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ABSTRACT 

The development and numerical implementation of a three-dimensional Particle-In-Cell 

(3D PIC) methodology on unstructured Voronoi-Delauney tetrahedral grids is presented. 

Charge assignment and field interpolation weighting schemes of zero- and first-order are 

formulated based on the theory of long-range constraints for three-dimensional 

unstructured grids. The algorithms for particle motion, particle tracing, particle injection, 

and loading are discussed.  Solution to Poisson’s equation is based on a finite-volume 

formulation that takes advantage of the Voronoi-Delauney dual. The 3D PIC 

methodology and code are validated by application to the problem of current collection 

by cylindrical Langmuir probes in stationary and moving collisionless plasmas. 

Numerical results are compared favorably with previous numerical and analytical 

solutions for a wide range of probe radius to Debye length ratios, probe potentials, and 

electron to ion temperature ratios.  A methodology for evaluation of the heating, slowing-

down and deflection times in 3D PIC simulations is presented.  An extensive parametric 

evaluation is performed and the effects of the number of computational particles per cell, 

the ratio of cell-edge to Debye length, and timestep are investigated. The unstructured 3D 

PIC code is applied to the simulation of Field Emission Array (FEA) cathodes.  Electron 

injection conditions are obtained from a Field Emission microtip model and the 

simulation domain includes the FEA cathode and anode. Currents collected by the 

electrodes are compared to theoretical values. Simulations show the formation of the 

virtual cathode and three-dimensional effects under certain injection conditions.  The 

unstructured 3D PIC code is also applied to the simulation of a micro-Retarding Potential 

Analyzer.  For simple cases the current at the collector plate is compared favorably with 

theoretical predictions. The simulations show the complex structure of the potential 

inside the segmented microchannel, the phase space of plasma species and the space-

charge effects not captured by the theory. 
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NOMENCLATURE

A   area 
extB   external magnetic field 

vector 
b   impact parameter 
C   peculiar velocity vector 
c   total velocity vector 
Sd   sheath thickness 
e   electron charge 
E   electric field vector 
F   force vector 
F   computational particle 

weight 
f   distribution function, face 

number 
G    Green’s function 
I   current, node number 
i   particle number 
J   current density, node number 
Kn   Knudsen number 
k   Boltzmann constant 
L   distance, length 
pl   probe length 

m   mass 
sN   number of particles of 

species s  

N   number flux 
n   unit normal vector 
n   number density, time-step 

counter 
fp   pressure at face  f

P   probability 
Q   total charge 
q   charge 
r   position vector 
r   radius 
S   shape factor, surface number 

iS   ion speed ratio 
s   pertaining to species s  
T   temperature 
t   time 
u   drift velocity vector 
V   volume 
W   weight function 
Z   number of electron charges 
β   inverse of most probable 

velocity 
Γ   Voronoi cell volume 
δ   delta function 

0ε   permittivity of free space 
θ   rotation angle, effective 

temperature 
λ   collisional mean free path 
Dλ   Debye length 

0μ   permeability of free space 
ν   collision frequency 
ρ   charge density 
σ   surface charge density 
Hτ   heating time 

Sτ   slowing-down time 
Φ   electric potential 
pΦ   probe potential 

χ   non-dimensional potential 
Ω   computational cell volume 
pw   plasma frequency 

{ }1 2 3, ,c c c  total velocity components 

{ }1 2 3, ,C C C peculiar velocity components 

{ }1 2 3, ,u u u  drift velocity components 
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CHAPTER 1 INTRODUCTION  

This work is motivated by the need to model bounded plasmas and in particular 

microdevices and sensors with complex geometries. The goal of this work is to establish 

a validated 3-D electrostatic particle-in-cell (PIC) methodology on unstructured Voronoi-

Delauney grids. The unstructured nature of the spatial discretization allows modeling of 

plasma devices with surfaces of complex geometries. While the main effort is directed 

towards the PIC simulation of collisionless plasmas the methods under development can 

be integrated with a Monte-Carlo approach and deliver a PIC/Monte Carlo methodology 

for collisional plasmas. 

The origin of the PIC or Particle-Mesh (PM) method used in the simulation of 

collisionless plasmas can be traced to the early work of Buneman (1959) and Dawson 

(1960). In these first approaches the space-charge forces were obtained through direct 

evaluation of Coulomb’s law and charges were treated as sheets. Subsequently, the 

numerical implementation of the velocity distribution function provided the possibility 

for the simulations of the warm plasmas. By assigning three velocity components to all 

the computational particles including ions, a one dimensional in space and three 

dimensional in velocity (1D3V) plasma simulation methodology was developed. This 

model was successfully applied to the simulation of basic unbounded plasma problems. 

For example, Dawson (1964) demonstrated the effects of Landau damping of the 

electrostatic wave, which was predicted theoretically but was not yet observed 

experimentally. 

Substantial computational gains in particle simulations of plasmas were harnessed 

with the introduction of the computational grid and finite-size particles. The simulation 
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domain was divided into uniform computational cells that were used to trace the charged 

particles. The charge density was obtained on the nodes of the computational grid by 

interpolating the charge from the positions of the particles. The solution of the electric 

and magnetic field equations was implemented numerically providing fast evaluation of 

the electric fields. Langdon (1970) introduced finite-size particles in order to reduce the 

large inter-particle forces that are associated with collisions while retaining long-range 

forces that give rise to the collective motion of the computational particles. Langdon, et 

al. (1983) introduced an implicit differencing scheme that allowed the increase of overall 

time scales for plasma simulations. In the 1980’s, the first simulations of real plasma 

devices were performed with the introduction of external circuits in the boundary 

conditions Lawson (1989). Algorithms for charge-charge and neutral-charge collisions 

were introduced in PIC to develop powerful PIC/MC and PIC/DSMC approaches 

(Birdsall and Langdon (1991), Nanbu and Yonemura (1998)). 

Various implementation of PIC have been developed on one, two and three-

dimensional structured and mostly uniform grids. The references in Birdsall and Langdon 

(1991), Hockney and Eastwood (1988), Dawson (1983) show the depth as well as the 

breath of PIC application. The standardized electrostatic PIC cycle that is commonly 

accepted can be summarized as follows. In the beginning of a PIC simulation 

computational particles are loaded into the domain with a specified density and velocity 

distribution.  Each computational particle corresponds to a large number of real charged 

plasma particles and thus requires the introduction of the particle weight. Charge is 

accumulated from the position of the particles on the discrete mesh nodes, via the charge 

assignment step (gather). Then fields are obtained on the nodes of the grid using 
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Poisson’s equation. Electric fields are interpolated from the nodes back to the particles 

(scatter). The equations of motion are then integrated (particle push) and particles 

positions and velocities are updated every timestep. In the case of bounded plasmas, 

boundary conditions that may include circuit equations are integrated into the 

methodology with the evaluation of surface charges and currents.  

Most PIC implementations take advantage of structured uniform and non-uniform 

grids. This allows for an easy implementation of numerical algorithms such as high order 

weighting schemes, fast particle movers and tracers and others. Domain decomposition of 

the structured grid is straightforward which is important in the design of the PIC codes on 

the parallel platforms (Ferraro, Liewer, et al., (1993); Qiang, Ryne, et al. (2000)). As the 

following review shows there have been very few attempts to implement the PIC 

methodology on unstructured grids. Challenges relate with all four steps of PIC: 

gather/scatter, particle tracing and pushing, field evaluation, and formal evaluation of 

errors and uncertainty. Celik et al. (2003) developed a 3-D PIC-DSMC code “AQUILA” 

on unstructured tetrahedral grids as an extension of the code developed by Fife et al. 

(2002). The first-order weighting scheme based on the volume coordinates is used for the 

scatter/gather procedures. The particle mover uses a leapfrog algorithm. In order to define 

a location of the particle, a search is performed by calculating a volume based shape 

functions at the particle’s new location. The electric potential  is obtained by assuming 

quasi-neutrality in the computational domain and inverting Boltzmann’s equation 

Φ

0
0

lne e

e

kT n
e n

⎛ ⎞⎟⎜ ⎟Φ = Φ + ⎜ ⎟⎜ ⎟⎜⎝ ⎠
        (1.1.1) 
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where  is an electron temperature and  is an electron density obtained on the grid 

nodes. Another method of calculating potential takes advantage of a polytrophic relation 

between  and  

eT en

eT en

1

0 0

n

e e

e e

T n
T n

−⎛ ⎞⎟⎜ ⎟= ⎜ ⎟⎜ ⎟⎜⎝ ⎠
         (1.1.2) 

where  is between the isentropic value of  and isothermal value of 1 . Now the 

potential can be evaluated as 

n 5/ 3

1

00
0

1

1

n

e

ee

n
nkT

e n

−⎛ ⎞⎟⎜ ⎟−⎜ ⎟⎜ ⎟⎜⎝ ⎠
Φ = Φ −

−
       (1.1.3) 

Both formulations assume quasineutrality but equation (1.1.3) allows for a variation in 

the electron temperature. In “AQUILA” momentum-exchange and charge-exchange 

collisions are modeled with the no-time-counter (NTC) method by Bird (1994). Since 

different species might have different computational weights it is important to properly 

handle the collisions between such particles. In “AQUILA” the velocity components of 

the lower weight particle is always updated after the collision occurs while the velocity of 

the higher weight particle is changed with the probability of , where  and  

are the particles computational weights.  Boundary conditions in the “AQUILA” code 

include reflection, absorption, accommodation and sputtering. This code was applied to 

the modeling of the hall thruster plume. 

1 /W W2 1W 2W

 A three-dimensional electromagnetic PIC method on the non-uniform hexahedral 

was developed by Wang (1995). The method is parallelized and takes advantage of the 

hexahedral cells that are connected with cubic cells, distorted to fit the complex 

geometries. In Wang’s work (Wang, Liewer, et al. (1995), Wang, Kondrashov, et al. 
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(1995), Wang, Lai et al. (1997)) each hexahedral is mapped one to one to a unit cube in 

the logical Cartesian space. A tri-linear interpolation is used to map the logical 

coordinates to the physical space consisting of a hexahedral cells. The approach provided 

good performance on the parallel platforms. The positions are kept in the logical space 

while their velocities are defined in the physical space in order to calculate the Lorentz 

force properly. The gather/scatter procedures are perfomred in the Cartesian space using 

a charge conserving weighting scheme by Villasenor and Buneman (1992). The charge 

accumulation is performed by calculating of how much charge crosses each face of the 

grid in the logical space. Particles trajectories are updated using a time-centered leapfrog 

scheme. The position of the computational particle in the logical space is obtained from 

the velocity c  in the physical space according to 

( )
d

R
dt

= ⋅
r

r c          (1.1.4) 

where  is the rotation matrix that maps the physical and logical space. It was shown 

that such a particle moving technique is second order accurate in time and space and is 

linearly proportional to the grid distortion magnitude α  

R

( ) ( )
2

2 2Error
h

O dt O h O α
λ

⎛ ⎞⎛ ⎞ ⎟⎜ ⎟⎜ ⎟= + + ⎜ ⎟ ⎟⎜ ⎟⎜⎜ ⎟⎝ ⎠⎜⎝ ⎠
      (1.1.5) 

In the equation (1.1.5)  is grid spacing and λ  is the distortion wavelength. h

The code takes the advantage of the fact that if charge is rigorously conserved 

globally and locally, then the electromagnetic fields may be updated by the Maxwell curl 

equation alone. The electromagnetic fields are updated using an explicit Discrete Surface 

Integral (DSI) solution of Maxwell’s equations, which is an extension of the staggered 

mesh algorithms by Yee (1996), and Gedney and Lansing (1995). The DSI method is 
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based on the duality of the hexahedral and Cartesian meshes and uses a discrete 

approximation of the Stoke’s theorem. Fields are obtained at the grid nodes from their 

normal components at the faces of the cell sharing the node. Fields are then weighted to 

the nodes by simple vector weighting, full volume weighting or one-sided volume 

weighting. It was shown by simulating the electromagnetic field propagation, that the 

DSI field solver is between first and second order accurate and is unstable for certain grid 

geometries. The simple vector weighting was found to be most stable. Properties of the 

weak instabilities of the DSI method were also considered. It was also shown that the 

error in energy conservation in the three-dimensional electromagnetic PIC simulations of 

the hexahedral grids does not exceed 2%. The code performance was evaluated on the 

256-processor Cray computers showing a  parallel efficiency of 96%. 

 Hermeline (1993) developed a method for the solution of Maxwell’s equations on 

the Delaunay meshes and it’s Voronoi dual in two and three dimensions. It was shown 

that electric and magnetic fields may be associated with either mesh. Charge and current 

weighting schemes were found to be a combination of a piecewise linear function and a 

least square method. In order to satisfy charge conservation a correction for the electric 

field was proposed in the form 

( )
0

ρ
ε

∇ ⋅ − ∇Φ =E         (1.1.6) 

where  is the correction. Error analysis of this method was presented for the 

eigenmodes of a square cavity on two-dimensional Cartesian and unstructured meshes. 

The error was shown to be negligible in both cases. 

Φ
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1.1 Research Objectives and Approach 

Work on unstructured particle simulations at WPI’s Computational Gas and Plasma 

Dynamics group began with the development of an unstructured grid generator Kovalev 

(2000). The Voronoi-Delaunay tetrahedral grid generator was pursued in parallel with the 

development of a particle simulation method that can be implemented in a PIC or a 

Direct Simulation Monte Carlo (DSMC) version. Hamell et al. (2001) presented 

preliminary DSMC simulations of gaseous flows in microchannels and nozzles. In 

Hammel (2002) the basic elements of the DSMC and PIC methodologies were presented. 

Solution of Poisson’s equation were implemented using a finite volume approach. 

Electric fields are evaluated on the nodes of the grid using the divergence theorem. 

Integration of the particle equations of motion was done via the leap-frog scheme. Charge 

and electric field weighting was performed using linear Lagrange polynomials. The PIC 

methodology was used to model a high-voltage sheath. The preliminary PIC work at 

CGPL provided the basis of this dissertation that encompasses aspects of computational 

mathematics, computational implementation, and applications. The objectives are: 

• Develop, implement and establish the rigorous mathematical background of the 

charge assignment, force interpolation, particle tracing and mover algorithms in the 

unstructured PIC methodology. 

• Develop a comprehensive method for evaluation of error and uncertainty in the 

unstructured 3-D computations.  

• Validate the code extensively with theoretical and computational investigations. 

• Apply the code to plasma devices and sensors relevant to micropropulsion. 

The approach and methodology relevant to the objectives are: 
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• Pursue a detailed analytical formulation of the scatter/gather weighting functions 

for the three-dimensional unstructured tetrahedral grids based on the long-constraint 

approach developed by Hockney (1998) for uniform grids. 

• Implement a fast particle tracer based on the successive-neighbor search 

algorithm. 

• Implement zero and first-order momentum and energy conserving weighting and 

interpolation schemes. 

• Implement algorithms for the evaluation of nodal and cell-based macroscopic 

plasma parameters based on liner Langrange polynomials. 

• Implement plasma diagnostics including electrostatic energy, total/drift/thermal 

energies by species, and surface charge density. 

• Compile and test the code on Linux and Windows platforms. 

• Develop a methodology for measuring the heating, slowing-down and collision 

times extending the 2-D work of Hockney (1971). 

• Validate the methodology using current collection by a cylindrical Langmuir 

probes in stationary and flowing plasmas in both thin-sheath and the Orbital Motion  

Limited regimes. Numerical results from an extensive parametric investigation are 

compared to the numerical results by Laframboise (1966) and analytical solutions by 

Peterson and Talbot (1970), Kanal (1964) and Johnson and Murphree (1969). 

• Apply the method to the simulation of plasma microdevices relevant to 

microprulsion. The first case involves a multi-scale device simulation of a Gated Field 

Emission Array cathode. Preliminary results have appeared in Gatsonis and Spirkin 

(2002). The second case, involves the simulation of a micro Retarding Potential Analyzer 
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(microRPA) that is developed by Partridge and Gatsonis (2005) for use in high density 

flowing plasmas. Results have appeared in Spirkin and Gatsonis (2003 and 2004). 

Chapter 2 of the dissertation presents the detailed description of the PIC 

methodology and its numerical implementation. Chapter 3 presents the validation with 

application of the code to the current collection by a cylindrical Langmuir probes. 

Chapter 4 discusses the numerical heating, slowing-down and deflection times. Chapter 5 

presents the simulations of a micro Retarding Potential Analyzer (RPA) and the Field 

Emission (FE) cathode. Chapter 6 presents the conclusions and provides suggestions for 

future research. 
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CHAPTER 2 A  3-D  PARTICLE-IN-CELL  METHOD  ON  

UNSTRUCTURED  VORONOI-DELAUNAY  GRIDS 

 

2.1 Mathematical Description of Collisionless Electrostatic Plasma  

We consider plasma occupying a volume V consisting of several species denoted by the 

species index s  each with particles. The mathematical description of the collisionless 

plasma involves the Vlasov-Maxwell system (Montgomery and Tidman (1964)). The 

single particle distribution function is the particle density in the velocity-space phase space 

and gives the average number of particles in a volume  of the phase-space centered 

at a point ( ,  as  

sN

3 3d rd c

)r c

( ) 3 3 6, , ( )sf t d rd c d N=r c s t        (2.1.1) 

The local number density is then 

( ) 3( , ) , ,s sn r t f t d c= ∫ r c        (2.1.2) 

The equation for the distribution function is, 

( ) ( )[ ]ext, ,s s s s

s

f f q f
t t

t m
∂ ∂ ∂

+ ⋅ + + × ⋅ =
∂ ∂ ∂

c E r c B r
r c

0

tρ

   (2.1.3) 

The self-consistent electric field (and potential) is due to the smoothed distribution 

(internal) and external distribution of charges given by Maxwell’s equation that becomes 

simply Poisson’s equation 

3
0 ( , ) ( , , ) ( , )s s ext

s

t q f t d cε ∇ ⋅ = −∑ ∫E r r c r     (2.1.4) 

The formulation assumes that there are no external electric and magnetic fields and 

assumes that there are no induced magnetic fields due to the particle motion. Those 
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external fields obey also the Maxwell equations and therefore we can show that in the 

electrostatic limit. 

ext int( , ) ( , ) ( , )t t= +E r E r E r t       (2.1.5) 

3 3
int int( , ) ( , , ) ( , )

4
s

s
s o

q
t f t d rd c

πε

⎛ ⎞∂ ⎟⎜ ⎟′ ′⎜= − = −∇Φ⎟⎜ ⎟′∂ −⎜ ⎟⎝ ⎠
∑ ∫E r r c r

r r r
t  (2.1.6) 

and one case show that the internal fields follow 

3
0 int ( , , )s s

s

q f r c t d rε ∇ ⋅ = ∑ ∫E       (2.1.7) 

In the Vlasov-Poisson system the discreteness of plasma particles is neglected, and 

the electric fields are found self-consistently from smoothed charged and current 

distributions. In addition the motion in the phase-space is incompressible, and the solution 

to Vlasov equation states that 

( , , ) ( , , 0)f t f t= =r c r w        (2.1.8) 

along characteristics which are the single-particle trajectories in the presence of 

electromagnetic fields, 

( )
( )

d t
t

dt
=

r
c          (2.1.9) 

( )
( ) ( )[ ext,s

s
s

d t q
m t
dt m

= + ×
c

E r c B r ],t      (2.1.10) 
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2.2 Unstructured 3-D PIC Methodology 

Particle simulation methods for plasmas address the solution utilizing particle trajectories, 

and then reconstruct the distributions function and its moments. In the computational 

domain the number of particle (markers or macroparticles) are much fewer than the real 

system. The particle weight of a species is designated as . sF

We will provide next the general framework for a PIC implementation in 

unstructured tetrahedral grids. There are two important parts of the PIC or PM method: the 

introduction of the finite-size particles and the introduction of the grid. 

 

2.3 Particle In Cell Computational Cycle 

A standard PIC method computational cycle is shown in Figure 1. It starts with the charge 

weighting from the position of the computational particles to the grid nodes (gather). Then, 

the Poisson’s equation is solved on the nodes in order to obtain electric potential and 

electric field. Electric field from the grid is weighted back to the particles positions 

(scatter), force acting on the particles is calculated and particles are moved according to 

their acceleration. Numerical implementation of these four steps on the unstructured 

tetrahedral meshes is discussed in details in the following chapters. 

 

2.4 Finite Size Particles 

The introduction of finite-sized particles can be described by a function designated as the 

particle shape. Hockney and Eastwood (1981) refer to it as the “cloud shape”. Birdsall and 

Langdon (1985) use this term in the process of charge-assignment (or particle weighting). 
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The cloud function shape or simply shape factor  (units of ) provides the charge 

density at the position r  from the center of the particle 

( , )iS r r 3L−

( , , )p p px y z≡r , p

 

 

Particles-to-nodes 
charge weight 

(gather) 
 

1,2,3,4pq Q→

Solution of the  
Poisson equation 

1,2,3,4 1,2,3,4 1,2,3,4Q → Φ → E

Nodes-to-particles 
electric field weight 

(scatter) 

1,2,3,4 p→E E

Particle motion 

,p p p→F c r

Figure 1. Particle-In-Cell computational cycle. 

 

( , ) ( , )p p p pq Sρ =r r r r         (2.4.1) 

The total charge of a particle is 

3( , )p pq S d r q=∫ r r p         (2.4.2) 

The shape factor is therefore normalized 

3( , ) 1iS d r =∫ r r         (2.4.3) 

An example of a symmetric shape factor provides point particles with charge density 
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( , ) ( ) ( ) ( ) (p i p i p p pq S q q x x y y z zδ δ δ δ= − ≡ − − −r r r r )p

a

)sp

⎤⎦

)sp− r

)sp− r

)sp−

)spr r

   (2.4.4) 

Clouds with uniform charge density, with 

3( , )iS −=r r          (2.4.5) 

The distribution function of these finite-sized particles is 

( ) ( ) (
1

, ,
sN

s sp
p

f t S δ
=

= − −∑r v r r c c       (2.4.6) 

The units of  are . Then density, charge density and current due to  

particles of species s  at are 

( )spδ −c c 3 3/L T⎡⎣ sN

r

( ) (3

1

, ( , , )
sN

s s
p

n t f t d c S
=

= = ∑∫r r c r      (2.4.7) 

( ) (3

1

, ( , , )
sN

s s i
p

t f t d c q Sρ
=

= = ∑∫r r c r      (2.4.8) 

( ) (3

1

, ( , ) ( , , )
sN

s s s s s sp
p

t q t f t d c q c S
=

= = ∑∫j r c r r c r r    (2.4.9) 

The total charge is 

(3

1

( ) ( , ) ,
sN

s s i
pV

Q t t d r q Sρ
=

= =∑∫ r      (2.4.10) 

 

2.5 Unstructured Delaunay Grid Generation 

The unstructured grid generator provides a three-dimensional, tetrahedral, Delaunay mesh 

for arbitrary geometric configurations. Surface triangulation is the first step of the grid 

generation. A surface generator was designed by Hammel (2001) for axially symmetric 

objects and objects defined by bi-linear elements. A two dimensional topology is 

performed by connecting points with lines, arcs or parabolas according to the specified 
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spacing values. In order to create an axisymmetric surface this topology is analytically tiled 

about an axis. Two edges of bilinear objects may be created with arbitrary spacing values. 

It is required for other two edges to have the same number of nodes as the opposing edges. 

After axisymmetric or bi-linear objects are created they may be rotated and added to a 

group of objects. 

The unstructured mesh generator is based on Watson’s (1981) incremental node 

insertion method, which uses properties of the Delaunay triangulation. An initial mesh is 

required for Watson’s method, in order to have a domain where point insertion to begin. 

The initial mesh chosen is a cube divided into six tetrahedra. After the initial mesh is 

generated, the source geometry is inserted into the domain. This procedure is done in two 

steps. First, the boundary nodes are successively inserted into the grid via Watson’s 

algorithm. The second step is to recover all the boundary facets present in the source 

geometry using local modifications to the grid. The cells external to the grid are removed 

as well as cells in any internal cavity. 

The underlying sizing function – defined by the source geometry – requires the 

interior of the grid to be enriched with nodes to the specified density. For this purpose the 

algorithm by Borouchaki and George (1997) is implemented and extended to three 

dimensions by Kovalev (2000). In this algorithm, the characteristic distance between nodes 

is specified for each grid node as h. Every existing edge of the grid is divided into a 

number of new prospective nodes, so that the new resulting edge segments vary in length 

gradually between the h-values of the edge vertices. The prospective nodes are filtered in 

order to satisfy the spacing and grid quality criteria. Nodes falling too close to existing 

nodes are eliminated. Nodes that worsen grid quality as specified by the lowest dihedral 
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angle in a set of cells are also discarded. The nodes that are not rejected are inserted into 

the grid via Watson’s algorithm. The edge division process is repeated while new nodes 

are inserted. A heuristic quality improvement procedure has been also implemented based 

on a user-defined minimum dihedral angle. 

 

2.6 Finite Sized Particles on a Grid Particle Weighting on to Grid (Gather)  

The introduction of grid where properties are sampled introduces a new level of 

mathematical description. Particles of any shape assign their charge onto the grid and this 

process of interpolation results in an effective particles shape or weighing function. We 

will follow Hockney and Eastwood (1981) who described this process by the function W  

(refereed to as shape factor S  in Birdsall and Langdon (1985)) Birdsall and Langdon use 

 for this process although in certain instances they discussed particle shape in general. S

The area of overlap between the cloud shape (or shape factor) and the grid cell 

determined the charge assigned to the grid point. In this interpretation particles carry their 

shape factors with them. 

( ) ( )
1

,
p

k k

N
s s

sk s p
V V pk k

F F
n d S d

V V
ρ

=

⎛ ⎞⎟⎜ ⎟= = ⎜ ⎟⎜ ⎟⎜⎝ ⎠
∑∫ ∫r r r r r     (2.6.1) 

The hierarchy of charge assignment functions (or weights) is derived by Hockney 

and Eastwood (1981) according to the long-range, smoothness, and momentum 

conservation  constraints. We generalize this derivation for structured, non-uniform grids 

in 1-D, 2-D and 3-D as well as Delauney-Voronoi unstructured grids in 2-D and 3-D. 

 

1-D 
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We consider first the case of a 1-D domain  discretized by a structured 

Cartesian grid of  grid points. The grid point is denoted by  where the grid-index is 

. There are  node-centered cells in the region each denoted by 

 where  and . The 

operators , and . We designate with  

the fraction of a charge from a particle located at  assigned to grid point . 

[ ,L Rx xΩ = ]

I

XN Ix

1, XI N= 1XN −

1/2 1/2,I I Ix x− +
⎡ ⎤Γ = ⎢ ⎥⎣ ⎦ 1/2 / 2I I Ix x x− = + ∇ 1/2 / 2I I Ix x x+ = + Δ

1I Ix x x+Δ = − 1I I Ix x x −∇ = − ( ) ( , )I i I iW x W x x=

ix Ix

Following Hockney and Eastwood (1981) we assume that the potential at position x due to 

the unit charge in position 1,p I I Ix x x +
⎡ ⎤∈ Ω = ⎣ ⎦  is given by the Green’s function 

. The potential then due to a unit charge at position  is given by the expansion ( IG x x− ) ix

2
2 3

2

( )
( ) ( ) ( ) ( )( )

( )
( )( ) ( )

p
I p p I p p I

I I

p
I p p I p I

I

dG x x
x W x G x x W x x x

dx

d G x x
W x x x x x

dx

φ
⎛ ⎞ −⎟⎜= − + − ⎟⎜ ⎟⎟⎜⎝ ⎠

⎛ ⎞ −⎟⎜ − + Ο −⎟⎜ ⎟⎟⎜⎝ ⎠

∑ ∑

∑

+

d

 (2.6.2) 

where the sum is taken over M nodes close to I  used to distribute the charge. Charge 

conservation requires that, 

( ) 1I p
I

W x =∑         (2.6.3) 

For  additional constraint equation appears, by requiring higher-order terms in the 

expansion of equation 

1M >

(2.6.2) to become grid-independent. Since both  and  

are even functions we require that that for values of n  

( )xφ ( )pG x x−

0 od
( )( )

even

M
n

I p p I
I

n
W x x x

C n

⎧⎪⎪− = ⎨⎪⎪⎩
∑      (2.6.4) 
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The process outlined above is equivalent to a multipole expansion (Birdsall and Langdon 

(1985)). 

The weigths can also be derived using the particle shape. The overlap between the 

cloud shape from a particle at position  and the cell  gives the fraction of charge to be 

assigned to a node  as 

px IΓ

Ix

1/2

1/2

( ) ( ) ( )
I

I

x

p I I p p
x

W x x W x S x x dx
+

−

− = = −∫     (2.6.5) 

The number and charge density at grid point  from  particles of species s  is 

evaluated using the length of the cell  following, 

Ix sN

IΓ

(
1

2
( ) ,

sN

s I Is ps I
pI I

n x n W x x
x x =

≡ =
∇ + Δ ∑ )      (2.6.6) 

(
1

2
( ) ,

sN

s I Is is ps I
pI I

x
x x

ρ ρ
=

≡ =
∇ + Δ ∑ )q W x x

x ⎤⎦ 1)

1+

    (2.6.7) 

 

NGP 

In the nearest grid point scheme the charge  of the point particle 

 is distributed to the grid point closest to it ( . The shape 

function in this case is  

pq

1,p I I Ix x +
⎡∈ Ω = ⎣ M =

( , ) ( )I p pS x x x xδ= −        (2.6.8) 

The charge-assignment interpolation function (or charge weighting function) 

1/2

1 1 1/2

( ) ( ) 1

( ) ( ) 1

I p p I I p I

I p p I I p I

W x W x x x x x

W x W x x x x x

+

+ + +

≡ − = ≤ <

≡ − = ≤ <
   (2.6.9) 

The weighting function can be also described with the left and right-side weights as 
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1/2

1/2

( )

( ) ( , ) ( )

0 all other 

I p I p I

I p p I I p I p I

W x x x x

W x W x x W x x x x

x

−
+

+
+

⎧⎪ < <⎪⎪⎪⎪≡ = < <⎨⎪⎪⎪⎪⎪⎩

    (2.6.10) 

For /2p Ix x x− ≤ Δ  the charge assigned on the grid is 

( )Is ps ps I pq q W x x q= − =

]x

=

       (2.6.11) 

therefore, the charge is conserved. It is also easy to show that  

/2

/2
( ) ( ) ( )

I

I

x x

p I I p p
x x

W x x W x x x dxδ
+Δ

−Δ
− = = −∫     (2.6.12) 

 

Linear (CIC or PIC) 

In linear interpolation (CIC or PIC) scheme the charge  of the particle 

 is distributed to two grid points via the charge assignment functions 

 and . The two constraints satisfied are 

pq

[ 1,p I I Ix x +∈ Ω =

( )I pW x 1( )I pW x+

1( ) ( ) 1I p I pW x W x++        (2.6.13) 

( ) ( )1 1( ) ( ) 0I p p I I p p IW x x x W x x x+ +− + − =     (2.6.14) 

The charge assignment functions for 1,p I I Ix x x +
⎡ ⎤∈ Ω = ⎣ ⎦  shown in Figure 2 are 

1( , ) ( ) 1 p I I
I p I p

I I

x x x x
W x x W x

x x
+−

≡ = − =
Δ Δ

p−
    (2.6.15) 

1
1 1( , ) ( ) 1 p I p

I p I I
I I

x x x x
W x x W x

x x
+

+ +

− −
= = + =

Δ Δ
I     (2.6.16) 
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Figure 2. Linear weighting functions in 1-D. 

 

In terms of the left and right charge assignment functions for a particle at 

 1/2 1/2,p I I Ix x x− +
⎡ ⎤∈ Γ = ⎢ ⎥⎣ ⎦

1

( )

( ) ( , ) ( )

0 all other 

I p
I p I p I

I

p I
I p p I I p I p I

I

x x
W x x x x

x
x x

W x W x x W x x x x
x

x

−

+
+

−⎧⎪ = <⎪⎪ ∇⎪⎪⎪ −⎪⎪≡ = = < <⎨⎪ Δ⎪⎪⎪⎪⎪⎪⎪⎩

<

x +

  (2.6.17) 

The charge assigned to nodes  due to a particle at x x1,I IX X + 1,p I I I
⎡ ⎤∈ Ω = ⎦  ⎣

1( , ) ( ) I
I p I p p

I

x x
q x x q x q

x
+

⎛ ⎞− ⎟⎜ ⎟≡ = ⎜ ⎟⎜ ⎟⎜ Δ⎝ ⎠
p       (2.6.18) 

1( , ) ( ) p I
I p I p p

I

x x
q x x q x q

x+

⎛ ⎞− ⎟⎜ ⎟≡ = ⎜ ⎟⎜ ⎟⎜ Δ⎝ ⎠
      (2.6.19) 

 

 

 

2-D, Cartesian, Non-uniform 

We consider next a 2-D domain  discretized by a structured 

Cartesian grid of N  grid points. The grid point denoted with ( , has coordinates 

[( , ) ( , )L L R Rx y x yΩ = × ]

N

I1I − 1I + 2I +i

IW

1IW +

,X Y )I J
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( , )I Jx y  where the grid-index is  and . There are ( 1  

node-centered cells in the region. A cell around grid point ( , is denoted by 

1, XI N= 1, YJ N= )(X YN N− −1)

)⎤⎥⎦

I

J

)

1
⎤⎦

,−

) )

)I Jx y

, 1/2 1/2 1/2 1/2( , ) ( ,I J I I J Jx x y y− + − +
⎡Γ = ×⎢⎣      (2.6.20) 

where , ,  and 

. The forward and backward operators are , 

 and ,  respectively. We designate also 

with  the fraction of a charge from a particle  located at 

 assigned to grid point ( . The particle is at position 

 as depicted in 

1/2 / 2I I Ix x x− = − ∇ 1/2 / 2I I Ix x x+ = + Δ 1/2 / 2J J Jy y y− = − ∇

1/2 / 2J J Jy y y+ = + Δ 1I Ix x x+Δ = −

1I Jy y y+Δ = − 1I I Ix x x −∇ = − 1J J Jy y y −∇ = −

, ,( , ) ( , , )I J p p I J p pW x y W x x y= p

( , )p px y ,I J

,( , ) ( , ) ( , )p p I J I I J Jx y x x y y +
⎡∈ Ω ×⎣ Figure 3. 

The long-range constraints are derived in a fashion similar to the 1-D case. The 

potential at  due to the charges at M  grid points is given by ( , )r x y≡

,
,

( , ) ( , ) ( )I J p p I J
I J

x y W x y G r rφ = ∑       (2.6.21) 

Taylor expanding  about ( and assuming that  ( IJG r r− pr r− ( ) ( )G G r′ ′=r

,
,

,
2 2,

( , ) ( , ) ( )

( ) ( )
( ) ( )

( , )
{( ) ,( ) ,}

I J p p p
I J

p
p I p I

I J p p
I J

p I p I

x y W x y G r r

dG r r dG r r
x x y x

dx dyW x y
x x y y

φ = − +

⎡ ⎤− −
⎢ ⎥− + − +
⎢ ⎥
⎢ ⎥
⎢ ⎥Ο − −⎢ ⎥⎣ ⎦

∑

∑
p  (2.6.22) 

or 

,
, , 0

(
( , ) ( , )

! !

r s r s
x y IJ

I J p p r s
I J r s

G
x y W x y

r s x y
φ

+∞

=

Δ Δ ∂ −
=

∂ ∂∑ ∑ r r )     (2.6.23) 

 

 22



 

,I J 1,I J+

, 1I J + 1, 1I J+ +

( ),I JΓ

( ),p px y

Figure 3. Example of the 2-D structured Cartesian grid with the computational particle located at 

. ( , )p px y

 

where the summation of the grid indices ( , is carried over the M nodes used in the 

distribution process, and ,Δ = . 

)I J

x p Ix xΔ = − y p Iy y−

The charge conservation gives the first constraint as, 

,
,

( , ) 1I J p p
I J

W x y =∑         (2.6.24) 

where the summation of the grid indices ( ,  is carried over the M nodes used in the 

distribution process. The requirement that the first-order terms in the expansion to be grid 

independent provides the first-order constraint as 

)I J

,
,

even 0
( , )( )

odd 
n

I J p p p I
I J

n
W x y x x c n

⎧⎪⎪− = ⎨⎪⎪⎩
∑      (2.6.25) 
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,
,

even 0
( , )( )

odd 
n

I J p p p I
I J

n
W x y y y c n

⎧⎪⎪− = ⎨⎪⎪⎩
∑      (2.6.26) 

In equations (2.6.25) and (2.6.26)  is the order of the weighting scheme used (  for 

NGP,  for CIC). 

n 0n =

1n =

 

NGP (Zero-order) 

For a particle in a position , 1( , ) ( , ) ( ,p p p I J I I J Jx y r x x y y+ 1+
⎡ ⎤≡ ∈ Ω = ×⎣ ⎦  the charge 

is assigned to the closest node with functions . With  

the charge conservation constraint becomes 

, 1, 1, 1 ,, , ,I J I J I J I JW W W W+ + + 1+

1/2

1M =

, 1/2

1, 1, 1 , 1

( ) 1 ,

( ), ( ), ( ) 0

I J p I p I J p J

I J p I J p I J p

W x x x x y y y

W x W x W x

+ +

+ + + +

= ≤ < ≤ <

=

(2.6.27) 

The number density and charge density at a node ( ,  from  particles of 

species s  is evaluated using the area of the cell  

)I Jx y sN

IJΓ

( )( )
(, ,

1

4
( , )

sN

s I J sI J I J ps
pI I J J

n x y n W x
x x y y =

≡ =
∇ + Δ ∇ + Δ ∑ )   (2.6.28) 

( )( )
(, ,

1

4
( , )

sN

s I J sI J ps I J ps
pI I J J

x y q W x
x x y y

ρ ρ
=

≡ =
∇ + Δ ∇ + Δ ∑ )

1

  (2.6.29) 

 

CIC (First-order) 

The charge of a particle in a position , 1( , ) ( , ) ( ,p p p I J I I J Jx y r x x y y+ +
⎡ ⎤≡ ∈ Ω = ×⎣ ⎦  is 

assigned to the four nodes associated with  with functions 

.The charge conservation constraint is 

IJΩ

, 1, 1, 1 ,, , ,I J I J I J I JW W W W+ + + 1+

=, 1, 1, 1 , 1( ) ( ) ( ) ( ) 1I J p I J p I J p I J pW r W r W r W r+ + + ++ + +    (2.6.30) 
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The first-order constraint is 

( ) ( ) (
( )

, 1, 1 1, 1

, 1

( ) ( ) ( )

( ) 0

I J p p I I J p p I I J p p I

I J p p I

W r x x W r x x W r x x

W r x x

+ + + +

+

− + − + −

+ − =

)1+
 (2.6.31) 

( ) ( ) ( )
( )

, 1, 1, 1

, 1 1

( ) ( ) ( )

( ) 0

I J p p J I J p p J I J p p J

I J p p J

W r y y W r y y W r y y

W r y y

+ + +

+ +

− + − + −

+ − =

1+
  (2.6.32) 

In addition we require that the function be written as the product 

( ) ( ) ( ), ,,I J p p I J p I J pW x y W x W y= ,       (2.6.33) 

The charge assignment functions are then,  

( ) ( )1 1
,

,

( , ) I p J p A
I J p p

I J

x x y y
W x y

x y
+ +− − Ω

=
Δ Δ I J

=
Ω

    (2.6.34) 

( )( )1
1,

,

( , ) p I J p B
I J p p

I J I J

x x y y
W x y

x y
+

+

− − Ω
=

Δ Δ Ω
=     (2.6.35) 

( )( )
1, 1

,

( , ) p I p J C
I J p p

I J I J

x x y y
W x y

x y+ +

− − Ω
=

Δ Δ Ω
=     (2.6.36) 

( )( )1
, 1

,

( , ) I p p J D
I J p p

I J I J

x x y y
W x y

x y
+

+

− − Ω
=

Δ Δ Ω
=     (2.6.37) 

The area-weighting interpretation of these linear assignment functions is clear and 

is indicated in Figure 4. 

 ,I J

I J
1, 1I J+ +

,I JW1,I JW +

, 1I JW + 1, 1I JW + +

1,I J+

, 1+

Figure 4. Graphical representation of the Linear weighting on the 2-D structured Cartesian grid. 

 25



 

The number density and charge density at a node ( ,  from  particles of 

species s  is evaluated using the area of the cell  

)I Jx y sN

IJΓ

( )( )
(, ,

1

4
( , )

sN

s I J sI J I J ps
pI I J J

n x y n W x
x x y y =

≡ =
∇ + Δ ∇ + Δ ∑ )   (2.6.38) 

( )( )
(, ,

1

4
( , )

sN

s I J sI J ps I J ps
pI I J J

x y q W x
x x y y

ρ ρ
=

≡ =
∇ + Δ ∇ + Δ ∑ )

3

  (2.6.39) 

 

2-D Delauney-Voronoi 

We consider next a 2-D domain Ω  discretized by an unstructured Delauney grid. 

The Delaunay triangular cell is formed by a three nodes located at 

. 1 1 1 2 2 2 3 3( , ), ( , ), ( , )x y x y x y= = =r r r

The Delauney cell has an area  given by 123Ω

12 13 1 2 3

1 2 3

1 1 1
1 1
2 2ABC x x x

y y y

Ω = × =r r      (2.6.40) 

where  and . 12 2 1= −r r r r

−

13 3 1= −r r

We consider next a particle at position . Its charge is assigned to 

the three nodes forming the triangular cell depicted in 

123( , )p p px y r≡ ∈ Ω

Figure 5. 

The potential at due to the charges at M  grid points of the Delauney is given by ( , )r x y≡

1,

( , ) ( , ) ( )I p p I
I M

x y W x y G r rφ
=

= ∑       (2.6.41) 
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Figure 5. Example of the Delaunay triangular computational cell. 

 

where designates the local numbering, and the sum is taken over the nodes of the 

Delauney used in the charge assignment. Taylor expanding  about ( ) and 

assuming that  

I M

( IG r r− ) pr r−

( ) ( )G G r′ ′=r

{ }

1, 1,

2 2

1,

( )
( , ) ( , ) ( ) ( , )( )

( )
( , )( ) ( ) ,( )

p
I p p p I p p p I

I M I M

p
I p p p I p I p I

I M

dG r r
x y W x y G r r W x y x x

dx

dG r r
W x y y y x x y y

dy

φ
= =

=

−
= − + −

−
+ − + Ο −

∑ ∑

∑ −

1

2

 (2.6.42) 

3

( ),p px y

Charge conservation requires that 

( , ) 1I p p
I

W x y =∑         (2.6.43) 

For  additional constraint equation appears. The requirement that the first-order 

terms in the expansion to be grid independent provides the first-order constraint as 

1M >

1,

even 0
( , )( )

odd I p p p I
I M

n
W x y x x c n

=

⎧⎪⎪− = ⎨⎪⎪⎩
∑      (2.6.44) 

1,

even 0
( , )( )

odd I p p p I
I M

n
W x y y y c n

=

⎧⎪⎪− = ⎨⎪⎪⎩
∑      (2.6.45) 
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NGP (Zero-order) 

In this case the charge from the particle at position ( ,  is assigned 

to node closest to it. 

)p p p ABCx y r≡ ∈ Ω

( )
( ) ( )

1 1,2,3

2 3

1 if min

0

p p

p p

W

W W

= − =

= =

r r r r

r r

1 p− r

Ω

     (2.6.46) 

 

CIC (First-order) 

In this case the charge from the particle at position P  with  is 

assigned to the three nodes of the Delauney cell depicted in 

123( , )p p px y≡ ∈r

Figure 5. The charge 

conservation provides one constraint equation 

1 2 3( ) ( ) ( ) 1p p pW r W r W r+ + =       (2.6.47) 

The first-order constraints equations are 

( ) ( ) ( )1 1 2 2 3 3( ) ( ) ( ) 0p p p p p pW r x x W r x x W r x x− + − + − =    (2.6.48) 

( ) ( ) ( )1 1 2 2 3 3( ) ( ) ( ) 0p p p p p pW r y y W r y y W r y y− + − + − =    (2.6.49) 

Solution to the above system of constraints provides the functions 

2 3 3 3 2 2 3 2 23
1

1 3 2 3 3 1 2 1 3 2 1 2 123

p p p p P
x y x y x y x y x y x y

W
x y x y x y x y x y x y

− − + + − Ω
= =

− − + + − Ω
   (2.6.50) 

1 3 3 3 1 1 3 1 13
2

1 3 2 3 3 1 2 1 3 2 1 2 123

p p p p P
x y x y x y x y x y x y

W
x y x y x y x y x y x y

− + + − − + Ω
= =

− − + + − Ω
   (2.6.51) 

2 1 1 1 2 2 1 2 12
3

1 3 2 3 3 1 2 1 3 2 1 2 123

p p p p P
x y x y x y x y x y x y

W
x y x y x y x y x y x y

− + + − − + Ω
= =

− − + + − Ω
   (2.6.52) 

In the above expressions  is the cell area 123Ω
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123 1 2 3 13 23

1 2 3

1 1 1
1 1
2 2
x x x

y y y

Ω = = ×r r       (2.6.53) 

23PΩ  is the area of the triangle formed by the position of the particle and nodes 2  and  

given by 

3

23 2 3 2 3

2 3

1 1 1
1 1
2 2P P p

P

x x x

y y y

Ω = = ×r rp

r r

      (2.6.54) 

where  and . 2 2p p= −r r 3 3p p= −r r

The implementation of the CIC weights is represented graphically in Figure 6 and 

corresponds to the area-weighing used in the 2D Cartesian case. 

 

Figure 6. Graphical representation of the Linear weighting on a 2-D Delaunay grid. 

 

The number density and charge density at a node r x  from  particles of species 

 is evaluated using the area of the Voronoi cell  depicted in 

1 1( , )1y=

2

1

sN

s 1Γ Figure 7. 

( ),p px y

3
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( )1 1 1 1
11

1
( , ) ,

sN

s s ps ps
p

n x y n W x y
=

≡ =
Γ ∑      (2.6.55) 

( )1 1 1 1
11

1
( , ) ,

sN

s s s ps
p

x y qW x yρ ρ
=

≡ =
Γ ∑ ps      (2.6.56) 

 

 

1Γ1

Figure 7. Example of the 2-D Voronoi cell. 

 

3D Delauney-Voronoi 

We consider next a 3-D domain Ω  discretized by an unstructured Delauney grid. The 

Delaunay tetrahedron formed by the nodes located at 

 is illustrated in 1 1 1 1 2 2 2 2 3 ( 3 3 3 4 4 4 4( , , ), ( , , ), , , ), ( , , )x y z x y z x y z x y z= = = =r r r r Figure 8.  
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Figure 8. Example of the tetrahedral computational cell. 

 

The Delauney cell has a volume given by 

[1234 41 12 23

1
(

6
Ω = ⋅ ×r r r ])

Ω

−

) )

       (2.6.57) 

We consider next a particle charge that is assigned to the four nodes of the 

tetrahedral cell depicted in Figure 8. For a particle in a position  the 

charge is assigned to the M nodes associated with  with functions . 

The long-range constraints are derived in a fashion similar to the 2-D case. The potential at 

due to the charges at  grid points is given by 

1234( , , )p p p px y z= ∈r

1234Ω 1 2 3 4, , ,W W W W

( , , )r x y z≡ M

1,4

( , , ) ( , , ) ( )I p p p I
I

x y z W x y z G r rφ
=

= ∑      (2.6.58) 

Taylor expanding  about ( and assuming that  ( IG r r− pr r− ( ) ( )G G r′ ′=r
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,
,

,
, 2 2

( , ) ( , ) ( )

( ) ( )
( ) ( )

( , )
( )

( ) {( ) ,( ) ,( )

I J p p p
I J

p p
p I p I

I J p p
I J p

p I p I p I p I

x y W x y G r r

dG r r dG r r
x x y y

dx dy
W x y

dG r r
z z x x y y z z

dz

φ = − +

⎡ ⎤− −
⎢ ⎥− + − +
⎢ ⎥
⎢ ⎥+
⎢ ⎥−⎢ ⎥+ − + Ο − − −⎢ ⎥⎣ ⎦

∑

∑
2}

Ω

 (2.6.59) 

Charge conservation requires that 

( , , ) 1I p p p
I

W x y z =∑         (2.6.60) 

For  additional constraint equation appears. The requirement that the first-order 

terms in the expansion to be grid independent provides the first-order constraint as 

1M >

1,

even 0
( , , )( )

odd I p p p p I
I M

n
W x y z x x c n

=

⎧⎪⎪− = ⎨⎪⎪⎩
∑      (2.6.61) 

1,

even 0
( , , )( )

odd I p p p p I
I M

n
W x y z y y c n

=

⎧⎪⎪− = ⎨⎪⎪⎩
∑      (2.6.62) 

1,

even 0
( , , )( )

odd I p p p p I
I M

n
W x y z y y c n

=

⎧⎪⎪− = ⎨⎪⎪⎩
∑      (2.6.63) 

 

NGP (Zero-order) 

The charge from the particle at position  is assigned to closest node. 1234( , , )p p p pr x y z= ∈

( )
( ) ( ) ( )

1 1,2,3,4

2 3 4

1 if min

0

p p

p p p

W

W W W

= − =

= = =

r r r r

r r r

1 p− r

Ω

     (2.6.64) 

 

CIC (First-order)  

In this case the charge from the particle p  at position  is assigned 1234( , , )p p p px y z≡ ∈r
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to the four nodes of the Delauney cell. From the concept of the charge conservation it 

follows that 

1 2 3 4( ) ( ) ( ) ( ) 1p p p pW r W r W r W r+ + + =      (2.6.65) 

The first-order constraints equations are 

( ) ( ) ( )
( )

1 1 2 2 3

4 4

( ) ( ) ( )

( ) 0

p p p p p p

p p

W r x x W r x x W r x x

W r x x

− + − + −

+ − =

3 +
   (2.6.66) 

( ) ( ) ( )
( )

1 1 2 2 3

4 4

( ) ( ) ( )

( ) 0

p p p p p p

p p

W r y y W r y y W r y y

W r y y

− + − + − +

+ − =

3

3

   (2.6.67) 

( ) ( ) ( )
( )

1 1 2 2 3

4 4

( ) ( ) ( )

( ) 0

p p p p p p

p p

W r z z W r z z W r z z

W r z z

− + − + − +

+ − =
   (2.6.68) 

Solution to the above system of constraints provides the weight functions  in the 

following form 

1W

234
1

1234

PW
Ω

=
Ω

         (2.6.69) 

where  is the volume of the tetrahedron formed by the particle p  and nodes 1,  

given by 

234PΩ 2,3

234 4 3 2 3 2 3 4 2 4 2 3 2

4 2 4 2 3 2 3 2 4 3 4 3 2 3

4 3 3 2 4 2 4 2 3 4 3 4 2 4

3 4 3 2 4 2 2 3 4 3 2 4 3 4

4 2 23

1
( )

6

P p p p

p p p p

p p p p

p p p p p p

p p

x y z x y z x y z x y z x y z

x y z x y z x y z x y z x y z x y z

x y z x y z x y z x y z x y z x y z

x y z x y z x y z x y z x y z x y z x y z

Ω = − + + − − +

+ + − − + + −

− − + + − − +

+ + − − + + +

⎡ ⎤= ⋅ ×⎣ ⎦r r r

p

 (2.6.70) 

and the volume of the Delauney cell is  
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[ ]

1234 3 2 1 4 2 1 2 3 1 4 3 1 2 4 1

3 4 1 3 1 2 4 1 2 1 3 2 4 3 2 1 4 2

3 4 2 2 1 3 4 1 3 1 2 3 4 2 3 1 4 3

2 4 3 2 1 4 3 1 4 1 2 4 3 2 4 1 3 4 2 3 4

41 12 23

1
( )

6

x y z x y z x y z x y z x y z

x y z x y z x y z x y z x y z x y z

x y z x y z x y z x y z x y z x y z

x y z x y z x y z x y z x y z x y z x y z

Ω = − − + + −

− + + − − +

+ − − + + −

− + + − − +

= ⋅ ×r r r

  (2.6.71) 

The remaining weight functions may be expressed in the similar fashion. 

[ ]

14 1 13
134

2
1234

14 12 23

1
( )

6
1

( )
6

p
PW

⎡ ⎤⋅ ×⎣ ⎦Ω
= =

Ω ⋅ ×

r r r

r r r
      (2.6.72) 

[ ]

14 1 12
124

3
1234

14 12 23

1
( )

6
1

( )
6

p
PW

⎡ ⎤⋅ ×⎣ ⎦Ω
= =

Ω ⋅ ×

r r r

r r r
      (2.6.73) 

[ ]

13 1 12
123

4
1234

14 12 23

1
( )

6
1

( )
6

p
PW

⎡ ⎤⋅ ×⎣Ω
= =

Ω ⋅ ×

r r r

r r r

⎦
      (2.6.74) 

Implementation of the CIC weights on the 3-D unstructured tetrahedral grid is 

therefore analogous to a  volume-weighing and is represented graphically in Figure 9. 

 

( ), ,p p px y z

1

2

3

4

Figure 9. Graphical representation of the CIC weighting on the 3-D unstructured tetrahedral grid. 
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The number density and charge density at a node  from  particles 

of species s  are evaluated using the volume of the three dimensional Voronoi cell  as 

1 1 1( , , )r x y z= 1 sN

1Γ

(1 1 1 1 1
11

1
( , , ) , ,

sN

s s ps ps ps
p

n x y z n W x y z
=

≡ =
Γ ∑ )      (2.6.75) 

(1 1 1 1 1
11

1
( , , ) , ,

sN

s s s ps
p

x y z qW x y zρ ρ
=

≡ =
Γ ∑ )ps ps     (2.6.76) 

 

2.7 Solution of  Poisson’s Equation  and Electric Potential  Evaluation. Finite  

Volume Formulation.  

The finite volume method separates the domains into discrete control volumes. In each 

control volume appropriate differential equation is discretized. If possible, integrals over 

volume involving gradients are transformed into integrals over surfaces using the 

divergence theorem. Similarly, integrals over surfaces may be transformed into integrals 

around closed contours and back using Stokes’s theorem. The order of error for a finite 

element formulation is given as the highest derivative kept from a Taylor series expansion. 

A second order accurate expression for the two evenly spaced points about the point of 

interest  is I

21 1 ( )
2

+ −−∂
= +

∂ Δ
I Iu uu O x

x x
Δ        (2.7.1) 

Using more points in the Taylor series or reducing the spacing values may increase 

accuracy of the solution. 

In this work, advantage is taken of the Voronoi dual of the Delaunay triangulation in 

order to formulate a finite volume method for Poisson’s equation with accuracy adequate 

for engineering calculations. First, Voronoi cell corresponding to each Delaunay node 
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contains the set of points closer to that point than any other. Second, The facets of the 

Voronoi cell are orthogonal to the lines joining the tetrahedral nodes. 

The expressions for electrostatic conditions can be obtained from two of Maxwell’s 

equations 

0
t

∂
∇× = − =

∂
B

E         (2.7.2) 

0

ρ
ε

∇ =Ei          (2.7.3) 

In the electrostatic approximation the electric field may be expressed as negative gradient 

of the scalar potential 

= −∇ΦE          (2.7.4) 

The Poisson equation can be now obtained as 

2

0

ρ
ε

∇ Φ = −          (2.7.5) 

For a node-centered finite-volume scheme with finite volume associated with a node  

with a number of corresponding faces 

I

fN  the semi-discrete form of Gauss’s law is 

,
1 0

fN
I

I k
k

Q
A

ε=

=∑ Ei         (2.7.6) 

where ,I kA  is the face area, IQ  is the total charge enclosed by the volume associated with 

node  and summation is over all the faces of the finite volume  (example for 2-D case 

is shown in 

I IΓ

Figure 10). 

Using the potential  and the definition of the gradient Φ

ˆ
n

∂Φ
∇Φ =

∂
ni          (2.7.7)  
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1k =

2k =

3k =

4k =5k =

6k =

7k =

I

,1IA

IΓ

Figure 10. Example of the 2-D unstructured grid and Voronoi volume associated with the node . I

 

equation (2.7.6) becomes 

( )
1 1, , 0

ˆ
f fN N

I

k kI k I k

Q
A A

n ε= =

⎛ ⎞∂Φ⎟⎜∇Φ = = −⎟⎜ ⎟⎜⎝ ⎠∂∑ ∑ni      (2.7.8)   

Using the favorable characteristics of the Voronoi dual the derivative at the faces can be 

obtained from the central difference method 

0 2( )
Φ −Φ∂Φ

= +
∂

k I

I

O h
n L

       (2.7.9)   

Here,  is equivalent to the  in equation 0I 1I − (2.7.1) and denotes the number of the node 

in the Voronoi cell, k  is the number of the node at the opposite end of the edge of 

lengthL . 

An electric flux into a cell  across the Voronoi face of the edge with nodes  

and k  is 

IΓ I

( ) ,
,

1 ,

ˆ (
=

∇Φ = Φ −Φ∑ i
fN

I k
k II k

k I k

A
A

L
n )       (2.7.10) 
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A system of linear equations is formed by summing over all faces of the Voronoi cell 

corresponding to the node I  

,

1 , 0

( )
ε=

Φ −Φ =∑
fN

I k I
I k

k I k

A Q
L

        (2.7.11) 

 

1k =

2k =

3k =

4k =5k =

6k =

7k =

I

,1IA

,6IL

Figure 11. Example of the Delaunay mesh and the Voronoi dual in the 2-D case. 

 

The geometrical variables used in the equation (2.7.11) are shown in the Figure 11. 

In matrix form this equation becomes 

1,1 1,2 1,3 1, 1 1

2,1 2,2 2,3 2, 2 2

3,1 3,2 3,3 3, 3 3

0

,1 ,2 ,3 ,

1

N

N

N

N N N N N N N

R R R R Q

R R R R Q

R R R R Q

R R R R Q

ε

⎡ ⎤ ⎧Φ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎪ ⎪ ⎪ ⎪Φ⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪Φ⎢ ⎥ =⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪Φ⎢ ⎥ ⎪ ⎪ ⎪⎪ ⎪ ⎪⎣ ⎦ ⎩

"

"

"

# # # % # # #

" ⎪⎪⎪

⎫ ⎧ ⎫

⎭ ⎩ ⎭

     (2.7.12) 

Here  is the number of the mesh points, R are the coefficients which are equal to N ,I J
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,
,

1 ,

fN
I k

I J
k I k

A
R

L=

= ∑   for I ,       (2.7.13)J=

,
,

,

= − I J
I J

I J

A
R

L
    if node J  is adjacent toI ,     (2.7.14) 

, 0=I JR            otherwise.                 (2.7.15) 

 

2.8 Electric Field Evaluation  

Evaluation of the electric fields on the nodes of a computational domain is an essential part 

of the PIC algorithm. Knowing the electric field it is possible to obtain force acting on the 

computational particles and thus their acceleration and velocity. 

Three methods of evaluating the gradient of the potential are implemented in our 

code: two algorithms that utilize the divergence theorem with a cell-centered or node 

centered control volumes and the least square algorithm. 

For a volume V  surrounded by a surface  composed of n  faces, the divergence 

theorem may be expressed as 

S

V S

dV d∇ =∫ ∫i vY Y A

k A

        (2.8.1) 

where Y  is a vector and d  is an outward normal differential surface element. Expressed 

in the terms of a gradient this equation becomes: 

A

( )∇ Φ = Φ∫ ∫ki v
V S

dV d        (2.8.2)  

Since parameter k  is constant, equation (2.8.2) becomes 

V S

dV d∇Φ = Φ∫ ∫v A         (2.8.3) 
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If the gradient varies slightly over the control volume and the potential is constant for a 

given face then a discrete formulation of (2.8.3) will be 

1

1 n

f f
fV =

∇Φ = Φ∑ S         (2.8.4) 

where fS  is a normal vector of the face  with the magnitude equal to the area of the face 

and 

f

fΦ  is the potential at that face. 

In the case a of cell-centered control volume, the volume of the computational cell Ω  

is used. For the node-centered method, volume of all tetrahedra, which share the node of 

interest as shown in Figure 12 is used. 

 

I

Figure 12. A control volume used in the node-centered method of the electric field evaluation. 

 
The least square algorithm is implemented using nodes that share an edge of the 

Delaunay mesh with the node of interest. Locally linear variation of the potential is 

assumed to be 
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IΦ + ∇Φ Δ = Φi r k         (2.8.5) 

where  is the vector from node I  to node . For a point with m  neighbors above 

equation may be written in Cartesian coordinates as 

Δr k

k k k k
I II

x y z
x y z

∂Φ ∂Φ ∂Φ
Δ + Δ + Δ = Φ −

∂ ∂ ∂ IΦ

1

2

m

⎥
⎥

     (2.8.6)  

or in matrix form 

= ΔΦMd          (2.8.7)  

where  is the  matrix M 3m×

1 1

2 2

m m

x y z

x y z

x y z

⎡ ⎤Δ Δ Δ
⎢ ⎥
⎢ ⎥Δ Δ Δ⎢

= ⎢ ⎥
⎢
⎢ ⎥
⎢ ⎥Δ Δ Δ⎢ ⎥⎣ ⎦

# # #
M        (2.8.8) 

and  is the array containing components of the gradient at node . d I

 This linear system contains m  equations and three unknowns. Usually it will be an 

over-determined system, which means that it is necessary to search for a solution that fits 

this data in the best possible way. 

 It is possible to find a solution that minimizes the mean square root value of the 

error. The error for the point k  is given by 

(k k k k k
I II

R x y z
x y z

∂Φ ∂Φ ∂Φ
= Δ + Δ + Δ − Φ − Φ

∂ ∂ ∂
)I     (2.8.9) 

The square of this error over all neighbors of  is I

( )
2

2 2
k k k k k

k k I II

R R x y z
x y z

⎡ ⎤∂Φ ∂Φ ∂Φ⎢ ⎥= = Δ + Δ + Δ − Φ − Φ⎢ ⎥∂ ∂ ∂⎣ ⎦
∑ ∑ I   (2.8.10) 

We want to find the derivatives of the potential that will minimize the error, which 

means that we need to set the derivatives of R to zero 

 41



0

0

0

I

I

I

R

x

R

y

R

z

⎧⎪⎪⎪⎪⎪ ∂⎪ =⎪⎪ ⎛ ⎞∂Φ⎪ ⎟⎜∂⎪ ⎟⎜ ⎟⎪ ⎟⎜ ∂⎝ ⎠⎪⎪⎪⎪ ∂⎪ =⎨ ⎛ ⎞⎪ ∂Φ⎪ ⎟⎜ ⎟⎪∂⎜ ⎟⎪ ⎜ ⎟⎜ ∂⎪ ⎝ ⎠⎪⎪⎪ ∂⎪⎪ =⎪ ⎛ ⎞⎪ ∂Φ ⎟⎜⎪∂ ⎟⎜⎪ ⎟⎟⎜⎪ ∂⎝ ⎠⎪⎩

        (2.8.11) 

 The same set of equations may be obtained by multiplying equation (2.8.8) by the 

transpose of  M

T T= ΔM Md M Φ         (2.8.12) 

This is a set of three equation, and three unknowns that is solved using a Cramer’s rule. 

 It should be noted that methods described above, applied to the unstructured grids, 

do not have the same accuracy as they would in the case of structured Cartesian meshes. 

They are also sensitive to the grid quality. 

 

2.9 Integration of the Equations for Particle Motion 

The trajectory of a particle is described by 

( )
( ) ( )[ ext,s

s

d t q
t

dt m
= + ×

c
E r c B r ],t       (2.9.1) 

( )
( )

d t
t

dt
=

r
c          (2.9.2) 

Equation (2.9.1) is integrated following Buneman’s (1967) leap-frog formulation indicated 

in Figure 13. 
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Figure 13. The leap-frog integration scheme. 

 

The discretized form of the equation (2.9.1) is 

( ) ( )
( )

( ) ( )
( )ext

/2 /2 /2 /2
( , ,

2
p

p

qt t t t t t t t
t t

t m

+ Δ − − Δ + Δ − − Δ
= + ×

Δ

c c c c
E r B r )  

          (2.9.3) 

( )(( ) /2)t t t t t+ Δ = + Δ Δ +cr tr       (2.9.4) 

The methodology discussed here is adopted from Birdsall and Lagdon, (1991) following a 

method developed by Boris, (1970). Let 

( ) ( )
/2

2
q t t

t t
m

− Δ
− Δ = −

E
c c       (2.9.5)

( ) ( )

2
/2

q

m

t
t t + Δ

= ++ Δ
E

cc
t       (2.9.6) 

Substitution of equations (2.9.5)and (2.9.6) into (2.9.3) gives 

( )ext( )
2

q

t m
t

+ −
+ −−

= + ×
Δ

c c
c c B       (2.9.7) 

Taking the dot product with  we obtain + +c c−

22− +=c c  

The first algorithmic step is to obtain 
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( ) ( )
/2

2
q t t

t t
m

− Δ
= − Δ +c c

E       (2.9.8) 

Next is to perform a rotation according to (2.9.7) in order to obtain . This is 

accomplished by defining a vector t parallel to  

+c

extB

ext

2

q

m

Δ
≡t
B t

t

−

         (2.9.9) 

and using it along with equation (2.9.8) to produce  ′c

− −′ = + ×c c c         (2.9.10) 

The vector is perpendicular to  and . The angle between  and  is and  ′c + −c c extB
−c ′c

ext

2

q

m

Δ
=
B

t
t

−

s

         (2.9.11) 

Since  is parallel to ,  can be found from + −c c ext′ ×c B +c

+ − ′= + ×c c c         (2.9.12)  

where  is parallel to  and its magnitude is determined by the requirement that the 

square of the velocities (kinetic energy) is unchanged by the rotation according to i.e. 

s extB

22− +=c c . Therefore,  

2

2

1 t
=

+

t
s          (2.9.13) 

The magnitude of the angle of rotation can be evaluated from construction of the 

vectors  and according to +c −c

exttan
2 2 2

pq t

m

w tθ + −
⊥ ⊥
+ −
⊥ ⊥

− Δ
= =

+

Δ
=

c c

c c

B
     (2.9.14) 

The velocity components in this equation are perpendicular to the magnetic field and θ 

is the angle between the velocity vectors. 
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Finally, the second half of the electric impulse is added to  to obtain  following 

equation 

+c /2t t+Δc

(2.9.6) and the particle position at the new timestep is given by (2.9.4). 

 In order to derive a stability criterion for the leap-frog scheme equations (2.9.3) and 

(2.9.4) may be written for the three-dimensional case as (assuming electrostatic 

simulations) 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )(
( ) ( ) ( )( )
( ) ( ) ( )( )

2
1 1

2
2 2

2
3 3

2 2
1

2 2
2

2 2
3

/2 /2

/2 /2

/2 /2

1 /2 1

1 /2 1

1 /2 1

p

p

p

p

p

p

c t t c t t w tx t

c t t c t t w ty t

c t t c t t w tz t

x t c t t t x t w t

y t c t t t y t w t

z t c t t t z t w t

⎧ + Δ = − Δ + Δ⎪⎪⎪⎪⎪ + Δ = − Δ + Δ⎪⎪⎪⎪ + Δ = − Δ + Δ⎪⎪⎪⎨⎪ + = − Δ Δ + − Δ⎪⎪⎪⎪ + = − Δ Δ + − Δ⎪⎪⎪⎪⎪ + = − Δ Δ + − Δ⎪⎪⎩

)

⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

tΔ

    (2.9.15) 

A matrix form of the equations (2.9.15) is 

( )

( )

( )

( )

( )

( )

( )

( )

( )
( )

( )

( )

1 1

2 2

3 3

/2 /2

/2 /2

/2 /2

c t t c t t

c t t c t t

c t t c t t
G

x t t x t

y ty t t

z tz t t

⎧ ⎫ ⎧ ⎫+ Δ⎪ ⎪ − Δ⎪ ⎪⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪+ Δ − Δ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪+ Δ − Δ⎪ ⎪ ⎪⎪ ⎪ ⎪=⎨ ⎬ ⎨⎪ ⎪ ⎪+ Δ⎪ ⎪ ⎪⎪ ⎪ ⎪⎪ ⎪ ⎪⎪ ⎪ ⎪+ Δ⎪ ⎪ ⎪⎪ ⎪ ⎪⎪ ⎪ ⎪⎪ ⎪ ⎪+ Δ⎪ ⎪ ⎪⎪ ⎪⎪ ⎪ ⎩ ⎭⎩ ⎭

     (2.9.16) 

where amplification matrix G  is 

2

2

2

2 2

2 2

2 2

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

p

p

p

p

p

p

w t

w t

w t
G

t w t

t w t

t w

⎧ ⎫− Δ⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪− Δ⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪− Δ⎪ ⎪⎪ ⎪= ⎨ ⎬⎪ ⎪Δ − Δ⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪Δ − Δ⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪Δ −⎪ ⎪⎩ ⎭

  (2.9.17) 
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The eigenvalues of G  are 

( 2 2 2 2
1,2,3

1
2

2 p p pw t w t w tλ = − Δ + Δ Δ − )4      (2.9.18) 

( 2 2 2 2
4,5,6

1
2

2 p p pw t w t w tλ = − Δ − Δ Δ − )4      (2.9.19) 

A scheme is stable if the eigenvalues of the amplification matrix lie on or within 

the unit circle 

max 1λ ≤          (2.9.20) 

Following (2.9.20) the stability criterion for the leap-frog scheme in 3-D case is 

2pw tΔ <          (2.9.21) 

 

2.10 Particle Search-Locate Algorithm (Particle Tracer) 

Particles are moved between adjacent tetrahedrons using a particle-tracing technique. 

Three types of algorithms are commonly used on unstructured grids to find the host cell of 

a computational particle (Lonher (1990)). Algorithms that use a Cartesian background grid 

superimpose an unstructured grid on a Cartesian background grid.  Cells of the 

unstructured grid covering elements of the regular grid are stored. First, the number of the 

Cartesian cell ( ), ,c c ci j k  containing the new position of the particle position. The next step 

of the tracing algorithm is to check all elements of the unstructured grid to find a new host 

element for the particle. Though this method is easy to implement, it is inaccurate when 

meshes with significant variations in cell sizes are used. Tree-structure search-locate 

algorithms are an extension of Cartesian background algorithms. By using a hierarchy of 

Cartesian meshes, they can be used on complex unstructured grids with large cell size 
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variations. The successive-neighbor search algorithm is used for particle tracing in our 

Delauney PIC implementation because it is fast and comparatively easy to implement. 

Also, performance of successive neighbor search algorithms does not suffer for 

unstructured meshes with greatly varying cells sizes. Successive-neighbor search 

algorithms are based on the idea that the new particle position is not many cells away from 

the original cell. This assumption arises from restrictions of stability and accuracy of the 

PIC simulations as described in Chapter 2. Therefore only cells surrounding the original 

particle owner should be searched. 

Following Figure 14, the particle with  resides in a Delauney cell with volume 

. At t  the particle moves to position  and the first step of the 

algorithm is to evaluate volume-weighted functions , , , . 

( )p tr

1234Ω t )t+ Δ (p t + Δr

1N 2N 3N 4N

 

 1

2

3

4

( )p t t+ Δr

( )p tr

Figure 14. Tetrahedral computational cell and the possible position of the particle at time t t . + Δ
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These functions are evaluated from the new particle position  with 

respect to the nodes of the Delaney cell of origin as  

(p t + Δr )t

( )
[ ]

24 2 23
234

1
1234

14 12 23

1
( )

6( ) 1
( )

6

p
p

pN t dt
⎡ ⎤⋅ ×Ω ⎣ ⎦

+ = =
Ω ⋅ ×

r r r
r

r r r
     (2.10.1) 

where  etc. 2 2( )p p t t= + Δ −r r r

Similarly, 

( )
[ ]

14 1 13
134

2
1234

14 12 23

1
( )

6( ) 1
( )

6

p
p

pN t dt
⎡ ⎤⋅ ×Ω ⎣

+ = =
Ω ⋅ ×

r r r
r

r r r

⎦
     (2.10.2) 

( )
[ ]

14 1 12
124

3
1234

14 12 23

1
( )

6( ) 1
( )

6

p
p

pN t dt
⎡ ⎤⋅ ×Ω ⎣

+ = =
Ω ⋅ ×

r r r
r

r r r

⎦
     (2.10.3) 

( )
[ ]

13 1 12
123

4
1234

14 12 23

1
( )

6( ) 1
( )

6

p
p

pN t dt
⎡ ⎤⋅ ×Ω ⎣ ⎦

+ = =
Ω ⋅ ×

r r r
r

r r r
     (2.10.4) 

As seen from equations (2.10.1) to (2.10.4)  only in the case when 

. If  then cells adjacent to  should be 

searched. 

1 2 3 4 1N N N N+ + + =

1234( )p t dt+ ∈ Ωr 1 2 3 4 1N N N N+ + + > 1234Ω

The time and exact point of the intersection of the particle with the face of the 

tetrahedron are obtained through the solution of a system of linear equations involving two 

edges of the face, the current particle position and its velocity. A solution is obtained in a 

skewed coordinate system defined by the face edges. Intersection of a computational 

particle  with a face 1 2  p 3− −
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( ) ( ) 21 32p pt t τ α β+ = +r c r r

0

      (2.10.5) 

In the equation (2.10.5)  is a time it takes for the particle to move from its initial 

position to the face 1 2  and coefficients α  and  define the point of intersection in 

the skewed coordinate system. If  is negative or 1 ,  then the intersection does 

not occur. If  then the intersection occurs outside the face. This system of 

equations may be ill-conditioned if the cell is badly shaped or if the velocity of the particle 

is very large. 

τ

3− − β

τ α β< <

1α β+ >

 

2.11 Electrostatic Boundary Conditions  

Three types of boundary conditions are currently implemented: Dirichlet, Neumann and 

floating conductor. Forcing Dirichlet boundary conditions we set the voltage on simulation 

domain boundaries, while Neumann boundary conditions specify a normal derivative of 

electric field. According to Jackson (1999), a solution of Poisson equation may be 

specified uniquely by piece-wise continuous Dirichlet and Neumann boundary conditions. 

 

Figure 15. Graphical representation of the Dirichlet and Neumann boundary conditions (from Hammel 

(2002)). 
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An example, illustrating boundary condition implementation is shown in Figure 15. 

Potential  is directly specified on the face of cell number 1. A voltage, assigned to the 

boundary faces by the Dirichlet condition is placed in the right hand side of the equation 

0Φ

(2.7.12) and a corresponding row of coefficients is set to zero except the diagonal term, 

which is set to one. 

1 0

2,1 2,2 2,3 2, 2 2

3,1 3,2 3,3 3, 3

0

,1 ,2 ,3 ,

1 0 0 0

1
N

N

N N N N N N N

R R R R Q

R R R R Q

R R R R Q

ε

⎧ ⎫ ⎧ ⎫⎡ ⎤ Φ Φ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎪ ⎪ ⎪ ⎪Φ⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪Φ⎢ ⎥ =⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪Φ⎢ ⎥ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎣ ⎦ ⎩ ⎭ ⎩ ⎭

"

"

"

# # # % # # #

"

3      (2.11.1) 

A Neumann boundary condition is assigned to cell number 2. The value of the inward 

electric field multiplied by the face area is added to the corresponding row of the matrix, 

for equation (2.11.1) to become 

01

2,1 2,2 2,3 2, 2 2 0 ,2 ,2

3,1 3,2 3,3 3, 3 3

0

,1 ,2 ,3 ,

1 0 0 0

1
N N N

N

N N N N N N N

R R R R Q E A

R R R R Q

R R R R Q

ε

ε

⎧ ⎫⎧ ⎫ Φ⎡ ⎤ Φ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎪ ⎪⎢ ⎥ ⎪ ⎪⎪ ⎪⎢ ⎥ ⎪ ⎪⎪ ⎪Φ +⎪ ⎪⎪ ⎪⎢ ⎥ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎪ ⎪⎢ ⎥ ⎪⎪ ⎪⎪ ⎪ ⎪ ⎪Φ⎢ ⎥ =⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪Φ⎢ ⎥ ⎪ ⎪ ⎪⎪ ⎪⎣ ⎦ ⎪⎩ ⎭ ⎩ ⎭

"

"

"

# # # % # # #

" ⎪⎪

⎪    (2.11.2) 

Dirichlet boundary conditions have precedence over Neumann boundary conditions in the 

case when these two conditions interfere. 

 Simulations of bounded plasmas often involve different external circuit elements. 

In this case the solution of the Poisson equation within the plasma must be coupled with 

external circuit equations.  

Following Vahedi and DiPeso (1997), time variation of the total charge density on 

the driven electrode may be evaluated from the Kirchhoff’s current loop law as 
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( )T
conv

d
A I t Aj
dt
σ

= +         (2.11.3) 

where  is a total charge density,  is the external circuit current, A  is an electrode 

surface area and 

Tσ ( )I t

convj  is a convective current density at the electrode due to the plasma. A 

discrete form of equation (2.11.3) will be 

( )( ) ( ) ( ) ( )( )T T convA t t t Q t Q t t Q tσ σ− − Δ = − − Δ +     (2.11.4) 

In the above Q  is a charge on the capacitor and  is a charge collected by the electrode 

for the time  due to charged particles from the plasma. 

convQ

tΔ

A floating potential is a specific case of the conducting boundary with no charge 

exchange via an external circuit. Under this assumption all terms of equation (2.11.4) that 

include a capacitor charge will be equal to zero to give 

( ) ( )( ) ( )T T convA t t t Q tσ σ− − Δ =       (2.11.5) 

In order to calculate the total charge on the boundary at a specific time we will use a semi-

discrete Gauss’s law, which can be obtained from the discretization of equation (2.7.11) as 

( ) ,
0 , , ( ) (

,

I k
N I N I I k I plasma I I boundary

k I k

A
E A Q A

L
ε

⎛ ⎞⎟⎜ ⎟⎜ + Φ − Φ = +⎟⎜ ⎟⎟⎜⎝ ⎠
∑ )σ

)

)

   (2.11.6) 

In equation (2.11.6) an outward electric flux into the Voronoi volume corresponding to the 

node  is assigned by the  term,  is a boundary area associated with a 

node  and  is the total charge at this node due to the plasma. Summing equation 

I , ,N I N IE A (I boundaryA

I (I plasmaQ

(2.11.6) for all boundary nodes I  we will get 

( ) ( ) ( ) ( ) ( )( ) ( ),
( ) ( ) 0 , , ( )

,

I k
I I boundary T I boundary N I N I I k I plasma

I I I k I k

A
t A t A E t A t t Q t

L
σ σ ε

⎛ ⎞⎛ ⎞ ⎟⎜ ⎟⎜ ⎟⎟⎜ ⎜= = + Φ − Φ − ⎟⎟⎜ ⎜ ⎟⎟⎜ ⎟⎜ ⎟⎜ ⎝ ⎠⎝ ⎠
∑ ∑ ∑ ∑

          (2.11.7) 

Using (2.11.5), equation (2.11.7) becomes 
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( ) ( ) ( ) ( ) ( ) ( )( ) ,
0 , , ( )

,

( )I k
T T conv N I N I I k I plasma

I k I k

A
A t A t t Q t E t A t t Q t

L
σ σ ε

⎛ ⎞⎛ ⎞ ⎟⎜ ⎟⎜ ⎟⎟⎜ ⎜= − Δ + = + Φ − Φ − ⎟⎟⎜ ⎜ ⎟⎟⎜ ⎟⎜ ⎟⎜ ⎝ ⎠⎝ ⎠
∑ ∑

          (2.11.8) 

If all boundary nodes have the same constant potential  than this potential at a specified 

time can be found from equation 

0Φ

(2.11.8) as 

( )

( ) ( ) ( )( ) ( ) ( ) ,
( ) , ,

0 ,
0

,

,

1 I k
T conv I plasma N I N I k

p k I k

I k

I k I k

A
A t t Q t Q t E t A t

L
t

A

L

σ
ε

⎛ ⎞⎟⎜ ⎟⎜− Δ + + + − + Φ ⎟⎜ ⎟⎟⎜⎝ ⎠
Φ =

∑ ∑

∑ ∑
 

          (2.11.9) 

From the principle of linear superposition, the total electrostatic potential may be 

considered as the sum of the potential due to the plasma charge, the imposed electric field 

and the electrodes. 

( ) ( ) ( ) ( )plasma E field electrodest t t−Φ = Φ + Φ + Φ t

ma t

     (2.11.10) 

Potential on the driven electrode may be normalized in such a way that field at specific 

time due to potential drop from that electrode may be calculated as the initial potential 

multiplied by a constant. 

( ) ( ) ( )0 , ( )I NL I I plast tΦ = Φ Φ + Φ       (2.11.11) 

where  is the potential due to plasma and imposed electric field,  is 

the potential due to driven conductor and  is normalized potential profile. 

( )( )I plasma tΦ ( )0 ,NL ItΦ Φ

,NL IΦ

By substituting equation (2.11.11) into (2.11.9) a value for the potential  at a specified 

time may be found. 

0Φ
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Φ =

− Φ

∑ ∑

∑ ∑
          (2.11.12) 

 

2.12 Particle Loading  

In the beginning of every simulation involving some type of background plasma, 

computational domain should be populated with particles according to the local density. It 

is assumed that the distribution of particles inside each cell is uniform and the number of 

model particle inside the cell is calculated in accordance to the volume of the cell and total 

particle weight. Particles are randomly distributed within a cell. 

Initial velocities of the particles are prescribed with the assumption of thermal 

equilibrium and independence of particle velocity components. Therefore, the distribution 

function for one component of thermal velocity is 

( ) (2 2
1 2 3exp , , ,if i i C

β
β

π
= − = )C C       (2.12.1) 

where 
2
m
kT

β =  and , , and  are the components of velocity in the x, y, and z 

directions. The structure of the distribution function can be used in the generation of the 

particle velocity vector. From a computational point of view, the most economical way to 

generate initial velocity in this case is sampling of , , and  according to distribution 

function 

1C 2C 3C

1C 2C 3C

(2.12.1). Due to independence of the velocity components, the distribution 

function that describes , , and  is only a product of type 1C 2C 3C (2.12.1) functions 

((
2

2 2 2 2
1 2 3 1 2 3exp -β

β
π

= +f f f C C C ))+      (2.12.2) 
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In a spherical coordinate system, this product can be rewritten as 

( ) ( )2 2 2 21d d dw exp - d d
2

β β θ
π

=u v w φf uf vf r r d     (2.12.3) 

where r , , and φ  are coordinates in the spherical system of reference. Transition 

between these coordinate systems is described as 

θ

( ) ( )
( ) ( )
( )

1

2

3

cos sin

sin sin

cos

θ φ

θ φ

φ

=

=

=

C r

C r

C r

        (2.12.4) 

The advantage of changing to a spherical coordinate system is that the variables r , 

, and  can be sampled much more easily than , , and . Equation θ φ 1C 2C 3C (2.12.1) can be 

represented as product of three distribution functions for variables , , and .  As the 

Maxwellian velocity distribution function has no directional preference,  is uniformly 

distributed between 0 and , and φ  is randomly distributed between 0 and π. This means 

that value of θ  can be defined by 

2 2rβ θ φ

θ

2π

2 Rθ π=          (2.12.5) 

where  is random number distributed uniformly between 0 and 1. Similarly, the value of 

 may be found by 

R

φ

Rφ π=          (2.12.6) 

The remaining part of equation (2.12.1) can be presented as distribution function 

for variable  2 2rβ

(2 2
2 2exp -

r
fβ β= )r         (2.12.7) 

Using the standard inverse-cumulative method to sample from this distribution function, 

we get 
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( )ln R
r

β
−

=          (2.12.8) 

Transferring back into a Cartesian coordinate system gives values of thermal 

velocity components for an equilibrium gas. 

 

2.13 Particle Injection  

The injection routine is an important part of PIC simulations. It allows a plasma stream to 

enter a computational domain with prescribed initial parameters. 

The number of particles to be added into the simulation can be evaluated on the 

base of analysis of molecular flux across a surface element. We will choose such a 

coordinate system where two of coordinate axes are in the injection plane as shown in 

Figure 16. In this case surface element lies in y  plane, and mean flow velocity of 

injected particles is in x  plane. 

z−

y−

 

x

y

z
x ′

u

θ

Figure 16. Coordinate system utilized in the particle injection algorithm. 
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The inward number flux �N  can be defied by integration of the velocity distribution 

function 

1 2 3
0

1 2 3

d du du

d du du
s s

f u
N n

f u

+∞ +∞ +∞

−∞ −∞
+∞ +∞ +∞

−∞ −∞ −∞

=
∫ ∫ ∫
∫ ∫ ∫

u
�       (2.13.1) 

In this coordinate system, particle velocity can be expressed in terms of mean flow velocity 

 and thermal molecular velocity u

( )

( )
1 1

2 2

3 3

cos

sin

c C

c C

c C

θ

θ

⎧⎪ = +⎪⎪⎪⎪ = +⎨⎪⎪⎪ =⎪⎪⎩

u

u         (2.13.2) 

Equation (2.13.1) can be rewritten as 

( )( ) ( )( )
( )

3
2 2 2 2

1 1 2 33 2
cos

cos exp d d ds sN n C C C C c c c
θ

β
θ β

π

+∞ +∞ +∞

−∞ −∞ −
= + − + +∫ ∫ ∫ u

u�
1 2 3  

(2.13.3) 

After integration, this expression becomes (Bird, (1998)) 

( )( ) ( ) ( )( ){ }( )2 2exp cos cos 1 erf cos
2

s
s

n
N s s sθ π θ θ

β π
= − + +�   (2.13.4) 

The value of  can be interpreted as the number of gas molecules of the species 

of interest crossing a unit area surface element per unit time with mean flow velocity . 

The number of model particles to be added to the simulation, , is given by 

�N s

u

sNΔ

s
s

s

N
N

F
Δ = Δ

�
tA         (2.13.5) 

where  is the computational weight of the particles of type s , is the time step and  

is the area of the surface element. 

Fs tΔ A
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Once the number of new particles is known, initial parameters must be prescribed 

to them. Each model particle in characterized by position and velocity vectors. A position 

vector can be easily generated if we assume uniform distribution of new model particles 

over the surface element. Generation of a velocity vector is not so straightforward. We will 

use a flow injection model where normal component of velocity vectors of added particles 

are distributed due to distribution 

( )( ) ( 2 2
1 cos exp )1f C θ β∝ + −u C       (2.13.6) 

To apply standard acceptance-rejection method to the distribution, it is necessary to 

get maximum value of the distribution function. The standard approach used gives: 

( ) ( )(2 2 2
1 1 1

1

exp 1 2 cos 0
f

C C C
C

β β θ
∂ ⎡∝ − − + =⎣∂

u )⎤⎦     (2.13.7) 

Thermal velocity, which corresponds to the maximum value of the distribution 

function can be found as a solution of the quadratic equation 

( )(2
1 11 2 cos 0C Cβ− + u )θ =        (2.13.8) 

which has two solutions 

( ) ( )2 2 2 2

1 2

cos cos 2

2
C

β θ β β θ
β

− ±
=

u u +
     (2.13.9) 

Due to the choice of coordinate system, u must be more that zero and the final 

result is given by 

′

( ) ( )2 2 2

1

cos 2 cos

2
C

θ β+ −
=
u u θ

      (2.13.10) 

Taking into account the last expression, the ratio of probability to the maximum 

probability is given by 
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( )( )
( ) ( )

( )
( ) ( )( )

1

2 2 2
max

2
2 2 2 2 2

1

2 cos

cos 2 cos

cos1
          exp cos cos 2

2 2

CP
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θ

θ β θ

β θ
θ θ β β

+
= ×

+ −

⎛ ⎞⎟⎜ ⎟× + − + −⎜ ⎟⎜ ⎟⎜⎝ ⎠

u

u u

u
u u

 (2.13.11) 

Tangential velocity components are generated fitting the equilibrium distribution function 

(2.12.1) using the same procedure that was used for the loading of particles. 

After all necessary vectors are generated, the particle may be moved into computational 

domain. 

 

2.14 Macroscopic Plasma Properties Evaluation  

The species and total mean velocities of the particles in the direction α  are 

1

sIN

s p
p

s I
sk I

F

n

α

α
==

Γ

∑ c
u         (2.14.1) 

where  is the total number of particles of s  type in the Voronoi cell . sIN IΓ

The average temperature of the particles of type s  at the node I  can then be found using 

23 1
2 2s skT m= Cs         (2.14.2) 

to be 

2
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3
1 1

1

1
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k N F

N F

= =

=
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∑ ∑
∑

∑

⎟
     (2.14.3) 

In equation (2.14.3) . The average temperature for the particles located in the  

will be 

, ,r x y z= IΓ

1

NS
sI

I
s I

N
T

N=

= ∑ sIT         (2.14.4) 
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 The pressure fp  at the center of the face  from the collisions of plasma particles with the 

face can be defined as a momentum transported thought a surface element as 

f

1 1

c
sfNNS

s s pn
s p

f
f

m F

p
A t

= ==
∑ ∑

        (2.14.5) 

where  is the number of particles of type s  which hit the face number , , 

during the timestep t ,  is the velocity of the particles in the direction n  normal to the 

face  and 

sfN f 1,f N= F

pnc

f fA  is the area of the face . f

The pressure coefficient  then will be pfc

f
pf

p p
c

q
∞

∞

−
=          (2.14.6) 

here p  is the freestream pressure which is obtained by the ideal gas law ∞

p n kT∞ ∞= ∞          (2.14.7) 

In (2.14.7) the density and temperature at infinity are taken to be equal to the injection 

parameters. In the equation (2.14.6) q∞  is the freestream dynamic pressure 

21
2

q ρ∞ ∞= c∞

∞

         (2.14.8) 

where 

1

NS

s s
s

m nρ∞
=

= ∑         (2.14.9) 

The skin coefficient ffc  is 

f
ffc q

τ

∞

=          (2.14.10) 

here fτ  is the shear stress 
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sfNNS
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        (2.14.11) 

Heat transfer coefficient  is calculated as follows hc

( ) (( ))0 0
1 1

1
2

sfNNS

s s p p p p
s p

hf
f

Fm

c
A tq

= =

∞ ∞

⋅ − ⋅
=

∑∑ c c c c

c
     (2.14.12) 

where  is the velocity of the particle  before it hits the face  and  is its velocity 

after the collision. 

pc p f 0pc

 60



CHAPTER 3 SIMULATION  OF  CYLINDRICAL  LANGMUIR  

PROBE  IN  COLLISIONLESS  PLASMAS 

In order to validate the code we apply it to the problem of current collection by cylindrical 

probes in collisionless, stationary and drifting, unmagnetized plasma operating in the Thin 

Sheath and the Orbital Motion Limited (OML) regimes. We are interested in measuring the 

electron and ion currents collected by the probe as a function of the probe potential for 

different background plasma parameters. Results are compared to the numerical 

predictions by Laframboise (1966) and analytical solutions by Peterson and Talbot (1970), 

Kanal (1964), and Johnson and Murphree (1969). An overview of these three works is 

presented followed by numerical implementation and results. 

3.1 Review of the Current Collection Theory 

The theory of the current collection by the cylindrical Langmuir probes is developed for 

plasma consisting of electrons and single-species ions. The distribution function for a 

species  is a drifting Maxwellian, ,s e≡ i

3/2 2(
( , , ) ( , ) exp

2 2
s s s

s s
s s

m m
f t n t

kT kTπ

⎛ ⎞ ⎡ −⎟⎜ ⎢⎟= −⎜ ⎟⎜ ⎢⎟⎜⎝ ⎠ ⎣ ⎦

c u
r c r

)s ⎤
⎥
⎥

s s

    (3.1.1) 

where  is the mass,  is the velocity,  is the average (or drift) 

velocity (brackets indicate average over the species distribution function) and  is the 

temperature. The most probable thermal speed is 

sm 1 2 3( , , )s c c c≡c ( , )s t = 〈 〉u r c

sT

2 s skT m  and the speed ratio is 

( 2s s s sS u kT m= )         (3.1.2) 

Theory requires that the cylindrical probes are operating in a collisionless plasma, 

therefore the Knudsen number based on the probe radius  must satisfy pr
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1st st pKn rλ=         (3.1.3) 

where  is the mean free path for collisions between species s and t. 

The probe theory requires that the sheath is collisionless, i.e., 

, , , ,st ei ee en ii inλ λ λ λ λ λ≡

, , , ,S ei ee en iid λ λ λ λ λin         (3.1.4) 

The sheath thickness of a probe at a potential  with respect to the plasma potential can 

be estimated by 

pΦ

( ) ( )
3
42 3 2S D pd eλ= Φ ekT        (3.1.5) 

where the Debye length is given by 

2
D o ekT e nλ ε= e

e

        (3.1.6) 

 Laframboise (1966) developed a method to numerically predict a current collected 

by an electrically conducting Langmuir probe from the collisionless, stationary 

Maxwellian plasma. Solution was obtained for the wide range of the ion to electron 

temperatures , probe potentials up to 25 times the thermal energy and probe radius to 

Debye length  up to 100. 

/iT T

/p Dr λ

 Equations (3.1.7)-(3.1.10) were solved numerically with an iterative numerical 

scheme using an extension of Bernstein and Rabinowitz (1959) method. 

Vlasov equation: 

( ) ( ) ( ), , ,
0s s s

s

df f f

dt

∂ ∂
= ⋅ + ⋅

∂ ∂
r p r p r p

c F
r p

=      (3.1.7) 

Poisson’s equation: 

2

0

ρ
φ

ε
∇ = −          (3.1.8) 
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s sZ e
φ∂

= −
∂

F
r

         (3.1.9) 

( ) ( ) 3,s sn f= ∫r r c d c

)

        (3.1.10) 

In the above equations ( ,sf r p  is the distribution function in position  and momentum  

space and  is the force due to electric field. Results that include potential distribution, 

charge density and probe current are presented in graphical and tabular form. 

r p

sF

 In Peterson and Talbot (1970) it was shown that for ,  and 

 results produced by Laframboise (1966) could be reproduced by the following 

relation 

5 / 100p Dr λ≤ ≤ 3pχ >

/i i eT ZT ≤ 1

(0I I
α

β χ= + )         (3.1.11) 

where  is a random thermal current and  is a non-dimensional potential 0I pχ

0

2
p

kT
I r LZqN

m
π

π
=         (3.1.12) 

( )p s
p

e

e

kT
χ

Φ − Φ
=         (3.1.13) 

ln

m

a

p r

D

a
c

r
b

θ
α

θ
λ

⎛ ⎞⎟⎜ ⎟= + ⎜ ⎟⎜ ⎟⎛ ⎞ ⎜⎝ ⎠⎟⎜ ⎟ +⎜ ⎟⎜ ⎟⎜⎝ ⎠

d+        (3.1.14) 

3

ln

ln ln

p a

p pD r

D D

r l
e f g

r r
θ

β
λ θ

λ λ

⎧ ⎫⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎡ ⎤⎛ ⎞⎪ ⎪⎟⎪ ⎪⎜⎢ ⎥⎟= + + − +⎜⎨ ⎬⎟⎢ ⎥⎜ ⎟ ⎛ ⎞ ⎛ ⎞⎜⎪ ⎪⎝ ⎠⎢ ⎥⎪ ⎪⎟ ⎟⎜ ⎜⎣ ⎦ ⎟ ⎟⎪ ⎪⎜ ⎜⎟ ⎟⎪ ⎪⎜ ⎜⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠⎪ ⎪⎪ ⎪⎩ ⎭

l     (3.1.15) 

In equations (3.1.14) and (3.1.15)  is an effective temperature ,  is a space potential, θ sΦ
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subscripts  and  refer to attracted and repelled particles respectively. Numerical 

constants a  to m  are given in a tabulated form for the cases of 

a r

1a

r

θ
θ

≤  and 1a

r

θ
θ

> . 

 Kanal (1964) theoretically investigated a current collection by stationary 

and moving Langmuir cylindrical probes. Kanal assumed that the sheath around the probe 

has a cylindrical shape, though this assumption is not valid for the fast probes, and that any 

effect of the “presheath” is negligible. For the case of 0 0p

e

e
V

kT

Φ
= >  (accelerated current) 

the normalized current as a function of probe velocity and its orientation for the finite 

sheath thickness was found to be 

( )2
0

2 2
/2

0 0 02 2 2 2
0

2 3 3
, 1 2 ,

! 2 ! 2

m m
p pk V m
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m a r r m
γ

π

∞
− −

=

⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎟⎜ ⎟⎜ ⎟⎜ ⎜ ⎟⎟⎜ ⎟ ⎟⎜ ⎜ ⎜= Γ + + + + ⎟⎟⎟ ⎟⎜ ⎜ ⎜ ⎜ ⎟⎟⎟ ⎟⎜ ⎜ ⎟ ⎟⎜ ⎜− −⎟⎜ ⎟⎜ ⎝ ⎠ ⎝⎝ ⎠⎝ ⎠
∑ 0

p

k
a r

⎞⎟
⎟⎠

          (3.1.16) 

In the above equation current is normalized with respect to the random current, Γ  and  

are the incomplete gamma functions. In the case of stationary probe ( ), equation 

γ

0k =

(3.1.16) becomes 

0

2 2

0 2 2 2 20
1 p pV

an k
p p p

r ra
I e erfc V erf

a r r a r=

⎛ ⎞⎛ ⎞⎛ ⎞ ⎟⎟ ⎜⎜ ⎟⎜ ⎟⎟ ⎜⎟⎜ ⎜= + + ⎟⎟⎟ ⎜⎜ ⎜ ⎟⎟⎟ ⎜⎜ ⎟⎜ ⎟− −⎟⎜ ⎟⎜⎝ ⎠⎝ ⎠ ⎝ ⎠
0V    (3.1.17) 

When 1
p

a
r

→  (“shear-area limited” or “Thin Sheath” case), all particles that enter the 

sheath are collected by the probe 

an
p

a
I

r
=          (3.1.18) 

When 
p

a
r

→ ∞  (“orbital motion limited” case), collected current does not depend upon 
p

a
r

 

and 
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(0
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2 V
anI V e erfc

π
= + )0V        (3.1.19) 

 Johnson and Murphree (1969) developed an asymptotic expression for the ion 

current given by 
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I A n e S n

m nπ π

∞
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=

⎛ ⎞ ⎡ ⎤ ⎛⎟⎜ ⎟⎜⎟= − ⎢ ⎥⎜ ⎟⎟ ⎜ ⎟⎜ ⎝⎟⎜ ⎢ ⎥⎝ ⎠
3
2

⎞
Γ +

⎠⎣ ⎦
∑     (3.1.20) 

In the above expression the sheath is of a negligible thickness, 1s pd r  and is 

independent of the applied potential. Therefore, the current collection area of the probe of 

length becomes equal to its geometric area given by pl

2 p pA rπ⊥ = l          (3.1.21) 

 

3.2 Unstructured 3-D PIC Simulations of the Current Collection by a Cylindrical 

Probes 

The PIC simulations represent the current collection by the cylindrical Langmuir probes 

from a stationary and drifting plasmas with parameters specified in Table 1. In the 

beginning of every simulation computational domain is loaded uniformly with electrons 

and ions following Maxwellian distribution function (3.1.1). Examples of the 

computational domains used in the current collection simulations are shown in Figure 17 

and Figure 18. Computational particles that reach boundaries of the domain are removed 

from the simulation. Background particles are also injected at each time-step from the 

outside boundaries of the domain according to their thermal fluxes. Zero electric field is set 

at the open boundaries of the domain. A specified (positive or negative) potential is applied 

at the surface of the cylindrical probe. The size of the computational domain indicated by 
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the radius DR  in Table 1, was set so that the potential at the boundaries reaches zero, i.e. 

the unperturbed value of the space (or plasma) potential. Particles that reach the probe are 

removed from the simulation. The total charge carried by these particles is calculated at 

every time-step and collected ion and electron currents are measured. 

 

Case # 1.1 1.2 2.1 2.2 3 4 

Regime Thin Sheath Thin Sheath OML Thin Sheath 

3 [1/ ]e in n m=  1016 1016 1016 1016

 [ ]eT eV  2 2 2 2 

/i eT T  1 0.1 1 1 1 

 [ ]pr m  10-3 10-3 5×10-4 10-5 5×10-3

 [ ]DR m  10-2 10-2 5×10-3 10-2 5×10-2

/p Dr λ  10 10 5 0.1 50 

/p ee kTΦ  -10 to +10 +2 to +9 +1 to +9 -2 

iS  0 0 0 1 to 7 

Comparisons Laframboise 
(1966), 

Peterson and 
Talbot (1970) 

Laframboise 
(1966), 

Peterson and 
Talbot (1970) 

Laframboise 
(1966), 

Kanal (1964) 

Johnson and 

Murphree (1969) 

Table 1. Input conditions and computational parameters for the current collection simulations. 
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Figure 17. An example of the computational domain used in the simulations (Thin Sheath regime). 

 

 

Figure 18. An example of the computational domain used in the simulations (OML regime). 

 

 The first set of simulations (Case 1.1 and Case 1.2) was conducted in order to 

analyze the influence of the ratio  on the electron and ion currents in the Thin Sheath 

regime ( ). Potential distributions around a cylindrical probe at , 

/iT Te

1/p Dr λ > / 5p ee kTΦ =
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/i eT T = 1 10 and  is shown in /p Dr λ = Figure 19. Formation of the positively charged 

sheath around the probe can be observed. The electron and ion currents measured in this 

simulation as a function of number of timesteps are presented in Figure 20. Significant 

fluctuations in the collected electron current are observed during the sheath formation. 

Measured electron current is compared with a current predicted by Peterson and Talbot 

(1970) for the computational parameters specified above. 

 

Figure 19. Potential distribution around a cylindrical probe with . Simulations 
parameters are those of Case 1.1. 

/p ee kTΦ = 5

0
 
Figure 21 shows electron and ion currents as a function of probe potential for  

and for two ion-to-electron temperature ratios of 1 (Case 1.1) and 0.1 (Case 1.2). The non-

dimensional electron current is defined as 

/ 1p Dr λ =

0eI I  where 0eI  is the electron current collected 

by the probe with  and . 0pΦ = i eT T=
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Figure 20. Electron and ion currents collected by a cylindrical probe with . Simulation 
parameters are those of Case 1.1. 

/p ee kTΦ = 5

−

These results show that a larger electron current is collected in the case of hotter 

ions. Almost no electrons were collected by the probe at . / 5p ee kTΦ <

The non-dimensional ion current is defined as 0i iI I where 0iI  is the ion current 

that collected by the probe at  and . Higher non-dimensional ion currents are 

predicted for the case when . No ion current was measured for  

for the temperature ratio of 0.1. Also, ion current is negligible for  when 

. 

0pΦ = iT T= e

.0

5

.0

.0 0

/ 1i eT T = / 0p ee kTΦ >

/p ee kTΦ >

/ 1i eT T =

The non-dimensional electron current is plotted in Figure 22 as a function of non-

dimensional probe potential for  and  (Case 2.1) and  

(Case 2.2). Higher non-dimensional electron current is predicted for the case of 

. 

/ 1i eT T = / 1p Dr λ = / 5p Dr λ =

/ 5p Dr λ =
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Simulations, electron current
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/ 1.0i eT T =
/ 0.1i eT T =

/ 0.1i eT T =
/ 1.0i eT T =

/p ee kTΦ
  

Ion Current

Electron Current 

Figure 21. Influence of the ion to electron temperature ratio on current collection by cylindrical probe. 

Computational parameters are those of Case1.1 and Case 1.2. 

The electron current collected by a cylindrical probe in the OML regime for the 

,  and e k  is presented in / 0.1p Dr λ = / 1.0i eT T = 5TΦ =

.1λ = .0=

ekTΦ

/p e Figure 23. A process of the 

sheath formation leads to the fluctuations in the collected electron current before it reaches 

a steady state. The measured electron current compares favorably to the analytical 

prediction by Kanal (1964). 

The non-dimensional electron current measured by a cylindrical probe in the OML 

regime (r ) for T T  is presented in / 0p D / 1i e Figure 24 as a function of the non-

dimensional potential e  (Case 3). Results show good agreement with the numerical 

results by Laframboise (1966) and analytical solution by Kanal (1964). 

/p
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Figure 22. Influence of the Debye length on the current collection. Computational parameters ARE 

those of Case2.1 and Case 2.2. 
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Figure 23. Electron and ion currents measured at . Simulations parameters those of 
Case 3. 

/p ee kTΦ = 5
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Figure 24. Non-dimensional electron current as a function of undimensional potential in the OML 
regime (Case 3). 

 
Electron and ion currents collected by a cylindrical probe from drifting plasma are 

plotted in Figure 25 for the range of ion speed ratios  (Case 4). Currents are presented as 

a function of the ion speed ratio defined by the equation 

iS

(3.1.2) for  and 

. An increase of the ion current from 1.19 [A] for the ion speed ratio of 1 to 

4.86 [A] for  is observed. Measured electron current slightly fluctuates about 1.8 

[A]. Results are in a good agreement with the equation 

/ 1i eT T = .0

50/p Dr λ =

7iS =

(3.1.20) by Johnson and Murphree 

(1969). 
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Figure 25. Electron and ion currents collected by a cylindrical probe as a function of the ion speed 

ratio. 
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CHAPTER 4 HEATING, SLOWING-DOWN AND DEFLECTION 

TIMES IN 3-D ELECTROSTATIC PIC SIMULATIONS ON 

UNSTRUCTURED TETRAHEDRAL GRIDS 

 

The numerical heating and collisions in 3-D electrostatic PIC simulations on unstructured 

Voronoi-Delaunay tetrahedral grids are investigated. The dependence of heating is 

evaluated for the near-grid-point and volume weighting and electric field interpolation 

schemes, for various sizes of the timestep, the cell-edge length and the number of 

computational particles per cell. Optimum choices of the simulation parameters for 

reducing numerical heating are discussed. The nonphysical collision-like effects in the 

collisionless PIC simulations are determined by estimating the slowing-down and 

deflection times. 

 

4.1 Overview  

In the Vlasov limit of an infinite number of particles the collision rates, electric 

fields and fluctiations reach asymptotically to zero and particle orbits in a uniform plasma 

in equilibrium are straight lines. In particle-in-cell (PIC) simulations particle the orbits are 

perturbed and collisions in the simulation occur at rates different that the real plasma.  This 

is a result of the finite size of computational particles, the smaller of number of particles in 

the simulation than in the real space, the effects of spatial discretizatoin, the charge and 

force interpolation, and time integration. 

Hockney (1971) provided the background theory for measuring the numerical 

collisional effects in 2D2V PIC simulations with uniform grids. He measured collision 
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times that exist in real plasma but are accentuated in PIC simulation. Specifically, the 

slowing-down time, related to the reduction in the velocity along the original direction, and 

the deflection time related to the deflection in the velocity perpendicular to the original 

direction. Hockney characterized also the non-physical increase in the kinetic energy of the 

system in terms of the heating time . In a real collisionless, uniform plasma in 

equilibrium there is no heating and collective thermal fluctuations become zero. Hockney 

attributed the numerical heating to the stochastic electric fields that are finite in the 

simulation. Hockney (1971) measured the heating time using NGP and CIC (Cloud in Cell) 

interpolating schemes and their modifications. For the 2-D uniform grid case the optimum 

path for obtaining the time step  was found to be 

Hτ

tΔ
1
2 D

H
λ

, where  is a cell size and  

is a Debye length. This defines the most sensitive choice of the  for a given 

H Dλ

tΔ
D

H
λ

which 

means that if  is decreased, there is little increase in the heating time an if  is 

increased the rapid degradation of the model is observed. It was also found that CIC 

heating time is about 20 times longer than NGP heating time except near the 

tΔ tΔ

1
t

H
Δ

=
C  line 

where CIC results degrade much rapidly than results for NGP. It means, that CIC model 

can be used for much denser or colder plasmas. It was also mentioned that the main 

parameters controlling the heating time are: the product of the plasma frequency and the 

time step , the number of computational particles per cell and the ratio . 

Hockney also found that the slowing-down time  is as a function of , where 

 is a computational particle width.  No dependence on H  or  was observed. It was 

shown that a ratio of the heating time to the slowing-down time is proportional to the 

pw tΔ /D Hλ

sτ ( 2
Dn Wλ + )2

W tΔ
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2

D

H
λ

−⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠
. The deflection time was measured and the square root growth of  with time was 

predicted. 

cτ

Birdsall and Maron (1980) considered the issue of the self-heating in the 1-D 

periodic system and the cold beam instability caused by the numerical grid. It was found 

that this instabilities are self-quenching due to self-heating and trapping of the beam 

particles. In the case when 1
pw x

>
Δ
u , where  is a particles mean velocity, regime 

instability becomes negligible for C . It was shown that because these instabilities 

have a very large growth rate, the effect of self-heating may be negligible. 

u

u�

A study of the numerical heating in electrostatic 1-D PIC simulations with periodic 

boundaries was performed by Ueda et al. (1994). Equation for the variation of the heating 

time when  was formulated for the CIC weighting scheme. Expression for the 

ratio of the total field energy to the kinetic energy density, , was developed. This 

equation is important in estimating the level of thermal fluctuations. It was shown that 

increasing the number of particles in the computational domain linearly reduces . 

/ 0D xλ Δ > .1

E

i

/EF K

/E EF K

The issue of numerical heating in a hybrid plasma simulations was considered by 

Rambo (1997). The results for one and two-dimensional cases are presented for the hybrid 

particle-ion fluid-electron simulations. The dependence of the heating rate from the 

number of particles per grid cell, time step and the parameter , where Z is an ion 

charge, was investigated. The comparisons between linear interpolation and NGP were 

performed, indicating an approximate factor of 6 increase in heating rate for the zero order 

scheme. The linear dependence on the number of particles per cell was shown. For the 

“energy conserving” weighting scheme it has been shown that the ion heating can be 

/eZT T
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significantly reduced at the price of nonconservation of momentum. A 3-point digital 

smoothing applied both to the density and field for the momentum conservation, gave 

satisfactory results. 

Mardahl (2001) analyzed the dependence of the heating time on the 1-D uniform 

grid from the several parameters. They are: number of the grid cells, timestep, charge and 

electric field weighting schemes (NGP, linear, quadratic and cubic splines), number of 

particles per cell, using a k-space and digital filtering and single or double precision. It was 

found that the most cost-effective means of reducing numerical heating is k-filtering, 

followed by digital filtering, increasing the order of the weighting scheme and the number 

of particles per computational cell. It was also shown that for the best result other 

parameters should be chosen in the way that . The energy conserving 

scheme did not give any advantage over the momentum conserving schemes. Using of the 

higher order schemes reduce the heating significantly but their implementation especially 

near the domain boundaries is complex. 

/ 1t xΔ Δ ≤C /2

In this investigation a numerical study of heating and collisions is performed for 

3d3V PIC simulations on unstructured tetrahedral grids. The numerical methodology of 

measuring the heating, slowing-down and deflection times is presented first followed by 

results from an extensive set of computations. 

 

4.2 Heating, Slowing-Down and Deflection Times in a Collisionless Plasma  

We consider a plasma occupying a volume V  consisting of electrons and ions denoted by 

the species index  each with  particles. The mathematical description of the 

collisionless plasma involves the Vlasov-Maxwell system (Montgomery and Tidman 

,s i e≡ sN
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(1964)). If we define single-particle distribution function as the particle density in the 

velocity-space phase space then the average number of particles in a volume  of the 

phase-space centered at a point ( ,  is 

3 3d rd c

)r c

( ) 3 3 6, , ( )sf t d rd c d N=r c s t

i

       (4.2.1) 

and the number density for species s  is then 

( ) 3( , ) , ,s sn t f t d c= ∫r r c        (4.2.2) 

The total plasma density is 

en n n= +          (4.2.3) 

The equation for the distribution function is 

( ),s s s s

s

f f q f
t

t m
∂ ∂ ∂

+ ⋅ + ⋅ =
∂ ∂ ∂

c E r
r c

0

c

      (4.2.4) 

The self-consistent electric field (and potential) due to the smoothed distribution (internal) 

of charges is given by Poisson’s equation 

3
0 ( , ) ( , , )s s

s

t q f t dε ∇ ⋅ = ∑ ∫E r r c       (4.2.5) 

For a plasma in equilibrium the distribution function is a Maxwellian 

( )

3/2 2

exp
2 2

s
s

s s

m
f

kT kTπ

⎛ ⎞ ⎛⎟⎜ ⎜⎟= ⎜ ⎜⎟⎜ ⎜⎟⎜ ⎜⎝ ⎠ ⎝
c

c sm ⎞⎟⎟− ⎟⎟⎠
      (4.2.6) 

The velocity of a particle is  and the equilibrium temperature T  1 2 3( , , )c c c≡c

2 33 1 1
( )

2 2s s s
s

kT f m c d c
n

= ∑ ∫ c        (4.2.7) 

Collisional processes between a test-particle  and a species s  of the background 

plasma are described in terms of basic relaxation times: the longitudinal slowing down, 

 the transverse  and parallel deflection time  and the energy-exchange 

α

/
s
α βτ /α βτ⊥

/α βτ
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(thermalization) time  (Trubnikov 1965)). Formulations for the relaxation times 

depend on the distribution function of the test and field particles. 

/s
t
ατ

For the numerical experiments considered in this investigation the field particles 

are described by a Maxwellian distribution shown in equation (4.2.6). For a test particle 

moving with velocity  with energy αc
21

2a m cε = a a

)

we designate as parallel the direction at 

, so that 0t =

( 0) ( 0a at t= = =c c         (4.2.8) 

Following Trubnikov (1965) we introduce 

s a
s

a B s

m
x

m k T
ε

=          (4.2.9) 

and the Maxwell integral given by 

0

2
( )

x
tx eψ

π
−= ∫ tdt         (4.2.10) 

The slowing-down time is associated with the process of the average momentum transfer 

( )
/

/

/
01 ( )

a s
a sa

a a S a a
s s

a s aa
a S a

s s

vd d
m m m

dt dt t

m
x m m

m

ν

ψ ν ν

Δ
= = − ≡

Δ
⎡ ⎤⎛ ⎞⎟⎜⎢ ⎥⎟= + =⎜ ⎟⎢ ⎥⎜ ⎟⎜⎝ ⎠⎢ ⎥⎣ ⎦

∑ ∑

∑

p
c v

v v

    (4.2.11) 

The transverse deflection time is associated with the increase in the spread in the velocity 

component transverse to the original direction  

/2
2 / 2 / 2 2

0( )
2

a s

a s a s a
a a a a

s s s

cd
c x

dt t x
ψ

ψ ψ ν ν⊥
⊥ ⊥⊥

Δ ⎡ ⎤′− = ≡ = + − =⎢ ⎥ c c
⎢ ⎥Δ ⎣ ⎦

∑ ∑ ∑c c c  (4.2.12) 

/2
2 / 2 / 2 2

02

a s

a s a s a
a a a a

s s s

cd
c

dt t x
ψ

ν ν
Δ ⎡ ⎤

− = ≡ = =⎢ ⎥ c c
⎢ ⎥Δ ⎣ ⎦

∑ ∑ ∑c c c   (4.2.13) 

The energy loss time 
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/2
/

02
2

a s

a s aa a
a a

s s s

cm md
dt t m εε ψ

⎡ ⎤Δ
⎢ ⎥′≡ = − −⎢ ⎥Δ ⎣ ⎦

∑ ∑ aψ ν ε ν ε=   (4.2.14) 

The reference collision frequency is defined as 

2 2
/

0 2 2 3
0

ln
4

a s s a s as

a a

n q q
m

ν
πε

Λ
=

c
 

where is the Coulomb logarithm (Trubnikov, (1965)). ln asΛ

The above relations obtained for a test particle can be integrated to provide 

relaxation times for the general case of a drifting Maxwellian of test particles in a drifting 

Maxwellian population of background particles. For example, the average momentum 

transfer electron-ion collision frequency between two Maxwellian can be expressed as 

(Mitchner and Kruger (1975))  

3/2 22

0

4 2
ln

3 4
e

ei i
e e

m e
n

kT m
π

ν
πε

⎛ ⎞ ⎛ ⎞⎟ ⎟⎜ ⎜⎟ ⎟≡ ⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠
Λ       (4.2.15) 

The slowing-down time  

( )0 1e
ei

eie

c

d c

dt

τ
ν

= − =
Δ
&

&

       (4.2.16) 

describes an average time between electron-ion collisions in a plasma. It describes the rate 

at which the average parallel velocity of the electrons is decreased by encounters with ions 

and will be compared with the slowing-down time measured in PIC simulations. 

The average transverse deflection of a Maxwellian population of test electrons is 

( ) ( )
2

2 4 2 4
3

2 2 3/2 2 2
0 0

ln ln
2 2
i i e i e

e
e e e

d c n Z e f n n Z e
d

dt m m Cπε π ε
⊥Δ Λ

= =∫
c
c

c e

Λ
   (4.2.17) 

where  is the electron thermal velocity. eC
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We can define also as an average deflection time as the time for the root mean square value 

of the deflection angle to reach a value of 
2
π .  The average change in the perpendicular 

velocity component of electrons measured in the PIC simulations may be compared to the 

analytical result 

Montgomery and Tidman (1964) described also the average energy fluctuation of 

the electric field per unit volume in 3d as 

( ) ( )

2

3 2 2 2

1
8 2 2 1

x x x B

x y z

E dk dk dk k T
k k kπ π λ

+∞

−∞

=
+ + +∫ 2

D

0

    (4.2.18) 

where  is the wave number vector. Following ( , , )x y zk k k=K (4.2.18) electric field 

fluctuations are inversely proportional to the number of particles per unit volume. 

Therefore, in the Vlasov limit of infinite number of particles with uniform density 

distribution and no external fields, electric field and collision rate become zero and 

particles orbits are straight lines. In our simulations we will be interested in the artificial 

acceleration and deflections of the particles (primarily electrons) from their initial 

directions due to the numerical effects. 

 

4.3 Hating, Slowing-Down and Deflection Times in 3-D PIC Simulations  

We consider next the same volume of plasma populated with computation particles. 

Following Hockney (1971) we designate the initial velocity of the particle  as the parallel 

direction for that particle .  In the case of no external electric fields and no 

collisional effects particles would follow that direction.  In the PIC simulations at the time 

 we can measure for the particle  its velocity , its velocity component in the 

p

( ) ( )0p p=c c

t p ( )p tc
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parallel direction ( )p tc & , its velocity component in perpendicular direction  and the 

deflection angle , as shown in 

( )p t⊥c

( )p tϕ Figure 26. 

 

( )p tϕ
( )p tc &

( )p t⊥c

( )p tc

( ) ( )0 0p p=c c &

( )0pc &

Figure 26. Orbit of the computational particle. 
 

The change in the kinetic energy of a particle p of species s  at the time t  from its 

initial value is 

( ) ( )( )2 21
0

2sp sp sp spE m tΔ = −c c        (4.3.1) 

The average change of the kinetic energy of a particle of species s in the ensemble 

1

1 3 3
( ) ( ) ( ) (0)

2 2

sN

s p B s
ps

E t E t k T t k T
N =

Δ = Δ = −∑ B s     (4.3.2) 

The heating time  is defined as the time for the average kinetic energy per particle of 

species s  to increase its energy by 

Hsτ

1
2 B sk T , i.e., 

1 3 3
( ) (0) ( ) (0

2 2 2Hs B s B s Hs B sE k T k T k Tτ τΔ = = − )

c

    (4.3.3) 

In order to understand how the numerical errors influence the average kinetic 

energy of the system of particles it is convenient to consider all the errors as giving rise to 

a stochastic error field . When this error field is applied to a computational particle it 

results in a change in the particle velocity δ  given by 

δE

p
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p
p

p
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δ
δ

Δ
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E
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t

n

         (4.3.4) 

For n time steps 

0n
p p p p

n

δΔ = − = ∑c c c c        (4.3.5) 

Following Hockney and Eastwood (1999) the error field is assumed to be constant in 

magnitude pn pδ δ=c c  and random in direction. The mean velocity spread of species s  

particles may be expressed as 

1

1
0

sN

s
psN =

Δ = Δ =∑c spc        (4.3.6) 

For the specific species of computational particles (electrons or ions) the change in the 

velocity  is also constant in magnitude and random in direction, so that the mean square 

value of  is the linear function of the number of timesteps 

sδc

sΔc

( )

2 22 2

1 1 1

2
2 2 2

2

1 1 1s s sN N N

s ps n
p p n ps s s

s
p

s

n
N N N

q
n n t

m

δ δ

δ δ

= = =

Δ = Δ = =

= = Δ

∑ ∑ ∑ ∑c c c

c E

p =c

  (4.3.7) 

Following (4.3.7) the average change in the kinetic energy of species s  particles or heating 

is 

( )
2

2 21
( )

2
s

s
s

q
E t t n

m
δΔ = Δ E        (4.3.8) 

The average change in the kinetic energy expressed by the equation (4.3.8) is independent 

of the particle’s initial velocities, is directly proportional to the number of timesteps, and is 

inversely proportional to the mass of the computational particles. Therefore, the main 

contribution to the stochastic error is the change in the temperature of the electrons. 
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In the heating time investigation we will neglect the plasma potential energy in 

comparison to the kinetic energy.  The plasma as a whole has initially energy of 

3 3 3 3
( ) (0) ( ) (0) (0)

2 2 2 2e B e i B i e i B BN k T t N k T N N k T N k T+ = + =   (4.3.9) 

At  the energy of system using equation Het τ= (4.3.9) and assuming that ions have 

negligible change in their energy, is 

4 3 7
(0) (0) ( ) (0)

2 2 2e B e i B i e i BN k T N k T N N k T+ = +     (4.3.10) 

Therefore, the system energy increases by 16% over its initial value. In 2D3V the increase 

is 25% and in 1d3V is 50%. 

We compute also the ensemble average of the parallel velocity component as  

1

1
( ) ( )

sN

s
ps

c t c t
N =

= ∑ ps         (4.3.11) 

The slowing-down time  is defined as the time it takes for the average electron parallel 

velocity to reach 

SΤ

( )0ec

e
& , i.e., 

( )

1

01
( ) ( )

sN
s

s S p S
ps

c
c c

N e=

Τ = Τ =∑       (4.3.12) 

This process is modeled by 

(0)
( ) e

e
S

cd
c t

dt
=

Τ
&

&         (4.3.13) 

We also calculate the root-mean-square average deflection for a particle of species 

 at time t  s

( ) ( )2

1

1 sN

s
ps

t
N

ϕ
=

= ∑ 2
sp tϕ        (4.3.14) 
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The deflection time  is the time for the average deflection to reach 90 degrees. i.e. τΦ

( )
1/22

2s

π
φ τΦ =         (4.3.15) 

The slowing-down and deflection times can be ascribed to the presence of collisional 

effects in PIC simulations and are finite in real plasma. The heating time  characterizes 

a lack of the energy conservation in the PIC model due to the numerical errors and is 

infinite in real plasma. 

Hτ

 

4.4 Heating Time  

A typical computational domain used in the heating calculations is shown in Figure 27. 

The plasma is loaded initially into the spherical domain following a Maxwellian 

distribution with zero drift velocity. Electrons and ions are also injected at each time-step 

from the open boundaries according to their thermal fluxes. Zero electric field is set at the 

open boundaries of the domain. Particles that reach the domain surface are removed from 

the simulation. 

Previous 1-D and 2-D investigations on uniform grids have shown that  strongly 

depends on ratio of the size of the computational cell over the Debye length, . A 

grid-parameter for the unstructured tetrahedral grid used in our investigation is , which 

corresponds to edge length of a tethrahedron as shown in 

Hτ

/ Dr λΔ

rΔ

Figure 28. 
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Figure 27. A typical computational domain. 

 
It is therefore important to construct a grid for which  will be the same (or as 

close as possible) for all the cells. To satisfy this requirement on a tetrahedral mesh all 

cells should have approximately the same volume and dihedral angles as close to 70.53 

degrees (1.23 radians). 

rΔ

Figure 29 and Figure 30 show the histograms for the cell volumes 

and dihedral angles obtained for a typical grid used it the simulations. The histogram for 

 is shown in rΔ Figure 31. 
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Figure 28. Tetrahedral computational cell. 
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Figure 29. Distribution of cell volumes in a computational domain. 

 87



Dihedral Angle [deg]

20 40 60 80 100 120

N
um

be
r o

f D
ih

ed
ra

l A
ng

le
s

0

10000

20000

30000

40000

50000

60000

 

Figure 30. Distribution of the dihedral angles in a computational domain. 

Cell Edge Length [m]

0.0002 0.0004 0.0006 0.0008 0.0010 0.0012 0.0014 0.0016

N
um

be
r o

f E
dg

es

0

10000

20000

30000

40000

50000

60000

 
Figure 31. Distribution of cell-edge length in a computational domain. 
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In order to measure the heating time we vary the simulation parameters and observe 

how fast the average kinetic energy of the electrons is growing. In many cases an increase 

in energy is so small that we have to obtain  from the slope of the energy vs. time plot. 

Equation 

Hτ

(4.3.8) predicts that the average kinetic energy of the system is a linear function 

of the number of timesteps. This has been demonstrated for 1-D and 2-D PIC simulations. 

Figure 32 shows that for 3-D PIC simulations on unstructured grids expression (4.3.8) 

holds fro both the zero-order (NGP) and first-order (linear) weighting/interpolation 

schemes. 

Figure 33 shows the effects on heating time from changing the parameter 

, while keeping the number of particles per cell constant. The heating time is 

normalized with the plasma frequency 

/tΔ ΔC r

2

0
p

e

ne
w

mε
= . One can observe than when  

is in the range of  to  the heating time remains almost constant. For both 

weighting schemes the simulations show a significant drop in  from  to . 

Further increase of the timestep has no impact on . 

/t rΔ ΔC

410− 45 10−×

p Hw t
45 10−× 310−

p Hw t

The results show that the linear-weighting heating time is about 20% larger than the 

NGP heating time for small  ( ). For large timesteps 

( ) this difference is more than 100%. 

tΔ 4/ 5 10t r −Δ Δ < ×C

4/ 5 10t r −Δ Δ > ×C

Another parameter in the heating investigation is the number of particles per cell. 

Increasing the number of particles per computational cell leads to smoother electric fields 

and therefore larger heating times. 
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Figure 32. Time evolution of the total kinetic energy. 
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Figure 33. Heating time as the function of the timestep, for 20 particles per cell and . Dr λΔ =
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Figure 34 shows the effect of a number of particles per cell on the heating time for 

NGP and linear weighting schemes. The increase in the heating time shown is about 10 

times for both weighting schemes while the number of particles per cell changes from 15 

to 90. It is important to mention that the computational time for particle move rises linearly 

with the number of particles. Therefore, a tradeoff is required between  the overall 

computational time and the acceptable quality of the computation. 
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Figure 34. Heating time as a function of the number of particles per cell for  and 
. 

35 10pw t −Δ = ×

Dr λΔ =

 

Changing the ratio of the Debye length to the cell edge length  has a strong effect 

on the heating time as shown in 

/D rλ Δ

Figure 35. A decrease of the heating time by an order of 

magnitude is observed when  changes from 0.2 to 2.  There is no appreciable effect 

on heating in the range 2.0 . When  is increased further Figure 11 

shows a drop in the heating time by an almost order of magnitude. 

/D rλ Δ

/ 5.0D rλ ≤ Δ ≤ /D rλ Δ
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Figure 35. Heating time as a function of  for  and 20 particles per cell. /D rλ Δ 35 10pw t −Δ = ×

 

 

4.5 Slowing-Down and Deflection Times  

At a time t  in the computation we calculate a parallel velocity component from the dot 

product of the vectors  and .  We will treat the plasma as collisionless until the 

simulation time is less than the numerical slowing-down time . Since the average 

electron slowing-down time is much smaller then the one for heavier ions, it will be used 

to define the limiting conditions. 

( )0c ( )tc

SΤ

Figure 36 shows the  as the function of the number of particles per computational 

cell for both weighting/interpolation schemes. 

/S eτΤ i
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Figure 36. Slowing-down time vs. number of particles per computational cell. 

 

A linear growth of the slowing-down time can be observed as the number of 

computational particles in the domain increases. The magnitude of the slowing-down time 

does not have any significant dependence on the order of the weighting scheme used. 

In the PIC simulation, an electron deflection angle at the time t  is measured as 

( )
( ) ( )

( ) ( )
0

cos
0

t
t A

c c t
ϕ

⎛ ⎞⋅ ⎟⎜ ⎟= ⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠

c c
       (4.5.1) 

The average change in the perpendicular velocity component is evaluated when the 

average value of the deflection angle of an electron reaches 90 degrees. This value is 

compared to the theoretical value. 

Figure 37 shows  as a function of the number of particles 

per computational cell. The rate of change of the perpendicular component of the velocity 

decreases significantly with an increase of number of particles. Since the deflection time is 

2 2/simulation theory⊥ ⊥< > < >c c
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much smaller than heating time, no significant dependence upon type of weighting scheme 

is observed. 

 

4.6 Conclusions 

For the three dimensional electrostatic plasma simulations on unstructured tetrahedral grids 

the most cost effective way to reduce numerical heating is to choose the size of the 

computational cells in such a way that 0. . However,  is not a free 

parameter but relates to stability requirements as well as the Debye length. 

2 / 5.0D rλ< Δ < rΔ

The proper choice of the weighting/interpolation schemes can reduce the heating 

time significantly. Difference in measured heating times using NGP or Linear weighting 

schemes is not as significant as in the case of 1-D PIC simulations. Linear weighting will 

always produce better results, is easy to implement and is only slighter slower than NGP. 

Higher order weighting/interpolation schemes should be able to further increase the 

heating time. However, construction of such schemes on 3-D unstructured grids could lead 

to more complex analytical formulations that will increase the computational time. 

In order to obtain a high-quality simulation, the numerically stable timesteps should 

be chosen so that . Using longer timesteps reduces the computational 

time but it also reduces the heating time significantly. 

4/ 5 10t r −Δ Δ < ×C
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Figure 37. Deflection time as the function of the number of particles per cell. 

  

Increasing the number of computational particles per cell is the easiest way to 

reduce numerical heating. i.e. increase the heating time but at the cost of increasing the 

overall computational time. 

The slowing-down and deflection times measured in the PIC computations are 

compared to the analytical expressions for the average change of the electron velocity due 

to interactions with heavy ions. It is shown, that increasing the number of computational 

particles in the domain significantly reduces these artificial collision-like effects in 

collisionless PIC simulations. 
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CHAPTER 5 SIMULATIONS OF PLASMADEVICES AND 

MICROSENSORS 

 

In this chapter we present two novel applications of the unstructured PIC code.  The first 

involves the simulation of the operation of a Field Emission Array (FEA) and the second, 

involves the simulation of a micro Retarding Potential Analyzer. The simulations provide 

an insight of the operation of these and demonstrate the ability to use advanced PIC 

simulations as design tools. 

 

5.1 Simulations of 3-D Space-Charge Effects in Gated Field Emission Array 

Cathodes 

Field Emission Array (FEA) cathodes are electron sources that can provide high electron 

current densities for various applications including mass spectrometers, scanning electron 

microscopes and different space-based applications of electric propulsion. FEA’s are 

considered as an alternative to the thermionic cathodes because they are easily scalable in 

size, chemically inert and do not require propellant or heater. FE cathodes use electric 

fields to emit electrons and are significantly more effective than other types of cathodes. 

FEA cathode consists of many tiny emitters with gates (as shown in Figure 46) that are 

produced with micro fabrication methods. According to Marrese (1999), tips packing 

densities up to 1012 tips/m2 can be achieved producing emission current densities of more 

than 107 A/m2. Two most commonly used types of FEA cathodes are silicon or 

molybdenum micro fabricated and carbon thin-film FEA’s. 
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A FE cathode tip configuration is shown in Figure 38. Tip and gate electrode radii 

 and  are on the order of 1 and 100 nm respectively. An electric field is applied to the 

gate electrode in order to deform the potential barrier and allow the electrons to leave the 

surface of the tip. Following Marrese (1999), electric fields larger than 10

tr gr

9 V/m are 

required for the field emission. 

Simulations of the electron beam emitted by the FEA  have been performed by 

Candel  et al. (2005) using the 3-D Maxwell PIC code “Capone”. The FEA a cathode 

consists of about 2000 emitting tips. Convergence tests for the emission from an ideal FEA 

(all emitting tips are identical) are performed. Also properties of the electron beam are 

analyzed as a function of the FE geometrical parameters and different gap voltages. 

Importance of the different degradation effects on the FEA operation is investigated in a 

parametric study. Simulation results define ideal parameters for the design of the LEG DC 

gun. 

In this chapter we present a multi-scale model and simulation of a FEA. The 

electron emission by the elliptic field emitters is modeled following Jensen and Zaidman 

(1995). The current emitted by a single molybdenum microtip is estimated using these 

analytical expressions. Subsequently, the current and current density by the FEA cathode 

are estimated for a wide range of gate potentials.  These estimates serve as inputs to the 

unstructured PIC simulations that include the FEA cathode and the anode. The simulations 

predict the formation of the virtual cathode for different gate potentials and fixed cathode-

to-anode potential differences. FEA operation limitations due to space-charge effects are 

analytically predicted and the maximum current collected by the anode located at a fixed 
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distance from the emitting cathode is estimated following Jensen et al. (1997). Measured 

electron anode and gate currents are compared to the analytical predictions. 

5.1.1 Model for Field Emission Array Cathode  

Jensen and Zaidman (1995) formulated an analytical model for a hyperbolic shape 

FE tip that predicts an electric field at the tip apex to be 

( )2
tan

ln

g
tip c

g t

t

F
kr r

r

π
β

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟ Φ⎜ ⎟⎜ ⎟= −⎜ ⎟⎟⎜ ⎛ ⎞ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜ ⎝ ⎠⎝ ⎠

  [V/ Å ]     (5.1.1) 

In above  is a tip radius,  is a gate electrode radius in [ ], [V] is a gate potential 

and  

tr gr Å gΦ

1
86 cos

54
g

c
t

r
k

r
β

⎛ ⎞⎟⎜ ⎟= +⎜ ⎟⎜ ⎟⎜⎝ ⎠
       (5.1.2) 
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⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟= −⎜ ⎟⎟⎜ ⎛ ⎞ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜ ⎝ ⎠⎝ ⎠

cβ  in equation (5.1.1) is referred to as “field 

enhancement factor”. Geometrical parameters used on equation (5.1.1) are shown in Figure 

38. 

The emitted electron current density is evaluated by the Fowler-Nordheim 

expression: 
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, , exp 1 1 exp
sin /

fn fn
FN fn fn fn

fn

c
J F F c c
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          (5.1.3) 
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Figure 38. FE cathode microtip. 

 
In equation (5.1.3)  [eV] is the Fermi level of the electron gas and μ

1

Bk T
β =          (5.1.4) 

Fowler-Nordheim coefficients are estimated as follows: 

2 2

16 2
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16fn

Q m

t
α

π

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ Φ⎝
=

Φ
=
=

⎠   [e/eV2fsec]     (5.1.5) 

3
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4
2

3fn mβ = Φ
=

ν   [eV/ ]     (5.1.6) Å

2
2fnc m

F
=
=

tΦ   [1/eV]      (5.1.7) 

In the equations (5.1.5) - (5.1.7) 

4
fs cQ

α
=

=
   [eVÅ ]      (5.1.8) 

where  is the fine structure constant, m  [eV/c1/137.04fsα = 2] is the electron mass in 

vacuum, Φ  [eV] is the work function, t  and .   1.05657≈ 0 0.93685ν =
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The current density, obtained as a function of , should be integrated over the 

emitter surface in order to obtain a current emitted by a single tip. 

tipF

tip area FNI b J=    [e/fsec]      (5.1.9) 

where the area factor  [ ] is areab
2Å
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β β
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     (5.1.10) 

The current produced by the number of tips  is then tipsN

( ),array tips g area FNI N s b J= Σ Δ Φ        (5.1.11) 

In equation (5.1.11) ( ), gs∑ Δ Φ  is the distribution factor associated with a spread  in tip 

radii. For a single tip  equals zero but for a nonuniform array of tips . In order 

to estimate 

sΔ

sΔ 0sΔ >

( ), gs∑ Δ Φ  we assume that the tip radii  are uniformly distributed for 

.  

( )a s

0 s s≤ ≤ Δ

Setting 

( ) ( )01tipF s F c s≈ +   (5.1.12) 

the distribution function becomes 
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5.1.2 Model for Space-Charge Effects 

At high current densities space charge effects significantly affect the emission 

process and give rise to a large currents collected by a gate electrode. Jensen, Kodis et al. 

(1997) developed a model to analyze such an effects assuming that all emitters emit 

electrons every 1

tipI
τ =  and at point  electrons have a velocity equal togz

2 g

m

Φ
. 

02
g

g
tip

z
F F

Φ
=   [ Å ]       (5.1.16) 

0
anode gF
D

Φ − Φ
=   [eV/ ]     (5.1.17) Å

In equation (5.1.17)  is anode voltage and  is a distance between cathode and 

anode. 

anodeΦ D

In this model it is also assumed that the anode is uniformly charged, emitter is a spherical 

and gate to anode distance is mach larger then gate radius, as shown in Figure 39. 

 Equation for the flight time of a sheet of charge moving from the gate electrode to 

the anode, taking into account changes in the anode current  is then found to be anodeI

0

1 4 fs anode

t
t

cIπα σ
Δ

Δ =
− Ψ=

 [fsec]      (5.1.18) 

In equation (5.1.18) 
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Figure 39. Geometry of the space-charge effects model. 

 

At a specific gate potential anode current reach a maximum possible value, which 

can be estimated as 

( )max 2
18

a

fs g

m
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c D z
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α π σ
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−=
 [e/fsec]      (5.1.20) 

In (5.1.20) σ  is a sheet charge density 
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η
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In above  is a tip-to-tip distance. ttd

Nondimentional parameter η  in equation (5.1.21) is the ratio of the mean sheet charge 

density with the sheet charge density at the emitter surface and is a function of the spread 

angle ϕ , the emitter width W  and the cathode to anode distance. 
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ϕ +      (5.1.22) 
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 Parameters for the molybdenum FEA cathode used in further investigations are shown in 

Table 2. 

[Å]tr  [Å]gr  [ ]c radβ  [ ]eVμ  [ ]eVΦ  

40 2500 0.262 5.873 4.41 

2

Packing. Dens.

   [tips/m ]

 

[ ]radϕ  [Å]D  
2

Cathode Area

      [Å ]
 

[Å]ttd  

1010 0.698 2.24×108 1016 105

 

Table 2. Molybdinum FE ctahode parameters. 

 
Figure 40 and Figure 41 show that a tip current up to 10-4 [A] and FE array current up 20 

[A] may be theoretically reached assuming high gate potentials (about -100 [V]). 

Velocities and densities of the emitted electrons are shown in Figure 42 as a function of 

.  gΦ

The operation of a FEA was simulated using the unstructured 3d PIC code.  The objective 

is to predict the formation of the virtual cathode and the role of space-charge effects in the 

operation of the FEA. 

5.1.3 PIC Simulations of FEA 

The cylindrical simulation domain is shown in Figure 43. The left-side boundary 

represents a circular FE cathode surface with applied potential . Cold electrons are 

emitted with a Drifting Maxwellian distribution from cathode with the velocity 

corresponding to the gate potential. 

gΦ
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Figure 40. Fowler-Nordheim current density and tip current as a function of gate potential. 
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Figure 41. FE array current and current density as a function of gate potential. 
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Figure 42. Velocity and density of the emitted electrons as a function of gate potential. 

 

 

 gΦ anodeΦD

Figure 43. Simulation domain used in FE cathode simulations. 
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Injection parameters for the FE electrons are shown in Figure 42. Two sets of 

simulations were performed where cathode-to-anode potential drop was set to 100 and 150 

Volts. Results are shown in Figure 44 and Figure 45. The anode current  is measured 

as a function of . Some electrons will be reflected by the virtual cathode and will be 

collected by the emitter. The gate current is also measured since reflected electrons 

may limit a FE cathode emission. 

anodeI

gΦ

gateI

As Figure 44 shows, formation of virtual cathode is expected for the gate potentials 

between -35 and -40 Volts. Comparably large gate currents are observed for  lower then 

-40 Volts. At a potential of about -50 Volts the maximum possible current is achieved. 

This prediction agrees with analytical predictions, thought the anode current obtained in 

the simulation is slightly larger. 
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Figure 44. Anode, gate, analytical maximum and FE array currents as a function of gate potential for 
. 100 [ ]anode g VΦ = Φ +
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Figure 45. Anode, gate, analytical maximum and FE array currents as a function of gate potential for 

150 [ ]anode g VΦ = Φ +  

Results for the second set of simulations ( ) are shown in 150 [ ]anode g VΦ = Φ +

Figure 45. In this case significant gate current is observed for the gate potentials lover then 

-45 Volts. Maximum anode current is achieved at approximately 50 Volts. Maximum 

anode current is larger then in the  case. 100 [ ]anode g VΦ = Φ +

Figure 47 represents a potential distribution in the computational domain. At the gate 

potential of 30 Volts all injected particles are collected by the anode, saturation current is 

not reached and virtual cathode is not formed. 

For the case of , virtual cathode is observed when gate 

potential reaches 40 Volts. At this voltage some portion of injected electrons is already 

reflected back to the gate electrode. This can be seen in 

100 [ ]anode g VΦ = Φ +

Figure 48, that represents a phase 

space of the injected electrons. For the case of , a layer with a 

potential of about –50 Volts is formed in front of the gate at . But, as can be 

1 150 [anode g VΦ = Φ + = ]

40 [ ]g VΦ = −
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seen from Figure 48, energy of the emitted electrons is high enough to penetrate through 

the potential well and reach the anode surface. For both sets of simulations formation of 

the virtual cathode can be clearly observed at . Significant portion of 

electrons is reflected and then collected by the gate electrode. 

50 [ ]g VΦ = −

 

Figure 46. Schematics of FE array. 
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Figure 47. Potential distyribution between gate cathode and anode. 
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Figure 48. Phase space of the emitted electrons.
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5.2 3-D PIC Simulations of a Directional Micro Retarding Potential Analyzer  

A Retarding Potential Analyzer (RPA) is a plasma plume diagnostics device consisting of 

a series of biased electrodes. An electric potential applied to these electrodes selectively 

filters out plasma particles, changing an ion current collected by a collector plate. A 

directional microRPA (DμRPA) under development (Partridge and Gatsonis (2005) 

Partridge and Gatsonis (2005);Partridge (2005)) is designed to operate in high-density 

flowing plasmas ( ∼ 21 310  n m− ) and eliminate space-charge effects. It comes with and 

without a microchannel plate attached over the floating electrode orifice. It consists of a 

floating electrode (FE), a negatively biased electron retarding electrode (ERE), two 

positively biased ion retarding electrodes (IRE) and a negatively biased secondary 

emission suppression electrode (SESE), as shown in Figure 49. Energy distribution of 

ions may be obtained by analyzing the collector plate currents collected for different 

potential applied to the electrodes. The theory of operation of the DμRPA (Partridge 

(2005)) assumes an equipotential surface inside the microchannel and neglects space 

charge effects. PIC simulations of the DμRPA can elaborate the plasma processes inside 

the channel and offer an insight on the operation of the sensor that can lead to 

optimization of its design.  
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Figure 49. μRPA schematic (from Partridge et al. (2003)). 

  

5.2.1 Simulations of the DμRPA microchannel without the microchannel plate 

First set of simulations corresponds to the operation of the DμRPA in low-density 

plasma with no microchannel plate attached. A cylindrical computational domain 

representing the DμRPA microchannel is shown in Figure 50. 

 

 

 

FE
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IRE-1
IRE-2 SESE

Collector 
plate 

Insulating 
spacers 

Figure 50. DμPRA microchannel computational domain. 
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The domain length and radius are 2100 and 100 [μm] correspondingly. The 

potential of the ERE and SESE electrodes is fixed at –50 [V] for all simulation cases 

listed in Table 4. The potential of IRE-1 and IRE-2 electrodes changes from zero to 80 

[V]. The plasma with parameters listed in Table 3 is injected from the left side of the 

domain into vacuum. Particles that reach any (conductor or dielectric) boundary are 

removed from the simulation as in the case of 100% wall absorption. Neumann boundary 

condition is applied at all insulating surfaces. 

Species Ion Electron 

Mass [kg] 2.0E-26 9.1E-31 

Temperature [eV] 10 10 

Density [m-3] 1016 1016

Drift velocity [m/sec] 15000 0 

Number of computational cells 3502 

Table 3. Input conditions and computational parameters for the DμRPA simulations. 

 

Case # 1 2 3 4 5 6 
ΦERE, ΦSESE 

[V] 
-50 -50 -50 -50 -50 -50 

ΦIRE-1, ΦIRE-2 
[V] 

0 14.1 30 50 64.1 80 

ICP[A] 8.26E-8 4.72E-8 1.50E-8 1.08E-9 1.18E-10 ~0 

Table 4. Simulation parameters and results of the DμRPA simulations. 

 

The ion current that reaches the right side of the domain (collector plate) is evaluated. 

Figure 51 shows the dependence of the collector current on the ion retarding potential. 

Comparison is made with the analytical expression for the ion current at an applied 
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effective retarding potential, , based on a Maxwellian ion distribution with a drift 

velocity  (Kelley (1989)) 

effϕ

iu

( )( )
(( ){

22

3/2

exp
1

2

eff i
i i

i i

Aq n
I e

β
χ π

π β

⎡ ⎤− −⎢ ⎥
⎢ ⎥= + −⎢ ⎥
⎢ ⎥⎣ ⎦

c u
u c ) }eff irf β − u

)

  (5.2.1) 

In equation (5.2.1)  is the ion velocity corresponding to the effective retarding 

potential ,  is the inverse of the ion most probable velocity, A  is the RPA orifice 

area and  is the transmission fraction defined as 
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In equation (5.2.2)  is the ion speed ratio,  is the μRPA orifice diameter to length 

ratio and  is defined from the cylindrical flux theory (Patterson (1971)) 

iS RPAD

ccN

( ) ( ) ( )( ) ( )

( )( ) ( )
( )1 2

2 2 2
2

tan 11
2 2

0 0

2
, { exp 1 1

2

4 1
1 cos cos exp sin

i
cc i i i i

D Y

i
i i

n
N S D r S S erf S D

D

S
dY erf S S d

D

π π
πβ

ϕ ϕ ϕ ϕ
π

− −

1
⎡ ⎤⎡ ⎤= − + + − + − −⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

⎡ ⎤
⎢ ⎥
⎢ ⎥− + −⎢ ⎥
⎢ ⎥
⎣ ⎦

∫ ∫
(5.2.3) 

where r  is the orifice radius, ϕ  and Y  are the geometrical integration parameters. 

A decrease of the current from  in Case 1 to  in 

Case 5 is observed. Practically no current is collected in Case 6. The energy distribution 

of the ions collected in Case 1 (steady state) is shown in 

88.26 10  [A]−× 101.18 10  [A]−×

Figure 52. The energy of the 

registered ions differs from about 70 [eV] to 120-130 [eV]. The potential distribution 

inside of the domain and  vs. x  phase-plots for ions and electrons at the steady state 

are presented in Figures 53, 54 and 55, where x  is the axis along the cylindrical 

computational domain. The acceleration of the ions after they pass the ERE electrode as 

xc
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well as between and after the ion retarding electrodes is observed in all cases. The 

deceleration of the ions in Case1 and the formation of a population of ions with negative 

 velocities in Case 3 and Case 6 is evident. These effects make it possible to control the 

amount of the current collected by changing the ion retarding potential. In all cases 

presented only a few of the high-speed electrons were able to pass the negative 50 [V] 

barrier of the ERE. A decrease in the number of ions along the computational domain is 

observed because the particles that hit the surface of the RPA microchannel are removed 

from the simulation. 

xc
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Figure 51. Collector plate current vs. ion retarding potential. 
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Figure 52. Energy distribution of the ions collected in Case 1 for the computational time 4.15E-8 sec.
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Figure 53. Side view of the RPA simulation domain, potential distribution and cx  vs x  phasespace 
plots for ; Ion (red) and Electron (blue). 1 250 V, 0 V− −= = −   = =  ERE SESE IRE IREV V V V
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Figure 54. Side view of the RPA simulation domain, potential distribution and cx  vs x  phasespace 
plots for ; Ion (red) and Electron (blue). 1 250 V, 50 V− −= = −   = =  ERE SESE IRE IREV V V V
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Figure 55. Side view of the RPA simulation domain, potential distribution and cx  vs x  phasespace 
plots for ; Ion (red) and Electron (blue). 1 250 V, 80 V− −= = −   = =  ERE SESE IRE IREV V V V
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5.2.2 Simulations of the DμRPA microchannel with the microchannel plate 

 In order for the DμRPA to operate in a high-density plasma plumes a 

microchannel plate of low transparency is attached in front of the floating electrode. 

Following Partridge et al. (2003), the microchannel plate was manufactured using a 100 

[μm] thick molybdenum plate with 3 [μm] diameter holes. The hole-to-hole spacing is 50 

[μm] with  [deg] offset as shown in 30 Figure 56. 

 

[ ]30 deg

[ ]50 mμ

[ ]Microchannel, 3 mμ

[ ]RPA channel, 200 mμ μ

Figure 56. μRPA microchannel plate schematic. 

 

 The microchannel plate is represented in the simulations by the array of cylinders 

attached to the floating electrode as shown in Figure 57. Cylinders diameter and length 

are 3 [μm] and 100 [μm] correspondingly. 
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Figure 57. A part of the computational grid representing the microchannel plate. 

 

 At every timestep computational particles are injected into the domain through the 

microchannels with the parameters listed in Table 5. The ion current measured at the 

collector plate surface is presented in Table 6 and in Figure 58 for various ion retarding 

potentials. Comparison is made with the analytical expression (5.2.1), assuming χ  to be 

a transmission fraction of the microchannel plate. A decrease of the current from 

 to  is observed.  [A]101.83 10−×  [A]112.65 10−×

Species Ion Electron 

Mass [kg] 2.0E-26 9.1E-31 

Temperature [eV] 10 10 

Density [m-3] 1018 1018

Drift velocity [m/sec] 15000 0 

ΦERE, ΦSESE [V] -50 

Table 5. Input conditions for the simulations of DμRPA with microchannel plate. 
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VIRE-1, VIRE-2 [V] Simulations Theory 

0 1.83E-10 2.18E-10 

14.1 1.71E-10 1.59E-10 

30 1.48E-10 8.58E-11 

50 4.97E-11 3.20E-11 

64.1 2.65E-11 1.46E-11 

 

Table 6. DμRPA with microchannel plate simulation results. 
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Figure 58. Collector plate ion current vs. ion retarding potential for the DμRPA with microchannel 
plate simulations. 

 122



CHAPTER 6 CONCLUSIONS AND RECOMMENDATIONS 

 

This dissertation further developed and validated a three-dimensional, electrostatic, 

Particle-In-Cell (3D PIC) method on unstructured Voronoi tetrahedral grids. The 

accomplishments regarding the computational mathematics aspects of this work are 

outlined below.  

 

6.1 Summary and Accomplishments 

Computational Mathematics 

A particle mover and particle tracing algorithm based on the successive-neighbor search 

algorithm were implemented. The particle tracer takes advantage of the local coordinates 

and allows to save a computational time significantly. 

Momentum and energy conserving schemes of zero (NGP) and first-order 

(Linear) were implemented in the charge assignment and force interpolation procedures. 

The implementation of these weighting schemes on the 3-D unstructured grids was 

formulated based on the theory of the long-range and smoothness constraints developed 

by Hockney et al. (1988) for uniform grids. This approach required an exact analytical 

and graphical (when possible) representation of the weight and shape functions on 

different types of computational grids starting with one-dimensional structured up to the 

three-dimensional unstructured. 

Macroscopic plasma parameters are evaluated as cell-based and nodal-based 

quantites using linear Lagrange polynomials. Use of the identical weighting schemes for 

 123



both charge/electric field interpolation and plasma parameters evaluation allows for 

saving in computational time. 

Solution of Poisson’s equation is based on a finite-volume discretization. 

Advantage is taken of the Voronoi-Delaunay dual. Three methods of evaluating the 

gradient of the potential were implemented. Two algorithms utilize the divergence 

theorem with a cell-centered or node-centered control volume and the third algorithm is 

based on least-squares. In the case a of cell-centered control volume, the volume of a 

single computational cell is utilized in the utilized. For the node-centered method the 

volume of all tetrahedral that share the node of interest is used. The least-squares 

algorithm is implemented using nodes that share an edge of the Delaunay mesh with the 

node of interest. 

A methodology for evaluating the heating, slowing-down and deflection times in 

unstructured tetrahedral meshes PIC simulations was developed.  The effects of  size of 

the timestep, number of the computational particles per cell and tetrahedral cell-edge 

length were investgated. Most cost-effective means of reducing numerical heating was 

formulated. 

The code was compiled and tested successfully on Linux and Windows platforms. 

 

Methdology and Code Validation 

Validation was performed using the problem of current collection by cylindrical 

Langmuir probes in stationary and moving plasmas. The dependence of the collected 

current on the physical parameters of the background plasma and probe parameters was 

investigated.  Current collection simulations were conducted for both the Thin Sheath 
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(5 / ) and OML ( ) regimes. Cases with ion to electron 

temperature ratios of 0.1 and 1 were considered. Cases of stationary and drifting (ion 

speed ratios up to 7) background plasmas were considered. Results were obtained for a 

wide range of the non-dimensional probe potentials ( ). Simulation 

results were compared favorably to numerical results of Laframboise (1966) and 

analytical solutions by Peterson and Talbot (1970), Kanal (1964) and Johnson and 

Murphree (1969).  

5p Dr λ≤ ≤ 0 .1/ 0p Dr λ =

10 / 10p ee kT− ≤ Φ ≤

 

Simulation of Plasma Microdevices 

The code was applied to the problem of the space-charge limited electron emission from 

Field Emission Array (FEA) cathodes. The operation of such FEAs can be hindered by 

formation of a virtual cathode that limits the current emission and forms a return current 

to the device . The multi-scale modeling approach used a statistical FEA emission model 

by Jensen (1994) order to obtain the required simulation parameters for the molybdenum 

FEA cathode. For the FEA with the cathode area of 1016 2[Å ] and packing densities of 

1010 [tips/m2] a possible emitter current of several Amperes was predicted. Such a current 

correspond to an electron density of 1016-1017 [1/m3]. Formation of a potential well in 

front of the emitter was observed under certain injection conditions. The currents 

collected by the electrodes and the maximum current that may be collected by the anode 

were compared to the analytical predictions that take into account space-charge effects 

Jensen (1997). 

The code was also used to the simulation of a micro-Retarding Potential Analyzer 

(RPA) under development by Partidge and Gatsonis (2005). The simulations aided in the 
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design of this new diagnostic and provided a virtual operation of the new microsensor in 

a regime that could not be addressed by the theory. A segmented microchannel (with the 

length of 2100 μm and the diameter of 200μm with and without microchannel plate (14 

microchannels with the length of 100 μm and the diameter of 3 μm) was simulated for 

different incoming plasma conditions. The potential applied to the Ion Retarding 

Electrodes was varied from 0 do 80 V. Currents collected by a collector plate were 

compared favorably to the theoretical predictions based on a Maxwellian ion distribution 

with a drift velocity (Partridge (2005)). While the theory is based on the equipotential 

assumption inside the microRPA, the 3d PIC simulations predict the complex structure of 

the potential inside the microRPA and the distribution functions of the accelerated ions 

and retarding electrons. 

 

6.2 Recommendations for Future Work 

1. Zero and first-order weighting schemes currently implemented in the code are fast 

and comparably easy to implement. In order to reduce numerical heating and improve 

the quality of the simulations a higher order weighting may be used. Implementation 

of the second order interpolation scheme on the uniform structured grids is 

straightforward. Since in nonuniform unstructured grids, mesh nodes are not aligned, 

it is difficult to obtain proper assignment functions based on the coordinates of the 

nodes outside the cell containing the particle of interest. Because it is not desirable to 

use mesh points outside the computational cell, containing a particle, it is possible to 

obtain a higher order assignment functions by introducing new shadow mesh nodes 

on each edge of the cell. For the second order weighting scheme it is necessary to 
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introduce one shadow mesh point for each cell edge, which in the case of 

unstructured tetrahedral mesh will be represented by a points of the intersection of 

Delaunay and Voronoi meshes. Poisson’s equation will have to be solved on the 

shadow nodes, which will slow down simulations significantly. Implementation of the 

higher order weighting schemes also suffer increased complexity near the boundaries 

of the computational domain. Digital filtering and other techniques may produce a 

good result. 

2. New external circuit boundary conditions may be implemented using the theory by 

Vahedi and DiPeso (1997) discussed in Chapter 2 for the floating potential boundary 

condition. A capacitive circuit consisting of an ideal voltage source and capacitor is 

useful for the simulations of the capacitative discharges. A backwards difference 

expression for the series RLC circuit which is required in many plasma discharges 

simulations can be implemented following Verboncoeut et al. (1993) with the second 

order of accuracy in time. A problem with implementation of the no-flux boundary 

conditions with the external circuits is discussed in Vahedi and DiPeso (1997). A 

capacitance matrix may be formulated in terms of charge in order to obtain an 

electrostatic potential in the system with the external circuit. New particle-surface 

interaction algorithms are required in order to properly model boundary conditions. 

3. Several applications involve plasmas with species of significantly different number 

densities. In order to have a reasonable number of computational particles for each 

species and properly simulate collisions between them it is important to develop 

algorithms for the particles with different computational weights. 
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4. In order to run a large-scale simulations of plasma de vices one should have a 

possibility to run the code on the parallel platform. This will require a mesh 

partitioning technique as well as faster and more flexible grid generator. Significant 

changes will have to be made in the way the global information is currently stored in 

the code. Most of the subroutines must be updated using MPI or OpenMP techniques 

in order to properly exchange information between the processors. Using variable 

timesteps and computational particles weights between processors may significantly 

increase computational efficiency of the code. 
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