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Abstract 

Over 1.5 million osteoporotic bone fractures occur each year in the United States, with 

annual treatment costs predicted to exceed $25.3 billion by 2025. Osteoporotic fractures are 

associated with skeletal fragility resulting from low bone mass and microstructural bone 

deterioration. While existing drug therapies slow bone loss, they cannot fully restore bone 

structure. Therefore, is it more effective to maximize peak bone mass in early adulthood, with 

each 1% increase in peak bone mass estimated to provide 1.3 years of osteoporosis-free life. 

Exercise is a potentially safe and cost-accessible strategy for increasing bone mass and 

preventing fractures. Several in vivo animal loading models have demonstrated that bone adapts 

to mechanical loading, with bone formation occurring in proportion to bone strain (relative 

deformation). In humans, elite athletes experience site-specific skeletal adaptations, and have 

higher bone density than their peers. Clinical studies have shown that high-impact and resistive 

exercise generally leads to consistent, modest increases in bone density. However, there are no 

evidence-based bone loading targets or methods to tune interventions for individuals. This is 

largely due to a lack of data relating human bone adaptation to bone strain, which is challenging 

to estimate non-invasively.  

This Dissertation used an upper extremity bone loading model to establish quantitative 

relationships between bone strain and adaptation in the distal radius of healthy adult women. 

This was accomplished using a 12-month randomized controlled trial, in which participants 

performed a voluntary, cyclic forearm loading task or served in a control group. Computed 

tomography (CT) and high resolution peripheral quantitative CT (HRpQCT) were used to 

measure changes in bone structure and generate participant-specific finite element (FE) models 

to estimate bone strain during simulated forearm loading. We found that average changes in bone 
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structure parameters were correlated to a mechanical loading dose considering bone strain 

magnitude, strain rate, and number of loading sessions. Additionally, we observed at the 

microstructural level significant spatial relationships between low bone strain and bone 

resorption, and between high strains and both formation and resorption. Finally, we developed a 

forward simulation of strain-driven adaptation and compared predicted changes to 

experimentally measured bone adaptation. Overall, we have established a combined 

experimental-computational approach to systematically study the mechanism of human bone 

adaptation and inform the design of exercise interventions for the prevention of fractures.  
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Chapter 1: Introduction 

Fragility bone fractures are experienced by 1 in 3 women over age 50 (Melton, 1995), 

leading to loss of mobility, extended hospital stays, and increased risk of death (U.S. Dept. of 

HHS, 2004). These low energy injuries are associated with osteoporosis, characterized by low 

bone density and deterioration of bone structure. Over 55 million Americans over age 50 have low 

bone density (Looker et al., 2017), and this number is expected to grow with the aging population. 

Several drug therapies are approved to treat low bone density, but concerns about side effects limit 

widespread use, and targeting high-risk individuals before they fracture is challenging (Schuit et 

al., 2004; Sornay-Rendu et al., 2005). Additionally, most drug therapies slow bone loss but cannot 

regain lost bone, and newer anabolic therapies cannot fully restore bone structure. Therefore, 

maximizing peak bone mass in early adulthood and maintaining healthy bone mass later in life is 

more effective than treating bone loss after it occurs. In fact, it has been predicted that increasing 

peak bone mass by just 1% provides up to 1.3 years of osteoporosis-free life (Hernandez et al., 

2003).  

Exercise is a potentially cost-effective, non-pharmacologic strategy for stimulating bone 

formation and preventing fractures. Elite athletes have improved bone density and structure 

compared to their peers (Bareither et al., 2008; Stewart and Hannan, 2000), and these benefits are 

sustained after retirement (Erlandson et al., 2012). Additionally, elite athletes experience site-

specific adaptations, such as increased cortical thickness in the racquet arms of tennis players 

(Kontulainen et al., 2003) or throwing arms of baseball pitchers (Warden et al., 2019), suggesting 

that skeletal benefits can be attributed mechanical loading. In normal healthy adults, clinical 

exercise trials have shown that high-impact and resistive loading interventions elicit consistent, 

modest (~1-3%) increases in bone density at the hip (Ireland and Rittweger, 2017; Zhao et al., 
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2017). However, there are no evidence-based targets for an optimal bone loading “dose” or 

methods to tune exercise interventions for individual patients. 

A substantial effort has been made to develop effective bone-building exercises for the 

prevention of fragility fractures. This has consisted of mechanistic studies in animal models, as 

well as clinical exercise trials and observational studies in humans. In vivo animal loading models 

have been used to apply known, repeatable mechanical stimuli to bone and systematically quantify 

the relationship between specific loading parameters and adaptation. Models applying cyclic 

compressive loading to the turkey ulna (Lanyon and Rubin, 1984), rat ulna (Mosley et al., 1997), 

mouse tibia (De Souza et al., 2005), and other sites, have shown that the volume of loading-driven 

bone formation increases with bone strain magnitude (Rubin and Lanyon, 1985), rate (Mosley and 

Lanyon, 1998; Turner et al., 1995), and spatial gradient (Gross et al., 1997; Judex et al., 1997). 

These parameters of bone strain have been shown to govern bone adaptation at the global (cm) 

and local (µm) levels (Lambers et al., 2015; Schulte et al., 2013a; Webster et al., 2015). 

Quantitative datasets generated from bone loading animal models have been used to establish 

mathematical models of load-driven bone adaptation (Turner, 1998), which have been 

implemented with finite element (FE) modeling to drive predictive simulations of how bone 

changes in response to new loads (Fyhrie and Carter, 1986; Huiskes et al., 1987; Mullender and 

Huiskes, 1995). Looking at human studies, measuring bone strain directly requires the surgical 

implantation of strain gauges on the bone surface, and is not feasible to implement clinically. 

Therefore, previous human exercise trials have relied on indirect surrogate measures of bone 

loading or not measured loading at all. The lack of standardized methods for estimating bone 

loading has made it challenging to directly compare and learn from previous clinical exercise 

studies, creating a time-consuming and expensive cycle of trial and error. Fundamentally, animal 
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models and human exercise trials comprise two ends of a disconnected research spectrum, where 

quantitative relationships between strain and adaptation in animals are not fully translated to the 

clinic. Thus, there is a clear need for human bone loading models based on measures of bone strain 

and loading dose relevant to the biological mechanism of adaptation.  

Previous work in the Musculoskeletal Biomechanics Laboratory established an upper-

extremity human bone loading model. The primary goals of such a model are to deliver a diverse 

range of bone strain signals that can be quantified non-invasively and elicit measureable changes 

in bone structure. Our loading model uses a simple loading task, leaning on and off the palm of 

the hand, to deliver axial, compressive, and voluntary loading to the distal radius bone (Troy et al., 

2013). The radius is appropriate because it is a clinically relevant fracture site (Nellans et al., 2012), 

and the distal radius can be scanned using the three most common bone imaging modalities: dual-

energy X-ray absorptiometry (DXA), clinical resolution computed tomography (CT), and high 

resolution peripheral quantitative CT (HRPQCT). These imaging techniques can be used to 

measure regional and local adaptation of bone structure, and serve as the basis for image-based, 

patient-specific FE models. FE modeling is a numerical technique that enables computational 

stress analysis of structures, such as bone, with complex geometries and materials. When validated 

against cadaveric mechanical testing, FE models explain 60-94% of the variability in human bone 

strain (Anderson et al., 2005; Bhatia et al., 2014; Edwards et al., 2013; Fung et al., 2017; Gupta et 

al., 2004; Keyak et al., 1993). In our lab, Bhatia et al. (2014) and Johnson et al. (2017) developed 

and validated methods to estimate radius bone strain using FE models based on clinical resolution 

CT only and combining clinical CT and HRPQCT, respectively (Bhatia et al., 2014; Johnson and 

Troy, 2017a). These FE models can be applied to assign participant-specific target forces to 

achieve desired bone strains, as well as determine actual achieved bone strain based on real force 
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measurements. This is accomplished using a custom loading device that guides applied force via 

LED biofeedback, guides loading rate using auditory cues, and records applied force using a data 

logger. Therefore, our approach allows bone strain to be assigned, monitored, and correlated to 

structural bone changes within individual human participants. In an in vivo pilot study, nineteen 

women performed loading three days per week for twenty-eight weeks, and it was shown that 

loading led to small increases in bone mineral content and protection against bone losses observed 

for the non-loading control group (Troy et al., 2013). Additionally, it was shown using clinical 

resolution CT that regional changes in bone density were positively correlated with bone strain 

magnitude (Bhatia et al., 2015). These studies provided important preliminary evidence of the role 

bone strain plays in human bone adaptation.  

The primary purpose of this Dissertation is to establish quantitative relationships between 

bone adaptation and bone strain magnitude, rate, and spatial gradient, at the macro- and 

microstructural levels, in the upper extremity of young healthy adult women. Additionally, we aim 

to develop a predictive bone adaptation simulation, driven by these quantitative relationships, with 

the long-term goal of designing improved bone-building interventions in silico. The foundation of 

this project is a 12-month randomized controlled trial in which participants performed axial 

forearm loading or served as non-loading controls. The mechanical strain stimulus within the 

radius bone was estimated using participant-specific FE models generated from density-calibrated 

CT scans with boundary conditions based on load cell recordings. Changes in radius bone structure 

were measured using CT and HRpQCT. The project objective was accomplished in the following 

three Specific Aims: 

Aim 1: Quantify the relationship between mechanical loading history, bone structure, and 

FE-estimated bone strain in the human forearm. 
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The purpose of Aim 1 was to understand the factors influencing bone structure and strain using a 

cross-sectional analysis at baseline of the parent study. Second, we wanted to assess the ability of 

DXA to predict the between-participant variability in bone strain. Forearm loading history was 

quantified using a physical activity questionnaire, grip strength, and body mass. Bone structure 

was measured using DXA, quantitative CT, and HRPQCT, and CT-based FE models estimated 

bone strain under an arbitrary 300N force. We hypothesized that higher levels of mechanical 

loading would be associated with favorable bone structure and lower strain under a given force, 

and that bone density will not fully predict the observed variability in bone strain. 

Aim 2: Quantify the effect of strain magnitude, rate, and spatial gradient on 12-month 

changes in bone macro- and microstructure in the distal radius. 

Aim 2A: Relate changes in average bone macro- and microstructure in the distal radius to 

strain. 

The purpose of Aim 2A, which comprised the primary analysis of the parent study, was to 

compare 12-month changes in bone structure between loading groups with varying target strain 

magnitudes and rates to the control group. Additionally, we related bone changes to achieved 

loading dose, based on participant-specific load cell recordings, across all participants. Bone 

changes were measured as change in average parameters measured using QCT and HRpQCT for 

the entire distal radius. We hypothesized that higher bone strain magnitude, rate, and protocol 

compliance would be associated with a greater adaptive response.  

Aim 2B: Relate changes in bone microstructure to local strain parameters at the individual 

trabecular level. 

The purpose of Aim 2B was to investigate the mechanism of bone adaptation by locally relating 

strain and adaptation. Image registration of baseline and 12-month HRpQCT scans was used to 
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identify local regions of bone formation and resorption, and multiscale FE models were used to 

calculate microstructural strain parameters during forearm loading. We hypothesized that bone 

strain magnitude and spatial gradient would be higher in regions of formation and lower in 

regions of bone resorption. Additionally, we hypothesized that formation would be more likely 

to occur near high versus low strain regions, and resorption near low versus high strain regions.  

Aim 3: Develop a forward bone adaptation simulation for the human forearm loading 

model.  

The purpose of Aim 3 was to establish an in silico simulation of load-driven bone adaptation, 

with a particular focus on the influence of boundary conditions. The variability in loading 

direction during the forearm loading task was quantified using three dimensional motion capture, 

and the influence of varying loads within the measured range on FE-estimated bone strain was 

quantified using a sensitivity analysis. Bone adaptation predictions from the in silico simulation, 

driven by FE strain with axial and tilted boundary conditions, were compared to experimentally 

measured changes. We hypothesized that the adaptation simulation would predict similar 

trabecular changes to those measured experimentally, and that boundary conditions would have a 

significant influence on FE-estimated strain and predicted adaptation.  

This work represents an important step toward establishing an integrative, experimental-

numerical pipeline to systematically study the mechanism of strain-driven bone adaptation. Our 

approach can be generalized to other activities, skeletal sites, and clinical populations. Long-

term, estimating the osteogenic potential of activities a priori will avoid the trial-and-error 

approach to exercise trial design, lowering research costs and accelerating the translation of 

patient-specific prescription to the clinic.  
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Chapter 2: Background 

2.1 Clinical Significance 

Fragility bone fractures present a major clinical burden worldwide, affecting one in three 

women and one in five men over age fifty (Melton, 1995). It is estimated the 1.5 million 

osteoporotic fractures occur in the United States each year (Riggs and Melton, 1995), typically at 

the hip (proximal femur), spine (vertebrae), or wrist (distal radius). The annual direct cost of 

treating these fractures in the United States is approximately $17.9 billion as of 2002 (U.S. Dept. 

of HHS, 2004), and is predicted to exceed $25.3 billion by 2025 (National Osteoporosis 

Foundation, 2008). Fragility fractures disproportionately affect older individuals, which is 

particularly concerning in the context that the number of Americans over age 85 is expected to 

increase from 4 to 20 million between 2000 and 2050 (U.S. Dept. of HHS, 2004). Importantly, 

individuals who experience fractures often have worse health outcomes than their non-fractured 

peers: mortality is 2.8-4 times greater the first 3 months after a hip fracture (U.S. Dept. of HHS, 

2004), and 20% of hip fracture patients require long-term care in nursing facilities (Salkeld et al., 

2000).  

Fragility fractures are low energy injuries resulting from a fall at standing height or 

lower. They are generally associated with osteoporosis, the deterioration of bone structure 

leading to increased skeletal fragility (Cosman et al., 2014). The World Health Organization 

(WHO) defines osteoporosis based on bone mineral density at the spine (lumbar vertebrae) or hip 

(proximal femur). Density is measured using dual energy X-ray absorptiometry (DXA), which 

generates a two-dimensional image from which bone area and bone mineral content are 

measured to calculate areal bone mineral density (aBMD, in g/cm2). Density is converted to a 

statistical T-score comparing a patient to population data from healthy women ages 20-29, with a 
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T-score less than -2.5 indicating osteoporosis. It is estimated that 12 million (11%) Americans 

over age 50 meet the WHO diagnostic criteria of osteoporosis and another 47 million (45%) have 

low bone density. Prevalence is higher in women than men, with 16.5% of women versus 5.1% 

of men over age fifty having osteoporotic bone density (Looker et al., 2017). 

While osteoporosis is associated with increased fracture risk at the population level, it is 

challenging to predict patient-specific fracture risk based on DXA. In fact, aBMD explains less 

than sixty percent of the variability in bone strength, and more than half of fragility fractures 

occur in individuals who do not meet the WHO bone density criteria for osteoporosis (Schuit et 

al., 2004; Sornay-Rendu et al., 2005). While drug therapies are available to treat bone loss, their 

high cost and potential side effects limits widespread use. Therefore, only high-risk patients 

receive therapies and, despite its shortcomings, DXA is typically used to decide who is treated. 

This has led to a situation where many people at a high risk of fracture go untreated. 

Additionally, the most commonly prescribed drug class, antiresorptives, slow bone loss but 

cannot regain lost bone. Newer anabolic therapies show potential to increase bone mass but 

cannot fully restore bone structure, limiting efficacy in improving bone strength. Clearly, there is 

a need for prevention strategies that minimize bone loss before it happens, and are safe and 

inexpensive enough for all individuals.  

2.2 Definition of Bone Quality and Strength: 

Bone fractures occur when applied loads exceed whole bone strength, and therefore 

maximizing bone strength is a key component of fracture prevention. Bone must be able to 

withstand high magnitude, high energy (impact), and repetitive loading at a minimal metabolic 

cost, requiring a material that is stiff, tough, and light. Bone tissue is a composite of 

hydroxyapatite mineral crystals bound to an organic matrix of type 1 collagen, proteoglycans, 
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and other proteins (Cowin, 2001). The mineral provides stiffness and compressive strength, and 

the organic components provide flexibility and toughness. The basic building blocks of the 

organic matrix are triple helix tropocollagen molecules that polymerize to form aligned collagen 

fibrils approximately 100 nm in length (Sabet et al., 2016). Hydroxyapatite mineral crystals form 

between adjacent collagen molecules. At the microscale, aligned collagen fibers form lamellar 

sheets 3-7 µm thick (Sabet et al., 2016), which are layered to form concentric osteons (200-300 

µm diameter) in cortical bone and trabecular packets (50 µm thick) in trabecular bone (Sabet et 

al., 2016). Cortical bone forms the dense shaft and outer shell of long bones. Trabecular bone 

forms an interconnected lattice of individual struts, or trabeculae. Trabecular bone is found at the 

ends of long bones because its structure allows for absorption and transmission of joint loads 

away from the articular surface towards the cortex (Figure 2.1). The periosteal surface defines 

the outer boundary of the cortical shell, and the endocortical surface is the interface between the 

inner cortical boundary and trabecular compartment.  
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Figure 2.1: Definition of the trabecular and cortical bone compartments, shown for the distal 

radius bone in the forearm. The periosteal surface forms the outer bone surface, while the 

endosteal surface separates the cortical shell from the spongey trabecular compartment. Adapted 

from MacNeil (2008) Bone. 

 

Bone strength is determined by the material properties, structure, and amount of tissue 

present. Tissue material properties reflect the composition and quality of the collagen and 

mineral composite, which depends on several factors. Enzymatic crosslinking of the collagen 

network prevents fibers from freely sliding, provides matrix stability, and contributes to bone 

stiffness. However, as bone matures, detrimental non-enzymatic crosslinks, referred to as 

advanced glycation end-products (AGEs), accumulate and decrease toughness (Poundarik et al., 

2015; Willett et al., 2013). Heterogeneity in collagen fiber orientation between lamellar sheets 

and differences in mineralization between older and newer osteons increase fracture toughness 

by preventing crack propagation (Goff et al., 2015; Jimenez-Palomar et al., 2015; Torres et al., 

2016). The amount of free and bound water within bone tissue also affects bone mechanical 

properties, with bound water in particular shown to be positively related to post-yield properties 

(Unal and Akkus, 2015). The size, maturity, and purity of mineral crystals also likely have an 
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influence on bone strength, but this relationship is not yet understood (Unal et al., 2018). 

Looking toward clinical measurement of bone tissue properties, microindentation is a relatively 

new technique that measures local (~350 µm) cortical bone stiffness in vivo at sites with minimal 

soft tissue such as the anterior tibia shaft. The Bone Material Strength index (tip depth in 

bone/tip depth into reference material) measured by the OsteoProbe indenter has been shown to 

be significantly lower for individuals with history of fragility fractures versus non-fractured 

controls (Rozental et al., 2018; Schoeb et al., 2020), but requires further validation. 

Bone structure describes the geometric distribution of tissue within a bone. At the 

macrostructural level, cortical bone mechanics depend heavily on the inner and outer diameter, 

which together determine cortical thickness, area, and cross-sectional moment of inertia. Cortical 

thickness and area contribute to compressive and tensile stiffness, which is proportional to cross-

sectional area (CSA). Cross sectional moment of inertia, which increases as material is 

distributed further from the neutral axis of the bone, is related to stiffness under bending loads. 

Given a constant CSA, a thinner cortex with greater inner and out diameter is better adapted to 

resist bending than a smaller bone. Cortical area and cross sectional moment of inertia have been 

shown to be significantly compromised in women with distal radius fracture versus non-fractured 

individuals (Schneider et al., 2001). Cortical bone microstructure is often described in terms of 

cortical porosity (Ct.Po; %), which increases with age (Bjørnerem et al., 2018; Vilayphiou et al., 

2016), is inversely related to bone strength (Currey, 1988; Schaffler and Burr, 1988), and can 

discriminate osteopenic and osteoporotic women with and without fractures (Bala et al., 2014) 

(Figure 2.2). Trabecular bone structure is typically described in terms of bone volume fraction 

(BV/TV; %), trabecular thickness (Tb.Th; mm), and trabecular number (Tb.N; mm-1). Bone 

volume fraction is the ratio of bone tissue volume to total volume (inclusive of marrow space). 
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Trabecular thickness refers to the average diameter of trabecular struts, and trabecular number is 

related to the number of struts within a given volume. High bone volume fraction, with high 

trabecular thickness and number, is indicative of a stiffer trabecular region. 

 

Figure 2.2: Common bone microstructure parameters used to describe trabecular and cortical 

bone structure. Trabecular number quantifies the number of bone struts per millimeter, and 

trabecular thickness reflects the average strut thickness. Cortical porosity is a relative measure of 

pore volume, and cortical thickness refers to the average thickness of the cortical shell. 

 

The quantity of bone tissue is typically described in terms of bone mass or density. Bone 

mass reflects the total amount of mineral present within a region, and is typically referred to as 

bone mineral content (BMC; g). Bone density reflects the amount of mineral within a given 

region, normalized to the size of the region. When bone mineral density is measured using DXA, 

the two-dimensional image yields density in terms of mass per unit area, or areal BMD (aBMD; 

g/cm2). When bone density is measured using three-dimensional imaging modalities, the result is 

a volumetric bone mineral density in terms of mass per unit volume (vBMD; g/cm3). It is also 

important to distinguish between apparent and tissue mineral density, where apparent density 

refers to the average density of a region, inclusive of pores. Tissue mineral density, on the other 



Chapter 2: Background 

15 

hand, refers to the density of mineralized tissue only, exclusive of pores. Tissue and apparent 

density are generally similar for cortical bone, while apparent density is much lower for 

trabecular bone and is driven largely by bone volume fraction.  

Bone mass and strength change over the course of an individual’s lifetime (Figure 2.3). 

Bone mass increases during childhood as the skeleton undergoes substantial growth, with 39% of 

mass acquired between ages 12 and 16 (Weaver et al., 2016). In women, 80-90% of lifetime 

bone mass is accrued by age 16 (Henry et al., 2004), and peak bone mass is achieved at the hip at 

age 19 and the lumbar spine at age 20 (Xue et al., 2020). Maximizing peak bone mass in early 

adulthood has a meaningful effect of lifetime fracture risk, with one statistical model predicting 

that each 1% increase in peak bone mass corresponds to a 1.3 year delay in the onset of post-

menopausal osteoporosis (Hernandez et al., 2003). Peak bone mass is generally thought to be 

maintained into the fourth decade, but newer high resolution imaging studies suggests that 

deterioration of bone microstructure, especially within the trabecular compartment, may begin by 

age 30 (Riggs et al., 2008). Therefore, early adulthood is a critical and relevant age range for 

targeting interventions that increase bone strength and prevent early bone loss.  

 
Figure 2.3: Typical lifetime trajectory of bone mass in females. Bone mineral accrual occurs 

during childhood and adolescence, with bone mass reaching a peak between ages 18-20. Rapid 
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bone loss occurs perimenopausally, followed by slower loss later in life (adapted from Weaver 

(2016) Osteoporosis International). 

 

2.3 Assessment of Human Bone Structure via In Vivo Medical Imaging  

There are several imaging modalities available clinically and/or in research settings for 

the visualization of human bone structure in vivo (Figure 2.4). As previously mentioned, DXA is 

the most widely used imaging tool for the clinical estimation of bone fracture risk. An important 

benefit of DXA over 3D X-ray imaging is relatively low radiation dose, which makes it safe to 

image central sites including the lumbar spine and proximal femur. The major limitations of 

DXA are lack of 3D structural information, the inability to separate cortical and trabecular 

compartments, and the confounding influence of bone size and shape on areal density.  

 

Figure 2.4: Current available methods for the assessment of bone strength and fracture risk. (A) 

DXA forearm scan with standard ultradistal (UD), middle (MID) and one-third of arm length 

(1/3) regions, used to calculate aBMD (g/cm2). (B) Clinical CT scan of the distal radius, acquired 

with a transverse pixel size of 234 µm and slice thickness of 625 µm. (C) HRpQCT image of the 

distal radius, acquired with isotropic voxel size of 82 µm. 

  

Computed tomography (CT) is a clinically available 3D imaging modality that uses X-

rays to visualize bone structure in vivo (Figure 2.5). Quantitative computed tomography (QCT) 

analysis measures aspects of bone structure within a region of interest, and the cortical and 
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trabecular compartments can be assessed separately. Calibration phantoms with known 

potassium phosphate-equivalent density or calcium hydroxyapatite equivalent density standards 

can be used to calculate a linear relationship between CT attenuation values and apparent bone 

mineral density (Troy and Edwards, 2018). Clinical CT scans are typically acquired with an in-

plane resolution and slice thickness less than 1.5 mm, enough to visualize the cortical shell but 

insufficient to resolve trabecular microstructure. QCT is most often used to calculate cortical and 

trabecular density, volume, and bone mineral content (Table 2.1). The volume of a region of 

interest is the product of voxel size and the number of voxels, and bone mineral content (g) is the 

product of average apparent density (g/cm3) and bone volume (cm3). Several structural indices 

can also be determined using QCT, including moment of inertia, compressive strength index, and 

bending strength index. Overall, QCT consistently outperforms DXA in estimating bone fracture 

strength (Cody et al., 1999; Edwards et al., 2013; Johannesdottir et al., 2017), but CT imposes a 

much larger ionizing radiation dose (Shepherd et al., 2015). Therefore, QCT is generally limited 

to research settings, but is seen as a valuable tool for clinical trials of novel pharmaceuticals 

because of its sensitivity to detect bone changes. 
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Figure 2.5: (A) Clinical resolution CT scan of the distal radius and wrist carpals, used to 

perform QCT analysis to measure changes in bone macrostructure, as well as generate patient-

specific continuum finite element models. (B) A calibration phantom containing three 

compartments of synthetic material with known density is included in each scan. (C) A linear 

calibration equation is used to determine the CT greyvalue threshold to (D) segment the region 

of interest based on density.  
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Table 2.1: Common quantitative computed tomography (QCT) parameters calculated for a 

region of interest (ROI) 

Metric Description Calculation 

Volumetric Bone Density 

(vBMD; g/cm
3
) 

Average grey value within ROI, 

converted to density using 

calibration phantom  
𝑣𝐵𝑀𝐷 =

∑ 𝑣𝐵𝑀𝐷𝑖
𝑛𝑣𝑜𝑥
𝑖

𝑛𝑣𝑜𝑥
 

Bone Volume 

(BV; cm
3
) 

Calculated from number of 

voxels and voxel volume within a 

given ROI 
𝐵𝑉 = 𝑛𝑣𝑜𝑥 ∗ 𝑣𝑜𝑙𝑣𝑜𝑥  

Bone Mineral Content 

(BMC; g) 

Calculated from vBMD and BV 

for a given ROI 
𝐵𝑀𝐶 = 𝑣𝐵𝑀𝐷 ∗ 𝐵𝑉 

Cross-Sectional Area 

(CSA; cm
2
) 

Calculated separately for each 

transverse slice and averaged 

over ROI 
𝐶𝑆𝐴 =

∑ 𝑛𝑣𝑜𝑥,𝑗 ∗ 𝑎𝑟𝑒𝑎𝑣𝑜𝑥
𝑛𝑠𝑙𝑖𝑐𝑒
𝑗

𝑛𝑠𝑙𝑖𝑐𝑒
 

Compressive Strength 
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 In the last two decades, high-resolution peripheral quantitative computed tomography 

(HRpQCT) has enabled in vivo imaging of human bone microstructure at peripheral sites (distal 

radius and tibia) (Laib et al., 1998). With an isotropic voxel size of 82 µm, HRpQCT is capable 

of resolving individual trabeculae and larger cortical pores (Figure 2.6) (Buie et al., 2007; 

MacNeil and Boyd, 2007). A standard HRpQCT scan consists of a stack of 110 transverse slices 

covering a 9.02 mm axial length. The axial scan size is limited because of long scan times (~3 

minutes per stack) and large volumes of data generated for high-resolution images. It is 

important to note that because the image resolution is similar to that of true trabecular thickness, 

the built-in analysis scripts rely on assumptions for the indirect calculation of some parameters 

(Table 2.2) that can be directly measured from micro-CT in animals or using ex vivo 

histomorphometry of human bone biopsies. Nonetheless, HRpQCT parameters have been shown 

to successfully distinguish women with and without history of forearm fracture (Nishiyama et 

al., 2013; Sornay-Rendu et al., 2017). The newest generation of HRpQCT has a 61 µm voxel size 

(Manske et al., 2015), and further improvements may enable direct trabecular microstructure 

quantification in the future.  
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Figure 2.6: HRpQCT is used to measure changes in human bone microstructure. (A) A two-

dimensional scout view indicating the transverse position of a standard distal radius scan, 

consisting of 110 slices with an isotropic voxel size of 82µm. (B) Transverse view of a distal 

radius scan, with periosteal and endosteal contours generated using the semi-automatic 

contouring procedure in green. (C) Segmented image obtained using contours, which is used to 

define (D) the cortical and trabecular compartments in three dimensions. 
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Table 2.2: Common HRpQCT parameters used to characterize bone microstructure at the distal 

radius and tibia (*Calculated using the Scanco Extended Cortical Analysis (Burghardt et al., 

2010)) 

Parameter Description 

Total Density 

(Tt.BMD; g/cm3) 

Apparent density of total area within periosteal boundary, inclusive of 

cortical pores and marrow spaces 

Trabecular Density 

(Tb.BMD; g/cm3)  

Apparent density of area within the endosteal boundary, inclusive of 

marrow spaces. Can be defined separately for the Inner (inner 60%) 

and Meta (outer 40%) regions 

Cortical Density* 

(Ct.BMD; g/cm3) 
Apparent density of cortical region, inclusive of cortical porosity 

Total Area 

(Tt.Area; mm2) 
Average cross sectional area of total area within periosteal boundary 

Trabecular Number 

(Tb.N; mm-1) 

Average number of trabeculae per linear mm, calculated directly using 

3D ridge extraction methods (Hildebrand and Rüegsegger, 1997) 

Trabecular Thickness 

(Tb.Th; mm) 

Calculated indirectly using 𝑇𝑏. 𝑇ℎ =
𝑇𝑡.𝐵𝑀𝐷

1200𝑔 𝑐𝑚3⁄ ∗𝑇𝑏.𝑁
, where 1200 g/cm

3
 

is the density of fully mineralized bone  

Cortical Thickness* 

(Ct.Th; mm) 
Average distance between endosteal and periosteal boundaries 

Cortical Porosity* 

(Ct.Po; %) 

Cortical pore volume normalized to the total cortical volume inclusive 

of pores 
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2.4 Bone Cells and the Dynamics of Bone Structure 

Bone tissue contains cells that drive dynamic processes including growth, repair, and 

adaptation. There are four main cell types present in bone tissue: osteoclasts, osteoblasts, bone 

lining cells, and osteocytes. Osteoclasts are responsible for bone resorption. They are large (20-

100 µm diameter), multinucleated cells derived from mononuclear/phagocytic cells in the bone 

marrow. Osteoclasts seal to the bone surface and release protons and proteolytic enzymes, 

forming a closed acidic microenvironment to dissolve mineral and degrade matrix proteins (Xu 

and Teitelbaum, 2013). Osteoblasts are responsible for bone formation. They are cuboidal cells 

(~10 µm in width) derived from mesenchymal stem cells that synthesize and secrete type I 

collagen and other proteins (Martin et al., 2015). Bone lining cells are flat, quiescent osteoblasts 

that form a continuous monolayer covering periosteal, endosteal, and trabecular bone surfaces. 

While bone lining cells do not secrete new bone, they are thought to play a role in 

mechanosensation and the regulation of osteoblast and osteoclast activity (Eriksen, 2010). 

Osteocytes, which make up 90% of bone cells, are mechanosensitive cells embedded within a 

complex network of bone pores. Osteocyte cell bodies reside within lacunar pores (0.5-1 µm), 

with cell processes extending into canalicular channels (50-100 nm) to form a communication 

network with nearby osteocytes and bone lining cells (Cowin, 2001; Schaffler et al., 2014). 

Osteocytes in the lacunar-canalicular network are surrounded by fluid, which allows for transport 

of metabolic and biochemical signaling molecules and generates flow-based mechanical stimuli 

during skeletal loading.  

The collective activity of osteoblasts and osteoclasts result in bone remodeling and 

adaptation. In bone remodeling, osteoblast and osteoclast activity are coupled spatially and 

temporally, with cells working in “basic multicellular units” to resorb and replace small packets 
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of tissue (Martin et al., 2015). Remodeling is important for replacing older tissue with 

microdamage, and occurs throughout the lifespan. In healthy remodeling, bone formation and 

resorption are generally balanced, with no net changes in bone volume. However, there is a 

temporary increase in porosity and decrease in mechanical properties as formation lags behind 

resorption. Therefore, rapid increases in the initiation of new remodeling sites, such as during 

menopause, contribute to increased skeletal fragility and fracture risk. During bone adaptation, 

osteoblasts and osteoclasts are uncoupled, and add and remove tissue at distinct locations, 

resulting in net changes in bone size and shape. Bone adaptation is driven by mechanical stimuli, 

whereby osteocytes sense local tissue loading and recruit osteoblasts to build bone in areas of 

high loading and osteoclasts to areas of low loading (Figure 2.7). Adaptation can lead to net 

increases in bone mass, such as in response to increased physical activity, or bone loss during 

extended periods of bed rest, spinal cord injury, or space flight.  

 

Figure 2.7: Hypothesized mechanism of strain-driven bone adaptation. Osteocyte cells 

embedded throughout bone tissue sense local mechanical strains. When strains are lower than the 

homeostatic setpoint, osteocytes release biochemical signals to recruit osteoclasts to nearby bone 

surfaces. Osteoclasts resorb bone, decreasing bone volume and stiffness, bringing strain back 
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toward homeostasis. Alternatively, when bone strains are greater than the homeostatic setpoint, 

osteocytes release biochemical signals to upregulate osteoblast differentiation, leading to 

increased bone formation. As a result, bone volume and stiffness increase, and strains decrease 

toward homeostasis.  

 

Recent advances in cell culture, microscopy, and molecular biology techniques have 

allowed researchers to identify several mechanisms by which osteocytes sense mechanical 

loading and regulate adaptation. Potential mechanosensors within osteocytes include integrin 

proteins, primary cilia, G protein-coupled receptors, and stretch-mediated ion channels (Hughes 

and Petit, 2010). Once stimulated, osteocytes undergo cellular changes such as increased 

intracellular calcium signaling (Lewis et al., 2017) and release of adenosine triphosphate (ATP) 

(Kringelbach et al., 2015), nitric oxide (NO), and prostaglandins (PGE2), which upregulate bone 

formation (Schaffler et al., 2014). Mechanical loading also decreases osteocyte expression of 

sclerostin (Galea et al., 2017), a protein that inhibits osteoblast differentiation by downregulating 

the canonical Wnt signaling pathway. Thus, loading increases Wnt signaling and promotes bone 

formation. During periods of disuse, lack of mechanical loading leads to osteocyte apoptosis, 

triggering the release of nuclear factor κΒ ligand (RANKL), a critical biochemical stimulant of 

osteoclast differentiation and activity (Cabahug-Zuckerman et al., 2016; Kogianni et al., 2008; 

Nakashima et al., 2011). While there are likely additional pathways yet to be identified, these 

studies provide strong evidence of a biological basis for load-driven bone adaptation. 

2.5 Origins of the Theory of Load-Driven Bone Adaptation 

While the cellular mechanisms governing load-driven bone adaptation have been 

identified relatively recently, the relationship between bone form and (mechanical) function has 

been appreciated for centuries. In 1638, Galileo noted that larger vertebrates have stouter bones 

than smaller vertebrates, and suggested that there is an evolutionary relationship between body 
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size and bone dimensions (Galileo, 1638; Martin, 2007). In 1892, Julius Wolff published The 

Law of Bone Remodeling, which outlined his “trajectorial hypothesis” that trabecular bone is 

“designed” to follow stress trajectories within bone. This hypothesis was inspired by the work of 

anatomist Georg Hermann von Meyer and structural engineer Karl Culmann, who recognized the 

similarity between trabecular bone structure in the femur, as observed by von Meyer, and stress 

trajectories within a similarly shaped curved crane designed by Culmann (Huiskes, 2000). While 

“Wolff’s Law” has largely dominated the bone adaptation narrative, it was in fact Roux who 

first, in 1881, hypothesized that bone is a self-regulating tissue in which cells align themselves 

and their matrix with principal stress trajectories (Martin et al., 2015). This description of bone 

as an adaptive tissue was further developed by Harold Frost, who in 1987 published his 

“mechanostat” theory (Figure 2.8) (Frost, 1987). Frost described bone adaptation as a 

homeostatic feedback mechanism, where non-customary loads act as a controlling stimulus 

driving activity of effector cells (osteoblasts and osteoclasts). He suggested that, like a 

thermostat, the bone mechanostat has threshold loading values; below a disuse threshold bone is 

removed, and above a minimum effective load threshold bone is added. Removing tissue from an 

underloaded trabecular strut decreases its cross-sectional area, increasing stress and strain and 

restoring homeostasis. Conversely, adding tissue to an overloaded strut decreases stress and 

strain toward the homeostatic setpoint. Frost’s theory served as the foundation for many 

subsequent theoretical descriptions of bone adaptation, and inspired decades of research to 

further characterize the mechanostat and determine its osteogenic thresholds.  
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Figure 2.8: The relationship between mechanical strain and bone strength as proposed by Harold 

Frost’s Mechanostat Theory (Frost, 2003). When mechanical stimuli are low, such as during bed 

rest, there is a net bone resorption response. The homeostasis window represents habitual 

mechanical loads to which bone is adapted and yield no net changes. In the mild overload 

window, such as during initiation of a new exercise intervention, there is a dose-dependent bone 

formation response. Ultimately, too much mechanical loading can be detrimental, with loads in 

the pathological overload window leading to fracture or bone stress injury. Adapted from Frost 

(2003) Anat. Rec. Part A. 

 

2.6 Functional Bone Adaptation in Animal Models 

In vivo loading animal models have been a valuable tool in characterizing the influence 

of specific loading parameters on adaptation. Animal models are beneficial because modifiable 

loading waveforms can be applied in a highly repeatable fashion using controlled, involuntary 

test setups. This means that loading parameters such as magnitude and rate can be systematically 

varied to quantify their influence on adaptation. Additionally, bone tissue loading in the region of 

interest can be measured directly using strain gauges placed surgically in on the periosteal bone 

surface. Starting in the 1960s, early models in the rabbit tibia, sheep radius, and turkey ulna 

applied cyclic loads between transverse pins placed surgically through the cortical shaft. These 

models established that dynamic rather than static loads are required for adaptation (Hert et al., 

1971; Lanyon and Rubin, 1984; Rubin and Lanyon, 1984). They also demonstrated that strain 
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rate (O’Connor et al., 1982), strain magnitude (Rubin and Lanyon, 1985), and strain gradient 

(Gross et al., 1997) measured at the periosteal surface are related to changes in cortical bone 

area. Since the 1990s, most studies have used noninvasive models applying cyclic axial 

(Torrance et al., 1994) or bending (Turner et al., 1991) loads to the limbs of rats or mice, which 

avoid a surgery-induced wound healing response and are feasible to apply in larger experiments 

with more animals. These models have provided further evidence of the importance of strain 

magnitude (Mosley et al., 1997; Sugiyama et al., 2012), strain rate (Mosley and Lanyon, 1998; 

Turner et al., 1995), and the interaction of magnitude and rate (Hsieh and Turner, 2001) in 

generating a cortical response. They also demonstrated that only brief bouts of loading are 

needed to trigger an adaptive response, because bone becomes desensitized with continued 

loading cycles (Turner, 1998; Umemura et al., 1997). In the trabecular compartment, artificial 

mechanical loading leads to increases in BV/TV via trabecular thickening in the rabbit femur 

(Van Der Meulen et al., 2009), mouse tibia (Fritton et al., 2005), and mouse vertebral (Lambers 

et al., 2011) loading models. 

In the last decade, a growing number of studies in animal models have focused on 

quantifying the relationship between tissue loading and trabecular bone adaptation at the local, 

tissue level. This requires identification of individual adaptation sites and quantification of bone 

strain throughout the region of interest. Identifying bone formation and resorption sites requires 

within-animal bone changes to be measured over time in vivo, rather than comparing animals 

between groups or using a contralateral limb control. Some studies have used a series of injected 

fluorescent bone formation markers to label new bone formation (Cresswell et al., 2016; Kim et 

al., 2003), but this does not allow for measurement of bone resorption. Alternatively, time-lapse 

micro-CT imaging (voxel size 10-80 µm (Christen and Müller, 2017)), where sequential scans 
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are aligned using rigid image registration, can be used to identify regions of added and removed 

bone (Birkhold et al., 2015; Schulte et al., 2011). Strain fields within loaded bone are estimated 

for the whole region of interest using micro-CT-based finite element (FE) models. Using these 

techniques, it has been shown that there is a measurable association between high strains and 

bone formation and low strains and resorption (Cresswell et al., 2016; Kim et al., 2003; Lambers 

et al., 2015; Schulte et al., 2013a). 

The value of the large empirical data sets generated by animal models is they provided a 

foundation for mathematical descriptions of bone loading dose related to their osteogenic 

potential. Dennis Carter developed a “daily loading stimulus” metric (Carter et al., 1987), 

calculated as:  

 

𝑆 = [∑𝑁𝑗𝜀𝑗
𝑚

𝑘

𝑗=1

]

1/𝑚

 (2.1) 

Where N is the number of cycles at strain magnitude, 𝜀, and m is a constant set to greater than 

one to account for the decay in response as number of cycles increases. Charles Turner proposed 

an “osteogenic index” (Turner, 1998), which describes a cyclic loading waveform in terms of 

frequency, magnitude, and duration as: 

 𝑆 = log⁡(1 + 𝑁𝑗)𝐸𝑗 (2.2) 

where  

 
𝐸𝑗 =∑𝜀𝑖𝑓𝑖

𝑛

𝑖=1

 (2.3) 

Here, Ej represents the intensity of the waveform, calculated as the product of the strain 

magnitude, ε, and frequency, f, of a waveform with i frequency components. The logarithmic 

term accounts for “diminishing returns” of increasingly high number of cycles due to 
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desensitization. These and similar metrics provide an objective measure of loading that can be 

used to compare animal studies with varying loading parameters, and have served as the basis for 

mathematical models of bone adaptation capable of driving predictive simulations of adaptation 

to artificial loading interventions (Schulte et al., 2013b).  

2.7 Functional Bone Adaptation in Humans 

 Substantial effort has been made to quantify the influence of mechanical loading during 

physical activity and exercise on human bone adaptation. This has primarily occurred through 

observational studies comparing athletic and sedentary populations and clinical trials assessing 

the prospective effect of specific interventions. In both cases, bone adaptation and mechanical 

loading need to be measured.  

2.7.1 Measurement of Human Bone Adaptation 

Load-driven changes in human bone structure are measured from medical images 

acquired over time. As in animal models, adaptation can be measured globally, as change in 

average parameters in a region of interest (i.e. density, trabecular thickness), or locally, by 

identifying specific regions of bone formation and resorption. When measuring global changes, it 

is important to select the same region of interest at each time point. With DXA, this is 

accomplished by standardized patient positioning and using automated manufacturer programs to 

define the region of interest (Scerpella et al., 2016). With QCT, in addition to standardizing 

patient positioning, image registration can be used to align scans during analysis (Bhatia et al., 

2015; Edwards et al., 2015). A benefit of QCT is that scans typically include relatively large 

anatomical regions in 3D, with multiple anatomical landmarks that can facilitate repeatable 

definition of analysis regions. HRpQCT on the other hand, only includes a small, 9.02 mm 

region, meaning small differences in patient position can lead to poor overlap between scans. 
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Therefore, patient positioning is controlled using standardized braces made by the scanner 

manufacturer, and a 2D scout scan is performed prior to scanning to aid in selecting the region of 

interest using the joint as an anatomical reference point (MacNeil and Boyd, 2008). Remaining 

errors due to rotation and subjectivity in selecting the scan region are corrected in the 

manufacturer’s standard longitudinal analysis program by only including overlapping slices as 

defined by 2D cross sectional area matching. 

Identifying local adaptation between longitudinal scans was initially developed for micro-

CT in animal models (Birkhold et al., 2015; Schulte et al., 2011; Waarsing et al., 2004). Scans 

acquired at different time points are aligned using 3D image registration (Boyd et al., 2006) and 

segmented into binary images. Voxels present in both images are labeled quiescent, those present 

at baseline only as resorbed, and those at follow-up only as formed. This approach has been 

successfully applied to relate bone adaptation to local tissue strains in the mouse tibia (Birkhold 

et al., 2014) and caudal vertebra (Lambers et al., 2015; Schulte et al., 2013a) loading models. 

This method is susceptible to precision errors related to partial volume effect and registration 

error, but given the high resolution of micro-CT, such errors have been shown to be small 

compared to real changes (Schulte et al., 2013a). Applying a similar approach to HRpQCT scans 

to label local adaptation in vivo in humans is more challenging, because the voxel size (82 µm) 

is closer to that of average trabecular thickness and is more susceptible to partial volume effect 

and other short-term precision errors. Therefore, if all added or removed voxels were labeled as 

adaptation similar to micro-CT, a larger proportion of adaptation would be associated with error 

versus real change, limiting the ability to detect measurable relationships between strain and 

adaptation. Christensen et al. (2014) developed methods to identify local areas of adaptation 

from registered HRpQCT images. Their algorithm operates on aligned, subtracted greyscale 
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images, and only includes continuous regions of a minimum size and grey value change to 

exclude noise. This method was applied to HRpQCT scans of the distal tibia in postmenopausal 

women, and adaptation was successfully correlated to bone strain (Christen et al., 2014) 

calculated using a reverse load estimation algorithm (Christen et al., 2013). However, local 

human bone adaptation has yet to be correlated to bone strain based on real, prospectively 

measured forces.  

2.7.2 Measurement of Bone Loading in Humans 

Bone strain has been identified as the controlling mechanical stimulus of adaptation in 

animal models, and is therefore expected to influence human bone adaptation. Direct 

measurement of bone strain is invasive, and therefore limited to small studies in research 

settings. A small number of studies in humans, the first published in 1975 (Lanyon et al., 1975), 

have used strain gauges applied to the outer bone surface directly or using bone staples to 

measure normal and shear strain during various activities (Burr et al., 1996; Földhazy et al., 

2005; Milgrom et al., 2000). This technique is limited to a small region of the outer surface of 

sites with minimal soft tissue, and strain gauges cannot be left in the body long-term. More 

recently, Yang et al. (Yang et al., 2015, 2014) developed a method for measuring tibia 

deformations by calculating displacement of small optical markers on bone screws inserted into 

the periosteal bone surface. While they have produced valuable data that can be used to validate 

less invasive estimates of bone strain, these techniques are not feasible to implement in the 

clinic.  

 Force and acceleration sensors have been used to provide objective, indirect estimates of 

bone loading. Ground reaction forces have historically been used to characterize the intensity of 

bone loading (Fuchs et al., 2001; Hind and Burrows, 2007), but are challenging to measure for 
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large cohorts or in everyday use because force platforms are expensive and require a 

sophisticated biomechanics laboratory. Pressure-sensing insoles have been recently explored as a 

tool for measuring vertical ground reaction force and may enable force tracking outside 

laboratory settings. Alternatively, worn accelerometers are relatively inexpensive and can be 

easily used by participants to collect motion data in their everyday lives. Using cadaveric 

mechanical testing, it has been shown that statistical models considering limb acceleration 

measured using accelerometers and either bone cross sectional area or body mass significantly 

predict bone strain measured using strain gauges placed on the tibia and radius (Burkhart et al., 

2012; Edwards et al., 2009). Several in vivo studies have explored accelerometer-based 

parameters such as counts, intensity, or slope to track physical activity and predict bone density 

changes (Ahola et al., 2009; Heikkinen et al., 2007; Rowlands and Stiles, 2012; Vainionpää et 

al., 2005). Additionally, sensor data can be used to calculate loading indices for a given activity 

or individual. Charles Turner suggested that his Osteogenic Index (Equation (2.2)) could be 

adapted to estimate the osteogenic potential of exercises based as 

 𝑂𝐼 = 𝑙𝑜𝑎𝑑𝑖𝑛𝑔⁡𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦⁡ × ln⁡(𝑁 + 1) (2.4) 

where loading intensity is the product of peak ground reaction force magnitude and loading rate 

(Turner and Robling, 2003). Ahola et al. (2010) used worn accelerometer data to calculate daily 

impact scores using weighted histogram analysis of acceleration intensities. Scores were 

calculated based on Carter’s Daily Stress Stimulus (Equation (2.1)) as 

 

𝐷𝐼𝑆𝐸𝑥𝑝 = [∑𝑁𝑗𝑎𝑗
𝑚

32

𝑗=1

]

1/𝑚

 (2.5) 

 where Nj is the number of impacts at the jth acceleration level and m is an empirical constant set 

to 4. They also calculated an accelerometer-based score similar to Osteogenic Index, as  
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𝐷𝐼𝑆𝑙𝑜𝑔 =∑𝑎𝑗ln⁡(𝑁𝑗 + 1)

32

𝑗=1

 (2.6) 

and showed that both scores were significantly correlated to changes in areal bone mineral 

density in the hip and cortical bone changes measured with QCT (Ahola et al., 2010). While 

accelerometers are useful for tracking activity intensity within individuals over time, they do not 

consider bone structure, which has a large influence on bone strain and varies widely between 

individuals. Additionally, sensor measurements do not reflect how strain is distributed within a 

region of bone.  

 Alternative to direct measurement of force or acceleration, several questionnaires have 

been developed to retrospectively estimate bone loading. Subjects report which activities they 

participate in as well as the average frequency and duration of participation for each activity. 

Activities are then weighted by loading intensity, which is based on the opinion of clinicians or 

in some cases, data of ground reaction forces from biomechanical studies in the literature. 

Multiple bone-specific surveys have been validated against densitometry (Dolan et al., 2006; 

Dowthwaite et al., 2015; Weeks and Beck, 2008) and HRpQCT values (Popp et al., 2019), 

showing that higher scores generally correlate to improved bone density and microstructure. 

However, these surveys are limited in that they assume equal activity-specific loading intensity 

between individuals, and at best, score intensity based on external forces rather than bone strain.  

2.7.3 Finite Element Models for Estimating In Vivo Bone Strain 

Finite element (FE) modeling allows for the non-invasive estimation of bone strain. The 

finite element method is a numerical technique that discretizes an object with complex geometry 

and/or material properties into smaller geometric regions, or “elements”, with a simple shape 

defined by connected node points. Each element is assigned a stiffness matrix, which defines 
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material properties such as Young’s modulus and Poisson’s ratio for a linear elastic material. The 

forces, displacements, and constraints applied at the edges of the model are considered boundary 

conditions. The finite element method solves for nodal displacements, which depend on how the 

boundary conditions propagate and interact with each element’s stiffness matrix. Element stress 

and strain tensors and other metrics of interest are calculated in post-processing. FE modeling 

has been applied in the orthopedic biomechanics field since the 1970s (Huiskes and Chao, 1983), 

and complexity and patient-specificity has generally increased in parallel with growing 

computational power. Most relevant to the design of personalized exercise interventions, patient-

specific models based on medical image scans allow bone strain to be estimated for a specific 

individual. 

FE models of bone are also characterized by whether they are continuum or micro-FE 

models. Continuum models have a solid geometry, and structural heterogeneity such as cortical 

porosity and marrow spaces are implicitly accounted for in the element material properties 

(Figure 2.9). For CT-based models, this is accomplished using density-elasticity relationships 

(Helgason et al., 2008; Morgan et al., 2003) derived from mechanical testing of bone samples to 

map material properties to individual elements based average apparent density. Continuum FE 

models can be generated using clinical resolution CT scans, allowing for large regions of bone to 

be included. Boundary conditions including joint contact forces, muscle and ligament forces, and 

constraints are applied to simulate internal skeletal loading. When validated against cadaveric 

mechanical testing, continuum FE models of bone have been shown to explain 60-94% of 

variability in bone strain (Anderson et al., 2005; Bhatia et al., 2014; Edwards et al., 2013; Fung 

et al., 2017; Gupta et al., 2004; Keyak et al., 1993).  
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Figure 2.9: Continuum FE models approximate bone geometry, (A) which consists of trabecular 

bone struts thinner than the typical voxel size of (B) clinical resolution CT scans. (C) Therefore, 

continuum CT-based FE models have a solid geometry and incorporate structural heterogeneity 

by mapping inhomogeneous material properties such as Young’s modulus (E) based on density-

calibrated CT gray values. Part (A) adapted from MacNeil (2008) Bone. 

 

Micro-FE models explicitly model trabecular microstructure separate from marrow space 

(Figure 2.10). Therefore, unlike continuum models, micro-FE models capture the mechanical 

effect of trabecular structure and orientation. The tradeoff of this detail is increased 

computational expense and the need for medical images with high enough resolution to capture 

individual trabeculae approximately 100-300 µm thick. In animals, micro-CT is capable of 

imaging whole bones in vivo at a resolution as low as ten micrometers, and micro-CT-based FE 

models are the gold standard for estimating bone strain during artificial loading interventions 

(Lambers et al., 2015; Schulte et al., 2013a; Webster et al., 2015). In humans, HRpQCT is 

capable of imaging trabecular microstructure in vivo, but is limited to small transverse regions 

(~1 cm thick). This limits the ability to simulate physiological boundary conditions, which has 
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been shown to affect bone strain distribution (Johnson and Troy, 2017b). Therefore, while 

HRpQCT-based micro-FE models are clinically useful to estimate overall stiffness within the 

scanned region as an estimate of overall fracture risk (Melton et al., 2007; Pahr and Zysset, 2016; 

van Rietbergen and Ito, 2015; Vilayphiou et al., 2010), they cannot accurately predict trabecular 

bone strain distribution during exercise.  

 

Figure 2.10: (A) HRpQCT-based micro-FE meshes are generated directly from voxel 

coordinates with an element size of 82µm. (B) Standard FE analyses of HRpQCT scans simulate 

platen boundary conditions applied at the proximal and distal surfaces. (C) Distribution of 

energy equivalent strain throughout the micro-FE mesh and in a (D) coronal view cross-section. 

 

2.7.4 Evidence of the Role of Mechanical Loading on Human Bone Adaptation 

In general, the intensity of mechanical loading during exercise is positively correlated 

with the magnitude of bone adaptation in humans. Compared to non-athletes, female athletes in 

high impact (volleyball, track and field jumping) and odd impact sports (soccer and tennis), but 

not low impact activities (powerlifting and swimming), have greater tibia cortical area (Nikander 
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et al., 2010). Female college athletes also have greater trabecular density at the distal tibia versus 

non-athletes, and moderate and high-impact sports (cross-country, volleyball, basketball) lead to 

increases in bending moment of inertia over the competitive season, while odd-impact sports 

(soccer) improve polar moment of inertia (i.e. torsional resistance) (Weidauer et al., 2014). 

Longitudinal studies also suggest that long-term participation in high-intensity sports leads to 

beneficial skeletal adaptation that is sustained into adulthood. Faulkner et al. (2003) showed that 

total body, lumbar spine, and hip aBMD were significantly greater for elite prepubertal female 

gymnasts versus age-matched controls (Faulkner et al., 2003), and a follow-up study showed that 

differences were maintained even when gymnasts had been retired for ten years on average 

(Erlandson et al., 2012). Looking at the upper extremity, gymnastics is associated with increased 

forearm aBMD and BMC (Bareither et al., 2008; Scerpella et al., 2016). Among adult female 

professional tennis players, BMC at the proximal humerus, humeral shaft, and distal radius has 

been shown to be 9-16% higher in the playing versus non-playing arms, compared to 3-5% side-

to-side differences in age-matched controls (Kannus et al., 1995). These side-specific loading 

adaptations were generally maintained five years later, despite decreases in average training 

volume (Kontulainen et al., 2001).  

In addition to observational studies in athletic populations, novel mechanical loading can 

also initiate bone adaptation in average individuals. A meta-analysis of nine controlled trials in 

premenopausal women showed that on average, impact loading interventions lead to significant 

increases in lumbar spine and femoral neck aBMD (Martyn St James and Carroll, 2010). When 

impact interventions with and without resistive loading were compared, impact-only 

interventions (vertical jumping, skipping) showed a significant effect at the femoral neck only, 

while combined impact-resistive interventions (circuit training, group fitness) showed a 
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significant effect at both sites (Martyn St James and Carroll, 2010). A separate meta-analysis of 

six trials of brief (<30 min) high impact exercise protocols (vertical jumping) showed significant 

increases in bone density at the hip but not the spine (Babatunde et al., 2012). This is in 

agreement with Zhao et al. (2014), who also showed that jumping interventions increased bone 

density at the hip only (Zhao et al., 2014). Looking at bone microstructure measured with 

HRpQCT, Hughes et al. (2018) showed that eight weeks of basic combat training resulted in 

trabecular bone formation and increased intracortical remodeling, with significant increases in 

micro-FE estimated stiffness and failure load (Hughes et al., 2018). 

Very few studies have systematically measured the influence of specific loading 

parameters on adaptation. Wang et al. (2004) conducted a prospective trial of 24 healthy 

premenopausal women who performed a simple, controlled upper extremity “dynamic impact 

loading” task over 24 weeks, and showed that reaction force magnitude was significantly and 

positively related to change in distal radius and total forearm aBMD (Wang and Salem, 2004). 

Warden et al. (2019) compared bone strain distribution within the proximal humerus of the 

throwing and non-throwing arm in a single representative player, and showed that FE-estimated 

strain energy density was lower and more uniformly distributed in the throwing arm (Warden et 

al., 2019). Several studies have calculated the Osteogenic Index (Turner and Robling, 2003) 

(Equation (2.2)) or other loading scores to characterize their loading interventions (Santos-Rocha 

et al., 2006; Tolly et al., 2014), but data actually correlating loading scores to bone changes is 

limited and inconsistent (Erickson and Vukovich, 2010; Lester et al., 2009; Rantalainen et al., 

2011). Jamsa et al. (2006) found that among adult women wearing accelerometers for 12-

months, experiencing more large vertical peak accelerations was associated with larger increases 

in femoral neck aBMD (Jämsä et al., 2006). In the same group, high numbers of accelerations 
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with large slope, indicative of high loading rate, was also shown to positively correlate with 

density at the hip (Heikkinen et al., 2007). Ultimately, data from this study was adapted to 

calculate daily impact scores using formulations based on Carter’s Daily Stress Stimulus 

(Equation (2.1)) and Turner’s Osteogenic Index (Equation (2.2)), and both scores were 

significantly correlated (R up to 0.550) to change in bone density at the hip (Ahola et al., 2010). 

These and similar accelerometer-based loading scores (Hannam et al., 2017; Kelley et al., 2014; 

Pennline, 2014; Rowlands and Stiles, 2012) may prove useful in monitoring bone loading, but 

lack of information about how accelerations generate strain distributions within bone tissue limit 

their application for characterizing bone adaptation.  

2.8 Prediction of Load-Driven Adaptation  

 Accurate predictions of load-driven bone adaptation could be used to inform the design 

of personalized exercise interventions or orthopedic implants, and to explore the interaction of 

pharmaceuticals and loading in silico. Toward this aim, several forward bone adaptation 

simulations combining mathematical and FE modeling have been developed. In these 

simulations, loading is applied to an FE mesh to calculate a bone loading stimulus, typically 

related to strain. This stimulus is fed into a mathematical algorithm that determines where bone 

should be added, removed, or remain quiescent. These changes are implemented by modifying 

the geometry and/or material properties of the FE mesh, which is resubmitted for FE analysis 

under the same loading condition. This iterative loop continues until some predetermined 

convergence or time-related criteria is met. 

 Early bone adaptation simulations modeled bone as a solid, continuum material, and 

updated Young’s moduli of elements based on FE-estimated stress and strain (Beaupré et al., 

1990a; Carter et al., 1987; Fyhrie and Carter, 1986; Hart et al., 1984; Huiskes et al., 1987). 
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Earlier models were also mostly phenomenological, meaning stress or strain directly control 

density without explicit consideration of cell behavior. For example, Fyhrie and Carter (1986) 

developed a theoretical framework describing bone as a self-optimizing material that undergoes 

changes in apparent density, ρ, in response to an “effective stress,”𝜎𝑒𝑓𝑓, as 

 
𝜌 = 𝐴 × √𝜎𝑒𝑓𝑓

2  (2.7) 

where A is an empirical constant (Fyhrie and Carter, 1986). This algorithm was implemented 

using a generic 3D model of a human proximal femur with homogenous trabecular density, and 

showed that given 

 𝜎𝑒𝑓𝑓
2 = 2𝐸𝑈 (2.8) 

where E is elastic modulus and U is strain energy density, produced a realistic density 

distribution (Fyhrie and Carter, 1990). Huiskes et al. (1987) incorporated a “lazy zone” (Table 

3), with modulus increasing linearly above and below thresholds centered around a homeostatic 

level (Huiskes et al., 1987). This can be written mathematically as 

 
𝑑𝐸

𝑑𝑡
= [

𝐶(𝑈 − (1 + 𝑠)𝑈𝑛) 𝑈 > (1 + 𝑠)𝑈𝑛
0 (1 − 𝑠)𝑈𝑛 ≤ 𝑈 ≤ (1 + 𝑠)𝑈𝑛

𝐶(𝑈 − (1 − 𝑠)𝑈𝑛) 𝑈 < (1 − 𝑠)𝑈𝑛

] 
(2.9) 

 

where Un is the homeostatic setpoint for strain energy density, (1+s)Un is the threshold for 

formation, (1-s)Un is the threshold for resorption, and C is the slope of the line defining 

remodeling velocity outside of the lazy zone. In contrast to phenomenological algorithms, 

mechanistic simulations were proposed to explicitly model osteoclast and osteoblast behavior, 

with high strains or tissue microdamage initiating local, time-dependent changes based on 

apposition and resorption rates measured histologically (Beaupré et al., 1990b; Hart et al., 1984; 

Hazelwood et al., 2001; Martin, 1995). Overall, continuum simulations of bone adaptation have 
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been shown to provide reasonable estimates of bone adaptation to normal and modified loading 

conditions, but are fundamentally limited by lack of trabecular microstructure data.  

The development of improved imaging techniques sparked interest in modeling 

trabecular bone adaptation at the tissue level. Weinans et al. (1992) showed in a two-dimensional 

plate model that a strain energy density-driven remodeling algorithm yielded a discontinuous 

density distribution similar to trabecular bone struts. Building upon this work, Mullender et al. 

(1994) separated the behavior of sensor cells (osteocytes) from actor cells (osteoclasts, 

osteoblasts) (Mullender et al., 1994). The model assumes that osteocytes are distributed 

throughout bone tissue, and each sense a local mechanical strain stimuli, Si, and release 

biochemical signals in proportion to the difference between Si and some reference stimulus, k. At 

a given location x on the bone surface at time t, the overall adaptation stimulus (sensed by 

osteoblasts and osteoclasts), Φ, is the cumulative sum of biochemical signals received from N 

nearby osteocytes, written as 

 

Φ(𝑥, 𝑡) =∑𝑓𝑖(𝑥)(𝑆𝑖 − 𝑘)

𝑁

𝑖=1

 (2.10) 

Where fi(x) is the spatial influence function accounting for the decay of biochemical signals 

further from an osteocyte. Given di(X) as the distance between location x and osteocyte i, the 

spatial influence function is written as  

 𝑓𝑖(𝑥) = 𝑒
−[𝑑𝑖(𝑥)/𝐷] (2.11) 

Where D is the decay constant giving the distance at which the signal is equal to 36.8% of its 

original strength. Change in bone density at location x is proportional to the stimulus Φ. When 

applied to the same plate model as Weinans et al. (1992), the simulation generated realistic 

trabecular shapes capable of realigning in response to modified loading conditions. Importantly, 
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the model incorporating mesh-independent osteocyte mechanosensors avoided a checkerboard 

artifact noted by Weinans caused by stress-shielding of adjacent elements. In a subsequent 

publication, the Mullendar algorithm was applied to a 3D micro-FE model generated from an ex 

vivo micro-CT scan of human vertebral trabecular bone (Mullender et al., 1998), marking a shift 

toward 3D simulations relying on increasing computational power. 

 Several simulations modeling 3D trabecular bone adaptation using micro-FE models of 

bone structure have been proposed. Ruimerman et al. (2005) extended the framework of Mullender 

to have separate terms for osteocyte sensing, load-driven osteoblast formation, and spatially 

random osteoclast resorption. This algorithm was used to study the influence of selecting different 

mechanical stimuli (i.e. SED versus principal stresses and strains) (Ruimerman et al., 2005b), but 

has only been implemented using small (3x33 mm3) artificial bone cubes. Morgan et al. (2015) 

also used Equation (2.11) from Mullender et al. (1994) to calculate an osteocyte mechanical 

stimulus for a 3D simulation of trabecular bone adaptation in an in vivo rabbit bone loading model 

(Morgan et al., 2015). Micro-FE models were generated for 3.6x3.6x3.6 mm3 trabecular bone 

cubes, and simulation predictions were compared to experimentally measured differences between 

loaded and non-loaded limbs. Simulations captured average group trends in trabecular 

histomorphometric parameters and structural anisotropy, but not all specimen-specific changes. 
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Table 2.3: Summary of bone adaptation theories applied in several examples of strain-driven 

trabecular bone adaptation simulations in the literature. 

 Mechanical Stimulus Adaptation Behavior 

Huiskes et al. 

(1987) J. 

Biomechanics. 

Difference between FE-estimated 

strain energy density and 

homeostatic strain energy density 

𝑈 − 𝑈𝑛 

 

Adachi et al. 

(2001) J. 

Biomech. Eng. 

Stress non-uniformity, Γ , (eq. 12-

13) 

 

Schulte et al. 

(2013) Bone. 

Neighborhood strain energy density 

osteocyte stimulus, P(x) (eq. 11) 

 

Morgan et al. 

(2015) J. 

Biomechanics. 

Neighborhood strain energy density 

osteocyte stimulus, F(x) (eq.14) 
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Adachi et al. developed a theoretical framework in which trabecular bone adapts to 

achieve uniform stress distribution on bone surfaces (Adachi et al., 2001, 1997). Stress is 

calculated for each micro-FE element, and at each surface location xc, stress non-uniformity, Γ, is 

calculated as  

 
Γ(𝑥𝑐) = ln (

𝜎𝑐
𝜎𝑑
) (2.12) 

where σc is the stress at xc and σd is a distance-weighted average stress of neighboring elements. 

Neighborhood stress is calculated over the trabecular surface, S, as  

 
𝜎𝑑 = ∫𝑤(𝑙)𝜎𝑟𝑑𝑆

𝑠

/∫𝑤(𝑙)𝑑𝑆
𝑠

 (2.13) 

Where 𝜎𝑟 is the stress at a neighboring point a distance l from xc, and w(l) is a linear distance 

weighting function such that closer osteocytes have a larger relative contribution. Stress non-

uniformity determines remodeling behavior (Table 2.3), with positive values favoring formation 

and negative values favoring resorption. When stress at a location is similar to that of its 

neighborhood (i.e. 
𝜎𝑐

𝜎𝑑
≈1), Γ approaches zero, and no net change occurs. When stress at a location 

is greater than its neighborhood, Γ is positive and new elements are added to the surface, decreasing 

stress and creating a more uniform distribution. In contrast, elements are removed in low stress 

areas. This stress non-uniformity algorithm was applied to a micro-CT derived 5x5x5 mm3 

trabecular bone cube acquired from the unloaded limb in a canine bone loading experiment, and 

produced qualitatively similar changes as observed in the loaded limb (Adachi et al., 2001).  

 Schulte et al. (2013) developed and validated a load-driven adaptation simulation using in 

vivo time-lapse micro-CT scans acquired before and after a vertebral loading intervention in mice. 

The remodeling algorithm was driven by local strain energy density, with a loading stimulus P(x) 

calculated for each surface voxel at location x as 
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𝑃(𝑥) =∑𝑒
−
(𝑥−𝑥𝑖)

2

2𝜎2 𝑆𝐸𝐷(𝑥𝑖)

𝑁

𝑖=1

 (2.14) 

where xi is the location of a nearby voxel and σ is the distance from which osteoblasts and 

osteoclasts can sense osteocyte signals. The mechanical stimulus P(x) determines the net surface 

movement velocity, according to  

 

𝑀(𝑃(𝑥)) =

{
 
 
 
 

 
 
 
 −𝑢𝑚𝑎𝑥, 𝑃(𝑥) < 𝑃𝑙𝑜𝑤𝑒𝑟 −

𝑢𝑚𝑎𝑥
𝜏

−(𝑃𝑙𝑜𝑤𝑒𝑟 ∗ 𝜏) + 𝜏 ∗ 𝑃(𝑥), 𝑃𝑙𝑜𝑤𝑒𝑟 −
𝑢𝑚𝑎𝑥
𝜏

< 𝑃(𝑥) < 𝑃𝑙𝑜𝑤𝑒𝑟

0, 𝑃𝑙𝑜𝑤𝑒𝑟 < 𝑃(𝑥) < 𝑃𝑢𝑝𝑝𝑒𝑟

−(𝑃𝑢𝑝𝑝𝑒𝑟 ∗ 𝜏) + 𝜏 ∗ 𝑃(𝑥), 𝑃𝑢𝑝𝑝𝑒𝑟 < 𝑃(𝑥) < 𝑃𝑢𝑝𝑝𝑒𝑟 +
𝑢𝑚𝑎𝑥
𝜏

𝑢𝑚𝑎𝑥, 𝑃𝑢𝑝𝑝𝑒𝑟 +
𝑢𝑚𝑎𝑥
𝜏

< 𝑃(𝑥)

 (2.15) 

Such that M(P(x)) increases linearly when P(x) exceeds the formation threshold Pupper, and 

becomes saturated at some velocity umax. Similarly, M(P(x)) is negative and linearly decreases 

when P(x) falls below the resorption threshold Plower, until it becomes saturated at –umax. Surface 

changes are implemented using a nonlinear advection equation applied to a grey-scale image 

generated from the binary micro-FE mask using a Gaussian blur filter. When applied to baseline 

micro-CT scans (n=9) from a vertebral loading experiment, the simulation predicted changes in 

average BV/TV with 2.4% error, and changes in trabecular thickness, separation, and number with 

error less than 7.8%. When assessing local accuracy on a point-by-point basis, the simulation 

accurately predicted 55.4±3.9% of adaptation behavior, with 72.2±3.8% for formation versus only 

29.0±8.3% for resorption (Schulte et al., 2013b). In a second, larger study, Levchuck et al. (2014) 

conducted a validation against experimental measurements of 180 mice from multiple loading 

studies with or without additional pharmaceutical treatment (Levchuk et al., 2014). Across 

experimental groups and time points, the simulation predicted change in BV/TV with absolute 

error of means between 0.1-4.5%, and up to 18.1% for trabecular parameters.  
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 Looking forward, large-scale, tissue-level bone adaptation simulations in humans could 

help predict how loading interventions and other changes influence trabecular bone structure. Such 

simulations have only recently become feasible with advancing computational power and imaging 

ability. Tsubota et al. (2009) applied the stress non-uniformity adaptation algorithm of Adachi et 

al. (2001) to a generic micro-FE model of a human proximal femur with a uniform, isotropic 

distribution of artificial trabeculae. The predictive simulation produced a final distribution 

consistent with what is generally observed in humans, showing that the algorithm controlled by 

loading at the microscale was capable of generating realistic macro-level trabecular structures 

(Tsubota et al., 2009). Badilatti et al. (2016) applied the bone adaptation algorithm of Schulte et 

al. (2013) to micro-FE models of whole human vertebra specimens (n=2) scanned ex vivo using 

micro-CT imaging. Due to the lack of patient-specific loading information and the complexity of 

internal in vivo spinal loading mechanics, boundary conditions for the micro-FE simulation were 

estimated using a retrospective load estimation method (Christen et al., 2012) that back-calculates 

the loads to which bone structure is currently adapted to resist. In a second publication, Badilatti 

et al. (2016) showed that adaptation parameters could be modified to produce reasonable patterns 

of trabecular bone loss associated with healthy aging and osteoporosis. While qualitative 

comparisons to biopsies support the realistic nature of simulation predictions, it is currently 

impossible to fully validate this framework because there are no imaging modalities capable of in 

vivo measurement of human trabecular microstructure at the spine. Thus, the largest bottleneck in 

further development of patient-specific bone adaptation simulations is lack of experimental data 

with prospectively measured changes in trabecular bone microstructure and known loading 

conditions.  
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2.9 Establishing a Human Bone Loading Model  

 Lack of experimental data relating tissue-level bone loading stimuli to adaptation in 

humans is a critical obstacle in the development of effective bone-building exercise 

interventions. To address this challenge, prior work in our lab established an upper-extremity in 

vivo loading model that can be used to deliver a diverse range of strain signals that can be 

prospectively correlated to changes in bone structure. This is accomplished using a voluntary 

upper-extremity loading task, in which participants lean their palm on and off a flat surface to 

deliver a cyclic force to the distal radius bone within the forearm (Figure 2.11). The distal radius 

was selected as the region of interest because it is a common fracture site that can be imaged 

non-invasively using DXA, clinical CT, and HRpQCT. Additionally, the forearm is favorable to 

the lower limbs, which experience confounding cyclic loads during locomotion and other 

activities. Cadaveric mechanical testing replicating the forearm loading task showed that a 300 N 

load generated a minimum principal strain of -1695±396 µε in the radius (Troy et al., 2013). An 

in vivo pilot study found that over 28 weeks, premenopausal women who performed the loading 

task (n=19, 50 cycles/day, 3 days/week) experienced small increases in bone mineral content 

versus control subjects (n=7) who lost bone (+0.25±2.37% versus -1.70±1.16%, p<0.05). 

Changes in ultradistal radius structure were measured using QCT of clinical resolution scans.  
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Figure 2.11: The upper-extremity loading model uses a forearm loading task to apply cyclical, 

compressive force to the radius bone through the palm of the hand. Loading is performed using a 

custom loading device that guides and records applied vertical force. Biofeedback is provided by 

programmable LED indicator lights that turn on at ±10 N of the target load. Recorded load cell 

waveforms can be used to calculate achieved loading parameters such as average peak force, 

FAVG. 

 

Additionally, our lab developed and validated subject-specific continuum and multiscale 

(continuum plus micro-FE), CT-based FE models simulating the forearm loading task (Figure 

2.12). Continuum models generated from clinical resolution CT scans consist of 3D tetrahedral 

meshes of the distal 10 cm of the radius, the radius cartilage, and the scaphoid and lunate carpals. 

When compared to cadaveric mechanical testing, the FE models predicted experimentally 

measured strains at matching locations (R2=0.86, RMSE 11.1% of maximum measured strain) 

(Bhatia et al., 2014). Data from the pilot loading study showed that when the distal radius was 

divided into 12 subsections, average FE-estimated energy equivalent strain magnitude was 

positively correlated with 14 week changes in QCT parameters (Bhatia et al., 2015). To quantify 

tissue-level bones strain on the level of individual trabeculae, Johnson et al. (2017) developed 

and validated a multiscale FE model that combines clinical resolution CT and HRpQCT-based 
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meshes (Johnson and Troy, 2017c). A micro-FE mesh at the distal radius HRpQCT scan site is 

tied between distal and proximal continuum sections, which allows boundary conditions to 

reflect physiological loading through the wrist while estimating tissue-level trabecular strains in 

the ultradistal region. When model-predicted strains were compared to strain gauge 

measurements, values were significantly and linearly related (r=0.70, p<0.001). 

 

Figure 2.12: Multiscale FE model. HRpQCT scans are converted to voxel-based micro-FE 

meshes, which are inserted into the continuum model to estimate tissue-level trabecular strain 

during forearm loading. 

 

This Dissertation builds upon previous efforts, introducing HRpQCT and multiscale-FE 

as well as predictive simulations to our subject-specific approach to understanding bone 

adaptation. This project is based a prospective, controlled, randomized clinical experiment 

involving 102 healthy premenopausal women using the forearm loading model. Study 

participants were assigned to one of five groups: low (1800 µε) strain magnitude, high (3600 µε) 

strain magnitude, low (4500 µε/s) strain rate, high (36000 µε /s) strain rate, or non-loading 
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control. Strain-based loading assignments were made using subject-specific FE models, and 

changes in bone structure are evaluated using serial bone imaging. In Chapter 3, we perform a 

cross-sectional analysis to explore the factors influencing bone strain at baseline. In Chapters 4 

and 5, we will compare changes in bone structure between experimental groups, and relate bone 

strain and adaptation of bone macro- and microstructure. While Chapters 4 and 5 retrospectively 

describe the relationship between strain and adaptation, Chapter 6 explores the use of a forward 

bone adaptation simulation, driven by bone strain, to predict changes in radius bone structure. 

 

 



Chapter 3: Aim 1 

52 

Chapter 3: Aim 1, Quantify the Relationship between 

Mechanical Loading History, Bone Structure, and FE-Estimated 

Bone Strain in the Human Forearm 
 

Published in Bone Reports as: 

Mancuso, Megan E., Joshua E. Johnson, Sabahat S. Ahmed, Tiffiny A. Butler, and Karen L. 

Troy. 2018. “Distal Radius Microstructure and Finite Element Bone Strain Are Related to Site-

Specific Mechanical Loading and Areal Bone Mineral Density in Premenopausal Women.” Bone 

Reports 8 (July 2017): 187–94. https://doi.org/10.1016/j.bonr.2018.04.001. 

 

3.1 Introduction 

Peak bone mass, achieved during late adolescence (Bass et al., 1999; Bonjour et al., 

1991; Haapasalo et al., 1996; Theintz et al., 1992), is a critical determinant of lifetime bone 

health. Increased peak bone mass in females has been linked to lower fracture risk (Bonjour et 

al., 2009; Boot et al., 2010; Tabensky et al., 2001; Zebaze et al., 2007) and delayed onset of 

osteoporosis (Hernandez et al., 2003). Therefore, bone-building strategies targeting young adults 

have the potential to make a substantial impact in fracture prevention. However, premenopausal 

women are not routinely counseled on methods to improve their bone health (Kling et al., 2014), 

and screening tools such as dual energy X-ray absorptiometry (DXA) and fracture risk 

calculators are expensive and invalid for young adults, respectively (Cosman et al., 2014). While 

mechanical loading consistently promotes bone formation in animal models (Rubin and Lanyon, 

1987; Srinivasan et al., 2002; Umemura et al., 2008), human trials have yet to result in 

widespread adoption of weight-bearing activity as a means of increasing peak bone mass 

(Babatunde et al., 2012). Inconsistent outcomes may be due to the variability in how complex 

motions load bone at the tissue level. Importantly, two individuals performing the same activity 

may experience greatly different bone strains depending on how the activity is performed, the 
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internal forces produced by contracting muscles, and variability in bone mineralization and 

structure. 

Although considered the gold-standard estimate of fracture risk, DXA areal densitometry 

measurements are inherently limited by their two-dimensional nature. Most distal radius 

fractures occur in women who are osteopenic rather than osteoporotic as measured using DXA 

(Siris et al., 2004), indicating that factors besides areal bone mineral density (aBMD) affect bone 

strength and fracture risk. Indeed, a combination of density, structure, and other factors 

comprising bone quality can explain differences in the biomechanical behavior of bone better 

than bone mass or density alone (Bhatia et al., 2014; Hernandez and Keaveny, 2006). Finite 

element (FE) models based on 3D computed tomography (CT) scans allow for the accurate 

estimation of bone mechanical behavior under physiological loading conditions (Bhatia et al., 

2014). Such models have been shown to predict fracture strength better than DXA for the tibia 

(Edwards et al., 2013), and FE-estimated bone strain is predictive of structural adaptation due to 

mechanical loading in the radius (Bhatia et al., 2015). Additionally, high-resolution peripheral 

quantitative computed tomography (HRpQCT) allows for the in vivo assessment of bone 

microstructure in the forearm, which informs bone quality and complements FE bone strain. 

Together, these technologies may allow specific individuals who may benefit from exercise-

based interventions for bone health to be identified. Additionally, such interventions could be 

engineered to produce known strains resulting in consistent, clinically meaningful skeletal 

adaptation.  

With the long-term goal of developing targeted fracture prevention strategies for young 

adult women, the current work aims to compare currently available measures of bone quality and 

determine the degree to which estimates of site-specific mechanical loading are related to bone 
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microstructure and finite-element estimated bone strain. Previous studies have highlighted 

weight, height, and physical activity as potential determinants of bone quality, but have generally 

focused on whole-body loading and bone mass measured by DXA (Greenway et al., 2015; Ho 

and Kung, 2005; Petit et al., 2004; Rubin et al., 1999). Attempts to relate site-specific loading 

and radius bone structure have compared athletes and non-active controls (Dowthwaite et al., 

2015; Nikander et al., 2006; Schipilow et al., 2013), but have not considered the effects of 

loading due to recreational exercise habits across average women. In the current work, we 

assessed the ability of DXA-based measurements of aBMD, the current clinical gold standard, to 

predict FE-estimated bone strain during physiologic loading. Second, we aimed to identify 

intrinsic and modifiable factors that affect bone strain and distal radius microstructure in average 

adult women. We hypothesized that greater site-specific loading, indicated by high levels of 

physical activity, grip strength, and body mass, would predict stronger bone structure and thus 

lower strain for a given external force, independent of age and height.  

3.2 Materials and Methods: 

3.2.1 Participants 

Healthy females age 21-40 were recruited from the greater Worcester area as part of a 

larger, institutionally approved longitudinal experiment (Figure 3.1). The present study reports 

baseline cross-sectional data from the parent study. Women responding to online advertisements 

were contacted and screened via telephone survey. Individuals with irregular menstrual cycles, 

body mass indices outside the range 18-25 kg/m2, no regular calcium intake, or those taking 

medications known to affect bone metabolism were excluded. Because subjects were being 

screened for a prospective loading intervention study, individuals with a history of radius 

fracture or injury of the non-dominant shoulder or elbow, and those regularly participating (> 2 
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time per month) in sports that apply high-impact loads to the forearm (e.g. gymnastics, 

volleyball) were also excluded. Those satisfying the initial inclusion criteria were screened for 

25-hydroxyvitamin D serum levels and forearm DXA T-score during a prescreening visit 

(Hologic; Marlborough, MA). DXA scans were performed on the non-dominant forearm 

according to the manufacturer’s standard protocol, and used to calculate T-score and areal 

density within the ultradistal and total forearm regions (Figure 3.2A). Qualified subjects had 25-

hydroxyvitamin D serum above 20 ng/ml and a total forearm DXA T-score between -2.5 and 1.0. 

Data for qualified subjects (n=82) were collected either during the screening or a single visit 

within approximately two weeks of screening. All participants provided written, informed 

consent between January 2014 and November 2016. 

 

Figure 3.1: Flow diagram describing recruitment, screening, and enrollment.  

 

3.2.2 Anthropometrics and Loading Assessments 

Height was measured using a wall-mounted stadiometer, and body mass was measured 

using an analog scale. Non-dominant grip strength was measured using a hydraulic hand-grip 
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dynamometer (Baseline; White Plains, NJ) three times and averaged. Grip strength 

measurements were taken in a seated position with the elbow bent ninety degrees in flexion. 

Average daily calcium intake (mg/day) was estimated using a 10-item questionnaire that tallied 

weekly consumption of calcium-containing foods and beverages (“Getting Enough Calcium? 

Patient Calcium Questionnaire,” n.d.). 

To estimate forearm loading due to physical activity, a site-specific arm bone loading 

index (armBLI) algorithm (Dowthwaite et al., 2015) was used to score activity histories. The 

armBLI algorithm scores activities based on the magnitude, rate, and frequency (days/week) of 

loads applied to the non-dominant arm as:  

 armBLI=Σ[(Magnitude + Velocity) x Frequency x Non-Dominance] (3.1) 

where the non-dominance multiplier corrects for activities loading the dominant arm 

preferentially. The multiplier is 0.33 for predominantly unilateral activities (e.g., tennis), 0.66 for 

somewhat unilateral activities (e.g. softball), and 1.0 for bilateral activities (e.g. gymnastics). For 

each individual, an overall score is calculated as the products of activity-specific training 

volumes and armBLI indices summed over all activities performed. For the present study, 

physical activity training volumes were generated using the validated Bone Loading History 

Questionnaire (BLHQ) (Dolan et al., 2006), which was used to collect physical activity history in 

this group. Briefly, training volume is calculated as the product of years of participation, the 

seasons participated per year (fraction out of four), and a frequency score ranging from 1 to 4 

reflecting training sessions per week (1=1-3 times per month, 2=1-2 times per week, 3=3-5 times 

per week, and 4=>5 times per week). To assess the relative importance of upper-extremity 

physical activity during different stages of development, separate mean annual scores 

(armBLI/year) were calculated for adolescent (age 10-18) and adult (age 19-current age) loading. 
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3.2.3 High-Resolution Peripheral Quantitative Computed Tomography 

High-resolution peripheral quantitative computed tomography (HRpQCT; XtremeCT, 

Scanco Medical; Brüttisellen, Switzerland) scans of the distal radius in the non-dominant arm 

were performed according to the manufacturer’s standard in vivo scanning protocol (Figure 

3.2B). The scans consisted of 110 slices with an isotropic voxel size of 82 µm, encompassing a 

9.02 mm axial region beginning 9.5 mm proximal to a reference line placed at the distal 

endplate. All scans were performed by trained technicians, and daily and weekly quality control 

scans were performed. Each scan was graded for motion on a scale from 1 (no motion) to 5 

(severe motion artifact) (Pialat et al., 2012), and only scans scoring 3 or better were included in 

the analysis.  

HRpQCT scans were analyzed using the manufacturer’s semi-automatic standard 

morphological (MacNeil and Boyd, 2007) and cortical (Buie et al., 2007; Andrew J Burghardt et 

al., 2009; Burghardt et al., 2010; Nishiyama et al., 2009) analyses. Total BMD (mgHa/cm3), 

trabecular BMD (mgHa/cm3), mean cross-sectional area (CSA; mm2), and trabecular number 

(mm-1) were calculated using the standard manufacturer’s analysis, and cortical BMD 

(mgHa/cm3), cortical thickness (mm), and cortical porosity (%) were calculated using the dual-

threshold method (Buie et al., 2007; Andrew J Burghardt et al., 2009; Burghardt et al., 2010; 

Nishiyama et al., 2009). 

3.2.4 Continuum FE Modeling 

Clinical resolution CT scans were used to construct three-dimensional continuum FE 

models including the distal articulating surface to simulate physiologic loading through the 

scaphoid and lunate. CT scans of the distal-most 12 cm of the non-dominant forearm were 

acquired using established methods with a transverse voxel size of 234 µm and slice thickness of 
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625 µm (BrightSpeed, GE Healthcare; Chicago, IL) (Bhatia et al., 2015). A calibration phantom 

with known calcium hydroxyapatite equivalent concentrations was included for conversion from 

Hounsfield Units to apparent density to determine inhomogeneous density-based material 

properties. Mechanical behavior of the entire distal radius under physiologic loading was 

estimated from FE models (Bhatia et al., 2014) simulating distal compressive forearm loading of 

300 N (approximately one half body-weight) through the palm of the hand (Figure 3.2C). Energy 

equivalent strain (𝜀)̅ was selected as the primary FE outcome because it has been previously 

related to bone adaptation (Bhatia et al., 2015). This scalar quantity represents the total work 

done on the bone tissue, provided by the multi-axial stress-strain state: 

 

𝜀̅ = √
2𝑈

𝐸
 (3.2) 

where E is the elastic modulus, and U is the strain energy density calculated as: 

 U= 
1

2
[𝜎1𝜀1 + 𝜎2𝜀2 + 𝜎3𝜀3] (3.3) 

where σn and εn are the principal stress and strain components, respectively. Mean energy 

equivalent strain within the region corresponding to the HRpQCT-scanned region was identified 

using a custom MATLAB (Mathworks; Natick, MA) script that implemented a mutual 

information image registration algorithm considering pixel intensities. A laboratory precision 

study yielded mean rotation errors of 0.47±0.38°, 0.46±0.41°, and 0.32±0.24° in the x, y, and z 

directions, respectively, for a similar data set (Johnson and Troy, 2017c). 

A 

B 
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Figure 3.2: (A) Representative forearm DXA scan including ultradistal (UD), Middle (MID) and 

1/3 regions, and (B) distal radius HRpQCT scan (scale bar 5 mm). (C) Three-dimensional 

continuum FE model used to estimate energy equivalent strain (𝛆̅) within the HRpQCT scanned 

region. 

 

3.2.5 Statistical Analysis 

The normality of each measured variable was assessed by visual inspection of histogram 

distributions. To assess the ability of DXA-based measures to predict FE strain, a power 

regression model was constructed with ultradistal aBMD as the independent variable and mean 

energy equivalent strain as the dependent variable. Power regression was selected based on 

previous studies characterizing the relationship between bone density and mechanical properties 

(Helgason et al., 2008). Correlation and multiple regression analyses were used to identify 

intrinsic and modifiable factors that affect bone strain and distal radius microstructure. Pearson 

and Spearman correlation coefficients were calculated between subject characteristics, FE-strain, 

and HRpQCT parameters with normal and non-normal distributions, respectively. A series of 

hierarchical linear regression models were fitted for each structure and strain variable, with age 
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and height entered as intrinsic covariates and body mass, grip strength, and loading scores 

included as extrinsic, modifiable predictors. Covariates were added as a first block of 

independent variables, and then a single modifiable factor was entered in a second block, 

allowing the total variance explained by the intrinsic factors as a group and the predictive 

capability of each loading factor to be determined. The overall model residuals were visually 

inspected for normality and homoscedasticity using a plot of residuals versus predicted values. 

An alpha level of 0.05 was used to detect significance. All statistical analyses were performed 

using SPSS v22.0. 

3.3. Results 

3.3.1 Subject Characteristics 

Descriptive statistics, presented as means and standard deviations, are summarized in 

Table 3.1. Ten enrolled subjects were excluded from analyses due to incomplete physical activity 

data (n=3) or HRpQCT motion artifact (n=7). Thus, all results are reported for the seventy-two 

subjects for whom complete data were available. Daily calcium intake was below the average 

intake reported for women ages 19-50 in the United States (Bailey et al., 2010), while grip 

strength was similar to previously reported values for young adult women (Massy-Westropp et 

al., 2011; Wong, 2016). Correlation coefficients between predictors and bone structure and strain 

parameters are provided in Table 3.2. Mean energy equivalent strain within the distal region was 

significantly correlated several HRpQCT parameters, DXA aBMD, and body mass.  
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Table 3.1: Descriptive statistics for all subjects (n=72). 

Subject Characteristics Mean SD 

Age (years) 28.3 5.3 

Body Mass (kg) 63.6 8.6 

Height (cm) 164.6 6.9 

ND Grip Strength (kg) 26.4 5.2 

Vit D (ng/mL) 32 9 

Daily calcium intake (mg/day) 682 400 

Adolescent Loading Score (armBLI/year) 50 48 

Adult Loading Score (armBLI/year) 54 47 

Vit D Serum Vitamin D level, ArmBLI Arm Bone Loading Index 

 

 

Table 3.2: Correlation coefficients between subject characteristics, bone structure, and strain 

parameters. *p<0.05, **p<0.01 

    

  
Mean Energy 

Eqiv. Strain (µε) 

Age 

(years) 

Height 

(cm) 

Body Mass 

(kg) 

ND Grip 

Strength (kg) 

Adolescent 

Loading 

(armBLI/year) 

Adult Loading 

(armBLI/year) 

F
E

 

Mean Energy Eqiv. Strain (µε)   -0.004 -0.014 -0.261* -0.092 -0.029         -0.177 

H
R

p
Q

C
T

 

Total BMD (mg HA/cm3)     -0.684** 0.022 -0.253*     -0.099  -0.254* -0.182          0.005 

Trabecular BMD (mg HA/cm3)     -0.689**  -0.334**  -0.076     -0.005 0.089  0.075  0.237* 

Cortical BMD (mg HA/cm3)  -0.256*  0.301* -0.262*      0.029   -0.472** -0.085         -0.220 

Total Area (mm2)          0.092  -0.181   0.550**  0.343**    0.620**  0.145          0.190 

Trabecular Number (1/mm)    -0.327**  -0.457** 0.080      0.190  0.069  0.162          0.153 

Cortical Thickness (mm)     -0.498** 0.157  -0.160     -0.031      -0.165  -0.232*         -0.024 

Cortical Porosity (%) 0.001  -0.184 0.159     -0.027   0.285*  0.034 0.228 

D
X

A
 

areal BMD (mg HA/cm3)     -0.708**  -0.107 0.110  0.291*  0.209            -0.057 0.149 

 

3.3.2 Prediction of FE-Estimated Bone Strain and HRpQCT Microstructure 

Results of the nonlinear power regression between DXA aBMD and mean energy 

equivalent strain within the ultradistal region are presented in Figure 3.3. Areal BMD explained 

51.47% of the variability in strain, with higher density values associated with lower strains under 

a given load. 
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Figure 3.3: Mean energy equivalent strain within the ultradistal region matching the volume 

scanned with HRpQCT versus areal bone mineral density measured using DXA within the 

standard ultradistal site. 

  

Mean and standard deviations for all bone parameters, as well as the corresponding 

hierarchical regression results, are presented in Tables 3.3 and 3.4. Mean values for HRpQCT-

measured parameters agree well with those reported for young adult women (Burt et al., 2014). 

Energy equivalent strain was not significantly predicted by age or height. Adding body mass to 

the model significantly improved the prediction of strain, explaining an additional 10.0% of the 

variance (p=0.008).  

 

 

 

 

 

 

 

(g/cm2) 
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Table 3.3: HRpQCT parameter values (mean±SD) and hierarchical linear regression results. 

Parameter Mean SD Predictors R2 ΔR2 p Beta 

Mean Energy Eqiv. Strain (µε) 534.69 151.27 Age, Height <0.001  0.987  

   +Weight 0.101 0.100 0.008 -0.394 

   +Grip Strength 0.010 0.010 0.421 -0.110 

   

+Adolescent 

Loading 
0.006 0.006 0.523 0.078 

   +Adult Loading 0.033 0.033 0.134 -0.184 

DXA aBMD (mg Ha/cm3) 439.4 48.85 Age, Height 0.016  0.582  

   +Weight 0.107 0.091 0.010 0.375 

   +Grip Strength 0.048 0.032 0.133 <0.001 

   

+Adolescent 

Loading 
0.032 0.016 0.287 <0.001 

   +Adult Loading 0.033 0.017 0.276 <0.001 

R2 Total variance explained by the model, ΔR2 Additional variance explained by predictor, p significance of F-value 

change, Beta Standardized coefficient 

 

Looking at HRpQCT parameters, age and height accounted for 9.6% of the variance in 

trabecular BMD (p=0.031) as intrinsic factors, and adding adult loading score to the model 

accounted for an additional 7.1% of the variance (p=0.019). Intrinsic factors alone explained 

11.9% of the variance in cortical BMD (p=0.013), and adding grip strength to the model 

explained an additional 17.0% of the variance (p<0.001). Total cross sectional area was strongly 

predicted by age and height, which explained 31.6% of the variance (p<0.001). Adding grip 

strength to the model significantly improved the prediction of total area, explaining an additional 

17.9% of the variance (p<0.001). Intrinsic factors alone explained 17.4% of the variance in 

trabecular number (p=0.001), and body mass accounted for an additional 7.6% percent of the 

variance (p=0.011). Cortical porosity was not significantly predicted by intrinsic factors alone, 

but adding either grip strength or adult loading score improved model predictions by 5.6% 

(p=0.043) and 8.3% (p=0.013), respectively. None of the models predicting total BMD or 

cortical thickness was significant.  
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Table 3.4: HRpQCT parameter values (mean±SD) and hierarchical linear regression results. 

Parameter Mean SD Predictors R2 ΔR2 p Beta 

Total BMD (mg Ha/cm3) 298.23 51.53 Age, Height 0.064  0.101 
 

 
  +Body Mass 0.067 0.003 0.640 0.068 

 
  +Grip Strength 0.088 0.024 0.184 -0.175 

 
  +Adolescent Loading 0.068 0.004 0.584 -0.065 

 
  +Adult Loading 0.076 0.012 0.360 0.110 

Trabecular BMD (mg Ha/cm3) 162.86 30.03 Age, Height 0.096  0.031  
 

  + Body Mass 0.110 0.014 0.309 0.146 

 
  +Grip Strength 0.122 0.026 0.164 0.181 

 
  +Adolescent Loading 0.101 0.005 0.525 0.074 

 
  +Adult Loading 0.167 0.071 0.019 0.272 

Cortical BMD (mg Ha/cm3) 969.24 44.06 Age, Height 0.119  0.013  
 

  + Body Mass 0.147 0.028 0.142 0.207 

 
  +Grip Strength 0.289 0.170 <0.001 -0.464 

 
  +Adolescent Loading 0.120 0.001 0.749 -0.037 

 
  +Adult Loading 0.139 0.020 0.215 -0.144 

Total Area (mm2) 274.23 49.23 Age, Height 0.316  <0.001  
 

  + Body Mass 0.321 0.005 0.493 0.086 

 
  +Grip Strength 0.494 0.179 <0.001 0.477 

 
  +Adolescent Loading 0.316 <0.001 0.945 -0.007 

 
  +Adult Loading 0.325 0.009 0.354 0.095 

Trabecular Number (1/mm) 2.00 0.26 Age, Height 0.174  0.001  
 

  + Body Mass 0.249 0.076 0.011 0.342 

 
  +Grip Strength 0.178 0.004 0.564 0.072 

 
  +Adolescent Loading 0.195 0.022 0.179 0.148 

 
  +Adult Loading 0.198 0.024 0.158 0.158 

Cortical Thickness (mm) 0.77 0.15 Age, Height 0.047  0.189 
 

 
  + Body Mass 0.049 0.002 0.738 0.049 

 
  +Grip Strength 0.060 0.013 0.337 -0.128 

 
  +Adolescent Loading 0.072 0.025 0.178 -0.159 

 
  +Adult Loading 0.048 0.001 0.846 0.024 

Cortical Porosity (%) 1.20 0.67 Age, Height 0.050  0.169 
 

 
  + Body Mass 0.091 0.041 0.084 -0.252 

 
  +Grip Strength 0.106 0.056 0.043 0.267 

 
  +Adolescent Loading 0.050 <0.001    0.946 0.008 

 
  +Adult Loading 0.133 0.083 0.013 0.294 

R2 Total variance explained by the model, ΔR2 Additional variance explained by predictor, p significance of F-value 

change, Beta Standardized coefficient 

 

 

 



Chapter 3: Aim 1 

65 

3.4. Discussion  

The first purpose of this study was to compare the current clinical measure of fracture 

risk, areal BMD measured by DXA, with FE-estimated bone strain. While aBMD and FE strain 

are correlated, over forty-eight percent of the variability in strain is left unexplained by its 

relationship with density. Thus, while aBMD may help identify those most in need of bone-

building interventions, it does not fully describe the mechanical behavior of bone tissue under 

loading, which is critical to predicting cell-driven adaptation. Secondly, we aimed to identify 

measureable factors affecting bone strain and microstructure in healthy adult women. As 

intrinsic factors, age and height were significant predictors of trabecular number, trabecular and 

cortical BMD, and cross-sectional area but not total BMD, cortical thickness, cortical porosity or 

bone strain. Higher grip strength predicted lower cortical density and greater cross-sectional area 

and cortical porosity. Similar trends were seen in individuals with higher levels of site-specific 

adult loading, who tended to have more porous cortices and greater trabecular density. Neither 

grip strength nor adult loading significantly predicted strain, suggesting that differences in 

microstructure may compensate for each other with respect to mechanics. Finally, greater body 

mass predicted higher trabecular number and lower ultradistal strain. This suggests that within 

the normal BMI range, greater body mass is associated with improved mechanical behavior (i.e. 

lower strains under a given load), which may be attributed to more interconnected trabeculae 

supporting the distal region. Taken together, these results suggest that meaningful differences in 

bone morphology and mechanical behavior can be predicted by measurable subject 

characteristics. 

In the current study, the contribution of upper extremity mechanical loading was 

considered through the inclusion of body mass, grip strength, and questionnaire-based physical 
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activity scores. These measures are to some extent related, as more active individuals may have 

greater muscle mass, which affects both grip strength and body mass. However, each has been 

previously related to bone quality and may characterize different aspects or modes of loading. 

For example, individuals with greater body mass experience larger compressive loads during 

weight-bearing exercises, to which bone adapts. This is consistent with the observation that 

heavier individuals experienced lower-magnitude strains for a given compressive force, 

indicating stronger bone. This also supports the previously reported effects of body mass on 

lower-extremity mechanical loading (Bareither et al., 2006), areal BMD (Gnudi et al., 2007), and 

fracture risk (Morin et al., 2009). Grip strength is a functionally useful measure of muscle mass 

and strength, and has been associated with bone density, macrostructure, and strength using 

peripheral QCT (Greenway et al., 2015; Hasegawa et al., 2001; Lorbergs et al., 2011). The 

relationship between muscle mass and bone quality is complex. Individuals may be genetically 

predisposed to having larger muscles and bones or build muscle over time, which drives bone 

adaptation to increasing forces. In the current study grip strength was positively related to cross 

sectional area but not strain, suggesting that grip strength may describe global body size rather 

than adaptation to specific loads.  

Physical activity during growth and adulthood has been associated with improvements to 

bone structure (Kato et al., 2009). However, there is a lack of consensus whether loading during 

adolescence or early adulthood are more significant in determining peak bone mass (Bass et al., 

1998; Daly and Bass, 2006; MacKelvie et al., 2002). We found that adolescent loading did not 

significantly contribute to the prediction of any bone structural or strength parameter, while adult 

loading was associated with favorable trabecular BMD. Variations between previous and the 

current results may be related to differences in questionnaires or anatomic sites. As opposed to 
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other skeletal loading questionnaires, the armBLI scores activities based on the magnitude and 

frequency of forearm loading rather than using ground reaction forces (Weeks and Beck, 2008) 

or estimations of loading at the hip and spine (Dolan et al., 2006). The relationship between 

loading and structure may also be site-specific, especially considering the differences in habitual 

loading between the upper and lower extremities.  

Cortical porosity was significantly predicted by grip strength and adult loading score. 

However, correlation coefficients in both cases were negative, indicating that more active 

individuals with greater muscle mass have more porous cortices. This is somewhat surprising, as 

increased cortical porosity is associated with diminished structural integrity and increased 

fracture risk (Nishiyama et al., 2009). However, increased cortical porosity in this population 

may reflect more active remodeling units rather than degradation, driven by adaptation to 

increased applied loading. 

The current study is not without limitations. Our sample size was relatively small, and 

subjects were recruited as part of a longitudinal study with inclusion criteria developed for the 

evaluation of a loading intervention. To target individuals who would most likely benefit from 

new loading, anyone already regularly participating in activities involving frequent, high impact 

loading of the upper extremities was excluded. Additionally, only women with a DXA total 

forearm T-score falling within the range -2.5 to 1.0 were included. Therefore, the current results 

cannot be generalized to women with extreme levels of upper-extremity loading, those with bone 

mass below the expected range for their age, or those with T-score more than 1.0 SD above the 

population mean. Additionally, there may have been limitations in applying the armBLI 

algorithm to adult women with retrospective rather than prospective, calendar-based training 

histories. The accuracy with which adolescent activity was recalled may have been limited and 



Chapter 3: Aim 1 

68 

introduced additional variability, contributing to the lack of significant predictions by adolescent 

loading. Further, the armBLI was validated against DXA areal density measurements 

(Dowthwaite et al., 2015) rather than volumetric structure or FE-derived strain. Considering 

these differences, a more rigorous validation of the armBLI may be required in adult women 

using CT-based measurements.  

In summary, we have explored the relationships between clinical measures of bone 

quality, showing that the current gold-standard, DXA aBMD, does not capture the wide range of 

strains experienced during typical physiologic loading. Additionally, we have shown that 

individuals with higher levels of adult physical activity, grip strength, and body mass tend to 

have favorable bone microstructure structure. Women with higher body mass within a normal 

BMI range also had lower levels of strain under a given force, suggestive of adaptation to 

increased loads during functional activities. Overall, these results suggest the importance of 

engaging in bone-building behaviors in early adulthood, and contribute to the systematic design 

of prescribed loading interventions to better address the growing incidence of osteoporotic 

fracture.  
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4.1 Introduction 

Exercise-based interventions have long been considered a viable option for preserving and 

enhancing bone strength (Howe et al., 2011) because bone adapts to best resist its habitual 

mechanical loading environment. Individuals who play sports and load with highly variable, off-

axis loads (e.g., soccer, squash) have been observed to have better bone mechanical properties 

than those who do not (Martyn St James and Carroll, 2010; Weidauer et al., 2014). Clinical trials 

have shown that high impact activities such as jumping and hopping can improve bone density in 

growing children (Kontulainen et al., 2002) and young adults (Bailey and Brooke-Wavell, 2010) 

and maintain bone density in older adults (Korpelainen et al., 2006). However, while the 

evidence is strong that certain activities can increase bone density and structure in some 

individuals, it is not clear what specific mechanical factors govern the response. Furthermore, 

these factors interact with individual physiology to create a variable response, which is not well 

understood. 

Animal in vivo loading models demonstrate that mechanical signals related to strain rate 

(LaMothe et al., 2005; Mosley and Lanyon, 1998; O’Connor et al., 1982) and magnitude 

(Mosley et al., 1997; Rubin and Lanyon, 1985) regulate bone adaptation. There is no consensus 



Chapter 4: Aim 2A 

70 

on which specific signal(s) osteocytes sense; evidence supports lacunar-canalicular fluid flow 

(Donahue et al., 2003; Steck et al., 2003), flow of ions and the resulting electromagnetic signal 

(Kowalchuk and Pollack, 1993), direct damage of osteocytes (Hazenberg et al., 2006), 

microdamage of the surrounding bone that results in altered stress or strain (Burr et al., 1985; 

Muir et al., 2007) and other candidates (Nguyen and Jacobs, 2013). Regardless of the exact 

mechanism, all of these signals are closely related to (and driven by) mechanical strain. In vivo 

loading models have also established that, to elicit an adaptive response, the mechanical signal 

must be both dynamic and unaccustomed (Turner, 1998). Despite extensive animal literature, the 

degree to which mechanical strain magnitude and rate govern bone adaptation in humans has 

never been prospectively tested.  

One major challenge is that bone strain is difficult to measure noninvasively. As a result, 

indirect measures, such as surveys for physical activity, which include weighting factors based 

on experimentally measured ground reaction force (GRF) and rate of GRF, have been proposed 

(Dolan et al., 2006; Weeks and Beck, 2008). Others have proposed “bone loading” indices that 

are based on similar measures (e.g. accelerometry) (Ahola et al., 2010; Turner and Robling, 

2003). While these can be helpful in identifying the types of activities that should theoretically 

elicit an osteogenic response, they do not account for individual differences in bone structure, 

which have a large influence on bone strain (Bhatia et al., 2014). Alternatively, validated subject-

specific FE models can provide accurate estimates of bone strain (Gray et al., 2008; Taddei et al., 

2007; Troy et al., 2013) when the proper boundary conditions (magnitude, direction, and 

locations of application) are known.  

Our previously validated upper extremity loading model (Troy et al., 2013) provides a well-

controlled framework to understand the degree to which strain magnitude and rate influence 
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bone adaptation in people. In this model, an individual produces a compressive force through the 

radius by leaning onto the palm of the hand. Feedback is given using a scale or load cell, and 

individuals are given sound cues to assist in achieving a regular and consistent load/unload cycle. 

In a pilot group of 19 young adult women, we found that a mean energy equivalent strain of 734 

± 238  applied 50 cycles per day, 3 days per week elicited modest increases in distal radius 

bone mineral content (BMC) and prevented seasonal loss of BMC observed in a control group 

(Troy et al., 2013). We also observed that high strain regions of the radius gained significantly 

more bone than low strain regions, suggesting that the local mechanical signals were, in part, 

driving the response (Bhatia et al., 2015). Although these results were promising, the study was 

limited in scope and duration. 

Here, our purpose was to quantify the degree to which bone strain influences bone adaptation 

in the upper extremity of healthy adult women during a twelve-month prospective study period. 

Based on previous findings in humans (Bhatia et al., 2015; Troy et al., 2013) and small animals 

(Donahue et al., 2003; Hsieh and Turner, 2001; Mosley and Lanyon, 1998), we hypothesized that 

(1) bone accrual would be proportional to strain magnitude and strain rate, and (2) structural 

changes would include increased cross-sectional area and cortical thickness, and increased 

trabecular bone mass near the endosteal surface. 

4.2 Methods 

4.2.1 Participant Characteristics 

Healthy women age 21-40 were recruited from the community for this mechanistic 

randomized controlled trial (NCT04135196). This group is at peak bone mass (Baxter-Jones et 

al., 2008; Henry et al., 2004), and compared to men, have increased risk of osteoporosis later in 

life. An initial telephone interview of 497 potential participants was used to exclude individuals 
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with self-reported BMI outside the range 18-29 kg/m2, irregular menstrual cycles, no regular 

calcium intake, use of medications affecting bone health, history of radius fracture or injury to 

the non-dominant shoulder or elbow, or regular participation (>2 times per month) in activities 

with high loads at the forearm (e.g. gymnastics, volleyball). These criteria were selected to 

reduce possible adverse events and exclude individuals who were unlikely to respond to, or 

achieve, the loading stimulus. After a positive telephone interview, 159 potential participants 

provided written informed consent to be screened with dual energy x-ray absorptiometry (DXA; 

Hologic; Marlborough, MA) of the non-dominant radius and measurement of circulating levels 

of 25-hydroxyvitamin vitamin D and estradiol. Exclusion criteria were 25-hydroxyvitamin D 

serum levels below 20 ng/ml, and DXA T-score outside the range -2.5 to 1.0. In total, 102 

participants were eligible after screening and opted to enroll in this institutionally approved 

study. All participants were recruited at a single site between December 2013 and June 2017 via 

social media, posters, email newsletters, and word of mouth at nearby universities, hospitals, and 

community events. The trial was conducted in accordance with Good Clinical Practice 

Guidelines. Compliance and adverse events data were reviewed annually with a study monitor.  

4.2.2 Study Design 

This was a 12 month, prospective, mechanistic randomized controlled trial that utilized a 

distal radius compressive loading intervention to investigate the effect of strain on bone 

adaptation. After meeting eligibility criteria from screening tests, participants were assigned into 

either control or one of two exercise arms that manipulated strain magnitude (Experiment 1: low 

and high strain magnitude) or strain rate (Experiment 2: low and high strain rate, detailed in 

Table 4.2). Group assignments were made by drawing slips of paper from an envelope (e.g. 

LOW, HIGH, CONTROL), and control participants were randomized during Experiment 1. 
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Participants were blinded to the study hypotheses and were not aware of the exercises or 

instructions given to groups other than their own. Based on pilot data (Troy et al., 2013) and 

simulations that showed little benefit for loading more than 100 cycles in a single bout (Bhatia et 

al., 2013), exercise groups were instructed to apply 100 cycles of axial force (one bout), four 

times weekly, by leaning onto the palm of the hand. While participants were given a goal of four 

bouts per week, our experimental goal was to achieve an average of three bouts per week (75% 

compliance), based on the positive response we previously observed with this frequency of 

loading. Loading was accomplished using a custom device, consisting of a uniaxial load cell 

(Standard Load Cells; Gujarat, India), data logger (DATAQ DI-710, DATAQ Instruments Inc.; 

Akron, OH), and LED indicators that lit up when the applied force was within ±10 N of the 

target value. To allow participants to get used to the intervention, reduce the possibility of wrist 

soreness, and give the investigative team time to assign subject-specific forces, those in the 

exercise groups were assigned a nominal 200 N target force magnitude for the first three months 

of loading. Thereafter, a subject-specific target force was prescribed to achieve target strain 

parameters based on computed-tomography based finite element (FE) models (described below; 

Figure 4.1).  

Due to considerations of participant safety, no participant was assigned a force larger 

than 450 N or what she could comfortably and consistently apply, even if the force required to 

achieve the target strain was larger than that. Partway through the study, in response to reports of 

wrist soreness from some participants, this upper limit was reduced to 350 N. Loading magnitude 

was controlled by adjusting LED indicators on the device, while loading rate and cycle period 

were controlled using verbal instructions (e.g. “load slowly and evenly” versus “load as rapidly 

as possible”) and sound cues recorded on a portable voice recorder. Sound cues consisted of 100 
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beeps (long beeps for the slow rate group, short beeps for the fast rate group) occurring at 2-

second intervals. Compliance was monitored every three months using data logger recordings 

and log books maintained by participants. 

The primary outcome was 12 month change in integral ultradistal radius bone mineral 

content and bone mineral density (iBMC and iBMD), as measured by quantitative CT analysis 

(QCT). Secondary outcomes included 12 month changes in other regions, and microstructural 

measures with interim timepoints. A power analysis based on pilot data (Troy et al., 2013) 

determined that 20 participants per group would have 80% power to detect a 12 month change in 

BMC of 1.0±1.1%. Partway through the experiment the randomization ratio was adjusted to 

over-sample the loading groups (increasing the target enrollment by 6 participants) and to under-

sample the control group (reducing the target by 4 participants) going forward. This was to 

ensure that a sufficient number of participants had loading doses that were non-zero, even if a 

subset of those assigned to a loading group were non-compliant. 
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Figure 4.1: (A) Summary of the data collection timeline for participants assigned to exercise 

groups; (B) Loading device used to manipulate applied force magnitude via feedback lights 

(green set to target force minus 10 N, red to target force plus 10 N). Loading frequency was 

controlled using pre-recorded auditory cues. The force vs. time curve shows a representative load 

cell signal (black) versus ideal assigned loading stimulus (gray), with dashed lines indicating the 

forces at which feedback is given; (C) Linear FE model used to estimate energy equivalent strain 

in the transverse section matching the imaged site. The force-strain relationship was used to 

assign each participant a target force and calculate the resulting strain from load cell recordings. 

 

4.2.3 Data Collection 

 Demographic information and imaging data (computed tomography; CT, and high 

resolution peripheral computed tomography; HRpQCT) were collected at baseline. Hand 
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dominance was determined using the Edinburgh inventory (Oldfield, 1971). CT was collected at 

baseline and 12 months. HRpQCT was updated every three months during the study period.  

4.2.4 High Resolution Peripheral Quantitative Computed Tomography 

Changes in radius microstructure were assessed using HRpQCT (Xtreme CT I, Scanco 

Medical; Brüttisellen, Switzerland). Bilateral scans were acquired in a standard 9.02 mm region 

consisting of 110 transverse slices (82 µm isotropic voxel size) beginning 9.5 mm proximal to 

the distal endplate. Structural changes were measured for the mutually overlapping region, using 

the manufacturer’s 2D region-matching algorithm. Total mean cross-sectional area (CSA; mm2) 

and total volumetric bone mineral density (Tt.BMD; mgHA/cm3) were measured. Trabecular 

number (Tb.N; mm−1), thickness (Tb.Th; mm) and BMD (Tb.BMD; mgHA/cm3) were measured 

using the manufacturer’s standard analysis protocol. The trabecular region was further divided 

into inner (central 60%; Tb.BMDinn) and outer regions (outer 40%; Tb.BMDmeta). Cortical 

vBMD (Ct.BMD; mgHA/cm3) and cortical thickness (Ct.Th; mm) were calculated using the 

dual-threshold method (Buie et al., 2007; A. J. Burghardt et al., 2009; Burghardt et al., 2010). In 

our lab, the coefficient of variation (CV) for densitometric variables is < 0.3%. The CVs of 

microstructural variables range from 0.4-4.7%. All HRpQCT analyses were blinded to group 

assignment. 

4.2.5 Quantitative Computed Tomography Analysis 

At baseline and 12 months, CT scans of the distal-most 12 cm of the each forearm were 

acquired (GE Brightspeed, GE Medical; Milwaukee, WI; 120 kV, 180 mA, voxel size 234 µm x 

234 µm x 625 µm). A calibration phantom (QRM; Moehrendorf, Germany) with known calcium 

hydroxyapatite equivalent concentrations was included in the field of view to relate CT 

attenuation (Hounsfield Units) to equivalent bone density (g/cm3).  
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 Changes in bone macrostructure were quantified from CT data using Mimics v15.1 

(Materialise; Leuven, Belgium). Follow-up scans were registered to baseline using rigid image 

registration and the periosteal surface was defined using a 0.175 g/cm3 density threshold (Troy et 

al., 2013). Based on methods previously established (Edwards et al., 2014), we defined integral 

and endocortical compartments (denoted in QCT variable names with prefixes i and ec). Briefly, 

the integral compartment consisted of all voxels enclosed within the periosteal surface. The 

endocortical compartment was comprised of the subset of integral voxels located within 2.5 mm 

of the periosteal surface (including all cortical bone). For each compartment bone volume (BV; 

cm3), bone mineral content (BMC; g) and volumetric bone mineral density (BMD; g/cm3) were 

calculated. QCT parameters for the trabecular compartment were not analyzed. Instead, 

HRpQCT data were analyzed, which provided a greater level of detail. Using previously 

established methods (Troy et al., 2013), we also calculated compressive strength index (CSI; 

g2/cm4), and bending strength index (BSI, cm3). All parameters were calculated for total and 

ultradistal regions except for strength measures, which were only calculated for the ultradistal 

region. The total region extended 45 mm proximal from the subchondral plate and distally to the 

styloid tip; the ultradistal region extended 9.375 mm proximal from the subchondral plate. The 

CV for these QCT measures in our lab ranges from 0.7 to 2.3% (ultradistal region); 0.3 to 0.6% 

(total region); 0.9 to 2.3% (strength indices). All QCT analyses were blinded to group 

assignment. 

4.2.6 Continuum Finite Element Modeling 

Finite element models were constructed from the QCT scans using methods validated 

with cadaveric mechanical testing (Edwards and Troy, 2012). Models were used to simulate one 

cycle of axial loading to determine the subject-specific force needed to achieve the desired target 
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strain within the distal radius using Abaqus CAE (v2016, Simulia, Dassault Systèmes; Vélizy-

Villacoublay, France). We used energy-equivalent strain as the measure of interest, since it 

provides a scalar value that has been related to bone adaptation (Bhatia et al., 2015; Mikić and 

Carter, 1995). Force values were assigned to each participant based on the maximum energy-

equivalent strain within the ultra-distal region of the radius, as calculated using the continuum 

FE model for that participant. This value was used to adjust the custom loading device so that the 

LEDs would light up when that individual achieved her target strain. At all subsequent time 

points, data recorded from the load cell were applied to the FE model to calculate the actual 

mean strain within the region achieved by the participant, based on applied force (Figure 4.1C). 

4.2.7 Load Cell Analysis 

At each follow-up visit, load cell recordings were analyzed using custom code in 

MATLAB (Mathworks; Natick, MA). The beginning, peak and end of each loading waveform 

were identified using a custom algorithm, and the resulting frequency spectrum calculated using 

Fast Fourier Transform. Based on subject-specific FE models, frequency data were used to 

calculate the loading stimulus using the relationship suggested by Turner (Turner, 1998), 

 

𝐸 = ∑ 𝜀𝑖

5 𝐻𝑧

𝑖=0⁡𝐻𝑧

𝑓𝑖  (4.1) 

where E is the strain stimulus for the entire loading bout, 𝑓𝑖 is the frequency value for bin i, and 

𝜀𝑖 is the peak-to-peak energy-equivalent strain magnitude of frequency component i. A cutoff of 

5 Hz was selected based on analysis of the load cell frequency content, which showed that over 

95% of the signal power was <2 Hz. We also calculated peak-to-peak strain magnitude and 

average strain rate for the loading portion of each cycle for each participant and loading bout. 

Because voluntary loading produced variable and sometimes inconsistent loading signals, we 
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evaluated several candidate measures of “loading dose”, which was intended to serve as an 

overall metric of mechanical loading, considering strain parameters and protocol compliance. 

We considered the following candidate measures of “loading dose”: 

 StrainStim = E*[#bouts] (4.2) 

 Strain_Mag = mean(Peak-to-Peak Strain Magnitude)*[#bouts] (4.3) 

 Strain_Rate = mean(Strain Rate)*[#bouts] (4.4) 

Strain_MagRate = mean(Peak-to-Peak Strain Magnitude)*mean(Strain Rate)*[#bouts] (4.5) 

4.2.8 Statistical Analysis 

Descriptive statistics were calculated and data normality was assessed. Group demographics 

and loading dose received were compared using ANOVA and Bonferroni-corrected post hoc t-

tests. The hypothesis that bone mass would increase proportionally to the applied strain 

magnitude (Experiment 1) was tested in two ways. First, participants were analyzed by group 

using intention to treat (control vs. low and high strain magnitude groups). For this analysis, the 

12-month change in ultradistal iBMC was analyzed as the primary dependent variable in a linear 

regression model with coefficients representing contrasts between each of the two experimental 

groups and the control group. The secondary outcome measures were also compared between 

groups using regression models based on the change scores at each of the time points (change 

from baseline). Similar analyses were performed to examine the effect of strain rate on bone 

(Experiment 2). 

In the second analysis, we considered “loading dose” achieved by each participant as a 

continuous variable, with the dose for control participants being zero. Because dose includes 

both magnitude and frequency components, all groups were combined into a single regression 

model with the 12-month change in radius ultradistal iBMC as the primary outcome. The 
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secondary outcome measures were also considered. To test the hypothesis that bone structural 

changes would include increased cross-sectional area and cortical thickness, and increased 

endocortical density, these factors were treated as dependent variables in linear regression 

models, similar to the previous analyses. We assessed the F-statistic of the overall regression, 

and the t-statistic of each explanatory variable, considering =0.05 to be significant. As an 

exploratory post hoc analysis, participants were ranked by change in ultradistal iBMC, and then 

divided into tertiles (greatest, medium, and least gain in iBMC). To gain insight into what factors 

were associated with the greatest gains in ultradistal iBMC, participant demographics, baseline 

values, and metrics describing loading dose were compared between the tertiles using ANOVA. 

Where significant effects were observed, Bonferroni-adjusted post hoc t-tests were used to 

compare values between individual tertiles. 

4.3 Results 

4.3.1 Participant Characteristics 

One hundred and two women, age: 28 ± 6 years, height: 165 ± 6 cm, mass: 64 ± 9 kg 

were enrolled and randomized. Baseline characteristics are summarized in Table 4.1 and were 

not different between groups. Sixty-six participants completed the study and were included in the 

12-month analysis. Seventy-seven participants had some follow-up data available and were 

included in our analyses of interim time points (Figure 4.2). On average, participants assigned to 

one of the loading groups completed 85 (SD: 92) loading bouts in total (41% of the total 

prescribed umber). However, the total number of loading bouts varied considerably, from 0 to 

357. Strain magnitude and rate were significantly higher in the high versus low groups for 

Experiments 1 and 2, respectively (p≤0.03). However, the high strain magnitude and rate groups 
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failed to achieve the prescribed target values. All measures of loading dose were significantly 

greater for loading groups than for controls (p≤0.046; Table 4.2) 
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Figure 4.2: Consort chart describing participant flow through recruitment, data collection, and analysis. 
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Table 4.1: Mean (SD) baseline participant characteristics by group.  

Treatment Group 

Low Strain 

Magnitude 

High Strain 

Magnitude 

Low Strain 

Rate 

High Strain 

Rate Control  Total 

  n=21 n=24 n=21 n=20 n=16 n=102 

Participant Characteristics                         

Age (years) 30.3 (5.5) 29.3 (6.3) 27.2 (5.1) 27.1 (5.4) 28.2 (5.3) 28.4 (5.6) 

Height (cm) 165.8 (6.1) 161.9 (6.1) 165.0 (6.2) 164.9 (5.7) 167.3 (7.6) 164.8 (6.4) 

Body Mass (kg) 65.2 (8.8) 61 (5.9) 65.4 (9.8) 65.4 (10.0) 65 (8.9) 64.3 (8.7) 

Serum Vitamin D (ng/mL) 33.7 (9.9) 31.5 (8.9) 31.1 (12.2) 29.1 (7.8) 33.2 (7.5) 31.7 (9.5) 

DXA total forearm aBMD (g/cm2) 0.586 (0.0) 0.568 (0.03) 0.576 (0.04) 0.569 (0.04) 0.570 (0.04) 0.574 (0.04) 

DXA total forearm T-score 0.138 (0.8) -0.187 (0.63) 0.138 (0.76) -0.175 (0.74) -0.162 (0.67) -0.087 (0.70) 

Ethnicity n (%)                         

Hispanic or Latino 2 (10) 5 (21) 1 (5) 2 (10) 2 (13) 12 (12) 

Non-Hispanic 19 (90) 18 (75) 20 (95) 18 (90) 14 (87) 89 (87) 

Not Reported 0 (0) 1 (4) 0 (0) 0 (0) 0 (0) 1 (1) 

Race n (%)                         

African American 0 (0) 0 (0) 0 (0) 1 (5) 0 (0) 1 (1) 

Caucasian 16 (76) 17 (71) 16 (76) 14 (70) 13 (81) 76 (75) 

Asian 3 (14) 2 (8) 4 (19) 3 (15) 0 (0) 12 (12) 

Pacific Islander 0 (0) 0 (0) 0 (0) 1 (5) 0 (0) 1 (1) 

More Than One Race 1 (5) 2 (8) 1 (5) 1 (5) 2 (13) 7 (7) 

Not Reported 1 (5) 3 (13) 0 (0) 0 (0) 1 (6) 5 (5) 
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Table 4.2: Mean (SD) baseline of the pooled data, and percent change at 12 months in QCT 

variables, by group. 

Treatment Group 

Low Strain 

Magnitude 

High Strain 

Magnitude 

Low Strain 

Rate 

High Strain 

Rate 

  n=21 n=24 n=21 n=20 

Prescribed Loading         

Number of Sessions 208  208  208  208  

Ultradistal Mean Strain Magnitude (με) 490 (103) 748 (143) 632 (138) 641 (157) 

Strain Rate (με/s) 1485 (312) 2267 (434) 790 (173) 6410 (1570) 

Achieved Loading          
Number of Participants Completing No Loading 2 4 6 4 

Number of Sessions 126 (100) 81 (76) 70 (71) 83 (115) 

Ultradistal Mean Strain Magnitude (με)* 456 (125) 572 (171) 549 (147) 552 (147) 

Ultradistal Median Strain Magnitude (με)* 376 (86) 468 (135) 458 (113) 447 (105) 

Ultradistal Maximum Strain Magnitude (με)* 2074 (1199) 2291 (775) 2372 (883) 2494 (1108) 

Ultradistal Mean Strain Rate (με/s)* 1018 (604) 1510 (1094) 945 (499) 1698 (1167) 

StrainStim (με*s-1*Files*10-7) 141 (193) 118 (240) 36 (73) 78 (14) 

Strain_MagRate (με2*s-1*Files*10-5) 319 (353) 428 (651) 204 (255) 407 (533) 

Strain_Mag (με*Files*10-2) 493 (435) 463 (518) 343 (364) 413 (522) 

Strain_Rate (με*s-1*Files*10-3) 130 (135) 141 (186) 71 (90) 156 (214) 

*Calculations of Ultradistal Strain Magnitude and Strain Rate excluded participants who completed no loading. 

Number of Sessions and loading dose calculations include all participants randomized in each group 

Strain magnitude calculated as energy equivalent strain, which is a positive scalar       

 

4.3.2 Adverse Events 

 There were no serious adverse events. Temporary soreness of the loaded wrist was the 

most commonly reported adverse event (28% of participants; 29 reports). Two of these 

participants noted that this briefly affected their daily activities (did fewer chores or avoided 

exercises that weighted the hands), and one took ibuprofen. Eight participants reported soreness 

at other sites (elbow, shoulder, hand), which included aggravation of previous injuries (e.g. 

shoulder pain from an injury that was several years old) that they thought might be due to the 

intervention. All participants reported that soreness resolved within 3-14 days. Five participants 

reported that pain from previous injuries temporarily prevented them from completing the 

assigned loading, but did not believe this was caused or aggravated by the intervention. 
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Radiology reports indicated no visible changes in wrist anatomy between initial and 12-month 

visits. Lack of time or relocation were the most common reasons expressed for dropping out (22 

participants). 

4.3.3 Effect of Strain on 12-month Change in Bone Mass and Structure (QCT) 

 None of the regression models that included strain magnitude groups were significant for 

overall model fit, although the membership in the low strain magnitude group was associated 

with slight gains in ultradistal iBMC (p=0.041), and consistent and significant increases in CSA, 

iBV and ecBV that indicated periosteal expansion (Table 4.3). Achieved strain magnitude was 

only 25% higher for the high versus low group, and the low magnitude group completed more 

loading sessions on average than the high magnitude group. Therefore, the favorable outcomes in 

the low group may be attributable to practical limitations of the assigned loading regimen. The 

groups in which strain rate was manipulated had greater 12-month changes in QCT variables 

than those in which strain magnitude was manipulated (Figure 4.3). In models comparing the low 

and high strain rate groups to the control group, both loading groups were significantly and 

positively associated with the increases to total and ultradistal iBMC, iBMD, ecBMC, and 

ecBMD. Fifty-six and 52% of the variance in change to ultradistal and total iBMD, respectively, 

was explained by group membership of these participants (Table 4.4). Increases to ultradistal 

compressive and bending strength indices were significantly and positively associated with 

Experiment 2 loading group membership.  
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Table 4.3: Mean (SD) baseline of the pooled data, and percent change at 12 months in QCT variables, by group. 

  Total Control Low Magnitude High Magnitude Low Rate High Rate 

  (n=66) (n=13) (n=13) (n=17) (n=12) (n=11) 

  Baseline %ΔV5 %ΔV5 %ΔV5 %ΔV5 %ΔV5 

Ultradistal             

iBV (cm3) 3.84 (0.40) -1.17 (2.51) 0.75 (2.14) -0.01 (2.23) -0.29 (1.29) 0.35 (1.86) 

iBMC (g) 0.91 (0.15) -1.31 (2.68) 0.46 (1.52) -0.33 (2.03) 2.73 (2.07) 3.42 (2.21) 

iBMD (g/cm3) 0.24 (0.03) -0.59 (2.08) -0.23 (0.96) -0.33 (1.19) 3.03 (1.08) 3.07 (1.46) 

ecBV (cm3) 1.99 (0.15) -0.41 (1.49) 0.89 (1.39) 0.34 (1.58) -0.01 (1.25) 0.41 (1.46) 

ecBMC (g) 0.63 (0.18) -0.19 (4.87) 0.12 (2.46) -0.10 (2.62) 4.84 (3.64) 4.45 (3.47) 

ecBMD (g/cm3) 0.31 (0.08) 0.21 (4.52) -0.74 (2.79) -0.43 (2.59) 4.85 (3.46) 4.03 (3.30) 

Total             

iBV (cm3) 12.96 (1.55) -0.06 (0.47) -0.25 (0.52) -0.13 (0.45) 0.16 (0.64) 0.38 (0.41) 

iBMC (g) 5.10 (0.60) -0.23 (1.20) -0.45 (0.80) -0.19 (0.78) 1.97 (0.86) 1.93 (0.75) 

iBMD (g/cm3) 0.39 (0.04) -0.17 (1.14) -0.19 (0.58) -0.06 (0.78) 1.81 (0.63) 1.55 (0.86) 

ecBV (cm3) 8.24 (0.72) 0.17 (0.71) -0.07 (0.57) 0.18 (0.44) 0.45 (0.62) 0.35 (0.64) 

ecBMC (g) 4.09 (0.55) 0.15 (1.78) -0.26 (1.11) 0.00 (1.01) 2.06 (1.40) 1.72 (1.37) 

ecBMD (g/cm3) 0.50 (0.05) -0.02 (1.28) -0.20 (0.76) -0.18 (0.98) 1.60 (0.84) 1.36 (0.83) 

Ultradistal Strength             

CSA (cm2) 4.15 (0.42) -0.67 (1.67) 0.65 (1.45) 0.00 (1.48) -0.26 (1.23) 0.35 (1.75) 

CSI (g2/cm4) 0.24 (0.07) -1.81 (4.40) 0.18 (1.96) -0.65 (2.85) 5.90 (3.05) 6.62 (3.26) 

BSI (cm3) 0.12 (0.03) -0.59 (4.31) 0.32 (1.90) -0.29 (2.30) 4.74 (2.44) 4.81 (2.70) 

Data presented as mean (SD). Bold indicates significant regression coefficient representing contrast with control group for raw change   

Baseline is for participants with follow-up data available          
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Figure 4.3: 12-month changes in QCT-derived primary outcome variables. Both the low and 

high rate groups had significant differences compared to the control group in all three variables. 
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Table 4.4: Standardized regression coefficients for QCT, by group and by loading 

dose. Low1 and High1 indicate low and high strain magnitude groups from 

Experiment 1. Low2 and High2 indicate low and high strain rate groups from 

Experiment 2. 

 Model Definition R2 β1 β2 

U
D

 i
B

M
C

 (
g

) 

β1*Low1+β2*High1+ε 0.101 0.374 0.221 

β1*Low2+β2*High2+ε 0.438 0.599 0.678 

β1*StrainStim+ε 0.039 0.197   

β1*Strain_MagRate+ε 0.117 0.342   

β1*Strain_Mag+ε 0.124 0.352   

β1*Strain_Rate+ε 0.102 0.320   

U
D

 i
B

M
D

 (
g

/c
m

3
) β1*Low1+β2*High1+ε 0.009 0.091 0.101 

β1*Low2+β2*High2+ε 0.563 0.739 0.716 

β1*StrainStim+ε 0.003 0.051   

β1*Strain_MagRate+ε 0.041 0.203   

β1*Strain_Mag+ε 0.045 0.212   

β1*Strain_Rate+ε 0.044 0.209   

T
o

ta
l 

iB
M

C
 (

g
) β1*Low1+β2*High1+ε 0.019 -0.119 0.028 

β1*Low2+β2*High2+ε 0.545 0.743 0.687 

β1*StrainStim+ε 0.001 -0.028   

β1*Strain_MagRate+ε 0.008 0.091   

β1*Strain_Mag+ε 0.011 0.106   

β1*Strain_Rate+ε 0.012 0.109   

T
o

ta
l 

iB
M

D
 (

g
/c

m
3
) 

β1*Low1+β2*High1+ε 0.005 -0.018 0.059 

β1*Low2+β2*High2+ε 0.520 0.756 0.627 

β1*StrainStim+ε 0.001 0.027   

β1*Strain_MagRate+ε 0.023 0.153   

β1*Strain_Mag+ε 0.036 0.189   

β1*Strain_Rate+ε 0.012 0.166   

Bold For R2 indicates p<0.05 for F-test of overall model fit 

Bold For β1 or β2 indicates p<0.05 for t-test of significance for 

coefficient 

 

In models examining the effects of loading dose on the changes to bone, ultradistal 

iBMC, iBV, and ecBV were all positively and consistently associated with measures of loading 

dose, especially Strain_MagRate (Figure 4.4A). However, in all cases, loading dose explained 

less than 15% of the variance in the change values. The StrainStim metric was not related to 

change in any variable. 
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Figure 4.4: (A) Percent change in ultradistal iBMC versus Strain_MagRate. (B) Percent change 

in Tb.BMDinn versus Strain_MagRate. Both plots represent 12-month change for all participants 

with available data. 

A 

B 
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4.3.4 Effect of Strain on 3, 6, 9, and 12 Month Bone Microstructure (HRpQCT) 

 After three months, membership in the low and high magnitude loading groups explained 

up to 17% of the increases in Tt.BMD compared to the control group (Table 4.5). Similarly, high 

loading rate was significantly associated with three-month increases to Tt.BMD, Ct.BMD and 

Ct.Th. Strain_MagRate, Strain_Mag, and Strain_Rate were all significant predictors for the 

change in Tt.BMD and Ct.Th, although 12% or less of the variance in these measures was 

explained by loading dose. 

 At six months, none of the microstructural changes were different between groups. 

However, at nine months, the low strain magnitude group was significantly and positively 

associated with increases to Tt.BMD, Tb.BMD, Tb.BMDinn, and Tb.BMDmeta (Figure 4.5). 

Similarly, the high strain magnitude and low strain rate groups were positively associated with 

changes to Tb.BMDinn. Strain_MagRate and Strain_Rate were positively associated with the 

increase to Tb.BMDinn in nine months. These changes persisted at 12 months, with 

Strain_MagRate being associated with increases to Tb.BMD and Tb.BMDinn (Figure 4.4B). 
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Table 4.5: Mean (SD) of baseline and percent changes of HRpQCT measures during each visit 

(V1 at baseline through V5 at 12 months), by group. 

    Baseline %ΔV2 %ΔV3 %ΔV4 %ΔV5 

C
o

n
tr

o
l 

Tt.BMD (g/cm3) 292.46 (45.29) -1.35 (1.16) 1.29 (2.90) 0.36 (2.25) 1.52 (3.67) 

Tb.BMD (g/cm3) 168.94 (36.08) -1.21 (1.75) -0.54 (2.14) -1.78 (2.30) -0.15 (3.61) 

Tb.BMDMeta (g/cm3) 226.58 (37.12) -0.71 (1.19) -0.14 (2.09) -0.83 (1.88) 0.76 (3.75) 

Tb.BMDInn (g/cm3) 129.13 (37.03) -2.01 (2.87) -1.04 (2.49) -2.96 (3.08) -1.43 (3.91) 

Ct.BMD (g/cm3) 851.54 (42.73) -0.79 (0.80) 1.46 (2.65) 1.83 (2.03) 2.14 (1.69) 

Tb.N (mm-1) 2.09 (0.27) -1.40 (5.81) 0.55 (12.01) 2.20 (7.55) 4.70 (7.90) 

Tb.Th (mm) 0.07 (0.01) 0.40 (4.94) 0.19 (11.92) -3.35 (7.55) -4.18 (8.63) 

Ct.Th (mm) 0.72 (0.09) -0.42 (2.46) 0.47 (2.46) -0.33 (2.94) 0.49 (3.38) 

Ct.Po (%)* 0.01 (0.01) -3.61 (15.33) 3.29 (18.50) 10.98 (21.33) 12.47 (18.81) 

L
o

w
 M

a
g

n
it

u
d

e 

Tt.BMD (g/cm3) 305.66 (56.40) 0.39 (1.98) 0.70 (3.06) 2.59 (2.28) 1.23 (2.71) 

Tb.BMD (g/cm3) 157.28 (28.74) -0.23 (1.73) 0.62 (2.41) 1.06 (1.46) -0.04 (1.96) 

Tb.BMDMeta (g/cm3) 220.84 (28.96) -0.08 (1.74) 0.55 (2.01) 0.91 (1.94) -0.37 (1.57) 

Tb.BMDInn (g/cm3) 113.34 (30.02) -0.42 (2.55) 0.71 (3.36) 1.35 (1.55) 0.43 (3.13) 

Ct.BMD (g/cm3) 883.92 (46.19) 0.38 (1.57) 0.50 (1.77) 2.58 (2.28) 2.12 (1.84) 

Tb.N (mm-1) 1.95 (0.24) -2.56 (6.43) -1.86 (8.31) 0.57 (8.51) -1.07 (10.21) 

Tb.Th (mm) 0.07 (0.01) 2.74 (6.21) 2.99 (7.36) 0.99 (7.34) 1.90 (10.31) 

Ct.Th (mm) 0.81 (0.17) 0.23 (2.36) -0.09 (4.64) 0.28 (2.05) -0.98 (3.25) 

Ct.Po (%)* 0.01 (0.00) -7.19 (13.85) 11.33 (30.73) 7.59 (34.34) 9.83 (32.27) 

H
ig

h
 M

a
g

n
it

u
d

e 

Tt.BMD (g/cm3) 292.59 (55.28) 0.29 (1.92) 0.90 (1.94) 1.98 (1.84) 2.16 (3.07) 

Tb.BMD (g/cm3) 162.39 (31.41) 0.20 (2.16) -0.32 (2.30) -0.23 (1.99) 0.72 (2.39) 

Tb.BMDMeta (g/cm3) 220.08 (30.15) 0.05 (1.98) -0.34 (1.71) -0.25 (1.17) 0.47 (1.84) 

Tb.BMDInn (g/cm3) 122.55 (32.84) 0.43 (2.80) -0.36 (3.52) -0.26 (3.30) 0.95 (3.65) 

Ct.BMD (g/cm3) 856.44 (45.47) 0.19 (1.74) 1.16 (1.94) 2.50 (2.35) 2.23 (2.08) 

Tb.N (mm-1) 2.00 (0.22) -1.52 (6.33) 2.00 (6.78) 0.32 (11.14) 2.06 (9.07) 

Tb.Th (mm) 0.07 (0.01) 2.22 (7.40) -1.90 (6.49) 0.53 (10.37) -0.57 (8.25) 

Ct.Th (mm) 0.75 (0.16) -0.94 (4.89) 0.11 (2.97) -0.34 (6.12) -0.16 (3.60) 

Ct.Po (%)* 0.01 (0.01) 4.24 (24.66) 10.71 (28.76) 21.13 (70.73) 15.54 (28.43) 

Table 4.5 continued on next page 
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L
o

w
 R

a
te

 
Tt.BMD (g/cm3) 317.87 (54.93) 1.01 (4.28) 1.00 (3.47) 1.13 (3.10) 2.64 (3.75) 

Tb.BMD (g/cm3) 165.17 (31.53) -1.21 (3.14) 0.73 (2.01) 0.19 (1.85) 0.90 (2.32) 

Tb.BMDMeta 

(g/cm3) 
221.74 (28.89) -0.88 (2.85) 0.56 (1.78) -0.03 (1.44) 0.17 (1.91) 

Tb.BMDInn 

(g/cm3) 
126.03 (34.34) -1.61 (3.66) 0.89 (2.74) 0.44 (3.07) 1.83 (3.56) 

Ct.BMD (g/cm3) 905.71 (54.85) 0.96 (2.33) 0.84 (2.37) 0.93 (1.98) 1.69 (2.36) 

Tb.N (mm-1) 2.06 (0.29) -3.43 (6.50) 3.25 (11.80) 3.19 (10.83) 1.93 (8.22) 

Tb.Th (mm) 0.07 (0.01) 2.69 (7.29) -1.31 (11.11) -1.99 (10.40) -0.33 (8.44) 

Ct.Th (mm) 0.80 (0.15) 1.46 (4.27) 0.91 (3.26) 0.73 (2.63) 2.16 (2.54) 

Ct.Po (%)* 0.01 (0.01) -5.38 (22.23) 4.76 (37.46) 7.34 (20.28) 7.05 (24.78) 

H
ig

h
 R

a
te

 

Tt.BMD (g/cm3) 313.83 (42.68) 2.78 (3.09) 0.87 (3.73) 0.34 (3.03) 0.94 (3.06) 

Tb.BMD (g/cm3) 156.46 (28.97) -0.04 (1.82) 0.34 (2.05) -0.56 (2.49) 0.40 (2.43) 

Tb.BMDMeta 

(g/cm3) 
215.45 (28.07) -0.09 (1.29) 0.05 (1.64) -1.01 (2.06) 0.11 (2.01) 

Tb.BMDInn 

(g/cm3) 
115.66 (30.34) -0.22 (3.65) 0.91 (3.73) 0.23 (3.63) 0.80 (3.96) 

Ct.BMD (g/cm3) 913.44 (40.74) 1.13 (2.28) 0.52 (2.94) 0.64 (2.65) 0.69 (2.31) 

Tb.N (mm-1) 1.93 (0.24) 3.37 (9.27) 5.15 (10.97) 0.17 (9.69) 0.28 (9.84) 

Tb.Th (mm) 0.07 (0.01) -2.66 (7.35) -3.66 (9.25) -0.09 (8.89) 0.87 (8.29) 

Ct.Th (mm) 0.83 (0.11) 3.74 (3.64) 0.47 (3.18) -1.06 (2.61) 0.41 (3.29) 

Ct.Po (%)* 0.01 (0.01) -3.93 (23.04) 0.26 (21.38) -2.21 (27.96) 7.00 (25.33) 

Table 4.5 continued. *The %CV for cortical porosity (Ct.Po) is 13%, Other CVs are ≤4.7% and are reported in the 

main text of the manuscript. 
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Figure 4.5: (A) Change in Tt.BMD, and (B) Tb.vBMDinn from baseline versus time, per group. 

Significant group changes versus control group at specific timepoints are labeled with *. Error 

bars represent standard error. 

A 

B 
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4.3.5 Comparison between change in ultradistal iBMC tertile groups 

Participant characteristics at baseline were not different between tertile groups (Table 

4.6). Nearly all loading-related variables were significantly different across the three tertiles. 

However, after Bonferroni adjustment for multiple comparisons, only the highest versus lowest 

tertiles were different. 

 

Table 4.6: Mean (SD) grouped by change in ultradistal iBMC tertile. P-values indicate 

significant between-group differences. Symbols indicate significant Bonferroni-adjusted post hoc 

comparisons between specific tertiles. 

  Highest Tertile Middle Tertile Lowest Tertile p-value  

Demographics         

Age (years) 27.7 (4.7) 29.4 (5.8) 29.3 (5.6) 0.510 

Height (cm) 166 (7) 165 (6) 165 (7) 0.847 

Body Mass (kg) 64.9 (8.1) 65.2 (9.2) 63.7 (7.3) 0.817 

Serum Vitamin D (ng/mL) 30 (10) 29 (7)* 36 (10)+ 0.015 

Total Forearm aBMD (g/cm2) 0.59 (0.04) 0.57 (0.04) 0.58 (0.03) 0.425 

Group Membership (n; 

control/exercise) 2/20 3/19 8/14 - 

Applied Loads         

Peak force (N) 297 (103)* 230 (135) 167 (139) 0.005 

Loading rate (N/s) 865 (586)* 540 (515) 344 (407) 0.010 

Number of Bouts 128 (85) 96.8 (84) 72 (87) 0.098 

Peak Strain (με) 575 (246)* 490 (347) 323 (283) 0.020 

Strain rate (με/s) 1878 (1428)* 1206 (1031) 918 (1077) 0.029 

StrainStim (με*s-1*Bouts*10-7) 208 (278) 92.3 (119) 121 (224) 0.195 

Strain_MagRate (με2*s-1*Bouts*10-5) 799 (723)* 428 (531) 249 (383) 0.007 

Strain_Mag (με*Bouts*10-2) 847 (620)* 641 (639) 382 (497) 0.038 

Strain_Rate (με*s-1*Bouts*10-3) 280 (257)* 149 (165) 105 (143) 0.012 

Bone QCT values         

Baseline ultradistal iBMC 0.949 (0.172) 0.889 (0.141) 0.881 (0.114) 0.244 

Visit 5 change (mg) 36 (13)*+ 5 (7)* -17 (13)+ <0.001 

Visit 5 percent change (%) 3.8 (1.3)*+ 0.6 (0.7)* -2.0 (1.6)+ <0.001 

* p<0.05 vs. lowest tertile after Bonferroni adjustment    

+p<0.05 vs. middle tertile after Bonferroni adjustment    

Data presented as mean(SD)     
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4.4 Discussion 

 We conducted a randomized controlled trial to characterize the relationship between 

mechanical strain magnitude and rate and changes to bone in healthy adult women. We found 

that the application of mechanical strain produced small but significant changes to the ultradistal 

radius after one year. However, our first hypothesis, that bone accrual would be proportional to 

strain magnitude and strain rate, was not fully tested. The relatively small ranges of strain 

magnitude and rate achieved by experimental participants limits the ability to draw conclusions 

regarding their independent roles. This was further complicated by differences in compliance 

between groups. In light of this challenge, the analysis considering loading dose is potentially 

most informative. Loading dose includes a combination of strain magnitude, rate, and number of 

loading bouts, and reflects achieved loading without issues associated with participant 

compliance. In fact, aligned with the scientific premise of our first hypothesis, we observed a 

dose-dependent relationship between measures of loading dose versus changes in iBMC and 

BMD across all participants. 

Our second hypothesis, that structural changes would include increased cortical diameter 

and thickness, and increased trabecular bone mass near the endosteal surface, was only partly 

supported. This hypothesis was based on the structural mechanics principle that bone added near 

the cortical surface would result in the greatest gains in moment of inertia and structural 

resistance to bending. Endocortical BV, BMC, and BMD increased at 12 months, indicating 

bone apposition on both the periosteal and endosteal surfaces due to loading. At 3, 9, and 12 

months, increases to overall density and trabecular density were observed with HRpQCT, and 

were dependent on loading dose. However, contrary to our expectation, the inner trabecular 

density (Tb.BMDinn) rather than more peripheral regions appeared to be primarily affected. 



Chapter 4: Aim 2A 

96 

During aging, trabecular structure is first lost from this region, and later from more peripheral 

regions (Sode et al., 2010), thus maximizing moment of inertia for a given quantity of bone. We 

previously reported age-associated declines in Tb.BMDinn within a large subset of the 

participants measured here (Mancuso et al., 2018). It is possible that in our cohort of young, 

healthy women, trabecular microstructure in the more peripheral regions was already at its 

physiologic maximum, limiting the degree to which it might be improved. We observed 

Tb.BMDinn was lower than Tb.BMDmeta (Table 4.5), suggesting that there was greater capacity 

to improve the inner region with anabolic physical activity.  

We observed significant positive effects of loading on Tt.BMD, Tb.BMDinn, and 

Ct.BMD after three months. Interestingly, all participants were assigned the same loading 

magnitude (200 N) during this ramp-up period, rather than a group-specific strain. Compliance 

was also the best during the first three months. Therefore, it is not surprising that both low and 

high magnitude groups had increases in these variables, since they both received the same 

stimulus. Overall, this supports the notion that loads must be novel to elicit an osteogenic 

response (Turner, 1998). However, the ramp-up period may have diminished the possible 

osteogenic response by stimulating cellular accommodation (Schriefer et al., 2005) to initially 

lower loads. Furthermore, it diminished the between-group differences in achieved strain. The 

improved response in the low magnitude group, who completed more loading bouts in total than 

other groups, also suggests that regular performance of exercise is as important as strain 

magnitude and rate. This is in agreement with studies in mice showing that separating loading 

cycles into multiple bouts is more osteogenic than a single bout with the same total number of 

cycles (Hsieh and Turner, 2001; Srinivasan et al., 2002), potentially due to desensitization of 

osteocytes. 
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 We observed significant increases to bone mass in the strain rate experiment; however, 

both low and high strain rate groups demonstrated positive results and the regression coefficients 

were similar between groups. Although strain rates were significantly different between the high 

and low groups, participants in the high group fell far short of the target values. This may explain 

the similar response between groups. Surprisingly, in Experiment 1 (strain magnitude) only the 

low strain magnitude group showed even slight increases in ultradistal iBMC after 12 months, 

with no observable changes in the high strain magnitude group. In fact, despite being given 

different target strains and strain rates, the different loading groups did not achieve the expected 

range of rates and magnitudes (Table 4.2). This, combined with varying participant compliance 

may partly explain these counterintuitive results. The analysis by tertile change in iBMC 

suggests that changes to bone are indeed associated with bone loading dose. Participants in the 

highest tertile also had had a non-significant trend towards higher baseline BMC, suggesting that 

perhaps these individuals simply had a greater physiologic capacity to respond to osteogenic 

stimuli. We did not observe any other obvious factors related to the change (e.g. vitamin D 

status) that might explain this, although our measurements did not include biomarkers related to 

bone metabolism. The degree to which strain magnitude can be manipulated is limited due to risk 

of secondary injury, although greater magnitudes are possible in the lower extremities. With 

vibration and other external assistance, it is possible to manipulate strain rate over a much wider 

range than strain magnitude. 

In contrast to small animal in vivo loading models, which use a materials testing machine 

to generate a predictable and repeatable waveform, voluntarily applied forces are variable in 

terms of frequency content, even when the peak magnitude is guided through visual feedback, as 

in our study. While many measures of bone loading dose have been proposed in the literature 
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(Ahola et al., 2010; Mikić and Carter, 1995; Turner, 1998; Turner and Robling, 2003), we found 

it impractical to implement any of them exactly as described by the authors. In addition to 

voluntarily produced loading signals being inconsistent, mechanical strain is non-uniform within 

a bone, both temporally and spatially; thus, no single strain value completely describes the strain 

occurring within a bone. It is not practical to place strain gages on most bones, and even when 

such measures are obtained (e.g. (Milgrom et al., 2015)), they only represent a small fraction of 

the bone surface. We previously observed that high-strain regions in the distal radius experienced 

the greatest gains in BMC, suggesting local control of osteogenic response (Bhatia et al., 2015). 

Here, we examined several candidate versions of loading dose, based on load cell recordings and 

subject-specific FE models. Each version included a combination of strain magnitude, frequency, 

and number of loading bouts. As a first attempt, we chose to examine a linear combination of the 

continuum strain produced within the analysis region in question (corresponding with the QCT 

or HRpQCT analysis region for those respective variables) and the total number of bouts 

achieved up to the timepoint in question. While we observed significant associations between 

these measures and changes to bone, we found that at best, dose explained 12% of the variance 

in the change. It is possible that other formulations of loading dose that include exponential 

scaling factors, local strain rate, strain gradient, or other measures, may be more relevant. 

The magnitude and nature of the changes we observed are similar to an earlier, 6-month 

study using a similar loading protocol (Troy et al., 2013). In that set of 19 young women, control 

participants lost 1.7±1.1% ultradistal iBMC, while those in the loading group had no change in 

iBMC, but significant increases in trabecular BMC (1.3±2.8%). Here, we found a similar 

decrease in the control group iBMC (-1.3±2.7%), and increases to BMC and BMD that were 

associated with loading dose. The present cohort differed from the previous study in several 
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ways. First, present participants were generally older (28 vs. 22 years old) and many had a 

history of pregnancy or lactation (although not within the two years preceding enrollment). The 

present group were assigned loading magnitudes based on strain within the ultradistal radius at 

the instant of peak force production. However, due to safety limits, many participants fell short 

of their target strains. Thus, while high strain magnitudes may have, in theory, elicited a greater 

osteogenic response, they were impractical or unsafe to implement. Similarly, participants in the 

low and high strain rate groups were given instruction sets designed to elicit significantly 

different strain rates. While the rates were significantly different between groups, (low: 945 /s, 

high: 1698 /s, p=0.02) the sample did not vary as widely as designed and the rates were 

substantially lower than those occurring during impact activities such as running (Milgrom et al., 

2007). Both low and high strain rate groups experienced similar increases in bone. Forearm 

loading is a relatively constrained activity that produces both compression and bending within 

the distal radius (Bhatia et al., 2014), and the ability to voluntarily manipulate the strain signal 

was limited.  

Our results suggest that, while compressive loading in general is osteogenic, it may not 

be necessary to generate extremely high strain magnitudes or rates to elicit a positive response in 

the upper extremity. Significant gains in BMC were associated with strain rates and magnitudes 

within the range of those measured experimentally during activities of daily living (≤ ~1300 ) 

(Földhazy et al., 2005) and can be achieved in a reasonable amount of time (100 loading 

cycles/bout, and an average of 131 loading bouts over a 12-month period for the highest tertile 

group). This is reassuring, since although impact loads are osteogenic (Martyn St James and 

Carroll, 2010), high loading rates have also been linked to increased risk of bone stress injury 

(Zadpoor and Nikooyan, 2011). Although we did not systematically test the effect of loading 
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cycles/bout, we based our target of 100 on (1) feasibility and time to complete the intervention, 

about three minutes, and (2) theoretical calculations of bone adaptation (Bhatia et al., 2013; 

Mikić and Carter, 1995) that suggested a diminished osteogenic response with additional cycles. 

Others have shown that breaking loading bouts into multiple sessions (Robling et al., 2001, 

2000), inserting rest periods between cycles (Srinivasan et al., 2002), and changing the number 

of cycles (Umemura et al., 1997) all can independently influence the osteogenic response in 

small animal loading models. An alternative loading regimen may have produced a greater 

response than what was observed here, although testing these parameters was not the focus of the 

present investigation. 

This study had several important limitations. Only 66 of the 102 original participants 

completed all 12 months of the study, and the results may be biased towards those who did not 

drop out. However, the demographics and baseline data of individuals who dropped out were not 

different from those who completed the study. We adjusted the randomization ratio part-way 

through enrollment to oversample the loading groups, which may have introduced other 

unknown biases. Due to the lower number of completers and lower precision, we were not 

powered to detect trabecular microstructural changes. However, we did observe significant 

changes to iBMC and Tb.BMD. The magnitude of the increases to iBMC due to the loading 

interventions, 1.2% across all participants, is not dissimilar to other treatment effects considered 

clinically relevant, and is well above (>4x) the CV for this measure. And, participants 

participating in Experiment 2 had much larger increases (2.9% and 3.6% for iBMC and 4.8 to 

6.6% for strength indices), also several times greater than the CV. For comparison, a 3.3% 

increase in trochanter integral BMD over 36 months was observed in postmenopausal women 

given zolendronic acid (Eastell et al., 2010), and it has been estimated that each 1% increase in 
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peak bone mass imparts over 1 year of osteoporosis-free life in the future (Hernandez et al., 

2003). While the present study examined the effects of strain magnitude and rate on bone 

adaptation, an underlying assumption is that the bone of each individual is already well adapted 

for her habitual activities; our analysis only considered the novel/added stimulus. Dominant 

(non-loaded) forearm data were not included in the present analysis, but would provide an 

indication of the systemic versus local effects of loading. Although we collected physical activity 

data as part of this study, they were beyond the scope of the present analysis, but may potentially 

explain some of the variability in response to our intervention. Our results may not be 

generalizable to other populations, including postmenopausal women, those with low vitamin D, 

men, or specific clinical populations. Finally, more research is needed to determine the specific 

strain requirements to elicit clinically relevant changes to lower extremity bone, given the high 

habitual loading stimulus in these sites. 

Although other clinical trials have investigated the efficacy of various types of exercise to 

for improving bone mass, this study is the first to systematically investigate the effect of 

mechanical strain rate and magnitude on bone adaptation in humans. The data presented here fill 

a critical translational gap, linking in vivo animal models to clinical trials, and may be useful for 

informing the design of future clinical interventions targeting bone health. In particular, our data 

show that in healthy adult women, the distal radius is capable of modest adaptation in response 

to mechanical strain, and that the adaptation is associated with measures of loading dose that 

include strain magnitude, rate, and number of loading bouts. 

In conclusion, we conducted a randomized controlled trial to systematically investigate 

the effect of mechanical strain rate and magnitude on bone adaptation, using an in vivo upper 

extremity loading model in healthy adult women. We found that compressive loading of the 
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forearm was osteogenic, with high and low strain rate groups having similar significant increases 

to bone mass. We observed that participants who gained the most bone had, on average, 

completed 128 compressive loading bouts, generating an average energy-equivalent strain of 575 

 at 1878 /s within the distal radius, over a period of 12 months. Individuals with the greatest 

gains to bone mass were similar in demographics to those with the lowest gains to bone mass. 

We conclude that signals related to strain magnitude, strain rate, and number of loading bouts 

collectively contribute to bone adaptation in healthy adult women. 
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Chapter 5: Aim 2B, Relate Changes in Bone Microstructure to 

Local Strain Parameters at the Individual Trabecular Level 
 

In press in the Journal of Biomechanical Engineering as: 

 

Megan E. Mancuso & Karen L. Troy. “Relating Bone Strain to Local Changes in Radius 

Microstructure Following 12 Months of Axial Forearm Loading in Women.” In Press. 

 

 

5.1 Introduction 

Osteoporotic fractures represent a significant clinical burden, with 1 in 3 women over age 

fifty experiencing a fragility fracture in their lifetime (“National Osteoporosis Foundation. 

Osteoporosis Exercise for Strong Bones.,” 2017). Exercise may have the potential to increase 

bone mass and offset age-related bone loss. Athletes applying high-intensity mechanical loads 

over extended periods of time have higher bone density than their peers (Bareither et al., 2008; 

Stewart and Hannan, 2000), and develop site-specific loading adaptations such as increased 

cortical thickness in the dominant arms of tennis (Bass et al., 2002; Kontulainen et al., 2003) and 

baseball (Warden et al., 2019) players. In normal healthy adults, clinical trials have shown that 

high-impact and resistive exercises consistently elicit a 1-3% increase in bone density at the hip 

over 6-24 months (Martyn St James and Carroll, 2010; Wallace and Cumming, 2000; Zhao et al., 

2017, 2014). However, moving towards a more personalized approach that tunes interventions to 

deliver the optimal “dose” of loading for an individual requires a detailed understanding of the 

relationship bone tissue loading and changes in bone structure.  

 Animal models have provided insight into the local relationship between bone loading 

and adaptation. Early models established a controlling role of mechanical strain magnitude 

(Goodship et al., 1979; Rubin and Lanyon, 1985) and the novelty of strain distribution (Lanyon 

et al., 1982; Rubin and Lanyon, 1984) on the amount of new bone formed following a dynamic 
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loading intervention. Focusing on the local relationship between bone strain and adaptation, it 

has been shown that cortical bone formation is related to local strain magnitude (Kotha et al., 

2004) and spatial gradient (Gross et al., 1997; Judex et al., 1997). In murine vertebral loading 

models focusing on the trabecular bone response, principal stresses, principal strains, strain 

energy density, and the spatial gradient of strain moderately predict the initiation of trabecular 

bone formation and resorption (Cresswell et al., 2016; Kim et al., 2003; Schulte et al., 2013b; 

Webster et al., 2015). It is generally suggested that these tissue-level deformations drive cellular-

level mechanical stimuli, such as fluid streaming potentials and membrane shear stresses, which 

are transduced by osteocytes into biochemical cues regulating osteoblast and osteoclast activity 

(Hinton et al., 2018; Paul et al., 2018). While the mechanisms linking bone strain and cell 

behavior are likely similar in humans, the strength of the relationship between strain and 

adaptation may differ due to greater genetic variability and the influence of systemic factors such 

as hormones, diet, and exercise history. However, due to technical challenges in measuring bone 

strain and changes in bone microstructure in vivo in humans, data addressing this question are 

extremely limited.  

 Previously, we established a voluntary forearm loading model (Troy et al., 2013), in 

which human participants lean onto their palm to compress a padded load cell that provides 

feedback to guide load magnitude. We also validated participant-specific finite element (FE) 

models (Bhatia et al., 2014) of the forearm to simulate this loading task, enabling us to 

characterize the strain environment within the radius bone. These methods can be combined to 

prospectively assign and measure radius bone strain during the axial loading task. In a previously 

published pilot study that included twenty-three women, we found that 14-week changes in 

integral bone density in the distal radius, divided into local regions by quadrant, were positively 
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correlated with continuum FE-estimated energy equivalent strain (Bhatia et al., 2015). While 

these results provide preliminary support for local, strain-driven adaptation, the continuum FE 

models do not explicitly consider the effect of trabecular microstructure.  

High-resolution peripheral quantitative computed tomography (HRpQCT) allows for the 

in vivo imaging of human bone microstructure in ~1 cm sections of the distal radius (Laib et al., 

1998). Applying this technology, we validated a multiscale modeling approach (Johnson and 

Troy, 2017c), which incorporates a micro-FE section based on HRpQCT into continuum forearm 

FE models. Here, we used this technique and serial HRpQCT imaging to investigate the 

relationship between tissue-level bone strain and local bone adaptation in the distal radius of 

healthy, premenopausal women participating in a 12-month, prospective study using our forearm 

loading model. Our overall hypothesis was that bone formation occurs preferentially in high-

strain (magnitude and gradient) regions, while bone resorption occurs preferentially in low-strain 

regions.  

5.2 Methods 

5.2.1 Participants and Loading Intervention 

The data reported here were collected as part of a larger, institutionally approved 

randomized controlled trial enrolling 102 women (Troy et al., 2020). Full enrollment criteria are 

reported elsewhere (Mancuso et al., 2018). Briefly, women ages 21-40 with healthy BMI, 

menstrual cycles, serum vitamin D levels, calcium intake, and forearm areal bone density were 

included. Women were excluded if they had a history of medical conditions or use of 

medications affecting bone metabolism, a previous injury to the non-dominant arm, or regularly 

participated in activities applying high-impact loads to the forearm. The current analysis includes 

a subset of twenty-one participants from the control (non-loading, n=10) and loading (n=11) 
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groups. Control subjects with high-quality HRpQCT (motion ≤ 3) (Pialat et al., 2012) scans 

available at baseline and 12 months we included. In addition to having good quality scans, we 

further limited the load group to individuals in the top 50% of participants for achieved loading 

dose and who were “responders,” meaning they experienced increases in bone density above the 

least significant change (details below). 

The purpose of the parent study was to determine the influence of average strain 

magnitude and strain rate within the distal radius on changes in average bone structure 

parameters. Participants were randomized into either a non-intervention control group, or one of 

several loading groups with a range of target strain magnitudes and loading rates. The applied 

force required to generate the desired strain magnitude within the distal radius was determined 

for each individual using subject-specific continuum finite element models. Loading was 

performed on a custom device with visual LED cues to guide force magnitude and auditory 

beeps to guide loading rate (Figure 5.1A). Participants were asked to complete three sessions of 

axial compressive loading of their non-dominant forearm per week. Achieved loading was 

monitored by the device, which included a uniaxial load cell (Standard Load Cells; Gujarat, 

India) and data logger (DATAQ DI-710, DATAQ Instruments Inc.; Akron, OH) to record 

applied vertical force at 100 Hz. Load cell signals were analyzed in MATLAB (Mathworks; 

Natick, MA), and an overall “loading dose” was calculated for each participant as the product of 

average peak force (N), average loading rate (N/s), and number of loading sessions performed. 

For the present study, loading participants were ranked by loading dose and only the top 50% 

were included. 
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Figure 5.1: (A) Loading device used to perform forearm loading task. The vertical force was 

recorded and used to calculate the average applied force, Favg, for each participant in the load 

group. (B) Multiscale FE models were generated from participant-specific CT scans. For the load 

group, an axial force equal to the participant-specific average was applied at the distal end. For 

the control group, the applied force was equal to the overall average across the load group 

participants. 

 

5.2.2 Measurement of Bone Adaptation 

Local regions of bone formation and resorption within the distal radius were identified 

from HRpQCT scans (Xtreme CT I, Scanco Medical; Brüttisellen, Switzerland) acquired at 

baseline and twelve months (isotropic voxel size: 82 µm, 0.9 mA, 60 kV). Scans included 110 

axial slices covering a 9.02 mm region beginning 9.5 mm proximal to a reference line placed at 

the distal endplate of the radius. Adaptation sites were identified by aligning, subtracting and 

thresholding the baseline and follow-up greyscale images (Figure 5.2) similar to Christen et al. 

(2014) (Christen et al., 2018, 2014). Three-dimensional rigid registration (Image Processing 

Language, V5.16, Scanco Medical AG, Bruttisellen, Switzerland) was used to calculate the 

transformation matrix needed to align the follow-up image to the baseline image coordinates. 

The baseline and transformed follow-up images were cropped to the mutually overlapping region 

and subtracted to obtain voxel-by-voxel changes in density, where increases indicate bone 
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formation and decreases indicate resorption. To reduce the effect of noise and other short-term 

precision errors, the density difference map was thresholded to include only clusters of at least 

five voxels with differences ≥225 mgHA/cm3 as adaptation sites (Christen et al., 2014). 

Adaptation sites were separated into the cortical and trabecular compartment by taking the 

Boolean intersection of formation and resorption site masks with the trabecular and cortical 

masks generated by the Scanco Standard Analysis program (MacNeil and Boyd, 2007). To 

capture periosteal bone formation added outside the baseline bone surface, the cortical mask was 

dilated seven voxels (574 micrometers) in the transverse plane. A sensitivity analysis of the 11 

loading group participants showed that further increasing the dilation size changed the amount of 

labeled adaptation sites by less than 0.5%. 

To assess repeatability, this adaptation labeling method was applied to a separate short-

term precision data set including eight pairs of repeat distal radius scans acquired within two 

weeks of each other. The least significant change in average trabecular density for 3D registered 

scans was calculated as 2.77*CV%RMS (Baim et al., 2005). Next, the number of voxels labeled as 

formation and resorption as a percent of baseline bone volume were then determined for the 

cortical and trabecular compartments. As no real measurable bone changes are expected within 

two weeks, these values reflect the amount of erroneously labeled adaptation caused by short-

term precision errors. Finally, in our data set, to select “responders,” who we were confident 

experienced real bone changes, loading participants were included only if they experienced 

increases greater than this value (1.73%). 
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Figure 5.2: Workflow used to identify local bone formation and resorption sites. Baseline and 

follow-up HRpQCT greyscale images were aligned and cropped to the overlapping region. 

Cropped images were subtracted to obtain density difference maps for the trabecular and cortical 

compartments, which were thresholded to include continuous clusters of at least five voxels with 

a minimum change of 225 mg HA/cm3. 

 

5.2.3 Estimating Local Bone Strain 

Bone strain magnitude and gradient were calculated using validated (Johnson and Troy, 

2017c), participant-specific multiscale FE models. These models include the distal 10 cm of the 

radius, from the wrist joint articular surface to the mid-diaphysis. The radius is divided into two 

continuum sections (distal, proximal), which flank a micro-FE mesh at the HRpQCT distal 

radius scanned region (Figure 5.1B). Continuum mesh regions were generated from baseline 

clinical resolution CT scans (GE Brightspeed, GE Medical; Milwaukee, WI, in-plane resolution 

234 µm, slice thickness 625 µm) of the non-dominant forearm. Three dimensional masks of the 

scaphoid, lunate, and distal 10 cm of the radius were segmented from the image using a 0.175 

g/cm3 density threshold (Bhatia et al., 2014). For the radius, the segmented baseline HRpQCT 
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mask was registered to the clinical resolution mask, and regions of the clinical resolution mask 

outside the HRpQCT region were converted into ten-node tetrahedral FE meshes with a nominal 

edge length of 3 mm. Continuum radius bone elements were assigned heterogeneous linear 

elastic material properties (E=1.95 MPa to 35 GPa, v=0.4) based on and established density-

elasticity relationship using apparent density (Morgan et al., 2003). For the micro-FE section, the 

HRpQCT mask was converted to voxel-based hexahedral elements with an 82 µm edge length 

and homogenous linear elastic material properties (E=15 GPa, v=0.4). To accurately model 

radio-carpal contact, a 2 mm thick cartilage surface was generated by dilating the distal radius 

surface, and modeled with 2 mm ten-node tetrahedrons with hyperelastic neoHookean material 

properties (E=10 MPa, v=0.45) (Anderson et al., 2005). The scaphoid and lunate were modeled 

as rigid non-deformable solids, with ten-none tetrahedral meshes with a nominal edge length of 3 

mm. 

One cycle of the forearm loading task was simulated in Abaqus CAE (v2016, Simulia, 

Dassault Systèmes; Vélizy-Villacoublay, France). To reduce computational time, the continuum-

only model was used to model full contact at the wrist, which included the scaphoid and lunate 

carpal bones. Ramped, quasistatic loading was applied through the centroids of each carpal 

toward the fixed proximal radius, such that the resultant force was axial and equal in magnitude 

to the participant’s average achieved peak force measured by the loading device. The resulting 

normal and shear contact forces at radius cartilage nodes were exported from continuum 

simulations and applied directly at matching nodes in the multiscale model of the radius only. 

For participants assigned to the control group (who did not perform loading), a simulation was 

run with applied force set to the average applied force across all loading participants (324 N). 

The purpose of the control simulations was to determine an “average” mechanical strain state, to 
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provide a null comparison against the loading group. Multiscale models contained 

3,062,520±557,518 nodes and 9,187,560±1,672,555 degrees of freedom (mean ± SD), and 

simulations were solved on a UNIX server with 54 processors (2.1-3.2 GHz) and 200 GB RAM 

in 3.4±1.9 hours. 

Strain magnitude and gradient were calculated for each element in the distal radius 

micro-FE region. Principal stresses and strains at element centroids were exported from Abaqus 

used to calculate energy equivalent strain as  

𝜀𝑒𝑒𝑞 = √
2𝑈

𝐸
      (5.1) 

Where E is elastic modulus and U is strain energy density calculated as 

𝑈 =
1

2
[𝜎1𝜀1 + 𝜎2𝜀2 + 𝜎3𝜀3]     (5.2) 

with σn and εn being the principal stress and strain components, respectively. Bone strain 

gradient was calculated as the norm of the gradient of energy equivalent strain in the x, y, and z 

directions. Gradient in each direction was calculated similar to (Huiskes et al., 2000) using the 

central difference formulation, with simple forward and backward differences calculated for 

surface elements. For example, gradient in the x direction for voxel i is calculated as  

𝜕𝜀𝑒𝑒𝑞

𝜕𝑥
=
𝜀𝑒𝑒𝑞𝑖+1 − 𝜀𝑒𝑒𝑞𝑖−1

2 ×  𝑥𝑟𝑒𝑠
⁡𝑓𝑜𝑟⁡1 < 𝑖 < 𝑁 

𝜕𝜀𝑒𝑒𝑞

𝜕𝑥
=

(𝜀𝑒𝑒𝑞𝑖+1
)−(𝜀𝑒𝑒𝑞𝑖

)

𝑥𝑟𝑒𝑠
⁡𝑓𝑜𝑟⁡𝑖 = 1         (5.3) 

𝜕𝜀𝑒𝑒𝑞

𝜕𝑥
=
(𝜀𝑒𝑒𝑞𝑖) − (𝜀𝑒𝑒𝑞𝑖−1)

𝑥𝑟𝑒𝑠
⁡𝑓𝑜𝑟⁡𝑖 = 𝑁 

where xres is the element side length (82 µm) and N is the number of continuous voxels in the x-

direction between two surfaces (i.e. of cortical shell or individual trabeculae). The norm of the 

spatial gradient was calculated for each element as 
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𝛻𝜀𝑒𝑒𝑞 = √(
𝜕𝜀𝑒𝑒𝑞

𝜕𝑥
)
2

+ (
𝜕𝜀𝑒𝑒𝑞

𝜕𝑦
)
2

+ (
𝜕𝜀𝑒𝑒𝑞

𝜕𝑧
)
2

    (5.4) 

To allow strain and adaptation to be compared spatially, formation and resorption mask 

coordinates were registered to the multiscale FE coordinates using mutual information 3D 

registration in MATLAB (Mathworks, Natick, MA). A precision analysis demonstrated rotation 

errors of 0.47 ±0.38°, 0.46 ±0.41°, 0.32 ±0.24° in the x,y,z directions for this method.  

5.2.4 Relating Bone Strain and Adaptation 

  The hypothesis that bone adaptation is influenced by local tissue strains was tested using 

four approaches (Table 5.1). First, we compared strain near sites of formation versus resorption. 

Second, we compared the percent of bone formation and resorption sites occurring near high 

versus low strain regions. Third, we compared the percent of high and low strain elements 

occurring near formation versus resorption. Finally, we characterized the distribution of 

adaptation and strain within the cortical bone compartment across sixteen angular sectors. All 

analyses included both the load and control groups.  

 For each formation and resorption site, the average strain magnitude and gradient was 

calculated as the average value for all FE elements within 200 µm, corresponding to 23.8 ±10.3 

and 40.0 ±8.3 elements for formation and resorption sites, respectively. Two hundred 

micrometers was selected as the distance within which osteocyte sense local strains. This falls 

within the range of previous studies (Adachi et al., 1997; Christen et al., 2014; Morgan et al., 

2015; Ruimerman et al., 2005b) and is equal to 2.44 element edge lengths. For formation and 

resorption sites more than 200 µm from a mesh element, the value for the nearest element was 

used. The median, 25th percentile, and 75th percentile values for average strain magnitude and 

gradient near formation and resorption in both the trabecular and cortical compartments were 

determined.  
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 To assess the spatial relationship between adaptation and extreme strain, very high and 

low strain elements for strain magnitude and gradient were defined using the 9th and 95th 

percentile values for each metric (Figure 5.3). Very high and low strain element sets were 

defined separately for the trabecular and cortical compartments. The percent of formation sites 

near very high strain was calculated as the number of formation sites with a high strain element 

within 200 µm, divided by the total number of formation sites. Conversely, the percent of very 

high strain elements near formation was calculated as the number of very high strain elements 

with a formation site within 200 µm, divided by the total number of very high strain elements. 

Similar calculations were performed for resorption sites and very low strain elements within each 

bone compartment.  

 

 

Figure 5.3: Energy equivalent strain (A) magnitude, 𝜺𝒆𝒆𝒒, and (D) gradient, 𝜵𝜺𝒆𝒆𝒒, used to 

define very low and very high (B) magnitude and (E) gradient elements based on the 5th and 95th 
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percentile values within the trabecular compartment. (C) Formation and resorption sites, with 

edges indicating elements present in the FE mesh based on the baseline scan. Inset shows 200 

µm regions defining which FE elements are near formation and resorption sites. (F) 

Reconstructed HRpQCT mask of distal radius, indicating the position of the representative 

3x3x0.2 mm trabecular volume in black.  

 

To explore the distribution of cortical bone adaptation and strain, we divided the cortical 

compartment into sixteen equal angle sectors and determined the number of formation versus 

resorption and high versus low strain elements within each sector (Figure 5.4). 

 

 

Figure 5.4: (A) Reconstructed HRpQCT mask of distal radius. (B) The cortical compartment 

was divided into sixteen equal-angle sectors defined relative to the radius centroid. (C) Cortical 

formation and resorption sites. (D) Energy equivalent strain within the cortical compartment, 

used to define very low and high strain (E) magnitude and (F) gradient elements based on 5th and 

95th percentile values within the cortical bone compartment.  
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Table 5.1: Summary of analyses performed to spatially relate bone adaptation (formation and 

resorption) to FE-estimated strain. Each predictor had two levels: formation or resorption for 

adaptation type, control or load for group, and very high or very low for strain level. For each 

outcome, separate models were fit for the trabecular and cortical compartments, as well as for 

strain magnitude and strain gradient for analyses considering strain. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.2.5 Statistics 

To characterize adaptation in each group (loading versus control), the volume of formed 

and resorbed bone within each compartment was compared between groups using a mixed 

effects linear model. When significant interactions between group and adaptation type were 

found, formed and resorbed volumes were compared within each group separately.  

Strain parameters were compared between adaptation type (formation versus resorption) 

and group (load versus control) using a mixed effects linear model. Separate models were fit for 

median, 25th percentile, and 75th percentile strain magnitude and strain gradient within the 

trabecular and cortical compartments. When significant adaptation by group interactions were 

found, strain metrics near formation and resorption were compared separately for each group. 

Question Predictor(s) Outcome(s) 

Do strain metrics differ near 

formation versus resorption? 
• Adaptation type 

• Group 
• 25

th
 percentile strain (µε or µε/mm) 

• Median strain (µε or µε/mm) 

• 75
th

 percentile strain (µε or µε/mm) 

What percent of formation or 

resorption sites are near high 

and low strain elements? 

• Adaptation type 

• Strain level 

• Group 

• Percent of formed or resorbed voxels 

(%) 

What percent of high or low 

strain elements are near 

formation and resorption 

sites? 

• Adaptation type 

• Strain level 

• Group 

• Percent of very high or very low strain 

elements (%) 

How are adaptation and bone 

strain distributed  

around the cortical shell?  

• Group Within each sector: 
• Number of very high strain elements 

• Number of very low strain elements 

• Formed volume (% of baseline) 

• Resorbed volume (% of baseline) 
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The percent of adaptation sites near extreme strain elements was compared using a mixed 

effects model with adaptation type (formation versus resorption) and strain level (very high 

versus very low) as repeated measures and group as a between-subjects factor. When significant 

interactions involving strain level and adaptation type were found, strain level was compared 

separately within formation and resorption. Similarly, the percent of extreme strain elements near 

adaptation sites were compared with adaptation type, strain level, and group as factors. When 

significant interactions involving strain level and adaptation type were found, adaptation type 

was compared separately within high and low strain elements. Separate models were fit for strain 

magnitude and gradient within each of the trabecular and cortical bone compartments.  

To verify that cortical strains were similarly distributed for load and control groups, 

independent samples t-tests compared the number of low and high strain elements between 

groups within each sector. To determine where loading may promote bone formation or prevent 

resorption within the cortical surface, the number of formation and resorption sites, as a percent 

of baseline cortical bone volume, was compared between groups within each sector using 

independent samples t-tests. All statistics were performed in SPSS v25.0, and p<0.05 was used 

to define statistical significance. Unless otherwise stated, data are expressed as mean±standard 

deviation. 

5.3 Results 

5.3.1 Participants 

 The participants included in this analysis were 28.7±4.9 years old. On average, the load 

group participants performed 139±86 sessions of loading over 12 months, applying an average 

peak force of 324.2±40.7 N.  
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5.3.2 Characterization of Local Adaptation 

Within the load group, significantly more trabecular bone was formed than resorbed 

(Figure 5.5), consistent with the selection criteria that limited the load group to “responders” 

with gains in bone density. As a percent of baseline bone volume, 4.1±2.0% more bone was 

formed than resorbed. Within the control group, formed and resorbed bone volumes were 

similar, with 1.0±5.5% more bone resorbed than formed.  

In the cortical bone compartment, the load group experienced significantly more 

formation than resorption, corresponding to a net increase equivalent to 4.0±4.4% of baseline 

cortical bone volume. Within the control group, cortical formation and resorption were similar, 

with 2.5±4.4% more bone resorbed than formed. 

 

Figure 5.5: Formed and resorbed bone volume, presented as a percent of baseline bone volume, 

within the trabecular (top) and cortical (bottom) compartments for the load (n=11) and control 

(n=10) groups. *Given significant adaptation by group interaction, indicates significant 

difference between formed and resorbed volume within the load group. 
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Looking at the short-term precision data set, in which no real change occurred, 

10.5±4.5% of trabecular bone volume was erroneously labeled as formation and 9.9±4.3% was 

erroneously labeled as resorption. In the cortical compartment, 4.7±1.9% of baseline bone 

volume was labeled as formation and 4.9±2.1% was labeled as resorption. The root mean square 

coefficient of variation for net change for trabecular bone density was 0.62%. Net adaptation 

within the precision group was not significantly different from zero (p>0.05, one-sample t-test) 

for both trabecular and cortical compartments, suggesting no systematic bias toward formation 

versus resorption. The average formed and resorbed volumes in experimental groups were a 

minimum of 1.7 times those associated with precision error due to partial volume and image 

registration. 

5.3.2 Do Strain Metrics Differ near Formation versus Resorption? 

Trabecular strain magnitude and gradient were higher near formation versus resorption 

sites for both the load and control groups, except for the 25th percentile of strain magnitude 

(Figure 5.6). While statistically significant, the differences between formation and resorption 

were relatively small, on the order of 5-10%. This corresponds to an average difference of 

11.8±17.2 µε between formation and resorption for median strain magnitude, and 45.7±38.6 

µε/mm for median strain gradient. Thus, the distribution of strain (magnitude and gradient) 

among formation sites was shifted slightly higher than that of resorption, but the distributions 

were still mostly overlapping. In the cortical compartment, strain magnitude was similar in 

formed versus resorbed sites, except at the 25th percentile value, which was higher near 

resorption. The 25th percentile and median of cortical strain gradient were higher for formation 

versus resorption in the control group only, with median strain gradient 138.9±98.6 µε/mm 

higher near formation versus resorption. The 75th percentile of cortical strain gradient was 
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higher for formation versus resorption in both groups. Differences between formation and 

resorption for cortical strain gradient were relatively high, between 30-40%. 

 

Figure 5.6: Percent difference in strain metrics between formation and resorption in the 

trabecular (left) and cortical (right) compartments for the load (n=11) and control (n=10) groups. 

For each subject, the 25th percentile (Q1), median, and 75th percentile (Q3) of strain magnitude 

(top) and gradient (bottom) were calculated for formation and resorption. Data presented as 

group means of within-subject percent difference between formation and resorption (error bars: 

SEM). Positive differences indicate strain is higher for formation than resorption. *Given 

significant group by adaptation interaction, indicates significant difference between formation 

and resorption within the control group only. **Indicates significant difference between 

formation and resorption for both groups.  

 

5.3.3 What Percent of Formation or Resorption Sites are Near High and Low Strain Elements? 

A greater proportion of trabecular formation and resorption sites were near very high 

versus very low strain magnitude elements in both the load and control groups (Figure 5.7). 

Similarly, a greater proportion of trabecular formation and resorption sites were near very high 

versus very low strain gradient elements, particularly for formation sites (p<0.05 for interaction). 

Cortical bone formation and resorption were both more likely to occur near very high versus 

very low strain gradient elements. These findings are in line with the hypothesis that high strains 
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lead to microdamage or other biophysical cues that upregulate remodeling, in which both 

formation and resorption occur. However, while significant differences were observed, over half 

of formation and resorption sites were near neither very high nor very low strain elements. In the 

trabecular compartment, a greater proportion of resorption sites were near very low and very 

high strain magnitude compared to formation sites (significant effect of adaptation type). This is 

likely because resorption eats into existing bone surfaces while formation builds away from 

existing surfaces. As the FE mesh was generated from baseline bone masks, formation sites were 

more likely to be distant from any given FE element. 

 

Figure 5.7: Percent of trabecular (left) and cortical (right) formation and resorption sites near 

very high or very low strain magnitude (top) and gradient (bottom) elements for the load (n=11) 

and control (n=10) groups. Data presented as group means (error bars: SEM). *Given significant 

strain by adaptation interaction, indicates significant difference between very low and very high 

strain within formation or resorption for both groups. **Indicates significant main effect of strain 

level (very high versus very low). †Indicates significant main effect of adaptation type (form 

versus resorb).  
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5.3.4 What Percent of High or Low Strain Elements are Near Formation and Resorption Sites? 

In the trabecular compartment, a greater proportion of very low strain magnitude and 

gradient elements were near resorption versus formation in both the load and control groups 

(Figure 5.8). The proportion of very high strain magnitude and gradient elements near formation 

and resorption were similar. Therefore, trabecular bone resorption is associated with low bone 

strain. In the cortical compartment, very high and very low strain elements were found near 

formation and resorption at similar rates. Between 21-35% of low strain elements were near 

resorption, and between 19-43% of high strain elements were near formation. At least 12% of 

very low or high elements near both or neither adaptation types. There were significant 

interactions between group (load versus control) and adaptation type (formation versus 

resorption) for all metrics. For example, in the cortical compartment, both very high and low 

strain magnitude elements were more likely to be near formation for the load group and near 

resorption for the control group. These effects were driven by having more formation sites in the 

load group and more resorption sites in the control group, with any given element more likely to 

be near the more abundant adaptation type. 
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Figure 5.8: Percent of trabecular (left) and cortical (right) very low and very high strain 

magnitude (top) and gradient (bottom) elements near formation and resorption for the load 

(n=11) and control (n=10) groups. Data presented as group means (error bars: SEM). *Given 

significant strain by adaptation interaction, indicates significant difference between formation 

and resorption within very low strain elements only. Significant group by adaptation interactions 

were observed for all metrics but are not indicated on plot for visual clarity.  

 

5.3.5 How are Adaptation and Bone Strain Distributed around the Cortical Shell? 

There were no significant differences in cortical strain magnitude or gradient between the 

load and control groups in any sector. Therefore, as expected, our boundary conditions based on 

participant-specific force recordings for the load group and average force for control subjects 

generated similar bone loading. The number of formation sites was higher for the load versus 

control group in five out of sixteen sectors (Figure 5.9) located in the anterior and posterior 

surfaces (p<0.05). There were significantly more resorption sites in the control versus load group 

in one sector located in the posterior/radial quadrant.  
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Figure 5.9: Angular distribution of formed (left) and resorbed (right) bone, as a percent of 

baseline cortical bone volume, in the load (n=11) and control (n=10) groups. Data presented as 

group means (error bars: SEM) for each sector spanning the anterior (A), ulnar (U), posterior (P), 

and radial (R) surfaces. *Indicates significant difference between groups. 

 

 

5.4 Discussion 

Our purpose was to relate tissue-level bone strain to local adaptation in the distal radius 

of women following 12 months of axial forearm loading. Our hypothesis that bone formation 

would occur preferentially in high-strain magnitude and gradient regions and bone resorption 

would occur preferentially in low-strain regions was partially supported. Trabecular strain 

magnitude and gradient were higher near formation versus resorption, and very low strain 

elements were more likely to be near trabecular resorption than formation. However, trabecular 

formation and resorption sites were both more likely to be near very high versus very low strain 

elements. We interpret these findings as evidence that in local regions of high strain, osteocyte 

stimulation and damage lead to increases in bone formation and remodeling, while in low strain 

regions with insufficient osteocyte stimulation, bone is removed. In the cortical compartment, the 

association between strain and adaptation was less clear. Strain gradient was higher near 
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formation versus resorption for the control group, and formation and resorption were both more 

likely to be near very high versus low strain gradient elements. However, there were no 

differences in the proportion of very low and high strain elements near formation versus 

resorption. 

Contrary to our hypothesis, similar relationships between strain and adaptation were 

observed in the loading and control groups. This could be interpreted to mean that, at a local 

level, the same mechanical cues are driving tissue remodeling, regardless of whether there was a 

net gain or loss in bone mass. It is unsurprising that in the absence of a novel intervention, bone 

adaptation is still regulated in part by bone strain generated during activities of daily living. 

Since the control group did not participate in the loading intervention, we did not expect 

measurable relationships between FE-estimated strain and adaptation because the simulated 

loading task was not actually performed. However, axial compression is the primary loading 

mode for many common activities, and the FE-estimated strain distribution may be similar to 

habitual strains for the control subjects. This is in agreement with Christen et al. (2014) (Christen 

et al., 2014), who found that in the distal tibia of postmenopausal women with normal activity 

levels (i.e. no intervention), formation was more frequent in regions of high strain energy 

density. Troy et al. (2018) found that FE-estimated principal stresses predicted four-year circum-

menarcheal changes in total BMC and cortical thickness in the distal radius of non-gymnasts, but 

not gymnasts (Troy et al., 2018), further suggesting that bone adaptation is related to loading 

even when activity levels are not above those of daily living. Additionally, by defining low and 

high strain elements based on 5th and 95th percent values within an individual participant, we did 

not define absolute strain “setpoints” across subjects, which may vary between individuals based 

on activity level and other physiological factors. 
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Our previous work quantified the relationship between bone strain and adaptation at the 

macrostructural level in a pilot group of 23 women who completed fourteen weeks of forearm 

loading (Bhatia et al., 2015). Strain was estimated by continuum-only FE models and changes in 

bone volume, density, and mineral content were measured from clinical resolution CT scans. 

When a 3 cm transverse section of the distal radius was divided into 12 subregions, there was a 

significant correlation between strain and change in density (but not volume or mineral content) 

for the load group only. In the present study, we found significant associations between strain 

and adaptation in the trabecular compartment, but did not detect many differences in the 

relationship of strain versus adaptation between the load and control groups. Continuum strains 

and micro-FE derived strains cannot be directly compared, and the local regions of 

formation/resorption measured in the present study cannot be compared to regional averages 

combining the trabecular and cortical compartments. Additionally, the analyses differed in 

duration (14 weeks versus 12 months), and the present analysis was limited to the overlapping 

region between baseline and follow-up HRpQCT scans (maximum 9.02 mm transverse region), 

while our previous analysis covered a larger, 3 cm region.  

Our findings for the trabecular compartment are generally consistent with previous work 

in animal models, but the size of observed differences were smaller. In the mouse caudal 

vertebral loading model, Schulte et al. (2013) (Schulte et al., 2013a) found a 39% difference in 

strain energy density (SED) in regions with formation versus resorption after four weeks of 

loading, and Lambers et al. (2015) (Lambers et al., 2015) found over a 100% difference after six 

weeks. In comparison, we found that median trabecular energy equivalent strain magnitude and 

gradient were 5-8% higher in regions with formation versus resorption. In the present analysis, 

because all elements in micro-FE portion of our models had the same modulus and size, SED 
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and energy equivalent strain are directly related, with SED proportional to the square of energy 

equivalent strain. Therefore, the direction of differences in SED and energy equivalent strains 

near formation and resorption should be similar, with differences in SED likely magnified 

compared to energy equivalent strain because of their mathematical definitions. Looking at 

remodeling probabilities, Cresswell et al. (2016) (Cresswell et al., 2016) found that after one 

week of vertebral loading in mice, 47% of high SED regions (defined as top 20%) were within 

25 µm of bone formation. After four weeks, Schulte et al. (2013) found conditional probabilities 

of formation and resorption at high and low SED regions, respectively, were between 40-50%. In 

our participants, at most 33% of very low trabecular strain elements were near resorption only, 

and 23% of very high trabecular strain elements were near formation only. One explanation for 

the weaker relationships between strain and adaptation in our study is that adaptation in animal 

models is measured using micro-CT, which has a higher resolution than HRpQCT with a typical 

voxel size of 10-25 µm. Therefore, the amount of erroneously labeled adaptation due to partial 

volume effect is likely higher using HRpQCT (82 µm voxel size), limiting the strength of the 

measurable relationship. Additionally, there are several physiological and lifestyle factors that 

cannot be controlled but likely influence bone adaptation in humans. Further work is needed to 

determine the individual roles that age, physical activity, calcium and Vitamin D intake, 

genetics, and hormonal factors plan in adaptation of bone to mechanical loading. 

The current analysis did not find consistent evidence that cortical bone changes were 

directly related to bone strain magnitude. The 75th percentile of cortical strain gradient was 

significantly higher for formation versus resorption, but the proportion of very low and high 

strain elements near formation and resorption sites were similar. We found that significantly 

more formation than resorption sites were located near high cortical strain gradients in both the 



Chapter 5: Aim 2B 

127 

control and loading groups. This is likely driven by the fact that cortical strain gradients are 

largest at the periosteal surface due to the presence of the surface itself, and that bone formation 

occurs on bone surfaces. Taken together, these findings suggest that cortical strain gradient, 

rather than magnitude, is related to adaptation. This is in agreement with loading studies in a 

turkey ulna exogenous loading model (Gross et al., 1997) and rooster tarsometatarsus running 

model (Judex et al., 1997). In these models, circumferential strain gradients, but not strain 

magnitude, predicted areas of new bone formation with R2 values between 0.36 and 0.63. The 

lack of definitive strain-adaptation relationships observed in the cortical compartment in the 

current study may also be related to the intervention being overall more osteogenic in the 

trabecular compartment. The macrostructural changes, described in detail elsewhere (Troy et al., 

2020), showed that the largest loading related changes were in trabecular density, especially in 

the inner 60% of the trabecular compartment. Additionally, we found that across subjects, age 

was negatively correlated with trabecular density at baseline (Mancuso et al., 2018), even within 

our relatively young age range of 21-40. Therefore, it is possible that in this group, trabecular 

bone is the first to undergo age-related deterioration and has the most potential for improvement 

due to mechanical loading. Furthermore, trabecular bone has abundant surface area available for 

bone apposition, in contrast to the relatively limited cortical shell. Finally, cortical bone may be 

at its physiological maximum, or changes in the cortical compartment may be dominated by 

physiological factors not directly controlled here that overshadow the influence of loading.  

This study has several limitations. First, the labeling of adaptation from HRpQCT images 

is subject partial volume and registration error, which leads to some bone being erroneously 

labeled as formation or resorption. Our 10-11% error rates in the trabecular compartment are 

approximately double those reported by Schulte et al. using micro-CT with a 10.5 µm voxel size 
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(Schulte et al., 2013a). While micro-CT is not safe for use in humans, future studies may be 

improved by using newer, higher resolution HRpQCT scanners, which currently scan at a 61 µm 

voxel size (Manske et al., 2015). Looking at other technologies used in humans, clinical 

resolution CT can be registered to measure regional changes in apparent density and bone 

mineral content with high repeatability (coefficient of variation <0.7% in (Bhatia et al., 2015)), 

but cannot capture adaptation at the sub-millimeter, tissue level. Despite relatively high short-

term precision errors, we found that the amount of formation and resorption observed 

longitudinally was at least 1.7 times that for a short-term precision data set. Additionally, there 

was no bias toward mislabeling formation or resorption, suggesting that precision error may limit 

the strength, but not the direction of the measurable relationship between strain and adaptation. 

Overall, this supports the validity of the significant trends we have observed, but it is possible 

that we have underestimated absolute differences in strain parameters and the spatial association 

between strain and adaptation. Second, our findings may overestimate strain/adaptation 

relationships due to selection of “responders” within the loading group. However, the 

relationships between local strain and adaptation type were consistent in both loading and control 

subjects. Third, the FE model boundary conditions used participant-specific load magnitudes but 

assumed an axial direction. While we instruct participants to perform loading with their arm 

directed axially, measuring the exact positioning was outside the scope of this investigation. The 

potential influence of variability in loading position on FE-estimated bone strain is part of our 

ongoing work. We focused on the magnitude and norm of the spatial gradient of energy 

equivalent strain, as energy equivalent strain is a scalar representative of the multiaxial strain 

state, and has been shown to relate to adaptation in our pilot study (Troy et al., 2013). 

Additionally, the norm of strain gradients in the axial and transverse directions as a scalar 
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representation of spatial variability has been used in previous studies (Koontz et al., 2002; 

Ruimerman et al., 2005b). However, it is possible that other bone strain parameters have a 

controlling role in functional bone adaptation. Bone tissue strain gradient was selected as an 

upstream measure of fluid flow, as spatially varying strains yield pressure gradients and therefore 

flow within lacunar-canalicular and marrow spaces. A more direct estimate of fluid flow using 

poroelastic modeling (Carriero et al., 2018; Pereira et al., 2015; Scheiner et al., 2016) or 

inclusion of marrow as a separate material (Webster et al., 2015) may provide a more detailed 

description of the local mechanical environment and have shown potential in predicting 

adaptation in animal loading models, but is outside the scope of the present study.  

 In summary, we related tissue-level bone strain to 12-month changes in radius 

microstructure in young healthy women who performed axial forearm loading or participated as 

non-loading controls. We found that local regions of high strain magnitude and gradient are 

associated with increased trabecular formation and remodeling, while low strain magnitude and 

gradient are associated with trabecular bone resorption. Cortical strain gradient was higher near 

formation versus resorption in the control group, and both adaptation types occurred 

preferentially near high strain gradients at the periosteal surface. While we observed a significant 

measurable relationship between strain and adaptation, only half of very high and low strain 

elements were near formation or resorption only. The similarity of the strain/adaptation 

relationship between loading and control groups suggest that, at a local level, the same 

mechanical cues drive tissue remodeling, regardless of the net stimulus or change. Overall, our 

results show that participant-specific bone strain and adaptation can be estimated using currently 

available non-invasive imaging techniques. Our results also highlight that bone strain has a 

measurable, controlling influence on the adaptive response in healthy adult women. To the best 
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of our knowledge, this is the first study to relate prospectively measured changes in human bone 

structure to subject-specific bone strain, based on real force measurements. This is an important 

first step toward defining loading thresholds above or below which bone formation or resorption 

occur, quantifying the extent to which changes in human bone structure can be predicted based 

on strain, and characterizing the influence of physical activity history, age, and other 

physiological factors on these thresholds. Ultimately, such knowledge could inform predictive 

models of bone adaptation, enabling the in silico comparison and optimization of targeted 

loading interventions to maximize bone strength and prevent fragility fractures. 
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Chapter 6: Aim 3, Develop a Forward Bone Adaptation 

Simulation for the Human Forearm Loading Model 
 

 

6.1 Introduction 

Osteoporotic bone fractures are experienced by 1 in 3 women over age 50 (Melton, 

1995). Exercise is a cost-effective, non-pharmacologic strategy for increasing bone strength and 

preventing fractures. Several meta-analyses have shown that impact and resistive exercise elicits 

consistent, modest (~1-3%) increases in bone density (Babatunde et al., 2012; Ireland and 

Rittweger, 2017; Zhao et al., 2014), but there are no established methods for personalizing 

interventions for specific clinical populations or individuals.  

Computer simulations of load-driven bone adaptation are a promising approach for 

comparing loading interventions in silico, potentially reducing the need for expensive and time-

consuming clinical exercise trials. In particular, medical image-based, patient-specific models 

could be used to simulate several versions of an intervention for an individual, allowing 

physicians to prescribe the intervention with the greatest predicted increases in bone formation. 

To date, several simulations have been proposed, combining mathematical theories of bone 

adaptation and finite element modeling. Earlier models generally modeled bone as a continuum 

solid (Beaupré et al., 1990a; Fyhrie and Carter, 1990; Huiskes et al., 1987), but more recently, 

there has been an increased focus on predicting trabecular adaptation at the microstructural level 

(Adachi et al., 2001; Huiskes et al., 2000; Ruimerman et al., 2005a; Schulte et al., 2013b). In 

animal models, micro-CT allows simulations to be run on micro-FE models of real bone 

geometries with boundary conditions based on experimental loading conditions from in vivo 

studies. Importantly, predicted changes can be compared to follow-up micro-CT scans from the 
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animal studies to validate the mathematical remodeling rules (Adachi et al., 2001; Levchuk et al., 

2014; Morgan et al., 2015; Schulte et al., 2013b). 

Looking toward human application, Badilatti et al. (2016) established a load-driven 

adaptation simulation of the human vertebra using ex vivo micro-CT scans and bone strain 

estimated using a retrospective load estimation method (Badilatti et al., 2016). While qualitative 

comparison to biopsies from different patients support that the simulation generally produces 

realistic results, lack of prospective bone imaging prohibits patient-specific validation. Overall, 

lack of experimental data describing in vivo bone loading and tissue-level structural changes 

represents the largest bottleneck in further development of patient-specific bone adaptation 

simulations. 

Previously, our lab established a human bone loading model to study the relationship 

between bone strain and adaptation in the distal radius. Participants lean the palm of their hand 

onto a padded load cell to apply cyclic, axial loading to the forearm. Bone strain within the distal 

radius during loading is estimated using computed tomography (CT) based finite element (FE) 

models, and strain is related to changes in bone structure measured using high resolution 

peripheral quantitative CT (HRpQCT). FE boundary conditions consist of two forces applied at 

the scaphoid and lunate carpals directed toward the centroid of the proximal radius, representing 

an axial load distributed through the wrist. This is based on verbal directions to participants to 

load evenly with the forearm vertical, but the extent to which achieved loading varies between 

and within individuals has not been systematically tested.  

In Aim 2B, we showed that following 12 months of the forearm loading task, trabecular 

bone adaptation was related to local, tissue-level bone energy equivalent strain. Here, our 

purpose was to use this experimental data to develop and apply an iterative, in silico bone 



Chapter 6: Aim 3 

133 

adaptation algorithm for the forearm loading task, with a particular focus on the influence of FE 

boundary conditions on simulation results. This was accomplished in three parts. First, we 

assessed the ability of the bone adaptation algorithm with simple, axial boundary conditions to 

predict prospectively measured changes in trabecular bone volume fraction (BV/TV) measured 

over 12 months using HRpQCT. We hypothesized that the simulation would predict participant-

specific trabecular changes similar to those measured experimentally. Second, we measured 

variability in task execution of forearm loading using experimental motion capture, and assessed 

the influence of variability on FE-estimated bone strain in a sensitivity analysis of FE boundary 

conditions. We hypothesized that FE-estimated trabecular strain distribution, but not overall 

magnitude, would be dependent on boundary conditions. Third, we compared trabecular changes 

predicted by the adaptation simulation with simple axial and variable loading conditions. We 

hypothesized that simulation predictions would be dependent on boundary conditions, such that 

the simulation is capable of producing distinct adaptation patterns for different versions of 

loading interventions. 

6.2 Methods 

6.2.1 Experimental Loading Intervention 

The experimental bone adaptation data reported here were collected as part of a larger, 

institutional approved randomized controlled trial enrolling 102 women ages 21-40 (Troy et al., 

2020). Inclusion criteria included healthy normal BMI, menstrual cycles, serum vitamin D, 

calcium intake, and forearm areal bone mineral density. Exclusion criteria included history of 

medical conditions or use of medications known to affect bone health, previous injury to the non-

dominant arm, and regular participation in heavy forearm loading activities (i.e. gymnastics, 

volleyball, and racket sports). 
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 For the parent study, participants were randomized into one of five loading groups or a 

non-loading control group. Participants in loading groups were asked to complete three sessions 

of 100 cycles of loading per week for the 12-month study period. Participants were assigned 

individualized target force magnitudes to generate the average bone strain for their experimental 

group using continuum FE models (Bhatia et al., 2014). Loading was performed using custom 

devices consisting of a padded uniaxial load cell (Standard Load Cells; Gujarat, India), data 

logger (DATAQ DI-710, DATAQ Instruments Inc.; Akron, OH), and custom LED circuit. 

Loading magnitude was guided by the LED circuit, with indicator lights turning on when applied 

force was equal to 10 N below and above the target magnitude. Loading rate was guided using 

auditory beeping cues played on a digital voice recorder. Vertical applied force was recorded at 

100 Hz, and loading waveforms were analyzed using a custom MATLAB (Mathworks; Natick, 

MA) script to calculate the peak force (N) and loading rate (N/s) for each cycle. An overall 

“loading dose” was calculated for each participant as the product of average peak force, average 

loading rate, and number of loading sessions performed during the study period. Bone structure 

was measured every three months using HRpQCT (XtremeCT I, Scanco Medical; Brüttisellen, 

Switzerland) at the distal radius (Laib et al., 1998). The data used here includes subjects who 

were assigned to the loading intervention who had good quality baseline and 12-month HRpQCT 

scans (motion ≤ 3 (Pialat et al., 2012)) and were in the top two quartiles for loading dose. 

6.2.2 Estimation of Tissue-Level Bone Strain 

 Bone strain during forearm loading was estimated using validated (Johnson and Troy, 

2017a) participant-specific multiscale FE models of the distal 10 cm of the radius (Figure 6.). 

Multiscale models consist of continuum FE meshes generated from clinical resolution CT scans 

(GE Brightspeed, GE Medical; Milwaukee, WI; 120 kV, 180 mA, voxel size 234 µm x 234 µm x 
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625 µm) flanking a micro-FE mesh at the HRpQCT scan site (82 µm isotropic voxel size). 

Continuum elements were ten-node tetrahedrons with a 3 mm nominal edge length, and were 

assigned inhomogeneous, density-based linear elastic material properties (E=1.95 MPa to 35 

GPa) according to (Morgan et al., 2003). The voxel-based micro-FE mesh consisted of 

hexahedral elements generated directly from HRpQCT voxel coordinates, and were assigned 

homogeneous linear elastic material properties (E=15 GPa, v=0.4). At the transition between 

continuum and micro-FE meshes, continuum element size was refined to facilitate a tie 

constraint between meshes.  

 FE boundary conditions simulated one cycle of the forearm loading task, with forces 

distributed at the distal articular cartilage to apply physiological loading. As a preprocessing step 

outside the bone adaptation simulation, as previously described (Johnson and Troy, 2017b), 

cartilage contact forces were calculated using a continuum-only FE model including non-

deformable CT-based meshes of the scaphoid and lunate carpals. Ramped quasistatic forces were 

applied at the centroid of each carpal directed toward the centroid of the fixed proximal radius. 

Carpal forces were calculated so the resultant magnitude was equal to the participant-specific 

average achieved force recorded by the loading device, with 40% of force applied at the lunate 

and 60% and the scaphoid. Models were solved using Abaqus CAE (v2016, Dassault Systèmes; 

Vélizy-Villacoublay, France), and the resulting normal and shear contact forces at the cartilage 

nodes were exported for application to matching nodes in multiscale models. The same cartilage 

forces were applied during each iteration of the bone adaptation simulation. 
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Figure 6.1: Multiscale FE models used to estimate tissue-level bone strain during the forearm 

loading task. Participant-specific meshes are generated from clinical resolution CT and HRpQCT 

scans, and boundary conditions simulate axial loading through the scaphoid (S) and lunate (L) 

carpals at the wrist.  

 

6.2.3 Development of the Strain-Driven Bone Adaptation Algorithm 

The bone adaptation algorithm assumes that trabecular bone adapts to mechanical 

loading, such that bone formation is more likely in high strain regions and resorption is more 

likely at low strain regions. The adaptation algorithm is applied only to the micro-FE section of 

the multiscale model, and is limited to the trabecular compartment. At each iteration, energy 

equivalent strain is calculated for each micro-FE element as 

𝜀𝑒𝑒𝑞 = √
2𝑈

𝐸
      (6.1) 

where E is elastic modulus and U is strain energy density, calculated as 

𝑈 =
1

2
[𝜎1𝜀1 + 𝜎2𝜀2 + 𝜎3𝜀3]      (6.2) 

where σn and εn are the principal stress and strain components, respectively. It is assumed that 

osteocytes throughout bone tissue (one per elements center) release biochemical signals in 

proportion to local mechanical strain, S, which we assume is energy equivalent strain. Bone 
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adaptation occurs at bone surfaces, where osteoblast and osteoclast effector cells respond to a 

cumulative, density-weighted stimulus, P(X), calculated based on (Mullender et al., 1994) as 

𝑃(𝑥) = ∑ 𝑒−𝑑𝑖(𝑥)/𝐷𝑆𝑖(𝑡)
𝑁
𝑖=1       (6.3) 

where Si(t) is the strain stimulus at osteocyte i a distance di(x) from effector cells at surface 

location x. The distance decay factor, D, defines the neighborhood of osteocytes that contribute 

to P(x), and reflects the decrease in biochemical signal strength for osteocytes further from the 

bone surface. The contribution of osteocyte i to P(x) is equal to e-1~=37% of its initial strength 

when di(x)=D, and only osteocytes within distance D contribute to the signal at x. The 

remodeling stimulus Pi(x) is entered into probability density functions that determine whether the 

element is removed, an adjacent element is added, or the surface remains quiescent. Whereas 

most published remodeling simulations are deterministic in that high strains trigger formation 

only and low strains resorption only, our model accounts for our experimental observation that 

adaptation is more stochastic, with formation occurring more often near high strains but also near 

low strains (and vice versa for resorption). The probability density functions are depicted in 

Figure 6.2, showing that at any given value of P(x) there is a nonzero probability of resorption, 

formation, and quiescence, and these three probabilities add to one hundred percent. The 

probabilities of formation (Probform) and resorption (Probresorb) are dependent on P(x) such that: 

𝑃𝑟𝑜𝑏𝑓𝑜𝑟𝑚 =

{
 
 

 
 

𝑃𝑟𝑜𝑏𝑓𝑜𝑟𝑚,𝑚𝑖𝑛

𝑃𝑟𝑜𝑏𝑓𝑜𝑟𝑚,𝑚𝑖𝑛 + (
𝑃𝑟𝑜𝑏𝑓𝑜𝑟𝑚,𝑚𝑎𝑥 − 𝑃𝑟𝑜𝑏𝑓𝑜𝑟𝑚,𝑚𝑖𝑛

𝑃𝑠𝑎𝑡,𝑚𝑎𝑥 − 𝑃𝑠𝑎𝑡,𝑚𝑖𝑛
) ∗ (𝑃(𝑥) − 𝑃𝑠𝑎𝑡,𝑚𝑖𝑛)

𝑃𝑟𝑜𝑏𝑓𝑜𝑟𝑚,𝑚𝑎𝑥

⁡⁡,

𝑃(𝑥) ≤ 𝑃𝑠𝑎𝑡,𝑚𝑖𝑛
𝑃𝑠𝑎𝑡,𝑚𝑖𝑛 < 𝑃(𝑥) ≤

𝑃(𝑥) > 𝑃𝑠𝑎𝑡,𝑚𝑎𝑥

𝑃𝑠𝑎𝑡,𝑚𝑎𝑥 

and             (6.4) 

𝑃𝑟𝑜𝑏𝑟𝑒𝑠 =

{
 
 

 
 

⁡

𝑃𝑟𝑜𝑏𝑟𝑒𝑠,𝑚𝑎𝑥

𝑃𝑟𝑜𝑏𝑟𝑒𝑠,𝑚𝑎𝑥 − (
𝑃𝑟𝑜𝑏𝑟𝑒𝑠,𝑚𝑎𝑥 − 𝑃𝑟𝑜𝑏𝑟𝑒𝑠,𝑚𝑖𝑛

𝑃𝑠𝑎𝑡,𝑚𝑎𝑥 − 𝑃𝑠𝑎𝑡,𝑚𝑖𝑛
) ∗ (𝑃(𝑥) − 𝑃𝑠𝑎𝑡,𝑚𝑖𝑛)⁡⁡,

𝑃𝑟𝑜𝑏𝑟𝑒𝑠,𝑚𝑖𝑛

𝑃(𝑥) ≤ 𝑃𝑠𝑎𝑡,𝑚𝑖𝑛
𝑃𝑠𝑎𝑡,𝑚𝑖𝑛 < 𝑃(𝑥) ≤

𝑃(𝑥) > 𝑃𝑠𝑎𝑡,𝑚𝑎𝑥

𝑃𝑠𝑎𝑡,𝑚𝑎𝑥 
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where Psat,min and Psat,max are thresholds of stimulus P, below and above which the probabilities 

of formation and resorption are saturated, respectively. Between the saturation thresholds, the 

probability of formation linearly increases from Probform,min to Probform,max, and the probability of 

resorption linearly decreases from Probres,max to Probres,min. This probabilistic approach was 

implemented for each trabecular surface element by determining the probabilities of formation, 

resorption, or neither based on the P stimulus value for that element, and selecting one option 

using a random number generator that selects an integer between zero and one hundred.  

 

Figure 6.2: Probability density function used to determine adaptation behavior for each surface 

trabecular element as a semi-stochastic function of mechanical stimulus P(x).  

  

6.2.4 Bone Adaptation Simulation Parameter Selection and Implementation 

For the current analysis, a single set of parameter values was selected for all participants, 

assuming that the mechanostat has the same regulatory setpoints across individuals. Due to the 

iterative nature of the simulation, parameter values cannot be directly fitted to match 

experimental data. Therefore, we calculated iteration 1 predicted changes for five participants 

using several candidate parameter values, and selected those generating changes in the correct 

direction as experimental changes most often. Overall, the P value thresholds influenced the 
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balance between formed and resorbed volumes, while the minimum and maximum probabilities 

had a larger influence and regulated the magnitude of the adapted volumes. Psat,min and Psat,max 

were set to the average 5th and 80th percentile strain values (435 µε and 5182 µε) calculated 

across a subgroup of thirteen participants (same as the sensitivity analysis described below). 

These percentile cutoffs were selected such that a greater percent (20% versus 5%) of elements 

would be at the maximum probability of formation than resorption to achieve the net increase in 

BV/TV observed experimentally.  

The minimum and maximum probabilities for formation and resorption were set to 1% 

and 4%, respectively. The 1:4 ratio for the minimum and maximum probabilities was based on 

the maximum and minimum volumes of formed and resorbed bone found at extremely high and 

extremely low strain regions in Aim 2B (~10% and ~40%). Probabilities were initially set 

directly to 10% and 40%, but were scaled down to allow for a gradual change in net adaptation 

over the total number of iterations. This was necessary to prevent large areas of the micro-FE 

mesh from becoming disconnected and subsequently removed in excess of resorption predicted 

by the algorithm. For a subset of five participants, simulations with probabilities set to 2% and 

8% and to 1% and 4% were run for eight iterations. The error in average group change, as well 

as average absolute error for each participant was lower for 1% and 4% and thus were selected as 

the final values. 

 The bone adaptation simulation was fully automated and implemented on a UNIX server 

cluster. A custom MATLAB shell script controlled the iterative process of running FE loading 

simulations in Abaqus (v2016, Simulia, Dassault Systèmes; Vélizy-Villacoublay, France), 

obtaining the resulting element stress and strain tensors within the HRpQCT micro-FE mesh, 

calculating the mechanical stimulus and adaptation behavior for each trabecular element, and 
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updating the micro-FE mesh geometry (Figure 6.3). The MATLAB shell script was run on 12 

parallel processors (2.1-3.2 GHz) and 80 GB RAM, with the implementation of the adaptation 

algorithm and update of the micro-FE mesh taking approximately 15-40 minutes at each 

iteration. Each multiscale FE model was solved using 54 parallel processors (2.1-3.2 GHz) and 

200 GB RAM in 3.4±1.9 hours. The simulations were run for ten iterations, and the final micro-

FE mesh geometry was exported for comparison with experimental follow-up scans. Ten 

iterations was selected to achieve model convergence based on a preliminary version of the 

simulation not incorporating the probabilistic density functions, which showed a decrease in the 

net change at each iteration from 0.65% to 0.07% over ten iterations. For the current simulation 

algorithm, average error in raw change in total trabecular BV/TV continued to decrease over the 

simulation (Figure 6.4). However, we observed that changing the number of iterations from 8 to 

10 did not affect the interpretation of statistical comparisons of simulated and experimental 

changes. Future work in improving model tuning should confirm whether additional iterations 

improve simulation performance. 
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Figure 6.3: Workflow of the strain-driven bone adaptation simulation. Clinical resolution CT 

and HRpQCT scans acquired at baseline are used to define the initial multiscale FE model, with 

boundary conditions simulating the forearm loading task. Energy equivalent strain is calculated 

within the micro-FE region, and at each trabecular surface element the mechanical stimulus P(x) 

is calculated and the probabilistic adaptation behavior is determined. The updated micro-FE 

mesh is integrated back into the multiscale FE model for the next iteration. The final simulation 

outputs are compared to experimental follow-up HRpQCT scans. 

 

 
Figure 6.4: Error in simulation prediction of raw change in total trabecular BV/TV versus 

experimental changes over the number of simulation iterations. Error bars indicate standard 

error.  
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6.2.5 Comparison of Experimental and Predicted Trabecular Bone Adaptation 

 The validity of the bone adaptation simulation was assessed by comparing participant-

specific predicted changes in trabecular BV/TV to experimental changes measured from 12-

month HRpQCT scan data. BV/TV was used as the adaptation outcome because the micro-FE 

mesh geometry generated by the simulation is binary, and calculation of BV/TV does not require 

full greyscale information.  

 Experimental change in BV/TV was determined from baseline and 12-month follow-up 

HRpQCT scans. The baseline and follow-up scans were contoured and segmented using the 

manufacturer’s standard, semi-automatic method (MacNeil and Boyd, 2007). The transformation 

matrix required to align the baseline to the follow-up image was calculated using three-

dimensional rigid registration of the greyscale images (Image Processing Language, V5.16, 

Scanco Medical AG; Bruttisellen, Switzerland). The transformation matrix was used to 

transform the trabecular mask for the baseline scan, generated by the standard analysis program, 

into the follow-up image coordinate system. The non-transformed trabecular mask was applied 

to the segmented baseline scan and the transformed mask was applied to the segmented follow-

up scan to determine BV/TV in matching regions using Mimics v15.1 (Materialise; Leuven, 

Belgium). The trabecular region was also divided into inner (60%) and outer (40%) regions 

(Figure 6.5) to assess whether the adaptation simulation accurately estimates the regional 

distribution of bone changes. Due to the limitations of only having binary information for the 

micro-FE mesh, a direct estimate of BV/TV was calculated as the number of bone voxels to total 

voxels in the region of interest. The measurement of experimental change in BV/TV has some 

short-term precision error, mostly due to partial volume effect of the HRpQCT scans and 

participant repositioning error. The root mean square coefficients of variation for change in 
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BV/TV, calculated from two repeat scans of eight individuals acquired with less than two weeks 

between scans, were 1.27%, 1.45%, and 1.41% for total, inner, and outer trabecular 

compartments, respectively. 

 

Figure 6.5: Definition of total, inner (60%) and outer (40%) trabecular bone compartments. 

 

6.2.6 Measurement of Forearm Loading Task Execution Variability 

Six women ages 21-40 participated in an institutionally approved motion capture study to 

quantify the realistic range of variability in loading direction. Individuals with fractures or other 

injuries to the non-dominant arm in the past five years were excluded.  

 Each participant completed one laboratory visit, during which four sessions of 25 cycles 

of forearm loading were performed while forearm motion and force applied to the hand were 

measured. Each loading session took approximately one minute to complete, and had varying 

target load magnitudes and rates (Table 6.1) selected to reflect the range of loading conditions 

applied in the parent study. Loading was performed using the same loading devices as the parent 

study. 

.  
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Table 6.1: Target loading parameters for each loading session during the biomechanics motion 

capture experiment. Parameters were selected to generate the range of values observed in the 

parent bone loading study.  

Condition 
Target Force 

Magnitude (N) 

Time to Reach 

Peak Force (s) 

Target Loading 

Rate (N/s) 

Low Magnitude, Moderate Rate 200 N 0.33 s 667 N/s 

High Magnitude, Moderate Rate 350 N 0.33 s 1,167 N/s 

Moderate Magnitude, Low Rate 300 N 0.8 s 375 N/s 

Moderate Magnitude, High Rate 300 N 0.1 s 3,000 N/s 

 

Reflective markers (6.4 mm sphere Pearl Markers, B&L Engineering, Santa Ana, CA) 

were placed at the third metacarpal, radial styloid, ulnar styloid, and medial and lateral elbow, 

consistent with recommendations of the International Society of Biomechanics (Wu et al., 2005). 

Bony landmarks were located using palpitation by a single investigator. Marker positions during 

loading were recorded using a six-camera Optitrak Motive motion capture system (Optitrack 

Flex 13, Natural Point Inc.; Corvalis, OR) at a sampling frequency of 120 Hz. Cameras were 

focused on the loading device, which was placed on top of a force plate set on a hip-high table. 

The force plate (AMTI OPTIMA, Advanced Mechanical Technology; Watertown, MA) was 

used in conjunction with Netforce software (Advanced Mechanical Technology; Watertown, 

MA) to record force and moment data in three dimensions at a sampling frequency of 1200 Hz. 

Camera and force plate data were synchronized by setting the motion capture system as an 

external trigger for the force plate. 

Raw motion and force data were used to calculate the relative position of the 3D force 

vector relative to the long axis of the forearm using a custom MATLAB script. Force data were 

down sampled to 120 Hz to match camera data, and the instance of peak force magnitude was 

identified for each loading cycle. Center of pressure coordinates were calculated for each peak as 

𝐶𝑂𝑃𝑥 =
−𝑀𝑦+𝐶𝑂𝑃𝑧∗𝐹𝑥

𝐹𝑧
, 𝐶𝑂𝑃𝑦 =

𝑀𝑥+𝐶𝑂𝑃𝑧∗𝐹𝑦

𝐹𝑧
    (6.6) 
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Where [𝐹𝑥 , 𝐹𝑦, 𝐹𝑧],⁡[𝑀𝑥,𝑀𝑦 , 𝑀𝑧], and [𝐶𝑂𝑃𝑥, 𝐶𝑂𝑃𝑦, 𝐶𝑂𝑃𝑧] define the force, moment, and center of 

pressure in the force plate local coordinate system. Here, 𝐶𝑂𝑃𝑧 is constant and equal to the 

vertical distance between the force plate origin and the top of the loading device (15 cm). The 

center of pressure coordinates and force were transformed into the global coordinate system of 

the marker data using a calibration triangle placed at a known location within the force plate 

coordinate system. 

 Marker coordinate data were used to define a local coordinate system for the forearm at 

the instance of each force peak. The Y axis points from the wrist joint center (midpoint between 

the radial styloid and ulnar styloid markers) towards the elbow joint center (midpoint between 

medial and lateral elbow markers). The Z axis points from the wrist joint center toward the radial 

styloid, and the X axis is defined by the cross product of Y and Z pointing anteriorly toward the 

palm (Figure 6.6). The coordinate system definition was based on the International 

Biomechanics Society standards (Wu et al., 2005), adapted to move the origin of the Y axis from 

the ulnar styloid to the wrist joint center to facilitate interpretation within the context of the FE 

model. The Euler angle sequence needed to rotate the global coordinate system into the forearm 

local coordinate system was calculated and applied to the force vector and COP coordinates. For 

each of the six motion capture participants, the average peak force vector was calculated and 

normalized to its magnitude to determine the unit vector describing the mean direction of force 

relative to the forearm. The overall average unit vector was calculated over all participants for 

use in the FE sensitivity analysis.  
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Figure 6.6: (Left) Experimental setup for the biomechanics loading variability study, including 

relative position of loading device and force plate, as well as reflective marker locations used to 

define (Right) the local forearm coordinate system. 

 

6.2.7 FE Model Boundary Condition Sensitivity Analysis 

Based on the measured loading variability, four sets of boundary conditions were applied 

to multiscale FE models for thirteen participants. Axial boundary conditions are the same as 

previously described, with two forces directed from the centroids of the scaphoid and lunate 

toward the proximal radius, yielding an axially directed resultant load. To account for measured 

variability in center of pressure, we modeled the two extreme cases, such that 100% of the 

resultant load is applied at the scaphoid (“scaphoid” condition), and 100% of the resultant load is 

applied at the lunate (“lunate” condition). Finally, tilted boundary conditions consisted of two 

distributed forces rotated to represent the average measured tilt relative to the forearm. For the 

tilted condition, the rotation matrix between a vertical vector and the average unit vector 

calculated across motion capture participants was applied to the axial condition force vectors. 

For each loading condition, a separate continuum-only model with the scaphoid and lunate 
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carpals was solved using the corresponding force vectors, and the resulting cartilage contact 

forces were exported for use in multiscale FE models.  

Metrics of FE-estimated strain reflecting loading magnitude and distribution were 

compared between loading conditions. Strain magnitude was measured as the median value of 

energy equivalent strain, 𝜀𝑒𝑒𝑞,𝑚𝑒𝑑. Multiple metrics were used to characterize bone strain 

distribution. The standard deviation of 𝜀𝑒𝑒𝑞 was used to characterize overall loading variability, 

where a greater standard deviation indicates that strain values are, on average, further from the 

mean. We also calculated the percent of bone volume with 𝜀𝑒𝑒𝑞 greater than 75% of the 95th 

percentile value, where a smaller high strain volume indicates a more concentrated, less uniform 

strain distribution.  

6.2.8 Comparison of Predicted Trabecular Bone Adaptation under Axial versus Tilted Loading 

To measure the sensitivity of the adaptation simulation to changes in loading, predicted 

changes for simulations with axial and tilted FE boundary conditions were compared for the 

subset of thirteen participants from the sensitivity analysis. Simulations were run with all other 

parameters equal to those for the axial loading condition. Predicted changes in BV/TV for each 

loading condition were calculated for the total trabecular region. Additionally, as tilting the 

loading vector likely influences the radial distribution of strain and therefore mechanical 

stimulus P(x), predicted changes were also compared within angular quadrants. Posterior, 

anterior, radius, and ulna quadrants were defined at 45° angles relative to the axes of 

anatomically aligned FE models (Bhatia et al., 2015).  

6.2.9 Statistics 

Experimental and simulation predicted changes in BV/TV were compared using a paired 

t-test (α=0.05), with separate tests performed for the total, inner, and outer trabecular bone 
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compartments. To explore potential factors that may influence adaptation outside of strain, we 

compared participant characteristics between participants for which the direction of change in 

BV/TV (i.e. net increase or decrease) was predicted correctly versus incorrectly using 

independent t-tests (α=0.05).  

For the FE boundary condition sensitivity analysis, strain magnitude and distribution 

metrics were compared between conditions using repeated measures ANOVA with Bonferroni-

corrected posthoc t-tests (α=0.05). For each strain metric, one model was used to compare axial, 

scaphoid, and lunate loading, and a second model was used to compare axial and tilted loading. 

For each model, the dependent variable was the strain outcome metric, and boundary condition 

was treated as a within-subject repeated measure. Separate models were fit for the integral, total 

trabecular, inner trabecular, outer trabecular, and cortical compartments.  

The sensitivity of the bone adaptation simulation to FE boundary conditions was assessed 

by comparing change in total trabecular BV/TV between axial and tilted conditions using a 

paired t-test (α=0.05). Additionally, simulated changes and median trabecular strain were 

compared within each quadrant between axial and tilted loading conditions using paired t-tests 

(α=0.05).  

6.3 Results 

6.3.1 Bone Adaptation Simulation 

The average increase in total trabecular BV/TV across participants was similar for 

experimental measurements and simulation predictions (simulation (p=0.31, effect size=0.25) 

(Table 6.2, Figure 6.7). However, the simulation failed to capture the experimental increase in 

inner trabecular BV/TV, instead predicting an average group decrease (p=0.01, effect size=0.66). 

This was balanced in the outer trabecular compartment, for which the simulation overestimated 
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the average group increase in BV/TV (p=0.01, effect size=0.65). Looking at individual changes 

(Figure 6.8), the direction of change in BV/TV (increase versus decrease) was predicted 

correctly for 11 out of 18 participants. Qualitatively, we observed that net changes between 

baseline and the final simulation mesh consisted of relatively large resorbed regions where entire 

trabeculae were removed, while formation tended to occur as thin layers on existing trabecular 

struts (Figure 6.9). Larger resorption regions were generally more common in participants and 

regions within bone with lower BV/TV, where trabecular connectivity is more susceptible to 

disruption. We also noted a trend in participants for which the simulation over and 

underestimated change that formation was more common in the distal portion of the micro-FE 

mesh, and resorption was more common near the proximal end. This may be related to loading 

distribution, as well as generally lower BV/TV in the proximal end closer to the marrow cavity. 

 

Figure 6.7: Average within-participant percent changes in BV/TV measured experimentally 

versus predicted by the adaptation simulation. Percent changes are calculated for the total, inner, 

and outer trabecular bone compartments as a percent of the baseline value within the given 

compartment. Error bars indicate standard error, *indicates significant difference between 

experimental and simulated change within the compartment (p<0.05). 
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Table 6.2: Individual and group average values for baseline BV/TV and experimental and predicted percent changes in BV/TV in the 

total, inner, and outer trabecular bone compartments. For the total trabecular compartment, it is indicated whether the simulation 

correctly predicted the direction (increase or decrease) of change in BV/TV as measured experimentally. Bold indicates significant 

difference between experimental and simulated change within the compartment (p<0.05). 

Total Trabecular  Inner Trabecular  Outer Trabecular 

Direction 

correct? 
Baseline 

BV/TV 
Exp. Change  

(%) 
Sim. 

Change 

(%) 
Diff.  

(S-E) (%) 
 Baseline 

BV/TV 
Exp. Change  

(%) 
Sim. 

Change 

(%) 
Diff.  

(S-E) (%) 
 Baseline 

BV/TV 
Exp. Change  

(%) 
Sim. 

Change 

(%) 
Diff.  

(S-E) (%) 

yes 0.26 3.5 3.8 0.3  0.22 3.3 1.4 -1.9  0.30 2.2 6.4 4.2 
yes 0.28 6.4 6.0 -0.4  0.25 7.7 6.5 -1.2  0.34 4.4 5.4 1.1 
yes 0.34 0.4 0.9 0.5  0.31 -0.4 -3.6 -3.3  0.39 0.5 6.1 5.5 
yes 0.25 3.0 4.1 1.2  0.22 4.5 2.3 -2.2  0.29 0.8 5.7 4.9 
yes 0.33 -2.7 -0.9 1.8  0.31 -3.8 -2.6 1.2  0.38 -0.5 1.6 2.2 
yes 0.26 2.5 0.6 -1.9  0.22 4.8 -0.1 -4.9  0.31 -1.0 1.4 2.4 
yes 0.26 1.0 3.1 2.1  0.23 0.8 -0.5 -1.3  0.32 1.7 6.7 5.0 
yes 0.28 3.7 0.5 -3.2  0.25 2.1 -4.9 -7.0  0.32 5.1 5.4 0.3 
yes 0.31 2.0 6.2 4.2  0.28 2.3 4.4 2.1  0.35 0.8 8.1 7.3 
yes 0.26 6.4 0.5 -5.9  0.21 7.7 -3.0 -10.6  0.32 4.1 4.3 0.2 
yes 0.27 5.6 11.6 6.0  0.24 6.1 9.4 3.4  0.32 4.3 14.5 10.2 
no 0.24 0.9 -1.1 -2.0  0.19 4.4 -6.2 -10.6  0.30 -1.7 3.0 4.8 
no 0.33 -1.3 1.6 2.9  0.29 -2.2 -1.6 0.6  0.37 -0.2 4.5 4.7 
no 0.28 1.9 -1.5 -3.4  0.24 2.7 -4.5 -7.2  0.34 0.5 1.8 1.3 
no 0.24 -0.4 7.7 8.0  0.21 -1.4 5.3 6.7  0.29 0.9 10.5 9.6 
no 0.22 7.4 -3.9 -11.3  0.19 9.2 -5.5 -14.7  0.28 3.6 -1.9 -5.5 
no 0.18 8.6 -2.9 -11.4  0.14 13.3 -7.8 -21.1  0.25 2.7 2.0 -0.7 
no 0.24 2.0 -11.9 -14.0  0.18 2.8 -15.8 -18.6  0.35 -1.8 -8.0 -6.2 

Mean 0.27 2.84 1.36 -1.47  0.23 3.55 -1.48 -5.03  0.32 1.46 4.31 2.85 
SD 0.04 3.08 5.15 6.01  0.05 4.27 5.95 7.61  0.04 2.16 4.81 4.39 
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Figure 6.8: Experimental versus simulation-predicted change in BV/TV, calculated for the total, 

inner, and outer trabecular bone compartments as a percent of the baseline value for the given 

compartment. Data are presented individually for each participant. Positive change values 

indicate an increase from baseline to follow-up while negative values indicate a decrease in 

BV/TV. 
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Figure 6.9: Representative illustrations of the bone adaptation simulation behavior for 

participants for which the simulation (A) closely matched experimental change, (B) incorrectly 

predicted an increase, and (C) incorrectly predicted a decrease in total trabecular BV/TV. 

Participant numbers correspond to those reported in Figure 6.6. Strain and adaptation behavior is 

visualized for a single, central coronal slice of the micro-FE region. Strain shows energy 

equivalent strain (𝜺𝒆𝒆𝒒). Predicted formation is visualized by overlaying the baseline (gray) and 

final simulation mesh (purple), with purple elements indicating areas added during the 

simulation. Similarly, for resorption, orange voxels are those present at baseline but not in the 

final simulation mesh. The plot shows bone volume in each transverse slice, normalized to the 

within-slice volume at baseline. Values less than 100 indicate a net decrease in bone elements 

within a slice, and values greater than 100 indicating a net increase.  

 

Among subjects for whom the simulation correctly predicted the direction of change in 

BV/TV, average absolute peak force was significantly greater than those with incorrect 
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simulation predictions (Table 6.3, Figure 6.10). There were no significant differences in loading 

rate or number of loading sessions completed. There was a non-significant trend towards higher 

median trabecular strain magnitude for those with correctly predicted direction of change. In 

terms of bone structure, baseline BV/TV was significantly higher for the correctly predicted 

group, but there was no difference in the experimentally measured percent change in BV/TV. 

Thus, correct prediction of the direction of net change in BV/TV was associated with generating 

higher magnitude loads and having a higher relative bone volume at baseline.  

 

Table 6.3: Comparison of participant loading and bone parameters between individuals for 

which the simulation predicted the direction of change (increase or decrease) in BV/TV correctly 

or incorrectly. Differences were assessed using independent samples t-test, with p-values and 

Cohen’s d effect size listed and bold indicating statistical significance.  

 

  Direction Predicted 

Correctly (n=11)   Direction Predicted 

Incorrectly (n=7)     
  Mean (SD)   Mean (SD) p-value Effect Size 

Number of Loading Sessions 180.6 (60.5) 
 176.4 (64.5) 0.89 0.07 

Average Peak Force (N) 329.8 (41.2) 
 258.0 (85.2) 0.03 1.17 

Average Loading Rate (N/s) 870.8 (629.6) 
 924.7 (527.3) 0.85 -0.09 

Median Trabecular Strain (µε) 196.6 (38.2) 
 158.0 (42.6) 0.06 0.96 

Baseline BV/TV 0.282 (0.032) 
 0.245 (0.046) 0.06 1.00 

Experimental Change in BV/TV (%) 2.9 (2.7)   2.7 (3.8) 0.91 0.06 
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Figure 6.10: Comparison of loading parameters and baseline bone status between individuals for 

which the simulation predicted the direction of change (increase or decrease) in BV/TV correctly 

(n=11) versus incorrectly (n=7). *Indicates significant difference (p<0.05), with p-values also 

indicating non-significant trends. 

 

6.3.2 Influence of Forearm Loading Task Execution on FE-Estimated Bone Strain 

In the biomechanics study, we found that participants tended to perform loading with the 

center of pressure shifted toward either the scaphoid or lunate, with the side preference 

consistent within each participant. The average absolute distance of the center of pressure from 

the wrist joint center was 14.4±3.7 mm along the radioulnar axis. Across subjects, the ground 

reaction force was tilted 0.4-24.7° relative to the long axis of the forearm. When the elevation 

angle between the long axis of the forearm and the ground reaction force vector was calculated 

for each individual (not considering the direction of GRF in the horizontal plane), the average tilt 

was 8.4±4.3°. The ground reaction force was consistently tilted dorsally and radially relative to 

the forearm long axis.  

In the FE boundary condition sensitivity analysis, shifting the distributed axial load to the 

lunate only had no effect on strain magnitude in any compartment (Table 6.4). Shifting the 

distributed axial load to the scaphoid only led to significant, 12-17% decreases in strain 
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magnitude in the integral and trabecular (inner, outer, and total) compartments. Tilting the 

distributed force vectors had no effect on strain magnitude in any compartment.  

Changing FE model boundary conditions generated visibly different strain distributions 

(Figure 6.11). The standard deviation of strain for the lunate loading condition was 63-88% 

greater versus the distributed axial loading condition, with significant changes for all 

compartments (Figure 6.12). Standard deviation was also significantly greater for the scaphoid 

loading condition for the integral, total trabecular, outer trabecular, and cortical compartments, 

but changes were smaller relative to the scaphoid condition, between 18-73%. There were no 

significant differences in standard deviation of strain between distributed axial and tilted loading 

conditions.  

The volume of bone with high strain (>75% of the 95th percentile) was 14-37% lower for 

the lunate loading condition and 11-20% lower for the scaphoid condition (p<0.05 for all 

compartments). Therefore, high strains were concentrated within a smaller volume, indicative of 

a less uniform loading distribution. For the tilted loading condition, the high strain volume was 

significantly larger in the total, inner, and outer trabecular regions, indicating a more uniform 

trabecular strain distribution versus the distributed axial condition. 
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Figure 6.11: Energy equivalent strain (𝜺𝒆𝒆𝒒) in a representative distal radius micro-FE mesh 

under distributed axial, tilted, lunate (L), and scaphoid (S) loading conditions. 
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Table 6.4: Strain magnitude and distribution metrics compared across loading conditions applied in the FE boundary condition 

sensitivity analysis. Mean and standard deviation (SD) values are provided for each loading condition, and for the modified conditions 

percent change versus the axial condition is provided (bold indicates significant difference, p<0.05). High strain volume was 

calculated as the percent of bone volume with energy equivalent strain greater than 75% of the 95th percentile value within the bone 

compartment of interest.  

 

Axial  Lunate  Scaphoid  Tilted 

Mean (SD)  Mean (SD) 

Mean (SD) 

%Change vs. 

Axial  Mean (SD) 

Mean (SD) 

%Change vs. 

Axial  Mean (SD) 

Mean (SD) 

%Change vs. 

Axial 
Integral                  

Median (µε)  215.3 (64.5) 
 

237.6 (81.5) 8.5 (7.1) 
 

179.6 (53.2) -16.9 (3.0) 
 

250.6 (121.6) 14.2 (8.7) 
SD (µε) 180.9 (58.6) 

 
308.3 (88.2) 73.5 (10.9) 

 
243.4 (62.1) 39.3 (6.9) 

 
173.7 (72.1) -3.3 (7.6) 

High Strain Volume (%) 16.2 (2.1) 
 

11.9 (1.4) -25.8 (2.9) 
 

12.8 (0.6) -19.8 (3.3) 
 

17.9 (4.6) 9.8 (6.2) 
Total Trabecular 

                 

Median (µε)  177.2 (50.1) 
 

220.1 (83.1) 7.6 (6.6) 
 

151.5 (45.0) -15.1 (3.6) 
 

203.9 (93.6) 12.6 (7.7) 
SD (µε) 181.5 (62.3) 

 
303.7 (88.2) 72.4 (11.0) 

 
206.7 (56.6) 18.2 (5.7) 

 
174.3 (73.6) -3.6 (7.1) 

High Strain Volume (%) 12.2 (1.5) 
 

11.5 (2.3) -14.4 (2.1) 
 

10.6 (0.5) -12.9 (2.3) 
 

13.0 (1.6) 6.1 (2.4) 
Inner Trabecular 

                 

Median (µε)  169.0 (50.1) 
 

176.9 (55.8) 4.4 (6.4) 
 

149.5 (46.1) -11.7 (4.4) 
 

193.0 (88.2) 12.4 (8.1) 
SD (µε) 188.4 (65.8) 

 
299.6 (89.7) 63.1 (9.9) 

 
199.6 (60.7) 9.3 (5.3) 

 
183.5 (80.3) -2.5 (7.1) 

High Strain Volume (%) 11.6 (1.2) 
 

9.9 (0.8) -14.2 (1.7) 
 

10.3 (0.7) -10.8 (2.3) 
 

12.2 (1.3) 5.6 (1.7) 
Outer Trabecular 

                 

Median (µε)  184.6 (54.6) 
 

208.9 (66.4) 12.0 (7.3) 
 

154.0 (46.4) -17.2 (3.5) 
 

213.7 (100.6) 13.1 (7.6) 
SD (µε) 171.2 (61.5) 

 
308.2 (94.6) 85.2 (13.3) 

 
212.6 (56.1) 30.9 (7.9) 

 
161.5 (66.9) -4.6 (7.1) 

High Strain Volume (%) 13.1 (1.9) 
 

11.0 (1.0) -15.2 (2.5) 
 

11.2 (0.7) -12.7 (2.6) 
 

13.9 (2.0) 7.0 (3.3) 
Cortical 

                 

Median (µε)  277.5 (84.9) 
 

285.0 (106.8) -0.3 (5.8) 
 

272.9 (91.7) -2.7 (3.4) 
 

318.5 (154.3) 12.7 (8.7) 
SD (µε) 163.4 (57.9) 

 
296.9 (91.7) 88.1 (17.5) 

 
264.6 (72.7) 73.2 (14.0) 

 
153.1 (65.6) -3.8 (8.8) 

High Strain Volume (%) 23.1 (2.8) 
 

14.4 (3.1) -37.2 (4.2) 
 

18.8 (1.6) -17.8 (3.2) 
 

26.0 (7.3) 12.8 (8.6) 
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Figure 6.12: Strain magnitude and distribution metrics compared across loading conditions 

applied in the FE boundary condition sensitivity analysis. Values are provided for the integral 
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(Int), total trabecular (Trab), inner trabecular (TbInn), outer trabecular (TbMeta), and cortical 

(Cort) bone compartments. High strain volume was calculated as the percent of bone volume 

with energy equivalent strain greater than 75% of the 95th percentile value within the bone 

compartment of interest. Error bars indicate standard error, *indicates significant difference 

versus Axial (p<0.05). 

 

6.3.3 Influence of Boundary Conditions on Bone Adaptation Simulation 

Tilting the force vector applied to FE models at each iteration did not significantly affect 

the change in total trabecular BV/TV predicted by the adaptation simulation (Table 6.5). 

Looking within each quadrant, there were significant differences in simulation-predicted change 

in BV/TV for axial versus tilted loading in the posterior, radius, and ulna quadrants (Figure 

6.13A). Tilting the loading vector in the posterior-radius direction decreased the magnitude of 

bone loss in the posterior and radius quadrants predicted for axial loading. In contrast, the tilted 

loading condition showed smaller predicted increases in BV/TV in the ulna quadrant versus axial 

loading. These differences in simulated adaptation align with changes in regional bone strain 

(Figure 6.13B). Median strain in the posterior and radius quadrants were significantly higher 

under tilted versus axial loads, while there were non-significant trends toward lower strains in 

the anterior and ulna quadrants. 
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Table 6.5: Bone strain and simulated changes in BV/TV when axial versus tilted loading conditions are applied within the 

bone adaptation simulation (n=13). Mean and standard deviation (SD) values are provided for strain, baseline BV/TV, and 

simulated changes in BV/TV for the total trabecular region and within each quadrant. Bold indicates significant within-

participant differences between loading conditions, determined using paired t-tests with Cohen’s d effect sizes reported.  

 Median Strain  Simulated Adaptation 

 

Axial  
Mean (SD)  

(µε) 

Tilted  
Mean (SD)  

(µε) 
p-val. Effect 

Size 
 Baseline BV/TV 

Mean (SD) 
Axial Sim. 

Change (%) 
Mean (SD) 

Tilted Sim. 

Change (%) 
Mean (SD) 

p-val. Effect 

Size 

Total 177.2 (50.1) 203.9 (93.6) 0.15 0.43  0.274 (0.039) 1.0 (5.7) 2.6 (8.4) 0.17 0.41 
Posterior 133.0 (63.1) 196.3 (123.9) 0.02 0.78  0.319 (0.041) -4.7 (8.0) 0.7 (11.6) 0.004 0.99 
Radius 139.7 (37.1) 189.1 (79.3) 0.02 0.79  0.240 (0.052) -5.8 (5.6) -0.6 (8.9) 0.002 1.10 
Anterior 312.8 (112.4) 292.2 (128.6) 0.39 0.25  0.274 (0.035) 10.8 (7.0) 8.5 (7.9) 0.12 0.46 
Ulna 233.0 (66.3) 209.9 (85.8) 0.19 0.38  0.293 (0.040) 6.7 (7.2) 3.8 (8.7) 0.02 0.74 
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Figure 6.13: (A) Average simulated changes in BV/TV for the axial versus tilted loading 

conditions. (B) Median trabecular energy equivalent bone strain estimated using baseline FE 

models with axial versus tilted loading. Percent changes are calculated for each quadrant of the 

trabecular region relative to the baseline value within the quadrant. Error bars indicate standard 

error, *indicates significant difference between axial and tilted loading (p<0.05).  
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6.4 Discussion 

Here we investigated whether a bone adaptation simulation, driven by local bone tissue 

strain, was capable of predicting experimentally measured changes in distal radius bone structure 

following 12 months of axial compressive loading. Additionally, we measured variability in 

applied force during the forearm loading task, and quantified its influence on FE-estimated bone 

strain and predictions in bone adaptation.  

Our first hypothesis was that the simulation would predict trabecular changes similar to 

those measured experimentally. Overall, the bone adaptation simulation predicted average group 

trends in change in total trabecular bone, but did capture regional changes in the inner and outer 

trabecular regions or participant-specific changes. This suggests that across individuals, bone 

strain influences adaptation of bone structure to mechanical loading in our upper extremity 

model. However, the relationship between strain and the magnitude of the adaptive response 

varies between individuals, and may be regulated by additional systemic, non-mechanical 

factors. This is in agreement with research showing that adaptation to mechanical loading is 

influenced by parathyroid hormone, estrogen and selective estrogen receptor modulators, and the 

adipocyte-secreted hormone leptin (Price et al., 2011). Diet may affect the cellular response to 

mechanical loading by influencing availability of vitamin D, vitamin K, and phytoestrogens 

(Willems et al., 2017), and insufficient caloric intake has been associated with delayed or 

interrupted menstruation and diminished bone structure in young female athletes (De Souza et 

al., 2014). Additionally, it has been suggested that the ability of bone to adapt in response to 

mechanical loading may diminish with advanced age, potentially in women due to decreased 

estrogen levels (Hughes et al., 2016; Razi et al., 2015). There are several physiological factors 

that may have influenced the individual adaptive response in our cohort. Women who had 
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previously been pregnant were included, as long as the last pregnancy was not within two years 

of enrollment. Women were excluded if they had no current regular calcium intake or low serum 

vitamin D, but it is possible that long-term intake history or other dietary factors may have 

influenced the adaptive response within individuals. Further work is required to systematically 

study the individual influence of physiological factors on load-driven bone adaptation in women.  

 While physiological factors likely influence adaptation, the agreement between our 

simulation and experimental changes may also be improved by further model tuning. For this 

initial study, our approach was to identify a set of parameters that would capture the overall trend 

of increasing BV/TV across subjects. Due to the iterative nature of the simulation, directly 

relating parameter values to simulation outputs would require the trial and error of running the 

full simulations, where the current set of simulations reported here (eighteen axial loading plus 

thirteen tilted loading simulations) represent over 1000 hours of computational time. Therefore, 

we selected Psaturated,min and Psaturated,max by comparing the simulated changes during iteration 1 for 

several percentile value cutoffs of stimulus P(x), calculated for a subset of 13 participants. The 

minimum and maximum probabilities were selected based on the 1:4 ratio observed in Aim 2B, 

and the observation that when the probabilities were increased, there were larger decreases in 

inner trabecular connectivity due to more voxels being resorbed in each iteration. An alternative 

tuning approach that may be explored in future work could be to identify the parameter values 

that best predict experimental changes for each individual and determining overall mean values.  

 We also compared loading and bone parameters for individuals for whom the simulation 

correctly predicted the direction change in BV/TV. We found that average applied force was 

significantly higher among participants with correctly predicted direction. Median trabecular 

strain was also higher on average for correctly predicted individuals, but the difference was not 
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statistically significant. Additionally, baseline BV/TV was significantly higher in correctly 

versus incorrectly predicted individuals. One potential explanation for these findings is that 

individuals with greater BV/TV are less susceptible to the simulation artifact of inner trabecular 

bone loss due to disconnection of sparse trabecular struts. Individuals with greater BV/TV will 

generally have stiffer bones, and therefore may have been assigned higher target forces to 

achieve the desired strain for their experimental groups in the parent study. This finding may also 

indicate that lower mechanical stimulus generated by participants in the incorrect predicted 

group did not elicit a strain-driven adaptive response, and therefore the experimental changes we 

observed reflect random or physiologically regulated bone turnover. In this case, we would not 

expect our strain-driven simulation to predict experimental changes not driven by strain.  

It is also important to consider our findings in the context of previous bone adaptation 

simulations. Using data from a rabbit femoral bone loading model, Morgan et al. (2015) showed 

that a surface-based trabecular adaptation simulation driven by strain energy density successfully 

predicted the direction of a significant average group difference in BV/TV between loaded and 

control specimens, but underestimated the size of the difference (69.4% experimental versus 

18.9% simulated). Schulte et al. (2013) and Levchuk et al. (2014) validated a trabecular surface 

adaptation simulation against data from vertebral loading experiments in mice, and found errors 

in average group change in BV/TV of 2.4% and 4.5%, respectively (Levchuk et al., 2014; 

Schulte et al., 2013b). We found that while there was no significant difference between 

experimental and predicted change in total trabecular BV/TV, the simulation underpredicted the 

average experimental change by 52% (1.4% versus 2.8% for simulated versus experimental). 

This could potentially be improved with further parameter tuning. However, our simulation is 
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also limited by the poorer resolution of HRpQCT in humans versus micro-CT in animals and 

greater genetic and physiological variability in humans versus animal models. 

 This initial version of the strain-driven bone adaptation algorithm was relatively simple, 

and increasing the sophistication of the model may increase the overall accuracy of the 

simulation. FE models simulated one cycle of forearm loading, and peak energy equivalent strain 

magnitude was the mechanical strain metric driving stimulus P(x). Future versions may benefit 

from incorporating participant-specific information about the average number of loading cycles 

per session and number of sessions performed. Other loading variables besides energy equivalent 

strain magnitude may be more appropriate. We selected strain magnitude because in Aim 2B 

(Chapter 5), the relationships between trabecular adaptation and strain were similar for strain 

magnitude and spatial gradient, and magnitude requires less computational time and resources to 

implement. Additionally, the simulation directly considered strain during forearm loading, rather 

than the difference between habitual strains and the loading intervention, which others have 

suggested may be a more appropriate driving stimulus (Huiskes et al., 1987). Incorporating an 

error term would require knowledge about each participant’s habitual radius bone strains, which 

depends on activities of daily living and physical activity habits. This could potentially be 

accomplished using wrist-worn accelerometer sensors to estimate forces at the wrist, but would 

require further validation. Alternatively, habitual strains could be estimated using the reverse 

load estimation algorithm developed by Christen et al. (2013) (Christen et al., 2013), which 

assumes that bone structure is already completely adapted to habitual loads, such that one can 

assume habitual forces are those generating the most uniform strain distribution within a bone. 

This approach has been shown to generate accurate force estimates when applied to mouse 

vertebrae with known applied forces (Christen et al., 2012), and reasonable wrist joint forces 
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when applied to the human radius (Christen et al., 2013). However, the reverse load estimation 

approach is limited in that it does not consider the potential influence of physiological factors 

besides habitual loading that may influence bone structure, especially in humans.  

 Our second hypothesis, that FE-estimated trabecular strain distribution, but not 

magnitude, would be dependent on boundary conditions, was generally supported. While the 

scaphoid loading condition led to a statistically significant decrease in overall trabecular strain 

magnitude, there were no changes in magnitude for the lunate or tilted conditions. Strain 

distribution was more sensitive to changes in loading condition, as we observed significant 

differences in standard deviation and high strain volume for the scaphoid and lunate conditions. 

In general, tilting the applied force vector did not have a large influence on bone strain, and even 

increased strain uniformity in the trabecular compartment. Overall, these results suggest that 

within the normal range of variability in execution of the forearm loading task, FE boundary 

conditions can meaningfully influence FE outcomes. This is consistent with prior work in our 

lab, which showed that boundary conditions affect radius bone strain distribution (Edwards and 

Troy, 2011; Johnson and Troy, 2017b), and that changes in loading direction can impact FE-

predicted fracture strength and location (Troy and Grabiner, 2007).  

The result of the FE sensitivity analysis has several practical implications. In applications 

where overall strain magnitude is most important, such as calculating the average mechanical 

loading strain dose within a region of interest, assuming axial loading is appropriate. This is 

favorable for large cohort studies because the equipment required to measure force and motion in 

three dimensions is costly and generally unavailable outside of biomechanics laboratory settings. 

However, studies concerned with local strain values may benefit from measuring participant-

specific three-dimensional loading to inform more realistic FE boundary conditions. Our 
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combined experimental-computational sensitivity study also highlights the importance of relating 

biomechanical factors describing task execution to our biological mechanical stimulus, bone 

strain. This is necessary to identify which factors ultimately need to be controlled through braces, 

visual or auditory biofeedback, or other means to standardize bone loading across participants. 

Alternatively, task execution parameters shown to influence bone strain can be intentionally 

modified to target loading to particular regions within a bone.  

Our third hypothesis was that simulation predictions would be dependent on boundary 

conditions, such that the simulation is capable of producing distinct adaptation patterns for 

different versions of loading interventions. We found that tilting the force vector applied to FE 

models during the adaptation simulation affected trabecular adaptation patterns. Tilting the 

vector in the average direction from the biomechanics experiments increased median strain 

magnitude in the posterior and radius quadrants, which in turn led to smaller decreases or larger 

increases in BV/TV for adaptation simulations with tilted versus axial loading conditions. This 

illustrates that, as intended, the bone adaptation simulation is sensitive to loading condition and 

is suitable for testing different task execution styles of the forearm loading task to understand the 

potential influence on bone adaptation.  

 This analysis has several strengths. To the best of our knowledge, this is the first time a 

strain-driven bone adaptation algorithm has been validated against experimental data in humans, 

which has been cited as a major bottleneck in the field (Badilatti, 2015; Levchuk et al., 2014). 

We successfully implemented a fully automated simulation operating on participant-specific 

bone FE-meshes with an average of three million nodes. While the simulation did not necessarily 

predict experimental changes, we have demonstrated that the simulation behaves correctly as 

designed, adding and removing bone in local regions with high and low mechanical stimuli 
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(Figure 6.9). Therefore, we accomplished our goal to develop and implement a strain-driven 

adaptation simulation, which can be used in parallel with experimental studies to generate and 

test hypotheses about how strain and other factors influence the local mechanism of bone 

adaptation in future work. As previously mentioned, the adaptation algorithm is limited by the 

lack of physiological factors such as age, hormone levels, and dietary factors that may influence 

adaptation. Additionally, while the biomechanics study participants were demographically 

similar to the parent study cohort, aggregate rather than participant-specific loading variability 

was applied to FE models in the boundary condition sensitivity analysis. Overall, each aspect of 

the adaptation simulation, including FE models and the adaptation algorithm, has several 

variables that can be further validated, tuned, or made more complex in the future given 

additional experimental data. 

 In summary, we have developed a strain-driven bone adaptation algorithm capable of 

predicting average trends in change in trabeculae BV/TV following 12 months of axial forearm 

loading in healthy adult women. Additionally, we showed that our simulation is sensitive to 

changes in loading within a normal, easily achievable range of task execution variability. The 

ability to predict average group changes is valuable for clinical exercise trial design, as potential 

options for exercises could be simulated for a cohort of “virtual” research participants to identify 

more osteogenic intervention. Further investigation into physiological factors that influence the 

patient-specific relationship between strain and adaptation may enable simulations accurate on 

the individual level. Such knowledge could allow for patient-specific in silico exercise 

optimization, improving the efficacy of exercise for the prevention of fragility bone fractures.  
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Chapter 7: Conclusions and Future Directions 
  

 Osteoporotic fractures represent a significant and growing clinical burden in the United 

States and worldwide. Fragility fractures are the result of decreased bone mass and diminished 

bone structure that affects one in three women over age sixty-five. Although pharmaceutical 

treatments for bone loss exist, their use is limited due to cost and safety concerns and is based on 

bone mass screening by dual energy X-ray absorptiometry (DXA), which fails to identify more 

than half of individuals who go on to fracture. Alternatively, exercise is safe and accessible, and 

has the potential to stimulate bone formation and offset age-related bone loss. Mechanical 

loading increases bone mass by stimulating osteocytes to upregulate bone-building osteoblasts 

and suppress bone-resorbing osteoclasts. In animal models, it has been shown that bone 

adaptation occurs in proportion to specific strain stimuli (magnitude, rate, spatial gradient), and 

exercise has been associated with increased bone mass in human observational studies and 

clinical exercise trials. However, lack of experimental data relating bone tissue strain stimuli to 

adaptation in humans has prevented the design of patient-specific, evidence-based interventions.  

 This Dissertation used an upper extremity human bone loading model to study the 

relationship between bone strain and adaptation in healthy adult women. We explored the 

participant characteristics related to demographics and loading history that influence bone 

structure and strain at the start of a loading intervention period. We quantified the relationship 

between bone strain loading dose and average changes in distal radius structure over 12 months. 

We further characterized the strain-adaptation relationship at the microscale level, relating bone 

formation and resorption to strain magnitude and spatial gradient at the individual trabecular 

level. We applied the results of this prospective clinical experiment to develop a forward 

simulation of strain-driven bone adaptation, which we evaluated against measured changes in 
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trabecular bone structure. Finally, we measured variability in task execution in the forearm 

loading model, and quantified the influence of variable boundary conditions on finite element 

(FE) estimated bone strain and predicted bone adaptation.  

 The cross-sectional baseline analysis in Aim 1 showed that age, height, body mass, and 

recent physical activity were related to bone structure, and body mass was related to bone strain. 

Additionally, we showed that when the same force (300 N) was applied to participant-specific 

continuum FE models of the radius (n=72), average energy equivalent strain varied nearly five-

fold (234-1110 µε) compared to only a two-fold range for bone mineral content (0.56-1.25 g). 

This highlights the importance of considering participant-specific bone structure when estimating 

in vivo bone loading during exercise, a significant departure from the majority of clinical 

exercise trials that use surrogate estimates of bone loading. Overall, we concluded that relatively 

small differences in bone structure parameters, influenced by demographics and loading history, 

lead to large differences in bone mechanics and the strain dose delivered by a given intervention. 

 In Aim 2A, we compared 12-month and interim bone changes for 102 women between 

loading groups with varying target strain magnitudes and rates and a control group. The low 

strain magnitude has significant increases in several quantitative computed tomography variables 

relative to the control (0.46±1.52% in integral bone mineral content versus -1.31±2.68% for 

control), while the high strain magnitude group saw increases in BMD, driven by changes in the 

inner trabecular region, at interim timepoints. We observed significant changes in the low and 

high strain rate groups relative to the control group, including 2.73±2.07% and 3.42±2.21% 

increases in integral bone mineral content for the low and high rate groups, respectively. While 

the between-group differences need to be interpreted in the context of protocol compliance, a 

major strength of our overall approach is that achieved loading was measured for each individual 
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and can be assessed as a strain loading dose. In fact, we found that loading dose considering 

strain magnitude, rate, and number of loading sessions was significantly related to change in 

bone mineral content and bone volume. While these statistically significant relationships 

demonstrate that metrics related to bone strain influence adaptation, they explained less than 

15% of the variance in bone changes, motivating future work to determine what physiological 

factors may contribute to the adaptation response. Overall, this randomized controlled trial marks 

the first time that strain magnitude, rate, and loading bouts have been prospectively related to 

changes in human bone structure. 

 In Aim 2B, we investigated the mechanism of bone adaptation by locally relating strain 

and adaptation. Multiscale FE models including bone microstructure at the high resolution 

peripheral quantitative computed tomography (HRpQCT) scan site estimated bone strain. 

Baseline and 12-month scans were used to identify formation and resorption sites. We found that 

trabecular bone resorption was associated with low strain magnitude and spatial gradient, while 

both formation and resorption were more common near high strains. Additionally, median 

trabecular bone strain magnitude and gradient were 11.8±17.2 με and 45.7±38.6 με/mm, greater 

near formation versus resorption, corresponding to 5-10% differences. This is the first evidence 

of local, strain-driven adaptation based on real, prospective measurements in humans. While 

there was a spatial relationship between bone strain and adaptation, more than half of formation 

and resorption could not be explained by strain. Interestingly, similar trends were observed for 

the load and control groups. Overall, we conclude that local bone tissue strain, likely in 

combination with other physiological factors, influences adaptation under normal loads and in 

response to novel interventions.  
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 In Aim 3, we developed a strain-driven bone adaptation simulation that predicts changes 

in trabecular bone volume fraction in the HRpQCT scanned region based on strain estimated 

from multiscale FE models. The simulation successfully predicted trends in average group 

change in total trabecular bone volume fraction (2.84±3.08% increase measured experimentally 

versus 1.36±5.15% predicted by the simulation), but overestimated gains in outer trabecular bone 

and underestimated gain (and predicted average losses) in inner trabecular bone. We suggest that 

the predicted loss of inner trabecular bone is related to the lower bone volume fraction in this 

region. Generally, we observed that in areas with fewer bone struts, small areas of resorption 

were more likely to disrupt connectivity and create floating regions that are removed and further 

decrease bone volume fraction. We believe this may be somewhat improved with higher 

resolution imaging, which would allow smaller bone packets to be added and removed with each 

iteration of the adaptation simulation. This could also be accomplished by up-sampling the 

current micro-FE mesh, but this would increase the number of elements above what is currently 

feasible given available computational power. Additionally, in Aim 3 we illustrated that our 

simulations were sensitive to physiologically relevant changes in loading task execution, as 

measured using experimental motion capture.  

 Overall, we have built and applied a combined experimental-computational pipeline for 

the systematic study of strain-driven bone adaptation in humans. We demonstrated, for the first 

time in humans, that bone loading dose related to strain magnitude and rate are related to average 

change in bone mineral content, and that bone formation is spatially related to areas of high 

strain magnitude and spatial gradient. This is consistent with findings in animal models, which 

have demonstrated dose-dependent relationships between bone strain magnitude and rate with 

changes in bone structure parameters, as well as locally within trabecular microstructure. 
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However, we also found that the measurable relationship between strain and adaptation in our 

human model is not as strong as reported for animals. This is likely due in part to the higher 

resolution imaging available for small animals, which allows for more precise measurement of 

global and local bone adaptation. Additionally, humans are more variable than model animal 

species, genetically and in terms of diet, physical activity, and loading intervention compliance. 

Our findings suggest that future research of the various factors influencing load-driven 

adaptation is warranted to move closer to a patient-specific model of exercise prescription.  

 This project was limited to healthy adult women, and is not generalizable to men, post-

menopausal women, or other clinical subpopulations. However, our approach using image-based 

FE models considering participant-specific bone geometry to estimate bone strain is 

generalizable, and can be used to study how the relationship between strain and adaptation to 

forearm loading may vary with age, sex, or other factors. For example, in older women, lower 

forces may be required to achieve similar strains because bone density and stiffness is generally 

lower. However, work in animal models suggests that bone mechanosensitivity may decline with 

age, such that higher strains are required to achieve similar adaptation patterns. Historically, it 

has not been possible to discern this complex relationship between applied force, bone strain, and 

adaptation, but may be accomplished using our loading model. Further, the data reported here for 

healthy women at peak bone mass can serve as a normative benchmark for future in other 

clinical populations.  

Our approach can also be applied to develop loading models at alternative skeletal sites. 

Here we focused on the upper extremity because it is a common fragility fracture site, can be 

imaged non-invasively at the macro- and microstructural levels, and habitual loads are relatively 

infrequent in individuals who do not regularly participate in activities such as gymnastics 
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volleyball, or racquet sports. Therefore, we assume that mechanical loads outside the forearm 

loading task were negligible and we did not measure loads beyond loading device recordings. To 

develop loading models at load-bearing sites such as the tibia or femur, loads applied during gait 

must be considered in addition to the intervention. This could potentially be addressed using 

retrospective activity surveys, motion capture, musculoskeletal modeling, pedometers, insole 

pressure sensors, worn accelerometers, or a combination of these tools. However, such methods 

would require rigorous validation. Another challenge in translating this work to other skeletal 

sites is that building image-based FE models at central sites such as the hip or spine is 

complicated by radiation safety concerns. A potential alternative to CT is magnetic resonance 

imaging (MRI)-based models, which is generally better suited for soft tissue but does not involve 

ionizing radiation. Work in our lab and by others has begun to validate MRI-based FE models of 

the femur.  

 A challenge in implementing any human loading intervention is participant compliance. 

Here, we encouraged compliance by regularly contacting participants and providing an incentive 

for high (>70%) compliance at interim study visits. Nevertheless, we observed a decrease in 

compliance over the study duration for many participants, with 37 out of 86 loading group 

participants completing at least fifty percent (78) of the assigned loading sessions. The primary 

reasons noted by subjects for lack of compliance were lack of time, and in some cases, wrist 

soreness. It is possible that interventions such as ours focused on healthy adult women may be 

more sensitive to compliance challenges than those in older women, who have a more immediate 

motivation to engage in bone-building behaviors. Future work should focus on further 

developing strategies that encourage compliance, such as increased education of the relationship 

between peak bone mass in young adulthood and osteoporosis risk. Additionally, future studies 
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may benefit by taking advantage of existing systems, such as physical education classes, to 

increase motivation. 

 Here, we initially assigned loading group participants to complete four weekly loading 

sessions of 100 cycles, with target forces ranging from 200-450 N. Based on participant feedback 

and reports of wrist soreness, we ultimately decreased the maximum to 350 N and made 

additional individual adjustments as needed. A pilot study using the forearm loading model 

assigned 50 cycles of loading per session, three days per week, with a uniform target force of 

300 N for all participants. The target sessions and loading magnitudes were increased for the 

current study based on the modest bone changes observed in the pilot cohort (+0.3 change versus 

-1.7% in control group), but this may have contributed to lower compliance overall. This is 

highlighted by the Aim 2A finding that the high strain magnitude group did not achieve their 

prescribed target load, with strain magnitude only 25% higher than that of the low magnitude 

group. Further, the low group, which may have found their target load more manageable, 

completed more loading sessions on average and experienced larger increases in bone mineral 

content. Additionally, the fact that loading dose considering strain magnitude, strain rate, and 

number of loading bouts was correlated with changes in bone structure suggests that all three 

metrics contributed to osteogenic potential. Overall, it is important to consider how loading 

parameters such as target magnitude, number of loading cycles per session, and number of 

sessions may influence the overall efficacy of the intervention, considering the practical 

constraints of participant safety and motivation. 

 This project relied heavily on HRpQCT imaging, with changes in average bone 

parameters measured in Aims 1 and 2A, local adaptation measured from registered HRpQCT 

scans in Aim 2B, and calculation of regional changes in bone volume fraction in Aim 3. 
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Additionally, HRpQCT scans were used to generate voxel-based micro-FE meshes within 

multiscale FE models, allowing use to estimate bone strain within individual trabecular struts in 

the distal radius scanned region. While this technology provided more insight into the 

microstructural mechanism of strain-driven adaptation compared to prior work in our lab using 

clinical resolution CT, its limitations should be considered. The first generation HRpQCT 

scanner used here has an isotropic voxel size of 82 µm, which is on the same order of magnitude 

for trabecular thickness. This makes imaging susceptible to partial volume effect, creating short-

term precision errors that limit the ability to detect small changes in bone structural parameters. 

We reported precision analyses from an in-house short-term precision study where repeat scans 

were acquired within two weeks of each other for each of our analyses, and acknowledge that it 

may have influenced the strength of the relationship between strain and adaptation. For example, 

we reported that approximately half of local adaptation identified in Aim 2B is potentially 

attributed to precision error, although we still found statistically significant associations between 

strain and trabecular formation and resorption. Additionally, the relatively large voxel size may 

have influenced the calculation of strain spatial gradient in Aim 2B, due to fewer voxels being 

present across each trabecular strut compared to studies using micro-CT in animals (voxel size 

~10 µm). We also noted in Aim 3 that the limited mesh resolution may have contributed to poor 

simulation predictions in regions with low bone volume fraction, as having larger resorption 

cavities increases the probability that whole struts become disconnected. Overall, future work 

may benefit from increases in resolution, which is currently available in the second generation 

HRpQCT scanner with a 61 µm voxel size. HRpQCT is also limited to small transverse scan 

regions (9.02 mm) due to relatively long scan times and large data files. This restricts the region 

available to study microstructural adaptation, especially in longitudinal studies where the 
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analysis region is further limited by small shifts in scan location due to patient positioning error. 

Future improvements in the scanner enabling larger scan regions, coupled with increased 

computational power for large FE simulations, may enable measurement of adaptation and FE-

estimation of strain within in the entire radius at the microstructural level.  

In conclusion, this Dissertation has established the quantitative relationship between 

tissue-level bone loading and adaptation in the upper extremity of young healthy adult women. 

This work represents an important step toward defining bone loading targets relevant to the 

mechanism of strain-driven adaptation. Ultimately, this approach may enable the in silico 

optimization of targeted loading interventions to maximize bone strength and prevent fragility 

fractures.  
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