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Abstract 

 
Microalgae have the potential to be an effective feedstock for biofuels due to their rapid 

growth and production of biofuel precursors.  The ability to express foreign genes within 

species of algae of interest for biofuel production can lead to a further understanding of how 

and why these species produce the lipid and hydrocarbon products that can be converted to 

fuel.  The species Ettlia oleoabundans has been studied for its high lipid production and growth 

rates, suggesting its use as a feedstock for biodiesel production.  No molecular research has 

been performed on E. oleoabundans. In this project protoplast electroporation was attempted.  

The cell wall of E. oleoabundans was degraded in an enzyme mixture of cellulase, pectinase, 

and macerase.    Originally low protoplasting efficiencies, survival and growth were improved 

through the addition of 0.4M D-sorbitol and elimination of a transfer step by using PBS + 

sorbitol as the protoplasting medium.  The development and maintenance of viable protoplasts 

opens the door to attempting several other transformation procedures. 
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Chapter 1: Introduction and Background  

Since the 1950’s, a growing population and a push for industrialization has increased the 

global oil demand from 11 million barrels per day (MBD) to an estimated 80 MBD (Wright, 

2008).  It is predicted that by the year 2030 the global demand on oil will reach 115 MBD, likely 

straining the ability of global oil reserves to produce enough to meet the demand (Jackson, 

2009).  It is estimated that we may already be at our peak oil production, making it difficult to 

meet the ever growing demand for fossil fuels without an alternative source added to the 

supply (Kerr, 2011).  A renewable energy source would have the benefit of filling some of the 

global demand while being beneficial to the environment and the general well-being of 

humans.  Microalgae offer a promising source of renewable fuels which may be able to fill the 

void left by conventional oil production. 

1.1 Benefits of Biofuels  

Biofuels, which are fuels derived from a biological feed stock, are an alternative energy 

source attracting great attention.  Biofuels have many potential benefits, ranging from 

improved human health to an improved environment.  

1.1.1 Human Health Benefits 

Biofuels of all types show significant promise in reducing damage to the environment 

currently caused by fossil fuels. Fuels combusted by automobiles represent a substantial source 

of many serious air pollutants.  The harmful compounds in this pollutant include carbon 

monoxide, mutagenic hydrocarbons, and carcinogenic aromatics (Table 1) (Liaquat, et al., 

2010).  

1.1.2 Environmental Benefits 

Bio-synthesized fuels contain significantly fewer of these harmful compounds, so it is 

expected that their use will drastically reduce the amount of pollution released into the 

environment.  Biodiesel and ethanol are the leading biofuels currently used, and even in limited 

amounts have resulted in a significant decrease in harmful emissions (Liaquat, et al., 2010). The 

emissions released by traditional fossil fuels in automobiles have many detrimental effects to 

the environment but also on animals including lead poisoning, lung damage from hydrocarbon 

air pollution, and many forms of cancer from sources such as formaldehyde and polycyclic 

aromatic hydrocarbons (Liaquat, et al., 2010).  Biofuels significantly reduced emissions when 

blended with conventional diesel and gasoline automotive fuels.  (Liaquat, et al., 2010).   Blends 

of biodiesel with petroleum diesel have reduced the fumes, odor, and harmful emissions 

produced by vehicles typically powered by the diesel fossil fuels alone (Liaquat, et al., 2010). 

Further reduction of these emissions will protect and improve our environment, safety, and 

quality of life. 
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Table 1: Motor vehicle emissions and their human health effects (taken from Liaquat et al., 
2010) 

Exhaust 
emissions 

Health Effects 

Carbon Monoxide 

Impairs perception and thinking, slows reflexes, causes drowsiness, brings on angina, 
and can cause unconsciousness and death; it affects fetal growth in pregnant women 
and tissue development of young children. It has a synergistic action with other 
pollutants to promote morbidity in people with respiratory or circulatory problems  

Nitrogen Oxides 
(NO2, NO3) 

Can increase susceptibility to viral infections such as influenza; irritate the lungs and 
cause edema, bronchitis and pneumonia; and result in increased sensitivity to dust and 
pollen in asthmatics. Most serious health effects are in combination with other air 
pollutants  

Hydrocarbons and 
other Volatile 

Organic Compounds 

Low-molecular weight compounds: Eye irritation, coughing and sneezing, drowsiness 
and symptoms akin to drunkenness. Heavy molecular weight compounds: may have 
carcinogenic or mutagenic effects. Some hydrocarbons have a close affinity for diesel 
particulates and may contribute to lung disease  

Ozone (Precursors: 
HC & NOx) 

Causing coughing, choking, and impaired lung function; causes headaches and physical 
discomfort; reduces resistance to colds and pneumonia; can aggravate chronic heart 
disease, asthma, bronchitis, and emphysema  

Lead Affects circulatory, productivity nervous, and kidney systems suspected of causing 
hyperactivity and lowered learning ability in children; hazards even after exposure  

Particulate Matter 
(PM) Respiratory problems, lung cancer and cardiopulmonary deaths  

Toxic Substances 
Causing cancer, reproductive problems, and birth defects. Benzene and asbestos are 
known carcinogens; aldehydes and ketones irritate the eyes, cause short-term 
respiratory and skin irritation and may be carcinogenic 

Polycyclic aromatic 
hydrocarbons 

(PAHs) 
Lung cancer  

Formaldehyde Eye and nose irritation, coughing, nausea and shortness of breath. Occupational 
exposure is associated with risk of cancer 

Dioxin Long-term exposure: Impairment of the immune system, the developing nervous 
system, the endocrine system and reproductive functions 

1.1.3 Economic Benefits  

 The production of biofuels today requires a large investment in the initial startup of a 

production facility, and is not yet competitive with conventional fuels; however, there are still 

socio-economic benefits from producing biofuels (Rutz and Janssen, 2007).  Biofuel production 

can provide new domestic jobs while opening the door to small businesses in the exclusive oil 

industry.  Furthermore, growing biofuel feedstocks could benefit farmers by adding an 

additional source of income for their crops (Rutz and Janssen, 2007). 

The cost of crude oil has been steadily rising for the past decade (Senauer, 2008).  The 

impact of this increase can be seen in other commodities as their prices have increased 

proportionally to the cost of oil (Figure 1). 
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Figure 1: Worldwide commodity prices compared to the cost of crude oil per barrel from 
1990-2008 (taken from Senauer, 2008). 

1.2 Microalgae as a Biofuel Source  

An alternative energy source must be able to compete with conventional fuel prices by 

being renewable and having low production costs.  A biological feedstock must be able to grow 

quickly with few, low cost nutrient inputs, so that the energy output of the fuel is greater than 

the energy required for the entire process lifecycle to produce the biofuel.  Crops such as corn 

and soybeans have been the major feedstock explored for biofuel production; however, 

microalgae have been explored since the 1970s for their promise of being a more efficient 

source of energy. 

1.2.1 Microalgae Growth Requirements  

Microalgae are relatively low maintenance organisms requiring little input of nutrients 

for growth.  Microalgal cultures are able to grow and survive when supplied with light, water 

(H2O), carbon dioxide (CO2), and inorganic nutrients such as nitrates, phosphates, iron and 

some trace elements (Chisti, 2008).  A media containing these nutrients can provide microalgae 

with the materials to produce compounds of importance, such as the precursors to biofuels.  

1.2.2 Microalgae Produce Two Types of Oils 

There are two types of high energy oil products produced by algae, lipids in the form of 

triacylglycerol (TAG) and hydrocarbons produced through the terpene biosynthesis pathway 

(Gouveia et al., 2009, Metzger and Largeau, 2005).  These two oil products are quite different in 
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their chemical properties and the way they can eventually be used as fuels.  Lipids are typically 

extracted and converted to biodiesel while hydrocarbons could possibly be added directly into 

a conventional oil refining process as they are very similar in structure to crude oil (Gouveia et 

al., 2009, Metzger and Largeau, 2005). 

1.2.3 Biochemistry of Triacylglycerol Production 

CO2 is metabolized through photosynthesis, and the energy may be stored inside 

microalgae in the form of lipids.  Although the lipid biosynthetic pathway has not yet been 

completely determined for microalgae, studies have shown that microalgal pathways are 

similar to plants.  The lipid biosynthetic pathway in plants begins in a plant organelle, the 

chloroplast, and yields fatty acids (Figure 2).  Fatty acid synthesis starts with acetyl-CoA, which 

is converted to malonyl-CoA by the addition of CO2 via acetyl-Co A carboxylase. Malonyl –CoA 

then then associates with acyl carrier protein (ACP) by the enzyme malonyl CoA ACP 

transacylase to yield malonyl-ACP.  Malonyl-ACP is then combined with another acetyl-CoA 

molecule through decarboxylation by fatty acid synthase to form acetoacyl-ACP.  This product 

then has its keto group removed in 3 steps by 3-keto acyl ACP rductase, 3-hydroxy acyl ACP 

rductase and enoyl ACP reductase to produce butyryl-ACP, which is then combined with 

another malonyl-ACP on fatty acid synthase, releasing CO2, forming a 6-carbon product.  This 

product then undergoes further condensation reactions with malonyl-ACP, each time adding 

two carbons to the overall molecule until a fatty acid chain of 16 or 18 carbons is produced 

(Figure 2).  

The fatty acids undergo further modification in the cytoplasm and plant endoplasmic 

reticulum (ER), resulting in TAGs.  TAGs are extracted from the cell and converted to biodiesel.  

In the cytoplasm double bonds are added to the carbon chains by fatty acid desaturases.  These 

double bonds desaturate the product of hydrogen atoms, making it less stable when converted 

to biodiesel. The Kennedy Pathway (Figure 3) modifies lipids passing through the ER by linking 

the fatty acids one at a time with ester bonds to glycerol molecules (Figure 4) (Lung and 

Weselake, 2006).  The first fatty acid is added to glycerol-3-phosphate by glycerol-3-phosphate 

acetyltransferase, yielding lysophosphatidic acid. An additional fatty acid is placed on the 

glycerol backbone by lysophosphatidic acid acetyltransferas.  The produced phosphaditic acid 

molecule has the phosphate on the third carbon removed by phosphaditic acid phophatase, 

yielding diacylglycerol, containing a hydroxyl group on the third carbon. The final fatty acid is 

added by diacylglycerol acetyltransferase producing triacylglycerol (Figure 3).  In summary, 

three fatty acids are added per one glycerol molecule, yielding a TAG (Figure 5).   
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The TAGs generated in the ER accumulate and break off as oil bodies (Figure 6). Oil 

bodies have single layered phospholipid membranes, which keep the TAGs enclosed (Taiz and 

Zeiger, 2008). Membrane proteins called oleosins prevent the accumulated oil bodies from 

interacting with one another (Taiz and Zeiger, 2008).  The TAG accumulation and oil body 

formation in algae is likely the same mechanisms as in plants.  

 

 

Figure 2: Lipid Synthesis in Plant Plastids (taken from Taiz and Zeiger, 2008) 

Many microalgal species accumulate high levels of TAGs during their stationary growth 

phase.  The species Ettlia oleoabundans has been reported to produce up to 56% of its dry 

weight in TAGs when starved for nitrogen, and therefore growing at a very slow rate (Gouveia 

et al., 2009).  Microalgae’s ability to produce and store such high volumes of TAGs makes them 

prime candidates for a renewable energy source.  Compared to other biological feedstocks such 

as soybeans and cotton, microalgae have many advantages as a sustainable renewable energy 

source (Table 2).  TAG producing microalgae require considerably less land for higher energy 

yield than any biological feedstock currently used for biofuel (Table 2) (Schenk et al., 2008).  
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Figure 3: The Kennedy pathway adds three FAs per glycerol molecule, forming a TAG (taken 

from Lung and Weselake, 2006). 

Abbreviations: ACCase- acetyl CoA carboxylase; FAS- fatty acid synthesis; G3P-Glycerol-3-
phosphate; GPAT-Glycerol-3-phosphate acyltransferase; LPA-Lysophosphatidic acid; LPAAT- 

Lysophosphatidic acid acyltransferase; PA-Phosphatidic acid; PAP-phosphaditic acid 
phosphatase; DAG- diacylglycerol; PDAT- phospholipid diacylglycerol acetyltransferase; 

DGTA- diacylglycerol acetyltransferase; PC- phosphatidylcholine; LPC- lyso-
phosphatidylcholine; LPCAT- lyso-phosphatidylcholine acetyltransferase; TAG- triacylglycerol) 

 

Figure 4: Glycerol molecule which forms the backbone of a TAG (taken from International 
School of Caracas, 2011). 
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Figure 5: Triacylglycerols are produced in plants and similarly in algae, and are used for 

biodiesel production (taken from Taiz and Zeiger, 2008).  

 

Figure 6: Oil bodies formed in plants store TAGs (taken from Taiz and Zeiger, 2008). 

Table 2: Comparison of oil production and land requirements between various crops 
considered for biodiesel production (taken from Schenk et al., 2008). 
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Plant Source 
Biodiesel 

(L/ha/year) 

Area to 

Produce 

global oil 

demand 

(hectares x 

10^6) 

Area 

required 

as percent 

global land 

mass 

Area as 

percent 

global 

arable land 

Cotton 325 15, 002 100.7 756.9 

Soybean 446 10, 932 73.4 551.6 

Mustard Seed 572 8,524 57.2 430.1 

Sunflower 952 5,121 34.4 258.4 

Rapeseed/Canola 1,190 7,097 27.5 206.7 

Jatropha 1,892 2,577 17.3 130 

Oil Palm 5,950 819 5.5 41.3 

Algae (10m-2 day-

1 at 30% TAG 
12,000 406 2.7 20.5 

Algae (10m-2 day-

1 at 50% TAG 
98,500 49 0.3 2.5 

 

1.2.4 Biochemistry of Hydrocarbon Production  

 Botyrococcus braunii produces long chain hydrocarbons (Metzger and Largeau, 2005). 

The hydrocarbons produced by Botryococcus braunii are called botryococcenes. Unlike the 

lipids of most plants and algae, the long chain hydrocarbons (LCH) produced by the Race B of B. 

braunii are formed by the terpene biosynthetic pathway.  Radio labeling experiments have 

determined that the mevalonate (MVP) pathway is not used for precursor production of 

botryococcenes, rather the plastid localized methylerythritol phosphate (MEP) pathway is used 

(Metzger and Largeau, 2005).  As in plants, the precursors used to produce these 

botryococcenes are produced from the MEP pathway are the five carbon isomers isopentenyl 

diphosphate (IPP) and dimethyallyl diphosphate (DMAPP) (Taiz and Zeiger, 2008).  Three of 

these precursors are added together until a chain of 15 carbons is produced called farnesyl 

diphosphate (FPP), at which time two FPPs are joined to obtain a 30 carbon product, or a 

triterpene (Figure 7). This 30 carbon product is then modified to produce the other 

botryococcenes (Metzger and Largeau, 2005).  
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Figure 7: Terpene biosynthesis in plants (Taiz and Zeiger, 2008) 

 

1.3 Algal Candidate for Biodiesell Production, Ettlia oleoabundans  

Ettlia oleoabundans, formally known as Neochloris oleoabundans (Figure 8), is a 

unicellular freshwater green microalga originally isolated from sand dunes in Saudi Arabia 

(UTEX, 2010). E. oleoabundans can produce up to 56% of its dry mass in TAGs. The lipid 
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composition of the TAGs produced by E. oleoabundans is ideal for biodiesel production 

(Gouveia et al., 2009). The major fatty acid produced is oleic acid (18:1), an unsaturated fatty 

acid with one double bond that is preferred for biodiesel as it has a low oxidation rate. Also, the 

alga accumulated only about 12% of the less desired linolenic acid (18:3), which contains three 

double bonds. Overall the oils in E. oleoabundans meet requirements of the European Standard 

EN for biodiesel (Gouveia et al., 2009). 

Additionally, the lipids produced by E. oleoabundans have an iodine level of 72, well 

below the maximum allowed value of 120 (Gouveia et al., 2009).  The iodine level is an indicator 

of the level of unsaturation in a sample of fuel.  Iodine will react with the double bonds in 

biodiesel, so the iodine level is a measure of iodine reacted with 100g of a given sample 

(Schober and Mittelbach, 2007). If a sample of fuel has an iodine level above 120 it is 

considered to be less stable and, therefore, less desirable of a product as it is more susceptible 

to degradation via oxidation (Schober and Mittelbach, 2007).  

 

Figure 8: Microalgae E. oleoabundans (taken from UTEX, 2010). 

When considering other algae of interest for production of biodiesel, the productivity of 

E. oleoabundans is comparable.  E. oleoabundans is capable of a very high lipid content when 

conditions are optimal (nitrogen starvation); this is not significantly surpassed by other algal 

species (Gouveia et al., 2009).  Ettlia has a fast growth rate, but may be a bit slower than other 

species.  For example, comparing different algal species, it was found that under the same 

growth conditions, E. oleoabundans achieved a growth rate of 0.09gDW/L/day and a maximum 

biomass concentration of 2.0gDW/L (Gouveia and Oliveira, 2008).  In contrast, Spirulina maxima 

was able to grow at 0.2gDW/L/day to a maximum concentration of 3.1gDW/L. Dunaliella 

tertiolectus had a growth rate of 0.12gDW/L/day, and a maximum concentration of 3.6gDW/L 

(Gouveia and Oliveira, 2008).  Although Gouveia et al. (2009) was able to increase growth rate 

and biomass yield of E. oleoabundans by efforts to optimize growth conditions, E. 
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oleoabundans still did not produce as much biomass as either Spirulina maxima or Dunaliella 

tertiolectus (Gouveia and Oliveira, 2008). 

Gouveia et al. (2009) attempted to determine some of the optimal growth conditions 

required for producing biodiesel from cultured E. oleoabundans.  They varied temperature, 

nitrogen, and CO2 supplementation for a growth period of 18 days. Under the optimal growth 

conditions, E. oleoabundans, like many other algal species, does not produce a high percentage 

of lipids.  Indeed, under these conditions E. oleoabundans has never been reported to produce 

more than 30% gTAGS/gDW, though lipid production rates were still high (37.6mg/liter day) 

(Gouveia et al., 2009).  While 30oC produced the highest growth rates for E. oleoabundans, the 

highest dry weight was achieved at 26oC producing around 1.6gDW/L.  Under nitrogen depleted 

conditions, the biomass productivity was greatly decreased. The doubling time for E. 

oleoabundans increased tenfold after five days of growth for the nitrogen depleted cultures as 

compared to the cultures with ample nitrogen supply (Gouveia et al. 2009). However, when 

nitrogen starved, E. oleoabundans accumulated 56% gTAGs/gDW, double the concentration 

under the same parameters for optimal growth with nitrogen in the media (Gouveia et al., 

2009).  When stained with Nile red, E. oleoabundans cells show very little lipid body staining 

during the logarithmic growth phase (Figure 9, A) when compared to cells that have been in the 

stationary growth phase for a week after nitrogen depletion (Figure 9, B) these cells are also 

much smaller than those growing in nitrogen replete media.  

 

Figure 9: Fluorescent microscopy of cells stained with Nile red. A is a single cell grown in 
nitrogen rich media; yellow bodies are oil droplets; B shows a cluster of cells  in media 

depleted of nitrogen. (Magnification 40X, excitation 485nm, emission 525nm).  

It has been hypothesized that as nitrogen becomes limiting, algae will begin using 

chlorophyll as a nitrogen source to continue molecular development and division (Gouveia et 

A       B 
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al., 2009).  The rest of the chlorophyll then is likely converted by the organism into the fatty 

acids and lipids that accumulate in the cell (Li et al., 2008).  

1.4 Algal Candidate for Biofuel Production, Botryococcus braunii 

Botryococcus braunii is a colonial green alga (Figure 10) known to produce long chain 

hydrocarbons that are secreted in its extracellular matrix.  These algae are naturally found all 

over the world, including fresh or brackish waters, and in nearly any climate (Metzger and 

Largeau, 2005).  Figure 10 displays an image of B. braunii which shows the algae growing in 

colonies. 

 

Figure 10: B. braunii growing in colonies (taken from UTEX, 2010). 

B. braunii comes in three main races, identified by the hydrocarbon product they 

produce. Race A predominantly produces alkadienes and alkatrienes containing 26-31 carbons 

(Banerjee et al., 2002). Race B produces triterpenes of C30-C37 and methylated squalenes of C31-

C34, also known as botryococcenes (Metzger and Largeau, 2005). Race L produces lycopadiene, 

C40H78 (Banerjee et al., 2002).  The hydrocarbon products from the different races of B. braunii 

are displayed in Figure 11.  B. braunii produces these hydrocarbons as part of its colonial 

matrix. The matrix is made up of hydrocarbons within layers of cell walls left over after cellular 

division (Metzger and Largeau, 2005).  

Investigations have proposed that the hydrocarbons and biomass of B. braunii 

significantly contributed to several oil shales and deposits.  Indeed, evidence shows the 

presence of B. braunii specific hydrocarbons and cellular characteristics in various petroleum 

products around the world (Banerjee et al., 2002). 
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Figure 11: Comparison of the major hydrocarbon products of Botryococcus braunii strains A, 
B, and L (taken from Banerjee et al., 2002). 

 

Hydrocarbons produced by B. braunii are of interest for biofuel production. They can be 

refined by conventional hydrocracking, a process currently in use at oil refineries today (Tran et 

al., 2010).  Thus these hydrocarbons can easily be converted into fuels that can immediately be 

added to the market without any alteration to either the existing fuel infrastructure or vehicle 

design.  Specifically, Race B of B. braunii is of most interest for the production of biofuels as its 

products are most easily converted to useable transportation fuels and may constitute 27-86% 

g/g dry weight of the cell (Banerjee et al., 2002).  

Hydrocracking of B. braunii oils results in a 67% fraction of gasoline, 15% jet fuel, and 

15% diesel fuel (Tran et al., 2010).  The use of catalysts has the potential to adjust the fractional 

percentages, and increase the quality of the product. The ability to use existing refineries may 

help to decrease the amount of land area needed to make an economic impact on the US oil 

market, since companies may have the option to sell B. braunii products to refineries as crude 

oil instead of having their own refining process on site. 

The main challenge to overcome before B. braunii can be exploited for oil production is 

the slow growth rate of the species. The growth rate has been increased, however, with 
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changes in the culture conditions. Most notably, when compared to growth with ambient air, 

the use of CO2 enriched air decreased the doubling time from 6 to 1.7 days (Banerjee et al., 

2002). 

1.5 Algal Transformations 

 It would be useful to have a known transformation protocol that could be used to adjust 

the metabolic pathways to increase lipid yields, growth rates, and/or photosynthetic efficiency 

in order to create a more profitable strain of algae for biofuel production. A successful genetic 

transformation involves the incorporation of foreign DNA into the nuclear or chloroplast 

genome. The modified organism must be viable after the transformation, and the inserted gene 

must have the ability to be translated into a functional protein in the organism (Rosenberg et 

al., 2008). Successful nuclear and/or chloroplast transformations have been accomplished in 

several algal species ().  The most frequent and successful methods of transformation involve 

either electroporation or microparticle bombardment, but species also have been transformed 

using glass bead agitation, silicon carbide whiskers, as well as Agrobacterium tumefaciens 

mediated genetic transfers (Coll, 2006; Rosenberg et al., 2008).).  The most frequent and 

successful methods of transformation involve either electroporation or microparticle 

bombardment, but species also have been transformed using glass bead agitation, silicon 

carbide whiskers, as well as Agrobacterium tumefaciens mediated genetic transfers (Coll, 2006; 

Rosenberg et al., 2008). 

While electroporation and glass bead agitation are both simple and inexpensive 

methods for transforming any organism, the drawback for use with algae is the requirement for 

cell wall deficient or cell wall-less organisms (Coll, 2006; Rosenburg et al., 2008). This obstacle 

was overcome in well studied species such as Chlorella vulgaris and Chlamydomonas reinhartii 

because cell wall deficient mutants and methods for protoplast formation are available (Coll, 

2006). Transformation efficiencies of 2,770 transformants per million (0.28%) were obtained via 

the electroporation of cell wall-less C. reinhardtii (Coll, 2006).  

Removal of the cell wall, and use of polyethylene glycol (PEG), a membrane fusion 

agent, improved the transformation efficiencies of glass bead agitation to 0.01% (Coll, 2006). 

The cell wall can normally be removed via enzymatic processes for well-studied plants and 

algae; however, the diversity of algal cell walls has kept transformations by these methods 

difficult to apply to every species of microalgae (Coll, 2006).  

Microparticle bombardment uses high speed gold particles coated in DNA to penetrate 

the cell, and does not require the removal of the cell wall. However, very expensive 

instrumentation is needed, and such technology is not readily available to all labs and startup 

companies that may be interested in attempting algal transformations (Coll 2006).  Also, the 
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maximum transformation efficiency observed so far with this method is only about 0.01%, 

about the same as for glass bead agitation (Coll, 2006).  

 

 

Table 3: Species of algae that have previously been transformed (taken from Coll, 2006) 

 

Agitation of cells in a mixture containing PEG, plasmid DNA and silicon carbide whiskers 

was used to transform two dinoflagellates, Amphidinium sp. and Symbiodinum 

microadruaticum (Lohuis and Miller, 1998).  While it was possible to transform the two species 

without removing the cell wall, only about 0.0025% of cells were transformed. 

The process of obtaining even these efficiencies required several attempts at optimizing 

the procedure for electroporation and protoplast formation.  Every step in the electroporation 

procedure can affect the ability of transformants to grow and multiply after DNA introduction.  

By altering the conditions for protoplast formation, electroporation, and post-transformation 

recovery, Tang et al. (1998) was able to achieve transformation efficiencies of 0.27% via 

electroporation of cell wall-less C. reinhardtii, a 1000 fold increase from the 0.0025 % previously 

achieved (Coll, 2006).  Tang et al. (1998) were able to optimize every step in their procedure to 
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obtain the most transformants possible for C. reinhardtii; however, it is likely these conditions 

will not be universally effective for the electroporation of all algal species.  Microalgae are a 

very diverse group of organisms with variations in cell wall chemistry, and it is likely that each 

species will require optimization of a transformation process. 

For each separate species of algae the proper enzymes and growth conditions must be 

determined for the protoplasting step.  The cell wall of the specific microalgae being studied 

will determine the enzymes used, but also the media that best facilitates protoplast survival 

and stability.  Typical enzymes used for cell wall degradation include cellulose, pectinase, and 

macerozyme (macerase).  

 A. tumefaciens mediated transformation has also been successfully performed on two 

algal species, C. reinhardtii and Haematococcus pluvalis, without the removal of the cell wall 

(Kumar, 2004; Kathiresen et al., 2009). A. tumefaciens is the causative agent of crown gall 

disease in higher plants, inducing tumors in plants by inserting a piece of plasmid DNA, called 

the T-plasmid (Transfer plasmid) (Zupan et al., 2000). The ability of A. tumefaciens to insert 

DNA into complicated eukaryotic plant cells has been exploited for many years to transform 

plants for many different applications (Zupan et al., 2000). The process of transfection by A. 

tumefaciens is displayed in Figure 12.  

A. tumefaciens mediated transformation of algae is still in its infancy, as prior work only 

showed feasibility of successful transformation and studied the effectiveness of the promoters 

and the presence of foreign genes after sexual reproduction (Kumar, 2004; Kathiresen et al., 

2009). A. tumefaciens mediated transformation yielded a transformation efficiency for C. 

reinhardtii of 0.035% (Kumar et al, 2004), and 0.015% for H. pluvalis (Kathiresen et al., 2009).  

These transformation efficiencies are not very different from those using electroporation (Coll, 

2006) 

 Preliminary attempts at over expressing genes in the lipid metabolism pathway have 

not resulted in an increase in lipid content of cells. The acetyl CoA carboxalase gene was over 

expressed in the diatom Cyclotella cryptic, but no increase in oil was observed (Rosenburg, 

2008).  On the other hand, attempts in silencing genes in the Light Harvesting Complex of C. 

reinhardtii resulted in a decrease of the effects of photo-inhibition (Rosenburg, 2008).  Wang et 

al. (2009) was able to demonstrate that the use of a starchless mutant cw15 sta6 (BAFJ5) of C. 

renihardtii resulted in a 15-fold increase in TAG production.  These novel approaches are the 

first attempts at genetic modification outside of lipid biosynthesis. For the purpose of 

increasing TAG yields, the switch from starch to lipid production in BAFJ5 has also been the 

most successful.  
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Figure 12: Transfection by A. tumefaciens (taken from Zupan et al, 2000). 
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Chapter 2: Hypothesis and Objectives 
The goal of this project was to optimize the protocol developed by Carter (2010) in order to 

efficiently develop transformants. From this goal the following hypothesis was formed: 

  

If it is possible to determine the concentration of protoplasts and their viability at each major 

step in the developed electroporation protocol, it will be possible to optimize the methodology 

to increase the ability to transform Ettlia oleoabundans. 

From this hypothesis the following objectives were identified: 

 Determine the optimal media to form protoplasts  

 Determine if the presence of 0.4M D-sorbitol in all media and solutions results in 

increased survival and viability of protoplasts 

 Determine the amount of protoplasts destroyed during the electroporation procedure 

Chapter 3: Methods 

3.1 Maintenance of Stock Cultures   

Stock cultures of 30ml of E. oleoabundans (UTEX 1185) and B. braunii (Showa strain, UC 

Berkeley) were maintained in 125mL Erlenmeyer flask with Bold’s Basal Media (BBM- see 

Appendix A) on a shaker bed at 25oC  and 100rpm to allow for proper aeration and to prevent 

settling of the algae.  BBM was selected as growth media because it was shown during 

laboratory preparation to promote rapid growth of algal cultures.  

Every two weeks, 5mL of each algal stock was subcultured and inoculated into 25mL of 

BBM.  During every other round of subculturing, a contamination check was made. Samples of 

culture were streaked onto Petri dishes of BBM containing 20g/L of T.C. agar and placed under 

a light. Every 4 weeks samples were taken from stock cultures and streaked onto LB media 

containing 15g/L of T.C. agar in order to stimulate microbial growth, to determine if any there 

was any bacterial contamination.  

3.2 Antibiotic Bioassay 

The antibiotics augmenton and hygromycin were tested for their effects on the growth 

of E. oleoabundans. Both antibiotics were dissolved in diH2O and filter sterilized through a 

0.2µm Whatman Filter. Concentrations of 0, 222, 333, and 666mg/L were tested. To test the 

effects of augmenton, cultures without antibiotics were first grown to an OD540 of 

approximately 1.2.  Once this OD was reached, augmenton was added to the samples at each of 

the above concentrations, keeping the total culture volume consistently at 15ml.  The OD540 

was measured over 4 days. The effects of hygromycin in liquid culture were similarly tested. 
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Hygromycin was also tested in solid agar media by inoculating plates with the different 

concentrations. A 500μl aliquot of E. oleoabundans from a seven day old culture was spread 

over the plate. Plates were placed under light at 25oC and observed daily for the presence of 

colonies. 

3.3 Genetic Constructs and Storage 

 Genetic Constructs for this experiment were developed by Carter (2010). His methods 

for building the different constructs, validation and their storage can be found in Section 3.3 of 

his MQP “Transformation of Ettlia oleoabundans, a Potential Biofuel Alga”  and also in Appendix 

B.  All constructs were revalidated in this project using the same methods. 

3.4 Agrobacterium tumefaciens Stocks 

Deactivated electrocompetent Agrobacterium tumefaciens LBA4404 cultures were 

stored in 20% glycerol at -80oC. Overnight and control samples of LBA4404 needed for 

transformation and other uses were grown in LB media with 25g/l rifampicin for selection of 

the T-vector. 

3.5 A. tumefaciens Transformation 

Plasmid DNA was isolated from TOP 10 Escherichia coli with standard alkaline lysis 

protocol (Vanderbilt, 2011) and purification was measured using Nano Drop UV 260/280nm 

fluorescence. Overnight cultures of A. tumefaciens grown in LB media containing 25mg/L 

rifampicin were used as the host for electroporation. A 0.5ng aliquot of DNA was added to 25µl 

of A. tumefaciens culture, microfuged at 1000 x g for 20 seconds, and then allowed to incubate 

on ice for 40 minutes. A 25µl aliquot of cells was placed into a sterile electroporation cuvette. 

Electroporation parameters were: 4kΩ and 330µF. After electroporation samples were added 

to 1ml sterile LB and allowed to incubate for one hour. After one hour, 10µl and 100µl of 

samples in LB media were spread on LB agar containing both 25mg/l rifampicin and 50mg/l 

kanamycin. Colonies formed were counted to determine efficiency. 

3.4.4 A. tumefaciens Confirmation 

 The presence of gene constructs was confirmed by restriction digest. Plasmid DNA was 

isolated from A. tumefaciens using the alkaline lysis protocol (Vanderbilt, 2011), and purity was 

again determined using Nano Drop.  A 0.5ng aliquot of isolated DNA was mixed with 25µl TOP 

10© E. coli and electroporated at 4kΩ and 330µF. Samples were then added to 1ml SOC media 

(Sigma) and placed in an incubator at 37oC for 1hour. A 30µl aliquot was plated on LB agar with 

50 mg/L kanamycin and grown overnight. Colonies were picked off the plate and grown 

overnight in liquid LB media containing 50mg/L kanamycin. Plasmid DNA used for the 

restriction digest was isolated from overnight cultures using the alkaline lysis protocol.  
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Samples were cut using EcoRV restriction enzyme. The enzyme blunt cuts on either side 

of the inserted gene. The digest was run on 1% agarose TAE gel with 1% Ethidium Bromide and 

visualized under UV light.  

3.6 A. tumefaciens Mediated Transformation 

E. oleoabundans and B. braunii were expected to be transformed, confirmed, and 

studied according to the protocol found in Appendix C with the following change: Augmenton 

was used to remove A. tumefaciens after co-cultivation.  

3.7 Protoplast Formation and Algal Electroporation 

The protoplasting methodology was modified from section 3.4 Formation of Protoplasts 

and section 3.7 Transformation by Electroporation and Selection from the methods in the MQP 

“Transformation of Ettlia oleoabundans, a Potential Biofuel Alga” by  Carter (2010; Appendix B). 

3.7.1 Confirmation of Protoplast 

To optimize the process of protoplast formation in order to increase survival of 

protoplasts for electroporation and to enhance the chance of obtaining transformants, several 

conditions and media were tested for protoplast efficiency and growth throughout the 

electroporation process.  The conditions tested are summarized as follows:   Enzyme Solvent – 

BBM + sorbitol, H2O + sorbitol, PBS + sorbitol; Electroporation Media – PBS + sorbitol, PBS -

sorbitol; Recovery Media – BBM - sorbitol, BBM + sorbitol. Various combinations of these 

conditions were tested. 

E. oleoabundans was grown until reaching mid log phase.  Cells were subjected to cell 

wall degradation by 1/3 volume of a solution of 1% cellulose(w/v), 1% macerase(w/v), 1% 

pectinase (w/v) in 0.4M D-sorbitol in one of 3 solvents, water, BBM, or PBS, in 3ml test tubes. 

Digestion was allowed to proceed in the dark for 24 hours at 25oC with gentile agitation on a 

slant rank on a shaker at 100 rpm. After 24 hours samples were pelleted in a microfuge at 100 X 

g for 10 minutes, washed with 0.4M D-sorbitol, and stained with 1 volume of 0.1% calcofluor 

dissolved in 50% NaOH ddH2O for 1 hour. Samples where then placed in a microfuge at 100 X g 

and then washed twice in 0.4M D-sorbitol.  Final samples were resuspended in 1/5 volume 

0.4M D-sorbitol. 

Samples were viewed using a confocal microscope to determine if the wall was 

completely degraded. A 5μL aliquot of each sample was transferred to a microscope slide with a 

cover slip.  The edges of the cover slip were sealed using clear nail polish.  The stain was excited 

at 365nm with an emission wavelength at 435nm.  Images were taken using an Olympus 

Industrial Microscope and Lyca software. 
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3.7.2 Electroporation  

Once protoplasts were formed, cells were placed in a microfuge at 100 X g, supernatant 

removed and the pellet re-suspended in Phosphate Buffered Saline, PBS (electroporation 

media). A 0.5ng aliquot of DNA was added to 25µl of re-suspended cells and placed on ice for 

an hour. The samples were then subjected to electroporation of 850V/cm at 10µF.  After 

electroporation samples were incubated for an hour in 1ml BBM (recovery media) then spread 

onto BBM agar plates containing hygromycin for selection of any putative transformants.  

3.8 Quantitation of Protoplast Formation  

To test the efficiency of protoplast formation, a simple procedure, the “pop test”, was 

adopted to test the osmotic rupturing of the cells without cell walls.  After the 24 hour 

incubation period in the wall degrading enzymes, an aliquot of cells was re-suspended in either 

0.4M D-sorbitol or ddH2O.  Cells lacking cell walls and suspended in the 0.4M D-sorbitol were 

expected to be protected from rupturing due to the osmotic protection of the sorbitol, 

however, the cells suspended in ddH2O that lost their wall due to enzymatic degradation are 

expected to rupture due to the osmotic imbalance between the media and the cytosol of the 

cell.  Based on this hypothesis the protoplast efficiency was determined by counting the 

number of intact cells in ddH2O and comparing it to the number of cells suspended in 0.4M D-

sorbitol. 

3.9 Statistical Analysis 

 For all experiments run in triplicate, a T-test statistical analysis was performed. In some 

cases there has to date been only 1 experiment conducted; replications will be completed later.  

Chapter 4: Results 

4.1 Hygromycin Sensitivity 

 To select for a successful transformation, an antibiotic capable of inhibiting or 

preventing the growth of E. oleoabundans must first be determined.  Once a proper selection 

medium is determined, the corresponding resistance gene can be used to more easily select for 

transformants by observing colonies that are capable of growing on media containing the 

antibiotic.  It was determined that the growth of wild type E. oleoabundans is strongly inhibited 

by the antibiotic hygromycin (Figure 13).  When log-phase cultures were used to inoculate 

liquid BBM media containing 5µg/ml-100µg/ml, growth was completely inhibited by 

hygromycin.  In additional, agar-based solid BBM mediium containing hygromycin yielded no 

colony growth of E. oleoabundans at any of the tested concentrations, confirming hygromycin 

resistance as a proper selectable marker. 
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Figure 13: Growth inhibition of E. oleoabundans by hygromycin. 

4.2 Genetic Construct Validation for the Transformation of Ettlia oleoabundans 

and Agrobacterium Tumefaciens 

 The genetic constructs used in an attempt to transform Ettlia oleoabundans and 

Agrobacterium tumefaciens were developed by Carter (2010).  The backbone is the pCAMBIA 

1300 vector (Figure 14).  It was chosen because it has an origin of replication and the 

Kanamycin resistant gene for both E. coli and A. tumefaciens. These characteristics allowed for 

ease of replication in E. coli as well as for use in A. tumefaciens mediated genetic transfer.  The 

construct also contained the resistance gene to hygromycin under control of the CaMV 35s 

promoter as a selectable marker.  Carter (2010) also separately ligated the reporter genes, 

green fluorescent protein (GFP) and beta-glucuronidase (GUS), with the CaMV 35s promoter 

into the multiple cloning site of the pCAMBIA 1300 backbone. GFP was also ligated with the nos 

promoter sequence. The genetic constructs within samples were verified to insure the presence 

of the inserted genes by restriction digests and agarose gel electrophoresis (Figure 15).   

As can be seen in Figure 15 the plasmid samples taken from E.coli (lanes 8, 9 and 10) 

clearly contain the pCAMBIA 1300 backbone as well as a copy of the inserted gene.  However, 

A. tumefaciens samples were consistently not of quality to confirm the presence of one 

inserted gene.  Lanes 2-7 are indicative of gels run prior to this one, showing more bands than 

should be present as well as, at best, weakly visible bands.  Without being able to confirm that 

the DNA to be used to transform E. oleoabundans was present in A. tumefaciens samples, it was 

not possible or of interest to continue the protocol for A. tumefaciens genetic transfers 

(Appendix B). 
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1. Hyperladde
r 

2. Nos GFP 
3. 35s GFP 
4. 35s GUS 
5. Nos GFP 
6. 35s GFP 
7. 35s GUS 
8. Nos GFP 
9. 35s GFP 
10. 35s GUS 

 

Figure 14: Restriction map for pCAMBIA 1300 PvuII (Taken from Carter, 2010) 

 
                  A. tumefaciens            A. tumefaciens                   E. coli 
     1          2          3           4           5          6          7          8           9          10 

           

Figure 15: Genetic constructs of A. tumefaciens and E. coli 

 

4.3 Protoplast Formation 

 Past successful algal transformation methods involving electroporation required the 

removal of the cell wall either through the use of mutants (wall-less mutants) or enzymatic 

degradation of the wall.  Based on previous work done by Carter (2010), a mixture of pectinase, 

cellulase, and macerase was known to be a promising combination of enzymes for removing 

the cell wall of E. oleoabundans.  These three enzymes, respectively, degrade pectin, cellulose, 

and hemicelluloses and pectin.  Calcofluor is commonly used to stain the cell wall of plants and 

was therefore used to visualize the formation of protoplasts.  The stain readily binds to the cell 

35s and nos GFP 
35s GUS 

pCAMBIA 1300 
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wall, but not the plasmalemma, and fluoresces at 435nm when excited with light at 365nm.  

Cells subjected to the enzymes were stained, and using a confocal microscope, were compared 

to stained control samples to determine if the cell wall was absent.  Controls showed a clear 

bright blue “halo” around the cell auto-fluorescing chlorophyll (Figure 16 A), while no blue stain 

was visible in cells incubated in the enzyme mixture (Figure 16 B).   

 

Figure 16: Confirmation of Protoplast Formation  

Panel A is a picture of cell incubated in the absence of enzymes (positive control). Panel B is a 
picture of a protoplast cell after 24 hr incubation in the enzyme solution.  

4.4 Procedural Optimization  

Using the pop test and following the protocol developed by Carter (2010), 

approximately 25% of the cells were determined to be protoplasts; they were capable of 

osmotic lysis in ddH2O after incubation in the enzyme solution (Figure 17).  Carter (2010) had 

established what seemed to be a promising protocol for introducing exogenous DNA by 

electroporation by studying the effects that different voltages and capacitances had on the 

growth of E. oleoabundans (Appendix B).  Although a high percentage of protoplasts were 

obtained through this procedure, no transformations were achieved. Also, in this study, control 

groups (cells subjected to electroporation in the absence of DNA and cells prepared for 

electroporation but not subjected to the procedure) grew poorly on semisolid 15% (w/v) agar 

BBM, often failing to produce any colonies if 0.4M d-sorbitol was not present in the semisolid 

media.  From these results it was deemed important to reevaluate the procedure in order to 

produce a protocol with a higher likelihood of success.     

To optimize protoplast formation, electroporation and the survival of cells, a number of 

variations in the protocol were systematically tested for protoplast efficiency and cell growth 

A                                                                                B 
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(Table 4: Effects of 0.4M D-sorbitol on the growth of E. oleoabundans on semi-sold media).  By 

using the pop test to measure the percent of cells that are protoplasts at each step of the 

protocol for each variation, as well as observing their subsequent growth on plates growth, it 

was possible to determine what step may be most likely (or unlikely) to produce a high number 

of protoplasts and, therefore, transformants.  Samples were run so that the each variable’s 

effect on growth could be compared relative to one another. 

The four samples that grew the fastest and with fuller lawns on plates were those which 

contained 0.4 M D-sorbitol in the recovery medium (Table 4 A, C, E, and G), showing it had the 

most positive effect of any variable on the growth of samples post-electroporation.  The fastest 

growing sample had its cell wall degraded in BBM, suggesting it may be the best medium for 

obtaining transformants (Table 4 G).  However, significantly higher protoplast efficiencies were 

found in the samples degraded in ddH2O compared to samples incubated in BBM, 25% and 

17%, respectively (Figure 17), possibly indicating it as a better medium for protoplast 

formation. 

Table 4: Effects of 0.4M D-sorbitol on the growth of E. oleoabundans on semi-sold media 

(+ indicates the use of a given variable, - indicates the absence; growth was comparatively 

ranked, 1= fastest, 8=slowest) 

 Enzyme Solvent Electroporation Media Recovery Media Growth 

 BBM+Sorbitol H2O+sorbitol PBS+ 
sorbitol 

PBS-
sorbitol 

BBM + 
sorbitol 

BBM-
Sorbitol 

BBM Agar+ 
sorbitol 

A - + - + + - 3 

B - + - + - + 8 

C - + + - + - 4 

D - + + - - + 7 

E + - - + + - 2 

F + - - + - + 6 

G + - + - + - 1 

F + - + - - + 5 

 

 With the protocol augmented to optimize the growth of E. oleoabundans, 

transformations with the GFP and GUS constructs were attempted on protoplasts formed in 

both BBM and ddH2O.  No transformants were produced using either medium, suggesting other 

obstacles would need to be overcome.  

The fragile nature of protoplasts makes them challenging to study and to maintain 

intact; therefore, it was important to know that the protoplasts that were initially formed 

survived to the step of electroporation.  The resuspension and pipetting process needed to 

prepare samples for electroporation introduces sheer stress on the cells that would normally be 
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tolerated if a cell wall were present.  However, these sheer forces placed on protoplasts can 

easily rupture the wall-less cells. To test if the steps between enzymatic digestion and 

electroporation reduced the number of protoplasts, protoplasting efficiencies were measured 

at the time of electroporation, and after resuspension in PBS+sorbitol and suspending the cells 

in the electroporation cuvette.  The number of protoplasts in each sample decreased by 40-50% 

of the original amount made after being suspended in the cuvette (Figure 18). Indeed the 

number of intact protoplasts declined to 15% of the total cells in cultures degraded in H2O, and 

dropped to under 10% in those degraded in BBM (Figure 17). 

 The loss of protoplasts during resuspension in PBS and preparation for electroporation 

suggested that digestion in PBS + sorbitol might reduce losses because one of the transfer steps 

could be eliminated. The hypothesis was that if the cells did not need to be pelleted and 

resuspended in PBS it may be possible to remove some of the sheer stress placed on the 

protoplasts leading to greater survival.  Results of a recent (and the only) test showed that 

more protoplasts survived using this 2-step process than with the 3 step method (Figure 18).  

Furthermore, the protoplast efficiency for cells incubated in PBS + sorbitol and the cell wall 

degrading enzymes was higher than any other sample at both stages in the procedure (Figure 

17).  Since more protoplasts reach the stage of electroporation and cells grew at a comparable 

rate to the other samples with colonies appearing a week after inoculation, this variation in the 

procedure seemed to increase the chance of obtaining a transformant, however, to date none 

has been produced. 

   

Figure 17: Protoplast efficiencies during electroporation protocol.  

(Water and BBM samples were run in quadruplicate after degradation. Duplicate samples of 
water samples were tested at electroporation. One sample of PBS was tested for both steps. 
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One sample of BBM was tested at electroporation. Error bars represent standard deviation. 
*indicates significant difference p <0.01 where n ≥ 3) 

 

Figure 18: Percent of protoplasts surviving to electroporation. 

Chapter 5: Discussion 
 Agrobacterium tumefaciens may be capable of transferring genetic constructs into E. 

oleoabundans without the removal of the cell wall.  This method has the benefit of working 

with algal cells that are much less fragile than the protoplasts required for electroporation.  

However, the use of A. tumefaciens has not resulted in high transformation efficiencies and 

introduces another organism, which must be maintained and transformed.  In this project it 

was difficult to validate that the plasmids being used to transform E. oleoabundans were truly 

present in A. tumefaciens samples.  Plasmid DNA could not be visualized on agarose 

electrophoresis gels when isolated from A. tumefaciens cells, but needed to be replicated and 

isolated from E. coli.  The added steps of transforming A. tumefaciens and E. coli proved to be 

difficult and unpredictable.  A. tumefaciens mediated genetic transfer into E. oleoabundans was 

not attempted because of the inability to validate the genetic constructs within A. tumefaciens. 

The electroporation of eukaryotic microalgae has required the removal of the cell wall in 

order to obtain high transformation efficiencies. Efficient methods of transforming C. 

reinhardtii have the advantage of using wall-less mutants (Tang et al 1998, Shimogawara et al 

1998).  The ability to grow mutant stains allows researchers to manipulate samples of cells that 

ideally consist entirely of protoplasts.  With the optimization of conditions associated with the 

electroporation of C. reinhardti, efficiencies of 2x105 transformants per µg DNA were achieved.  
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Variables optimized included osmolarity, temperature, concentration of exogenous DNA, 

voltage and capacitance.    

For the less studied alga E. oleoabundans, wall-less mutants are not known, therefore, 

enzymatic degradation appeared to be a promising method for forming protoplasts.  This 

procedure along with the conditions studied by those working with wall-less mutants also had 

to be optimized to obtain efficient transformation.  Carter (2010) reported optimizing the 

voltage and capacitance used for electroporation, as well as developing a method to produce 

protoplasts at a stable osmolarity, which was confirmed using the fluorescent dye calcofluor.   

In this project, conditions of the method developed by Carter (2010) were studied in an 

attempt to increase the survival and viability of protoplasts throughout the electroporation 

procedure.  The media in which the cell wall digestion occurs affects the formation of 

protoplasts as well as the growth of the algae post-electroporation.  Samples incubated in BBM 

grew faster on agar after electroporation, but developed approximately 5% fewer protoplasts.  

The use of 0.4M D-sorbitol in PBS and BBM in subsequent steps further increased protoplast 

survival and growth. Incorporation of sorbitol into the PBS solution used for electroporation 

had the greatest effect on growth for any of the liquid media used.  The most notable effect D-

sorbitol had on growth was when it was in the BBM agar used for plating cells after 

electroporation.  Plates without D-sorbitol failed to grow colonies, while plates containing D-

sorbitol showed robust growth within a week of inoculation.   

E. oleoabundans protoplasts were most efficiently produced in PBS at 32% of the total 

cells.  In comparison, 47.8% of Chlamydomonas sp. cells had their cell wall degraded by a 

mixture of cellulase and macerozyme (Liu et al., 2006).  E. oleoabundans and Chlamydomonas 

cells are quite different; however it may be possible to achieve similar protoplast efficiencies 

through further optimization of the cell wall degradation procedure.  Liu et al. (2006) adjusted 

the temperature and pH of the enzyme mixture in order to achieve this efficiency, suggesting 

more fine tuning of variables in this study may be helpful. 

Considering the highest protoplast efficiency achieved at electroporation in PBS was 

22.3%, it is safe to speculate that a transformation efficiency higher than 22.3% cannot be 

achieved.   In optimizing electroporation for E. oleoabundans Carter (2010) found parameters 

that were effective at reducing the population of cells subjected to the pulse.  The optimal 

electroporation parameter should reduce the viable population of a sample by 50%. Since 

electroporation has little effect on E. oleoabundans cells with a cell wall, then it is possible that 

up to 11.15% of cells will be capable of a transformation event due to the loss of 50% of 

protoplasted cells with negligible loss of walled cells.   
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When electroporation was optimized for the wall-less mutant of C. reinhardtii, 

transformation efficiencies of 0.27% were achieved (Tang et al 1998).  If this efficiency was to 

be considered the optimum transformation efficiency that can be achieved with E. 

oleoabundas, one could speculate that the highest transformation efficiency achievable by this 

species would be 0.03% using the current method.  Tang et al. (1998) were able achieve an 

efficiency of 0.27% working with 100% protoplast efficiencies in cultures of wall-less mutants.  

The ability to at best have 11.15% of cells capable of transformation coupled with low 

transformation efficiencies makes the probability of achieving an E. oleoabundans 

transformation by electroporation very low.  The theoretical transformation efficiency of 0.03% 

is however slightly higher than any other method previously used to transform other species of 

algae (A. tumefaciens, glass bead agitation, microparticle bombardment, etc.) (Coll, 2006). 

The method used to form and electroporate algal protoplasts is mainly based on the 

transformation methods commonly used for higher plants. Cell wall degradation and 

electroporation has been developed and used to transform the cells of higher plants for several 

decades and, in comparison, has been relatively well studied.  As example, carrot cells, a staple 

in plant cell research, can yield 25-30% transformation of its protoplasts (Bower and Birch, 

1990).  Carrot cell protoplasts were produced using cellulase, macerozyme, and pectinase.  The 

protoplasts were isolated from other cells using an isolation solution containing 0.37M glucose, 

1.5mM CaCl, and 0.05% morpholinoethanesulphonic acid (Bower and Birch, 1990).  The 

isolation of plant protoplasts, although not likely, provides the potential for nearly 100% of cells 

subjected to electroporation to be transformed.  While algal electroporation methods are 

similar to those of higher plant cells, the efficiency of transformation for carrot cells is 100 fold 

higher than what has been achieved, so far, for algal cells (Bower and Birch, 1990).  

Chapter 6: Conclusion and Future Work 
 The use of 0.4M D-sorbitol in all media used increased the survival of protoplasts, and 

the rate of growth after plating.  Additionally, the enzymatic removal of E. oleoabundans cell 

wall was the most efficient when performed in PBS.  This medium also allowed the cells to be 

directly electroporated without the need for resuspension, thereby avoiding steps that may 

rupture protoplasts.   

While a transformation was not achieved in the scope of this project, the optimization 

of the procedure will ideally be the groundwork for others to use in future attempts to 

transform E. oleoabundans in order to develop it as a more feasible biodiesel feedstock.  

Additionally, the ability to form and maintain protoplasts could lead to the development of 

other transformation methods if electroporation does not efficiently produce transformants. 

With the cell wall removed liposome mediated genetic transfer as well as the use of PEG could 
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be explored as alternative methods of transformation as they function to disrupt the cell 

membrane in order to deliver DNA.  

 Future work can now focus on the genetic manipulation of E oleoabundans now that the 

protocol previously developed has been optimized for protoplast survival.  The introduction and 

expression of exogenous DNA will still be difficult to perform on E.oleoabundans even with the 

consistent development and maintenance of protoplasts.  Since nothing is really known about 

the genome of this algal species, it still may be difficult to obtain transformants that express the 

inserted genes.  Different promoters may need to be explored as well as the use of introns and 

other types of enhancers perhaps specific to this algal species in order to efficiently produce 

transformants with the desired inherited traits (Coll, 2006).  The constructs developed by Carter 

(2010) used in initial unsuccessful transformation attempts may still be useful, however, for 

transforming E. oleoabundans. A better understanding of the organism will likely also be 

needed before a modified line could become industrially viable. The methods developed in this 

project have helped to further develop that understanding.  
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Appendix A 
Bold’s Basal Media (BBM) 

To prepare the final medium, begin with 700-800mL of dH2O and add 10 mL of the first six stock 

solutions. Add 1 mL each of the alkaline EDTA, acidified iron, boron and trace metals solutions. 

Autoclave. The final pH should be 6.4. 

Component 

400 mL 

Stock 

Solution 

1 Liter Stock 

Solution 

add quantity 

below per liter 

of medium 

Molar 

Concentration 

in Final 

Medium 

Major Stock          

NaNO3 10 g L
-

1
 dH2O 

25.00 g L
-1

 dH2O 10 mL 2.94 x 10
-3

M 

CaCl2 • 2H2O 1 g L
-

1
 dH2O 

2.50 g L
-1

 dH2O 10 mL 1.70 x 10
-4

 M 

MgSO4 • 7H2O 3 g L
-

1
 dH2O 

7.50 g L
-1

 dH2O 10 mL 3.04 x 10
-4

 M 

K2HPO4 3 g L
-

1
 dH2O 

7.50 g L
-1

 dH2O 10 mL 4.31 x 10
-4

 M 

KH2PO4 7 g L
-

1
 dH2O 

17.50 g L
-1

 dH2O 10 mL 1.29 x 10
-3

 M 

NaCl 1 g L
-

1
 dH2O 

2.50 g L
-1

 dH2O 10 mL 4.28 x 10
-4

 M 

Alkaline EDTA 

Stock  Solution 

  add 1 mLof this 

solution per liter 

of medium 

 

EDTA anhydrous  50 g L
-1

 dH2O  4.28 x 10
-4

 M 

KOH  31 g L
-1

 dH2O  1.38 x 10
-3

 M 

Acidified Iron 

Stock  Solution 

  add 1 mL of this 

solution per liter 

of medium 

 

FeSO4 • 7H2O  4.98 g L
-1

 dH2O  4.48 x 10
-5

 M 

H2SO4  1.0 mL   

Boron Stock 

Solution 

  add 1 mL of this 

solution per liter 

of medium 

 

H3BO3  11.42 g L
-1

 dH2O  4.62 x 10
-4

 M 

Trace Metal 

Stock  Solution 

  add 1 mL of this 

solution per liter 

of medium 

 

ZnSO4 •7H2O  8.82 g L
-1

 dH2O  7.67 x 10
-5

 M 

MnCl2 • 4H2O  1.44 g L
-1

 dH2O  1.82 x 10
-5

 M 

MoO3  0.71 g L
-1

 dH2O  1.23 x 10
-5

 M 

CuSO4 • 5H2O  1.57 g L
-1

 dH2O  1.57 x 10
-5

 M 

Co(NO3)2 • 6H20  0.49 g L
-1

 dH2O  4.21 x 10
-6

 M 

 Bold, H.C. 1949. The morphology of Chlamydomonas chlamydogama sp. nov. Bull. Torrey Bot. Club. 76: 101-8. Bischoff, H.W. and Bold, H.C. 

1963. Phycological Studies IV. Some soil algae from Enchanted Rock and related algal species. Univ. Texas Publ. 6318: 1-95. 
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Appendix B 
Selected from “Transformation of Ettlia oleoabundans, a Potential Biofuel Alga” by Brant 

Carter 
 
3.3 Transformation vector preparation 
 
The 35s-GFP, and 35s-GUS cassettes from pGreen (Hellens et al., 2000) plasmids were ligated 
into the multiple cloning site of the pCAMBIA 1300 plasmid (a gift from Dr. Argelia Lorence, 
Arkansas Biosciences Institute, Jonesboro, AR). DHSα cells in -80 °C cryostasis containing either 
pGreen 35s-GFP or 35s-GUS cassettes were thawed in LB media (Bertani, 2004; Appendix: 
Formulations) and cultured at 37 °C overnight. The plasmids were extracted from DHSα cells using the standard 
alkaline lysis protocol and then ethanol precipitated (see Appendix: Protocol Details). 
 
Presence of the plasmids was verified by loading 1 μL of each sample onto a 1% agarose electrophoretic gel run for 
60 min at 90 V. Each cassette was spliced out of its pGreen backbone with EcoRV (blunt cut) restriction enzyme 
(New England Biolabs, Inc., cat# R0195S) in 30 μL digest volumes (1 μL of 20 units/μL EcoRV, 3 μL DNA sample, 3 μL 
NEBuffer 3, 4 μL BSA, and 28 μL reagent grade diH2O) incubated for 90 min at 37 °C and then isolated by a 1% 
agarose electrophoretic gel extraction followed by phenol chloroform extraction and ethanol precipitation. GFP 
and GUS restriction maps are shown in Figure 4. 
 
The pCAMBIA 1300 plasmid was digested with PvuII (blunt cut) restriction enzyme (New England Biolabs, Inc., cat# 
R0151S) in 30 μL digest volumes (1 μL of 5 units/μL PvuII, 4 μL DNA sample, 3 μL NEBuffer 3, 4 μL BSA, and 27 μL 
reagent grade di H2O) incubated for 90 min at 37 °C, dephosphorylated with shrimp alkaline phosphatase (SAP) (1 
μL of 1 unit/μL SAP and 10x SAP Buffer), incubated for 15 min at 37 °C, heat shocked at 65 °C for 15 minutes, and 
then isolated by a 1% agarose electrophoretic gel extraction followed by phenol chloroform extraction and ethanol 
precipitation. See Figure 5 for the restriction map of the pCAMBIA 1300 plasmid. 
 

35S-GFP 

 
 

35s-GUS 

 
Figure 4: Restriction maps for 35s-GFP & 35s-GUS EcoRV. The pGreen backbone is not included; 
map was generated using NEBCutter 2.0 (Vincze et al., 2003) 
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Figure 5: Restriction map for pCAMBIA 1300 PvuII . The pGreen backbone is not included; map was generated 
using NEBCutter 2.0 (Vincze et al., 2003) 
 
The 35s-GFP and 35s-GUS inserts were ligated into open, dephosphorylated pCAMBIA 1300 backbones at an 
approximate 3:1 molar ratio in 20 μL working volumes with T4 DNA ligase (1 μL T4 DNA Ligase, 10x T4 DNA Ligase 
Buffer, and reagent grade DI H2O), and incubated overnight at 15°C. Ligands were transformed into heat 
competent E. coli and cultured in LB + Kanamycin (kanamycin resistance is conveyed by pCAMBIA 1300) overnight 
at 37° C and subsequently streaked onto LB Agar (1.5% w/v) + kanamycin plates for transformant selection. 
Surviving colonies were then picked and cultured again in LB + 100 μg/mL kanamycin overnight at 37 °C. The 
constructs were isolated from the cells by standard alkaline lysis protocol (Appendix: Protocols) and ethanol 
extraction (70% ethanol extraction followed by 100% ethanol extraction). Because the kanamycin resistance gene 
is part of the pCAMBIA 1300 backbone, selection with kanamycin does not ensure proper ligation of the inserts 
into the backbone. Therefore, construct digests with EcoRV were run on 1% agarose electrophoretic gels for 60 
min at 90 V alongside a pCAMBIA 1300 PvuII digest, and 35s-GFP and 35s-GUS EcoRV digests to verify that proper 
constructs were present. Once verified, cells were prepared in glycerol solutions and put into cryogenic stasis with 
liquid nitrogen and stored at -80 °C. 
 
 
 
 
3.5 Protoplast formation 
 
Ettlia oleoabundans cells in log phase growth were subjected to cell wall digestion with 1% cellulase (w/v), 1% 
macerase (w/v), and 1% pectinase (w/v) in 0.4M D-sorbitol (Sigma Aldrich, St. Louis MO: S1876) for 24 hours at 
room temperature under gentle agitation. Following digestion, cell samples were centrifuged at 100xg for 10 
minutes, washed with 0.4M D-sorbitol, and were stained with 1 volume of 0.1% calcofluor (fluorescent brightener 
28; excitation 365nm; emission 435nm; Sigma Aldrich, St. Louis MO: F3543) for 1 hour. After staining, cells were 
centrifuged at 100 x g and washed twice in 0.4M D-sorbitol, and assayed for successful protoplast formation under 
UV fluorescent microscopy. 
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3.7 Transformation by electroporation and selection 
 
Culture samples were taken in log phase growth, concentrated by centrifugation at 4,000 x g for 10 minutes to a 
factor of about 5 and electroporated with 600, 800, and 1000 V/cm at 10 μF with 2.5μg/mL DNA. Light/dark 
synchronized samples were taken from the synchronized culture at the transition from light to dark (12th hour in 
24 hour cycle), 30 min after the transition, and 1 hour after the transition; these were all times where zoospore 
concentration appeared to be highest. Nitrate starved synchronized samples were taken at first sign of 
reproduction. Both types of synchronized cultures were then electroporated as previously described. 
Electroporated samples and one non-electroporated sample (control) were then cultured for approximately 4 days 
on BBM plates (75% of sample on plates with 20 μg/mL hygromycin; 25% of sample volume on control plates). 
Cultures were deemed to be successfully transformed if they showed hygromycin resistance conveyed by the 
hygromycin resistance gene (HYG) in the pCAMBIA 1300 backbone of each construct. Surviving colonies were 
assayed for GUS and GFP (excitation 395 nm; emission 509 nm) activity. 

 

 

 

Appendix C 

Genetic Transformation Protocols 

From: Methods in Molecular Biology, vol. 344: Agrobacterium Protocols, 2/e, volume 2. Kumar et al., 2004. 
 Pages 731-738  

 

Green Alga (Chlamydomonas reinhardtii) Manchikatla V. Rajam and S. Vinod Kumar 

2.3. Detection of GUS activity 

1. X-gluc (5-bromo-4-chloro-3-indolyl-glucuronide) (Sigma). 

2. GUS histochemical assay buffer: 10 mg X-gluc dissolved in 2 mL dimethyl for-mamide, 2 mL 5 mM 
potassium ferricyanide, 2 mL 5 mM potassium ferrocyanide. Make volume to 20 mL using 0.1M sodium 
phosphate buffer. 

3. Incubator or dry-bath at 37°C. 

4. Light microscope. 

5. Protein extraction buffer: 50 mM Na2HPO4, pH 7.0, 10 mM β-mecaptoethanol, and 10 mM ethylene-
diamine tetraacetic acid (EDTA) supplemented with 2 mM phenylmethylsulphonyl fluoride (PMSF). 

6. MUG (4-methyl umbelliferyl-β-D-glucuronide) (Sigma). 

7. GUS fluorimetric assay buffer: Extraction buffer containing 1 mM MUG. 

8. Stop buffer: 0.2 μM Sodium carbonate. 

9. 1 μM 4-methyl umbelliferone (4-MU): Dissolve in stop buffer. 

10. Spectrofluorimeter. 
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11. Others: Standard reagents and materials for protein quantification according to standard procedure (15). 

2.4. GFP Detection 

1. Phase-contrast microscope (Nikon Eclipse TE 300 microscope with an excitation filter of 450–490 and a 
barrier filter at 520 nm). 

2. Confocal laser scanning (Radiance 2100, Bio-Rad) using a Nikon microscope (objective Plan Apo 60X/1.4 
oil, Nikon, Japan).  

2.5. Isolation of Genomic DNA 

1. DNA isolation buffer: 2% cetyl trimethyl ammonium bromide (CTAB), 1.4 MNaCl, 20 mM EDTA, 100 mM 
Tris-HCl, pH 8.0, and 0.2% β-mercaptoethanol. 

2. Chloroform:isoamyl alcohol (24:1 v/v). 

3. Isopropyl alcohol. 

4. Ethanol 70% (v/v). 

2.6. Analysis of T-DNA Integration and Transgene Expression 

1. PCR Buffer: 10 mM Tris-HCl, pH 8.3, 50 mM KCl, 2 mM MgCl2, 100  μM deoxynucleotide triphosphate 
(dNTP) mix. 

2. Taq-DNA polymerase (MBI, Fermentas). 

3. PCR primers: 5′ -AGCTGCGCCGATGGTTTCTACAA-3′  (Forward primer) and 5′ -
ATCGCCTCGCTCCAGTCAATG-3′  (Reverse primer) to amplify 0.5 kb fragment of hpt gene. 

4. RNeasy plant kit (Qiagen). 

5. Protein extraction buffer: 50 mM sodium phosfate buffer, pH 7.0, 10 mM Na2EDTA, 2 mM β-
mercaptoethanol, and 2 mM PMSF. 

6. Rabbit anti GUS polyclonal antibodies. 

7. Goat anti-rabbit IgG—alkaline phosphatase conjugate (Sigma). 

8. Others: Materials for Southern and Northern hybridization analysis according to standard procedures (16). 

2.7. Mating and Genetic Analysis 

1. C. reinhardtii strain CC-125 (mt+). 

2. Gametogenesis media: Low sulfur medium (L-medium), 

1/5 strength Nitrogen-free minimal medium (M-N/5 medium) (see Table 2 for the composition of the media). 

3. Maturation medium: TAP plus 4% agar. 

4. Zygospore germination medium: TAP plus 2% agar. 

5. TAP agar plus 10 mg/L hygromycin. 

6. Microspatula, blunt glass needles and mouth controlled pipet. 

7. Stereo dissection microscope. 
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3. Methods 

3.1. Culture and Maintenance of Chlamydomonas Unless otherwise mentioned Chlamydomonas cultures are 
grown in liquid TAP medium in an incubator shaker under continuous illumination using cool. fluorescent 
light with 60 μmol/m2/s at 100 rpm and 23°C. Solid cultures are always maintained on TAP-agar medium. All 
transformation experiments are initiated from a single colony-derived culture. 

3.2. Transformation 

1. Inoculate a single colony of Chlamydomonas into TAP medium and grow to log phase under illumination. 
Green Alga (Chlamydomonas reinhardtii) 4252. Plate about 107 cells from the log phase culture on to the 
solid TAP medium with or without 100 μMAS in 90-mm Petri plates and incubate in light for 2 d to allow a 
lawn of cell to be formed (see Note 6). 

3. Raise an overnight Agrobacterium  culture (A600 = 0.5) in liquid YEM medium containing appropriate 
antibiotics (in the present case 10 mg/L rifampicin, 50 mg/L streptomycin, and 50 mg/L kanamycin), pellet 
and resuspend in liquid TAP medium supplemented with or without 100 μM AS (see Note 7). 

4. Plate 200 μL of the bacterial suspension on to the thin layer of Chlamydomonas culture growing on agar 
plates. Incubate the plates for 2 d at 23°C (co-cultivation) 

5. Following 2 d of co-cultivation, harvest the cells, wash twice with liquid TAP medium containing 500 mg/L 
cefotaxime by re-suspending with mild vortexing and centrifugation at 100g for 2 min in a microcentrifuge, 
re-suspend in liquid TAP and plated 2–3  × 106 cells on to solid TAP plates containing 10 mg/L hygromycin + 
500 mg/L cefotaxime. 

6. Transformed colonies appear in 1 wk (see Note 10); maintain independent colonies on the selection 
medium with intermittent sub-cultures. 

7. Utilize the transformed colonies maintained in liquid TAP medium under non-selective conditions for 
molecular analysis (see Note 11). 

3.3. Detection of GUS Activity 

1. For the analysis of gus reporter gene expression (17) transfer 1 mL of the culture to microcentrifuge tube, 
pellet the cells by centrifugation at 1500g for 5 min and re-suspend in 500 μL of GUS histochemical assay 
buffer. 

2. Incubate cells in the assay buffer at 37°C overnight. 

3. Remove the assay buffer by centrifugation, rinse the cells in 70% ethanol, and store in 40% glycerol until 
used. 

4. Observe the cells under light microscope to visualize the GUS expression (see Fig. 2A). 

5. For quantitative detection of the GUS activity, pellet 1 mL of culture in a micro- centrifuge at 1500g for 5 
min at 4°C and homogenize the cells by sonication in the protein extraction buffer. 

6. Centrifuge the homogenate at 13000g for 15 min at 4°C. Collect the supernatant and use for enzyme assay 
after quantifying proteins according to standard procedures (15). 

7. Perform GUS assay by adding 100 μL of the extract to 500 μL of pre-warmed assay buffer and incubate at 
37°C. Remove 100 μL aliquots at regular intervals and mix with 900 μL stop buffer. 

8. Calibrate the fluorimeter or make a calibration curve using triplicate 0 to 100 nM 4-MU diluted in stop 
buffer as for the reaction samples (with excitation at 365 nm and emission at 455 nm) followed by reading 
the reaction sample fluorescence. 
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9. Extrapolate the enzyme activity from the standard curve of 4-MU and express as pmoles 4-MU/min/mg 
protein. 

3.4. GFP Detection 

1. For detection of green fluorescent protein (GFP) by phase-contrast microscopy, observe the cells mounted 
on a microscopic slide with a Nikon Eclipse TE 300 microscope with an excitation filter of 450 to 490 and a 
barrier filter at 520 nm. 

2. For confocal microscopy, perform confocal laser scanning (Radiance 2100, Bio-Rad) using a Nikon 
microscope (objective Plan Apo 60X/1.4 oil, Nikon, Japan). Detect GFP fluorescence with an excitation of 488 
nm (argon laser) and high quality band-pass emission filter HQ515/30, centered on 515 nm with 30-nm 
bandwidth. 

3. Detect chlorophyll auto fluorescence through 637-nm red diode. Process the images in Photoshop  

3.5. Isolation of Genomic DNA 

1. To isolate genomic DNA from  Chlamydomonas cells using CTAB buffer  (18) pellet the cultures raised in 
100 mL TAP medium to log-phase and re-suspend  the cells in pre-heated isolation buffer. 

2. Incubate the tubes at 65°C for 1 h with gentle mixing in between. 

3. Extract the lysate with equal volume of phenol:chloroform:isoamyl alcohol (25:24:1) by gentle mixing and 
centrifugation at 12,000g for 15 min at room temperature. 

3. Separate the upper aqueous layer by gentle pipetting into a fresh tube, extract with equal volume of 
chloroform:isoamyl alcohol and centrifuge as described above. 

4. Separate the aqueous layer and mix with two-thirds volume of iso-propyl alcohol in a fresh tube to 
precipitate the DNA. Mix the contents gently by inverting the tube several times, and centrifuge at 12,000g for 
15 min at room temperature. 

5. Wash the DNA pellet obtained with 70% ethanol, air dry, and dissolve in 100 μL of sterile distilled water. 

6. Store DNA samples at −20°C until used for polymerase chain reaction (PCR) or Southern analysis. 

3.6. Analysis of T-DNA Integration and Transgene Expression 

1. Analyse the transformants by PCR with primers specific to hpt. Set up the PCR reaction mixture with 100 
ng of DNA from untransformed control as well as putative transgenics with 100 nM of the transgene specific 
primers in 25 μL of PCR buffer containing 0.5 U of Taq DNA polymerase. 

2. For Southern analysis, restrict 10 μg of genomic DNA with EcoRI and perform hybridization using 32P-
labelled hpt gene fragment as a probe using standard procedures  

3. Isolate total RNA from the transformed as well as wild-type cultures using the RNeasy Plant kit (Qiagen) 
according to manufacturers instructions 

4. Use 30 μg of RNA from the transformed lines and the untransformed control for Northern blot 
hybridization using  32P labeled hpt gene fragment as a probe according standard procedures (16). 

5. Separate soluble proteins (30 μg) extracted from the independently transformed colonies and 
untransformed cells of Chlamydomonas in the extraction buffer by sodium dodecyl sulfate-polyacrylamide gel 
electrophoresis (SDS-PAGE). 

4. After the separation, transfer the proteins on to PVDF membranes by electroblotting. Block the membranes 
with 3% bovine serum albumin (BSA) for 1 h and incubate with rabbit anti-β-glucuronidase polyclonal 
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antibodies for 1 h and detect by goat anti-rabbit IgG-alkaline phosfatase conjugate (Sigma) using standard 
procedures 

3.7. Mating and Genetic Analysis 

1. Prepare cells of both mating types for gametogenesis by growing separately on solid low-sulfur medium (L-
medium) for 3 d (see Note 14). 

2. Harvest the nutrient starved cells from  step 1 and resuspended in one-fifth strength nitrogen-free minimal 
medium (M-N/5) at a density of 2 × 106 cells/mL and incubate with shaking under 18-h light to allow 
gametogenesis to occur. 

3. Harvest gametes by centrifugation at 1500g for 5 min and resuspend in fresh M-N/5 liquid medium at a 
concentration of 0.5 × 108 cells/mL. 

4. Mix equal number of both the gametes and allow mating for 1 h. A sample mating mixture can be observed 
under light microscope to monitor mating. Once mating is complete, plate the mixture onto maturation 
medium and incubate the plates under light for 24 h followed by incubation in the dark for 6 d to allow for 
maturation. 

5. Remove the unmated gametes from the maturation plate by gently scrapping with a sterile razor. The 
zygospores will now be visible clinging on to the agar. 

6. Collect the zygospores from the maturation plates using a microspatula or a mouth-controlled pipet under 
a dissection microscope; place on the germination medium and allow germinating for 1 d under light. 

7. The zygospores undergo meiotic division and would be ready for the release of the tetrads in a day. 
Separate the tetrad products using blunt glass needle and allow producing independent colonies. 

8. Colonies appear in 7 to 10 d. When colonies form, inoculate them into liquid TAP medium and allow to 
grow to a stationary culture. 

9. Spot 5-μL aliquots of the stationary phase cultures on to TAP agar medium, with and without hygromycin, 
for screening of segregation of hygromycin resistance phenotype. 

10. Use the tetrad products for PCR analysis to check whether the hygromycin resistance phenotype and the 
hpt transgene co-segregated. 


