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WORCESTER POLYTECHNIC INSTITUTE

Abstract

Data Science

Master of Science

by Chong Zhou

In this thesis, our aim is to improve deep auto-encoders, an important topic in the deep learning

area, which has shown connections to latent feature discovery models in the literature. Our

model is inspired by robust principal component analysis, and we build an outlier filter on the

top of basic deep auto-encoders. By adding this filter, we can split the input data X into two

parts X = LD +S, where the LD could be better reconstructed by a deep auto-encoder and the

S contains the anomalous parts of the original data X. Filtering out the anomalies increases the

robustness of the standard auto-encoder, and thus we name our model “Robust Auto-encoder”.

We also propose a novel solver for the robust auto-encoder which alternatively optimizes the

reconstruction cost of the deep auto-encoder and the sparsity of an outlier filter in pursuit

of finding the optimal solution. This solver is inspired by the Alternating Direction Method

of Multipliers, Back-propagation and the Alternating Projection method, and we demonstrate

the convergence properties of this algorithm and its superior performance in standard image

recognition tasks. Last but not least, we apply our model to multiple domains, especially,

cyber-data analysis, where deep models are seldom currently used.
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Chapter 1

Introduction

Recently, the success of deep learning in multiple areas has drawn great interests of researchers

[3, 7, 11–13]. Deep learning is part of a broader family of machine learning methods based on

learning representations [3]. Learning and discovering informative features are deep learning’s

keys to success. Among deep learning models, we particularly focus on auto-encoders which

show a promising connection to latent feature discovery models [7]. A typical auto-encoder

tries to recover the input X through an encoding phase E(·) and a decoding phase D(·). The

best recovery of the input suggests that the encoder E(·) and the decoder D(·) are informative

feature discovery processes. As shown in [7], the auto-encoder model is identical to the principal

component analysis if E(·) and D(·) are both linear projections and the reconstruction cost is

the Euclidean distance [7]. However, people tend to apply non-linear encoders and decoders

which are more efficient in tackling complex real-world problems. Thus, the auto-encoder is

usually used as a generalized dimension reduction framework [3,4,7]. However, this dimension

reduction process may be misled by outliers.

We improve the basic auto-encoder model by building an outlier filter. The idea of our improve-

ment comes from robust principal component analysis [5,8,9] which splits the input X into L0

and S0. The S0 matrix contains element-wise outlying parts while the L0 retains the majority of

X. We apply this idea where input X could be split into S and LD. The S contains the outliers

and LD is the input of an auto-encoder which will archive lower reconstruction error than the

basic one. Here, S is an outlier filter and the left part LD will be easily reconstructed by an

auto-encoder. After training, the hidden layers in the auto-encoder are informative features

that widely influence the majority of observations while S has outlying parts that usually hint

at negative labels. This splitting, X = LD + S, makes the traditional auto-encoder solver,
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the back-propagation method [3, 17, 21], unsuitable in this new case, since the outlier filter S

can not be trained by back-propagation. We follow the idea of the alternating direction method

of multipliers(ADMM) [15] which are modified based on inspiration from Dykstra’s work [31].

Our solver alternatively makes use of the back-propagation and the shrink function [5], then

applies Dykstra’s idea to maintain the constraint through iteration until the object converges.

Lastly, we test our model on the MNIST data set, the notMNIST data set, and also a packet

data set.

1.1 Motivation

Principal component analysis (PCA) is a widely used dimension reduction method [8], which

orthogonally projects a set of observations from a high dimensional space to a lower dimen-

sional linear manifold. It returns a low dimensional representation where each elements of this

representation are linearly independent with each other. This projection is a lossy compres-

sion [7]. Lossy compression means that PCA only keeps the information on the manifold and

omits the information outside the manifold. The general purpose of data compression and

dimension reduction is to minimize the information loss. When we apply PCA, we assume that

the observations of input data are laying near a linear manifold in a high dimensional space,

and the data are slightly corrupted. PCA will keep the information on the manifold, thus,

when we project data on this manifold, the majority of information will be represented on a

low dimensional manifold. PCA achieves dimension reduction without large information lose.

However, the assumption of linearity and uncorrupted is not always held on realistic data sets.

First, if the data lies near a non-linear manifold, the linear manifold will not be a sufficient

representation for capturing the non-linear relationship between observations, and thus requires

introducing non-linearity into the projection process. We use auto-encoders [3] to implement a

generalized projection framework, and the non-linearity is introduced by a non-linear activation

function of an auto-encoder. Second, outlying observations may mislead the direction of the

manifold. Thus, a method for eliminating the outlying influential observations is necessary to

apply. Robust principal component analysis (RPCA) [9] offers a way to mitigate the negative

effects of outliers.
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1.2 Contribution

Our research is based on auto-encoders [3] and draws inspiration derived from the idea of

Robust PCA. We build a novel model which improves both shallow and deep auto-encoders by

adding sparse outlier detection. This combination inherits advantages from both techniques,

using robust PCA to provides robustness to anomalies and auto-encoders to provide non-linear

feature representations. We call this novel method a Robust Auto-encoder.

Further, we extend the idea of a shallow robust auto-encoder to a robust deep learning model.

Auto-encoders are a building block commonly used in deep learning [3]. Inspired by the concept

of deep learning we extend our model to robust deep auto-encoder for capturing more complex

non-linear relationships.

Third, we developed a new training algorithm for our model. Back-propagation is an essential el-

ement of deep auto-encoder training. While optimization techniques exist for back-propagation

and training deep auto-encoder [3, 7] and robust PCA (e.g., by using the ADMM) [15], we are

not aware of any other techniques that can simultaneously optimize both. In our work, we al-

ternatively train the auto-encoder using back-propagation and the outlier filter using shrinkage

function. Finally, inspired by an idea from the Dykstra’s alternating projection method [29] we

build a projection operator to satisfy the constraint and give an optimization scheme for the

combined algorithm.

Finally, we apply our robust deep auto-encoders and standard auto-encoders on image recog-

nition data sets and a cyber analysis data set.
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Chapter 2

Background

In this chapter, we will introduce necessary backgrounds that form our ideas and algorithm.

Our research starts from PCA. PCA is a fundamental dimension reduction method in data

analysis. Robust PCA [5] and auto-encoder [3, 7] improve PCA in two distinct ways. Robust

PCA enhances the reliability of PCA dimension reduction process while auto-encoders introduce

non-linearity to dimension reduction. We merge Robust PCA and auto-encoders to inherit both

merits. In this section, we first introduce the starting point, PCA, and then describe how robust

PCA learns robust features. Further, we step into the deep learning area [3,7]. Among various

models in deep learning, the auto-encoder is one of the cutting-edge research directions in this

area. We describe what the auto-encoder model is and how the auto-encoder introduce non-

linearity to its dimension reduction process.

The second part of this chapter lists training methods in the literature. We describe some

details about back-propagation which is used for training the auto-encoders [7]; an optimization

method called alternating direction method of multipliers (ADMM) [15] for optimizing robust

PCA; and Dykstra’s alternating projection method which inspires us to develop our training

algorithm [29].

2.1 Principal Component Analysis

High dimensional data often suffers from an issue called “the Curse of Dimensionality” [3],

which refers to various phenomena that arise when analyzing data in high-dimensional spaces

that do not occur in low-dimensional spaces, such as the overfitting, and a common solution

for this problem is dimension reduction. PCA is a widely used machine learning algorithm for
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dimension reduction. PCA projects data from a high N dimension space to a lower M orthog-

onal dimensional space(M < N) which has k-highest variance among the all M -dimensional

space [19]. This low dimensional space is a linear manifold in the high dimensional space, and

thus, the relation of data is compressed and represented by this linear manifold and the rest

of the information outsides this manifold is ignored. PCA learns a linear representation where

the entries of this representation are linear combinations of the original data. In the picture

2.1, we give an intuition example about PCA projection.

Figure 2.1: PCA works well while all observations lie near a linear manifold and data are
slightly corrupted. The blue points are simulated data of two dimensions. In this case, one can
find that the PCA projection (red line) successfully captures the trends of these observations.

2.1.1 PCA and Singular Value Decomposition

PCA projection can be efficiently implemented by the singular value decomposition (SVD) [19].

Given a matrix M ∈ Rm×n, the singular value decomposition is M = UΣV T , where the U

and V are unitary matrix. The singular values of M lie on the diagonal of the matrix Σ. The

rank of M is equal to the number of non-zero singular values. Additionally, the rank is equal

to the number of linearly independent rows (or columns) the matrix contains [30]. For a given

matrix M ∈ Rm×n, the m is the number of observations, and the n is the dimension of each

observation. We assume that n >> m. Thus, the rank of M depends on the number of linearly

independent columns of the matrix M . Linear dimension reduction on M is equal to reducing

the rank of M .

Thus, the key of PCA projecting M from n dimensions to k dimensions (k < n) is the SVD

decomposition. PCA first decomposes M though SVD; then keeps the k-highest singular values
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in Σ and sets the rest of the n−k singular values to 0 to get a Σ; lastly, PCA reconstructs M by

M = UΣV T [30]. M only has k dimensions since the number of its non-zero singular values is k.

2.2 Robust PCA

PCA seeks a low dimensional representation of an input data, but it only works well when the

input data are slightly corrupted. One shortcoming of PCA is its sensitivity to large corruptions

and outlying observations [5]. Robust Principal Component Analysis (RPCA), introduced by

J. Wright, Y. Peng, etc., decomposes an input matrix X into a low-rank matrix and a sparse

matrix X = L0 + S0. The low-rank matrix L0 contains our interested pattern [5] and the

sparse matrix S0 consists of element-wise outlying parts which can not be captured by low-

rank pattern L0. We constrain the rank of matrix L0 as low as possible and the sparse matrix

S0 element-wisely as sparse as possible. The L0 could be represented by a linear manifold while

the S0 is a filter that peels the faraway part from the linear manifold.

Figure 2.2: PCA does not work well with outliers. This set violates one assumption of PCA
that all observations are slightly corrupted. In this set, there are some outlying observations.
These outlying observations, for some known or unknown reason, are heavily corrupted. The
whole set can be split into two parts: the majority and the outliers.
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Figure 2.3: This toy data set shows that PCA does not work well when outliers exist. The
blue points are simulated observations in two dimension. We want to project the data on one
dimension and retain as much information as possible. One can tell that the majority of points
follows a clear trend (the red points) from lower left to upper right, but also, there are some
outliers far away from this trend. The green points show the result of PCA projection of all
observations (include the outliers). It is clear that this linear manifold of PCA shifts to the
right to offset the huge errors of those faraway outliers. This shifting will harm the information
preservation for those normal observations. We say PCA projection is distracted by the outliers
and sensitive to outlying observations. Robustness is needed to eliminate the influence of those
outliers.

Robust principal component analysis (RPCA) refines PCA by making PCA robust to outliers.

RPCA allows for the careful teasing apart of sparse outliers so that the remaining low-rank

approximation is faithful to the true low-rank subspace describing the raw data [5, 8–10]. We

argue that our input data M can be decomposed into three parts

M = L0 + S0 + ε,

where L0 is a low-rank matrix, S0 is a sparse matrix which can not be captured by the low

rank features, and ε is a point-wise error matrix. This matrix decomposition is determined as

the following optimization problem [8]:

argmin
L0,S0

||L0||∗ + λ||S0||1

s.t. |M − L0 − S0| � ε

where the || · ||∗ is the nuclear norm, and || · ||1 is the one norm. The nuclear norm of a matrix M
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is defined as ||M ||∗ = Σk
j=1σj(M), or, the sum of the k largest singular values of M [5]. Linear

dimension reduction of M is also equal to reducing the nuclear norm of M as the singular values

of 0 will not contribute to the sum.

2.2.1 Feature Learning with Robust PCA

Robust PCA splits the input data X into two parts: a low-rank matrix L0 and a sparse matrix

S0. The low-rank matrix L0 can be interpreted as the background features that widely influence

all observations. In other words, L0 matrix can be almost projected to a manifold through a

linear projection, and this manifold is a collection of features that are extracted from the original

input data. It is the best estimation of every observation through a linear combination of these

features. Meanwhile, the sparse matrix S0 contains anomalies which can not be captured by low-

dimensional features. This sparse matrix is like a strainer that filters out distinguishing parts

for every observation. This “strange” part is hard to estimate through the linear combination

of background features, so after peeling, L0 is more accurate to capture background features of

the majority. The robust PCA discovers the linear background features L0 and outliers features

S0 at the same time. Anomalies in S0 do not necessarily imply negative or positive labels, but

such sparsely correlated phenomena often bear closer examination in real-world problems [5].

2.3 Deep Learning

Deep learning is a subfield of machine learning that is based on learning several levels of

representations, corresponding to a hierarchy of features, factors, or concepts, where higher-

level concepts are defined from lower-level ones, and the same lower level concepts can help

to define many higher-level concepts. Deep learning is part of a broader family of machine

learning methods based on learning representations [3]. One promise of deep learning is to

replace handcrafted features with efficient algorithms for unsupervised or semi-supervised fea-

ture learning and hierarchical feature extraction [6]. Most deep architectures use unsupervised

learning across multiple layers [3]. Hidden layers in a deep model extract representations from

data with the goal of constructing new features that make standard learning algorithms more

efficient. The key idea of deep learning is to learn representations, and then make a prediction

based on representations learned [3]. Deep learning is widely used for pattern recognition and

feature learning. The procedure of deep learning processing includes many layers of non-linear
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processing stages. The output of the lower layer is used as input for the next layer’s processing.

Figure 2.4: An illustration of representation learning: Deep learning makes predictions based
on representations. This picture shows that the raw input representation is pixels, and it is
hard to predict human face based on raw pixels since pixels vary dramatically, and every pixel
gives a little distinctive information. People can hardly to predict the label of a given picture
from the collection of pixels. A good prediction needs to extract information from pixels and
construct the informative features. The left bottom is the raw image input consisting of pixels.
The first layer extracts a new representation from these pixels. This new representation looks
like all different kinds of lines which are some non-linear combination of raw pixels, and these
lines are the input to the next layer and will be further combined with each other to form
higher level representations. The second layer combines the input of “lines” and then forms
a higher level representation which looks like different parts of faces. These fractional parts
of faces then are continuously learned by the next layer to extract “face-like” features. The
final prediction is made on this features: how much similarities of a new given face to these
“face-like” features. Making a prediction on these features is much more accurate than the
one based on original input represented by raw pixels and any representation learned in the
previous layers [3]. Hence, the key idea of deep learning is to learn the representations that
helpful to predict labels. These representations are extracted based on a forward multiple layer
neural network that each layer learns representation based on a previous layer. This picture
comes from [23].

Modern deep learning provides a very powerful framework for supervised learning. By adding

more layers, a deep network can represent functions of increasing complexity [7].
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2.4 Auto-encoders

An auto-encoder is a feed forward multi-layer neural network in which the output target is the

input itself. An auto-encoder is trained to copy its input to its output. This process seems

speciously trivial, but the meaningful part is the dimension-reduced hidden layers learned to

reproduce the input and thus these low dimensional hidden layers are trained to be lowest loss

representations of the input. A typical auto-encoder with one hidden layer consists of three

layers: an input layer, an output layer, and a hidden layer. The mapping from the input layer

to the hidden layer is an encoder phase E(·) and the mapping from the hidden layer to the

output layer is a decoder phase D(·). The mapping function of encoder h = f(x) maps input

x to a lower dimensional representation h. The decoder decodes the h in an opposite way. It

is a mapping function x = g(h) which the reconstruction x has same dimension with the

input x. Minimizing the reconstruction error e = x − g(h(x)) and back-propagating the

reconstruction error is the training process. The low dimensional representation h contains

the original information with lower dimension and it is the information extraction target of

auto-encoders. Intuitively, the similarity of the output and the input in a trained auto-encoder

ensures that the hidden layers h are informative features. The encoder and decoder work

mutually to draw informative features: 1. The encoder codes the input data to low dimension

space, but there are millions of ways to code the input data. 2. The decoder constrains

the encoding phase by requiring the encoded hidden layer could be reconstructed. A typical

auto-encoder structure is shown as following:

Figure 2.5: In an auto-encoder, the bottleneck-shaped hidden layer has lower dimension than
the input layer. The hidden layer representation contains sufficient information in the lower
dimension. The minimized cost support that the output has lowest information loss through an
encoding-decoding channel. Thus, we say that the information is extracted by auto-encoder.
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2.4.1 Non-linear Activation Functions

If we apply a linear mapping function as an encoder h = W · X and a decoder X = W Th,

and choose the Euclidean distance ||X −X||2 to measure the error between original input and

reconstruction X. Then this auto-encoder is exactly as same as PCA. To introduce non-linearity

into auto-encoder, we apply non-linear activation functions after linear projection. The encoder

with non-linear activation function is h = f(W ·X+b), and the decoder has the similar formula

h = f(W T ·X + b). The commonest activation function is sigmoid function [7]:

f(t) =
1

1 + e−t

Figure 2.6: This picture shows the sigmoid function. The role of the sigmoid function is to
introduce non-linearity into auto-encoder.

2.5 Deep Auto-encoders

An auto-encoder with a single encoder and decoder is usually considered as a shallow model.

The way of extending shallow auto-encoders to deep auto-encoders is to add more encoding

and decoding phases. Researchers [3,4,6,7] have developed different ways to extension. In this

section, we briefly introduce two kinds of deep auto-encoder the standard deep auto-encoder

and the stacked deep auto-encoder. When a model is extended to deep, non-linearity is required

to make deep models non-trivial. For example, a deep auto-encoder with linear encoders E(·)
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and linear decoders D(·) has the same functionality as only one hidden layer auto-encoder,

since the associative law of matrix dot product.

A1 · A2 · x = A · x

This property indicates that multiple linear projection A1 · A2 of an input x is equal to a

single linear projection A. A successful deep auto-encoder requires the encoder mapping g(·)

nonlinear.

2.5.1 Deep Auto-encoders

Usually, an auto-encoder with more than one hidden layers is called a deep auto-encoder [3].

One more hidden layer needs an additional pair of encoder E(·) and decoder D(·). Usually, the

more encoders a deep auto-encoder has, the more complex a deep auto-encoder is. Notably,

the multiple decoding phases should decode in an opposite way to the encoder. The last

encoder should be decoded first. For instance, suppose a deep auto-encoder has three hidden

layers, and three hidden layers need three pairs of encoder and decoder which are denoted as

E1(·)E2(·)E3(·) and D1(·)D2(·)D3(·). The encoding phase of this deep auto-encoder is that

E1(·) encodes the input x, then the E2(·) encodes the output of E1(·) and so on. The final

code of encoding phase is E3(E2(E1(x))). The decoding phase is executed in the opposite way

with the last encoder being decoded first while the first encoder will be decoded last [3]. The

final reconstruction of decoding phase is Recontruction = D1(D2(D3(E3(E2(E1(x)))))). The

cost function is a distance function between the input x and Reconstruction.
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Figure 2.7: A deep auto-encoder is an auto-encoder with more than one hidden layer. It
follows the idea that first encoder will be decoded last. On the top of the picture, X is the
input data . In the encoding phase, the first encoder is X1 = E1(X), the second encoder
is X2 = E2(X1), and the third encoder is X3 = E3(X2). In the decoding phase, the last
encoder should be decoded first. Thus, we decode the third encoder first ReconX2′ = D3(X3),
the second decoder is ReconX1′ = D2(ReconX2′), and the last decoder is decoding the first
encoder ReconX ′ = D1(ReconX1′). The input data X goes through the pipeline to get the
reconstruction ReconX = D1(D2(D3(E3(E2(E1(X)))))). The cost of whole deep auto-encoder
is defined as ||X − ReconX||.

2.5.2 Stacked Auto-encoders

A stacked auto-encoder is a multiple layer neural network [11]. A stacked auto-encoder has

two parts: the frontal layers form the first part which is pre-trained by auto-encoders, and the

target of these layers is to discover useful features. The second part only have the last layer.

The final prediction makes use of representation learned from the first part. The weights of

each layer are pre-trained by shallow auto-encoders. Every shallow auto-encoder is trained in

a greedy layer-wise way that once one layer is trained, it will be set and will not be updated

by back-propagated error. The input of next layer is the output of the previous layer, but
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training process will not take other layers into consideration. The last layer of the stacked

auto-encoder is a logistic regression layer for the final prediction. The fine-tuning phase starts

after every layer gets pre-trained. In the fine-tuning phase, the raw input data will be encoded

by the weights that are trained in pre-train phase. Then the logistic regression layer makes a

prediction based on the final representation.

Figure 2.8: This picture shows the pre-train phase of a stacked auto-encoder: Each layer is a
shallow auto-encoder. Multiple auto-encoders form a pipeline that the output of the previous
auto-encoder is the input of next auto-encoder. Once one auto-encoder is trained, it will be
set. The purpose of pre-train phase is to extract useful features. The features will be further
used for prediction in fine-tuning phase.
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Figure 2.9: This picture shows a typical stacked auto-encoder. The weights of each layer are
pre-trained by a shallow auto-encoder as shown in Figure 2.8. These pre-trained weights are
the features learned from shallow auto-encoders. In this picture, the pre-train phase means
learning the links between layers using shallow auto-encoders. We first apply a shallow auto-
encoder to learn the red links between input layer (yellow layer) and hidden layer I (red layer).
After the first shallow auto-encoder’s training, we apply a second shallow auto-encoder to learn
the green links between hidden layer I and hidden layer II (the green layer). These shallow
encoders are stacked and trained in a greedy way. After pre-training, the fine-tuning phase uses
these learned features to make the prediction (the gray output layer) [28].

2.5.3 Non-linear Feature Learning

PCA projects data onto a linear manifold in high dimensional space. However, this classic linear

analysis is not ideal for discovering the non-linear low dimension representations, and we need

to use some non-linear dimension reduction method. An auto-encoder is a promising method

for introducing non-linearity. The auto-encoder maps an input data X to a lower dimensional

representation and reconstructs the input data from the low dimensional representation of the

original input dimension. Auto-encoders are generalized frameworks of non-linear dimension

reduction processes of implementing projection and extracting informative features [7]. By
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applying and adjusting non-linear activating function in the encoder and decoder, auto-encoders

will be used to implement non-linear projection which is used in more sophisticated situations.

The non-linear function between the layers enables us to curve the linear manifold. Hence,

the auto-encoder offers generality to the dimension reduction process. The complexity and

variability of many real world problems naturally require non-linear projection method.

Figure 2.10: The blue points are simulated data that lie near a non-linear manifold. The green
points show an optimized non-linear projection of data. The red points show the linear manifold
which is projected by PCA. From this picture, we can see that PCA, as a linear projection, can
not capture the non-linearity relationship of the data. The linear projection and reconstruction
will contain a heavy information loss which ruins the dimension reduction process. However,
the points in this data set indeed follow a low dimensional curve (the green points). Thus, we
need to introduce non-linearity into our projecting process.

Deep auto-encoders are often used for learning representations or effective encodings of the

original data, in the form of input vectors in hidden layers [3]. However, some classic types

of auto-encoders could suffer losses in the presence of outliers. In particular, when learning a

non-linear manifold from noisy data, outlying observations may mislead the direction or skew

the curvature of the manifold. Eliminating the influence of outlying observations is a promising

way to improve the robustness of deep models and makes them more applicable to real-world

problems.

2.6 Training Methods

The auto-encoders and deep auto-encoders, as multi-layer neural network models, usually use

the back-propagation method to train [7], while the robust PCA uses the ADMM method [5,15].

Our model is a combination of the auto-encoder and the robust PCA, but the training method
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can not directly combine the ADMM and the back-propagation. Our new training method

borrows an idea from the alternating projection method [29] [31]. In this section, we briefly

introduce back-propagation, ADMM, and alternating projection method. These three methods

work mutually to compose our algorithm that consists of two separating training steps: a back-

propagation trainer of the auto-encoder and a shrinkage trainer for the outliers filter. Between

them, the alternating projection accompanies with both two trainers to force them satisfying

the constraint. In the area of deep learning, back-propagation of errors is a common method

to train the weights while minimizing non-smooth one norm term often use a shrink function.

Alternating projections method is less popular, but it is a powerful tool to check the intersection

of two convex set. We use alternating projection method to check the constraints.

2.6.1 Back-propagation

Back-propagation, an abbreviation for ”backward propagation of errors”, is a common method

for training deep neural networks used in conjunction with an optimization method such as

gradient descent. The method calculates the gradient of a loss function with respect to weights

in the auto-encoder. The gradients are used to update the weights, in an attempt to minimize

the loss function [21]. A typical back-propagation has two phases: 1. Forward propagation to

compute the output of neural network and 2. Back propagation of errors to update the weights

of the neural network. For example, we build a auto-encoder with an encoder E(·), a decoder

D(·) parameterized with the weights W ∈ Rm×n and bias term b, and a activating function

f(·) Rn ⇒ Rn. The first phase is to compute the reconstruction X and the reconstruction cost

which is defined as ||X − X||2. The forward propagation phase to compute the reconstruction

cost [22]:

Input X ∈ RN×m

h = f( W · X + b)

X = f( W T · X + b)

cost = ||X − X||2
return cost

Then, the second phase is to backward propagation of the cost to update the weight W and

bias term b [22]:
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1. Compute the gradient using the chain rule of calculus

δW =
∂ cost

∂ h

∂ h

∂f(W )

∂f(W )

dW

δb =
∂ cost

∂ h

∂ h

∂f(b)

∂f(b)

db
2. Update the weights by the gradient

W l+1 = W l − α · δW
bl+1 = bl − α · δb

2.6.2 Alternating Direction Method of Multipliers

The key idea of alternating direction method of multipliers (ADMM) is that a complex convex

optimization problems can be broken into smaller pieces, and each piece is easy to solve [15,16].

For an optimization problem:

minimize f(x) + g(z)

subject to Ax+Bz = c

typical ADMM algorithm consists of the following iterations [15]:

while not converged:

xk+1 := argminxLρ(x, z
k, yk) (1)

zk+1 := argminxLρ(x
k+1, z, yk)) (2)

yk+1 := yk + ρ(Axk+1 + Bzk+1c) (3)

where ρ > 0. This algorithm teaches us how to split our complex objective function into small

pieces, and each small piece is easier to handle. ADMM allows us to separately optimizing

different parts of the objective function with other parts fixed. The ADMM splits original

optimization problems into three pieces: an x-minimization step (1), a z-minimization step

(2), and a dual variable update (3) Each minimization step can be easily implemented by a

simple optimizing algorithm we mention before, e.g. gradient descent or stochastic gradient

descent. This method has been proven the efficiency and correctness in [15]. However, our

optimization problem does not strictly obey the conditions of ADMM. The first term is to

reduce the reconstruction error by tuning the weights W and bias b in the auto-encoder, and

the W and b does not appear on the constraints X−LD−S = 0. But ADMM requires the input
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parameter x of first term f(x) must follow the constraint Ax + Bz = c. As a consequence,

computing the Lagrangian multiplier according to x is impossible. So we can not directly

use the Lagrangian multiplier and the ADMM, and we just borrow the key idea of ADMM,

individually applying different optimizer on different parts of objective function will result in a

converge a minimum (Details in section 3).

2.6.3 Alternating Projections Onto A Convex Set

The ADMM is used to minimize the two parts separately. Further, we learn an idea from the

Dykstra’s algorithm which helps us check the constraint in our model. Dykstra’s algorithm

is a method that projects a point onto the intersection of convex sets and is a variant of the

alternating projection method (also called the projections onto convex sets method). In its

simplest form, this algorithm finds a projected point on the intersection of two convex sets by

iteratively projecting a point onto each of the convex set [29,31]. Figure 2.11 shows an example

of this iterative projecting process. Dykstra’s algorithm enlightens us, and we apply a similar

algorithm to force multiple asynchronous optimizers following the constraint.
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Figure 2.11: Alternating project a point onto an intersection of two convex set. From this
picture, one can see: x1 is a point outside of two convex sets. Dykstra’s algorithm tells us how
to find a way to project x1 on the intersection of two sets x. In this picture, we follow the
Dykstra’s algorithm that starting with x1 first projects x1 on the convex set C to get y1 and
replaces the x1 by y1. Then we start with y1, projects y1 on another convex set D to get x2 and
replaces y1 by x2. Alternatively projecting on convex set C and D, we could find the correct
projection point x which lies on the intersection of two convex sets.

Dykstra’s algorithm starts with x0 = r, p0 = q0 = 0 and update by

Iterating:

yk = PD( xk + pk)

pk+1 = xk + pk − yk

xk+1 = PC( yk + qk)

qk+1 = yk + qk − xk+1
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Chapter 3

Robust Auto-encoder

3.1 Model Definition

In many real world problems, non-linearity and outliers exist at the same time. To solve these

two problems simultaneously, we are inspired by the spirit of Robust PCA to improve the basic

auto-encoder model, and our improved model is a novel combination of auto-encoders and

robust PCA. Following the robust PCA, we introduce a filter layer before normal auto-encoder.

The filter layer carefully culls out the outlying observations that are different to reconstruct

by an auto-encoder. Since it is a combination of robust PCA and auto-encoders, we call this

combined model a Robust Auto-encoder. Robust auto-encoders inherit the advantage from both

models. The outliers filter introduces robustness, and the auto-encoder gives nonlinearity.
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Figure 3.1: Our data contain both outliers and non-linearities. PCA can not capture non-linear
relationship inside the data and also a PCA projection will be distracted by the outliers. To
achieve both goals, non-linearity and robustness, we split data into two part: LD and S. We
put the LD into an auto-encoder to capture non-linear relationship and use S to filter out the
outlying observations.

Figure 3.2: The LD part after splitting. After splitting, the LD part will be perfectly recon-
structed by an auto-encoder. After the reconstruction, the hidden layers in the auto-encoders
are a non-linear representation of input X.
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Figure 3.3: The S part after splitting. After splitting, the S part contains filtered out ob-
servations which have high reconstruction errors. The large reconstruction errors mean these
observations are far away from the manifold learned by the auto-encoder. Thus, if we cast
aside these outlying observations, the auto-encoder will get a lower reconstruction error. In
this perspective, the S is the container of these outlying observations.

Robust auto-encoder can be extended to a deep model. In this section, we first introduce a

simple shallow robust auto-encoder in detail, and then we extend the shallow model to a deep

model to make predictions. Last, we discuss some relationships between our work and some

other deep auto-encoders. Similar to robust PCA, we decompose our input data X into two

parts X = LD + S where LD is a matrix that can be represented by a non-linear manifold,

and S are the outliers which will corrupt and skew the non-linear manifold. By peeling off the

outliers from X into S, the auto-encoder could perfectly recover the remaining LD. Our loss

function for a given input X is the one norm of S and the reconstruction error of LD in the

auto-encoder, namely

argmin
W,b,S

||LD −DW,b(EW,b(LD))||2 + λ||S||1

s.t. X − LD − S = 0

where EW,b(·) denotes an encoder, DW,b(·) denotes a decoder, W ∈ Rm×n is a projection matrix,

b is the bias term, ε denotes an element-wise error, and S captures the outlying observations,

LD is a low dimension manifold and λ is a balancing parameter to tuning the power of sparsity.

The constraint says that we want to split the input data X into two part LD and S. We feed LD

as input data to a standard deep auto-encoder to learn low-dimensional representations. LD is
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input of an auto-encoder DW,b(EW,b(LD)), we train this auto-encoder through minimizing the

reconstruction error ||LD − DW,b(EW,b(LD))||2. The minimized reconstruction error indicates

that the LD can be projected to a low-dimensional nonlinear manifold without heavy informa-

tion lose. However, some observations are far away from the non-linear manifold learned by the

auto-encoder, and if we force these observations project to the manifold, the manifold needs to

shift towards these outliers. This distracted manifold has a large reconstruction error for all

other observations. Thus, we detach these outliers into the another part, the filter S. The filter

S contains all outlying observations which have high reconstruction errors and we believe they

can not be interpreted by majority observations. We require the S sparse because we want

the auto-encoder to capture the trend of majority observations and filtered out “outliers”, by

its name, are rare. In this optimization, LD and S are mutually influenced by the constraint

X−LD−S = 0. When minimizing the first term ||LD−DW,b(EW,b(LD))||2, we want the input of

auto-encoder LD can be perfectly reconstructed. Thus, we need to filter out more observations

to S. Similarly, when minimizing the second term ||S||1, S will contain less and less non-zero

elements. Sparsifying the outlier filter S leaves more errors to LD and the reconstruction task

of auto-encoder becomes harder. Alternatively minimizing ||LD −DW,b(EW,b(LD))||2 and ||S||1
is like a tennis game: There are two players, an auto-encoder and an outlier filter, beating the

error to each other until the error small enough. The λ is the tuning parameter which bal-

ances the impact of two optimizers. After training the whole model, the S matrix is point-wise

outliers, and LD should retain the majority information of X inside the hidden layer.
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Figure 3.4: A typical structure of the robust auto-encoder. We improve the auto-encoder model
by adding an outlier filter S. Thus, a robust auto-encoder consists of two parts: a standard
auto-encoder and an outlier filter. After filtering some anomalies, a typical auto-encoder will
get lower reconstruction error. Through a robust auto-encoder, we could obtain two kinds of
representations: the lower dimensional representation which reflects the majority of data will
be captured by the hidden layer h of the auto-encoder and the outlier representation captured
by the filter S. The cost function of whole robust auto-encoder consists of two parts: the
reconstruction error of the auto-encoder and the sparsity of the outlier filter.

3.2 Training Algorithm

We solve the minimization problem of robust auto-encoder by building a novel solver. Back-

propagation [7] is typical optimization algorithm for deep learning, but it requires the objective

function to be smooth to take advantage of chain rule of differentiation. This is not the case

in our problem, since the second term in our object function, the ||S||1, is not smooth, and

derivable. Our refined model is based on the idea of alternating direction method of multipliers

(ADMM). We break the original objective function into two smaller pieces, each of which is then

easier to handle [15]. The original target ||LD−DW,b(EW,b(LD))||2 + λ||S||1 is broken into two

parts: 1. a back-propagation algorithm to minimize the reconstruction cost of an auto-encoder

||LD−DW,b(EW,b(LD))||2, and 2. a shrinkage function on ||S||1 to sparsify S with LD fixed. 1 and
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2 work mutually to compose one iteration. Then we borrow an idea from alternating projection

to force both optimizers to obey the constraint. After training the auto-encoder, the input of

shrinkage function must be constrained as S = X − reconstruction(LD) and, similarly, the

input of auto-encoder for next iteration must be constrained as LD = X − shrink(S). The

following shows this training method:

The Main Iteration:

Input: X ∈ RN×n

Initialize the LD ∈ RN×n, S ∈ RN×n to be zero matrices and a deep auto-encoder DAE

with parameter W and b.

while(iteration):

LD = X − S

Train an deep auto-encoder using back-propagation. This step is to minimize the first

term in objective function ||LD −DW,b(EW,b(LD))||2 :

DAEW,b.fit(LD)

Get reconstruction of the deep auto-encoder:

LD = DW,b(EW,b(LD))

S = X − LD
S = shrink(S, λ, ε)

Check the convergence:

1.Check the constrain ||X −DW,b(EW,b(LD))− S||2 < ε

c1 = ||X − LD − S||2 / ||X||2
2.Check whether LD and S changed through iteration:

c2 = ||LS0 − LD − S||2 / ||X||2
if c1 < boundary and c2 < boundary :

If converged, then break the iteration:

break

Record result of current iteration for convergence checking:

LS0 = LD + S

Return LD and S

For example, we build an auto-encoder with an encoder EW,b(·), a decoderDW,b(·) parameterized

with the weights W ∈ Rm×n and bias term b, and a activating function f(·) Rn ⇒ Rn. The first
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phase of back-propagation training is to compute the reconstruction X and the reconstruction

cost ||X − X||2 [22]:

Input X ∈ RN×m

h = f( W · X + b)

X = f( W T · X + b)

cost = ||X − X||2
return cost

Then, the second phase is to backward propagate the cost error to update the weights W and

bias term b [22]:

1. Compute the gradient using the chain rule of calculus

δW =
∂ Cost

∂ h

∂ h

∂f(W )

∂f(W )

dW

δb =
∂ cost

∂ h

∂ h

∂f(b)

∂f(b)

db
2. Update the weights by the gradient

W l+1 = W l − α · δW
bl+1 = bl − α · δb

To sparsify the outlier matrix, we use a shrinkage function. The basic idea of the shrinkage

function is that we keep the sign for each element and subtract a small positive number λ from

the absolute value of each element. Each element will evenly be shrunk towards 0, and small

values will first reach 0. If an element is already close enough to 0, it will be set to 0. More

elements will be shrunk to zero after several function calling. In this way, the shrinkage function

promotes sparsity. The parameter λ controls the speed of sparsifying: a big λ will shrink more

elements to 0 while a small λ may need more step to get satisfied sparsity. A brief description

of shrinkage function:

Input: S ∈ Rm×n, λ, ε

For i in 1 m× n:

if S[i] > ε :

S[i] = S[i] − λ
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continue

if S[i] < −ε :

S[i] = S[i] + λ

continue

Return S

3.2.1 Visualized Process of the Training Algorithm

We now use MNIST data set (see figure 4.1), and pick out one picture to visualize how this

algorithm works.

In figure 3.5, we flatten one picture in MNIST data set (see figure 4.1). The word “flatten”

means connecting every row after the previous row which will transform the 2-D image to 1-D

sequence. Then we feed this 1-D sequence to an auto-encoder. After iterations of training,

we get the reconstruction of the 1-D sequence. The shrinkage function takes element-wise

differences between the input sequence and the reconstructed sequence and minuses a small

value on the absolute value of each element. After this shrinking, the small differences will be

set to zero. In this way, the S part achieves its goal, sparsity.
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Figure 3.5: The blue line represents the input LD of the auto-encoder part. At the beginning
of the iteration, the auto-encoder part will take the full original input LD = X. Then, after
the auto-encoder gets well trained, we reconstruct the input LD from the auto-encoder. The
green line shows the reconstruction of LD. However, this reconstruction can not reconstruct
the full input. The difference of the input LD and its reconstruction ReconLD is point-wise
subtracts the green line from the blue line. We get the yellow line that shows this difference.
This difference shows the auto-encoder can not reconstruct everything in a given digit. We
define this yellow line as the outlying parts which will be handled by the outlier container S.
We apply shrink function on S to sparse S. The shrunk S is the orange line. Then, we replace
LD = X − Shrunk(S) and feed auto-encoder the new LD to start the next iteration.

Then, we narrow down to one pixel to illustrate more details of this algorithm. (Note: These

pictures are just to show the process of algorithm, they do not directly demonstrate numerical
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results of any data set.) We use one pixel in a picture to demo the optimization process. Since

the outlier filter is an element-wise filter, one feature works identically with other features.

In figure 3.6, for a given pixel, its value is represented as the length of a segment. The auto-

encoder parts LD is represented by an ellipse since we want to use the ellipse to hint the two

norm reconstruction error. The outlying parts S is represented by a square to hint we want to

reach its sparsity through the optimization process.

Figure 3.6: We choose one pixel from a picture. The full original input X (black) represents
this pixel. The input of auto-encoder LD is an ellipse (blue). The outlier filter S is a square
(yellow).

The left figure of the figure 3.7 shows the starts of the iterations when the LD takes all input

X, and the S is initialized as 0. The right part indicates that after the auto-encoder are trained

through 20 30 iterations, the reconstruction of LD still can not capture every part of the LD.

There is a difference between the reconstruction and the input. The reconstruction of LD

represents the part of X, which is ease to reconstruct, while the difference represents the other

part of X, which is hard to reconstruct.
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Figure 3.7: At the beginning of the iteration, we initialize the LD = X and the auto-encoder
take the whole original input X. After auto-encoder is trained, we get the reconstruction
“Recon L” (green) of LD. There is a gap between the LD and ReconLD. It means auto-encoder
can not completely reconstruct the LD, and this gap should be tackled in another part.

Then, as shown in the figure 3.8 left, we replace the LD by its reconstruction since we want to

retain this easily recoverable part. In figure 3.8 right, the other part, hard recoverable part, is

filtered by the outlying filter S.

Figure 3.8: We replace the LD by ReconLD, and the S takes away the left part S = X − LD.
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The figure 3.9 left shows the effect of shrinkage function. Shrinkage function reduces the size

of the S by a small step λ. We believe that the gap between the S and the shrunk S still can

be captured by auto-encoder. Thus, we replace the S by the shrunk S. The gap is taken by

the LD for the next auto-encoder training (figure 3.10 left).

Figure 3.9: Then we apply a shrinkage function on the S, which will reduce the size of the S
element-wisely with the LD fixed, and the orange square represents the shrunk S. There is a
small λ between S and shrunk S that indicates the step size of shrinking. After shrinking, the
S is replaced by shrunk S. This replacement leaves another gap which will be tackled by the
auto-encoder.

The 3.10 right shows the stopping condition of iterations. If the reconstruction of LD and the

LD are almost same, then replacing LD by its reconstruction is no difference, and there is no

more gap for S to fill. The whole iterations stop. We say, at this time, the robust auto-encoder

find a split position of X that the LD part can be reconstructed by the auto-encoder and S

parts contains the unrecoverable part.
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Figure 3.10: The LD are extended to fill in the gap LD = X − S. This new LD is the
input of the auto-encoder in the next iteration. Repeat the process in figure 17 figure 20,
until convergence. The convergence means the reconstruction and input of the auto-encoder are
approximately same Recon LD ≈ LD, and then there is no gap created by reconstruction of
the auto-encoder. At that time, the LD takes easily reconstructable parts, while the left parts
are hard to reconstruct, so the S filters them out. It is the target of our robust auto-encoder.

3.3 Robust Deep Auto-encoders

An intuitive way to extend a robust auto-encoder to a robust deep auto-encoder is to replace

the simple auto-encoder by a deep auto-encoder. An auto-encoder with multiple hidden layers

is usually called deep auto-encoder. The complexity of a deep auto-encoder will increase with

more hidden layers. However, the augmented complexity is not a free lunch: an over complex

auto-encoder indeed could perfectly reconstruct every observation, but it also captures noises.

These noises ruin our original target, learning the informative features. Getting a balance

between complexity and filtering the outliers is a design decision to make.
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Figure 3.11: This picture shows a typical structure of a Robust Deep Auto-encoder. Similar
to the robust auto-encoder, a robust deep auto-encoder is an improved model of normal auto-
encoder by adding an outlier filter S. We feed the deep auto-encoder LD which is residual of
the raw input X after filtering. The LD could be better reconstructed than the raw input X.
Inside the deep auto-encoder, the LD will be first encoded to a low dimension representation
h1, then h1 will be continually encoded to a lower dimension representation h2. By these two
non-linear encoder phase, h2 will be a complex non-linear representation of input LD. The S
still is the outlying parts which part will return high reconstruction error.

3.4 Feature Learning with Robust Auto-encoders

The two parts of robust auto-encoder, the auto-encoder and the outlier filter, have two distinct

tasks to discover two different kinds of features. For the majority of the data, the auto-encoder

aims to capture a low dimensional representation of the majority of the observations. While,

the outlier filter contains the unusual parts which are hard to reconstruct. The low dimension

representation and the outlier filter are both informative features discovered by the robust
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auto-encoder. The low dimensional representation learned by the auto-encoder are compressed

features that reflect the trend of the majority of the observations while the outlying parts

blocked by the filter S does not necessarily mean different labels, but the abnormal always

give the first clue to distinguish the difference. Also, we believe these two kinds of features

can not be mixed, since if we directly apply an auto-encoder without a filter on raw input X,

the auto-encoder will try to reconstruct outliers and to capture information of outliers. It will

cause the low dimensional representation is not able to correctly reflect the majority of data,

and also, outlying observations are no longer distinguishable. By this split, we could learn

improved features, when the LD and the S work distinctly.

3.5 Relation to Denoising Auto-encoders

The idea of introducing robustness into standard auto-encoders is not novel. It has been

implemented in many different ways and shown in the literature [3, 4, 7, 12]. The denoising

auto-encoder model is one such popular model [3, 7]. In this section, we briefly introduce

the denoising auto-encoder and illustrate the differences between the denoising auto-encoder

and our model, the robust auto-encoder. The denoising auto-encoder is a refined auto-encoder

which randomly corrupts the input data and is trained to recover the uncorrupted data from the

corrupted one [12]. A denoising auto-encoder with one hidden layer is described as following:

1. Randomly corrupt the input data X to X

2. Encoding the corrupted data h = E(X).

3. Decoding the hidden layer to get reconstruction r = D(h).

4. The cost function is defined as distance between the uncorrputed input data and the

reconstruction from the corrupted data ||X − r||.

where E(·) denotes an encoder, D(·) denotes a decoder, and || · || can be any cost function or

norm.
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Figure 3.12: Denoising Auto-encoder. In this picture, x is the input data, and then we randomly
corrupt some observations to get the corrupted x. Then x is encoded by encoder fθ, and decoded
by gθ. Our target is to minimize the cost function C(x, fθ(gθ(x))) given original input x and
reconstruction fθ(gθ(x))) [12].

The denoising auto-encoder attends to learn the precise prediction of corrupted data from

those uncorrupted data or recover that corrupted one from its neighbor. Denoising auto-

encoder include robustness to outliers by introducing some random noise in the training. The

minimized cost function give us evidence that we can successfully fill the corrupted data, and it

means we can learn to correct the whole input just from parts of it. Both denoising auto-encoder

and robust auto-encoder introduce robustness, but we think our model is more advanced since

robust auto-encoder tries to distinguish the outliers from the original input while denoising

auto-encoder still use the original input as learning target. If there are some outliers in the

initial input, denoising auto-encoder will still recover these outliers and thus these outliers will

distract features learned.
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Chapter 4

Numerical Results

4.1 Data Sets

We tested our model on three different data sets. We work on MNIST data set, notMNIST

data set, and packets data set. MNIST data set [25] is a famous data set for handwritten digits

recognition problem. Handwritten recognition on MNIST data set is a supervised learning

problem. The training set contains 50,000 pictures, and each picture is a 28× 28 picture, and

each picture is labeled as a human handwritten digit. Our goal is to predict the label of each

picture, “which digit does each picture show?”, from its raw pixels. This problem is a typical

classification problem. Moreover, from some experiments, we know that human being has 2.5%

error rate on this data set. Figure 4.1 shows first 400 observations in the MNIST set.
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Figure 4.1: First 400 training instance in MNIST data set

The second test data set is the notMNIST data set created by Yaroslav Bulatov [26]. He took

some publicly available fonts and extracted glyphs from them to make each observation has the

similar dimension with the MNIST set. The notMNIST is also a classification problem. Each

observation is labeled as a letter it presented within the range A-J.
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Figure 4.2: First 400 training instance in notMNIST data set

Judging by these examples, we note that this data set is a harder task than MNIST. The creator

claims that he applied the standard stacked auto-encoder on notMNIST and got approximately

11% error whereas the same approach gives got 2% error rate on MNIST. This dataset consists

of about 19k observations which are manually labeled. Each instance is a 28×28 small picture,

that is, similar to the MNIST, each instance has 784 features.

We also apply our model to the PACKET data set. Packet data comes from computer sensor

networks. It is data transforming on the internet. Each packet is a 1512 bit long sequence, and

the data set contains 10060 observations. Our data is a 10060× 1512 matrix. To give the first

impression of this data set, we convert first 400 observations and transfer these observations

from 1512 bit long sequence to a 36×42 picture. Note that each 36×42 picture does not mean

each instance is a 36× 42 picture. We want to demo this date set in a consistent way with the

previous data sets. These packets are labeled by their source IP, destination IP, source port,

and destination port.
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Figure 4.3: First 400 training instances in PACKET data set

From this demo, one can get a quick view of the PACKET data set. The black point shows

bit “0” while the white point shows bit “1”. Some packets fully contain information that

while some packets only contain information at their first line, and the left part is a big black

block. These “header”-only packets are activities that terminals try to communicate with each

other and build connections. Like TCP connection, clients/terminals and servers which want

to establish a connection must first check the availability of both side, so the “the three-way

handshake” use packets only contain the “head”.

4.2 Results

4.2.1 Robust Auto-encoders for Feature Discovery

We applied the robust auto-encoder model on these three data sets. In this section, we demo

the low dimensional features and the outlying parts learned by the robust auto-encoder.

The figure 4.4 and 4.5 show the results of MNIST set. We use robust auto-encoder to project

the observations in MNIST from 784 dimensions to 196 dimensions. The figure 4.4 shows how

to non-linearly combine the original 784 features to 196 features. Each small picture is one
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kind of combination and the figure 4.4 shows 196 different kinds of combinations. We use the

h = S(LD ·W ), where the LD ∈ RN×m is the input of auto-encoder parts, the W ∈ Rm×n is

the projection matrix, and the S(·) is the sigmoid function. In this experiment, the m = 784

and the n = 196. Each column in W is one small picture in figure 4.4. Since n is 196, we get

196 different pictures.

The figure 4.5 shows the outlying parts for the first 100 observations. Each small picture is a

filter for one observation. These filtered out parts are considered as tough parts for reconstruc-

tion.

Figure 4.4: Discovering features by the robust auto-encoder on MNIST data. In this picture,
there are 196 small pictures that each picture shows one way to combine original 784 features.
These 196 small pictures represent 196 different ways to non-linearly combine the original
features. From this figure, we note that there are clear “structures” or “blocks” in each picture,
and we hold that these “structures” or “blocks” are discovered features that will contribute
to improving the accuracy of predictions. Also, after such projection, all the observations in
MNIST set can be reconstructed by non-linear combinations of these features.
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Figure 4.5: Outlying parts of first 100 observations in MNIST data. One can find that these
outlying parts look like the profile of each digit. It indicates the edge parts between the digits
and the black background are hard to reconstruct, so these parts are filtered out.

The figure 4.6 and 4.7 show the results of notMNIST data set. Similarly to MNIST experimental

settings, we still use robust auto-encoder to project the observations from 784 dimensions to

196 dimensions. The figure 4.6 shows how to non-linearly combine the original 784 features

to 196 features. Each small picture is one kind of combination and the figure 4.6 shows 196

different kinds of combinations.
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Figure 4.6: Discovered latent features by the robust auto-encoder on notMNIST data. All
the observations in notMNIST set can be reconstructed by non-linear combinations of these
features.

The figure 4.7 shows the outlying parts for the first 100 observations. Each small picture is a

filter for one observation. These filtered out parts are considered as tough parts for reconstruc-

tion.

Figure 4.7: Outlying parts of first 100 observations of notMNIST data. The outlying parts look
like the profile of each character. It is similar to the MNIST data set that the edges between
characters and the black background are hard to reconstruct, so these parts are filtered out.
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The figure 4.8 and 4.9 show the results of Packets data set. Unlike the previous experimental

settings, the robust auto-encoder now is used to project the observations from 1512 dimensions

to 784 dimensions. The figure 4.8 shows how to non-linearly combine the original 1512 features

to 784 features. Each small picture is one kind of combination and the figure 4.8 shows first

400 different kinds of combinations in the 784 total combinations.

Figure 4.8: Discovered latent features by the robust auto-encoder on Packets Set. All the ob-
servations in notMNIST set can be reconstructed by non-linear combinations of these features.
However, the Packets data is cyber packets transformed through a network, so these pictures
do not contain the human-eye recognizable structures.

The figure 4.9 shows the outlying parts for the first 400 observations. Each small picture is a

filter for every observation. These filtered out parts are considered as tough parts to reconstruct

for observations. So these parts are filtered out. One can note that the cyber data contains

more outlying parts due to its complexity.
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Figure 4.9: Outlying parts of first 400 observations of the Packets Set. Since the cyber data
are usually considered more complex than the image data, each small picture looks containing
more noise than the image data and these outlying parts are no longer the “edges”.

4.2.1.1 Robust Auto-encoders for Outlier Detection

In the robust auto-encoder, the λ is a balancing parameter for the auto-encoder part and the

outlier filter part. If we set the λ is an arbitrarily large number, the second part λ||S||1 will be

large. The optimizer will emphasize on minimizing this part. A large λ means we prefer the

sparsity of outlier filter S. Meanwhile, by reducing λ, we gradually change optimizer interests

on the first term, the auto-encoder reconstruction cost ||LD−DW,b(EW,b(LD))||2. The optimizer

will filter out more and more outlying parts to reduce the reconstruction cost. If the λ is 0,

there will be no penalty on the outlier filter S, and the optimizer will put every observation

into S and left the LD being 0. Then, there is no reconstruction cost of 0 matrix. In general,

a larger λ enforces S sparser. From the figure 4.10, with the λ increasing, the outlier filter S

becomes sparser.
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Figure 4.10: The influence of λ. In the robust auto-encoder, the λ is the tuning parameter of
the outlier filter and the auto-encoder. A larger λ enforces S sparser. We tested the influence
of λ on MNIST data set. In our experiment, we choose 5 different λ from 20 to 45. Each row
represents one λ setting. The first column is the input X with few Gaussian random noise, and
they are identical for each row. We want the robust auto-encoder to reconstruct the digit 7 and
filter out those noises. The second column shows the reconstruction of robust auto-encoder.
The third column shows the outlier filter S. One can find that the S becomes more and more
sparse with λ increase.

4.2.1.2 Convergence of Robust Auto-encoders

After peeling off the outlying parts of data, the rest parts will be easy to reconstruct, and we

will get lower reconstruction errors than the standard auto-encoders’. Also, filtering out the

outlying parts of data will make the auto-encoder quickly converge. The figure 4.11 shows

a comparison of reconstruction errors between a robust auto-encoder and a standard auto-
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encoder. It shows that the robust auto-encoder gets lower reconstruction errors and converges

more quickly than standard auto-encoder.

Figure 4.11: This picture shows a comparison of reconstruction costs between a robust deep
auto-encoder and a normal deep auto-encoder through iterations. The x-axis is the training
iteration while the y-axis is the reconstruction costs. The blue line represents the reconstruction
costs of a standard deep auto-encoder while the red line represents the reconstruction costs of
the deep auto-encoder inside our robust deep auto-encoder. We set same parameters for both
deep auto-encoder, and the only difference is with or without an outlier filter S. We filter out
outlying parts for every 40 iterations. From the picture, one can find that the red line shows a
stairs shape which indicates that filtering outlying observations will reduce the reconstruction
error of the deep auto-encoder. However, the blue line goes down first but still shaking after
hundreds training iteration which reproduces a well-known problem: deep models are hard to
train.
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4.2.2 Prediction

4.2.2.1 Uncorrupted Input

Our supervised evaluation contains two steps: First, we apply several unsupervised dimension

reduction methods to projection high dimensional data to low dimension and then we use

random forests as our prediction model to predict the label and compare with the true label to

calculate the error rates. Due to the limit of computational power, we sample 500 observations

from the MNIST and the notMNIST set and 1000 observations from the packets data set. The

unsupervised dimension reduction methods include the following:

1. RDAE : Robust Deep Auto-encoder with two hidden layers which projects the input data

from 784 dimensions to 196 dimensions, then projects 196 dimensions to 49 dimensions and

the filtering balancing parameter is λ = 5.0.

2. DAE : Deep Auto-encoder with two hidden layers which projects the input data from

784 dimensions to 196 dimensions, then projects 196 dimensions to 49 dimensions.

3. PCA : Linear projection from 784 dimensions to 49 dimensions.

4. KPCA(poly) : Kernel PCA projects from 784 dimensions to 49 dimensions using poly-

nomial kernel function with the degree= 3.

5. KPCA(rbf) : Kernel PCA projects from 784 dimensions to 49 dimensions using radial

basis kernel function with the γ = 1/784.

6. KPCA(cosine) : Kernel PCA projects from 784 dimensions to 49 dimensions using cosine

kernel function.

In supervised prediction phase, the prediction model is random forest, the number of trees is

200.
2

3
projected observations are used for training and

1

3
observations for testing.

Table 1 shows the error rates of different data sets projected by different unsupervised methods:

Table 1 : Error Rates of Uncorrupted Image Data

Dataset RDAE DAE PCA KPCA(poly) KPCA(rbf) KPCA(cosine)

MNIST Digit 1st 13.3% 13.9% 14.5% 14.5% 13.9% 18.2%

notMNIST 1st 15.7% 18.2% 21.8% 18.8% 20.6% 18.2%

Table 2 shows the error rates of predicting different targets on packets data set:
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Table 2 : Error Rates of Uncorrupted Cyber Data

Target RDAE DAE PCA KPCA(poly) KPCA(rbf) KPCA(cosine)

Source subnet 5th 45.5% 24.8% 24.8% 25.2% 53.3% 19.4%

Destination subnet 5th 16.1% 8.5% 8.8% 10.6% 29.1% 6.7%

Source port 5th 17.3% 11.2% 10.6% 12.7% 31.5% 7.9%

Destination port 5th 42.7% 21.5% 21.8% 20.0% 55.2% 17.0%

From Table 2, we note that robust auto-encoder is not the best projection methods of getting

representations. Also, the standard auto-encoders can not get low error rates either. The

cosine kernel PCA in this experiment is the best projection method that finds the lowest error

representations.

4.2.2.2 Corrupted Input

We randomly corrupt some features using the Gaussian noise. The corrupted samples for

MNIST data, notMNIST data, and Packets data are shown in Figure 4.12 In this experimental

setting, robust deep auto-encoder should always work better than the standard deep auto-

encoder.

Figure 4.12: Corrupted MNIST, notMNIST, and Packet data are shown from the left to the
right. According to our assumption, the Gaussian noise corruption should be very hard to
reconstruct. The robust auto-encoders can eliminate these noise by outlier filter and get lower
reconstruction error than standard auto-encoders.
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Table 3 : Error Rates of Corrupted Image Data

Dataset RDAE DAE PCA KPCA(poly) KPCA(rbf) KPCA(cosine)

MNIST Digit 1st 17.0% 18.8% 20.6% 20.6% 18.8% 20.6%

notMNIST 1st 16.4% 17.6% 20.6% 20.6% 21.8% 19.4%

Table 4 : Error Rates of Corrupted Cyber Data

Target RDAE DAE PCA KPCA(poly) KPCA(rbf) KPCA(cosine)

Source subnet 4th 32.4% 34.5% 20.6% 22.7% 52.1% 15.2%

Destination subnet 4th 20.9% 35.5% 8.2% 9.4% 31.5% 7.9%

Source port 4th 21.2% 36.7% 10.3% 12.1% 32.7% 8.5%

Destination port 4th 33.3% 35.2% 23.0% 24.2% 53.6% 17.0%

Table 3 shows comparison results on corrupted data while other experimental settings are

identical with the previous experiment. On corrupted data, the Robust Auto-encoder still

performs better than methods. This result corresponds to our expectation. From Table 4, still,

robust auto-encoder and standard auto-encoder are not desired projection methods of getting

representations. The cosine kernel PCA in this experiment is the best projection method that

finds the lowest error representations.

4.2.2.3 Significance Test

We observed some improvement of robust auto-encoder comparing with the standard auto-

encoder. We also tested whether this improvement is statistically significant when we take the

size of the test data into consideration. This test is to check whether two groups of binomial

trials are statistically significant. T1 and T2 are two groups of binomial trials and p1 and p2 are

the success rate of T1 and T2. Then we build null hypothesis versus alternative hypothesis as

following:

H0 : p1 = p2

HA : p1 6= p2

Then we calculate the test statistic z as:

z =
p1 − p2√

p̂(1− p̂)( 1

n1

+
1

n2

)
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where p̂ =
n1p1 + n2p2
n1 + n2

. The p-value is 1−cdf(z), where the cdf(·) is the cumulative distribution

function (CDF) of the normal distribution when n1 and n2 are large. If the p-value < 0.05, we

reject the null hypothesis and accept the alternative hypothesis that p1 and p2 are statistically

different.

Table 5 : Significant Test for Different Sets

Data Sets RDAE Correctness Rate DAE Correctness Rate Test Size p-value

Corrupted MNIST 86.7% 80.6% 165 0.07

Uncorrupted MNIST 71.5% 69.7% 165 0.36

Corrupted notMNIST 84.8% 81.2% 165 0.19

Uncorrupted notMNIST 87.9% 84.8% 165 0.21

From Table 5, we note that our model gets relatively better p-value on the corrupted MNIST

data set that the improvement of our model is good while other p-values do not show desired

results.
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Chapter 5

Conclusion

5.1 Contribution

During this thesis research, we explored some auto-encoder models and improved the basic

auto-encoder by adding a sparse outlier filter. We demonstrated that after the outlier filtering,

the auto-encoders will get lower reconstruction errors. Our model is a novel combination of

auto-encoders and robust PCA and inherits both advantages. It can non-linearly project high

dimensional data to lower dimension while peels off the outlying parts of the data. We also

proposed a new training algorithm for this new model. We separately train the auto-encoder

using back-propagation and the outlier filter using shrinkage function. We train one part with

the other part fixed. The constraints are checked following the each part of the optimization.

This new training algorithm is a mixture of the back-propagation and the ADMM. Also, we

learned the idea of the Dykstra’s alternating projection method to compose our constraint

checking process. In our experiments, the robust auto-encoder succeeds in filtering out random

noises. Further, its reconstruction errors are lower than the standard auto-encoders’ as our

expectation. For the supervised prediction part, the robust auto-encoder gets some improve-

ments compared with the standard auto-encoders on two image data sets but still need further

studies on cyber data analysis.

5.2 Future Work

We propose three directions of the future work:

First, the way we extend our model to deep is directly adding a filter on the top of the standard
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auto-encoder, but building filters inside the deep auto-encoder is a novel idea.

Second, the training algorithm we proposed for our model has not been mathematically proved.

The experimental results show that this training algorithm works as consistently as we expect

it, but mathematical proof is a worthy direction to continue.

Third, our model is not ideal in the cyber domain, and the standard deep auto-encoder does

not perform well either. Applying some other kinds of auto-encoders like stacked auto-encoder

is our next step.
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