.19 and Fig. 5.24. Based on Table 5.19 and
Fig. 5.24, at convergence, which occurs with 17,285 parabolic tetrahedral solid elements,
the percent difference maximum deformations of the entire folded spring, determined
analytically and computationally using parabolic tetrahedral elements, reached about -

8.7%.

Convergence for the deformations in the y-direction, Fig. 5.16, will now be
compared to the analytically calculated deformations in the y-direction using Eq. 5.1.
The percent differences calculated using Eq. 5.1, based on the values in Tables 5.3 and

5.13 are shown in Table 5.20 and Fig. 5.25. Based on the information in Table 5.20 and
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Fig. 5.25, at convergence, using 17,285 parabolic tetrahedral solid elements, the percent
difference between the analytical and computational displacements in the y-direction

reached -2.9%.

Table 5.19. Percent differences between maximum deformations of the
entire folded spring based on the analytical and COSMOS/M results for
the x-component of deformation.

Number of elements | Deformation, um | Percent difference, %
346 19.394 -9.62
569 19.456 -9.33
812 19.475 -9.24
1,263 19.495 -9.15
1,952 19.520 -9.03
5,245 19.545 -8.92
11,501 19.569 -8.80
17,285 19.582 -8.74
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Fig. 5.24. Percent differences between COSMOS/M and analytically
determined x-components of deformation for the entire folded spring due to
the force in the x-direction, using parabolic tetrahedral solid elements.
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Table 5.20. Percent differences between maximum deformations of the
entire folded spring based on the analytical and COSMOS/M results for
the y-component of deformation.

Number of elements | Displacement, nm | Percent difference, %
346 1.0767 -4.83
512 1.0806 -4.49
1,086 1.0858 -4.03
1,263 1.0874 -3.89
1,746 1.0892 -3.73
1,952 1.0900 -3.66
3,056 1.0940 -3.31
5,245 1.0947 -3.24
11,501 1.0967 -3.07
17,285 1.0981 -2.94
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Fig. 5.25. Percent differences between COSMOS/M and analytically
determined y-components of deformation for the entire folded spring due to
the force in the y-direction, using parabolic tetrahedral solid elements.

Convergence for the deformations in the z-direction, Fig. 5.18, will now be

compared to the analytically calculated displacements in the z-direction using Eq. 5.1.
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The percent difference calculated using the values in Tables 5.2 and 5.14 are shown in
Table 5.21 and Fig. 5.26. Based on Table 5.21 and Fig. 5.26, at convergence, using
17,285 parabolic tetrahedral solid elements, the percent difference between the analytical

and computational displacements in the z-direction reached -6%.

Table 5.21. Percent differences between maximum deformations of the
entire folded spring based on the analytical and COSMOS/M results for
the z-component of deformation.

Number of elements | Displacement, um | Percent difference, %

346 -2.2570 -7.00

569 -2.2708 -6.43

812 -2.2723 -6.37
1,263 -2.2740 -6.30
1,952 -2.2760 -6.21
3,056 -2.2775 -6.15
5,245 -2.2786 -6.11
11,501 -2.2808 -6.02
17,285 -2.2815 -6.00

The percent differences between the analytical and computational methodology
range from -2.9% to -8.7% for the deformations in the y and x-directions, respectively.
The differences between the two methods could stem from numerous assumptions that
were made during the derivation of the equations for the deformations of the folded
spring; however, since the percent differences between the analytical and computational
results for the cantilever were around 0.1% in both the x and y-directions, the error
between the two methods must have been introduced when modeling the interfaces

between the coupler, section BC, and sections AB and CD.
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Fig. 5.26. Percent differences between COSMOS/M and analytically
determined z-components of deformation for the entire folded spring due to
the force in the x-direction, using parabolic tetrahedral solid elements.

Another reason that could have caused the differences between the analytically
and computationally calculated deformations is that the equations derived using
Castigliano’s second theorem did not include interactions between the forces and
deformations in all directions. For example: the equation for the displacement in the x-
direction, does not include any factor due to the force in the y-direction; however when a
force in the y-direction was applied in COSMOS/M, there was a deformation, on the
order of 0.1 nm, that occurred in both the x and the z-directions. Conversely, when a
force in the x-direction was applied to the folded spring in COSMOS/M, there was a
small component of deformation that occurred in the y-direction. A way to improve the

correlation between the analytical and computational results would be to determine a
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procedure to include these interactions between the deformations in the x, y, and z-

directions.

5.4. Experimental results
The main purpose for obtaining experimental results was to validate the analytical
and computational results and/or to facilitate their interpretation. The experimental
results for the deformation of the folded springs were obtained using the vibrometer
method, described in Section 4.3.1, and the results for the shape of the microgyroscopes:
proof masses and folded springs, obtained using the OELIM methodology, described in

Section 4.3.2, are presented in Sections 5.4.1 and 5.4.2, respectively.

5.4.1. Vibrometer results

The fist step of the vibrometer experiment was to determine at which frequencies
the microgyroscope would be excited: peak-to-peak signal amplitude of 25 mV was
produced by the signal generator for all the measurements. This was done by first
exciting the system with a randomly swept signal for the frequency range, including 10
kHz, which is the operational frequency of the microgyro design considered in this thesis,
as described in Section 3. Knowing this, the frequency range was subdivided into four
divisions and four linear sweeps of the frequencies in the ranges corresponding to these

divisions were applied to the system, Table 5.22. Using information from the vibrometer,
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an average of fifty data samples was taken by the signal analyzer and used to obtain the
mean peak frequency for each of the frequency ranges, Table 5.22. An average was
taken of the four peaks in each of the four subdivisions, to obtain the frequency that
would be used to excite the system, in Table 5.22. As described in Section 4.3.1, the

system was excited using each of the four frequencies, listed in Table 5.22.

Table 5.22. Frequency sampling.

Linear sweep
frequency
ranges

Mean peak Average frequency

kHz kHz

3.816
1-5 kHz 3.49 3.752
4.328
3.24
6.824
5-10 kHz 9.768 7.528
6.888
6.696
10.728
10-15 kHz 14.504 11.432
10.472
10.152
15.784
15-17 kHz 16.296 15.848
15.464

15.848

For the first of the frequencies, the signals coming from the mirror and the
substrate/proof mass were recorded in the signal analyzer, and these two frequency

responses were de-convolved to obtain the FRF of the substrate/proof mass, Fig. 5.27. If
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the IFFT of the FRF of the substrate/proof mass produced a flat curve with an amplitude
approximately one, then it would imply that the substrate/proof mass transmits the signal
from the PZT without modifying it. However, according to Fig. 5.27, the FRF is a
random function of magnitude greater than one, which means that the signal measured on

the substrate/proof mass has been altered by its transmission “path” from the PZT.

0 1 2 TIME. ms 3 4 5

Fig. 5.27. Deconvolved frequency response for the proof mass at the input
frequency of 3.752 kHz.

The next step was to obtain the time-domain responses of the mirror and the
substrate/proof mass, Fig. 5.28, based on which deformations of the substrate/proof mass
can be determined. The signal from the mirror was then subtracted from the signal from
the proof mass in order to obtain the net motion of the substrate/proof mass. This

difference is illustrated in Fig. 5.29.
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Fig. 5.28. Comparison of the proof mass and mirror time responses for the
input signal at 3.752 kHz.
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Fig. 5.29. Difference between the substrate/proof mass and mirror responses
for the input signal at 3.752 kHz.
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Using the data of Fig. 5.29, an average was taken of the absolute values for all of
the data points in the difference between the proof mass and mirror responses; this value
was then used as the amplitude of the oscillation of the substrate/and proof mass in

Section 5.4.1.1. This average value was calculated to be 0.0347 nm.
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Fig. 5.30. Comparison of the proof mass and mirror time responses for the
input signal at 7.528 kHz.

The time-domain responses off of the mirror and the substrate/proof mass for the
second excitation frequency of 7.528 kHz are shown in Fig. 5.30. Using the two curves
of Fig. 5.30, the signal from the mirror was subtracted from the signal from the proof
mass in order to obtain the net motion of the substrate/proof mass. This difference is
illustrated in Fig. 5.31. Using the data illustrated in Fig. 5.31, an average was taken of
the absolute values for all of the data points in the difference between the proof mass and

mirror responses; this value was then used as the amplitude of the oscillation of the
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substrate/and proof mass in Section 5.4.1.1. This average value, from Fig. 5.31, was

calculated to be 0.0563 nm.
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Fig. 5.31. Difference between the substrate/proof mass and mirror responses
for the input signal at 7.528 kHz.

The time-domain responses off of the mirror and the substrate/proof mass for the
third excitation frequency of 11.432 kHz are shown in Fig. 5.32. Using the two curves of
Fig. 5.32, the signal from the mirror was subtracted from the signal from the proof mass
in order to obtain the net motion of the substrate/proof mass. The difference is illustrated
in Fig. 5.33. Using the data illustrated in Fig. 5.33, an average was taken of the absolute
values for all of the data points in the difference between the proof mass and mirror
responses; this value was then used as the amplitude of the oscillation of the substrate/and

proof mass in Section 5.4.1.1. This average value was calculated to be 0.1007 nm.
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Fig. 5.32. Comparison of the proof mass and mirror time responses for the
input signal the 11.432 kHz.
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Fig. 5.33. Difference between the substrate/proof mass and mirror responses
for the input signal at 11.432 kHz.
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Fig. 5.34. Comparison of the proof mass and mirror time responses for the
input signal at 15.848 kHz.

The time-domain responses off of the mirror and the substrate/proof mass for the
fourth excitation frequency of 15.848 kHz are shown in Fig. 5.34. Subtracting the
“mirror” curve from the “proof mass” curve, net motion of the substrate/proof mass is
determined, Fig. 5.35.

Using the data illustrated in Fig. 5.35, an average was taken of the absolute values
for all of the data points in the difference between the proof mass and mirror responses;
this value was then used as the amplitude of the oscillation of the substrate/and proof
mass in Section 5.4.1.1. This average value, from Fig. 5.35, was calculated to be 0.1738

nm.
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Fig. 5.35. Difference between the substrate/proof mass and mirror responses
for the input signal at 15.848 kHz.

5.4.1.1. Comparison of the laser vibrometer and analytical results

In order to compare the information gathered from the laser vibrometer, described
in Section 5.4.1, to deformations calculated analytically, the deformations had to be
calculated using Eq. 4.77, the equation for the deformation in the y-direction. From the
results shown in the Section 5.4.1, the motion of the substrate/proof mass is not a simple
sinusoidal motion, Fig. 5.28. However for comparison, the motion was assumed to be a
sinusoidal, with the amplitude based on the average of the absolute value of the
difference in the time-domain responses of the mirror and the substrate/proof mass; these
values were then applied to Eqs 4.79 thru 4.86, and the force was calculated. This force
was then applied to Eq. 4.77, and the deformation in the y-direction was calculated. The

experimental data used in the calculations of the forces and deformations, and results of
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these calculations are presented in Table 5.23. Once the analytically calculated
deformations were obtained, they were compared to the experimental maximum

deformation using a relationship similar to Eq. 5.1, i.e.,

Aexper - Aanalyt
PercentDifference = ——— -100% (5.2)

exper
where Acxper 1 the experimentally obtained amplitude of the deformation, and Agpaiy: is the
deformation obtained from Eq. 4.77. This comparison is also shown in Table 5.23. The
results shown in Table 5.23 indicate that there is a difference between the analytically
calculated deformations and those found using the vibrometer of -10.5%. This difference

is in good agreement with the uncertainty shown in Table 5.7.

Table 5.23. Representative comparison of experimental
and analytical deformations.

Excitation frequency, kHz 7.528
Amplitude, nm 0.0563
Calculated force, nN 0.0396
Analytical displacement, nm 0.0623
Percent difference, % -10.52

5.4.2. OELIM results
Because of to the difference between the analytical results and experimental
displacements found using the laser vibrometer, it was necessary to determine the actual
shape of the microgyro is. This is important because the spring was modeled analytically

and computationally as a flat structure that is parallel to the substrate and at the same

151



level as the proof mass. If this is not the case, then there may be errors between the

analytical, computational, and experimental results.

5.4.2.1. Dual proof mass results

The entire microgyroscope was observed first, and interferograms of both of the
proof masses were recorded, Fig. 5.36. These interferograms were then analyzed to
determine the shape of the proof masses and the corresponding mechanisms supporting
them. Figure 5.37 shows a two-dimensional representation of the shape, i.e.,
deformations of the proof masses and the folded springs supporting them, indicating
maximum deformations on the order of 0.58 um, at room temperature. The contours of
the two proof masses are also illustrated as three-dimensional wireframe and color

representations, Figs 5.38 and 5.39, respectively.

Fig. 5.36. Representative OELIM interferogram of the microgyro at room temperature.
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Results displayed in Figs 5.36 to 5.39 give good representation of deformation
fields. Frequently, however, while characterizing microgyroscopes, detailed trace-like
information about deformations along a specific line, across the microgyroscope, is
needed. This information can be easily extracted from the OELIM data. For example,
deformations along the horizontal line H-H, shown in Fig. 5.39, are displayed in Fig.
5.40. This trace indicates that the displayed deformations of the proof masses themselves
are on the order of 0.1 um, or about 100 nm. These deformations, although very small on
the absolute scale, have significant influence on functional performance of

microgyroscopes (Hanson, et al., 2001).

Fig. 5.37. Two-dimensional color representation of the shape
of the microgyroscope.
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Fig. 5.38. Three-dimensional wireframe representation of the
shape of the microgyroscope.

Fig. 5.39. Three-dimensional color representation of the shape
of the microgyroscope.
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Fig. 5.40. Deformations along line H-H, shown in Fig. 5.39, across both proof masses of
the microgyroscope.

Another area of interest for this thesis is that of the deformations of the folded
spring. So, if there is a difference between the proof mass elevation and that of the
folded spring it may lead to differences between the analytical and experimental results.
In addition, a source of possible differences may be due to mismatch between elevations
of teeth in the combdrives used to actuate the proof masses during functional operation of
the microgyroscopes (Hanson, et al., 2001).

Preliminary results showing mismatch between teeth of a combdrive
corresponding to the left proof mass of a microgyroscope are presented in Section

5.4.2.2, while those for representative folded springs are presented in Section 5.4.2.3.

155



5.4.2.2. Results for the left proof mass of the microgyroscope

In order to examine the way the springs interact with the proof masses, the
microscope was focused at higher magnification than that used to obtain results presented
in Section 5.4.2.1. Because the field of view of the camera used decreases as
magnification increases; one proof mass was recorded at a time. In fact, to obtain
detailed information on the deformations of the proof masses and the folded springs,
three sets of interferograms were taken for each of the proof masses: the proof mass
itself, the upper part of the proof mass and the two top springs, and then the lower part of

the proof mass and the two bottom springs.

The left proof mass was observed first, and the interferograms of the proof mass
itself were recorded, Fig. 5.41. The interferograms were analyzed to obtain the shape of
the left proof mass. Figure 5.42 shows a two-dimensional color representation of the
deformations of the left proof mass. The deformations of the left proof mass are also
illustrated as three-dimensional wireframe and color representations, Figs 5.43 and 5.44,
respectively. The results shown in Figs 5.41 to 5.44 indicate that deformations of the left
proof mass are approximately 0.1 um, or 100 nm. However this does not show the area
of interest, the folded spring, very well, so the upper part of the left proof mass was

observed next, and the corresponding interferograms were recorded, Fig. 5.45.
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Fig. 5.41. Representative OELIM interferogram
of the left proof mass of the microgyro.

Fig. 5.42. Two-dimensional color representation of
deformations of the left proof mass.
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Fig. 5.43. Three-dimensional wireframe representation
of deformations of the left proof mass.
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Fig. 5.44. Three-dimensional color representation of
deformations of the left proof mass.
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These interferograms were analyzed to obtain the shape of the upper part of the
left proof mass and the two top folded springs. Figure 5.46 shows the two-dimensional
color representation of the deformations of the upper part of the left proof mass, it looks
like there are missing teeth in the combdrives; however, this is a result of “resolution”
while analyzing the images. The deformations are also illustrated as three-dimensional
wireframe and color representations of the upper part of the left proof mass, Figs 5.47
and 5.48, respectively. The results shown in Figs 5.45 to 5.48 indicate that the upper part
of the left proof mass are approximately 0.1 pm or 100 nm, as presented earlier in this
section. However, deformations of the folded springs themselves are about 0.15 um or
150 nm from the points on the substrate to the parts where they are attached to the proof

mass.

Fig. 5.45. Reprentative OELIM interferogram of the
upper part of the left proof mass of the microgyro.
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Fig. 5.47. Three-dimensional wireframe representation of
deformations of the upper part of the left proof mass.
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Fig. 5.48. Three-dimensional color representation of
deformations of the upper part of the left proof mass.

To obtain similar information about deformation of the folded springs at the
bottom of the left proof mass, OELIM interferograms of the lower part of the left proof
mass were recorded, Fig. 5.49. The interferograms were analyzed to obtain deformations
of the lower part of the left proof mass and the two bottom folded springs. Figure 5.50
shows the two-dimensional color representation of deformations of the bottom part of the
left proof mass. The deformations are also illustrated as three-dimensional wireframe
and color representations of the bottom part of the left proof mass, Figs 5.51 and 5.52,
respectively.

To obtain detailed information on local deformations of the left proof mass,
deformations were determined along the vertical line V-V, Fig. 5.52. It should be noted

that the line V-V starts at the bottom of a lower left spring, traverses the length of the
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spring and combdrive, and ends at the top of the combdrive. Deformations measured

along the line V-V are displayed in Fig. 5.53.

Fig. 5.49. Representative OELIM interferogram of the
lower part of the left proof mass of the microgyro.

Fig. 5.50. Two-dimensional color representation of
deformations of the lower part of the left proof mass.
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Fig. 5.51. Three-dimensional wireframe representation of
deformations of the lower part of the left proof mass.
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Fig. 5.52. Three-dimensional color representation of
deformations of the lower part of the left proof mass.
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Fig. 5.53. Deformations along line V-V, shown in Fig. 5.52, of the left proof
mass of the microgyro.

Based on the information shown in Fig. 5.53, deformations of the proof mass and
the folded spring amount to about 0.2 um. This trace clearly shows that the folded spring
is not flat and its ends are at different elevations. Also using trace information, mismatch
was determined for one of the combdrives. This, and other combdrives, consists of two
sets of fingers: one set is fixed to the substrate and the other is an integral part of the
proof mass. Deformations of the fixed set of the teeth and the movable, i.e., attached to
the proof mass, set of teeth of a combdrive are displayed in Fig. 5.54.

Figure 5.54 shows that there is a mismatch in elevation between the two sets of
teeth in the combdrive that ranges from about 0.05 um to 0.11 um. This means that the
combdrive is not perfectly aligned. This misalignment produces electrostatic forces that

do not meet the design specifications, and this causes the microgyro to not function as
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designed. Interferograms were also obtained for the right proof mass, however since they
show the same type of information that results in similar mismatch, they were placed in

Appendix D, Section D.1.
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Fig. 5.54. Deformations of the fixed and moveable sets of teeth of the combdrive of the
left proof mass.

5.4.2.3. Individual folded spring results
Although the interferograms of Section 5.4.2.3 provided information on the
folded springs, more detailed representation of their deformations is needed. Therefore,
the folded springs were observed at a higher magnification so that their deformations can
be determined in detail. Figure 5.55 identifies the folded springs and indicates the order

in which they were examined. Based on Fig. 5.55, springs 1 to 4 support the left proof
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mass, while springs 5 to 8 support the right proof mass. Spring 1, at the upper right
corner of the left proof mass, was observed first, and the interferograms were recorded,
Fig. 5.56. These interferograms were analyzed to obtain the shape of Spring 1 of the
microgyro. Figure 5.57 shows the two-dimensional color representation of deformations
of the Spring 1. The deformations of Spring 1 are also illustrated as three-dimensional

wireframe and color representations, Figs 5.58 and 5.59, respectively.
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Fig. 5.55. Folded springs of the microgyro.

Results shown in Figs 5.56 to 5.59 indicate deformations of approximately 0.14
pm. These deformations are large when compared with the overall thickness of the
folded spring equal to 2.5 um. Using the results of Figs 5.56 to 5.59, two traces were

obtained along the lengths of the folded springs, indicated by lines AB and CD that run
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along the lengths of the two arms of the folded spring, as shown in Fig. 5.59. The

deformations found along the traces are displayed in Fig. 5.60.

Fig. 5.56. Representative OELIM interferogram
of Spring 1 of the microgyro.

—

Fig. 5.57. TWo—dimensliohal color representn of
deformations of Spring 1 of the microgyro.
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Fig. 5.58. Three-dimensional wireframe representation
of deformations of Spring 1 of the microgyro.
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Fig. 5.59. Three-dimensional color representation of
deformations of Spring 1 of the microgyro.
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Fig. 5.60. Deformations along both arms of Spring 1.

In Fig. 5.60, key points indicate where the folded spring attaches to the post in
Section AB, and where it joins the proof mass in Section CD. These data show that
Section AB of the spring deforms approximately 0.126 pm or 126 nm, while section CD
of the spring deforms approximately 0.15 um or 150 nm with respect to the point where it
joins the proof mass. Because of the magnitude of deformations of Spring 1, it is
important to examine all of the springs that support the left proof mass.

The second spring, Spring 2, at the upper left corner of the left proof mass was
observed next, and the interferograms were recorded, Fig. 5.61. These interferograms
were then analyzed to obtain the shape of Spring 2 of the microgyro. Figure 5.62 shows
the two-dimensional color representation of deformations of the Spring 2. These

deformations are also illustrated as three-dimensional wireframe and color
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representations, Figs 5.63 and 5.64, respectively. The results displayed in Figs 5.61 to

5.64 show that deformations of Spring 2 are approximately 0.15 pm or 150 nm.

Fig. 5.61. Representative OELIM interferogram
of Spring 2 of the microgyro.
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Fig. 5.62. Two-dimensional color representn of
deformations of Spring 2 of the microgyro.
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Fig. 5.63. Three-dimensional wireframe representation
of deformations of Spring 2 of the microgyro.

Fig. 5.64. Three-dimensional color representation of
deformations of Spring 2 of the microgyro.
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The third spring, Spring 3, at the lower left corner of the left proof mass was
observed next, and the interferograms were recorded, Fig. 5.65. These interferograms
were analyzed to obtain the shape of Spring 3 of the microgyro. Figure 5.66 shows the
two-dimensional color representation of deformations of the Spring 3. These
deformations are also illustrated as three-dimensional wireframe and color
representations, Figs 5.67 and 5.68, respectively. The results displayed in Figs 5.65 to
5.68 show that deformations of Spring 3 are approximately 0.19 um or 190 nm. Figure
5.68 also shows that there is some twisting in the folded spring; this factor is not included

in either analytical or computational models of the folded spring, at this time.

Fig. 5.65. RepresentativeOLIEM interferogram of
Spring 3 of the microgyro.
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Fig. 5.66. Two-dimensional color representation of
deformations of Spring 3 of the microgyro.
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Fig. 5.67. Three-dimensional wireframe representation
of deformations of Spring 3 of the microgyro.
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Fig. 5.68. Three-dimensional color representation of
deformations of Spring 3 of the microgyro.

Finally, the fourth spring, Spring 4, at the lower right corner of the left proof
mass was observed, and the interferograms of the spring were recorded, Fig. 5.69. These
interferograms were analyzed to obtain shape of Spring 4 of the microgyro. Figure 5.70
shows the two-dimensional color representation of deformations of the Spring 4. These
deformations are also illustrated as three-dimensional wireframe and color
representations, Figs 5.71 and 5.72, respectively. Using the data displayed in Fig. 5.72,
two traces were obtained along the lengths of the folded springs, indicated by lines AB
and CD that run along the lengths of the two arms of the folded spring. The deformations

found along the traces are illustrated in Fig. 5.73.
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Fig. 5.69. Representative OLIEM interferogram
of Spring 4 of the microgyro.

Fig. 5.70. Two-dimensional color representn of
deformations of Spring 4 of the microgyro.
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Fig. 5.71. Three-dimensional wireframe representation
of deformations of Spring 4 of the microgyro.

MIN

Fig. 5.72. Three-dimensional color representation of
deformations of Spring 4 of the microgyro.
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Fig. 5.73. Deformations along both arms of Spring 4.
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In Fig. 5.73, key points indicate where the folded spring attaches to the post in

Section AB, and where it joins the proof mass in Section CD. The results of Fig. 5.73

show that Section 4B of the spring deforms approximately 0.133 um or 133 nm. Section

CD of the spring deforms approximately 0.175 um or 175 nm. Just as in Fig. 5.68 for

Spring 3, Fig. 5.72 shows that there is some twisting in Spring 4. This twisting is due to

the fact that the connection of the folded spring to the proof mass does not occur in the

same plane; therefore, moments are introduced to the folded spring at the interface and

these induce twisting.

Interferograms were also obtained for Springs 5 to 8 supporting the right proof

mass. However, since these interferograms show the same type of information as those
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shown in Figs 5.56 to 5.73, and indicate deformations of the folded spring of up to 200
nm, they are included in Section D.2.

Based on the information in this section, and Sections 5.4.2.1 and 5.4.2.2, it is
clear that the folded springs, and even the proof masses of the microgyroscope are not
entirely flat and all in the same plane. Due to these deformations, operational
functionality of the microgyro may be altered. In some cases, the folded springs
themselves are twisted as a result of fabrication processes. These deformations of various
components of the microgyroscope could be contributing to the difference between the
experimental and analytical results presented in this thesis.

To better understand the influence that residual deformations of various
components of the microgyroscopes have on their functional operation, more detailed
study of these deformations should be conducted in the future. This study could also
include effects that parameters characterizing various steps in the fabrication process

have on the performance of the microgyroscopes (Hanson, et al., 2001).
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6. CONCLUSIONS AND RECOMMENDATIONS

In this thesis, fundamentals of operation of conventional and MEMS gyroscopes
were discussed. A surface micromachined tuning fork MEMS gyroscope from Sandia
National Laboratories was examined. The Sandia microgyro has a dual proof mass
configuration in which each proof mass is supported by folded springs at every one of its
four corners. Deformations of folded springs of the microgyro were modeled using
analytical and computational methods. In addition, preliminary measurements of
parameters characterizing and influencing functional operation of the microgyroscope
were made using laser vibrometer method and optoelectronic laser microscope (OELIM)
method. These methods provide very high spatial resolution data with nanometer
measurement accuracy that are acquired in full-field-of-view, remotely and
noninvasively, in near real-time. As such, these methods are particularly suitable for
experimental investigations of microgyroscopes, or other MEMS.

The analytical deformation equations were derived for all three Cartesian
coordinate directions using Castigliano’s second theorem and the strain energies of
prismatic beams for two cases: 1) a cantilever representation of the folded spring and 2)
the entire folded spring. The 3D representation of the geometry considered was
developed in SolidWorks and then modeled in COSMOS/M following convergence
analyses. The analytical and computational results for the deformations of the cantilever
compared within 0.1%, indicating good correlation between the analytical and
computational solutions used, while percent differences for deformations for the entire

folded spring ranged from -2.9% for the deformation in the y-direction to -8.7% for the
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deformation in the x-direction. The differences between the results obtained using
analytical and computational models for the folded spring was most probably introduced
in modeling the interfaces between section BC and sections AB and CD.

Experimental deformations were obtained using the laser vibrometer. When the
deconvolved frequency response of the substrate/proof mass was converted to the time
domain and the maximum deformation amplitude was compared to analytically
calculated deformations, the differences between the analytical and experimental results
were on the order of 10% and are in agreement with the uncertainty limits. One cause of
these differences maybe related to the fact that the microgyroscopes, studied in this thesis
are not perfectly planar structures, as the theory assumes. For this reason, the shapes of
the microgyroscope and the folded springs were measured using the OELIM
methodology. Quantitative interpretation of the OELIM interferograms of the
microgyroscopes indicated that deformations of the microgyroscope can be as much as
200 nm, which is 8% of the thickness of 2.5 um of the proof masses and the
corresponding folded springs. The deformations indicate that the folded springs and
proof masses they support are not in the same plane. Therefore, during operation, the
microgyros may be subjected to loads that are not anticipated during design and
corresponding analyses, which assume the microgyros to be planar structures.
Consideration of the effects that the experimentally determined non-planarity of the
microgyros may on their functional operation should be made as a follow up of this

thesis.
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This thesis only began development of a methodology for modeling the
microgyroscope. The next step would be to incorporate into the analytical model the fact
that the folded springs and proof mass are not located in the same plane. This requires
addition of moments at the interface between the folded spring and the proof mass, at
point D. The interfaces between section BC and sections AB and CD should also be re-
evaluated. As these changes are implemented into the analytical and computational
models, the laser vibrometer experiments should be conducted in order to determine
which error: the non-planarity of the folded springs and proof mass, or the modeling of
the interfaces, contribute most to the differences between the analytical and the
experimental results.

Another step would be to analytically and/or computationally determine the
influence that residual deformations of various components of the microgyroscope have
on its operational performance. The experiments should also be performed to evaluate
designs of the microgyroscopes different than the design considered in this thesis to
ensure that the differences observed are not due to the characteristics of a specific design.
Once these additional experiments are completed, and causes of the differences between
the analytical, computational, and experimental results are understood, the methodology
used in this thesis might become useful to model behavior of the suspension of the proof
masses. At that stage of its development, this methodology may facilitate improvement

of existing designs and development of new designs of gyroscopes.
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APPENDIX A. ANALYTICAL DETERMINATION OF DEFORMATIONS OF
FOLDED SPRINGS OF THE SANDIA MICROGYRO

In order to derive equations for deformations of the folded springs at point D
where the force is applied, a methodology based on energy methods and Castigliano’s
second theorem was used. In order to begin, internal energy of the folded spring had to
be determined. The internal energies need to take into account strain energies due to the
axial loading, bending moments, transverse shear forces, and torsional moments.
Equations A.1 to A.4 define the four strain energy components. The strain energy due to

axial loading is defined as

L N2
Uy = [——d .
AL (I)ZAE X (Al)

where N is the axial load, 4 is the cross sectional area, E is the modulus of elasticity of

the material, and L is the length of the beam. The strain energy due to the moment is

2

LM
Upm = ({de ) (A.2)

where M is the internal moment and / is the moment of inertia of the beam. The strain
energy due to the transverse shear loading is given by

£ V2
2GA

L
UTS = (J; dx N (A'3)

where V is the shear force acting in the beam, f; is the shape factor which for a
rectangular cross section is equal to 6/5, and G is the shear modulus of the material. The

strain energy due to the torque is calculated using

LT2

Upy =]

Oﬁ dx s (A4)
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where 7 is the torque acting on the beam and J is the polar moment of inertia of the beam.
The internal energy is calculated as a sum of individual strain energies, i.e.,

U; =Uu +Ugy +Ug + Uy - (A.5)

To facilitate derivation of the governing equations, the folded spring was divided
into three beams: AB, BC, and CD. Therefore, Eq. A.5 becomes a sum of the strain
energies of all three sections, i.e.,

U; =Upg+Upc+Ucp (A.6)

where each of the section energies is calculated using

UaB =UaLab *UBmab +Utsab +UTmab > (A.7)

Upc =Uarbe *Umbe +Utsbe + Utmbe > (A.8)
and

Ucp =Uared +UBMed ¥ Utsed *UTMed > (A.9)
respectively.

In order to calculate the internal energies, equations defining the forces, moments,
and torques acting on each of the sections of the beam, and the forces, moments, and

torques acting through each of the three sections were derived.

A.1. Reaction forces and moments of the folded spring
The first step in the derivation of an equation for determination of deformations of
the folded spring was to calculate the reaction forces and moments occurring at the fixed

end, i.e., at point 4, Fig. A.1.
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h

Fig. A.1. Free body diagram of the folded spring.

Using the free body diagram in Fig. A.1, the equations for static equilibrium can
be written for the forces and moments acting at point 4. Equations A.10 to A.15 define

the Cartesian components of the reaction force acting at point 4, i.e.,

SF,=0=F, -A, , (A.10)

A, =F,_ , (A.11)

YF, =0=F,-A, |, (A.12)

Ay =F, (A.13)
and

>F,=0=F,-A, , (A.14)

A,=F, , (A.15)
while the components of the reaction moment can be shown to be

XMy =0=Fy(Lep ~Lag)+F,0-My, (A.16)

M, =Fy(Lag-Lcp) > (A.17)
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YMyy =0=F(Lep —~Lap)+F,Lpc My, (A.13)

My =F (Lep —Lag)-F,Lpc s (A.19)
and

SM,, =0=F,Lyc +F0-M,, . (A.20)

My, =F,Lgc - (A21)

Equations A.10 to A.21 will be used to calculated forces acting on each of the sections of

the folded spring, i.e., the sections AB, BC, and CD.

A.2. Deformations at point B
In order to derive the equation for deformation at point B, the forces, moments,
and torques acting along and through section 4B had to be determined, as discussed in

Sections A.2.1 to A.2.3.
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A.2.1. Reaction forces and moments of section AB

Reaction forces at point B were derived using the free body diagram of Fig. A.2.

BJ’
M, e
B, B A
Pl
Bz.-%— |
> 2y
Bx MB ¥ | — I 4 i E—.u
AR

A

Fig. A.2. Free body diagram of section 4B.

Using the free body diagram of Fig. A.2, equations for static equilibrium, in

Cartesian coordinates, can be written for the forces and moments acting at point B to be

2Fy=0=By-A, ,

ZMXB :O:MBX+AyLAB+AZO_MAX .

Mpy =My -AyLag =Fy(Lag —Lcp )-FyLag =—F,Lcp

ZMyB :O:MBy+AXLAB+AZO_MAy .
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(A.25)
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(A.27)
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Mpy =May +AcLag =F (Lep —Lap)-F,Lpc +FxLap 5 (A.31)

Mg, =F,Lcp ~F,Lpc (A.32)
and

Mg =0=Mp, +A,0+A,0-My,, , (A.33)

Mg, =My, =FLpc . (A.34)

Now that the reaction forces for section AB were derived, the internal forces, moments,

and torques that are acting through section 4B can be derived, as shown in Section A.2.2.

A.2.2. Internal forces and moments of section AB
The forces, moments, and torques acting through section AB were derived using
the free body diagram for the cut at an arbitrary position z within the section 4B, Fig.

A.3. Based on the free body diagram of Fig. A.3, the shear forces acting through section

the AB are
YF, =0=AB, -A, , (A.35)
AB, =A, =F, , (A.36)
YF, =0=AB,-A, |, (A.37)
AB,=A,=F, , (A.38)
YF,=0=AB,-A, |, (A.39)
AB,=A,=F, , (A.40)

and the moments acting thru the section 4B are
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ZMXAB :OZMABX+AyZ+AZO_MAX ) (A.41)

Mapy =Mpy -Ayz=F (Lap —Lcp)-Fyz (A.42)
ZMyAB :OZI\/IABY—AAXZ-FAAZO—I\/IAy B (A43)
Mapy =May -Axz=F(Lcp ~Lag)-FyLpc +Fz (A.44)
ZMZAB:O:TABy_ByZ+BXO_MAZ ’ (A.45)
TABZ = MAZ = FyLBC . (A.46)
AB},
A
Tip ABy A
= B MA
ABZ_%.._.| f Q z
- AZ
< 4 MAx
Mo rd
Ab AR, A, MA},
A}’

Fig. A.3. Free body diagram of the cut of section AB.

A.2.3. Derivation of the deformations at point B
Using the forces, moments, and torques, defined by, Eqs A.35 to A.46, the
equations for the internal energy for section AB in terms of the individual components of
the strain energy can be written as

U g = AxialLoadingSE + BendingMomentsSE + TransverseShearSE + (A.47)

TorsionalMomentSE
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Substituting Eqs A.1 to A.4 and Eqs A.35 to A.46 into Eq. A.47 we obtain

LAB AB. 2 LAB M ,n. 2 LAB M Ap.°
Upap= | Z_dz+ | —ABX gz ] ABY 7+
o 2ALE o 2Ely o 2Ely
6 2 6 2 2
L?B —A ABx dz+ L?B —A ABy dz+ L?B Tapz” dz (A.48)
o 2GA, o 2GA, o 2GJ,

In order to determine, e.g., the x-component of displacement at point B on the
beam, partial derivative of the internal energy of section 4B has to be taken with respect

to the force, F,, acting in the direction of the desired displacement, i.e.,

0
OF

X

Ua =ABx (A.49)

Therefore, Eq. A.49 yields
L L
o= P o P

o ApE|oF, o El, (0F,

LAB M LAB 6AB
AR [ O Mgy bz ] 2B O ap lize (A.50)
OF, o S5GA, | oF,

LAB 6AB LAB T
[ v [ AB, |dz+ | —ABz 0 Tap, |4z
o 5GA, | oF,

0o Elyy

o GI, | oF,
After the derivatives are taken, Eq. A.31 becomes

LAB AB, LAB M ,p
= 0 —AaBX (o
m= | g Ok 1T Ok

LABF, (Lcp —Lag +2)-F,L
| w(Lep ~Lag +2)-F,Lpc (Lep —Lap +2)z+ (A.51)
0 EIby

L L 6F LaB F,L
[ 0 2 e () R e )1

|
0o SGAy 0 b 0 b

which simplifies to
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2
A LABF (Lep —Lag +2)° —F,Lpc(Lep -Lag +Z)d
Bx — El zt
0 by , (A.52)
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]
o 5GA,

Once the integral is taken, Eq. A.52 simplifies to the equation for the x-component of

deformation at point B, i.e.,

Fy 6F, L
Apy = (LAB ~3Lap’Lep +3LABLCD2)+X—AB+
3EI,, 5GAy, (A3
F,Lpc 2 ‘
LA™ —2LagLcp
2El,,

To find the displacement in the y-direction at point B, partial derivative of the

internal energy of section 4B was taken with respect to F), yielding

——Upg =A , A.54
GF, AB =Apy ( )
which becomes
LAB AB, B M
By= | —% iAB dz + f Mapyx | 9 —— M ppy |dz+
o ApE|0F, o Ely | OF,
LAB M LAB 6AB,
ABy iMABy e 08 O AB, ldz+ . (A.55)

o Elp | 0F, o SGAy | OF,

LAB 6AB LABT

— aAByderjﬁ 0 Tap, |dz
o SGAy | oF, o Gly | 0F,
After the derivatives are taken, Eq A.55 takes the form
LAB AB LABF (LAB LCD —Z)
B £ (0 )dZ+ (Lag —Lcp —2)dz+
v o ApE Elpy

LaB M LA
[ —25 (0dz+ | —2—(0)z+ , (A.56)
o Elp o SGAy

LAB 6F LAB FyL

y BC
1)dz+ z

I"5 Ab()d (J) N (Lc )d
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which simplifies to

LB Fy(Lag—Lcp -2)° . LaB G6F, LAB F,Lpc?
Apy = y(Lap —Lep —2) dz+ | dz+ | YBC 4 (A.57)
0 Elpy 0 SGAp o Glp

After Eq. A.57 is integrated, the y-component of deformation at point B can be expressed

as
F 6F,L
2 2 yLAB
Agy = (LAB —3LAg"Lcp +3LaBLcD )+—
3EI by 5GAy
. (A.58)
FyLBC LaB
Gy

The displacement in the z-direction at point B was found by taking the partial
derivative of the internal energy of section AB with respect to F~, i.e.,

0
OF,

UAB :ABZ 5 (A59)

z

which can be represented as

LaAB BM
Ag, = | AB, [iAB jdz+ [ ABX(; MABXJdZ+

o ALE(0F o Elyy (0F

LaB M LAB 6AB,
17 ARy (iMABy]dz+ | [ 0 ABx]dz+ . (A.60)
o Ely, | 0F, o 5GAy | 6F,

LaB 6AB LAB T
[ (LABdeZ+ [ ﬂ(LTABZ]dz
o 5GA, | 6F o Gl | 0F,

After the derivatives are taken, Eq A.60 becomes
L AB
A, = ()dz+ I *(0)dz+

. ) oy : (A.61)
/]\B Fx(LCD _LAB+Z)_FZLBC (-LpeMz+ | LaB FyLpc Y B (0)dz
0 Elyy o Gly,

which simplifies to
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LAB F LAB -F, Lpc(Lep —Lapg +2)+F,Lpc?
Ap, = | z + ] xLic(Lep ~Lag +2)+F,Lgc iz (A.62)
0o ApE 0 Elyy
and after integration, the z-component of deformation at point B becomes
F,Lag F LBC(LAB2 _2LCDLAB) F,Lpc’Lag
Ag, == +-=X +-2 . (A.63)

AE 2El,, Elby

A.3. Deformations at point C
Equation for deformations at point C were derived next. In order to do this, the
forces, moments and torques acting along and through section BC had to be determined,

as presented in Section A.3.1.

A.3.1. Reaction forces and moments of section BC
Reaction forces at point C were determined using the free body diagram of Fig.
A.4. Using the free body diagram of Fig. A.4, equations for static equilibrium, in

Cartesian coordinates, can be written for the forces and moments acting at point C as

SF, =0=C, -B, , (A.64)
Cy =B, =F, , (A.65)
SF, =0=C, B, , (A.66)
C,=By=F, |, (A.67)
SF,-0=C,-B, , (A.68)
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and

C

z

B

z

F

z

3

XM =0=-Mp; +C,0+C,0-M¢, ,

Mcx =My =-FyLcp

ZMyB :OZ_MBy+CXO+CZLBC_MCy 5

MCy = MBy +C,Lpc =FxLcp —F,Lpc +F,Lgc =FxLcp

ZMZB:O:_MCZ+CXO+C}/LBC_MBZ ’

MCZ :MBZ +CyLBC :FyLBC _FyLBC =0

Fig. A.4. Free body diagram of section BC.
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A.3.2. Internal forces and moment of section BC

The forces, moments, and torques acting through section BC were derived using

the free body diagram for a part of section BC of arbitrary length in the x-direction, Fig.

AS.

¥
B,
Mscy Tch
%— BC,
MBCZ
B
X

Fig. A.5. Free body diagram for a part of section BC.

Based on the free body diagram of Fig. A.5, the shear forces acting through the

section BC are determined to be

YF, =0=BC, -B, ,

SF,=0=BC,-B, |,
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YF,=0=BC,-B, (A.80)

BC,=B,=F, |, (A.81)
and the moments acting thru section BC are

S Mpc =0=Tpex +B,0+B,0-Mp, (A.82)

Tgcx =My =-FyLep (A.83)

YMypc =0=Mpcy +B;0+B,x-Mp, (A.84)

Mpcy =Mpy +B,x=F,Lcp -F,Lpc +F,x=F,Lcp +F,(x-Lpc) (A.85)
and

S M,pc =0=Mpc, +Byx+B,0-Mp, (A.86)

Mpc, =Mp, +Byx=F Lpc -Fyx=F (Lpc-x) . (A.87)

A.3.3. Derivation of the deformations at point C
Using the forces, moments, and torques defined by, Eqs A.76 to A.87, equations
defining deformations at point C will be derived. To do this partial derivative of the
internal energy of section AC, not just that of the coupler section BC, has to be taken with
respect to the force, F,, acting in the direction, x, of the desired displacement. This
means that the partial derivative of the internal energy of section BC has to be added to
the deformation already determined at point B, i.e.,

0
OF

0 0
Uac =7 (Uap +Ugc)=Apy *55 Usc =Acx - (A.88)

X X X

Therefore, based on Eq. A.88,
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LBC BC Lec M
Acy =Apy + | —X(iBCXJd)H | BCy (LMBCdeyw
o AE|oF, o Elg | oF
LBC M LBc 6BC
[ L@(iMBCZJdH [ y(iBCyjdx+ . (A.89)
o El |&F, o SGA, | oF,
LBc 6BC, [ & LBC Ty [ 0
I Soa | ar, B o+ G| g Tees [dx
0 c X 0 c X

After the derivatives are taken, Eq A.89 becomes

Lec F LBCF Lep +F, (x-L
Aoy =Apy+ | —=(dx+ | 2= :x BC)(LCD)dX+
0 ACE 0 EIcy (A 90)
LBC M Lpc 6F LBC 6F LBC T ’ '
[ =2 (0)dx+ | (OMdx+ | —Z—(0)dx+ | —2B(0)dx
o Elgy o 5GA, o 5GA, o GI,
which simplifies to
LBc LBC F, L2 +F,L L
Moy =Ag s T B g MBCRLep” +FLep(x-Lac) g (A91)
Cx Bx A E El
0 c 0 cy

Integrating Eq. A.91, the x-component of deformation at point C can be written as

2 2
F,L F,L L F,LcopL
xBC , “x=CD ©“BC _Tz-CDZBC . (A,92)

AE El,, 2EI,,

Acx =Apx +

X

Equation A.92 simplifies to

F 3 2 2) 6F L aB
Acx :—3EIX (LAB —3LaAg"Lcp +3L AL cD +—52}A
o o , (A.93)
F,Lec 2 FxLpc | FxLep'Lee  F.Lceplae
——=\L A" —2L sAgLcp )+ + -
2EI,, ALE El, 2El,,

Displacement in the y-direction at point C is derived by taking partial derivative

of the internal energy of section AC with respect to F, i.e.,

0 0 0
—~ Upe=—(Uprg +Upc)=Apy +—Upge =A , A.94
6Fy AC aFy ( AB BC) By 6Fy BC Cy ( )
which yields
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LBC Lec M
Acy =Apy + | © BC, iBc dx+ ] 2 O My lxt
o oF, o El, |oF,
LBCM Lec 6BC
M % Mpe, lax+ | —2-ZBe, ax+ : (A.95)
oF, o 35GA, | oF,

Lsc 6BC, Lec T
I SO, [ax | B9 oy e
o SGA, | 0F, OF,

0
After the derivatives are taken, Eq A.95 becomes

LBC BC
Acy :ABy + (J).

. LBC Mpc
o 1 o

C C

Lpc F, (Lpc —x) Lc 6F LBC 6F
y y Z
— (L X Jdx + 1)dx + Ojdx+ A.96
P (Lpc —xM I 3G (1) I Ac()d (A.96)
Lc -F,L
y—~CD
———F(-L X
ek
which simplifies to
LBC Fy(LBC_X)2 LBC 6Fy LBC FyLCD2
Acy =Apy+ | ————dx+ | dx+ [ ——dx . (A.97)
0 EICZ 0 SGAC 0 GJC
After integration, Eq. A.97 becomes
FyLpc® 6FLpc FyLpc’Lpc
Acy =Agy + + + , (A.98)
El, 5GA, GJ,

and simplifies to the following equation for the y-component of deformation at point C:

Fy ( 2) 6FyLAB
Acy = 3, Lap’ —3Lag’Lep +3LaLep +W oo
FyLBC LA . FyLBC3 . 6FyLgc . FyLBCZLBC ( )
GJy, El,,  S5GA, GJ.

Displacement in the z-direction at point C is derived by taking partial derivative

of the internal energy of section AC with respect to F~, which can be expressed as

0 0 0
—Uxc = Upg+U =Ag, +——Upgc =A A.100
oF, “AC T GF, (Uap +Ugc)=Ag, oF, BC TACz ( )

z
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and represented by

LBC BC Lec M
Aoy =hp+ | ox) % pe ace | —2 2 Mpey ax+
o AE|GF, o Elg |0F,
LBC M LBc 6BC
BCZ{ 0 MBCZde+ i y( 0 chde+ . (A.101)
o Elg (0F, o SGA, | OF,
LBC 6BC LeCc T
[ —= 9 Be, lax+ [ iTBCX dx
o S5GA, | oF, o GI. | oF,

After the derivatives are taken, Eq A.101 becomes

_ Lpc ch Lpc FxLCD +FZ (X_LBC)
ACz _ABZ + (.E ACE (O)dx+ ({ El (

Lpc Mpc LBc
[ Tz(o)d’” )
0 cy 0

X _LBC )dX +
< , (A.102)

6F LBc 6F LecT
y z BCx
GA (0)dx + (f) SGA, (0)dx + (j) —GJC (0)dx

C

which simplifies to

LBC F, L op(x - L F,(x-Lgc)? . LBC 6F
Ay =g+ |- Fakenly BECI)+ (x~Loc) e (A.103)
0 cy 0 c
After integration, Eq. A.103 becomes
2 3
F,LpL F,L F,L
Ac, = Ay, —xlenbee” | Frlac ,SFblec (A.104)

2El, 3El,  5GA,

and simplifies to the equation for the z-component of deformation at point C, which is

2 2
_F.Lap  Filpc (LAB _ZLCDLAB)+ F,Lgc"Lap

A
€2 ALE 2El,, El,,

z

X 3 (A.105)
FxLcpLlpe +FZLBC +6FZLBC

2EI, 3EI 5GA,

cy
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A.4. Deformations at point D
The final step is to derive the equation for deformations at point D, where the
force is applied. In order to do this the forces, moments and torques acting along and

through section CD have to be derived, as presented in Section A.4.1.

A4.1. Internal reaction forces and moments for section CD
The forces, moments, and torques acting through section CD were derived using
the free body diagram for a part of the section of an arbitrary length along the z-axis, Fig.

A.6.

.:‘_'jy CD},
M, MCD},
M, »
Cz {; - CD,
—-_—— T
c? /M, C
x cD;

Fig. A.6. Free body diagram for a part of section CD.

Based on the free body diagram in Fig. A.6, the shear forces acting through
section CD are
YF, =0=CD, -C, , (A.106)

CDh, =C, =F, , (A.107)
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SF, =0=CD,-C, , (A.108)

CD,=C, =F, , (A.109)
SF,=0=CD,-C, , (A.110)
cD,=C,=F, , (A.111)

and the moments acting thru section CD are

SMycp =0=-M¢x +Tepg —Cyz+C,0 (A.112)

Mcpy =My +Cyz=Fy(z-Lcp) (A.113)

YMycp =0=-Mcy +Mcpy +C4z—C,0 (A.114)

Mcpy =My —~Cyz=F,(Lcp -2) (A.115)
and

>M,cp =0=-Mc, +Tcp, +Cy0+C,0 (A.116)

Tepz =Mc, =0 . (A.117)

A.4.2. Derivation of the deformations at point D
Using the forces, moments, and torques defined by Eqs A.106 to A.117,
deformations at point D, where the forces are being applied, will be derived. To do this
partial derivative of the internal energy of the entire beam 4D, not just that of the section
CD, will be taken with respect to the force, F, acting in the direction, x, of the desired
displacement. This means that partial derivative must be taken of the internal energy of

section CD and added to the deformation determined in Section A.3.3 for point C, i.e.,
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0
oF

X

0 0
aT(UAB +Upc +Ucp)=Acx +6TUCD =Apx - (A.118)
X X

Uap =
According to Eq. A.118,
Lcp f Lco M
Apx =Acx + | AZE( 0 Zsz+ | &(LMCDXJ&+
0 Ap

Lco M Lcp 6F
YO Mgy Jaze T2 [ D e iz . (A.119)
o Ely, (oF,

Lcp 6F Lep T
I Y 0 y dz + I CDz 0 TCDZ dz
0 SGAb OF,

After the derivatives are taken, Eq A.119 becomes

ADx :ACx ()dZ+ I CDX (O)dZ+
y
L _
?DM( —z)dz+f Soa e (A.120)
0 EIby
Lcp 6CD L
72 )z + ?”ﬁ(onz
o 5GA, o Gy
which simplifies to
L _ 2 L
Ay =ag ¢ P ExLep 2] teP 6 (A.121)
0 EIby 0 5GAb

After integration, Eq. A.121 becomes

3
Ay +xkep” | OFLep (A.122)

A ,
DX T TOTU3EL,  5GA,

X

and simplifies to the equation for the x-component of deformation at point D

Fy ( 2) 6F;L Ap
Apy = Lag> —3L Ag°Lep +3L AgL +——
T AB aB"Lep +3Laghen™J+ =l
2 2
F,L F, L F.L L F,LpL
.LBc (LABz_ZLABLCD)+ xbec  Fxbep'bpe  Fleplbee™ | (4 123)
2EI,, ALE El, 2EI,

3
FxLcp N 6F,Lcp
3El,,  5GA,
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To find the deformation in the y-direction at point D, partial derivative of the

internal energy of the entire beam, section 4D, was taken with respect to £}, to obtain

0

—Uap =
oF, oF, )

which yields
A +Lcj b, o CD, |dz+ LCjD Mepx
by = o ALE|0F, 7 o Elp,

Lep Mepy [ 0 Leo 6CD, [ o
B |, Moy 2+ ISt
0 bx y 0 b

oFy

oFy

oF o Gl

Lcp 6CD 0 DTCD 0
SN S,

o 5GA,

After the derivatives are taken, Eq A.125 becomes

LCD Fy(Z_LCD)

D CD
Apy =Acy E(O)dz+ I B (z
CD MCDy
0
0 El,, (O)dz + (I) SGAb()dZ+
LCD 6F Lcp
e T 0k
0 b 0 b

which simplifies to

Lep Fy(z—Lep ) . +L(fD 6F,

0 El o SGA,

ADy :Acy +

After integration, Eq. 127 becomes

=Acy + + ,

and simplifies to the equation for the y-component of deformation at point D
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0 0
——(Uap +Upc +Ucp) = Acy +6TUCD =Apy

—CD,

~Lcp Mz+

(A.124)

(A.125)

(A.126)

(A.127)

(A.128)



2
6F, L F,Lpe’L
y 3 2 2 y~AB y+~BC AB
ADy = 3Elb (LAB _3LAB LCD +3LABLCD )+ SGAb + GJb +
X
F,Lp-> 6F,L F,Lp’L F.Lcp  6F L - (A1)
y+~BC y~BC y+~BC ~BC y~CD y~CD
+ + +
El, 5GA, GJ, 3El,,  5GA,

Finally, to find the deformation in the z-direction at point D, partial derivative of

the internal energy of section AD was taken with respect to F~, i.e.,

0 0 0
—Uap = Uaspg +Upe+U =Ac, +—Uep = A . A.130
oF, CAD oF, (Uap BC cp)=Ac, oF, CD Dz ( )

z

Equation A.130 can be expanded to

Lcp D Lcp M
Ap, =Ac, + | Z[iCDZ]dZ+ [ =D 0 Mcpy ldz+
o ALE|0F, o Elyy | 6F,

Lco M Lcp 6CD
D Mcpy [iMchJdZ+ i w—x[iCDdez+ . (A.131)
o Ely, (0F, o 5GA, | 0F,

Lcp 6CD LepT
I _y(LCDy}m I &[L%m}h
o SGAy | OF, o GJy (0F,

After the derivatives are taken, Eq A.131 becomes

Lcp Lcp Lco M
N ) g (e e
o ApE o Elpy o Elpy (A.132)
Lcp 6F Lcp 6F Lcp Tep ’ '
J e (0)z+ (0)z+ | —=2%(0)dz
o SGA, o SGA, o Gl
which simplifies to
Lcp F
Ap, =Ac, + | —2=dz . (A.133)
Z z 0 AbE
After integration, Eq. A.133 becomes
F,Lcp
AD ZAC + z . (A.134)
Z VA AbE

and simplifies to the equation for the z-component deformation at point D
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2 2
_FLap  Flgc (LAB _2LCDLAB)+ F,Lpc"Lap

Pz = ALE 2El,, El,,

: : (A.135)
FyLcpLlpe . F,Lpc N 6F,Lpc . F,Lcp

2EL, 3El,  5GA.  ALE

A.5. Determination of deformations at point D
Using Eqs A.123, A.129, and A.135 deformations at point D will be determined
utilizing forces calculated in Appendix B and polysilicon as the material.
Equations A.136 to A.139 define the material properties of the polysilicon used in

the modeling of the folded spring,

E =160 GPa (A.136)
v=023 , A.137
(
p=233glem’ , (A.138)
E
G= G=65GPa . (A.139)

Equations A.140 to A.145 define dimensions of the folded spring used in this

analysis,
Lap=98 um (A.140)
Lgc=17um (A.141)
Lep= 111 pm (A.142)
b=3um |, (A.143)
bpc=10pum (A.144)
h=25um . (A.145)
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Equations A.146 to A.148 define the forces derived in Appendix B that were

applied to the folded spring
F,=21.0572 uN
F,=0.000744747 uN
F,=0uN .

The cross sectional areas of sections AB and CD are defined as
Ay =bh

the cross sectional area of section BC is defined as
A =bgch

the polar moments of inertia of sections AB and CD are defined as
J, =0219-bh> |

the polar moment of inertia of section BC is defined as
J.=0282-bgch’ |

the moments of inertia of sections AB and CD are defined as

bh?
I = D
bx 12
Lo’
by 12 9

and the moments of inertia of section BC are defined as

3
I _bpch
cz — 12 s
hbc’
RNt

211

(A.146)
(A.147)

(A.148)

(A.149)

(A.150)

(A.151)

(A.152)

(A.153)

(A.154)

(A.155)

(A.156)



Using, Eqs A.136 to A.156 and A.123, A.129, and A.135, the deformations at point D are

calculated to be

F 6F, L
Apy, = —= (L 3 3L ap’Lep +3L apLl 2)+"—AB+
Dx 3EIby AB AB CD AB~CD 5G Ab
2 2
F,L F.L F.Lop’L F,LepL
-LBC (LA32—2LABLCD)+ sLec | FxLep™Lpe  FLeplpe™ |
2El,, AE El,, 2El,
3
FxLCD +6FXLCD
3El,,  5GA,
or
Apy, -10%=21.4583um (A.157)
2
6F,Log FyLpc’Lap
Ay = (L 3 3L ap’Lep +3L anL 2)+ Y + +
Dy 3EI,, AB AB LcD ABLCD SGAp Gl
3 2 3
FyLpc +6FyLBC+FyLBC LBC+FyLCD +6FyLCD
El, 5GA, GJ, 3El,,  5GA,
or
Apy10° =1.17257nm (A.158)
and
2 2
5 :FZLAB+FXLBC(LAB _ZLCDLAB)+ F,Lgc"Lap
zZ
AE 2El,, Elp,
2 3
FyLcplae +FZLBC +6FZLBC+FZLCD
2El, 3Bl  5GA.  ALE
or
(A.159)

Ap, -10% =-2.4268 ym
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The time dependent in-plane force, defined by Eq. B.22, will be applied to Eqgs.

A.123 and A.135, defining deformations in the x-direction and z-direction, respectively.

The range of time used for these calculations is

t=0,0.001...05ms ,

(A.160)

which represents five cycles of vibration of the proof mass resonating at 10 kHz. The

other values necessary to solve for the time dependent force are the frequency of the

motion of the proof mass
f=10-10°Hz
the length of the combdrive fingers
Ly =40pum
the amplitude of the motion of the proof mass

L
B:Tf—3 B=17um |,

the angular speed of the motion of the proof mass

o=2n-f ®=6.2832x10% ra%ec ,

the mass of the proof mass
m=1.25502 ng ,

the sinusoidal time-dependent acceleration of the proof mass
a(t):—(B.10‘6)~co2 -sin[m.(t.10‘3)] ,
the sinusoidal time-dependent force acting on the folded spring

Fy (t) = mz(t)

b
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(A.163)

(A.164)

(A.165)

(A.166)
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the sinusoidal time-dependent displacement, in the x-direction, of the folded spring at

point D
F (t)( 3 2 2) 6Fy (1)L AR
Apy (t)==2%\L " =3L g "L¢p +3L gL X ZAD
px (1) 3EIL, AB aB Lcp aBLcp SGA,
F,Lpc 2 F, (tlLpc  Fx(tLep’Lee  ELepLpe’
S — LAB _2LABLCD + + — +
2El, A E El 2El,,
F, (tLcp’ +6FXLCD
3El, 5GA,,
or
Apum ()= Apy (1)10° (A.168)

and the sinusoidal time-dependent displacement, in the z-direction, of the folded spring at

point D
[Las? —2LcpLas) FoLpc’L
A (t):FzLAB+Fx(t)LBC Lap” ~2Lcplap), Folpc'Lap _
P2 ALE 2El,, El,,
2 3
Fy ()LcpLae  FLlpc”  6FLpc FlLcp
2EI, 3El,  5GA,  A,E
or
ADzum(t):ADz(t)'IO6 . (A169)

Equation A.168 is represented graphically in Fig. A.7 for five periods of oscillation, and

Eq. A.169 is represented in Fig. A.8.
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DISPLACEMENT IN THE x-DIRECTION, pm

DISPLACEMENT IN THE z-DIRECTION, pum

ADxum(t)

Apy um(t)

30

A A A AA
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I // \ l/ \ /l //

(VARAVARLVEY.

=20 \¥ \/ \¥4 V

=0y 0.1 0.2 0.3 0.4 0.5
TIMEt, ms

Fig. A.7. Sinusoidal motion of the spring in the x-direction.
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Fig. A.8. Sinusoidal motion of the spring in the z-direction.
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APPENDIX B. DETERMINATION OF FORCES ACTING ON THE FOLDED

SPRING OF THE MICROGYRO

In order to obtain deformations at point D, where the force is applied, Eqs A.85,

A.91, and A.97 should be used. Forces used in these equations had to be determined.

Because of the nature of the functional operation of the microgyroscopes studied in this

thesis, forces acting in the x, i.e., in-plane, and y, i.e., out-of-plane, directions were

calculated, while the force in the z-direction was assumed to be zero.

B.1. Derivation of the in-plane force acting on the folded springs

The first step in determining the force acting at point D in the x-direction was to

find the area of the proof mass, including the fingers of the combdrives attached to the

proof mass, where the length of the combdrive fingers is

Ly =40pm

Using this length and other measured dimensions the area for the proof mass was

calculated to be

Ashuttle = (500)2 Ashuttle = 2.5x10° Mmz
Apgles = 622 “(j)z Apole = 4.831x10% pm?
A combs =27-2-L¢(4) A combs = 8.64x10° pm?
A exira =4-(20)-(10)+4-(135)-(8) A exira =5.12x10% um?
A proof = Ashuttle ~ Aholes T A combs T Aextra A proof = 2.155x10° pm?
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The area calculated in Eq. B.6 was then multiplied by the thickness, Eq. B.7, in order to
obtain the volume

h=25um , (B.7)
Vproof = Aproof h Vproof =5.386x% 105 um3 . (B8)

Using the volume of the proof mass and the density of the polysilicon, Eq. B.9, the mass

of the proof mass was calculated as,

p=2.33g/cm3 . (B.9)
6 9
m= Vo (10 ) p m-10” =1.25502 ug . (B.10)

The in-plane force, F), was calculated using the mass of the proof mass, Eq. B.10.
This was done starting with the sinusoidal motion of the proof mass. In order to
determine sinusoidal motion, time period was defined as

t=0,0.001...0.5ms . (B.11)
The other parameters necessary to solve for the time dependent force are the resonance
frequency of the proof mass

f=10-10°Hz (B.12)
the amplitude of the motion of the proof mass, B, defined as half the length of the comb
drives minus 3 pum to insure that there will be no bottoming out

B:LTf_ B=17um (B.13)

the angular speed of the motion of the proof mass

w=2nf 0=62832x10*1ad/  (B.14)

and the period of the oscillations of the proof mass determined to be
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T=1x10"sec . (B.15)

1
‘c = —_—
f
Using Eqs B.11, B.13, and B.14, the displacement of the proof mass as a function of time

can be determined to be
x(t) = Bsin[co(t~10'3 )] . (B.16)

Equation B.16 is represented in Fig. B.1 for five periods of oscillation. Velocity of the

proof mass was calculated by taking a time derivative of the Eq. B.16, i.e.,
v(t):(B-10_6)-o)-cos[o)(t~10_3)] . (B.17)
The velocity determined from Eq. B.17 is represented in Fig. B.2 for five periods of
oscillation. Acceleration of the proof mass can be calculated by taking a time derivative
of Eq. B.17, or the second time derivative of Eq. B.16, with the result given by
a(t)z—(B-lO_6)-c02 ~sin[(o(t~10_3)] : (B.18)

which is displayed in Fig. B.3. Accelerations can also be represented in terms of g’s by

_a
2, 0= o (B.19)

which gives the results in multiples of gravitational acceleration, Fig. B.4. The maximum
acceleration will be obtained when sin(wt) becomes equal to one; therefore the maximum

acceleration felt by the proof mass of the gyroscope will be

8 max = B0’ 8 max = 6.711x10% %z ,  (B.20)
oring’s
a 3
ag = 9m§’1‘ ag =6.841x10” g . (B.21)
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Using the maximum acceleration defined by Eqs B.20 and B.21, the maximum force
acting on the spring will be one quarter of the maximum force acting on the proof mass.
This is the case because it was assumed that each of the four springs, that support the
proof mass in each of the four corners, will evenly carry the load. Therefore, the

maximum force is calculated as

. _ Mapay F, 10% =21.0572 uN (B.22)

Xmax 4
while the time dependent equation for the force is

(1) mal) Fan()=F ()010° :  (B.23)

the behavior of the force calculated in Eq. B.23 is illustrated in Fig. B.5.
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Fig. B.1. Sinusoidal displacement of the proof mass in the x-direction.
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Fig. B.2. Sinusoidal speed of the proof mass in the x-direction.
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Fig. B.3. Sinusoidal acceleration of the proof mass in the x-direction.

220




5000

ag(t) 0

ACCELERATION, g's

~5000

-1-10*
0.1 0.2 03 0.4 0.5

t
TIME, ms

Fig. B.4. Sinusoidal acceleration, in g's, of the proof mass in the x-direction.
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Fig. B.5. Sinusoidal force acting on the folded spring in the x-direction.
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B.2. Derivation of the out-of-plane force, Coriolis force, acting on the folded springs

The first step in determining the Coriolis force is to calculate the in-plane velocity

acting on the proof mass, i.e.,
4B
v="r v=0681/ . (B.24)

The angular speed that the microgyro is subjected to for the purpose of these calculations
is 100 deg/sec,

2n
_ — rad
Q=100 360 Q=1.74533 4% . (B.25)

Using Egs B.10, B.24, and B.25, the out-of-plane Coriolis force acting on the folded
spring can be calculated from Eq. 2.7 to be
F, =2m-vxQ (B.26)
F. =2m-v-Q F.-10° =2.978986 nN . (B.27)

Therefore, the Coriolis force acting on a single folded spring is

F, =< F,-10° =0.7447 0N . (B.28)

YT 4 y'l
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APPENDIX C. DETERMINATION OF UNCERTAINTIES IN THE
DEFORMATION OF THE FOLDED SPRING

A RSS (root-sum-square) type uncertainty analysis was done on the deformations
that were determined in Appendix A for the folded springs that support the proof masses

of the Sandia microgyro. This was done to determine how good the results are.

C.1. Uncertainty analysis of deformation in the x-direction
The first step was to obtain the values and uncertainties of all of the parameters
that are included in the equation for the displacement in the x-direction. Equations C.1 to

C.6 define the dimensions of the model of the folded spring used in this analysis

Lag=98 um (C.1)

Lgc=17um (C.2)

Lep=111pm (C.3)

b=3pum , (C4)

bgc=10pum (C.5)
and

h=25um . (C.6)

Equations C.7 to C.9 define the material properties of the polysilicon used in the
modeling of the folded spring
E=160GPa , (C.7)
v=023 , (C.8)

and
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p=233g/em’ . (C.9)
Equations C.10 to C.18 define in the parameters nominal values of which are defined in

Eqgs C.1 to C.9, respectively,

SLap=025pum (C.10)
SLpc=0.25um (C.11)
SLcp=0.25 um (C.12)
8b=025pum (C.13)
Sbe =025 um (C.14)
8h=0.01h um 8h=0.025 um , (C.15)
SE=5GPa , (C.16)
dv=0.005 , (C.17)
and
3p=0.5glem’ . (C.18)

The values and uncertainties defined in Eqs C.1 to C.18 were used to calculate the overall
uncertainties in deformations at point D. The first uncertainty to be calculated was for
the deformation in the x-direction. This was done by starting with the equation for the
deformation in the x-direction, i.e.,

Ap. = Fx (L 3 3L xn’Lep +3L anl 2)+
Dx AB AB CD AB~CD
3El,

6FxLag
5GA,

2 2
F L F,L F. L L F,L-pL
-LBC (LABZ_zLABLCD)+ xboc  Flenbpe Fleplee™ . (9
2L, ALE Elgy 2EI,
3
FxLCD +6FXLCD

3El,,  5GA,
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Using Eq. C.19, the phenomenological relationship for the deformation in the x-direction
was derived to be

ADx :ADx(Fx’FZ’LABaLBC’LCD’Ab’AcaIbyaIcy’EaG) > (CZO)

where each of the parameters that define Apy are written as the following functions in

terms of their own independent parameters that define them:

F, =F,(m,a) , (C.21)
m=(Viroor ) (C.22)
Vproof = Vproof (A prootsh) (C.23)
a=a(B,0) , (C.24)
o=off) , (C.25)
B=B(L;) , (C.26)
A, =Ay(b,h) (C.27)
Ac=Ac(bpc,h) (C.28)
Iy =Ty (b,h) (C.29)
Iy =ley(bpc,h) (C.30)
G=G(Ev) . (C.31)

Parameters appearing in Eqs C.21 to C.31, and their uncertainties, are defined in Eqs

C.32t0 C.49
f=10x10°Hz (C.32)
5f=0.5x10° Hz (C.33)
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Li=40 pm (C.34)

SLy=0.25um (C.35)
Lshuttte = 500 pm (C.36)
SLghuttie = 0.25 pm (C.37)
dholes =4 pm (C.38)
Sdnoles = 0.25 um (C.39)
Biingers =4 pm (C.40)
3bfingers = 0.25 um (C41)
extra; =20 um (C.42)
Sextra; = 0.25 um (C.43)
extrap =10 pm (C.44)
Sextray = 0.25 um (C.45)
extraz =135 um , (C.40)
dextra3 = 0.25 um (C.47)
extrag =8 um (C.48)
dextrag = 0.25 um . (C.49)

Using the parameters and their uncertainties, defined by Eqs C.21 to C.31 and Eqs C.32
to C.49, overall uncertainty in the deformation in the x-direction was determined as
described in the following discussion.

The area of the proof mass and the uncertainty in the area were determined as

2 -7 2
Ashuttle = Lshuttle Aghutile =2.5x10°" m D (CSO)

-10 2
dA shuttle = 2L shuttle - oL shuttle dA shuttle = 2-5x10 m P (CS 1)
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or

or

or

dholes .
Apoles = 64 nh% Apgles = 4.8305x10 S m? 5

d
5A pojes = 2- 647 %Sdhom 8A pojes = 6.0381x107° m?

2 -9 2
6ACOI‘I‘le = (27.2Lfbﬁngers) 6Ac0mbs :864><10 m .
2
8AcombsSLS = (27-2b fgers 3L

SdAcombsdbfingers = (27 2L - 8bfingers )2 R

OA combs = \/ SdAcombsdLf + 5 Acombsdbfingers

SA =5.4269x1071% m?,

combs
-9 2

A extra = 4(extra1 -dextra )+ 4(extra 3 -dextray ) A xtra =5.12x107" m

dAextradextral = (4extra, - dextra, )2 ,

dAextradextra2 = (4extra1 -dextra, )2 ,

dAextradextra3 = (4extra 4 - Sextras )2 ,

dAextradextra4 = (4extra 3 -Oextray )2 ,

OA extra = V8Aextradextral + 5Aextradextra2 + SAextradextra3 + SAextradextrad

SA ey =1.3707x10710 m? |

A proof = Ashuttle - Aholes +A combs T Aextra

A proof =2.1545x1077 m?,
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(C.52)

(C.53)

(C.54)

(C.55)

(C.56)

(C.57)
(C.58)
(C.59)
(C.60)
(C.61)

(C.62)

(C.63)

(C.64)



and

2 2 2 2
0A proof = \/SA shuttle  — oA holes T oA combs T oA extra

or
8A proof =6.0692x107" m?* . (C.65)

The angular speed and the amplitude of the motion of the proof mass and their

uncertainties were determined as

w=2n-f ©=62832x10% 12d/_ (C.66)

80 =+/(2m-3f)? 50 =3.1416x10° ra%ec , (C.67)

B:LTf—(3><10_6) B=17x10"m (C.68)
2

5B = GSLfJ B=125x10" m . (C.69)

Using Eqgs C.66 to C.69, the maximum acceleration of the proof mass and the uncertainty

in the acceleration were determined to be

a=Bo’ a=67113x10* M/ (C.70)
saB=(0-5Bf (C.71)
Sadw = (20-B-30)* (C.72)
da = /0adB + dade 8a=67294x10° M/ (C.73)

The mass of the proof mass and the uncertainty in the mass were determined by finding

the nominal value and uncertainty in the volume, i.e.,

5 3
Vproof = Aproof h Vproof =5.386x%10 pm N (C74)
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3VproofdAproof = (h “BA proof )2 , (C.75)

3Vproofsh = (Aproof ~8h)2 , (C.76)

6Vpr00f = \/ dVproofd Aproof + dVproofoh

or
3V proof =1.6101x107% m?, (C.77)
which yielded
m = Vpro0f P m=1255x10" kg (C.78)
dm&Vproof = (p “8V proof )2 , (C.79)
dmép = (Vproof -8p)2 , (C.80)
6m:\/6m6Vproof+6m6p dm=3.7516x10""" kg . (C.81)

The values for the cross sectional area of sections AB and CD were calculated as

Ay, =hb Ay =75x10712m? | (C.82)
5Absb=(h-8b)* (C.83)
5Absh = (b33)* (C.84)
5A}, =+/3Ab3b+5AbSh 5Ay =6.2948x1073 m? . (C.85)

The values for the cross sectional are of section BC were calculated as

A, =hbpc A, =25x10""m? | (C.86)
5Ac3bBC = (h-8bpc ) (C.87)
5Acsh = (bpedh)* (C.88)
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A, =/8AcSbBC+5Acdh 8A, =6.7315x1073 m? | (C.89)

The moment of inertia for bending in the in-plane direction for sections 48 and CD, and

the corresponding uncertainty were calculated as

hb?
fy =10 (C.90)
w2 )
SIbydb = [T Sb] , (C.91)
3 2
b
SIbydh = [E 6h] , (C.92)
81y, =+/3lbydb+3lbysh . (C.93)

The moment of inertia for bending in the in-plane direction for section BC and its

uncertainty were calculated as

hbpc
[, =——— .94
o=Be (C.94)
5 2
hbge
SIcySbBC:( g SbBCJ , (C.95)
bac’ |
Slcysh = [% ShJ , (C.96)
8l¢y =+/8lcy3bBC+3lcysh . (C.97)
The shear modulus and the uncertainty were calculated as
G=—"t G =65GPa (C.98)
“2(1+v) ’ '
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2
6G6E:[21 SE} : (C.99)

(1+v)
2
3Gov=| ———_sv| (C.100)
201+v)?
0G = 4/ 0GOE + 6Gov 0G =0.335GPa . (C.lOl)

Finally the force in the x-direction and its uncertainty were determined to be

F, =% F -10® =21.0572yN (C.102)
m 2

SFx6a :(Zéaj , (C.103)
a 2

SFxdm = (Z Smj , (C.104)

SF, =+/5Fxda +5Fxdm 8F, -108=22032uN . (C.105)

The uncertainty for the force in the z-direction was set to zero, i.e.,
F,=0N , (C.106)

SE,=ON . (C.107)

Using all of the independent parameters and their uncertainties, defined in Eqs
C.32 to C.107, overall uncertainty in deformation in the x-direction was determined. This
was done by first calculating components of the overall uncertainty due to each of the
parameters in the phenomenological relationship, given by C.20, for the deformation in

the x-direction, i.e.,

231



SADxX3Fx = {[35 (LAB3 —3Log2Lep +3L AL cp> )+
by
: (C.108)

2 3 2
6L A +LBC +LCD Lyc +LCD +6LCD }5]: }
X

5GA, AE Bl  3El, S5GA,

2
L LepLpe?
8ADX6FZ = BC (LAB2 - 2LABLCD )—ﬂ 8FZ N (C.109)
2El,, 2El,

F
SADXSLAB = {| —=* (3L AB> —6L AgLcp +3Lcp> )+
3Ely,

, (C.110)

6F

2
F,L
X 4 z7BC (o1, . 2L ~p ) |SL
SGA, 2E1by( AB cp)PLaB

F F
SADXSLBC = —Z(L 2 2Ll )+ X
H: 2FI by AB AB~CD ACE

+

, (C.111)

EIl EIl

2
2
FxLep™  F,Leplge 5L
cy cy

F F,L ,gL
SADx0LCD = X (_ 3LAB2 +6L AgLcp )_ z-AB-BC
Elpy Elpy
: (C.112)

2 2 2
FxLeplpe _ FoLpe™ | FxLep™ | 6Fy }SLCD}

El,, 2EI, El,,  5GA,

2
SADXSAD = ('6FXLAB _OLen ]6Ab] , (C.113)

5GA,?  5GA,°

2
SADX3AC = [—F"L—'fJaAC] , (C.114)
EA

C
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F
6ADXSIby: - X 5 (LAB3 _3LAB2LCD +3LABLCD2)_
3Elyy

Lo (C.115)
F,Lc 2 ) FxLep

. 2(LAB —2LAgLcp |- Oly

2EI, by

2
2 2
FeLep?Lpe  F,LepL
SADx3ley =| | X—P_PC 4 2 CDBC 1 |
EL, 2EL,

(C.116)

-F
OADXJE = 2X (LAB3 _3LAB2LCD +3LABLCD2)_
3BT,
F,Lec ( 2 ) FyLpc
— > \Lap" —2LagLcp - = -
2E1,,

(C.117)

2
2 2 3
FxLep"Lpe | FoLepbpe™  Filep™ |sp
E%ley E%1ey 3E Ty,

2
-6F. L 6F, L
SADXSG = X AB _ X €D I5G .
5G2A,  5GZA,

Equations C.108 to C.118 were combined to determine the overall uncertainty in
deformation in the x-direction, i.e.,

(C.118)

SApy = (5ADX5F X + 0ADx8Fz + 6ADXSLAB + 6ADXSLBC + 8ADx3LCD +

SADxX3Ab + SADx3Ac+ SADx3Iby + SADx3lcy + SADXSE + SADx3G )2
or

8Apy -10° =5.78856 um

(C.119)
Using the value of overall uncertainty in Apy determined in Eq. C.119 and the value of

the deformation based on Eq. A.122. i.e.,

Apy -10% =21.4583 um

>

(C.120)
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the percent overall uncertainty in the x-component of the deformation at point D was
calculated as

SA py

Dx

%UncertaintyA p, = -100 %UncertaintyAp, =26.9758% . (C.121)

The result shown in Eq. C.121 means that the uncertainty calculated in Eq. C.119 for the
deformation in the x-direction is 28% of the nominal value of the deformation. In order
to see which of the independent parameters contributed most to the overall uncertainty,
percent contributions to the uncertainty of each of the individual uncertainties were
calculated as

SADx06Fx .

%3ADxFx = S—+100 %3ADxdFx =15.0442% (C.122)
3A py
%O3ADx8Fz = MD—XSSZ-IOO %3ADx8Fz=0% (C.123)
3A py
%3ADXSLAB = M -100 %3ADXSLAB =2.9932x100 % (C.124)
8A py
%SADXSLBC:WJOO %3ADXSLBC=1.1315x107 % C.125
2
3A py
%5ADXSLCD = 2ADXOLED o, %3ADXSLCD = 0.0617% C.126
2
3A py
%3ADXSAb = SADXSAD %3ADX3Ab =2.4642x1070 % | C.127
2
8A py
045ADx5Ac = SADXAC 4 %3ADx8Ac =1.7329x10" 1 o5 | C.128
2
3A py
%3ADx3Iby = MD—XM;-‘/ -100 %3ADx3Iby = 84.8804% (C.129)
3A py
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ADx3I _
%3ADx3lcy = w 100 %B5ADxdlcy =2.9914x10™4 % (C.130)
SApy
%BSADXSE = 5ADX52E 1100 %SADXSE =0.0134% (C.131)
8Apy
%3ADXSG = M&oo %5ADX3G =9.1964x107° % . (C.132)
5Apy

In order to ensure that the percent uncertainties were calculated properly, the values
calculated in Eqs C.122 to C.132 were added together to make sure that they yield 100%,
1e.,

%0A py = %OADXOFx + %3ADX8Fz + %dADXSLAB+ %3ADxSLBC + %36ADxSLCD +
%3ADXSADb + %SOADXSAc+ %3ADxSIby + %dADxdIcy + %SADXSE + %S5ADx6G

or
%A py =100% . (C.133)
Based on the results of Eqs C.122 to C.133, the uncertainty in /3,, given by Eq.
C.129, produces the largest contribution to the overall uncertainty in the deformation in
the x-direction, amounting to 85%. The next step was to check the overall uncertainty in

I, to see which one of the independent parameters contributes most to its value,

%5Tbysh = 212¥OP 140 %3Ibydb = 99.8403% C.134
2
8Ty
001 M = . 001 Yy =0.1597% . .
%3Ibysh albyih 100 %5Ibydh = 0.1597 % C.135
8l

The results of Eqs C.134 and C.135 were added together to check that they added up to
100%,

%01y = %01bydb+%>5Ibydh %01y, =100% . (C.136)

235



Equations C.134 to C.136 show that the uncertainty in the width contributes over 99.8%,
Eq. C.134, to the overall uncertainty of /,,. Since I, is the largest contributor to the
overall uncertainty in the deformation in the x-direction, the width contributes the most to
the overall uncertainty in the deformation. Therefore, in order to reduce overall
uncertainty in Apy, contributions due to the uncertainty in width must be reduced, i.e., b

must be lowered.

C.2. Uncertainty analysis of deformation in the y-direction
Since all of the independent parameters were defined in Section C.1, the first step
was to obtain the phenomenological equation for the deformation in the y-direction, i.e.,

Apy =Apy(Fy,Lag Lpc,Leps Abs Acs T Les Tb. T, EG) (C.137)

where each of the parameters that define Apy are written with respect to their own

independent parameters that define them:

F, =Fy(m,v,Q) (C.138)
m=m(Viroor-p) (C.139)
v=v(B,1) , (C.140)
BoB(L,) | (C.141)
t=(f) , (C.142)
Ap =Ap(b.h) (C.143)
A =Ac(bpe.h) (C.144)
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Tpx =Tpx (b,h) (C.145)

Icz = ICZ(bBC’h) 5 (C146)

J, =Jp(b,h) (C.147)

Jo=J.(bgc,h) (C.148)
and

G=G(E,v) . (C.149)

Out of Eqs C.138 to C.149, m, B, A, A., and G are defined in the derivation of the overall
uncertainty in the deformation in the x-direction and given by Eqs C.22, C.26 to C.28,
and C.31, respectively, while other parameters will be defined in the discussion that
follows.

The angular velocity that the microgyroscope was subjected to is defined as

2n
— il — d
Q=100 Q=17453370d/ (C.150)

with an uncertainty of

30=0 . (C.151)

The period of the oscillation of the proof mass and the uncertainty in the period are

calculated as

T=1x10"% sec C.152
, ( )

T=

1
f
LV
St= ['—ZSfJ dt=5x10"%s . (C.153)
f
The velocity of the in plane oscillation of the proof mass and the uncertainty are defined

as
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4B

v=—" v=06817 (C.154)
4 )2

5voB = (_ 513) , (C.155)
T
B_Y

dvdr = (_—2 81] , (C.156)
T

§v = /ovoB + oot dv=0.034417 . (C.157)

The moment of inertia for bending in the out-of-plane, y, direction for sections AB and

CD were calculated as

bh?
I,, =—— 158
bx 12 s (C )
2
h3
SIbxdb = ESbj , (C.159)
bh?2 ?
SIbxdh = TshJ , (C.160)
81, =+/0lbxdb+3Ibxdh . (C.161)

The moment of inertia for bending in the y-direction for section BC was calculated as

bgch?

I, =—— C.162

=", ( )

2
h3
SICZSbBC = [E SbBC] s (C.163)
bach? )

Slczdh = [% ah] , (C.164)
81, =~/8lczObBC+dlczdh (C.165)
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The polar moment of inertia and its uncertainty for sections 4B and CD were calculated

as
J, =0219-bh> | (C.166)
8Jbdb = (0.219-h38b)2 , (C.167)
8Jb3h = (3~0.219~bh26h)2 : (C.168)
81, =+/dJbdb+5Jbdh . (C.169)

The polar moment of inertia and the corresponding uncertainty for section BC was

calculated as

J. =0282-bgch’® | (C.170)
3 2

81cabBC = (0282 h3sbpe || (C.171)
2 2

s1cdh = (3-0.282 bych2eh) (C.172)

8J, = /3Jc3bBC +8Jcdh . (C.173)

Finally, the Coriolis force in the y-direction and the uncertainty in the force were

determined as

F, :m‘;‘g Fy-10° =0.7447 0N (C.174)
v-Q 2
m-Q 2

SFydv = 5 dv , (C.176)
m-v 2

6Fy6§2:( : sg} , (C.177)

239



5Fy = \[5Fydm + 5Fydv + 3FydQ Fy-10° =0.057 0N . (C.178)

Using the independent parameters and uncertainties defined by Eqs C.32 to C.101 and C.
151 to C.179, overall uncertainty in deformation in the y-direction was calculated. This
was done by calculating components of the overall uncertainty due to each of the
parameters in the phenomenological relationship, given by C.137, for deformation in the

y-direction, 1.e.,

3 2 2
(LAB —3Lag"Lep +3LagLep )+

0ADydFy = { 3Ei
bx

2 3
6L L L L L

aB  Lpc'Lap  Lac +5 BC .
5GA,  GJ,  3El, 5GA,

, (C.179)
cz
Lep’Lpe  Lep® | 6Lep ’
+ + OF
GJ, 3El,,  S5GA, } y}

F
SADySLAB = H:?,ETY(3LAB2 - 6LABLCD + 3LCD2 )+

bx
) , (C.180)

2
6F F,L
y 7 BC OL 4R
5GAy, GJy,

2F,LpcLap . FyLpc’ . 6F
Gl El

5GA,  GI,

Cz

2
y FyLCD2
S3ADYSLBC = + 3L pc , (C.181)

El,, GJ,

2 2

FyLCD 6Fy

+ L cp
El 5GA,

F 2F,Lepl
MDySLCD:{3 Y (—3LAB2+6LABLCD)+M+
, (C.182)

2
-6F L 6F,L
yoAB Y CD}‘)Ab] , (C.183)

SADySAb = : =
5GA,>  5GA,
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2
6F, L
8ADydAc=|[-— "= lsA, |,
5GA,

3ADydIbx = {L 5 (LAB3 ~3Lap"Lep +3LABLCD2)+

El
2

3
F,L
8ADydlez=|| ——— Bl |,
3EI,,

2
2
-F, L L
SADy8Jb = MJSJb

Gly?

2
“F,LepL
SADydJc = M}sﬁ]

bx

-Fy ( 3 2 2)
SADYSE: 3E21 LAB _3LAB LCD +3LABLCD —

2 2
3E%I, 3E’I

5

2

FyLpc® FyLcp ?
- SE

and

2
6L F,Lpc’L 6F, L
SADyﬁGzl[ AB __y7BC 7AB Ty “BC

5G2A, G2,

2
FyLep’Lec  6FyLep

2 2
G2, 5G2A,

Equations C.179 to C.190 were combined to calculate the overall uncertainty in

deformation in the y-direction, i.e.,

L
5G2A,

|
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(C.189)
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8A by = (3ADySFy+8ADYSLAB+5ADySLBC+8ADySLCD + ADy3Ab+
SADySAc+SADydIbx + 3ADydlcz+ SADy8Ib + SADysJc+ SADySE + SADysG) "2

or

8Apy -10° =0.1186 nm (C.191)

Using the value of overall uncertainty in Apy determined in Eq. C.191 and the value of
the deformation based on Eq. A.128, i.e.,

Apy-10° =1.17257nm (C.192)

the percent overall uncertainty in the y-component of the deformation at point D was

calculated as

84 py

%UncertaintyA p, = -100 %UncertaintyAp, =10.1155% (C.193)

Dy
The results calculated by Eq. C.193 show that the percent overall uncertainty in

deformation in the y-direction is 10.1% of the nominal value of the deformation. In order

to see which independent parameter contributed most to the overall uncertainty, percent

contributions to the uncertainty of each of the individual uncertainties were calculated as

%3ADydFy = % -100 %O3ADydFy =33.6936% (C.194)
Dy

%SADySLAB= % -100 %3ADYSLAB=1.2271x10"% % (C.195)
Dy

%3ADYSLBC = %.100 %3ADYSLBC=0.0219% (C.196)
Dy

%3ADySLCD = M;)Ayﬁ -100 %3ADYSLCD = 0.4037% (C.197)
Dy
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3ADy3Ab 1

%3ADyS8Ab = 3, 2 00
y
%JADydAC = % 100
Dy
%3ADydIbx = % -100
Dy
%0J3ADydlcz = % -100
Dy
%3ADydJb = % -100
Dy
%08ADydJc = % 100
Dy
%3ADYSE = SSAAD y52E 100
Dy
%0ADydG = éS;AAD—ySZG -100
Dy

%3ADy5Ab =7.3414x107% %

%3ADysAc=4.499x10"10 %

%08ADyblbx = 65.7096%

%3ADydlcz=3.7151x107° %

%0ADydJb=0.0556% ,

%J3ADydJc=0.0321%

%3ADyYSE =0.0819%

%3ADYSG =1.3955x107> %

b

(C.198)

(C.199)

(C.200)

(C.201)

(C.202)

(C.203)

(C.204)

(C.205)

In order to ensure that the percent uncertainties were calculated properly the values

determined in Eqs C.194 to C.205 were added together to make sure that the sum yields

100%, i.e.,

or

%04 py = %B5ADySFy + %3ADYSLAB+ %5ADySLBC+ %3ADYSLCD + %ADy5Ab+

%J3ADydAc+ %SADydIbx + %5ADydlcz+ %S6ADydIb + %dADydJc +

%06ADyYOE + %56ADydG

%0Apy =100% .
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Based on the results of Eqs C.194 to C.206, the uncertainty in /,, produces the
largest contribution to the overall uncertainty in deformation in the y-direction,
amounting to 66%. The next step was to check the overall uncertainty in 7, to see which

one of the independent parameters contributes most to olyy,

%5Ibxdb = Slbxib -100 %5Ibxdb = 88.5269% (C.207)
.

%5Ibxdh = SIbXSZh 1100 %5Ibxdh =11.4731% . (C.208)
8Ty

Sum of the results given by Eqs C.208 and C.209,

%81y = %31bx3b + %5Ibxsh %01y =100% (C.209)

is 100% indicating that the percentage uncertainties contributing to %ol were
determined properly. Furthermore, Eqs C.207 to C.209 show that the uncertainty in the
width contributes over 88% to the overall uncertainty in /;,. Since Iy, is the largest
contributor to the overall uncertainty in Apy, the width contributes the most to the overall
uncertainty in the deformation. Therefore, in order to reduce 6Apy, 0b should be reduced

subject to the limitations of the fabrication process used.

C.3. Uncertainty analysis of the deformation in the z-direction
All of the independent parameters needed for determination of overall uncertainty
in deformation in the z-direction were defined in Section C.1; therefore, the first step was

to obtain the phenomenological relationship for the deformation in the z-direction, i.e.,
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ADZ :ADZ(FX’anLAB’LBC’LCDaAvacaIbvacy’E’G) (C210)

where each of the parameters that define Ap, are written with respect to the independent

parameters that define them as

F, =F,(m,a) , (C.211)
m=m(Vyor.p) (C212)
Vproof = Vproof (Aproof h) (C.213)
a=a(B,o) , (C.214)
o-off) | (C.215)
B=B(L¢) , (C.216)
A, =Ay(b,h) (C.217)
Ac=Ac(bpc,h) (C.218)
Iy =Ty (b,h) (C.219)
Iy =Igy(bpc.h) (C.220)
and
G=G(E,v) . (C.221)

The independent parameters defined by Eqs C.211 to C.221 and the corresponding
uncertainties were defined in the derivation of the uncertainty for the displacement in the
x-direction, Eqs C.32 to C.107. Using the independent parameters and uncertainties from
Eqs C.32 to C.107, overall uncertainty in deformation in the z-direction was calculated.

This was done by calculating components of the overall uncertainty due to each of the
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parameters in the phenomenological equation, given by Eq. C.210, for the deformation in

the z-direction, i.e.,

2
L (L 2 2L sl ) LonLne2
BADZSFx = | PR ARSI —ER BEleE ¢ (C.222)
2Ely, 2El,,
Lap  Lec’Las |, Loc’ |, 6Lac |, Lep ’
SADz8Fz = + + + + oF, 5 (C.223)
AyE  El,,  3El, 5GA, A,E
_ 2 )
F, F.Lpc(Lag-L F,L
SADZSLAB = {| —Z—+ p(Lap - CD)+ BC 3L A , (C.224)
ApE 3El}, Elp,
[ 2
SADZSLBC = FX(LAB _2LABLCD) L 2FLpclag
2ETyy Elb,,
) , (C.225)
2
F.LgcLep F,L 6F
x~BC CD+ z+~BC " 7 SLBC
Ely El,,  5GA,
2 2
-F.LpgLpc F,L F
SADZSLCD = || —X—ABZBC x—BC_, "z g (C.226)
Ely, 2El,  EA,
2
F,L,g F,L
OADZOAD = { A2 ]SAb : (C.227)
b
2
-6F,L
SADzSAC = BC OA, , (C.228)
5GA .’
2
-F,L (L —2L gL ) E,Lgc’L
oaDzslby = e R AR Bl ) (C.229)
2EIby Ely
2 2 2
-F.Lcp’Lpe  F,Lpc’L
BADzBley =| | ——RBE S BER Bl | (C.230)
El, 2Bl
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SADZSE = {['FZLAB _E(Lap-2LepLag)

EZA, 2E Ty,
, (C.231)
2 2
F,Lpc'Lap | FxLep“Lpe  FLpe  FiLop |
E’I, 2E’l,  3E’l, E’I,
and
2
-6F, L
BADZSG =|| —5-2- G| (C.232)
5G2A,
Equations C.222 to C.232 were combined to calculate the overall uncertainty in
deformation in the z-direction
0Ap, = (6ADZ(3F X +0ADz8Fz + SADzSLAB+6ADz6LBC + 8ADz3LCD +
SADz3Ab + 3ADzSAc + SADz3Iby + SADzSlcy + SADZOE + SADZ3G )2
or
8Ap, -10° =0.678104pm (C.233)

Using the value of overall uncertainty in Ap, determined in Eq. C.233 and the value of the
deformation based on Eq. A.134, i.e.,

Ap,-10° =-2.4268pm (C.234)
the percent overall uncertainty in the z-component of the displacement at point D was

calculated as

-100 %UncertaintyAp, =27.0716% (C.235)

OA
%UncertaintyAp, =‘ Dz

Dz

The result given by Eq C.235 show that the percent overall uncertainty in deformation in

the z-direction is about 27% of the nominal value of the deformation. In order to see
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which independent parameter contributed most to the overall uncertainty, percent

contributions to the uncertainty of each of the individual parameters were calculated as

%3ADZOFx = M-mo %3ADZOFx =14.9379% (C.236)
SAp,
%3ADzFz = SA1)—2552-100 %8ADz8Fz=0% (C.237)
A,
%3ADZSLAB = M 100 %3ADZSLAB=3.8714x10% % ,  (C.238)
SAp,
%5ADZSLBC = 22D2LEC g %SADZSLBC = 0.2976% (C.239)
SAp,
%3ADz3LCD = MJOO %3ADzSLCD = 0.0221% (C.240)
SAp,
%3ADZ5Ab = M- 100 %3ADZAb=0% (C.241)
SAp,
%3ADZSAC = MD—Z&?C 1100 %3ADZOAC=0% (C.242)
SAp,
%3ADz3lby = M 1100 %3ADz3lby = 84.7055% (C.243)
SAp,
ADz3
%3ADzdlcy = S—Zszcy 1100 %3ADzdIcy = 0.0232% (C.244)
SAp,
%3ADZOE = SADZiE 100 %3ADZOE =0.0133% (C.245)
SAp,
%3ADZ3G = % 100 %3ADZOG =0% . (C.246)
SAp,
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In order to ensure that the percent uncertainties were calculated properly the values
calculated in Eqs C.236 to C.246 were added together to make sure that the sum yields
100%, i.e.,

%0A p, = %3ADzOFx + %3ADzdFz + %6ADzSLAB + %3ADZ3LBC + %36ADzoLCD +
%ADz3ADb + %0ADz3Ac+ %S6ADzd1by + %3ADzdlcy +
%J3ADzE + %06ADz6G

or

%3Ap, =100% . (C.247)
Based on the results of Eqs C.236 to C.247 the uncertainty in /,, produces the largest
contribution to the overall uncertainty in deformation in the z-direction, amounting to
85%. The next step was to check the overall uncertainty in /;, to see which one of

independent parameters contributes most to olyy,

%5Tbysh = 212¥OP 140 %3Ibydb = 99.8403% C.248
2
8l
%sTbysh = 2 109 %5Ibydh = 0.1597% . C.249
8Ty, 2
Yy

Results of Eqs C.248 and C.249 were added together to check that they add up to 100%,

%01}, = %0lbydb+ %d51bydh %0l =100% . (C.251)
y by

Equations C.249 to C.251 show that the uncertainty in the width contributes over 99% to
the overall uncertainty of /;,. Since I, is the largest contributor to the overall uncertainty
in the deformation in the z-direction, db contributes most to the overall uncertainty in the

deformation. One way to reduce the magnitude of this contribution is to use better means
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for measuring the width, resulting in dimensions characterized by the least count lower

than 0.5 pum.
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APPENDIX D. EXPERIMENTAL RESULTS

D.1. OELIM determination of deformations of the right proof mass of the
microgyro

Following the procedure used to obtain results presented in Section 5.4.2.2,

deformations of the right proof mass were determined, Figs D.1 to D.12.

Fig. D.1. Representative OELIM interferogram
of the right proof mass of the microgyro.
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Fig. D.2. Two-dimensional color representain of
deformations of the right proof mass.

MIN MAX MEAN SIGMA TEMP
0.00 0.31 0.18 0.12 20 C

Z—axis, um

Fig. D.3. Three-dimensional wireframe representation
of deformations of the right proof mass.
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Fig. D.4. Three-dimensional color representation of
deformations of the right proof mass.

Fig. D.5. Rep}sentative OELIM interferogram of the
upper part of the right proof mass of the microgyro.
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deformations of the upper part of the right proof mass.

MIN MAX MEAN SIGMA TEMP
0.00 0.29 0.17 0.1 20 C

Z—axis, um

Fig. D.7. Three-dimensional wireframe representation of
deformations of the upper part of the right proof mass.
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Fig. D.8. Three-dimensional color representation of
deformations of the upper part of the right proof mass.

Fig. D.9. Representative OELIM interferogram of the
lower part of the right proof mass of the microgyro.
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Fig. D.10. Two-dimensional color representatln of
deformations of the lower part of the right proof mass.

MIN MAX MEAN SIGMA TEMP
0.00 0.34 0.19 0.13 20 C

Z—axis, um

Fig. D.11. Three-dimensional wireframe representation of
deformations of the lower part of the right proof mass.
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MIN MAX MEAMN SIGMA TEMP
0.00 0.34 0.19 0.13 20 C

Fig. D.12. Three-dimensional color representation of
deformations of the lower part of the right proof mass.

D.2. OELIM determination of deformations of the folded springs supporting the
right proof mass of the microgyro

The folded springs that support the right proof mass, Springs 5 to 8, were also
observed at an even higher magnification than that used to obtain the results presented in
Sections 5.4.2.2 and D.1. The results obtained for these springs are illustrated in Figs

D.13 to D.28.
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Fig. D.13. Representative OELIM interferogram of
Spring 5 of the microgyro.

Fig. D.14. wa—dimeﬂsional color representn of
deformations of Spring 5 of the microgyro.
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MIN MAX MEAN SIGMA TEMP
0.00 0.27 0.07 0.10 20 C

Z—axis, um

Fig. D.15. Three-dimensional wireframe representation
of deformations of Spring 5 of the microgyro.

MIN / / ! TEMP
20 ¢

Fig. D.16. Three-dimensional color representation of
deformations of Spring 5 of the microgyro.
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. -
LRI R

Fig. D.17. Representative OELIM
interferogram of Spring 6 of the microgyro.

% 1§
Fig. D.18. Two-dimensional color representation of
deformations of Spring 6 of the microgyro.
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MIN MAX MEAN SIGMA TEMP
0.00 0.24 0.06 0.09 20 C

Z—axis, um

Fig. D.19. Three-dimensional wireframe representation
of deformations of Spring 6 of the microgyro.

MIN

Fig. D.20. Three-dimensional color representation of
deformations of Spring 6 of the microgyro.
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Fig. D.21. Representative OELIM
interferogram of Spring 7 of the microgyro.

Fig. D.22. Two-dimensional color representton of
deformations of Spring 7 of the microgyro.
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MIN MAX MEAN SIGMA TEMP
0.00 0.28 0.08 0.1 20 C

Z—axis, um

Fig. D.23. Three-dimensional wireframe representation
of deformations of Spring 7 of the microgyro.

MIN

Fig. D.24. Three-dimensional color representation of
deformations of Spring 7 of the microgyro.
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Fig. D.25. Representative OELIM
interferogram of Spring 8 of the microgyro.

Fig. D.26. Two-dimensional color representtn of
deformations of Spring 8 of the microgyro.
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MIN MAX MEAN SIGMA TEMP
0.00 0.33 0.08 0.12 20 C

Z—axis, um

Fig. D.27. Three-dimensional wireframe representation of
deformations of Spring 8 of the microgyro.

MIN MEAN A TEMP

0.08 20 C

Fig. D.28. Three-dimensional color representation of
deformations of Spring 8 of the microgyro.
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