
Generative Models for
City-Specific Vehicle Trajectories

Major Qualifying Project

Authors:
David Larson
Benjamin Longo
Caleb Ralphs

Advisor:
Dr. Yanhua Li

May 18, 2020

Contents

1 Introduction 2

2 Preliminaries 3
2.1 Generative Models . 4

2.1.1 Bayesian Probability Theory 4
2.1.2 Markov Chain Monte Carlo 5

2.2 Generative Adversarial Networks 6
2.2.1 Sequence GANs . 7
2.2.2 DCGAN . 8

2.3 Data Types . 10
2.3.1 Sequential Data . 10
2.3.2 Vehicle Trajectory Data 11
2.3.3 Sequence Imputation . 11

3 Methodology 12
3.1 Data . 13

3.1.1 Data Survey and Selection 13
3.1.2 Data Pre-Analysis . 14
3.1.3 Data Cleaning . 18
3.1.4 Data Engineering . 19

3.2 Evaluation Metrics . 21
3.3 Experimentation . 23

3.3.1 Vanilla GAN . 23
3.3.2 SeqGAN . 26
3.3.3 DCGAN . 28

4 Conclusion and Future Work 29
4.1 Conclusion . 29
4.2 Future Work . 29

1

Abstract

Modeling vehicle trajectories in cities is an important task that can
help transportation planners make smart decisions around traffic policies
and transportation infrastructure. Often times there is not enough data
available for the planners to use, or the data available contains sensitive
personal information which, if used, would violate data privacy policies.
Without data, uninformed decisions can lead to traffic congestion and
inadequate public transportation infrastructure. With the annual costs
of traffic congestion exceeding one trillion U.S. dollars worldwide, this is
obviously a problem worth addressing. We propose a method of generating
new samples of vehicle trajectory data for a given city, leveraging existing
GAN models with novel data representations.

1 Introduction

Generative models such as bayesian inference models, hidden markov models,
variational autoencoders, generative adversarial networks, and much more have,
shown promise when tackling data problems. These intelligent systems do not
only serve the purpose of generating new data, but also have shown promise
in translating between data modalities, learning useful representations of data,
and filling in missing data [25]. Specifically, deep learning models have proven
effective in artificially intelligent applications such as image processing, audio
transformation, natural language processing, and much more [10]. Generative
adversarial networks (GAN), a type of deep learning model, tackles these same
applications, but with a different model framework and approach.

Deep learning models have also shown promise in the realm of urban intel-
ligence. Cities face problems, ranging from air pollution to mobile communi-
cations to traffic congestion. In this paper, we focus on addressing problems
relating to vehicle movements around cities. Determining the movement of
vehicles in cities is an important task that can help urban and transporta-
tion planners make decisions around traffic policies and extensions of current
transportation infrastructure. The trajectories of vehicles, when combined with
computer representations of city road networks, play an important role in guid-
ing transportation policy, but many cities lack an adequate amount of data.
These data shortcomings limit the ability for urban and transportation plan-
ners to make informed decisions around recommending allocations of resources
to guide transportation policy. Uninformed policies can lead to the proliferation
of inherent traffic congestion problems and inadequate public transportation in-
frastructure. With the annual costs of traffic congestion in the United States is
nearly $160 billion, exceeding one trillion U.S. dollars worldwide, this is obvi-
ously a problem worth addressing []. The use of IoT sensors, crowd source data,
and intelligent analysis on urban data enables urban and transportation plan-
ners to make more informed decisions in solving these problems [34]. Long-short
term memory (LSTM) models, a time-variant type of deep learning model, have
been used to make short-term traffic forecasts. Other models have combined
personal driving data with other environmental variables, such as weather, to

2

predict traffic flow at a broader level. Vehicle trajectory data, collected from
divers, is necessary to create robust models that accurately capture traffic flow,
patterns, and, ultimately, inform transportation policy decisions. Although this
data is important, data privacy issues have come to the forefront in recent
years, making it difficult to leverage this publicly collected data. These sorts
of privacy-policies have stemmed from the 2018 General Data Protection Regu-
lation set in place from the EU which encompasses legislation around sensitive
data []. Often times, the data being used in these traffic prediction or path pre-
diction models is sensitive, containing information about where an individual
frequently travels to or from.

We propose a method of generating new samples of vehicle tra-
jectory data for a given city, leveraging existing GAN models with
novel data representations. The goal of this research is to generate likely,
realistic vehicle trajectories for a given city, using a subset of publicly avail-
able vehicle trajectory data. This approach solves the data privacy issue, as all
data generated from the models is technically fake and does not contain any
sensitive personal information. As long as the trajectories are realistic and the
various spatial distributions across the city are consistent, then for all intents
and purposes the generated vehicle trajectories could be used for subsequent
traffic or transportation models. This capability empowers urban planners to
make informed policy decisions while complying with data-privacy guidelines.

In this paper, we will:

• survey multiple vehicle trajectory datasets and different types of GANs
to determine the best mode of creating realistic vehicle trajectories for a
given city;

• develop a novel data representation through the use of gridding and diffu-
sion embedding which allows us to leverage GAN models that would not
be practical given the original data;

• identify strengths and weaknesses of various models in their ability to
create realistic vehicle trajectories, while also highlighting and addressing
complications with the data.

2 Preliminaries

The current state-of-the-art trajectory data generative models leverage GANs
and Bayesian inference modeling . Li et. al. proposed a Coordination-Bayesian
Conditional Generative Adversarial Network (C-BCGAN) for generating vehicle
trajectories for a given network scenario [2]. The C-BCGAN implementation
was effective for producing high resolution samples, but at a micro-region scale,
such as modeling traffic around a few connected intersections and roadways.
The proposed model leveraged Bayesian inference, which did not allow for ro-
bust modeling of long-term dependencies, such as car trajectories across larger
regions, like a city. Larger, macro-level trajectory generation with more than

3

just current state dependence is necessary to provide urban and transportation
planners with holistic representations of vehicles trajectories for extended dura-
tions and distances. In our preliminary research, we introduce two GAN vari-
ants, a sequential GAN (SeqGAN) and a deep convolutional GAN (DCGAN),
that we implemented for tackling this vehicle trajectory problem, without the
macro-level shortcomings of C-BCGAN. We also take a deep-dive into the data
representations that we encounter with the datasets we surveyed and how those
intricacies affect model development and selection.

2.1 Generative Models

2.1.1 Bayesian Probability Theory

Generative models are a method of modeling how some observed data may have
derived from some set of underlying causes [22]. The most simple representations
of generative models are built on top of basic Bayesian probability theory, the
probability of an event happening given a prior event has already occurred [22].
Bayesian inference models give rise to creating probabilistic density estimations
using previously observed data [22]. These models can be represented with
Bayes’s theorem, in three terms: priors, likelihoods, and evidence

P (A|D) =
P (D|A)P (A)

P (D)

where P (A) is the prior, P (D|A) is the likelihood of observing D given
the distribution formed from A, and P (D|B) is the posterior distribution, a
combination of the prior distribution and the likelihood function [24]. The
posterior distribution can be generalized as a summary of all the observed data.
These three terms form a basic generative model where A can be generated
given the prior and the likelihood.

Bayesian inference models set the foundation for multivariate generation
of distributions in the sense that a set of data, D is explained by a set of
underlying causes α, which can be thought of as a combination of the priors
and likelihoods[22]. To create the model, M , two problems need to be solved:
inferring the optimal set of causes to explain each data point Di and learning
the optimal model M to explain the complete set of data D [22]. To infer each
specific data point Di∀ Di ∈ {Di, ..., Dn}

α̂i = argmaxαP (α|Di,M)

= argmaxα
P (Di|α,M)P (α|M)

P (Di|M)

= argmaxαP (Di|α,M)P (α|M)

where the denominator, P (Di|M) is equal to one, as Di has already been se-
lected. Since α̂i is calculated for every point Di, all causes for D are defined.
This covers the inference part of the model creation. Now, the model M is

4

created by maximizing the aforementioned posterior distributions, as defined in
Bayes’s theorem

P (M |Di) ∝ P (Di|M)P (M)

where the denominator, P (Di) is ignored since D is selected and therefore, fixed.
To find the model M that maximized the overall likelihood of the data D, the
total probability of D is taken

P (D|M) =

n∏
i

P (Di|M)

where P (Di|M) is the calculated by taking the sum of all the causes α for
that point Di

P (Di|M) =
∑
α

P (Di|α,M)P (α|M)

and since the goal is to create a generative model, M must be calculated
with

M = argmaxMP (D|M)

= argmaxM

n∑
i

P (Di|M)

= argmaxM

n∑
i

∑
α

P (Di|α,M)P (α|M)

The model M is now representative of the max likelihood posterior distribution
over data D. Data can now be sampled from the generated posterior distribution
of model M .

2.1.2 Markov Chain Monte Carlo

While the previously defined Bayesian inference model is a means of interpreting
observed data, Markov Chain Monte Carlo (MCMC) is a method of sampling
from a defined distribution, like that of model M [27]. These two methods,
together, yield a means of efficiently modeling and sampling from a given dis-
tribution [27]. The Monte Carlo part of MCMC refers to the random sampling
from some distribution, like that posterior distribution model M . A Markov
chain is defined as a set of random variables X1, ..., Xn such that the future and
past states are independent of the current state [27]. This means that the future
state Xn+1 is only dependent on the current state Xn [27]. For a continuous
state space, the future state is defined as

T (i, j) = P (Xn+1 = i|Xn = j)

where T is referred to as the transition operator. It is convenient to represent
this transition probability as a matrix of the form Tdxd [26]. The transition
operator or probability can now be defined as

Ti,j = P (Xn+1 = i|Xn = j)

5

This sampling of sequence X, providing Xn+1, or Xnew, from Xn, or Xprev, is
the Markov chain element of MCMC. This allows for vector probability sampling
from T [26].

MCMC does, however, run on the assumption that there is a stationary
distribution, meaning that P (Xn+1 = i|Xn = j) must be the same at each time
step n [26]. This can be interpreted as the transitional probability for movement
from the current state to another is solely dependent on the current state, not
the other sequence of previous states. This assumption constrains the model’s
probability space to being stationary and for the vector generated from T to be
independent from the state history.

2.2 Generative Adversarial Networks

A Generative Adversarial Networks (GAN) is a type of deep learning model
consisting of two artificial neural networks which work together in an adversarial
manner. The first of these models is trained to generate data realistic with
respect to some input dataset. The second model is trained to distinguish the
distribution of the generative model from that of real data. As the discriminative
model is trained to more accurately identify these data, the generative model
learns to produce more accurate data to fool the discriminator. In this way, the
two models learn from one another.

Figure 1: The high-level structure of a basic GAN.

More formally, in order to learn the distribution pg of generated data over
the data set x, we need to define a prior distribution for the noise in the data
pz(z) [10]. Then, we can represent the generative distribution as G(x; θg) where
θg is a an input data point. Then, the second network D(x; θd) will output a
single scalar between 0 and 1 representing the probability that x came from the
data instead of pg. From here, we train model D to increase the accuracy of
it’s discrimination, while we train G to minimize log(1−D(G(z)), resulting in
a game of minimax between the two models [10].

6

2.2.1 Sequence GANs

Although traditional GANs have proven to be effective in generating realistic
data, they have a considerably limited ability to generate discrete sequential
data [31]. As previously explained, the training of the generator is an iterative
process where the model parameters are slowly tuned by the gradient of the
loss from the discriminator. This tuning is only a slight change, but when
considering a discrete data space, a slight change will likely not result in any
other meaningful discrete variable, but rather, a value that lies between two
meaningful variables [31]. The other drawback that traditional GANs have
with generating discrete sequential data is their inability to evaluate a partial
sequences of data [31]. Yu et al. addresses these problems with the proposal of
SeqGAN where generator G is treated as an policy in a reinforcement learning
approach.

In respect to reinforcement learning, a policy refers to a parameterized
method of modeling an optimized behaviour. The policy is changed by means of
a policy gradient which models and optimizes the generator’s policy Gθ directly.
The policy gradient’s objective function is defined as

J(θ) =
∑
s∈S

dπ(s)V π(s)

where dπ(x) is the stationary Markov chain for a policy state distribution πθ and
V π(x) is the expected value return of the state, referred to as the state-value
function [31]. This objective function is modified in respect to the GAN model
to make

J(θ) =
∑
a∈A

Gθ(a1|s0) · QGθ

Dφ
(s0, a1)

where G is the θ-parameterized generator, D is the φ-parameterized discrimi-
nator, and QGθ

Dφ
(s, a) is the expected reward starting from state s, taking action

a, and then following the policy Gθ [31]. As previously stated in the drawbacks
of the standalone GAN model, the action-value function needs to be evaluated
not only in the previous tokens, but also the future tokens. To evaluate the
future tokens a Monte Carlo search is used to sample the unknown (T − t)
tokens where T is the total number of possible candidate tokens and t is the
current timestep. [31]. The execution of the policy Gθ on the current state in
respect to the unknown future state is modeled by Gβ , referred to as the roll-out
policy. The discriminator Dφ allows for the reward function to be dynamically
updated, iteratively improving the generator Gθ [31]. Now the model can be
trained like a traditional GAN model, alternatively training the generator and
discriminator.

The generator must also be adapted to effectively generate sequential data
where the input training data x1, ..., xn is mapped to a sequence of hidden layers
in the neural network h1, ..., hn [31]. This neural network structure of sequential
hidden layers is referred to a a recurrent neural network (RNN).

More specifcally, Yu et al. proposes a long short-term memory (LSTM)
RNN to deal with the vanishing gradient problem, since the gradient must

7

Figure 2: The high-level structure of SeqGAN where the discriminator Dφ provides
a reward for a completed sequence and updates the intermediate value for the next
action via the Monte Carlo Search [31].

backpropogate through a sequence of hidden layers [31]. The LSTM allows
the RNN to learn long-term dependencies through their inherent structure [7].
Where the RNN can be thought of as a sequence of hidden layers, the LSTM
should be envisioned as a cell, containing multiple special layers [7]. The core
idea behind the structure of the LSTM is the ability to keep or throw away
memory of previous data, regulated by memory gates [7]. Each cell on the model
has four layers where, three of which, decide what data is kept, considered, and
passes on to the next cell in the sequence [7]. The first of these layers is the
forget gate ft, which is a sigmoid layer that outputs values between 0 and 1,
0 meaning completely forget this data, and 1 being completely keep this data
[7]. The next step is to create a vector of new values, to be added to the
current state, referred to as candidate values Ct [7]. The current cell state is
then updated by multiplying the old state Ct−1 by ft, forgetting certain data,
then adding it ∗ C̃t where it is the parameter for how much each state value is
changed [7].

The current state is now of the form

Ct = ft ∗ Ct−l + it ∗ C̃t
where Ct is the updated cell state [7]. The output is then decided through
running the data through a sigmoid layer, then a tanh layer to push the values
between -1 and 1. Now the output is of the form

ht = ot ∗ tanh(Ct)

where ot is the output from the sigmoid function. The SeqGAN model can now
effectively generate sequential data.

2.2.2 DCGAN

Deep Convolutional Generative Adversarial Networks (DCGAN) have been proven
to be effective unsupervised learning method for generating image data [23]. DC-

8

Figure 3: The high-level structure of a recurrent neural network. A represents formu-
lation of the tanh(Whht−1 + Wxxt) where Wh is the weights to multiply the previous
hidden state ht−1 by, and Wx is the weight to multiply the current input xt by. Every
state A shares the same weights, i.e., the same learned function[7].

GAN differs from traditional GANs by its usage of hierarchical representations
of the data that the model learning with convolutions and deconvolutions in
the generator and discriminator, respectively [23]. DCGAN is also faster than
traditional GANs since it uses batch normalization in some of its layers which
stabilizes and speeds up the learning by reducing the amount that the hidden
layer’s unit values shift around through normalizing them between 0 and 1 [23].

Additionally, the DCGAN model structure eliminates fully connected lay-
ers and uses ReLU activations in generator and Leaky ReLU activations in the
discriminator. The ReLU function, a rectified linear unit, outputs the value of
the data if it is greater than 0, and 0 otherwise. Convolutional neural networks,
and specifically the DCGAN model, use ReLU units to introducde nonlinearities
into the system without creating a vanishing gradient problem something that
some activation functions such as signmoid and tanh may create. The discrim-
inator in DCGAN uses a Leaky ReLU function which addresses problems that
can arise from the Dying ReLU problem. The dying ReLU problem is where the
ReLU neurons in the network ”die” and remain inactive regardless of the input
that is supplied to the network layer [1]. The ”leaky” part of the Leaky ReLU
addresses this problem by changing the slope to the left of x = 0 to a small
slope of y = .01x, creating a leak for negative inputs, making them extremely
small, but non-zero [1].

DCGAN adopts convolutional neural network architecture with strided con-
voltuions, allowing the model to learn the spatial downsampling on its own,
rather than specifying the the spatial representation with pooling functions such

9

Figure 4: The RNN state structure (left) versus the LSTM structure (right). In
the LSTM, the three dotted boxes represent the forget gate, the input gate, and the
output gate, respectively, from left to right. The forget gate determines how previous
information will propogate forward to the next timestep, while the input gate handles
the new input, and the output gate combines the output from the forget gate and
input gate.

as maxpooling [23]. The strides in the convolutional layers define the step size
for the kernel, or how many cells that the kernel filter skips per step through
the data, which is the field of view for the convolution, i.e., a kernel size of 3
yields a 3x3 pixel filter. This results in the convolutional layers changing the
number of input channels and outputting a smaller number of output channels.

2.3 Data Types

2.3.1 Sequential Data

Sequential data is a vector where the ordering of the data entries has impor-
tance, creating a sense of temporal dependencies. Examples of this include
speech, music, video, biological sequences (DNA sequences), and many others
[5]. Ordering is important in sequential data, and each vector of a given data
point is typically at a constant resolution or sampling rate.

Time series data is a subset of sequential data. The key difference here is
that one of the features of a given vector must be a timestamp (unless there is a
constant sampling rate), whereas such is unnecessary in purely sequential data.
If we take the example of a song, the timestamp of any portion of the song is
irrelevant. The only important thing is the order in which the discrete portions
of the song occur. However, if we are looking at perhaps data representing
the ocean’s tide patterns, this data is useless unless we know the timestamps
associated with each data point.

Furthermore, a subset of time series data is spatio-temporal data. As one
could probably guess, spatio-temporal data is the combination of spatial coor-
dinates (perhaps latitude and longitude) and a timestamp. A series of vectors
containing these coordinate-timestamp pairs thus constitutes the trajectory of
some object over time. We can also have other spatial measures, such as a vol-
ume, area, matrix, or graph, with respect to time and it would be considered

10

spatio-temporal data. For the scope of this paper, we will be focusing on data
consisting of coordinate pair with a timestamp.

2.3.2 Vehicle Trajectory Data

An example of spatio-temporal data is the trajectory a vehicle through a road
network. This type of data is used extensively to attempt to predict traffic pat-
terns, congestion, and travel times [34]. The ability to generate realistic vehicle
trajectories has many appealing applications ranging from autonomous vehicle
development, to civil engineering. Due to the high complexity of human driv-
ing behavior and interactions, creating expert system simulators that produce
realistic results is a hard problem, and a very active area of research [3].

Several authors have applied GANs to the domain of vehicle trajectories
[16, 32, 17, 2, 9, 11], however, few of these models successfully tackle the problem
of generating macro-scale trajectories.

2.3.3 Sequence Imputation

A related task to sequence generation is sequence imputation. Imputation is
the process of filling missing values in an existing, partially observed sequence.
Traditionally this is accomplished via some interpolation method, one of the
simplest cases being linear interpolation. More advanced approaches such as
ARMA, ARIMA, and other smoothing methods have been developed to create
more realistic samples; however, the majority of the approaches utilize linear
dynamics and typically model sequences as autoregressive. Additionally, any
smoothing interpolation based methods discard the relationships between vari-
ables in a complex multivariate time series.

Due to these limitations, several researches have recently investigated the
application of neural networks to impute sequence data. However, RNNs in
general face significant issues when dealing with long term dependencies. Al-
though LSTMs attempt to address this issue, they can still not handle very long
temporal dependencies well.

Vehicle trajectories generally follow an important property: if a path goes
from point a to c through b, it would also follow the same path from a to b even
if it’s destination wasn’t c; this applies recursively. This is certainly not true of
all sequence data. For instance, the start and end word of a sentence do not
come close to fixing the space of possible sentences - the start and end point of
a trajectory however closes down the size of the possible space by quite a lot
(assuming we have efficient drivers).

There is an inversion of temporal dependency from autoregressive sequence
data. Suppose we have a trajectory [p1, p2, p3, p4, p5], then starting at p3, the
path is determined almost completely by p5 and not significantly by p1 or p2.

If we had a model that could impute an entire vehicle trajectory from its
endpoints, it is essentially a full generative model. Modelling the distribution
of start-end pairs is much more statistically tractable with traditional methods
than the actual driving behavior.

11

This may not be entirely true if the driver decides to take a different path
because of bad traffic however. In order words, it is possible that past points
influence a drivers decision about a path - but certainly future points are vastly
more important in deciding the path. With this in mind, it seems much simpler
to generate a trajectory given a source and destination pair than to create one
from strictly a source. When choosing to remove this facet from the model, we
are making it less general, but perhaps more successful and useful in practice.

3 Methodology

In figure 5, you can see the life cycle of our methodology for our research. For
the dataset selection, we focused on datasets that contained meaningful and
interpretive information about each trip. As you will see, that is the Beijing
Taxi dataset, which contained crucial information on occupancy status at each
recorded timestep. After selecting the Beijing dataset, we needed to explore
the dataset further in order to motivate some of our model selection decisions
and ensure that the data was cleaned and complete. After our pre-analysis, we
faced the task of cleaning the data. As our dataset contained occupancy status,
segmenting it became extremely simple. We divided the data into trajectories
based on occupancy status, and threw out unoccupied trajectories. The rest
of the data cleaning included filtering out trips with long time gaps, applying
an azimuthal equidistant projection around the center of the city, partitioning
the data into grid, and constaining the bounds considered or the city limits.
The last step before experimenting with the various GAN models, VanillaGAN,
SeqGAN, and DCGAN, was engineering the data to be in the right format for
each model. In this section you will see the presentation of the results for each
of those models, ending with evaluation of those results.

12

Figure 5: The progression through which our dataset was chosen, cleaned, manipu-
lated, and evaluated.

3.1 Data

3.1.1 Data Survey and Selection

Selection of a good dataset is imperative in building a good model. If the model
is not being trained on quality data, then the quality of the results will also be
poor. In the case of generating vehicle trajectories, if the training trajectories
for the generative model are incoherent or inconsistent, then the results will
ultimately be skewed, and the model may have trouble learning the ”correct”
weights. In order to find the publicly available dataset with the most realistic
trajectories, a survey was done on various discovered vehicle trajectory datasets,
as seen in Table 1.

Name Area Timespan Rate Points Drivers

Rio Bus Data [12] Rio De Janeiro, Brazil 2019-01-25 to 2019-03-21 1m 59,183,745 Unknown
NGSIM[13] CA & GA, USA 2005-04-20 to 2006-11-09 0.1s 11,850,527 Unknown
DACT [21] Columbus, OH, USA 2011-06-20 to 2013-08-19 1s 47,846 50

Rome Taxi [4] Rome, Italy 2013-08-01 to 2014-02-01 7s 21,817,851 320
TDrive [33] Beijing, China 2008-02-02 to 2008-02-08 177s 17,662,984 10,357
Beijing Taxi Beijing, China 2009-05-01 to 2009-05-30 variable 129,000,000[14] 8000[14]

Table 1: Considered Datasets

Various aspects of these datasets were compared, including the time frame
in which the data was collected, the sampling rate, the total number of sampled

13

points, the number of drivers, whether or not the data contained occupancy
status since most of these datasets were collected from taxi drivers. All of these
features seemed to be important, as the data needed to be rich in quality and
quantity. The Beijing Taxi dataset was found to be the most desirable due to
not only the large size and scope in number of drivers but also because the
samples included occupancy status. Occupancy status is integral in creating a
robust, realistic training set, since when taxi drivers did not have passengers in
their vehicle, their trajectories seemed incoherent and would often times spend
much time idle. The occupancy status allows for segmentation of taxi trips,
which yields individual, distinct trajectories. The Beijing Taxi data also had
ample spatial and temporal coverage in respect to the geography of the city and
different times of day and days of the week. There are plenty of samples of
data in each and every urban district of Beijing, and the data was collected on a
multitude of temporal climates, including weekdays, weekends, and even a public
holiday, all with 24-hour data collection [14]. After surveying the identified
vehicle trajectory datasets, there were no other dataset which encompassed
sufficient temporal and spatial coverage, while also providing occupancy status
for segmentation. Therefore, the Beijing Taxi dataset was selected for use in
training the generative models.

3.1.2 Data Pre-Analysis

The selected Beijing Taxi dataset was explored and analyzed in order to pro-
vide insights into various distributions of the data. Analyzing the distributions
of data provides a baseline understanding of the data, and, ultimately, these
baseline distributions can be compared with those resulting from the generator
to gauge how effective the model was in capturing the unique features of the
data. Additionally, visualizing and looking into the distributions of the differ-
ent features in the data allows for identification of outliers, trends, and can help
inform decisions when building the generative model.

The spatial distribution of the data gives an understanding of how dense
or sparse various areas are in the city, with respect to where there are high
density traffic areas versus sparse ones. Approximately 90% of the trajectories
did not deviate further from 20km from the city center in any direction, with
the city center being the mean latitude and longitude in Beijing. Deep learning
models, and moreover generative adversarial networks, struggle to successfully
model sparse data [35]. To this point, the trajectories containing points on the
peripheral, low density parts of Beijing were removed, resulting in a, 20km x
20km, 400km2 bounding box for the data.

14

Figure 6: Spatial distribution from 10,000 sampled trajectories centered around the
mean longitude and latitude for the whole dataset.

In order to assure that there were no problematic outliers in the dataset with
respect to the sampling rate, the distribution of the time delta between samples
was analyzed. Through this analysis, it was found that there were few durations
in time between sampled points on a given taxi trip that were greater than 100
seconds with 75.36% of the consecutive points in the data being sampled within a
1 minute interval [14]. Given that the goal is to generate coherent trajectories,
not sparsely sampled ones, all the trajectories containing time deltas greater
than 100 seconds were filtered out, as this is approximately where we see our
distribution level off.

15

Figure 7: Distribution in sampling rate between each data point, i.e., time between
each recorded longitude, latitude location, from 10,000 sampled trajectories.

The euclidean distance traveled in each trajectory was relatively low, with
a mean trajectory length of 2.31km and 99% of the trajectories being less
than 17.06km in length. There were outliers in the trajectory lengths, around
9000km, which may have resulted from numerical miscalculations due to float-
ing point arithmetic. In figure 8, it shows how the distribution is heavily skewed
towards the shorted distances, which makes sense given that this is a dataset of
taxi trips.

Figure 8: Distribution of euclidean distance traveled over each trajectory from 10,000
sampled trajectories.

The velocity was also recorded at each sampled data point in the distribution,
and surprisingly, there existed no outliers, with the maximum velocity being

16

80.8 km/hr and the mean being 7.71 km/hr. These statistics make sense given
that these are taxi rides around an, often, traffic dense city. Additionally, the
maximum velocity of 80.8 km/hr makes sense, given that the highest speed limit
in Beijing is 70 km/hr [6]. With that being said, it was not necessary to remove
any samples from the population with the motivation being velocity.

Figure 9: Distribution of recorded velocities for each data point in 10,000 sampled
trajectories.

17

3.1.3 Data Cleaning

Figure 10: The process of cleaning the dataset.

Once a suitable dataset had been chosen, the process of cleaning the dataset
began. Several characteristics of the dataset became apparent that needed to be
given attention. With other datasets that didn’t include the occupancy status
of the vehicle at a given time, segmentation yielded trajectories modeling two
distinctly different types of behavior: that of a driver bringing a customer to
his requested destination, and that of a driver searching or waiting for a new
customer. It can be seen that these behaviors produce much different patterns
of trajectories. Since the Beijing dataset contains occupancy data, one of these
patterns of behaviors can be easily isolated. Thus, the first step in cleaning the
data was to segment the data based on occupancy status and filter out segments
in which the vehicle was not occupied by a customer.

The next step consisted of removing trajectories that seemed to be missing
data. These are identifiable by large gaps in the timestamp of adjacent entries.
A maximum delta of 100 seconds was chosen based on the distribution (Fig. 7),
and trajectories with deltas larger than 100 seconds were removed.

At this point, the dataset was narrowed down to occupied trajectories with
relatively consistent time deltas. In order to grid the data, the gradient of the
surface of the earth with respect to latitude and longitude coordinates must
be taken into account. The euclidean distance corresponding to 1 degree of
longitude, for instance, is dependent upon latitude. That is, 1 degree of lon-
gitude is /textitlonger at the equator than it is at the north pole. Because of

18

this, a projection of the grid onto the surface of the Earth is required. Such
a projection creates a grid with squares that are equal in euclidean size when
the curvature of the earth is taken into account. In this same process, a grid
size and granularity was chosen at 20km x 20km and 64 squares x 64 squares
based on the distributions of lat/lon. Then, in the process of converting lat/lon
to grid cell coordinates, any trajectories containing coordinates outside of the
defined 20km x 20km bounding box were filtered out.

At this point, trajectories were gridded, filtered, and cleaned. However,
many had duplicate coordinates in adjacent data entries. For example, if a taxi
was in heavy traffic, they may be in the same 3.2km x 3.2km grid cell for several
consecutive samples. Duplicate consecutive coordinates were removed, leaving
a clear, concise trajectory through the city. Then, for uniformity and to make
the data fit in each GAN model, trajectories of length 32 were selected. This
set has a cardinality of about 4000 trajectories.

3.1.4 Data Engineering

Figure 11: The process of engineering the dataset to fit in each GAN model.

Gridding As previously mentioned, the selected region of interest was the
400km2 bounding box 20km in each direction from the center of the city. After
this region was selected and the out of bound segments were removed, the re-
gion was divided into a 64 x 64 grid, resulting in grid lengths of approximately

19

0.32 km. This grid length is reasonable, given that the average block size in the
gridded blocks of Beijing is 0.33 km [28]. This grid mapping reduced the overall
dimensionality and complexity of the data and allowed for the effective future
use of convolutional neural networks for the GAN. Prior to this transformation
the data was a sequence of (latitude, longitude, timestamp) tuples, along with
other attributes such as direction and velocity. Through this grid transforma-
tion, generally, much shorter sequence of cell indices (x, y) were obtained. This
grid representation can also be considered as a two-dimensional grid graph, al-
though it is a rather degenerate case of a road network. Most grid structured
cities are also aligned with the cardinal directions. Care must be taken with
this approximation, especially on cities that have grid structures that are not
aligned with the cardinal directions such as Manhattan or Toronto, but this ap-
proximation did not pose a problem with the gridded Beijing Taxi data. After
the gridding partition, any duplicate visits to the same grid cell were removed,
meaning that if a taxi remained idle or only moved within a single grid cell
between samples, then the subsequent identical grid entries would be removed.

Figure 12: Sample of vehicle trajectory
before gridding

Figure 13: Same sample of vehicle tra-
jectory after gridding.

Diffusion Embedding The grid segmentation of the data resulted in a 3-
dimensional representation of the data: its x-coordinate in the grid, its y-
coordinate in the grid, and the time step in the trajectory where it lies in that
grid cell. In order to reduce the dimensionality of the data from 3 dimensions
to 2 dimensions, we developed a novel embedding of the trajectory across the
grid cells through a linear diffusion function from end to start for the trajectory.
This embedding was created through the application a linear diffusion function
over the sequence of grids. For example, if the grid was a 4x4 grid and there
were 5 time steps for the trajectory, the original gridded representation for the
sequence [(0,2), (1,2), (1,3), (2,3), (3,3)], where each entry is of the form (x,y),
would be:

[[[0 0 1 0] [[0 0 0 0] [[0 0 0 0] [[0 0 0 0] [[0 0 0 0]

[0 0 0 0] [0 0 1 0] [0 0 0 1] [0 0 0 0] [0 0 0 0]

20

[0 0 0 0] [0 0 0 0] [0 0 0 0] [0 0 0 1] [0 0 0 0]

[0 0 0 0]], [0 0 0 0]], [0 0 0 0]], [0 0 0 0]], [0 0 0 1]]]

The diffusion embedding for the above gridded sequence would be the fol-
lowing:

[[0 0 1 0]

[0 0 .8 .6]

[0 0 0 .4]

[0 0 0 .2]]

With this embedding of the trajectory, we can now leverage GAN models,
such as DCGAN, that learn 2-dimensional spatial representations of the data.
These convolutional GANs are often used on image data, but the trajectory can
now be interpreted as an image where the pixel values are all zeros except for
those that the trajectory pass through which have the value determined by the
linear diffusion embedding of their time step. The models employed were tested
with both this diffusion embedding, along with a simple 2-d projection of the
grid cells that were visited, removing any notion of time from the complexity.

Figure 14: Sample gridded trajectory.
Figure 15: Same sample after application
of diffusion embedding.

3.2 Evaluation Metrics

KL Divergence Kullback-Leibler Divergence (KL Divergence) is a way of
comparing an observed distribution to a known reference distribution. In the
context of information theory, this difference can be described as the relative
entropy of our observed distribution with respect to the reference distribution
[15]. This is particularly interesting, as this value can be thought of as the
difference between two distributions. If we apply this to the distribution of
points in a trajectory about our geographic region, we can do this comparison
between a distribution of generated points and our known distribution of real
points.

21

4 4 4 4 4 4 4
4 1 1 1 1 1 4
4 1 0 0 0 1 4
4 1 0 1 0 1 4
4 1 0 0 0 1 4
4 1 1 1 1 1 4
4 4 4 4 4 4 4

Table 2: The number in each cell represents the baseline penalty if that cell appears
after the center cell in a generated trajectory.

Total Hops Heuristic As mentioned above, we have defined a heuristic to
help us quantitatively evaluate our generated data. This heuristic evaluates how
well our generator can capture the locality of consecutive points in a trajectory.
In our real dataset, ideally there will be no occasions in which two consecutive
points jump over a cell in our defined grid. Below, we label the number of
cells that would be skipped for a coordinate following the center cell. We have
assigned a value of 1 for two consecutive points being in the same cell, as we
don’t want repeat coordinates either.

Using this concept, we defined a function to accumulate a penalty for a
trajectory based on the number of skipped cells between adjacent points. If
we let p = the penalty for a trajectory, over a trajectory with length n we can
define this heuristic as follows:

p =

n−1∑
i=1

[max((xi+1 − xi), (yi+1 − yi))− 1]
2

Probability Distribution of Top-N We can look at the probability distri-
bution for the ’top n’ source and destination coordinates, and compare that of
the training data with our generated data. Once we have 2 distributions, we
can plot them and analyze visually, but we can also then run KL-divergence
on the distributions to obtain another quantitative metric for our data. This
metric will evaluate the geographic similarities between our generated data and
real life data. This metric can also be utilized for grid-based approaches via a
2-dimensional density plot of source and destination coordinates.

22

Figure 16: Distribution of source coordi-
nates of Beijing Dataset

Figure 17: Distribution of destination co-
ordinates of Beijing Dataset

3.3 Experimentation

3.3.1 Vanilla GAN

Structure and Implementation For the purpose of getting baseline data,
we have found a very simple GAN which uses a few fully-connected layers and
leverages pytorch as a backend [18]. We have altered the discriminator of this
GAN to have three layers starting with 64 perceptrons, and decreasing down
to 1 output. We employed a leaky ReLu activation function on the first two
layers and a sigmoid on the last. Sigmoid is appropriate for the final layer of
the discriminator because it maps all real domain values to a value between 0
and 1.

We have similarly edited the structure of the generator model. Our generator
now has 4 fully connected layers, starting with 4 perceptrons (the length of our
starting noise vector z) and increasing to 64 (the size of our input trajectories).
We leverage LeakyReLu for the first three layers and then a straight up ReLu for
the final layer. ReLU is appropriate for generating our data because our output
values always need to be within [0, 64]. ReLu functions output a positive value
for all real valued domain.

Results and Drawbacks The data we generated from the Vanilla GAN are
just what we expected them to be - underwhelming. As it’s a baseline model,
it points out the fact that our model and data both need to be tailored to
one another in order to achieve any profound results. We are able to train the
Vanilla GAN in just over a few minutes, since it was a shallow model, and we
have generated 65536 “trajectories.”

23

Figure 18: A sample ”trajectory” generated from VanillaGAN.

Using a random sample of 10,000 points we obtain the KL divergence values
in Table 4. This shows us that VanillaGAN learned the overall distribution of
points better than SeqGAN which is not surprising as SeqGAN had to re-learn
the spatial embedding that was provided directly to VanillaGAN.

Dataset KL Divergence
Real Data 0
VanillaGAN 1.3485484037563962

Table 3: KL Divergences. Values closer to 0 indicate a more accurate spatial
distribution.

24

Figure 19: VanillaGAN’s distribution of coordinates.

Using our total hops heursistic we have created some illustrations showing
the quality of our data. From these graphics, we can conclude several things.
The first thing that stands out is that distribution of the values for this heuristic
of the generated data is much higher than that of our real data, meaning that
the model is quite unsuccessful in capturing this trend in our training data.
Secondly, we notice that there are occasions in our training data in which con-
secutive points skip cells. This tells us that we need to revisit our data cleaning
code, because some faulty trajectories are slipping through the cracks.

Figure 20: Distribution of source coordi-
nates generated by VanillaGAN

Figure 21: Distribution of destination co-
ordinates generated by VanillaGAN

25

3.3.2 SeqGAN

Structure and Implementation We decided to tackle SeqGAN due to the
fact that its intended use is for sequential data. We utilized an existing Seq-
GAN implementation without structural modification to attempt to generate
trajectories.

Data Preprocessing In order for this to work, we had to map our grid
cell representation to tokens as SeqGAN uses an embedding and is originally
designed for sentences. This is clearly a bad idea as we are throwing out one
dimension of our spatial information. Nonetheless, we index the grid via row-
major order and hope that SeqGAN will relearn the spatial dependencies.

Results and Drawbacks Compared to DCGAN, the learning was relatively
stable. In spite of this, we found that the model was largely unsuccessful in
learning spatial distributions of our data. to anything useful and failed to learn
that trajectories must go between adjacent or near-adjacent cells. This is un-
suprising given the extreme discontinuities in the function from token id to grid
cell.

Figure 22: A sample trajectory gener-
ated from VanillaGAN.

Figure 23: A sample ”trajectory” gen-
erated from VanillaGAN.

Dataset KL Divergence
VanillaGAN 1.3485484037563962
SeqGAN 1.9052103561695533

Table 4: KL Divergences. Values closer to 0 indicate a more accurate spatial
distribution.

26

Figure 24: SeqGAN’s spatial distribution of coordinates.

As can be seen above, the source and destination coordinate distributions
show promise. Some of the hotspots shown can be attributed to similar hot spots
in the actual data’s distributions. This shows that to some degree, SeqGAN was
able to learn patterns in the data. It is worth noting that SeqGAN tends to
end sequences in a coordinate of (0, 0), or several of them, so this destination
distribution was created by trimming all trailing zeros off of sequences.

Figure 25: Distribution of source coor-
dinates generated by SeqGAN

Figure 26: Distribution of destination
coordinates generated by SeqGAN

27

3.3.3 DCGAN

Structure and Implementation Throughout the process of training DC-
GAN and generating data, we encountered several problems. The first of these
problems was an imbalance between the discriminator and generator, resulting
in discriminator completely winning, providing no gradient to the generator. In
order to rectify this, we had to actually make the discriminator worse by de-
creasing the number of features in the discriminator and decreasing the learning
rates of both nets significantly to increase stability. Once we were able to get
the discriminator and generator balanced enough to maintain a relatively steady
loss throughout the entire training process, we found that we were experiencing
mode collapse, resulting in our generated data only representing a subset of
acceptable data. The trajectories we generated seemed to all follow generally
the same pattern and start and end at roughly the same points.

Results and Drawbacks Another issue we experienced is that the model
could not learn the diffusion pattern we applied to our data. The outputted
data sometimes resembled a trajectory, however the values within each grid cell
did not formulate a trajectory in the same way we diffused our data. This tells
us that our model was able to learn roughly what the shape of a trajectory
should look like, but it couldn’t learn our diffusion. The implications of the
mode collapse were that the resulting KL divergence value and distributions
were extremely skewed.

Figure 27: A relatively clean trajectory generated by DCGAN

We attribute our difficulties in training an accurate model to several different
factors. We think the fact that the gradient of the data we inputted was quite

28

sparse is causing our model a lot of trouble in learning the underlying patterns.
One trajectory from our diffused data consists of a matrix of mostly zeros, and
a few values between 0 and 1 (or -1 and 1). This kind of gradient is very difficult
for a neural network to learn, which we believe explains the mode collapse as
well as why our generator couldn’t learn our diffusion pattern.

Figure 28: Two very poor batches of data generated by DCGAN.

4 Conclusion and Future Work

4.1 Conclusion

Our research affirmed how adversarial models are notoriously difficult to train,
and we faced significant stability problems from all of the models we trained.
Furthermore, even if adversarial stability is achieved, it’s difficult to avoid mode
collapse. Although we have created some trajectories that appear realistic,
more advanced models are required to adequately capture the long-term spatio-
temporal dependencies that exist in trajectory data. Some of the trajectories
that we were able to generate did, however, show promising results. Although
there were some realistic trajectories, and the SeqGAN model was able to de-
cently capture the spatial distributions for the city, in order for the output of
these models to be utilized by another user, like a transportation or traffic plan-
ner, they would need to produce a sufficient amount of batches such that the
spatial distribution converges.

4.2 Future Work

We found that grid based representations of trajectories are inherently limited.
It would make much more sense to model them as graphs, as not all city road
networks have a defined, gridded architecture. Modeling trajectories in a graph-
ical manner would be a more general solution, as road intersections would be
the nodes in the graph, and the roads themselves would be the edges. However,

29

we were unable to find any generative models in the literature that create walks
over graphs, nor could we find any large and reliable graph-based datasets. It
may be possible to create such a model by adapting existing models such as
GRETEL [8] and CSSRNN [29] alongside the use of map matching algorithms
[20].

A similar reframing of the trajectory generation problem would be to view
the generation process as a degenerative case of sequence imputation from only
two points. A sequence imputation model could potentially solve the problem
of trajectory generation and refinement of low-frequency trajectories simultane-
ously. It may be possible to adapt NAOMI [19] for this task.

All the models we utilized are limited to a single city topology, but it may
be possible to adapt City2City [30] to create a model that generalizes over city
topologies. This could allow researchers to test the effects of alterations to
existing topologies or aid in the process of planning new ones.

With sufficient data, it may also be possible to create a model that generates
coherent trajectories for multiple vehicles at the same time which could facilitate
traffic models.

30

References

[1] Activation Functions : Sigmoid, ReLU, Leaky ReLU and Softmax basics
for Neural Networks and Deep Learning.

[2] M. Ehsan Abbasnejad, Qinfeng Shi, Iman Abbasnejad, Anton van den Hen-
gel, and Anthony Dick. Bayesian Conditional Generative Adverserial Net-
works. 6 2017.

[3] Jaume Barceló, editor. Fundamentals of Traffic Simulation, volume 145
of International Series in Operations Research & Management Science.
Springer New York, New York, NY, 2010.

[4] Lorenzo Bracciale, Marco Bonola, Pierpaolo Loreti, Giuseppe Bianchi, Raul
Amici, and Antonello Rabuffi. CRAWDAD dataset roma/taxi (v. 2014-07-
17). Downloaded from https://crawdad.org/roma/taxi/20140717, 7 2014.

[5] Francesco Camastra and Alessandro Vinciarelli. Markovian models for se-
quential data. In Advanced Information and Knowledge Processing, number
9781447167341, pages 295–340. Springer London, 2015.

[6] China Internet Information Center. Driving in China, May 2008.

[7] Christopher Olah. Understanding LSTM Networks, 2015.

[8] Jean-Baptiste Cordonnier and Andreas Loukas. Extrapolating paths with
graph neural networks. CoRR, abs/1903.07518, 2019.

[9] Wenhao Ding, Wenshuo Wang, and Ding Zhao. A New Multi-vehicle Tra-
jectory Generator to Simulate Vehicle-to-Vehicle Encounters. 9 2018.

[10] Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David
Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Gen-
erative Adversarial Nets. Technical report.

[11] Agrim Gupta, Justin Johnson, Li Fei-Fei, Silvio Savarese, and Alexandre
Alahi. Social GAN: Socially Acceptable Trajectories with Generative Ad-
versarial Networks. 3 2018.

[12] Igor Balteiro. GPS data from Rio de Janeiro buses, 2019.

[13] James Colyar. Next Generation Simulation Vehicle Trajectories, 2017.

[14] Lin Zhang Jing Lian. One-month beijing taxi gps trajectory dataset with
taxi ids and vehicle status.

[15] Will Kurt. Kullback-leibler divergence explained, May 2017.

[16] Jiachen Li, Hengbo Ma, and Masayoshi Tomizuka. Conditional Generative
Neural System for Probabilistic Trajectory Prediction. 5 2019.

31

[17] Jiachen Li, Hengbo Ma, Wei Zhan, and Masayoshi Tomizuka. Coordination
and Trajectory Prediction for Vehicle Interactions via Bayesian Generative
Modeling. 5 2019.

[18] Erik Linder-Norén. PyTorch-GAN, June 2019.

[19] Yukai Liu, Rose Yu, Stephan Zheng, Eric Zhan, and Yisong Yue. NAOMI:
Non-Autoregressive Multiresolution Sequence Imputation. 1 2019.

[20] Yin Lou, Chengyang Zhang, Yu Zheng, Xing Xie, Wei Wang, and Yan
Huang. Map-matching for low-sampling-rate gps trajectories. In Proceed-
ings of the 17th ACM SIGSPATIAL international conference on advances
in geographic information systems, pages 352–361, 2009.

[21] Sobhan Moosavi, Behrooz Omidvar-Tehrani, R. Bruce Craig, and Rajiv
Ramnath. Annotation of Car Trajectories based on Driving Patterns. 5
2017.

[22] Bruno A Olshausen. Bayesian probability theory and generative models.
Technical report, 2006.

[23] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised represen-
tation learning with deep convolutional generative adversarial networks. In
4th International Conference on Learning Representations, ICLR 2016 -
Conference Track Proceedings. International Conference on Learning Rep-
resentations, ICLR, 2016.

[24] Adrian E Raftery, S Lewis, JM Bernardo, JO Berger, AP Dawid, and AFM
Smith. Bayesian statistics. Oxford Sci. Publ, pages 323–349, 1992.

[25] Ruslan Salakhutdinov. Learning deep generative models. Annual Review
of Statistics and Its Application, 2:361–385, 2015.

[26] Alexander Shapiro. Monte carlo sampling methods. Handbooks in opera-
tions research and management science, 10:353–425, 2003.

[27] Sanjib Sharma. Markov Chain Monte Carlo Methods for Bayesian Data
Analysis in Astronomy. Annual Review of Astronomy and Astrophysics,
55:1–49, 2017.

[28] Victor FS Sit. Beijing: The nature and planning of a Chinese capital city,
volume 38. * Belhaven Press, 1995.

[29] Hao Wu, Ziyang Chen, Weiwei Sun, Baihua Zheng, and Wei Wang. Mod-
eling trajectories with recurrent neural networks. IJCAI, 2017.

[30] Takahiro Yabe, Kota Tsubouchi, Toru Shimizu, Yoshihide Sekimoto, and
Satish V Ukkusuri. City2city: Translating place representations across
cities. In Proceedings of the 27th ACM SIGSPATIAL International Con-
ference on Advances in Geographic Information Systems, pages 412–415,
2019.

32

[31] Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu. SeqGAN: Sequence
Generative Adversarial Nets with Policy Gradient. 9 2016.

[32] Chaoyun Zhang, Xi Ouyang, and Paul Patras. ZipNet-GAN: Inferring
Fine-grained Mobile Traffic Patterns via a Generative Adversarial Neural
Network. 11 2017.

[33] Yu Zheng. T-drive trajectory data sample, August 2011. T-Drive sample
dataset.

[34] Huiyu Zhou and Kotaro Hirasawa. Spatiotemporal traffic network anal-
ysis: technology and applications. Knowledge and Information Systems,
60(1):25–61, 7 2019.

[35] Kang Zhou, Shenghua Gao, Jun Cheng, Zaiwang Gu, Huazhu Fu, Zhi
Tu, Jianlong Yang, Yitian Zhao, and Jiang Liu. Sparse-GAN: Sparsity-
constrained Generative Adversarial Network for Anomaly Detection in
Retinal OCT Image. 11 2019.

33

