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Abstract 

 

The goal of this project is the investigation of the stability of several non-trivial transportation devices, 

such as a motorcycle with a sidecar and a two-wheel bicycle, under various dynamic conditions. 

 

The first approach is a theoretical study of the stability in the motion of a motorcycle with a sidecar. Its 

specific feature is its lack of symmetry. In the project, conditions were obtained that guarantee directional, 

lateral, and, most importantly, rollover stability. Under certain dynamic conditions, tipping may be 

possible about a line through the ground contacts of the side wheel and the front or rear wheels.  

 

In this problem, stabilization is permanently fixed through design choices and manufacturing expertise. 

The project also studies the dynamic control maintained over a bicycle through the course of its motion.  

 

The first dynamic topic concerns the self-stability of a bicycle where the gyroscopic effects have been 

removed. The problem is more than a century old, but only recently (2011) has it been realized that an 

uncontrolled bicycle without any gyro effects can demonstrate self-stability due to an appropriate 

feedback applied through the steering column alone. In this project, the values of some constructive 

parameters were determined that maximize the forward velocity range for uncontrolled stability. 

 

The second dynamic topic of the project concerns the controlled stability of a moving bicycle. Its vertical 

position is then maintained via special action taken by a rider who properly operates the handlebar. A 

bicycle is similar to an inverted pendulum acted upon by an additional force created through rotation of 

the handlebar. The main idea is to operate the handlebar so as to make this force identical to the force that 

appears when fast vertical oscillations of a pivot stabilize an inverted pendulum. As a consequence, the 

bicycle can be stabilized for forward velocities above a certain limit.  
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1. Motorcycle with a Sidecar  

There is some literature [1,2] on the theoretical analysis of stability for symmetric tricycles, such as the 

delta and tadpole motorcycles (Fig.1).  

 

Figure 1. Top and rear view of delta (left) and tadpole (right) tricycle models 

 

In this project, we consider, as an alternative, a sidecar motorcycle outfit. Unlike delta and tadpole, this 

outfit is lacking symmetry, which affects its directional and lateral stability. To the best of our knowledge, 

the stability analysis has not been conducted for a non-symmetric case. In the following section we are 

providing an analysis of the directional stability of a sidecar outfit negotiating a turn.  

 

1.1 Directional Stability 

A scheme for the sidecar vehicle is given in Fig. 2.  

 

Figure 2. Schematic model of the sidecar outfit  
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Weights applied to wheels are designated as          (index 1 for front wheel F, index 2 for rear wheel 

R, and index 3 for side wheel S);            . 

 

Usually, the coordinates of wheels are known, whereas the coordinates of the CoG depend on the 

distribution of weight among the wheels, that is, upon two independent parameters. The lateral forces    , 

   ,     are linked with the slip angles (Fig. 2) by the formulae: 

 

                                          

 

with stiffnesses         . Here, we assume that the two planes through the rear wheels and side wheels 

remain parallel to each other. Also,    is assumed to be constant and significantly larger than the 

contribution due to rotational velocity     Differential equations of motion take the form [1,2]: 

 

 

 
 ̇                    ̇                     

 

where    is the moment of inertia about CoG, and the symbols a1,..,a4  are combinations of lateral 

stiffnesses. The geometric parameters were introduced in Fig. 2., including weight W, and forward 

velocity Vx: 

  

   
        

  
  

   
              

  
 

 

 
    

   
              

  
  

   
  
      

      
   

  
  

 

From geometry, and by small-angle assumption                          

 



Worcester Polytechnic Institute | MQP 2012.  D. Lurie 6 

 

           
   

   
    

   

   
  

   
   

   
         

   

   
    

                         

                         

                         

 

A sidecar outfit negotiating a turn is directionally stable, i.e., it isn’t brought to uncontrolled rotation as 

long as            , or, after transformations, 

 

   
  

 
(              )         

         
         

                             (1) 

 

where L12= l1+ l2, L13= l1+ l3, L23= l2 - l3.  

 

To study how the weight applied to every wheel affects directional stability, we show in Fig. 3 how the 

CoG (point O) splits the triangle 123 into three triangles 203, 103 and 102. Each is proportional, 

respectively, to the weights W1, W2, W3.  

 

Figure 3. Location of the Center of Gravity 

 

Directional stability will take place regardless of Vx if the factor of   
  in (1) is negative, that is,  

               (        )   (             )                             (2) 
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This means that a sufficient load on the front and side wheels guarantees directional stability for any Vx. If 

(2) is violated then this stability will be preserved if Vx
2 
remains below the critical value 

 

  
    

       
         

         
 

                                          
                               (3) 

 

1.2 Rollover Instability 

The sidecar outfit may also demonstrate rollover instability as a result of lateral acceleration caused for 

any reason (e.g., a wind gust), but also while it is accelerating or breaking in a turn. An accident or 

rollover may occur either about the axis 3-1 or about the axis 2-3 in Fig. 3. For example, when lateral 

acceleration a applies perpendicular to the line 2-1 then no rollover happens if 

 

  
 

 
    

  

    
 

  

    
 . 

 

Here, H is the height of the CoG over the ground. If a rollover occurs, then it will require less acceleration 

to happen around the 3-1 axis if 

  

                    

 

The smaller is the load m2 on the rear wheel, and the closer are the axes 2 and 3 to coincidence, the easier 

will be the chance of a turnover about the line 3-1.
 

 

 

2. Self-Stability of a Bicycle  

2.1 Statement of the problem 

While a bicycle is a complicated mechanical assembly, its structure does allow for satisfactory modeling. 

For schematic versions, see Figs. 4 and 5 [3]. The tilt angle (positive or negative) for the steering axis is 

given by   . In this model, the wheels are replaced by skates (“two-mass-skate” bicycle - TMS), which is 

reasonable if the gyro effect is removed thanks to a compensating wheel mounted on the frame. This 

removal was purposefully introduced in [3] to eliminate the stabilizing action of gyro effect and to 

determine how the steering wheel alone would work as a stabilizing factor. The differential equation 

 

  ̈     ̇  [        ]    
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governs the vector         of the lean angle   between the frame and the vertical plane, and the steer 

angle   of the front wheel.   is a positive-definite matrix of masses, and    characterizes gyroscopic 

torques due to the rates of  ,  . The symmetric matrix     reflects the acceleration of gravity, while 

     is due to gyroscopic and centrifugal effects. The elements of all matrices are lengthy expressions 

[3] involving constructive parameters (see Figs. 4,5), among them the coordinates (     ) and (     ) of 

the front and rear frame masses,    and   . These masses are introduced into the model as replacements 

for the frame and steering column masses, respectively. It is known that for a range of   the system 

remains stable on its own (self-stability). The goal of this project is to find position (xH, zH) of the front 

mass that makes the lower boundary of the velocity range of self–stability as small as possible. 

 

 

Figure 4. Theoretical scheme of a TMS bicycle, λs > 0.  
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Figure 5. Theoretical scheme of a TMS bicycle, λs < 0.  

 

2.2 Method  

We apply Routh-Hurwitz (RH) criterion that guarantees the negativeness of the real parts of all roots of 

the characteristic equation 

                          

 

An equivalent form for it  

                                                                      (4) 

 

introduces the symbols        defined as  

    ,       ,          
 ,           

 ,          
 .                             (5) 

 

The coefficients          in these expressions are functions of material properties and constructive 

parameters [3], among them (     ). The RH criterion requires that all coefficients A, B, C, D, E, and the 

polynomial                  
     

     
  should be negative. These conditions are 

tested below for both schemes represented in Figs. 4 and 5, and optimal locations (     ) and the 

smallest critical velocities found for these schemes. The following formulae for         are given in [3]: 
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                     , 

                      ,                                                                                      (6) 
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                                   , 
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Here and below, the symbols     and     have the following meaning:  

                      ,                                             (7) 

 

The RH inequalities now become (notice that both       are negative): 

(i)     ; 

(ii)      for    , that is,  

either       and              

or     , and              

(iii)     , that is, 

either     , and      , 

or     , and      ; 

(iv)     , that is, 

either     , and      , 

or     , and      ; 

(v)     , that is, 

either     , and                     , 

or     , and                     . 

 

We see that inequalities                          take place simultaneously for both positive 

and negative values of   . 
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By (7), the formula (6) for    is rewritten as          [                      ]. To 

guarantee       it is necessary that            For positive   , this means     . In other words, 

for a structure where the steering is in the “leaned back” orientation, the front mass should be in front of 

the steering axis. For positive values of   , we have, by (ii) – (iv),              and      , and 

     . The first of these inequalities means that the front mass    is below a line through O and the 

rear mass    (Fig. 4). Another two inequalities say that the shaded domain shown in Fig. 4 is consistent 

with (ii) – (iv). As to (v), this inequality is satisfied for all    if this mass is within the triangle in the 

portion of the shaded domain to the left of    . When we go to the rest of the shaded domain, then 

inequality (v) is satisfied only for  

         
          

    
  

 

The RH conditions are now reduced to 

      
   ,  and        

                                              (8) 

 

These inequalities determine the critical velocity at which the bicycle loses stability. We give the 

numerical analysis in the following section. Specifically, we will be interested in the position (     ) of 

the front mass that makes the critical velocity as low as possible. 

 

 

2.3 Results 

In Fig. 4, we assign the following parameters:     ,                 ,                    , 

      . The coefficients A, B, D, E are all positive for      if (     ) falls into the shaded domain 

in Fig. 4. Adjusting the data for Fig. 4, we specify the parameters as:     ,       ,         , 

                    ,       . The coefficients A, B, D, E are all positive for       with 

(     ) inside the shaded domain in Fig. 5. Because      in both cases, the optimal critical value of    

is defined by (8) as  

      
      

       
[   ( 

  

  
  

  

  
)]  

 

The ratios –      and –      depend on (     ) taking values within the shaded regions. The graphs 

of the ratios (red for –      and blue for –     ) are reproduced in Fig. 6a for positive   , and in  

Fig. 6b for negative   . We see that in both cases, the blue surface is above the red one, so it is the ratio 

–       that defines the critical velocity below which stability is lost.  
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When        (see Fig. 4), the minimum critical velocity of 2.26     is attained at          and 

     . That is, when the load    is mounted on the front skate. Using (xH, zH)  =               the 

non-optimal critical velocity was found in [3] to be 2.8    .  

 

When        (see Fig. 5), the minimum critical velocity of 2.16     is attained at (     ) = (     ). 

That is, when the front mass and the frame mass are located at the same point. Using (     ) = 

         , the non-optimal critical velocity was found in [3] to be 2.6    .  

 

Figure 6a. Plot of –       (red) and –      (blue) as function of (     ) for       .  

 

Figure 6b. Plot of –       (red) and –       (blue) as function of (     ) for       .   
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3. Controlled Stability of a Bicycle  

A simple model of a bicycle assumes that for a tilt angle       the CoG of the front assembly will be 

located on the steering column. The front assembly is defined as the front wheel, the front forks and the 

handlebar. The rear assembly includes the frame, plus the rider, the rear forks and the rear wheel. For this 

typical arrangement, the lean and the steer angles     satisfy the equation [4]  

 

   ̈         ̈      ̇  (      
 
)                                                  (9) 

 

The coefficients         then have the following meaning: 

        

        

              

                               

          

                   

       
         

      

                         

                          

 

The following symbols define the configuration of the bicycle. Through       we denote, respectively, 

the central moment of inertia of the rear assembly relative to the horizontal axis, and the mixed central 

moment of inertia relative to this axis and the axis perpendicular to it in the plane of the rear wheel. The 

symbols       denote the similar moments for the front assembly.         are the moments of inertia of 

the rear (front) wheels about their axes of rotation;        are the  distances from the CoG of the rear 

(front) wheels to the ground;        are the masses of the assemblies. The symbols         denote the 

horizontal distances between the ground contact of the rear wheel and the horizontal projections of the 

CoG of the rear (front) assemblies. The symbol   is, as before, the base of the bicycle, and    is equal to 

      times the trailing
1
 distance of the front wheel. Parameter   is defined as the shortest distance 

between CoG of the front assembly and the steering wheel. 

                                                 
1 As taken from Wikipedia: “Trail, or caster, is the horizontal distance from where the steering axis intersects the ground to where 

the front wheel touches the ground.” 
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Assume that     and define (     ) as coordinates of the CoG of the bicycle; then       
          

                (here        ). Neglecting the moments of inertia       compared to     , 

where   is the wheel’s radius, we reduce Eq. (9) to 

 ̈  
 

  
  

 

   
 ̈  

  

   
 ̇  

  

   
                                                            (10) 

where  

  
   
   

                            

         

and          is the forward velocity. The steer angle   serves here as a factor controlled by a rider to 

maintain stability. The equation (10) is the same as the equation of an inverted pendulum acted upon by 

additional force represented by the last three terms on the left hand side. We now introduce the feedback 

through defining these terms as
  

 

   
 ̈  

  

   
 ̇  

  

   
        

   

  
                                                        (11) 

 

Eq. (10) then takes the form
  

 ̈  (
 

  
 

   

  
     )                                                        (12) 

 

identical with the equation of the inverted pendulum with the pivot subjected to vertical oscillation  

         . Such oscillation is known to stabilize the pendulum if [5]
  

   √      

 

Eq. (12) is the Mathieu equation, with its solution bounded once the last inequality holds. Now it is 

possible to find      by integrating (11), and this law should be enforced by the rider operating the 

handlebar. The function at the right hand side of (11) is bounded, and the relevant solution      has 

values that are also bounded. This bound is well-known [6]; it is defined by  

|    |         
  

 
   

 

Here,     is a static deviation of      from zero due to the action of the force equal to the maximum value 

of the rhs of (11): 
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with parameters   and   defined, respectively, as 

  
  

  
      

  

√  

 
        

.    

 

We assume here that parameter   in (11) is small enough to offer relatively low resistance.  
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Conclusions 

 

1. The influence of weight distribution on directional stability of a sidecar motorcycle outfit is 

examined with the aid of the stability analysis applied to the differential equations governing the 

transverse and angular velocity of the vehicle negotiating the turn. The results specify the upper 

boundary of the forward velocity below which stability is lost. A similar analysis applies to the 

instability under the influence of external acceleration. It specifies conditions under which the 

turnover occurs either about the axis connecting the ground contacts of the side and front wheels, 

or about the axis between the ground contacts of the side and rear wheels. 

  

2. The study of self-stability of the two-wheeled bicycle establishes conditions that minimize the 

critical velocity under which the self-stability is lost. We choose the position of the CoG of the 

front assembly as a control parameter, and find the optimal value of this parameter when the tilt 

angle of the front wheel is positive as well as negative. 

 

3. Unlike the self-stability mode, the stability of the bicycle controlled by a rider is examined in the 

third section. Here, we assume that the rider acts to operate the handlebar such that a bicycle 

remains stable. To achieve this, we utilize an effect well-known to every bicycle rider: the 

stability is maintained when an oscillatory rotation is applied to the steering wheel. In our 

mathematical description, we argue mechanically by treating the bicycle as an inverted pendulum. 

An inverted pendulum can be stabilized if its pivot is subjected to high-frequency vertical 

oscillations. A similar mechanism works for the case of a bicycle where rotation of the handlebar 

produces vertical oscillations in the front forks. Using a feedback approach, we identify the 

bicycle equation with the equation of an inverted pendulum whose stability is maintained via an 

oscillating pivot. From this, we obtain the rule for operating the handlebar dictated by the lean 

angle at each instance of time, and the upper bound of the handlebar’s oscillation is determined.  
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