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Abstract

While railroad trespassing is a dangerous activity with significant security and

safety risks, regular patrolling of potential trespassing sites is infeasible due to

exceedingly high resource demands and personnel costs. There is thus a need to

design an automated trespass detection and early warning prediction tool lever-

aging state-of-the-art machine learning techniques. Leveraging video surveil-

lance through security cameras, this thesis designs a novel approach called ARTS

(Automated Railway Trespassing detection System) that tackles the problem

of detecting trespassing activity. In particular, we adopt a CNN-based deep

learning architecture (Faster-RCNN) as the core component of our solution.

However, these deep learning-based methods, while effective, are known to be

computationally expensive and time consuming, especially when applied to a

large amount of surveillance data. Given the sparsity of railroad trespassing

activity, we design a dual-stage deep learning architecture composed of an in-

expensive prefiltering stage for activity detection followed by a high fidelity

trespass detection stage for robust classification. The former is responsible for

filtering out frames that show little to no activity, this way reducing the amount

of data to be processed by the later more compute-intensive stage which adopts

state-of-the-art Faster-RCNN to ensure effective classification of trespassing ac-

tivity. The resulting dual-stage architecture ARTS represents a flexible solution

capable of trading-off performance and computational time. We demonstrate

the efficacy of our approach on a public domain surveillance dataset.
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1 Introduction

1.1 Background and motivation

Automated trespassing detection is an important problem that has applications

ranging from railroad security to safe neighborhood. In US, 1080 people were

either killed or injured as a direct result of trespassing in 2016 alone[1]. The

number increased to 1224 casualties (13.3 % increase) in 2017 [2]. Recently,

Worcester Police Department (WPD) conducted a four month long study of

trespassing activities and found at least 150 trespassing events involving more

than 200 trespassers with the average trespassing event lasting over 15 minutes.

Trespassers frequently encountered either a moving or stationary train and in

most cases, received little warning about the approaching train. This situa-

tion clearly poses a risk for both the train as well as the trespasser. In most

cases, contact with the train proves to be fatal. Aside from human costs, these

casualties, whether fatal or not, are exceeding expensive. Property damage,

emergency services, safety investigations, insurance, legal and delay costs may

account for hundreds of thousands up to millions of dollars per accident.

A straightforward solution to this problem is to station police officers at

the potential trespassing sites round the clock. However, this option has little

practicability due to the sheer overwhelming requirement of large number of

trained human personnel. Another solution is to set up a surveillance network

of CCTV cameras and employ human analysts to review the video feed on 27×7

basis. Video surveillance data can be transformed to infer trespassing statistics.

This can be useful to determine potential trespassing sites and time for more

efficient resource utilization i.e. Police officers or relevant personnel (such as

social workers) can be sent to potential sites only. Though attractive,this manual

approach has numerous severe downsides:

10



• Limitation of human resources: In this era of big data, we simply

don’t have enough human personnel. Scaling up the surveillance network

doesn’t mean adding more cameras, but also addition of numerous trained

human analysts.

• Subjectivity in analysis: Even well trained humans tend to be subjec-

tive in nature. What may be considered a threat by one analyst may not

be considered so by the other.

• Unreliability: Manual surveillance is a dull and tedious task. Over a

period of time, a human analyst may lose interest and neglect penitential

activities.

Due to the above mentioned reasons, bringing automation to any trespassing

prevention solution is of vital importance. Trespassing detection indeed serves

as the first step towards any AI-based automated solution. A reliable automated

trespassing detection solution not only provides detection in a timely fashion

but also allows us to develop advanced analytics by studying trespassing pat-

terns over time. For example, analysis over a period of six months may reveal

that a group of children like to play football during the evening time. Certain

locations might see increased trespassing during the morning and/or evening

times because people returning home from jobs may want to take a short-cut.

Other locations such as underpasses and bridges may provide a preferred meet-

ing location for drug addicts. An advanced trespassing prevention and analytics

tool may use more information than just trespassing detection and study cor-

relation patterns between demographics, weather and traffic etc. This can help

in making better predictions and subsequent prevention of trespassing.

As indicated above, an automated trespassing detection system serves as the

backbone for an overall AI-propelled automated prevention system. Therefore

in this thesis, we shall focus on that first critical component. We aim to develop
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a computer vision based detection system that takes in a stationary surveillance

video as input and produces trespassing detections as output. Below we sketch

a list of key advantages of our proposed system:

• Speed: Since, the system is fully automated we can take advantage of high

performance computing to speed up video processing. Multiple surveil-

lance videos can also be processed in parallel by using multiple compute

nodes.

• Scalibility: More and more data can be efficiently handled by simply

adding more computational resources. In most cases, this can have the

additional advantage of lower running costs of the complete surveillance

system.

• Relative objectivity: All the data is analysed by the same system i.e.

data gets processed using the same set of equations. This adds an inherent

notion of objectivity to the results w-r-t underlying set of equations.

• Reproducibility: Computers are well known for carrying out tedious

tasks with reproducible results (a quality that humans lack). A computer

will reliably give the same output to a given input provided the internal

functionality doesn’t change. This property is useful in studying errors

and working towards improving them.

1.2 Problem definition

Given an input surveillance video, the problem of trespassing detection is to

classify whether each frame has human trespassing activity or not. In order to

keep it simple, we define trespasser as a human spotted near a railway line. No-

tice that anyone within the camera field of view shall be considered a trespasser

by our currently proposed solution. Detecting a trespasser in a given frame is

12



a special form of general object detection problem where only objects of type

person are detected.

1.3 Goals

Although in Section 1.2 we formulate the problem we tackle as classifying each

frame as trespassing or not, we have a more ambitious goal. We not only want

to predict the label but also want to do so in a time-efficient manner. We notice

that railroad surveillance video is sparse in terms of trespassing activity. We

aim to leverage this property to reduce the processing time.

Further, we postulate that the detection performance and speed (of detec-

tion) are two opposite goals. Generally, if one wishes to improve the speed, they

will have to sacrifice accuracy1 and vice versa. Therefore, we are interested in

developing a flexible solution that is capable of trading-off performance versus

computational time.

1.4 Technical challenges

There are several key challenges in building a computer vision based trespassing

detection system. Figure 1 depicts a few of them.

• Occlusion: Several time trespassers may be occluded by other objects

or fellow trespassers. If the occluding object is stationary, trespasser may

become un-occluded later. However, it becomes a more challenging if two

trespassers move side by side.

• Low resolution: Most of the surveillance cameras capture low resolu-

tion videos to cut down video archiving costs. Further, it is supposed to

capture a large field of view. Under these situations, a trespasser is only

1refers to how good a detector is performing, not necessarily the metric accuracy
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Figure 1: Challenges in trespassing detection system

represented by a small number of pixels in the video footage. This poses

a significant challenge in detecting low-resolution and blurry trespassers.

• Background: If the trespasser has other types of objects in the back-

ground, this may interfere with the detection. Depending upon the ex-

tracted features, it might be hard to discriminate between background

object and trespasser.

• Hard negatives: Hard negatives are a source of false positives. They

have visual features that look like humans but are actually not human.

Typical examples include pictures and posters containing humans and

electricity poles.
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Figure 2: Our approach

1.5 Proposed approach

In order to fulfill our goals, we design a two step approach. Figure 2 depicts the

overall idea of our approach. In the first step, we decide whether a particular

frame has activity or not. If it turns out that the given frame has no activity,

then it is classified as background frame. No further action needs to be taken

for this frame. On the other hand, if it shows activity, then the next step will

be to investigate whether it can be classified as human trespassing activity or

not.
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2 Background and related work

As the background knowledge to this work, we review Convolution Neural Net-

works (CNN) and transfer learning. Then we discuss the relevant literature for

object detection followed by a discussion on background subtraction techniques.

2.1 Convolutional Neural Networks (CNN)

CNN based architectures[3] are the most widely used models for solving com-

puter vision based tasks such as image classification, object detection and object

segmentation. During the last few years, they have proved their effectiveness in

solving many image based problems[3]. In a normal feed-forward neural network,

input must be vectorized and each input feature is connected to each output

feature in each layer. This results in huge number of parameters. Further, due

to vectorization, the image loses its spatial structure and features computed

by subsequent neural network layers cannot be mapped to image coordinates.

CNN by design avoids both of these problems. It not only uses far less number

of parameters than traditional feed-forward networks but it also preserves the

2D grid based structure of images[4].

Due to the fast pace research in this domain, many new architectures have

been proposed. However, the convolution layer, pooling layer and fully con-

nected layer still are the most widely used components of any CNN based ar-

chitecture. Figure 3 shows the architecture of one of the earliest CNN network

which employed all three of above mentioned basic components.

2.1.1 Convolution layer

As the name suggests, the convolution layer applies the operation of convolution.

This operation should not be confused with convolution in other domains such

as signal processing. Unlike the fully connected layer (discussed in sec. 2.1.4),
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Figure 3: One of the earliest CNN ”LeNet-5” used to recognize handwritten
digits. Image taken from [5].

this operation can be applied to any arbitrary sized m × n matrix. Being a

binary operator it accepts two parameters: input matrix I and kernel K. The

operation can be defined mathematically as:

M(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(m,n)K(i−m, j − n)

where I is a 2D matrix (a grayscale image) of size m × n and K is the

kernel[6]. (i, j) represents the location in output M . In the computer vision

literature, M is also known as feature map. Generally, the size of the kernel K

is much smaller (usually 3× 3) than I.

Although the definition looks complex, the convolution operation in practice

is quite simple. M(i, j) is simply the sum of the element-wise product of the

sub-matrices of I and K. The sub-matrix of I has a center at (i, j) and is of

size equal to K. Figure 4 explains the concept in a graphical manner for the

location (2, 2).

Although the above definition defines the 2D convolution concept, it can

simply be extended to 3D as well. In practical architectures, 3D convolution is

used. Apart from preserving the grid-based image structure, another important

aspect of CNN is parameter sharing. In the fully connected layer, each pa-

rameter of the weight matrix is used exactly once while computing the output

17



Figure 4: Convolution operation illustration: destination pixel location is sum
of product of kernel weights and corresponding sub-matrix of source matrix.
Image taken from [7].

feature map. On the other hand, when convolution is applied to input image, it

generates a feature map which shows how strongly a particular feature occurs at

a given location. This parameter sharing nature makes CNN based architecture

not only practical but also robust.

2.1.2 Activation layer

A convolution layer is generally followed by a non-linear activation layer. Convo-

lution being a linear operator can only capture linear transformations, therefore

a non-linearity is fundamental to learn complicated relationships between input

and output. ReLU (Rectified Linear Unit) function is one of the most widely

used non-linearity. It allows a positive input to pass as it is and blocks the

negative input. Figure 5 shows the response of relu function. Other less com-

monly used non-linearities include TanH ( Tangent Hyperbolic) and sigmoid

functions.
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Figure 5: ReLU function

2.1.3 Pooling layer

The main goal of pooling layer is to reduce the data dimensionality. It often

follows the activation layer. This layer slides a window on input feature map

applying a particular pooling operation. This operation is applied on all the

values inside the window and can be min, max or average. Based on the op-

eration, it is either called min pooling, max pooling or average pooling. Apart

from the window size, another important detail of pooling layer is stride. This

parameter refers to number of pixels sliding window moves forward each time.

Generally stride of the pooling layer is set such that it form non-overlapping

windows. For example, applying pooling with 2×2 size and a stride of 2 converts

a 14 × 14 input feature map to 7 × 7. It results into non-overlapping windows

as window of size 2 × 2 moves forward by 2 pixels every time. On the other

hand, if stride is 1, then every possible window location is visited and windows

shall be non-overlapping (if window size is greater than 1). Figure 6 shows an

example of max and average pooling.

Pooling can also increase the robustness of feature map by making it invari-
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Figure 6: An example of max and average pooling applied on feature map of
4× 4 size with window size of 2× 2 and stride of 2. Image taken from [8].

ant to small translations[6]. Invariance to small translation means that output

of pooling layer will not change much even if input experiences a slight trans-

lation. This property can be highly desirable as the same object can appear at

multiple locations within different images.

2.1.4 Fully connected layer

A fully connected layer connects each element of the input feature map to each

element of the output feature map. If input and output feature maps contain m

and n elements respectively then a fully connected layer has n×m parameters.

Figure 7 shows a simple fully connected layer.

A fully connected layer models the input-output relation as an affine linear

model. If f and g represent the input and output feature map respectively, then

they can be mathematically modeled as

g = Wf + b
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Figure 7: Fully connected layer: f represents input feature map and g represents
output feature map. Each arrow Wij represents the element connecting fi to
gj . Image taken from [9].

where W represents the weight parameter matrix and b represents the bias

vector. Notice that by the definition of matrix multiplication, gi is the inner

product of ith row of W and f . bi simply adds the bias term.

This structure can lead to very powerful models, however it is not well suited

for images. Even a small 256 × 256 image can generate a large input feature

map of 65536. This means the size of W shall be n× 65536 where n represents

the size of output feature map. Finding the right parameters for such a large

W is computationally quite expensive. Further, notice that this layer requires

the input feature map f to be a flattened vector. This means that g does not

have any spacial interpretation at all. These two reasons make this layer less

attractive to generate features for the image data. Never the less, they are

still used towards the final stage of model to classify feature maps generated by

convolution and pooling layers.
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2.2 Transfer learning

Transfer learning is a technique in which model weights learnt for one task

using one dataset can be used to solve another task on some other dataset.

Oquab et. al[10] showed that model weights (for convolutional layers) learnt

for object classification using PASCAL VOC dataset[11] could be reused for

action classification task. Initial layers of the model learn relatively simpler

patters such as horizontal and vertical lines. Deeper layers tend to learn more

complicated shapes such as blobs and corners. Learning these layers which

can extract these simple features is crucial for any computer vision task. Thus

instead of relearning for each task, it makes sense to simply use the pre-learnt

model parameters that extract these features. Further, it should be noted that

this is useful in both cases where task at hand and dataset are different. This

means that weights of a model trained on ImageNet[12] for object classification

can be used for object detection on COCO[13] dataset.

This technique is particularly useful if dataset is limited. In such a scenario,

transfer learning is used in conjunction with fine-tuning. Fine-tuning is closely

related with transfer learning. In fine tuning, instead of starting the training

with random weights, we start with pre-learnt weights (transfer learning). We

take a pre-trained network and chop off the fully connected layer. Now, we

attach new fully connected layers and only train these layers while keeping the

old convolution layer weights in frozen state. Once the network loss saturates

or the model tries to over-fit, we stop the training. Now, we unfreeze the old

network weights and restart training. This allows the network to adapt to new

data. Since, we are not training the weights of convolution layers from scratch,

this is known as fine-tuning.
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2.3 Object detection

Problem of object detection refers to detecting objects of certain class (such

as person, bird, vehicle etc) at a particular location in an image. Traditionally,

sliding window based approach had been used where a window of particular size

is slided over the image. Image patch (sub-image covered by the sliding window)

is fed to a feature extractor to produce features such as Harr[14], SIFT[15] or

HoG[16]. These features are then fed to a classifier such as fully connected neural

network or SVM (Support Vector Machine). This classifier predicts the class

labels (object category) whereas the location of sliding window is considered to

be the location of predicted object.

However in recent years, significant improvement has been made by switch-

ing from hand-crafted features (such as Harr, SIFT and HoG) to CNN based

features. One of the initial approaches to solve object detection problem using

CNN was OverFeat[17]. Other approaches that successively built upon Over-

Feat include RCNN[18], Fast-RCNN[19] and Faster-RCNN[20]. We shall briefly

discuss the approach followed by these methods.

2.3.1 OverFeat

OverFeat[17] was the first paper to propose the use of CNN for object detec-

tion on ImageNet[12] dataset. Their approach is simple and straight forward.

They slide a window on image and for each window they compute convolutional

features. These convolutional features are fed to two separate fully connected

sub-networks which predict the label and bounding box for each window re-

spectively. Though this approach significantly improves detection accuracy, it

is inherently slow as sliding window generates a lot of patches. Following pseudo

code explains their approach.
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Listing 1: OverFeat pseudo code

for window in windows :

patch = get patch ( image , window )

f e a t u r e s = compute conv features ( patch )

l a b e l = c l a s s i f y l a b e l ( f e a t u r e s )

bbox = reg r e s s bbox ( f e a t u r e s )

2.3.2 RCNN

Instead of using sliding window approach Ross Girshick et al.[18] proposed to

use a RoI (Region of Interest) based approach. They use selective search[21] to

generate category independent RoIs. These RoIs (which are far less in number

than sliding windows) are then passed through the same pipeline as Overfeat.

The result is significant reduction in time as far less regions needs to be evalu-

ated.

Listing 2: RCNN pseudo code

r o i s = a p p l y r e g i o n p r o p o s a l ( image )

for r o i in r o i s :

patch = get patch ( image , r o i )

f e a t u r e s = compute conv features ( patch )

l a b e l = c l a s s i f y l a b e l ( f e a t u r e s )

bbox = reg r e s s bbox ( f e a t u r e s )

2.3.3 Fast-RCNN

Though RCNN showed a significant speedup and improvement in accuracy as

compared to OverFeat, it still applied expensive convolutional operation on

each RoI independently. This makes it slow in inference as well as in training.
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Most of the these RoIs are overlapping and thus computational resources are

wasted during re-computation of overlapping RoIs. Fast-RCNN[19] circumvents

this issues by sharing convolutional features. Convolutional feature extraction

process is taken out of the loop and features are computed for the complete

image in single step. Later on, features corresponding to each ROI are extracted

from the pre-computed feature map. This technique makes Fast-RCNN 10x

faster than RCNN in training and 150x faster in inference.

One important detail in Fast-RCNN is how we handle RoIs of different sizes.

Each RoI has feature size corresponding to its own size. In order to feed the

features to fully connected networks (for label and bounding box prediction),

these features must be transformed to a particular size. Fast-RCNN proposes

RoI pooling for this purpose. This is similar to Max pooling. However instead

of sliding the window on feature map, the whole feature map is converted to

a fixed size grid. Max pooling operation is applied on each grid cell and the

result has the same size as the size of grid. Following pseudo code explains Fast

R-CNN.

Listing 3: Fast-RCNN pseudo code

f e a t u r e s = compute conv features ( image )

r o i s = a p p l y r e g i o n p r o p o s a l ( image )

for r o i in r o i s :

p a t c h f e a t u r e s = a p p l y r o i p o o l i n g ( f e a tu r e s , r o i )

l a b e l = c l a s s i f y l a b e l ( p a t c h f e a t u r e s )

bbox = reg r e s s bbox ( p a t c h f e a t u r e s )
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2.4 Background subtraction

Background subtraction is a technique that allows foreground in an image to

be extracted. It is a fundamental component in most conventional (non-deep

learning) computer vision pipelines. All the background subtraction techniques

depend on some kind of background model. When a new images comes in,

it is compared with the existing background model. Those pixels (or regions)

which do not fit the background model well are considered to be foreground.

Generally, foreground in image is closely related to motion or change.

We studied a few different background subtraction techniques. SVD[22] and

RPCA[23] are two well known schemes for background modeling. Thus, they

are well suited for background modeling but not for background subtraction/

foreground extraction. Furthermore, both of these techniques take an array

of frames to develop the background model. They are not flexible enough to

update their model to changing scenarios such as change in light. MoG (Mixture

of Gaussian)[24] based background subtraction presents itself as a simple and

effective method. Due to low computational cost and simplicity, it has very low

frame processing time. However, it is highly susceptible to noise.

GSoC (Google Summer of Code)[25] and LSBP (Local SVD Binary Pat-

tern) [26] are two recent background subtraction algorithms. They produce

state-of-the art results on foreground segmentation datasets. However, they are

extremely slow as compared to MoG. GSoC, however is relatively faster than

LSBP.
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3 Methodology

3.1 Problem formulation

Given an input video containing N frames, we want to produce a binary time

series of same length N such that each index i predicts the labels yi of corre-

sponding frame fi . Human trespassing label is assigned to positive (1) class and

“other activity” label is assigned to negative class (0). Since, each prediction

depends only on corresponding frame fi, our problem boils down to determining

a function D such that

D(fi) = ŷi

This function D has parameters θ such that D(fi; θ) = ŷi. The aim is to find a

θ∗ such that D(fi; θ)→ yi where yi is the ground truth label corresponding to

fi. The ground truth label has the following definition:

y =


1, if fi has trespassing activity

0, otherwise

We define the trespassing activity as the presence of at least one person in the

frame.

3.2 Proposed pipeline

In order to tackle this problem, we propose a two-stage trespassing detection

model. This model is in accordance with our approach in Section 1.5. Figure

8 shows the block diagram of our system implementing trespassing detection

framework. Stage 1 of our pipeline corresponds to step 1 of approach. Likewise,

stage 2 of pipeline corresponds to step 2 of approach. Input to our pipeline is

a video and each frame is processed one by one. Each frame is first processed
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Figure 8: Trespassing detection pipeline

through stage 1 to determine if it shows activity. Only the frames classified as

showing activity are further processed through stage 2. Output of the system

is a time series as discussed in Section 3.1

3.3 Stage 1

As discussed above, goal of this stage is to filter non-activity frames from the

activity frames. Thus, it is modeled as a background subtraction problem.

Figure 9 shows a typical pipeline of background subtraction method.

Input to this stage is the given frame fi in question. This frame fi is first

used to update the background model from bi−1 to bi. Both fi and bi are

then compared with each other by the foreground extraction sub-stage. Output

of this sub-stage is a binary mask which indicates whether a pixel belongs to

foreground or not. All the foreground pixels in the image can be summed up

and their ratio to the the total number of pixels in frame can be compared

to a threshold value. If the ratio is greater than threshold, then this frame is

regarded as activity frame; otherwise it is classified as background frame. In

this work, we use Mixture of Gaussian (MoG) and Google Summer of Code

(GSoC) methods for background subtraction. We shall elaborate the working

principal of MoG.
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Figure 9: Background subtraction model

3.3.1 Mixture of Gaussian (MoG)

Before diving into the technical detail of MoG based background subtraction,

let us explain it intuitively. This method attempts to model the pixel values

as a gaussian process (normal distribution). Since, an image usually represents

many different surfaces/objects, each surface/object is expected to give rise to

a new gaussian. Thus all the pixel values are better represented by a mixture

(sum) of gaussians. This is how gaussian mixture models an image. Notice that

this model represents both foreground and background simultaneously. In order

to apply this model to background subtraction problem, we associate each pixel

with a particular surface and then associate that surface with either foreground

or background. The label of each pixel (foreground/background) is determined

by the label of corresponding surface. The methodology being described here is

due to [27] and [28]

Each surface (or uniform object) that comes into the view is represented by

a state k ∈ 1, 2, 3, ...,K. Some of these states correspond to background while

remaining ones are considered to be foreground. The process k which generates

the states is modeled by parameters set w1, w2, ..., wK where wk = P (k). Each

of these parameters represents a priori probability of surface k appearing in the

image. Further,
∑K
k=1 wk = 1.
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This surface process k is hidden and is only indirectly observable through

pixel value process X. The pixel value process X is an observable random

variable modeled by a gaussian process for given surface k. X is 1-D in case

of gray scale images and 3-D for color images. If θk = {µk,Σk} represent the

associated gaussian process then pixel value process X given k is:

fX|k(X|k, θk) =
1√

(2π)n|Σk|
e−

1
2 (X−µk)T Σ−1

k (X−µk)

where µk is the mean and Σk is the covariance matrix of associated kth gaussian.

We assume these k events are disjoint so X can be modelled as sum of

gaussians.

fX(X|Φ) =

K∑
k=1

wkfX|k(X|k, θk)

where Φ = {w1, µ1,Σ1, ..., wK , µK ,ΣK}. Figure 10 illustrates the pixel value

probability fX(X|Φ) for 1-D pixel values X ∈ {0, 1, 2, ..., 255}, K = 3, wk ∈

{0.2, 0.2, 0.6}, µk ∈ {80, 100, 200} and Σk ∈ {25, 5, 10}.

In order to apply the model to background subtraction problem, first step

is to determine which of the K states is most likely to give rise to current pixel

value X = X. The posterior probability P (k|X,Φ) is the likelihood that pixel

value X was generated by surface k. Using the Bayes’s theorem:

P (k|X,Φ) =
P (k)fX|k(X|k,Φ)

fX(X,Φ)

The k which maximizes the P (k|X,Φ) is considered to be the surface associated

with X. Figure 11 illustrates the posterior probability P (k|X,Φ) as a function

of X for each k ∈ {1, 2, 3} with the parameters in Figure 10.

k̂ = argmax
k

P (k|X,Φ)
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Figure 10: Gaussian mixture model[28]
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Figure 11: Posterior probability P (k|X,Φ)[28]

Once X has been associated with a particular surface k̂, it needs to be

determined whether k̂ is a foreground surface or background.

The procedure for demarcation starts with ranking K states by wk/|Σk| in

decreasing order. This ratio is proportional to height of weighted distribution

wkfX|k(X|k, θk). A surface k is considered to be background if it occurs more

frequently (higher wk) and does not vary much (low |Σk|). To separate the

foreground and background surfaces, an overall prior probability T of anything

being in the background is used. The first B of the ranked states whose accu-

mulated probability crosses the threshold T are considered to be background.

B = argmin
b

(

b∑
j=1

wj > T )

3.4 Stage 2

As mentioned before, goal of this stage is to verify human trespassing in case of

activity. We implement this stage using Faster-RCNN[29]. Faster-RCNN is an
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object detection algorithm which takes in an image and predicts different objects

in the image with their corresponding labels and bounding boxes. This is known

as object detection and localization task which is different from the classification

task (human trespassing/other activity) which we attemp to solve. We employ

a simple an straight forward methodology to convert the Faster-RCNN output

to our required output. If Faster-RCNN predicts at least one person with a

probability greater than threshold τ , then we label the input frame fi as showing

trespassing activity. Otherwise we label it as a frame showing other activity.

Faster-RCNN has three main components/sub-networks (Figure 12)

1. Feature extraction (Conv Net)

2. Region Proposal Net (RPN)

3. Fast-RCNN head

3.4.1 Feature extraction

This component/sub-network takes in the input image and produces convo-

lutional features. These convolutional features will be used by further sub-

networks to predict the proposals and detections. This sub-network is also

known as the backbone of network as it is responsible for producing high-quality,

highly-discriminative features. This sub-stage is flexible in the sense that it can

use any feature extraction network such as VGG or Resnet. Recent implementa-

tions also employ FPN[30] to improve the discriminative power of this sub-stage.

In our experiments, we used Resnet-50 with FPN.

3.4.2 Region Proposal Network (RPN)

This sub-stage as the name suggests is responsible for proposing regions (rect-

angles) potentially containing objects. The idea of proposing regions using a

neural network was proposed by Faster-RCNN for the first time. They also
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Figure 12: Faster-RCNN pipeline

proposed the novel idea of anchors. As seen in Figure 12, this sub-stage takes

in the feature map and produces a list of proposals for the given image. Each

proposal consists of binary label and proposed bounding box of the region of

interest. The label indicates whether the proposal corresponds to an object

or background. The proposals thus produced by the network are subjected to

non-maximum suppression. This process removes the duplicate proposals and

makes subsequent processing more efficient.

a) Anchor

The novel idea of anchor has been introduced by Faster-RCNN. Anchor act as

default region proposals. Their idea has been motivated from multi-scale sliding

windows. Suppose we use a feature extraction convolutional network such that

it converts a 800 × 800 image to 50× 50 feature map (Figure 13). This means

every (x, y) location on feature map corresponds to 16 × 16 patch/window on

original image. Similarly, 8×8 window on feature map corresponds to 128×128

window on original image. This 8 × 8 window on feature map is known as

anchor. Faster-RCNN proposes multi-scale, multi-aspect ratio anchors. A total

of 3 scales (8, 16, 32 on feature map) with 3 aspect ratios (1 : 1, 1 : 2, 2 : 1)

produces 9 anchors on each (x, y) location on feature map. Since, we have 50×50
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Figure 13: Anchor illustration

locations, therefore this setting produces 22,500 anchors in total. However, in

practice we use less than that. All the anchors whose regions lie outside feature

map (eg. anchors near edges); they don’t participate in training the network.

b) Architecture

Figure 14 shows the architecture of RPN sub-network. Input to this network is

the features generated by backbone network. These features are passed through

a 3× 3 “same2” convolution layer. Faster-RCNN uses 512 output feature depth

for this layer. Output of this layer is fed to the bounding box regressor layer

and objectness layer which predicts bounding box locations and objectness score

simultaneously. Both of these layers are modeled with 1×1 convolution. Bound-

ing box regressor layer has 4k output depth where k is the number of anchors

and 4 follows from the fact that each proposal is defined by 4 scalar values. For

similar reasons, objectness layer has 2k output features. Thus each anchor pro-

duces a proposal. All of these proposals are post-processed by Non Maximum

Suppression (NMS) discussed later.

c) Anchor targets

While discussing the RPN architecture, we maintained that each anchor pro-

2(h,w) of input and output feature map remains same by automatic padding
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Figure 14: Region Proposal Network architecture

duces a proposal. Since, we shall train this network in a supervised manner

therefore, we need targets corresponding to anchors. We shall use ground truth

annotations to generate targets. Following steps need to be taken for anchor

target generation.

1. compute IoU for each anchor-target pair

2. determine positive(negative) anchors and label them

3. confirm each ground truth is mapped to at least one anchor

Step 1 is simple. Given an anchor Ai and target bounding box Tj , we

can compute Intersection over Union (IoU(Ai, Tj)) between them. Intersection

over union is simply the ratio between area of overlap to area of union of two

rectangles. Figure 16 illustrates the concept of IoU graphically. Once we have

IoU for each anchor-target pair, we can proceed to step 2. For each anchor Ai,

it is matched to ground truth bounding box Tĵ such that Ai has maximum IoU

with Tĵ over all ground truth bounding boxes. In other words

ĵ = argmax
j
{IoU(Ai, Tj)}
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Figure 15: Anchor target assignment. Green tick indicates anchor assignment
to ground truth object and red cross indicates background anchor assignment.

If IoU(Ai, Tĵ) > 0.7, then Ai is assigned positive label i.e. this anchor corre-

sponds to an object and Ai will regress to bounding box of Tj . If IoU(Ai, Tĵ) <

0.3, then Ai is assigned negative label i.e. anchor corresponds to background.

However, background anchors do not contribute towards bounding box regres-

sion learning process.

d) Non Maximum Suppression (NMS)

As indicated in Section 3.4.2, NMS is responsible for removing the duplicate

predictions. Figure 17 illustrates the goal of this process graphically. In order

to suppress duplicate proposal predictions with the less confidence, first step is

to sort all the proposals in descending order. The first proposal is made the

reference proposal and pushed to “keep” list. IoU of this reference proposal

with all the remaining proposals is computed and the proposals which suffi-

ciently overlap with the reference proposal (IoU > 0.7) are discarded. They

are considered to be the duplicate of reference proposal. In the next iteration
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Figure 16: Intersection over Union

Figure 17: Non Maximum Suppression (NMS). Highly overlapping predictions
with lesser confidence are suppressed.

the first proposal in the list of undecided proposals is made reference proposal

and the process of first iteration is repeated. Again this leads to removal of

all the proposals considered to be duplicate of reference proposal. The process

continues on until all the proposals are decided i.e. either kept or discarded.

Output of this process is the list of kept proposals.

3.4.3 Fast-RCNN head

Once we have the proposals from RPN, we need to predict the corresponding

objects’ labels and location. This is done by Fast-RCNN head. Fast-RCNN

consists of two components: 1) convolutional feature extraction and 2) head.

Since, we have already computed the features, we only need the Fast-RCNN

head to do the remaining task. Fast-RCNN head itself has two further sub-
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Figure 18: RoI pooling

components. First one is Region of Interest (RoI) pooling and second one is

classifier layer. Input to the Fast-RCNN head will be proposal feature maps

and output shall be improved bounding box locations of corresponding proposals

along with class labels.

a) Region of Interest (RoI) Pooling

Different proposals have different feature map sizes. However, the classifier

expects them to be of same size. This process (RoI pooling) is responsible for

converting variable sized feature maps into fixed sized. The methodology used

by Fast-RCNN in this case is quite simple. Suppose a feature map of size n×m

has to be converted to a × b size. Then, a grid of size a × b is placed on top

of feature map and maximum feature value from each grid cell is copied to

corresponding cell in output buffer. this converts an n×m feature map to a size

of a× b. Figure 18 illustrates the concept by an example. In this case, feature

map of size 5× 7 is converted to 2× 2.

b) Classifier

Once RoI pooling has adjusted the size of feature map to fixed dimensions,

the feature maps are ready to be fed to classifier. The classifier takes in those

features and pass them through two fully connected layers. The output of

those two layers is fed to two separate fully connected layers responsible for

predicting bounding boxes and object class labels. The bounding boxes and
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Figure 19: Fast-RCNN classifier

labels so predicted are the final output of Faster-RCNN. Figure 19 illustrates

the architecture of classifier.

3.4.4 Training loss

While training the Faster-RCNN, we train two sub-networks: RPN and classi-

fier. Both of these networks have two objectives: label classification and bound-

ing box regression. Following two equations indicate the RPN and classifier loss.

First term corresponds to label classification and second term corresponds to

bounding box regression.

LossRPN =
1

Ncls

∑
i

Lcls(p̂i, pi) +
λr
Nreg

∑
i

piLreg(t̂i, ti)

Lossclassifier =
1

Ncls

∑
i

Lcls(q̂i, qi) +
λc
Nreg

∑
i

[qi > 0]Lreg(ûi, ui)

where

p̂i = anchor label prediction

t̂i = anchor bounding box prediction

q̂i = RoI label prediction
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ûi = RoI bounding box prediction

pi = anchor ground truth label

ti = anchor ground truth bounding box

qi = RoI ground truth label

ui = RoI ground truth bounding box

λr = RPN loss balance coef.

λc = classifier loss balance coef.

Ncls = mini-batch size

Nreg = total anchors

Classification loss Lcls is the standard log loss and regression loss Lreg is the

smooth-L1 loss as defined below.

Lcls(ŷ, y) = −
∑
j

yj log(ŷj)

Lreg(b̂, b) =

4∑
j=1

SL1(b̂j − bj)

SL1(x) =


0.5x2, if |x| < 1

x− 0.5, otherwise

where input parameters to each function carry standard meaning.

Total loss of the network is simply the sum of RPN loss and classifier loss.

Loss = LossRPN + Lossclassifier

Apart from that notice the term pi in regression term of RPN loss. This

makes sure that regression loss is activated only if proposal corresponds to an

object, not the background. Thus bounding box predictions corresponding to

background proposals do not contribute towards training. Furthermore, the
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expression [qi > 0] does a similar job in classifier loss. This again acts as a

flag to add regression loss only corresponding to actual objects and not the

background.

λr and λc act as the balancing parameter between label classification and

bounding box regression. The authors of Faster-RCNN claim that λr is redun-

dant and Faster-RCNN remains insensitive to a large range of λr.

42



4 Experimental evaluation

In order to validate our approach, we carry out an extensive and in depth ex-

perimental evaluation. As discussed in Section 1.3, we study the time-accuracy

trade-off. We also do stage-wise analysis where each stage is evaluated indepen-

dently of other. This helps us understand which stage is acting as bottleneck in

terms of performance. Additionally, we also do a noise based analysis to under-

stand the robustness of system to noise. Figure 20 illustrates our experimental

evaluation approach graphically.

Figure 20: Experimental methodology

4.1 Dataset

The dataset we used for experimental evaluation is VIRAT 2.0 [31]. It is an

outdoor video survillance dataset whose main aim is to facilitate activity classi-

fication. It has ground truth annotations of vehicle, person and other arbitrary

objects (objects which come in contact with persons during activity). It has ap-

proximately 8.5 hours of video data in varying resolution and frames-per-seconds

(fps). Figure 21 shows some samples from the dataset.
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Figure 21: Samples from VIRAT 2.0[31] dataset

Figure 22: Synthetic dataset generator

4.1.1 Synthetic dataset generator

Instead of directly using the VIRAT 2.0 dataset, we synthesize more data from

it. The reason why we need to do that is original dataset targets activity

classification and is therefore enriched with human activity. We on the other

hand need sparse activity data. Therefore, we use original VIRAT 2.0 dataset to

generate new data that has controlled amount of activity to background ratio.

Figure 22 helps understand our synthetic dataset generator.

In order to generate the synthetic data, we follow the following steps:
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Figure 23: Synthetic video illustration

1. identify background frame

2. make background block

3. write background block(s)

4. write activity block

5. repeat (3) and (4)

Step 1 is simple. We manually scroll through a video and identify a frame

with no activity (ideally no person). In step 2, we repeat the frame ∆×fps times

where fps is the frame-per-second of original video and ∆ is the target length of

background block in seconds. Then we alternatively write background block(s)

and activity block in turn. An activity block is simply a section of original video.

By default, we use 30s long activity blocks. Length of background block is also

kept at 30s by default. Figure 23 helps understand the concept of activity block

and synthetic video.

An important concept associated with this procedure is Activity Ratio. It is

defined as

Activity Ratio = AR =
1

1 + nBG
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Table 1: Relationship of number of background blocks and activity ratio

nBG nAB:nBG AR

1 1:1 0.5
3 1:3 0.25
5 1:5 0.16

Table 2: Noise parameters

parameter description

p percentage of noisy frames in background block
µ average number of noisy pixels in noisy frame
σ standard deviation of number of noisy pixels

where nBG = number of background blocks per activity block. Figure 23 has

nBG = 1. Table 1 explains the relationship between nBG and AR.

4.1.2 Adding noise

In order to test the robustness of our approach, we also add noise to our synthetic

data. Table 2 discuses the parameters that control the level of noise. We use

salt and pepper noise in our experiments.

In order to add noise, we first select p% of frames from each background

block. Each of the frame is equally likely to be selected. Now we draw an

integer r from normal distribution with parameters µ and σ. Now for each

selected frame, we select r pixels and add noise to them. Again all pixels are

equally likely.

4.2 Evaluation metrics

We use two performance metrics to measure the performance: f1 score and AUC.

F1 score is selected as a metric to study performance w-r-t detector/classifier

threshold. It is useful in the sense that it helps in picking the appropriate

threshold for the classifier. AUC on the other hand is independent of a particular
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threshold. Further, since we are dealing with unbalanced data (there may be

much more background frames than activity frames); therefore AUC is a more

reliable metric for classifier performance as it is insensitive to class imbalance.

4.2.1 F1 score

F1 score is the harmonic mean of precision and recall.

1

f1
=

0.5

precision
+

0.5

recall

precision =
True positive

positive predictions
=

TP

TP + FP

recall =
True positive

actual positives
=

TP

TP + FN

where

TP = correctly predicted to be positive class

FP = incorrectly predicted to be positive class

FN = incorrectly predicted to be negative class

Precision indicates out of the samples predicted to be positive, how many of

them are correct. Recall on the other hand indicates how many of the positive

samples have been correctly identified.

4.2.2 Area Under the Curve (AUC)

AUC stands for Area Under the Curve. It is the area under the TPR-FPR curve

(which is also known as Receiver Operating Characteristics (ROC) curve). TPR

(True Positive Rate) and FPR (False Positive Rate) are defined as

TPR =
TP

TP + FN
= recall
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Figure 24: AUC illustraction. Image taken from [32]

FPR =
FP

FP + TN

A particular value of threshold gives a particular (FPR, TPR) point. This

point can be plotted on a 2D plot with TPR on the y-axis and FPR on the

x-axis. Figure 24 shows a sample ROC curve. As the threshold goes from 0 to

1, the curve moves from top-right to bottom-left. A perfect classifier will have

an AUC of 1.0 and a classifier that does no better than random guessing will

have an AUC of 0.5.

4.3 Time-accuracy trade-off experiment

In time-accuracy trade off experiment, we study how the data can be processed

in less time by compromising on accuracy. We vary certain control parameters

(stage 1 threshold in this case) and observe the time it takes to process the

data along with the performance of the complete pipeline. Figure 25 shows a

comparison of MoG and GSoC for the trade off. The trade off curve depicts f1

score on y-axis and normalized processing time on the x-axis. Next we give the
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Table 3: Synthetic data parameters for time-accuracy trade off

parameter value

activity ratio 0.25
p 1%
µ 0.50%
σ 0.20%

definition of normalized processing time.

normalized time =
total time to process video data

length of video data

It is clear that as the f1 score goes up, the normalized processing time also

goes up, indicating the trade off. The figure also shows that MoG significantly

outperforms GSoC. For a given f1 score, MoG takes less time than GSoC. Al-

ternatively, for a given processing time, MoG shows better performance than

GSoC.

Another interesting fact to note is that it would take around 2.6 hours of

normalized processing time to process same data by stage 2 (Faster-RCNN)

only. i.e. if stage 1 does not perform filtering. On the other hand, it takes

around 1 hour to process the same data using our proposed pipeline. This

shows a 2.6 times improvement in processing time for dataset having AR=0.25.

The synthetic dataset parameters using in corresponding dataset are shown in

table 3

Figure 26 and 27 show similar time-accuracy trade off for varying activity

ratio (AR). For both algorithms, MoG and GSoC, the trade off curve shifts to

the left as AR decreases. This is expected as stage 1 can filter more and more

frames. Synthetic data parameters are the same as in table 3 with the exception

of activity ratio.
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Figure 25: Time-accuracy trade off - MoG vs GSoC. Synthetic data parameters
shown in table 3
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Figure 26: Time-accuracy trade off for varying AR using MoG
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Figure 27: Time-accuracy trade off for varying AR using GSoC
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Figure 28: Stage 1 evaluation - MoG

Table 4: Stage 1 AUC and time analysis

algorithm AUC mean processing
time (ms)

MoG 0.94 30
GSoC 0.6 150

4.4 Stage based experiments

In this part, we analyse both stage 1 and 2 independently. For stage 1, we are

doing binary classification between activity and background frames. We shall

vary our threshold (percentage of foreground pixels) and observe f1 score. AUC

shall also be computed. We will evaluate both MoG and GSoC. Figure 28 and

29 show the results for MoG and GSoC respectively. Table 4 shows the AUC

for both algorithms. It is clear that MoG outperforms GSoC in both f1 score

and AUC. Further, MoG is significantly faster as compared to GSoC.
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Figure 29: Stage 1 evaluation - GSoC
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For stage 2 evaluation, we adopt a similar methodology. However, we need

to clarify how we binarize our predictions. Remember for stage 2

Ground Truth =


1, if there is a person

0, otherwise

We define the prediction of stage 2 as

prediction =


1, if there is at least one valid person detection

0, otherwise

where

valid person detection = p̂i > τ & IoU(b̂i, bj) > 0.5

b̂i = ith prediction bounding box

bj = jth ground truth bounding box

p̂i = ith prediction probability

Based on that, Figure 30 shows the f1 score w-r-t prediction threshold. We

achieve an AUC of 0.81 for this stage and we notice that on average it takes

0.5 seconds for the stage 2 (Faster-RCNN) to process one frame at 1080 × 960

resolution.

4.5 Noise analysis experiments

Third and final part of our experimental evaluation is noise analysis. In this

part, we evaluate the robustness of stage 1 against noise. As discussed in Section

4.1.1, we only add noise to background frames. Noise analysis for stage 2 is not

our goal and shall not be discussed here.

In terms of noise, we have 3 parameters: p, µ, and σ. Description of these

parameters has been discussed in table 2. To study the influence of one param-
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Figure 30: Stage 2 evaluation

eter, we vary it while keeping the others constant.

Figure 31 shows MoG’s (stage 1) f1 score graph with variation in p. We

use AR = 0.5, µ = 0.5% and σ = 0.2% for this experiment. It is clear that

increasing p forces the graph to go down. Thus more noise in terms of p directly

affects the performance of stage 1. This result is also verified by reduced AUC

as shown in Table 5.

Figure 32 shows MoG’s (stage 1) f1 score graph with variation in µ. We use

AR = 0.5, p = 2% and σ = 0.2% for this experiment. For variation in µ, the f1

score graph again seems to shift downwards when increasing µ. However, the

difference is less visible in this case. This result is again verified by a reduction

in AUC as shown in Table 6.
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Figure 31: Noise analysis - varying p

Table 5: Noise analysis - AUC for varying p

p AUC

2% 0.93
4% 0.87
6% 0.83
8% 0.78

Table 6: Noise analysis - AUC for varying µ

µ AUC

0.5% 0.93
0.7% 0.92
0.9% 0.91
1.1% 0.88
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Figure 32: Noise analysis - varying µ
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5 Conclusion

5.1 Summary

In this work, we design the critical component for a railroad trespassing detec-

tion system. Although initially envisioned for railroad security, the proposed

approach has potential applications in video surveillance domains characterized

by a sparsity in activity. The contributions of this thesis include a flexible

pipeline that can trade off speed and accuracy. The system by design consists

of two stages where the first stage is responsible for efficiently removing the

background frames from the activity frames. The second stage is responsible

for differentiating between human trespassing activity and any other unknown

activity. Our proposed pipeline is composed of off-the-shelf components. Other

algorithms relevant to stage 1 and stage 2 could equally be plugged in. We

demonstrate the effectiveness of our approach on a public domain surveillance

dataset.

5.2 Future work

There are many interesting directions in which this work can be further ad-

vanced. One key direction is to build a trespassing prediction system that uses

the output of this detection system to predict trespassing events in near fu-

ture. Another direction is towards improving the accuracy of detection system.

We note that the current performance is limited by the performance of stage

2. Currently stage 2 doesn’t use any temporal information i.e. each frame is

treated independently and is not conditioned on the previous frames (history).

We believe that utilizing the temporal information can significantly improve the

performance specially for challenging cases of occlusion and background (dis-

cussed in section 1.4).
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Furthermore, an approach towards reducing the processing time could be

to reduce the number of proposals (Regions of Interest) generated by Faster-

RCNN. Since, we are interested in detecting human trespassers only, we can use

the foreground mask to produce RoI (Region of Interest) proposals. Suppressing

the color information corresponding to the background area should significantly

reduce the number of proposals. Also, the whole process can be simplified by

considering the foreground areas as proposals and classifying them directly with

a classification network as opposed to using Faster-RCNN.
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