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Abstract 

 A regular RAM module is designed for use with one system. This project designed a 

memory arbiter in Verilog that allows for more than one system to use a single DDR3 RAM 

module in a controlled manner. The arbiter uses fixed priority scheme with an additional timeout 

feature to avoid starvation. The design was verified in simulation and validated on a Xilinx 

ML605 evaluation board with a Virtex-6 FPGA. 
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Executive Summary 

Standard memory modules to store (and access) data are designed for use with a single 

system accessing it. More complicated memory modules would be accessed through a memory 

controller, which are also designed for one system. For multiple systems to access a single 

memory module there must be some facilitation that allows them to access the memory without 

overriding or corrupting the access from the others. This was done with the use of a memory 

arbiter, which controls the flow of traffic into the memory controller. The arbiter has a set of 

rules to abide to in order to choose which system gets through to the memory controller. 

Teradyne requested a project to design a flexible memory arbiter with no idle time if an access is 

being requested. The arbiter was written in Verilog (targeting the Virtex-6 FPGA) and should 

interface with a DDR3 RAM module on an ML605 Evaluation board. 

 To design the arbiter, a functional memory controller for DDR3 RAM was needed in 

order to actually perform the accesses. The memory controller should be able to perform burst 

length 8 (BL8) commands and allow both read and write commands to random addresses. A 

memory controller for DDR3 RAM is a very complex module because DDR3 RAM requires a 

significant amount of precision with refresh cycles and synchronization. Xilinx's design tools 

provide a memory controller as an intellectual property core (IP core) for use in designs, which 

was used for that purpose. To use that IP core an interface was created to properly enable 

commands to be sent from a single system. This memory controller allowed the arbiter to pass 

accesses that would actually be executed by the memory itself.  

 The arbiter itself was then designed for two systems, with the requirement that there 

should be no idle if there is an access waiting. The arbiter must properly pass every access from 

each system in order. To do this, we used a fixed priority scheme that assigns priority levels to 

each system (high or low) and passes the commands through based on which system is 

requesting, and which system has the higher priority. It is possible for the high priority system to 

starve the lower priority system; however this was solved by adding a timeout feature to the 

lower priority system. These rules allowed the arbiter to pass commands through with a 

structured method so that both systems properly received access to the memory. 

 For validation of the arbiter, two systems that generate commands should interface with 

the arbiter and the results of their accesses checked to verify that the memory controller has 

carried them out. A traffic generator module was created to emulate traffic flow that two systems 
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might create. First in first out queues (FIFOs) were used to queue commands from the traffic 

generators, so that they may send accesses at their own rate. These FIFO queues are IP core 

memory units from Xilinx. The arbiter de-queues these accesses at the memory controller rate 

(200MHz) based on whether or not the memory controller is ready to receive a command.  

 For testing and validation, simulation was used extensively and then hardware 

demonstration of the function of the blocks was created on the ML605 board. Simulation was 

used for each individual module. Each important signal's function was verified under a variety of 

test cases to fully validate the module. Following the testing of each module individually, the 

interaction between each module was verified, up until the whole design was simulated using a 

model for the DDR3 RAM provided by Micron. The simulations allowed the group to debug 

many bugs and issues that arose while designing the project. The hardware demonstrations were 

then done by creating a serial communication link between the ML605 board and the PC using a 

Microblaze Processor, another IP core. The processor was programmed to allow the user on the 

PC terminal to control the traffic generators, the arbiter and the memory controller. The user 

could then test a variety of situations, and perform memory dumps on the range of addresses that 

the traffic generators were using. 

 The simulations and hardware demonstrations showed that the arbiter was functioning 

properly, and met the requirements that were set out. The arbiter has a theoretical max 

throughput of 512 bits/cycle. With the 200MHz clock onboard the ML605, that equates to 102 

Gbps. The programmable timeout feature controls the throughput of each individual system, with 

a single timeout cycle, the max arbiter throughput is halved for each system since they get an 

equal share (51Gbps) and for two timeout cycles divided by three (34Gbps). However, the 

memory controller significantly dampens the throughput because the average access time is 

around 20ns which leads to a 25.6Gbps average throughput of the arbiter.  

 The arbiter has been successfully created and validated and meets the requirements that 

were given. The fixed priority arbiter scheme was quite effective for two systems, but might be 

too restrictive for even more systems since this design does not allow for two systems to have the 

same level of priority. It is possible to add multiple arbitration schemes, and have the user be 

able to select which arbitration scheme to use. The memory controller interface that was created 

also significantly lowers the throughput for our arbiter. This could be improved so that it takes 

full advantage of the features the memory controller has to offer. However, the design of the 
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arbiter is independent of the memory controller and can be used with a different, more efficient 

one. 
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1 Introduction 

Fast volatile memory is designed for use with one system. In order for multiple systems 

to use the same memory, there must be some facilitation between the two systems and the 

memory in order to avoid errors and data corruption. This can be very helpful for many different 

applications to cut costs, save space, reduce complexity or more. Teradyne has requested the 

design of an arbiter so that it can possibly be used to aid in a variety of testing applications. For 

example, if one of their test units has any interaction with a memory unit, another system must 

validate that interaction and thus also access that unit. One method to facilitate the two systems 

communication is by implementing an arbiter. 

 An arbiter is the term used for an object that facilitates or arbitrates interaction between 

two distinct blocks [1]. The arbiter follows a set of rules to pass the communication between the 

two blocks. While arbiters can be used in a variety of applications, in this case it is implemented 

on a Field Programmable Gate Array (FPGA) between some systems and a single memory 

module where the systems are distinct. A consideration that a memory arbiter needs to take is 

how it determines which system is granted access in order to fairly share access. 

 This project set out to design and create the arbiter using an HDL (hardware description 

language) (Verilog), and validate it using an ML605 evaluation board. There are a few goals that 

were essential for the progression and completion of this project. First, sending read/write 

commands to memory was done with no arbiter so that there is a functioning interface to 

memory. Second, the arbiter rules were created and the arbiter was designed. Thirdly, a 

validation process for the arbiter was designed and carried out. These three goals were necessary 

to create a useful, functional memory arbiter. 
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2 Background 

Today random access memory (RAM) is widely used in computers and other electronics as 

a way to access and store data. This type of computer memory can be accessed randomly and 

without the need to access preceding or following data addresses. However, RAM is volatile 

memory and will only retain data as long as power is on. Once the system loses power, it loses 

any data stored in memory. RAM has evolved over time as engineers try to achieve better speed 

and efficiency [2]. 

2.1 Static Random Access Memory (SRAM) 

Static Random Access Memory (SRAM) is a variation of RAM. SRAM is designed to fill 

two needs: provide a direct interface to CPUs at speeds unattainable by DRAMs (will be covered 

later) and replace DRAMs in systems that require very low power consumption [3]. SRAM 

performs very well in low power applications due to the nature of the device. SRAM cells are 

comprised of six MOSFETs. Below in Figure 1 shows this. 

 

Figure 1 - SRAM Six Transistors [4] 

Four transistors act as cross coupled inverters holding the bit information, while the 

remaining transistors control access to data during read/write operations. SRAM is preferred in 

portable equipment because of its low power capability and because it does not require a refresh 

cycle due to the absence of capacitors in its design. Although SRAM is still volatile, data will not 

leak away. This type of RAM is not used in more applications simply due to its price [5]. 
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2.2 Dynamic Random Access Memory (DRAM) 

The other major category of RAM is Dynamic Random Access Memory (DRAM). As with 

SRAM, DRAM fundamentally holds onto the information of individual bits, but unlike SRAM, it 

is designed with capacitors along with transistors, shown below in Figure 2. 

 

Figure 2 - DRAM Schematic [6] 

The number of transistors is reduced to one in DRAM making it fundamentally simpler than 

SRAM. However since capacitors lose their charge over time, a refresh is needed to maintain 

stored data, which increases power usage due to the voltage of the capacitors The inability to 

maintain information without a refresh is why DRAM is considered dynamic as opposed to its 

“static” counterpart [7]. 

DRAM is used for its simplicity and its lower cost, however at the price of performance and 

efficiency. Engineers have been pushing the technology forward to improve its performance. 

When analyzing RAM it is important to look at bandwidth and latency. Bandwidth is the amount 

of data transferred per second, and latency is the time between sending an address to memory 

and receiving the data back on the data bus [8].These improvements are seen in various iterations 

of DRAM. 

2.2.1  Synchronous DRAM (SDRAM) 

SDRAM is synchronized with the system’s clock. This interface waits for a clock signal 

before responding to inputs, resulting in data being available at every clock cycle. Asynchronous 
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RAM attempts to respond to commands as soon as possible. To increase efficiency, memory is 

divided into several banks, enabling simultaneous processing of memory access commands. An 

address is comprised of bank, row, and column information [7]. 

2.2.2  Double Data Rate 1 (DDR1) SDRAM  

To increase bandwidth, double data rate is introduced in DDR1 memory. Without having to 

increase clock speed, DDR1 transfers data on both the rising and falling edge of the clock. 

Additional power efficiency is achieved by reducing the supply voltage from 3.3V to 2.5V.  

A 2n-prefetch architecture is introduced which allows 2 bits of data to be transferred to the 

queue in two separate pipelines. Without changing the clock, bandwidth is doubled with this 

interface [7]. 

2.2.3 DDR2 SDRAM 

DDR2 makes further improvements upon earlier variations of SDRAM. Operation 

voltage lowered to 1.8V, decreasing total power consumption. Additionally, a 4n-prefetch buffer 

is added. Improving upon the previous 2 bits, 4 bits are now able to be transferred per clock 

cycle from the memory array to the data bus. DDR2 data rates are up to eight times faster than 

the original SDRAM [7]. 

2.2.4 DDR3 SDRAM 

As with previous generations, DDR3 decreases power consumption and increases bandwidth. 

DDR3 uses a 1.5V power supply as opposed to the 1.8V power supply used in DDR2 and its 

bandwidth can be up to twice that of DDR2 [8]. DDR3 has eight banks, which allows more 

efficient bank access than in previous interfaces with four. Additionally, the prefetch buffer is 

increased to 8 bits wide, resulting in an 8n interface [7]. 

Two modes are used in DDR3 memory interface: burst chop (BC4) and burst length eight 

(BL8). BL8 can be seen in the timing diagram below in Figure 3. 
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Figure 3 - DDR3 Timing Diagram [9] 

BL8 allows for addressing to occur once every eight data packets are sent, because consecutive 

memory addresses are used. BC4 allows bursts of four by treating data as though half of it is 

masked. Of the two options, BL8 is more widely used [8]. 

2.3 Arbitration 

Many systems exist in which a large number of requesters must access a common resource. 

In this case, the resource is shared memory. An arbiter is needed to control the flow of traffic 

between the requestors and shared memory [1]. 

 

Figure 4 - Example Arbiter Block Diagram 

It determines how the resource is allocated amongst the requesters as shown in Figure 4 

above. Arbiters have internal logic that determines how requesters get access based off of the 

applications needs. When designing an arbiter it is important to keep the interface, size, and 

speed in mind [1]. 
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2.3.1 Arbitration Schemes 

Many arbitration schemes already exist. These include round robin, first in first out, 

priority, and dynamic priority. The section below describes some of the schemes that we 

researched before the design of our own arbiter.  

2.3.1.1 Round robin 

In round robin, each system receives a specific amount of time to access memory and the 

systems cycle through in a pre-defined order [1]. A timing diagram of this technique can be seen 

below. The ready signal seen at the top of the timing diagram in Figure 5 is a depiction of the 

memory cycles, with each grant occurring at the positive edge of each cycle. 

 

 

 

 

 

 

 

Figure 5 - Round Robin Timing Diagram 

In round robin systems are granted access entirely based off order rather than requests. 

This makes it an unfavorable option for arbiter designs stressing efficiency as systems may be 

granted access when not requesting, which results in arbiter idle time. 

2.3.1.2 First In First Out 

In first in first out whichever system asks for the memory first receives it. The arbiter 

keeps track of which system asserted its ready signal first and then gives it to that system [1]. An 

example of FIFO timing can be seen below in Figure 6. System 1 requests access first and 

receives initial grant. System 2 then requests access to memory and is then shown to be given 

access after System 1 de-asserts its request.  

 Memory 
Ready 

System 1 
Request 

System 2 
Request 

System 1 
Grant 

System 2 
Grant 
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Figure 6 - FIFO Timing Diagram 

Unlike round robin, FIFO only provides access to those systems who are requesting. Resources 

are never wasted in this situation.  

2.3.1.3 Priority 

The priority method stores a specific priority value to each of the systems (low, medium, 

high etc.) and then grant access to whichever system has the highest priority. How the priority is 

assigned depends on the application. It might assign higher priorities to slower systems in order 

to prevent them from starving or assign high priorities to important systems [1]. In a priority 

system, care must be taken in order to avoid starvation of a system. An example of priority is 

shown below in Figure 7 where System 1 has high priority. 

 

 

 

 

 

 

 

Figure 7 - Priority Timing Diagram 

Each time System 1 requests access to memory it is given it. System 2 will only receive 

resources if & when System 1 is no longer requesting.  

A priority system is either fixed or dynamic. Fixed priorities are either hard coded within the 

arbiter design or assigned on the fly using features on-board. A dynamic priority system allows 

the priorities of different systems to change based on pre-determined factors [1]. For example, if 

 Memory 
Ready 

System 1 
Request 

System 2 
Request 

System 1 
Grant 

System 2 
Grant 
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one system was accessing memory more often than another system, the higher traffic system 

could gain higher priority. Another example would be to change priority based on how long a 

system goes without accessing memory. The scheme chosen depends on the requirements of the 

system. 
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3 Methodology 

This section describes the methods used for completion of the project. The hardware and 

tools that were used in the project are discussed, as well as tools used for design and validation. 

Following that discussion, the project’s requirements that were decided upon at the start of the 

project are described. Finally, the methods of validation for the project are described.  

3.1 Hardware 

Our project was designed for and implemented on the ML605 Board, which is shown in 

Figure 8 below. This development board contained the Virtex-6 LX240T FPGA and a host of 

additional peripherals and connections. On the board there was a 512MB DDR3 memory, 

communication ports through Ethernet, SFP transceiver connector, GTX port, USB to UART 

Bridge, and PCI Express board connector. There were three clock sources on the board: a 

200MHz differential oscillator, 66 MHz single-ended oscillator and SMA connectors for an 

external clock. For additional use, the board also contained push buttons, DIP switches, LEDs, 

and an LCD display [10]. Finally, the Virtex-6 FPGA had 241,152 logic cells and 31,687 

configurable logic block slices, with each slice composed of four look-up tables and eight flip-

flops [11].  

 

Figure 8 - ML605 Board [12] 
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3.1.1 Onboard DDR3 Memory 

 As mentioned above the ML605 board came with a Micron 512 MB DDR3 Memory 

SODIMM. DDR3 is the third generation of SDRAM. It provides two burst modes for both 

Reads/Writes burst chop and burst length eight. The first mode is burst chop (BC4), which 

allows bursts of four by treating data as though half of it is masked. The second method, burst 

length eight (BL8), is the primary burst mode. This is done with a pre-fetch of 8n, which means 

that during a read operation, eight data-words can be read with one address request [7]. 

3.2 Project Requirements 

During our design meetings with Teradyne we decided upon many project requirements. 

These were the guidelines we followed during the design of the arbiter. Below the requirements 

are described in more detail.  

3.2.1 Multiple Systems 

The arbiter was designed to allow multiple systems to access the shared DDR3 memory. 

It was able to handle two separate systems with the prospect of adding more. Creating systems 

that generate read and write commands similar to what might be generated by real systems was 

the method used to validate the functionality of our arbiter design. These systems were 

represented by generating traffic within the FPGA. 

3.2.2 Programmable Priority 

The arbiter exhibited on-the-fly priority. This allows the arbiter to be able to dynamically 

change which system receives priority without having to modify the Verilog source code. This 

can be done utilizing module I/O ports. The arbiter should have a signal that can control which 

system has priority. 

3.3 Development Tools 

For our design we used the Xilinx Integrated Software Environment (ISE). Here we 

created modules, test benches, and generate other necessary cores for our project. Our main 

method of programming was the Verilog HDL. Additionally, Xilinx IP Cores were generated to 

assist in the development and testing of various modules. 
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3.3.1 Xilinx Integrated Software Environment 

The design of the arbiter/memory interface was done using the using Xilinx Integrated 

Software Environment. When creating a project within the ISE the user is given many design 

options. For our project, we chose the ML605 as the targeted platform and Verilog as the chosen 

HDL. This ensured that all clocks, user I/O, and pins work correctly. Once the project was 

created the Project Navigator allowed us to easily organize the Verilog modules. Figure 9 below 

shows a screenshot of the environment.  

 

Figure 9 - Project Navigator Screenshot 

 Various windows are shown to the user within the Project Navigator. On the top left is 

the hierarchical view of modules within the design. Clicking on an individual module causes the 

Verilog code to appear in the large window on the right where the user can input/modify code. 

The bottom left window displays various processes that are running and the status of Synthesis, 

Implementation, and Generation. These steps are necessary before the design can be downloaded 

onto the board. 

 During synthesis the Verilog design becomes the net list files that are accepted as input to 

the implementation step. Implement Design converts the logical design into a physical file 

format to be downloaded onto the targeted platform. Implementation is broken down into three 

steps, Translate, Map, and Place & Route. The final stage, Generate Program File, creates the bit 

file that can be downloaded onto the board. [13] 
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3.3.2 Xilinx Core Generator 

The core generator became a very useful tool used for design, implementation, and 

verification. Xilinx allows users to choose from a variety of IP Cores that they create to simplify 

design. Figure 10 below shows the various IP Cores that can be generated through Xilinx. 

 

Figure 10 - Xilinx IP Cores 

 Highlighted in the figure above are the cores used in our design. The Xilinx Memory 

Interface Generator (MIG) was the most important. This created a memory controller with a 

much simpler to design user interface. Additionally, we were able to generate a Microblaze Soft 

core Processor used for hardware validation and also various FIFOs dedicated for queuing 

commands. Each of these cores will be discussed in greater detail within the Design & 

Implementation Chapter.  

3.3.3 Software Development Kit 

The Software Development Kit was used in the design of the Microblaze soft core 

processor mentioned in the previous section. This gave us an easy development environment to 
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write, compile and debug a C/C++ application. Linking this to our ISE project gave us the ability 

to download the programs onto the FPGA. Below in Figure 11 is a screenshot of the SDK.  

 

Figure 11 - SDK Screenshot 

In the main screen is the design in C code. In the left window the user can find the source 

and project files. 

3.4 Design Validation 

Our project requires two steps of validation, simulation and hardware implementation. The 

Project Navigator described above allows for both of these steps to easily be done. Below is a 

description of how each step is completed.  

3.4.1 Simulation 

Before the design can be downloaded to the board is it important that we first verified 

that the logic worked correctly in simulation. Xilinx provides the Isim tool to allow for 

simulation using test benches. Within test benches we created a clock and provided various input 

stimulus. Combining this with the DDR3 model provided by Micron we quickly tested our 

design. Simulation was done without generating a bit file and only required synthesis of the 

project, which significantly reduces the time before the results can be verified. Below is an 

example of what a simulation in Isim looks like in Figure 12. 
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Figure 12 - Isim Screenshot 

 The simulation was very helpful in showing timing and signal values. For our purposes 

we needed to know that commands and various signals were being asserted on the proper clock 

edge by the memory controller. Overall, simulation was a very quick method of testing that 

allowed for simple debugging of our logic. However, validation in simulation does not guarantee 

validation on hardware. 

3.4.2 Hardware 

Validation through hardware is the only method to be certain that a design is working 

properly. For this reason, hardware validation became the hardest method of verification. Unlike 

simulation, the hardware does not show individual signals unless designed to do so within the 

Verilog code. Various input/output were used during the stages of hardware validation. In early 

validation stages Buttons/Switches changed states, while LEDs were used to output information. 

Eventually, a display was used for more in-depth validation. These steps will be described in 

greater detail in the Design & Implementation Chapter. Overall, hardware validation took much 

longer than simulation and required additional code within the design. However, hardware 

validation confirmed that our design was working on the targeted platform.  

  



15 

 

4 Design & Implementation 

 This section explains the design of the memory interface, arbiter and surrounding 

modules. Each module relevant to the function of the arbiter is described in detail.  

4.1 Memory Interface 

The memory controller that was required to handle the complexity of DDR3 usage has 

specific signals that are provided to the user for control of the controller itself. These signals 

have very specific timings that are necessary to ensure proper data transfer to the DDR3 memory. 

Each type of command requires a different sequence of signal changes. Xilinx's documentation 

for their IP was important to understand exactly how to interface with the memory controller. 

This section will examine the necessary execution sequence on the signals of the memory 

controller and then describe the solution that was used for it. 

Firstly, the write path described in the memory interface user guide [14] requires the use of 

a single 256bit data line and some control signals. The command and address signals must be set 

and held until the memory is ready, while simultaneously placing the data one the data line. This 

is shown in Figure 13, a timing diagram from the user guide. It should be noted that this is burst 

length 8 accesses where the DDR3 has addresses widths of 64 bits. 

 

Figure 13: Write Timing Diagram [14] 
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 It is important that the app_rdy and app_wdf_rdy signals were monitored to ensure that 

the command is ready to be accepted and the memory controller was not executing a refresh or 

busy. 

 The read path required a similar enable sequence without the need to place anything on 

the data line. The timing diagram is shown in Figure 14. As can be seen, the enable sequence 

occurs and then after an undefined period of time the data appears on a separate data line which 

is delineated with the app_rd_data_valid signal. 

 

Figure 14: Read Timing Diagram [14] 

 To meet these specifications in timing for these signals, a state machine was created that 

uses the signals that must be polled as inputs and then controls the sequences that must change. 

A state diagram is shown in Figure 15 which shows how each state can change between each 

other. The app_rdy, wdf_rdy and similar signals triggered the changes between some of the states. 
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Figure 15: State Diagram for Memory Interface 

 The system begins in the idle state, where the state machine waits for a command. Once a 

command is sent, it checks which type of command it is and goes to the appropriate state 

read_wait_en or write_data. The first read state is where the enable sequence begins and the 

address is latched into the memory controller. This enable sequence must be held until app_rdy 

is asserted. Once that occurs, the next state read_wait_data waits for the app_rd_data_valid 

signal to assert itself so that the data can be saved. 

 If a write command was detected, the data and address are latched in the first state. The 

next state begins the enable sequence and puts the second half of the data on the data line. Since 

the second half is the end data this state also asserts app_wdf_end to tell the memory controller it 

is the last data that must be written. The next state is simply a state that waits until both the 

app_wdf_rdy and app_rdy signals are asserted so that the data does not have to be held, and the 

enable sequence does not need to be held. 

 This memory interface was crucial to use when accessing memory, and was the first 

module that was created in order to complete this project. 
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4.2 Microblaze Processor 

 As mentioned in the methodology, the Microblaze is a soft processor core designed for 

Xilinx FPGAs. As other IPs, it is completely designed and provided by Xilinx. When adding a 

Microblaze to a project the user is presented with many design options. These include, clock 

speed, UART, General Purpose Outputs (GPO), General Purpose Inputs (GPI), Fixed Interval 

Timing, Programmable Interval Timing, and Interrupts. For the purposes of this project only the 

clock, UART, and GPO/I need to be used. The table below shows the characteristics of the 

generated processor.  

 

Clock Located on ML605 66Mhz 

Memory Size Created within Virtex6 64KB 

UART Receiver/Transmitter 9600 Baud Rate 

GPO Up to 4 32 Bits 

GPI Up to 4 32 Bits 

 

 Initially, the GPO/I were the most important factors to worry about regarding the 

Microblaze. These data determine how information was transferred between the rest of the 

FPGA and the processor. The GPOs output commands, data, and addresses from the processor. 

Similarly, the processor receives GPIs for read data and addresses. The remaining data lines were 

used for various debugging purposoes. 

 The Microblaze processor was generated within the FPGA. It is important to note that it 

is not an external processor. By creating a workspace within the SDK we were able to use C 

programming to code the soft core processor. This allowed for computations and display to be 

done much simpler. A block diagram of the interface between the Microblaze and the memory 

interface module is shown below in Figure 16. 
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Figure 16 – Interface between Microblaze & Memory Interface 

 The Microblaze processor allowed for a variety of validation and debugging techniques 

to be used. The UART specifications, as depicted in the table above allows for the possibility of 

a user interface through serial communication. These validation techniques will be discussed in 

further sections. 

4.3 Single System Interface 

 Before implementing and designing the arbiter, the first step was to design a single 

system interface. Creating this interface allowed for the validation of the memory controller. The 

block diagram of this design is shown in Figure 17 below. 

 

Figure 17 - Single System Interface 

 Validating the memory controller was achieved by demonstrating successful read/write 

operations. Accomplishing this was a large milestone as it was necessary in order to move the 

design from a single system to multiple and from the memory interface to the arbiter.  



20 

 

 Building off the block diagrams in previous sections, the figure above shows the 

complete single system interface. An important feature that is added is Serial Communication. 

This feature allowed for a user interface. A user was given the option of various read/write 

commands, with the corresponding data being displayed. These commands were sent to the 

FPGA through GPO and initiate a read/write sequence within the memory controller. If a read 

command was given, the command and read address were given and the data at the given address 

was returned. Similarly, if a write command was given, only the command, address, and data 

were output. 

4.4 Two System Interface 

 In order for two systems to access the same DDR3 module, the arbiter that we were 

tasked to design must be used. Figure 18 below shows the intended use of the arbiter, as it 

displays two external systems communicating with an arbiter that passes commands to the DDR3 

memory. The arbiter block was necessary in order to facilitate the two separate accesses of the 

systems. 

 

Figure 18 - Two System Interface w/ DDR3 

 For our purposes, we created traffic generators in order to simulate two distinct systems, 

rather than use external systems. This was because our project was more concerned with the 

arbiter/memory interface rather than the system's interface. Our arbiter block was able to be 

placed within any design as long as the systems interface with it properly (the interface is 

described in Appendix B). The arbiter block is expanded and the traffic generators are shown in 

Figure 19 below. As can be seen, there are two FIFOs between the systems (traffic generators) 

and the fixed priority arbiter. This allowed for command buffering by each system, and also 
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allowed the systems to send data at whichever rate they chose to. Each module will be discussed 

in detail in order to show their function in detail so that the overall system can be understood. 

 

Figure 19 - Expanded Block Diagram Showing Arbiter Block 

 The traffic generators are a single repeated module. It is a state machine that loops 

between sending write commands, not sending any commands and sending read commands. It 

can be disabled to allow proper testing of multiple systems. A top level block is shown below in 

Figure 20, showing the inputs and outputs.  

 

 

 

 

 

 

 

 

Figure 20 - Traffic Generator Top Level Block 

 The en signal is an input that turns the traffic generator on or off, when off, the traffic 

generator stores its previous state and loops in a "disabled" state. When turned on again, it 

returns to the previous state and continues from there. 

Traffic Generator 
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data_out [541:0] 

en 

clk 
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 The wr_en signal is an output that tells the FIFO buffer that there is valid data on the 

output. This is necessary for the FIFO buffer in the following block to acknowledge the traffic 

generator. 

 The data_out contains the command, the address and for a write command, the data to be 

written. {data, addr, cmd}. This is written into the FIFO buffers when wr_en is asserted and then 

broken down into individual data, address and command signals before being passed to the 

arbiter. 

 There are also 3 parameters that are useful in testing different situations of the arbiter. 

There is a parameter that controls the data that is sent for write commands, one that controls the 

amount of accesses that are sent per state and one that controls the starting address (so that 

different systems can write to different addresses).  

 Now that the top level of the traffic generator is described, the state diagram is shown in 

Figure 21 below. The transitions between each state occur after a specific amount of accesses 

have been written to the FIFOs which are hard coded through parameters. 

 

 

 

 

 

 

 

 

 

Figure 21 - State Diagram for Traffic Generator 

The next module in the design are the FIFOs, which are standard cores generated by the 

Xilinx. The top level block is still shown in Figure 22. Data is queued into the FIFO's memory 

and de-queued in order. 

Start 

Write 

Idle 

Read 
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Figure 22 - FIFO Top Level Block 

 The wr_en signal is an input that latches the data into the internal memory. This occurs 

on the positive edge of the clock. Each clock cycle the data must change or the wr_en signal 

must be deasserted, otherwise the same data can be written twice into the FIFO. The rd_en signal 

is used by the module that reads the data from the FIFO. It works in the same way as the wr_en 

signal. 

 The data_in signal is a 542 bit wide input that contains the data that will be latched into 

the FIFO on the positive clock edges. In this case, the data should contain the address, command 

code and actual data to be written. The data_out signal is the output version of the data_in. 

 The empty signal is an output that shows whether or not the the FIFO has any data within 

its memory.  

The next block is the fixed priority arbiter which is shown below in Figure 23. It contains 

some combinational logic as well as a counter for a timeout feature.  
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Figure 23 - Fixed Priority Arbiter Top Level Block 

 The sys_req signals are inputs that allow the arbiter to tell which systems have valid data 

on the inputs (sys_data) signals. 

 The mem_rdy signal is a signal that comes from the memory controller that allows the 

arbiter to know whether it can send a command. 

 The out signals is the granted system's data.  

 The grant signals shows which system is granted access and can send a command to the 

input of the arbiter. 

 The cmd_rdy signal allows the memory controller to know when there is a command on 

the output of the arbiter. This signal is never asserted if the mem_rdy signal is de-asserted.  

 The top_priorities signal is an input that controls which system has priority. There are 

only two possible combinations, either the first system or the second system has high priority. 

 The timeout_length signal is an input that controls how many cycles the low priority 

system can be starved before receiving access. 

 Each of these signals was used to determine which system gets access and is fulfilled by 

the memory controller. The following two figures (Figure 24 and Figure 25) show the flow 

charts for the internal logic of the arbiter.  
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Figure 24 - Flow Chart for Fixed Priority Arbiter  
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Figure 25: Flow chart for timeout logic 

The interaction of each module described above can be seen in Appendix A which goes on to 

connect with the memory controller.  
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5 Arbiter Validation & Results 

 After designing the arbiter, its function was tested by using the two traffic generators as 

distinct systems. This was carried out in simulation and in hardware on-board the ML605. 

Simulation was carried out in the ISim tool using a Micron DDR3 model provided by the 

memory interface generator. By examining the relevant signals it was possible to verify that the 

arbiter was functioning with the provided model as well as provided significant help in 

debugging issues. On-board, a Microblaze processor monitored and performed memory checks 

on the addresses affected by the traffic generators. The results that were sent to the Microblaze 

were then printed on a PC terminal (TeraTerm) through serial communication. Both of these 

methods were essential in confirming that the arbiter was functional. 

5.1 Validation in Simulation 

This section describes the verification phases in simulation. Simulation allowed us to look 

directly at individual signals within the design and check their function. This was the tool to use 

for debugging, as it was the fastest way to check whether something was functioning as it should. 

It also allowed us to verify every single module individually, then the interaction between them 

and finally the overall design, which was not as feasible on hardware as some modules do not 

have any visible I/O to the hardware. 

5.1.1 Single-System Interface 

The single system interface was the most difficult to debug, as it was very reliant on the 

DDR3 memory and memory controller IP core which were both very complex pieces. For this, 

we used a DDR3 memory model provided by Micron. The DDR3 model allowed us to see 

whether or not commands were being carried out, and whether or not they returned the proper 

data. As seen in a previous section, the memory controller requires very strict timings on the 

important signals in order to properly carry out the commands. Each command has a different 

protocol, so looking at the timing that we generate for each command is important. Recall that 

the interface to the memory controller used a state machine to generate the proper timing. 

Firstly, the write path is investigated to ensure that writes were being carried out as they 

should. For the write path it is important that the app_rdy and app_wdf_rdy signals are adhered 

to, but also that sending the data through to the memory controller occurs within 2 clock cycles 

of the enable sequence. Figure 26 shows the simulation results from with the relevant signals 



28 

 

being changed as expected. It should be noted that the entire sequence for a write path only takes 

2 clock cycles (10 ns). Also, the data “aaaa…” is being written to address “8”, where we will 

perform a read command to check the data within that address. 

 

Figure 26: Write Path Simulation 

Secondly, the read path was investigated to ensure that data that is written can actually be 

read back. The read path was simpler than the write path, as when the enable sequence occur, it 

was a simple matter of polling the app_rd_data_valid signal until the data becomes available. 

Figure 26 displays the enable sequence, and shows app_rd_data_valid not asserting, after a few 

clock cycles Figure 27 shows the data being retrieved when app_rd_data_valid is asserted. 

 

Figure 27: Read Path Simulation (Enable Sequence) 

 The read command in these figures was being performed on address 8, which was written 

to earlier in the simulation. As seen in Figure 28, the data was correct when valid which was 

exactly what we expected. This time period was exactly when the data should be sent back to the 

system that requested this command. 
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Figure 28: Read Path Simulation (app_rd_data_valid) 

The signals in these simulations are working correctly, and are ready to be tested on 

hardware. Section 5.2.1 describes the hardware validation of the single system interface.  

5.1.2 Arbiter Simulation 

After designing the arbiter, its various functions were tested within a small test bench 

before adding it to the memory controller. This allowed us to first get rid of any bugs within the 

arbiter itself, and then the interfaces to the surrounding blocks can be verified. Recall that the 

arbiter is de-queuing commands from the FIFO queues based on its internal rules, and the traffic 

generators are filling the FIFO queues with accesses. First we will verify that the arbiter rules are 

being followed, and then the timeout features 

In our initial simulations, system 1 (or A) had high priority, and system 2 (or B) had low 

priority, the timeout length was 2 cycles long. If both systems are requesting in this case system 

1 will be granted over system 2. If only one system is requesting, it will be granted. If neither 

system is requesting they will both be granted until one of them requests again. The screenshot 

below in Figure 29 shows the case when both systems were requesting and system 1 was granted 

since it had higher priority. 

 

Figure 29: Arbitration of System 1 over System 2 
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 If system 1 is not requesting, system 2 should be granted. This is shown in Figure 30 

below, as system 2 is granted when system 1 is never requesting. This shows the zero idle time 

within this arbiter design. 

 

Figure 30: Low Priority System Grant (No starvation) 

 With a timeout length of two cycles, system 2 will be granted after system 1 is granted 

twice in a row. This is shown below in Figure 31 where system 2 is granted after 2 cycles even 

though system 1 is also requesting. 

Figure 31: Timeout (2 cycles) System 2 is Granted over System 1 

 Furthermore, it was important to verify whether or not the commands get carried out by 

the memory controller after being granted and passed through the arbiter. Below in Figure 32, 

three cycles are shown, and the memory controller timing that was discussed in the previous 

section is properly taking the data from the arbiter and carrying out the command to memory. 

The read commands from the traffic generators were also verified in this manner. 
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Figure 32: Three Write Commands through to Memory Controller 

5.2 Hardware Validation 

 This section serves to discuss the multiple steps of hardware validation. As simulations 

were verified, hardware tests followed. Three distinct tests were done to verify functionality of 

the memory controller and the arbiter. Single system, memory, and arbiter tests were created.  

5.2.1 Single-System Interface 

 As described above a single system was created to test the function of the memory 

controller. The serial interface acts as an individual system, but is quite slow (frequency of 

commands) when compared to realistic systems. It sends one command at a time, taking 

commands from a user and displaying the results on the screen. Additionally, it was found that 

the single system only validates the memory controller on the small scale, meaning that only a 

small amount of addresses are actually accessed. It was this reason that the single system was 

modified for additional support of a memory test function.  

5.2.1.1 Memory Test 

 A memory test was created to further prove functionality by modifying the Verilog code. 

Additional logic was developed within the FPGA to demonstrate read/write commands over a 

large amount of addresses. The test consists of two write/read phases and a results phase. The 

first phase simply modifies the write states of the memory controller to write incrementing data 

to incrementing addresses. For instance, the addresses 2, 4, and 8 hold the data 2, 4 and 8 

respectively. The data is then read back and compared to the expected value. The second phase 
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performs a byte-swap on the addresses. A single write operation writes 512 bits to 8 addresses. 

The swap reads back data from the initial write sequence, writing it to a different address. As 

errors occur a counter is incremented and then displayed to the user through serial 

communication. Overall, the test validates that the memory controller is functioning as expected. 

Figure 33 below shows a screenshot taken from the single- system & memory test. 

 

Figure 33 - Single System/Memory Test 

As the picture shows, the memory test was performed first to demonstrate the memory controller 

was functioning. After these two steps were completed simple write/read operations were 

completed to further show that the interface was working. Two write commands are performed, 

followed by two read operations. The read commands further displayed that the correct data was 

being written/read on an individual basis.  

5.2.2 Arbiter 

Arbiter validation involved verifying the traffic generators and subsequent arbitration. 

Referring to the block diagram introduced in the single system interface, the Microblaze block 

was modified to monitor the arbiter. As previously described the traffic generators allowed the 

user to choose parameters for the number of commands, starting address, and data that each 

system will be defined by. Knowing this predetermined pattern the block is modified to display 

the results. The parameters for the traffic generator modules are as follows: 
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Specification System 1 System 2 

Starting Address: 0000000h 0001000h 

Quantity of Commands: 25 25 

Data Code: A B 

 

 Modifying the C-code in the Microblaze to perform reads across all of the written 

addresses validates that the arbiter was successfully providing access to memory to both systems. 

This memory dump assisted in validating arbitration. For demonstration & validation purposes a 

sequence of three memory checks were executed by the Microblaze. These sequences include:  

1. Before traffic generators are enabled 

2. After traffic generators are enabled, but before timeout 

3. After timeout has been enabled 

The first memory sequence was designed to display the memory addresses prior to enabling 

traffic. The data within the read addresses should not mean anything to any user and should be 

completely random. A screenshot is shown below in Figure 34. 

 

Figure 34 - Pre-Enable 
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 The second memory sequence demonstrated the starvation of System 2. Both System 1 

and System 2 were generating commands at the same rate (Quantity of Commands Parameter). 

Additionally, System 1 was given priority. Based on the design of the arbiter System 2 should be 

completely starved and never given access to memory. This screenshot is shown below in Figure 

35. 

 

Figure 35 - Traffic Enable, Starvation 
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The final memory sequence enabled the timeout feature. This is the final step in arbiter 

validation. Enabling this feature within the arbiter allowed both System 1 and System 2 access to 

memory.  

 

Figure 36 - Timeout Validation 

 Indicated in the screenshot above (Figure 36) the arbiter was successfully functioning as 

expected. Both Systems were successfully writing to their allotted addresses. System 1 was 

writing all A’s and System 2 was writing all B’s. Overall, the three previous screenshots 

demonstrated that the arbiter was working in hardware by showing individual levels of design, 

functionality, and programmability. 
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6 Discussion 

Completion of each goal in the project led to the successful design of a two system arbiter. 

First, the single system interface with memory was essential in utilizing the memory and 

carrying our system accesses. Second, the requirements that were set at the beginning of the 

project for the arbiter were important in meeting the goals. Thirdly, the validation process was 

necessary to debug and verify all key features of the design. With the success of each goal, the 

arbiter can be considered validated and successful. There are still some additions and 

improvements that can be made and adding these could be a useful continuation of the project. 

The memory controller significantly dampened the throughput of the arbiter, as the 

average access time to memory was quite high. The arbiter has a theoretical max throughput of 

512 bits per cycle and is only limited by the efficiency of the memory controller and clock speed 

on board. The theoretical max would only be possible with a memory controller that allowed 

accesses that take only 1 cycle to complete. For the ML605 board with a 200MHz clock the 

arbiter could transfer 102.4Gbps. In reality, with the memory controller that was used (average 

access time of 20ns) the transfer rate is 25.6 Gbps. With a lower average access time, that 

throughput could approach the max transfer rate of the arbiter. The memory controller could 

definitely be improved to take full advantage of Xilinx's IP features and decrease that access time. 

One of the features that might be useful to take advantage of is the back to back write commands, 

which significantly improve the throughput for write commands. The timing for this is shown 

below in Figure 37 , and it reaches 512 bits per 2 cycles. 
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Figure 37: Timing for Back to Back Write Commands [14] 

 With regards to the arbiter itself, it could be further expanded to three or four systems. If 

that were the case, adding additional arbitration schemes would be ideal since for more than two 

or three systems the fixed priority arbiter would need some design changes, whereas a round 

robin arbiter would be simple to implement for high number of systems. For a three system fixed 

priority arbiter it would be simple to add an extra priority level for the third system and also add 

the logic to handle that. Extra timeout counters would also be necessary in order to track the 

timeouts for multiple systems. For n systems, there would be n-1 timeout counters for each of the 

systems that have priority lower than the highest. This would allow the timeouts for each of the 

systems to be independent of other systems. This is the limiting factor in adding additional 

systems to the fixed priority arbiter, as it gets increasingly more complex for each addition of a 

system. This is why implementation of multiple arbitration schemes is also an important addition 

to the arbiter. 

 Additional arbitration schemes can be added within the current arbiter, and made to be 

selectable by an external I/O port. Other arbitration schemes can not only be less complex to 

implement for a different number of systems, but also can be more useful. With the fixed priority 

arbiter, the throughput of each system can be controlled, however, in some cases the user might 

like to share the resources equally. The fixed priority arbiter can do that, by setting a timeout 

length of 1 cycle, however a round robin arbiter could implement that with much fewer resources.  
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 With these additions and changes the arbiter that was designed in this project can become 

even more useful than it currently is. The modular design of the arbiter block makes the design 

robust in that it can be used with any memory controller or FIFOs and not necessarily the Xilinx 

IP cores that we used in our validation design. If improvements are to be made, the modularity of 

the design should be upheld. This project not only provides a useful flexible arbiter design as set 

out to do, but also provides a basis for future work in arbiter design. 
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8 Appendix A: Block Diagram for Traffic Generators to Arbiter 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Full Diagram of Arbiter Block and Traffic Generators 
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9 Appendix B: Interfacing Systems to the Arbiter Block 

 Appendix A showed how our traffic generators were connected to the arbiter and arbiter 

block. This can serve as an example for when using external systems with our arbiter design. 

There are two signals that the systems need to provide to the FIFOs. The wr_en which controls 

whether or not the FIFO will write the data on the next clock edge and the data_in signal which 

is the data that needs to be written. 

 The wr_en signal should be asserted when there is valid data on the data_in line of the 

FIFO. The data_in signal is a wide signal that contains the command (3bits) (read: 001 and 

write: 000), the 27 bit address to execute the command on, and in the case of a write command 

the 512 data bits themselves. The order for these is {data, address, command} and this is 

unpacked to individual signals when being de-queued by the arbiter.  


