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ABSTRACT

An atom interferometer is a sensitive device that has potential for many useful

applications. Atoms are sensitive to electromagnetic fields due to their electric

and magnetic moments and their mass allows them to be deflected in a gravita-

tional field, thereby making them attractive for measuring inertial forces. The

narrow momentum distribution of Bose-Einstein condensate (BEC) is a great

asset in realizing portable atom interferometers. An example is a guided-wave

atom interferometer that uses a confining potential to guide the motion of

the condensate. Despite the promise of guided-wave atom interferometry with

BEC, spatial phase and phase diffusion limit the contrast of the interference

fringes. The control of these phases is required for successful development of

a BEC-based guided-wave atom interferometer.

This thesis analyses the guided-wave atom interferometer, where an atomic

BEC cloud at the center of a confining potential is split into two clouds that

move along different arms of the interferometer. The clouds accumulate rela-

tive phase due to the environment, spatially inhomogeneous trapping potential

and atom-atom interactions within the condensate. At the end of the interfer-

ometric cycle, the clouds are recombined producing a cloud at rest and moving

clouds. The number of atoms in the clouds that emerge depends on the rela-

tive phase accumulated by the clouds during propagation. This is investigated

by deriving an expression for the probability of finding any given number of

atoms in the clouds that emerge after recombination. Characteristic features

like mean, standard deviation and cross-correlation function of the probability

density distribution are calculated and the contrast of the interference fringes

is optimized. This thesis found that optimum contrast is achieved through

the control of total population of atoms in the condensate, trap frequencies,

s-wave scattering length, and the duration of the interferometric cycle.
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Chapter 1

Introduction

Condensation in bosonic gases was first predicted by Einstein [1] in 1925 based on

photon quantum statistics developed by Bose [2]. The transition from gaseous atoms

to condensate occurs when the de Broglie wavelength becomes comparable to the

mean distance between the atoms so that the wave functions of the atoms overlap

and individual atoms become indistinguishable; large number of atoms occupies the

lowest energy state. The search for Bose-Einstein condensation (BEC) started in

liquid helium after Fritz London [3] pointed out that there could be a connection

between superfliudity and condensation. However, interactions between the atoms in

the liquid were so strong that only a few populations of atoms, about 10%, occupy

the lowest energy state.

The search for BEC continued with a focus on atomic species that would interact

weakly at very low temperature. Following the suggestions of Hecht [4] and later

Stwalley and Nosanov [5], spin polarized hydrogen atoms were used in the first of

these experiments. However, the adsorption [6] of hydrogen atoms on the surface of

the cell walls made condensation impossible due to the loss of atoms to three-body

recombination at low temperature. As a result, magnetic trapping [7] was used to

1
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provide a wall-free confinement while evaporative cooling technique [8] was used to

cool the atoms. These techniques are well suited for the trapping and cooling alkali

atoms.

Using magnetic trapping and evaporative cooling techniques in conjunction with

advances made in laser cooling of alkali atoms led to the first observation of BEC

in rubidium vapour [9] in 1995 and later in vapours of lithium [10] and sodium [11].

More than a decade after observing the first BEC, condensation has been realised in

many different atomic species [12–17] and molecules [18–20]. Also cooling fermions to

very low temperature have resulted in the formation of degenerate gases [21]; all the

Fermi particles do not occupy a single quantum state when compared to condensate

due to Pauli’s exclusion principle.

The realisation of BEC and quantum degenerate gases has provided researchers a

new tool to probe quantum phenomenon most of which have been observed in other

areas of physics. The earliest example was the observation of interference pattern [22]

between two BEC due to wave-particle duality. Other examples include the observa-

tion of vortex formation in BEC [23] as a result of superfluid nature of the condensates,

quantum tunneling of atoms across a potential barrier in optical lattices [24,25], ob-

servation of quantum phase transition from superfluid to the Mott insulator phase of

atoms in a periodic lattice [26], observation of itinerant ferromagnetism in a Fermi

gas of ultra cold atoms [27], creation of squeezed states in BEC [28,29] among others.

Condensates attract the interest of researchers for a number of reasons. It is

a source of bright coherent beams of atoms just like lasers. Also, condensates are

sensitive to external interactions because atoms have dipole moments and mass which

could respond to variations in their external environment like electric and magnetic

fields, and gravitational forces. Some or all these properties are constantly exploited in

diverse research areas like atom interferometry [30–32], quantum simulations [33, 34]
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and quantum computation [35], ultra-cold atoms in optical lattices [36], and atom

beam focusing [37] and more.

1.1 Atom Interferometers

The wave-like behavior of both light and matter is a fundamental principle in physics.

The key to this behavior is the ability of waves to demonstrate interference. This ef-

fect was demonstrated first for light in 1802 by Thomas Young [38] in a double-slit

experiment. Over the intervening years and with the arrival of laser, light interferom-

eters have been perfected and turned into indispensable measuring devices that have

found applications in measurements of rotations, accelerations distance and atomic

spectra. While light interferometers were reaching maturity, Louis de Broglie [39]

put forward a hypothesis predicting the wave-like duality of matter. This hypothesis

was proved in the electron diffraction experiment and later the neutron interference

experiments of the 1940s. It was not until 1991 that interference by massive particles

like atoms were demonstrated [40,41].

The difficulty in developing neutral atom interferometer was partly because atoms

have large mass compared to that of say electron and results in a much smaller de

Broglie wavelength for a given velocity. The very first atom interferometer [40] sur-

mounted these challenges by working with streams of supersonic gaseous atoms and

used mechanical gratings that were coherently illuminated by light. Subsequent ex-

periments [41–46] used laser beams that provided a periodic potential, in place of the

material and mechanical gratings, to split and recombine streams of gaseous atomic

beams. Today, atoms are unprecedentedly controlled and manipulated using laser to

achieve improved interference signals, high contrast ratio and precision measurements.

They have been used to measure gravitational constant [47], acceleration [41,42], elec-
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tric polarisability [48] and fine-structure constant [49] to very high accuracy.

The performance of atom interferometers depends on the interferometric time (the

time interval within which the phase of the propagating atoms is predictable) and

improves with increase in the interferometric time. The current interferometric times

of free-space atom interferometers are less than one-tenth of a second and are limited

by sagging of the atomic beam due free falling of atoms in the gravitational field.

This problem is solved by the use of atomic fountain [50] that increases the physical

size of the interferometer at the expense of the portability of the device and requires

very sensitive technical details for its operations. Because of the limitation of the

atomic fountain, other techniques that could hold atoms against gravity throughout

the period of the interferometric time without compromising the portability of the

device are desired. An example of such technique is the use of a confining trap to

hold the atoms against gravity while the atoms are being manipulated. Condensates

are well-suited for use in this technique because they have very small momentum that

allows them to be confined to a small region in space.

Such BEC-based atom interferometers have been realised in trapped atom interfer-

ometer [30,51,52] and guided-wave interferometer [31,32,53]. The interferometric time

of these interferometers is often limited by the techniques used in the manipulation

of the cloud, the spatial inhomogeneity of the trap and the atom-atom interactions

within the cloud.

1.1.1 Trapped-atom interferometer

For instance in trapped atom interferometers [30,51,52], a cloud of condensate, which

is in the lowest mode in a single well trap and is sitting at the center of a trap, is

dynamically split into two clouds in real space by deforming a single well potential

into double well potential. During the splitting process, a weak confinement along



1.1 Atom Interferometers 5

the axis transverse to the deformation allows states other than the ground state to

be occupied thereby causing instability [54] within the condensate that limits the

interferometric time of the condensate [30, 55]. The method was improved upon

in subsequent experiments [51, 52] by providing tighter confinement along the axis

transverse to the deformation and achieved an interferometric time of 200 ms [52].

However, it [52, 56, 57] was reported that atom-atom interactions still limited the

interferometric time. More so, the recombination process is very sensitive to the

phase due to atom-atom interactions. This is because merging the condensate with

opposite phase cause excitations within the condensate which lead to exponential

growth of the unstable modes [58]. To avoid this problem, the trap is switched off

allowing the condensate to fall, undergo ballistic expansion under the influence of the

of the atom-atom interactions which decrease the atomic density before the overlap

and interfere.

1.1.2 Guided-wave atom interferometer

Parallel to the development of trapped-atom interferometers, guided-wave atom in-

terferometers that use potentials to guide the motion of atomic wave packets were

developed. Examples of guided-wave atom interferometers are the atom Michelson

interferometer [31] and the atom Mach-Zehnder interferometer [32]. In these interfer-

ometer, the dynamic splitting of condensate in momentum space is used to manipulate

the condensate in the guide.

In atom Michelson interferometer shown in Fig. 1.1 (called so because the split-

ting and recombination take place at the same spatial location), the BEC cloud ψ0 is

initially at rest in a wave guide. Splitting pulses consisting of a pair of counterpropa-

gating laser beams detuned from atomic resonance and acting as a diffraction grating

are incident on the cloud. These pulses split the condensate into two harmonics, ψ+
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BEC before the splitting laser 
pulses were applied

Two counter propagating BEC clouds emerge 
after the application of splitting  laser pulses

After recombination, three BEC clouds emerge; 
each cloud having different populations

Figure 1.1 Schematic of the evolution of BEC atomic cloud in an atom
Michelson interferometer. The arrows in the figure indicate the direction of
motion.

and ψ−, moving with the initial velocities ±v0, respectively as shown in Fig 1.1. In a

single reflection interferometers, the directions of propagation of these harmonics are

reversed at time T/2 (where T is the duration of the interferometric cycle), i.e., in

the middle of the cycle with the help of a reflection pulse. The harmonics are then

allowed to propagate back and are recombined when they overlap again using the

same optical pulses that were used to split the original BEC cloud. After the recom-

bination, the condensate is in general in a superposition of ψ0, ψ+ and ψ− with the

relative amplitudes depending on the amount of the accumulated phase shift between

the arms of the interferometer acquired during the cycle.

In double reflection interferometer [53, 59], the optical reflection pulse is applied
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twice at times T/4 and 3T/4. After the first reflection pulse, the harmonics change

their direction of propagation and start moving back. They pass through each other,

and exchange their positions by the time 3T/4. The harmonic that was on the right

at T/2 is now on the left and vice versa. The second reflection pulse is applied at

3T/4 again reverses the direction of the propagation of the harmonics and, finally

they are recombined at time T .

Also interferometric geometry that does not rely on the reflecting optical pulses

but instead uses gradient of the confining waveguide potential for reversing direction of

propagation of the BEC harmonics have been investigated. In this “free oscillation”

interferometer [59–61], the moving BEC clouds propagate in a parabolic confining

potential. They slow down at they climb the potential, stop at their classical turning

points after one quarter of the trap period (T/4) has elapsed, and turn back. At T/2

the clouds meet at the bottom of the potential, reach again their turning points at

3T/4 and are recombined at time T . The duration of the interferometric cycle in thus

equal to the oscillation period of the parabolic longitudinal waveguide potential T .

Similarly, the Mach-Zehnder-type interferometer using BEC has been experimen-

tally demonstrated [32,60]. Compared to Michelson-type interferometer, the splitting

technique is different; one of the two counter-propagating wave used to form the π/2

splitting pulses is frequency-shifted with respect to the other thereby resulting in a

traveling optical potential. The π/2-pulses transforms the BEC originally at rest at

the center of the trap into clouds of equal amplitude. One of the clouds remain at

rest and the other travels with velocity v. A π-pulse applied at the mid-cycle stops

the moving cloud and sets the stationary cloud into motion. At the end of the cy-

cle, a π/2-pulse is used to recombine the two clouds. These experiments recorded a

coherence time of 59ms and 97ms.

Both atom-atom interactions and spatially inhomogeneous trapping potential in-
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duce decoherence on the condensate that separate after diffraction. These decoherence

mechanisms work in tandem to limit the interferometric time and have been studied

both experimentally [59,60] and theoretically [62–64]. For instance, experiments with

BEC in Michelson interferometer [31] that were realized in a parabolic potential with

radial frequency of 177 Hz, and axial frequency of 5 Hz had a coherence time of only

10 ms. The short coherence time was explained [62, 63] to be caused by atom-atom

interactions and the residual potential along the waveguide. To improve on these

findings, subsequent experiments [53, 59] used a more flat and symmetric parabolic

potential whose frequencies are (6, 1.1, 3.3) Hz to confine and guide the atoms when

compared to the first experiment [31]. In the experiments, the coherence time of the

interferometer increased to 44 ms (71 ms) which is about 4 (7) times the first experi-

ment [31]. In another experiment by the same group [59], the condensate was allowed

to evolve freely after the splitting pulses were applied; the interferometer does not

rely on the reflection pulses but relies on the gradient of the confining potential to

reverse the direction of propagation of the clouds. The coherence time achieved in the

experiment was 0.91 s. Despite the success in describing the decoherence resulting

from atom-atom interactions and spatial inhomogeneous trapping potential within

mean-field theory, the studies [59, 60, 62–64] could not account for atom-atom inter-

actions within each condensate after diffraction, often called phase diffusion, because

mean-field theory that was used in the formulation of the problem is incapable of

describing the many-body effects which is addressed in this thesis.

1.2 Outline of this Thesis

The focus of this thesis is on controlling the spatial phase and phase diffusion in

guided-wave atom interferometers in order to increase the interferometric time. At
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first in Chapter 2, the diffraction techniques used in the manipulation of condensate

is described. This is followed by a semiclassical statistical description of condensa-

tion. Finally the non-linear Schrodinger wave equation that describes the condensate

is derived and discussed. In Chapter 3, the phase diffusion of split condensate is

analysed by deriving the equation for the probability of observing any population of

atoms in the output of the interferometer and investigate the characteristic features

of the probability. The interferometric fringe contrast is then optimized within the

experimentally-controlled parameter space for performance. Finally in Chapter 4, the

combined effect of spatial phase and phase diffusion of split condensate is investigated

by deriving the probability of observing any population of atoms in the output of the

interferometer. The probability is analysed in various limiting cases and the corre-

sponding averages are derived and analysed. Also the interference fringe contrast is

optimised and then discussed.



Chapter 2

Tools of the trade

This chapter begins with the description of the physics behind the diffraction of

atomic beam using laser pulses. Two diffractions schemes - Raman pulses and Bragg

diffraction - are discussed. Special attention is paid to the diffraction of atomic

beam using square-wave Bragg pulses as this technique is used for most part of this

thesis. This is followed by a brief semiclassical statistical description of condensation

in Sec. 2.2. Finally, the non-linear Schrodinger wave equation that describes the

condensate is derived and briefly discussed in Sec. 2.3.

2.1 Diffraction of atoms by light

Large arm separation in atom interferometry allows each arm of the interferometer to

be addressed separately by fields and helps reduce the effects from stray fields. It is

achieved by beam splitters that would put the atomic wave packets into superposition

of very narrow momentum distributions. The narrow momentum distributions are

necessary for obtaining good fringe contrast. There are two techniques to achieve arm

separation with atomic beams.

10
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One method [41] uses a laser beam that causes atomic wave packets to be in

different internal state and external motional state. The method exploits Raman

transitions between two hyperfine ground states of an atom, which has very long

lifetime compared with the duration of the experiment, via a third quasi-excited

state. The pulses often called Raman pulses , consist of two light beams with different

frequencies ωL1 and ωL2. They are superposed together to form a traveling wave and

are applied in π/2−π−π/2 sequence. The first π/2-pulse excites some population of

atoms in an atomic beam initially in the internal state |1〉 with momentum p when

photons are absorbed from the laser beam with wave vector κL1. The population of

atoms in the excited state is stimulated by the second laser beam with wave vector

κL2 to make transition to the other hyperfine ground state |2〉. Since the frequency

of the absorbed and emitted photons are different, the population in state |2〉 gains

momenta 2~κ in the direction of the laser beams, where κ is the difference between

the two wave vectors κL1 and κL2. Thus the π/2 pulse produces superposed states

|1〉 and |2〉 moving with momentum p and p + 2~κ respectively. The second pulse

sequence, π pulse, swaps the two states and their respective momentum. Since the

manipulation of the internal states of the atom involves the two ground state energy

levels at different frequencies, the whole process discussed so far is inelastic because

not all photon energy absorbed from one beam is re-emitted into the other beam.

Another method [46, 65, 66] uses light standing wave to diffract atomic clouds.

The light standing wave is formed using a laser beam that is detuned from atomic

resonance, to avoid spontaneous emission, and is retro-reflected by a mirror. Diffrac-

tion of atomic beam by standing light wave is understood by observing its effect on

motional state of an atom within the atomic beam. An atom with momentum p that

is incident on the standing light wave, would absorb a photon of momentum ~κl from

one of the light beams and it is put in a quasi-excited state. The atom decays back
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to the ground state by emitting a photon with the same wave vector into the counter

propagating laser beam via stimulated emission and is deflected with a net momentum

change of p+ 2~κl. However, an atom which absorbed a photon from same beam and

re-emitted it into the same beam through stimulated emission will continue to be in

its external motional state. Thus standing light wave, which presents periodic poten-

tial equivalent to material gratings to an atomic beam, coherently splits the atomic

beam to form superposed states, thereby creates distinct paths in space. Because all

the photon energy absorbed in one cycle is re-emitted in another cycle by the atom,

the process is elastic. Since the diffraction of atomic beam by standing light waves is

analogous to electron diffraction by crystals, the dependence of the scattering angle

on the wavelength of the laser light and the de Broglie wavelength of the atoms makes

it possible to align the standing light waves parallel to each other such that a closed

path is obtained. Bragg diffraction technique has been used to split and recombine

atomic BEC cloud in a number of experiments [31, 53, 59]. Standing wave formed

from laser beams that are detuned from atomic resonance acts a periodic potential

and plays the role of gratings for atomic beam with spacing d = λlaser/2. Atomic

beams with deBroglie wavelength λB = h/p that are comparable to the spacing of

the optical light gratings are diffracted by the light standing wave.

2.1.1 Bragg diffraction of atoms by light

The discussion below follows closely that of B. Young et al. in Ref. [67]. Considered

here is the case where the light frequency is far detuned from the atomic resonance

so that spontaneous emission can be neglected. The evolution of the system (atom +

field) can be described by Schrodinger wave equation where both atom and field are

treated as waves.

The Hamiltonian of an atom coupled to the electromagnetic field in the absence
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∣1 〉

∣2 〉

ω

Δ

Figure 2.1 Two-level atom with the ground state |1〉 and excited state |2〉
is coupled by the laser of frequency ω that is detuned from resonance. ∆ is
the detuning frequency defined in the text.

of spontaneous emission is given by

H =
p2

2m
+ ~ω1 |1〉 〈1|+ ~ω2 |2〉 〈2| − d · E, (2.1)

where p is the atomic momentum, m is the mass of the atom, d is the electric dipole

moment, E is the light field, ω1,2 is the frequency of the states |1〉, |2〉 shown in

Fig. 2.1. Here the particle momentum is neglected simply because the atoms in the

BEC cloud are initially at rest so that p = 0. Consider an atom that is in light field

of the form

E = E0(x, t) cos(ωt+ φL), (2.2)

where E0(x, t) = E0(t) cos(κLx) is the amplitude of the standing light field, ω is the

frequency of the light field, φL is the phase of the laser beam. The light field couples

two of its internal states as shown in Fig. 2.1 through dipole interaction. The time

evolution of the state vector of the system at any time

|ψ(t)〉 = a1(t) |1〉+ a2(t) |2〉 , (2.3)
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is given by the Schrodinger equation

i~
d

dt
|ψ(t)〉 = H |ψ(t)〉 . (2.4)

Substituting the state vector Eq. (2.3) in the Eq. (2.4) reduces to a coupled differential

equations for the coefficients

i~ȧ1(t) = ~ω1a1(t) + V21a2(t),

i~ȧ2(t) = V ∗21a1(t) + ~ω2a2(t),

(2.5)

where

V12 = ~Ω21
ei(ωt+φL) + e−i(ωt+φL)

2
, (2.6)

and the Rabi frequency is defined as

Ω21 = −〈2|d · E0(x, t) |1〉
~

. (2.7)

The term V12 contains both fast and slow terms (eiωt, e−iωt). For instance, the com-

ponent e−iωt causes atoms in their ground state |1〉 to undergo rapid oscillation whose

effect on the state |1〉 is zero on the average and vice versa. Making the following

change of variables

a1(t) = c1(t)e−iω1t−i∆t/2,

a2(t) = c2(t)e−iω2t+i∆t/2,

(2.8)

where ∆ = (ω2 − ω1 − ω) and neglecting the term in V12 that oscillates rapidly,

Eq. (2.5) become

iċ1 = −∆

2
c1 +

Ω21e
iφL

2
c2,

iċ2 =
Ω∗21e

−iφL

2
c1 +

∆

2
c2.

(2.9)



2.1 Diffraction of atoms by light 15

2.1.2 Atom diffraction using square-wave Bragg pulses

To solve the differential equations in Eq. (2.9), Ω21(x, t) is assumed to be constant

when light beams are interacting with the atoms. This is true since in the experiments

to be described in this work, square pulse large were used in the diffraction of the

atomic BEC cloud.

Defining the following parameters [68]

tan θ =
|Ω21|

∆
, sin θ =

|Ω21|
Ωr

, cos θ =
∆

Ωr

, (2.10)

where Ωr =
√

∆2 + Ω2
21 and 0 < θ < π, the eigenvalues λ of Eq. (2.9) are

λ± = ±
√

∆2 + Ω2
21

2
, (2.11)

and the corresponding eigenvectors are

|λ−〉 =

 cos
(
θ
2

)
− sin

(
θ
2

)
e−iφL

 , |λ+〉 =

 sin
(
θ
2

)
eiφL

cos
(
θ
2

)
 . (2.12)

For a population of atoms that where initially in their ground state, then

a1 = e−i(ω1+∆/2)t
(
cos2 θ/2 e−iλ−t + sin2 θ/2 e−iλ+t

)
a2 =

sin θ

2
e−i(ω2−∆/2)t

(
e−i(λ+t+φL) − e−i(λ−t+φL)

)
.

(2.13)

and the energies E1− = ~(ω1 + ∆/2 − λ−) and E1+ = ~(ω1 + ∆/2 − λ+) associated

with a1 i.e. the ground state are

E1− = ~
[
ω1 +

∆

2
− 1

2

√
∆2 + Ω2

12

]
,

E1+ = ~
[
ω1 +

∆

2
+

1

2

√
∆2 + Ω2

12

]
,

(2.14)

respectively.

In experiments [31, 53, 59], the detuning ∆ is controlled by the interaction fre-

quency ω of the laser light. For very large positive (red) detuning ∆ > 0, θ is ap-

proximately zero and the state vector of the system becomes ψ ≈ e−iE1−t/~ |1〉 where
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Figure 2.2 The dressed state energies as a function of position in light
standing wave. The detuning is |∆| = 10 rad/s, ω1 = 0 rad/s, Ω = cos(κLx)
rad/s and κL = 1 m−1. Depending on whether the detuning ∆ is positive or
negative, the atoms follow either curve but never both.

E1− ≈ ~
(
ω1 − 1

4

Ω2
21

|∆|

)
. Similarly for very large negative (blue) detuning ∆ < 0, θ is

roughly equal to π and the state vector of the system is given as |ψ〉 ≈ e−iE1+t/~ |1〉,

where E1+ ≈ ~
(
ω1 + 1

4

Ω2
21

|∆|

)
. Notice that in either of the detuning considered, the

atoms are always found in the ground state |1〉 while the excited |2〉 is unoccupied.

The overall effect of the large detuned laser light is to shift the ground state energy

level of the atoms up or down. It also present periodic potentials to the atoms since

Ω21 ∼ 〈2|d ·E0(t) |1〉 cos(κL x) which the ground state follows adiabatically as shown

in Fig. 2.2. Then, the Schrodinger wave equation for the ground state in terms of the
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potential Ω(x, t) is

i
d

dt
ψg = − ~

2m

d2

dx2
ψg + Ω(t) cos(2κL x)ψg. (2.15)

As observed in experiments [31,53], the atomic distribution after diffraction shows

a series of very narrow peaks in the momentum space. This is explained by the optical

potential Ω(t) cos 2κL x that presents a grating of periodicity λL/2 to the atoms, where

kL and λL are the wave number and the wavelength of the laser beam respectively.

The periodicity of the gratings has a characteristic width of 2~κL in the momentum

space. The Bragg condition for such grating is

p = 2n~κL (2.16)

where n is the diffraction order and takes integer values only, p is the momentum of

the atom and κL is the wave vector of the laser beam. It is then instructive to expand

the ground state wave function ψg(x, t) in the Fourier space

ψg(x, t) =
∞∑

n=−∞

φn(x, t) e2nκLx. (2.17)

Substituting Eq. (2.17) in the Schrodinger equation Eq. (2.15) gives

iφ̇n =
~(2nκL)2

2m
φn + (φn−1 + φn+1)

Ω(t)

2
(2.18)

where the dispersion and relative displacement terms have been neglected because

when the laser pulses are on, the lattice potential energy and the particles kinetic

energy dominates every other dynamics. Defining the terms ~(2κL)2/(2m) = ωrec

the recoil frequency of the atom and a dimensionless time τ = 2ωrect, the coupled

equations become

iφ̇n =
n2

2
φn + (φn−1 + φn+1)

ω(t)

2
, (2.19)

where ω(t) = Ω(t)/(2ωrec). Eq. (2.19) comprises an infinite set of coupled differential

equations. To be able to truncate the series, note that if the recoil energy of the atom
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is greater than the atom-field interaction, then Nth diffraction order and beyond

cannot be excited (i.e. N2 � Ω/(2ωrec) in order to truncate the series for diffraction

orders less than N , N is the largest order possible). To describe the lowest order

diffraction n = 0,±1 only, N = 2 [i.e. n = 0,±1, · · · ,±(N − 1)] and Eq. (2.19) gives

three coupled differential equations

i


φ̇1

φ̇0

φ̇−1

 =
1

2


1 Ω 0

Ω 0 Ω

0 Ω 1




φ1

φ0

φ−1

 (2.20)

The solution of Eq. (2.20) has the form
φ1

φ0

φ−1

 = e−it/4


φ11 φ12 φ13

φ12 φ22 φ12

φ13 φ12 φ11




φ1(0)

φ0(0)

φ−1(0)

 (2.21)

where

φ11 =
1

2

[
e−it/4 + cos

qt

4
− i sin

qt

4

]
,

φ12 = 2i
Ω

q
sin

qt

4
,

φ13 =
1

2

[
cos

qt

4
− e−it/4 − i

q
sin

qt

4

]
,

φ22 = cos
qt

4
+
i

q
sin

qt

4
,

(2.22)

and q =
√

1 + 8ω2. This result was obtained in Ref. [63]. In order to excite the

population of atoms in the stationary cloud (i.e. atoms in the zeroth harmonic) into

moving clouds that have momentum ±2~κL without exciting other higher motional

states, a compound pulse of two square pulses is used. The first pulse of duration

t =
√

2π and dimensionless frequency Ω =
√

1/8 put the system in a superposition

of φ1, φ0, and φ−. The first pulse is followed by a period of free evolution lasting for a

time t = 2π during which the laser pulses are turned off and the clouds are allowed to
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rephase. After the free evolution, a second pulse at the same dimensionless frequency

and duration applied to the clouds completes the transfer of atoms from φ0 to the

harmonics φ1 and φ−1. The sequence of the pulses described above is given by the

splitting matrix,

A0↔±1 =


−1

2
e−i
√

2π 1√
2
e−iπ/

√
2 1

2
e−i
√

2π

1√
2
e−iπ/

√
2 0 1√

2
e−iπ/

√
2

1
2
e−i
√

2π 1√
2
e−iπ/

√
2 −1

2
e−i
√

2π

 . (2.23)

Similarly, the reflection pulses are used to reverse the momentum of the atoms in

the moving clouds. The momentum reversal φ± → φ∓ is achieved with a single reflec-

tion pulse of duration t = 4π and intensity Ω =
√

3/8. The matrix that represents

the momentum reversal is

A±↔∓ =


0 0 −1

0 −1 0

−1 0 0

 . (2.24)

2.1.3 Atom diffraction using Raman pulses

In this diffraction technique, both the internal and the external states are exploited.

This is achieved for zero detuning so that the solution of the coupled differential

equation Eq. (2.9) becomes (see Chap. 7 of Ref. [69] ) a1(t)

a2(t)

 =

 e−iω1t cos
(

Ωt
2

)
−ie−iω1t sin

(
Ωt
2

)
eiφL

−ie−iω2t sin
(

Ωt
2

)
e−iφL e−iω2t cos

(
Ωt
2

)

 a1(0)

a2(0)

 . (2.25)

A single pulse of duration t = π/(2Ω) splits an atomic beam into two beams and put

them in a linear superposition of their motional states. The matrix of the splitting

pulse is

A1↔1+2 =
1√
2

 1 −ieiφL

−ie−iφL 1

 . (2.26)
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Similarly a single pulse of duration t = π/Ω acts as a mirror by reversing the mo-

mentum of atoms in the states c1 and c2 respectively. The matrix that represents the

reflection pulse is

A1↔2 =
1√
2

 0 −ieiφL

−ie−iφL 0

 . (2.27)

2.2 Bose-Einstein condensation

Bosons are particles that like to stay together in the same state. When a system of

bosons reach a critical temperature, it undergoes a phase transition and the particles

occupies the lowest energy state in the system. This phenomenon is called Bose-

Einstein condensation. The mechanism of Bose-Einstein condensation is understood

from the semiclassical statistical description as discussed below [70,71].

2.2.1 Critical temperature

The mean number of atoms occupying the ith state with energy εi in a Bose-gas is

given by

〈ni〉 =
1

eβ(εi−µ) − 1
, (2.28)

where β = (κBT )−1, kB is the Boltzmann constant, T is the temperature and µ is

the chemical potential. The total number of atoms within the confining potential is

given by

N = N0 +Ne,

= N0 +
∞∑
i=1

1

eβ(εi−µ) − 1
,

(2.29)

where N0 is the number of atoms in the ground state and Ne is the number of atoms

in the excited state. For an isotropic harmonic oscillator,

εnx,ny ,nz = ~ω(nx + ny + nz + 3/2), (2.30)
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and

Ne =
∞∑

nx,ny ,nz 6=0

1

e~ωβ(nx+ny+nz+3/2)−βµ − 1
. (2.31)

Let nx + ny + nz = m and α = −βµ+ 3
2

T0
TN1/3 where

T0 =
~ωN1/3

kB
. (2.32)

The sum in Eq. (2.31) can be reduced to one variable sum over m

Ne =
∞∑
m=1

m2/2 + 3m/2 + 1

e
T0

TN1/3
+α − 1

. (2.33)

When N is large, the states becomes more closely spaced and the sum can be replaced

by an integral to a good approximation. Making the transformation m→ m+ 1 and

using Eq. (23.1.30) of Ref. [72], Ne becomes [70,71]

Ne ≈ Nζ(3)

(
T

T0

)3

, (2.34)

where ζ(n) is the Riemann ζ function. Using Eq. (2.29), the fractional population of

atoms in the ground state for temperature (T ) less than the critical temperature (Tc)

is

N0

N
= 1− ζ(3)

(
T

T0

)3

. (2.35)

In the limit N0 → 0, the critical temperature is

kBTc = ~ω
(
N

ζ(3)

)1/3

= 0.94~ωN1/3. (2.36)

For temperature greater than the critical temperature, the population of atoms in

the ground state is of the order unity instead of the order N .

2.2.2 Critical phase space density

The total number of atoms in the excited state can be evaluated from the density

distribution. In the limit T > Tc,

Ne =

∫
drn(r) (2.37)
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where

n(r) =
1

(2π~)−3

∫
dp

eβ[ε(r,p)−µ] − 1
(2.38)

where ε(r,p) = p2/2m + Vext(r) is the semiclassical energy in the phase space [71].

Upon evaluation of the integral, n(r) becomes

n(r) =
1

Λ3
T

g3/2(eβ(µ−V (r))), (2.39)

where gν(x) =
∞∑
k=1

xk

kν
is the polylogarithm function and ΛT is the thermal de Broglie

wavelength defined as

ΛT =

√
2π~2

mkBT
. (2.40)

Bose-Einstein condensation occurs when the interparticle spacing n−1/3 becomes com-

parable to the thermal de Broglie wavelength ΛT and the individual particle can no

longer be distinguished. This condition is equivalent to stating that the phase space

density nΛ3
T is greater than unity. This condition is met at T = Tc when the atoms

macroscopically occupy the lowest energy (εmin) level of the potential V (r) and chem-

ical potential for adding a particle within the minimum energy level of the potential

V (r) is equal to εmin (i.e. µ − εmin = 0) so that eβ(µ−εmin) becomes unity. The phase

space density then reaches its maximum value

nΛ3
T = 2.612, (2.41)

and corresponds to a phase transition point in a Bose gas.

The presence of BEC is indicated by the appearance of a peak in the velocity

distribution of the atoms as shown in Fig 2.3. The critical temperature for BEC of

alkali atoms to appear in dilute gas trapped in magnetic trap is Tc ∼ 100 nK. In

experiment that realised BEC using 87Rb [9], the condensation started at 170 nK,

and the BEC had a lifetime of about fifteen seconds.



2.3 Gross-Pitaevskii equation 23

400 nK

200 nK

50 nK

Figure 2.3 Velocity distribution of an ensemble of atoms trapped in a mag-
netic optical trap at different temperatures, from hot (left) to cold (right).
As the atoms begin to condense in the ground state of the trap, the velocity
distribution of the atomic ensemble exhibits a peak at zero velocity (image
from jila.colorado.edu/bec).

2.3 Gross-Pitaevskii equation

At condensation, most atoms in a Bose gas occupy the lowest energy state of the

system. In the limit where the population of the background thermal atoms are

small and negligible, most of the atoms are in the condensate and the wave function

of the many-particle system may be written to an approximation as a product of a

single-particle state ψ(r, t) (See Sec.6.1 of Ref [73])

Ψ(r1, r2, r3, · · · , rN , t) = ψ(r1, t)ψ(r2, t) · · ·ψ(rN , t). (2.42)
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The Lagrangian [74] corresponding to the state Eq. (2.42) is given by

L = N

∫
dr

{
i~ψ∗

∂ψ

∂t
− ~2

2m
∇ψ∗∇ψ − ψ∗V (r)− N − 1

2
U0|ψ|4

}
, (2.43)

where ψ = ψ(r, t), U0 (=4π~2as/m), V (r) is the external potential experienced by

the atoms, m is the mass of atom in the condensate and as is the s-wave scattering

length. According to Hamilton’s principle, the true evolution of the state Eq. (2.42) is

one for which variations in the Lagrangian Eq. (2.43) corresponding to it is stationary

(i.e. δL = 0). Using integration by parts and treating ψ and ψ∗ as two independent

fields, the variation of the Lagrangian is

δL = N

∫
dr δψ∗

{
i~
∂ψ

∂t
+

~2

2m
∇2ψ − V (r)ψ − (N − 1)U0|ψ|2ψ

}
−N ~2

2m
δψ∗∇ψ, (2.44)

where δψ = 0 has been used. Requiring that variation in Lagrangian be stationary,

implies that δψ∗∇ψ|fi = 0 so that the constant term vanishes at the boundary and

i~
∂ψ

∂t
= − ~2

2m
∇2ψ + V (r)ψ + (N − 1)U0|ψ|2ψ (2.45)

Equation (2.45) is called the time-dependent Gross-Pitaevskii equation and describes

accurately the behaviour of condensate at very low temperature T < Tc, provided

that the background thermal atoms are negligible.

2.3.1 Thomas-Fermi approximation

Equation (2.45) is a nonlinear differential equation with cubic nonlinearity in ψ(r, t).

Consider a parabolic potential of the form

V (r) =
m

2

(
ω2
xx

2 + ω2
yy

2 + ω2
zz

2
)
. (2.46)

To bring out the features of the Gross-Pitaevskii equation the original work of Ref. [75]

is followed. Equation (2.45) is rescaled using the following characteristic scales: the
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characteristic lengthRc = (4πNa4
osasc) = aosζ, a dimensionless scale ζ = (4πNasc/aos)

1/5,

oscillator length aos =
√

~/mω and the characteristic time scale Tc = (ωζ2)−1, where

ω = (ωxωyωz)
1/3 is the geometric mean frequency of the external trapping poten-

tial. Defining a dimensionless length η = r/Rc, a dimensionless time τ = t/Tc and

dimensionless wave function ψ(η, τ) = (Rc)
3/2 ψ(r, t), Eq. (2.45) becomes

i
∂ψ(η, τ)

∂τ
=

[
− 1

2ζ4
∇2
η +

η2

2
+ |ψ(η, τ)|2

]
ψ(η, τ). (2.47)

In the limit ζ � 1 (that is Nasc/aos � 1), the ζ−4 term is large compared

to the cubic term in ψ. The cubic term is then treated as a perturbation to the

harmonic oscillator problem. In the opposite limit when there are large number N

of atoms in the condensate, ζ � 1 and the cubic term dominates. The term having

ζ−4 dependence is very small and is treated as a correction. Equation (2.47) then

becomes

i
∂ψ

∂τ
=

[
η2

2
+ |ψ|2

]
ψ. (2.48)

The neglect of the ζ−4 term in Eq. (2.47) is referred to as Thomas-Fermi approxima-

tion [71, 75]. Assuming a stationary state solution of the form ψ ∼ exp (−iµ̃τ)ψ(η)

where µ̃ is the dimensionless chemical potential defined as µ̃ = µ (~ωζ2)
−1

, Eq. (2.48)

becomes

µ̃ψ(η) =

[
η2

2
+ |ψ (η)|2

]
ψ (η) . (2.49)

Equation (2.49) has a solution

n (η) = |ψ (η)|2 = µ̃− η2

2
(2.50)

in the region where the right hand side is positive and the density n (η) is zero outside

this region. The boundary of the condensate is then given by the balance between the

parabolic potential and interactions within the condensate and is given by µ̃ = η2

2
.

The radius of the cloud in three dimensions is given by R =
√

2µ̃, where dimensionless
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chemical potential µ̃ is determined from the normalisation
∫
|ψ|2 dη = 1 and gives

µ̃ =

(
15

29/2π

)2/5

, (2.51)

from which the chemical potential µ is determined as

µ =
~ω
2

(
15
Nasc
aos

)2/5

. (2.52)



Chapter 3

Phase diffusion of Bose-Einstein

condensate

An atom in real condensate interacts with other atoms when it is in close proximity to

another atom via the dipole-dipole interaction between the two atoms. Because the

interaction is pairwise it often called two-body or atom-atom interaction. Atom-atom

interactions are useful in the formation of condensate by providing thermalisation for

the cold atoms during evaporative cooling.

However, the same two-body interaction is detrimental to the operation of atom

interferometers. It gives rise to random fluctuation in the phase called phase diffu-

sion [56, 57, 76]. At the beginning of interferometric cycle, the system is in a mode-

entangled state with each cloud being in a linear superposition of number states. The

presence of atom-atom interactions cause each number state to evolve at different

rate that results in the accumulation of relative time-dependent phase shift between

the different number states. Recombining the clouds at the end of interferometric

cycle gives a random fluctuation in the atomic populations of the clouds observed at

the end of cycle. In order to beat the phase diffusion in atom interferometers using

27
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BEC, the atom-atom interactions in the condensate are exploited and used to create

squeezed states [29, 52, 77]. By slowly raising the barrier height [29, 78, 79] of the

trapping double-well potential to frustrate tunneling of atoms between the well sites

an entangled squeezed state that has equal number of atoms on the average is formed.

Also entangled squeezed states are created by using state dependent potential [80] or

Feshbach resonance [81] to manipulate the two-body interactions between different

internal states of condensate population.

This chapter focuses on analysing the effect of phase diffusion on the population

of atomic BEC in guided-wave atom interferometers. The remainder of the chapter

is organised as follows. In Sections 3.1 and 3.2, the state vetor at the end of the

interferometric cycle is derived for Michelson and Mach-Zehnder interferometers re-

spectively. The probability of observing any number of atoms in the output ports of

either interferometer is derived in Sec. 3.3. Effects of phase diffusion on the features of

the probability density of observing any number of atoms in the output ports of either

interferometer is analysed in Sec. 3.4 and its implication for experiments is discussed

in Sec. 3.5. Finally, the results presented in this chapter has been published [82] and

is included in the Appendix A

3.1 Atom-Michelson interferometer

Two counter-propagating laser pulses incident on the a cloud at rest splits the cloud

into two clouds that move in opposite directions with velocity ±v0 as previously

described in Sec. 1.1.2. During the clouds’ evolution, atoms in each cloud accumulate

phase due to the external potential and atom-atom interactions. The many-body

Hamiltonian describing the atomic BEC in the presence of an external potential V is
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Ĥ(t) =

∫
d3r Ψ̂†

[
− ~2

2m
∇2 + V +

U0

2
Ψ̂†Ψ̂

]
Ψ̂, (3.1)

where M is the atomic mass U0 = 4π~2asM
−1 is the strength of the two-body interac-

tion within the condensate, as is the s-wave scattering length, Ψ̂†, Ψ̂ are the creation

and annihilation field operators respectively, which at a given time t create or an-

nihilate atom at position ~r. Introducing the bosonic creation b†k and annihilation bk

operator k = ± in each cloud, the field operator Ψ̂ is represented in the basis of ψ±

Ψ̂ = b+ψ+ + b−ψ−, (3.2)

where ψ± are the eigenfunctions of the BEC clouds moving to the right and to the

left respectively, and the normalisation condition∫
drψ∗± ψ± = 1, (3.3)

and are not overlapping for the entire time of the interferometric cycle. The wave

functions ψ± are solutions of the two coupled Gross-Pitaevskii equations given in

Eq. (9) of Ref. [63]. Substituting Eq. 3.2 into the Hamiltonian (3.1) gives the following

Ĥ =
1

2
(ε+ + ε−)(b†+b+ + b†−b−) +

1

2
(ε+ − ε−) (b†+b+ + b†−b−)

+g
(
b†+b

†
+b+b+ + b†−b

†
−b−b−

)
, (3.4)

where

ε+ =

∫
d3rψ∗+ (− ~2

2m
∇2 + V )ψ+, (3.5)

ε− =

∫
d3rψ∗− (− ~2

2m
∇2 + V )ψ−, (3.6)

g =
U0

2

∫
d3rψ∗± ψ

∗
± ψ± ψ±. (3.7)

Using the bosonic commutation algebra of the creation and annihilation operators

[bj, b
†
k] = δjk, [bi, bj] = 0 and the total number operator of the two clouds N̂ ( =
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n̂+ + n̂−), where n̂k = b†kbk, the Hamiltonian (3.4) is re-arranged and one writes

Ĥeff =
W

2
(n̂+ − n̂−) +

g

2

[
N̂2 + (n̂+ − n̂−)2 − 2N̂

]
. (3.8)

where W = (ε+ − ε−) is the relative environment-introduced energy shift between the

right- and left- propagating clouds and g is characterises the atom-atom interaction

energy within each cloud.

The initial state vector of the condensate, before the splitting laser pulses are

applied is described for a fixed number of atoms N as

|Ψini〉 =

(
b†0

)N
√
N !
|0〉 . (3.9)

The splitting or recombination pulses couple the bosonic creation operators b†0, b
†
± as

described in Sec. 2.1.2

b†+ → −b
†
+

2
+
eiπ/

√
2

√
2
b†0 +

b†−
2
,

b†0 →
b†+√

2
+
b†−√

2
, (3.10)

b†− →
b†+
2

+
eiπ/

√
2

√
2
b†0 −

b†−
2
.

The state vector Eq. (3.9), after the splitting pulse was applied, is

|Ψsplit〉 =

(
b†+ + b†−

)N
√

2NN !
|0〉 ,

=
1

2N/2
√
N !

N∑
n=0

(
N

n

)(
b†+

)n (
b†−

)N−n
|0〉 . (3.11)

This state evolves under the Hamiltonian (3.8), as described by the Schrodinger

equation, until the recombination pulse is applied at the end of interferometric cycle

t = τ . The state vector at any time t before interferometric cycle ends is |ψevo(t)〉 =
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e−i/~
∫
t Ĥdt |ψsplit〉 and has a simple form

|Ψ(t)〉 =
1

2N/2
√
N !

N∑
n=0

(
N

n

)
e−iΦn(t)

(
b†+

)n (
b†−

)N−n
|0〉 , (3.12)

Φn(t) =
θ

2
(2n−N) +

ξ

2

[
2n2 + 2(n−N)2 − 2N

]
, (3.13)

where
(
N
n

)
= N !

n!(N−n)!
is the binomial coefficient and

θ =
1

~

∫
t

dtW (3.14)

is the accumulated phase difference between the left and right clouds due to the

environment and

ξ =
1

~

∫
t

dt g (3.15)

is the accumulated nonlinear phase per atom due to inter-atomic interactions within

each cloud.

At the end of the interferometric cycle T , the recombination pulses act on |Ψ(t)〉

in accordance with Eq. (3.9) and transform |ψevo(t)〉 to |ψrec〉, that is

|ψrec〉=
1

2N/2
√
N !

N∑
n=0

(
N

n

)
exp

(
−i
[
θ

2
(2n−N) + ξ

(
n2 + (n−N)2

)])
(
−b
†
+

2
+
eiπ/

√
2

√
2
b†0 +

b†−
2

)n(
b†+
2

+
eiπ/

√
2

√
2
b†0 −

b†−
2

)N−n

|0〉 , (3.16)

where(
−b
†
+

2
+
b†0e

iπ/
√

2

√
2

+
b†−
2

)n(
b†+
2

+
b†0e

iπ/
√

2

√
2
− b†−

2

)N−n

=
n∑
j=0

N−n∑
k=0

(
n

j

)
(
N − n
k

)
(−1)n−j

(
b†0e

iπ/
√

2

√
2

)j+k(
b†+ − b†−

2

)N−k−j

, (3.17)

and the global phase factor exp (iNξ) is neglected.
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3.2 Atom-Mach-Zehnder interferometer

In atom Mach-Zehnder interferometer [32] one cloud remains at rest ψ0 while the

other cloud ψ+ is moving to right after splitting. The annihilation operator Ψ̂ is

represented in terms of the basis ψ0 and ψ+ as

Ψ̂ = b0ψ0 + b+ψ+, (3.18)

where bk are operators introduced just before Eq. (3.2). Substituting Eq. (3.18) into

Eq. (3.1) gives

Ĥeff =
W

2
(n̂+ − n̂0) +

g

2

[
N̂2 + (n̂+ − n̂0)2 − 2N̂

]
, (3.19)

where W is the environment-introduced energy shifts between the right-propagating

cloud and the stationary cloud, g is defined in Eqs. (3.7) and

ε0 =

∫
d3rψ∗0 (− ~2

2m
∇2 + V )ψ0. (3.20)

During splitting, an optical splitting pulses transforms the operators bk, k = 0,−

as follows

b†0 →
1√
2

(
b†0 − ib†+

)
b†+ →

1√
2

(
−ib†0 + b†+

) (3.21)

Following the same steps described in Sec.3.1, the state vector after recombination is

|Ψrec〉 =
1√

2N N !

N∑
n=0

N !

n!(N − n)!
e−iΦn(T )

(
b†0 − ib†+√

2

)n(
−ib†0 + b†+√

2

)N−n

|0〉 , (3.22)

where Φn(T ) is defined in Eq. (3.13). The product of two terms in brackets in

Eq. (3.22) can be expanded as(
b†0 − ib†+√

2

)n(
−ib†0 + b†+√

2

)N−n

=

n,N−n∑
j,k

(
n

j

)(
N − n
k

)
(−i)n−j+k

(
b†0

)j+k (
b†+

)N−j−k
(3.23)
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3.3 Probability

In this section, the probability of finding any number of atoms in the output ports of

the Mach-Zehnder and Michelson interferometer is derived. The two probabilities will

be shown to be identical. Detailed analysis of the probability of observing any number

of atoms in the output port is then provided for Michelson-type interferometer.

3.3.1 Mach-Zehnder interferometer

The state that has n0 atoms in the cloud at rest and n+ = N −n0 atoms in the cloud

moving to the right is given by

|n0, n+〉 =

(
b†0

)n0

√
n0!

(
b†+

)n+√
n+!

|0〉 . (3.24)

The bra corresponding to the ket given above may be written as

〈n+, n0| = 〈0|
∂n+

∂
(
b†+

)n+

∂n0

∂
(
b†0

)n0

The probability of observing n0 atoms in the cloud at rest and n+ = N − n0 atoms

in the cloud moving to the right is given by the modulus squared of the probability

amplitude 〈n+, n0|Ψrec〉 i.e P (n0, n+) = |〈n+, n0|Ψrec〉|2. Using Eqs. (3.22), (3.23) and

(3.24), probability amplitude is

〈n+, n0|Ψrec〉 =

√
N !n0!

22Nn+!
(N − n0)!

N∑
n=0

e−iθ(n−N/2)−iξ(n2+(n−N)2)S(n, n0), (3.25)

where

S(n, n0) =

min(n,n0)∑
j=max(0,n+n0−N)

(−i)n+n0−2j

j! (n− j)! (n0 − j)! (N − n− n0 + j)!
. (3.26)

At ξ = 0, it can be shown that

〈n+, n0|Ψrec〉ξ=0 =

√
N !

n0!n+

(−i)N (sin θ/2)n0 (cos θ/2)N−n0 . (3.27)
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Comparing Eq. (3.25) at ξ = 0 with Eq. (3.27) shows that

N∑
n=0

e−inθS(n, n0) =
(−i)N2N

n0! (N − n0)!
e−iNθ/2 (sin θ/2)n0 (cos θ/2)N−n0 , (3.28)

whose Fourier transform gives

S(n, n0) =
1

2π

2N(−i)N
n0! (N − n0)!

∫ 2π

0

ei(n−N/2)θ (sin θ)n0 (cos θ)N−n0 dθ. (3.29)

Substituting S(n, n0) into Eq. (3.25), the probability amplitude becomes

〈n+, n0|Ψrec〉 =

√
N !

n0!n+!
(−i)N

N∑
n=0

e−iθ(n−N/2)−iξ(n2+(n−N)2)I(n, n0) (3.30)

where

I(n, n0) =
1

π

∫ π

0

dx ei(2n−N)x (sinx)n0 (cosx)N−n0 . (3.31)

The integral I(n, n0) is evaluated on a complex plane to yield

I(n, n0) =
ein0π/2

√
Nπ

exp

[
n0 ln

√
n0

N
+ (N − n0) ln

√
1− n0

N
− (n−N/2)2

N

]
×
[
ei(2n−N) arcsin

√
n0/N−in0π/2 + e−i(2n−N) arcsin

√
n0/N+in0π/2

]
.

(3.32)

Let the summation over n in Eq. (3.30) is represented as Σ. Using Eq. (3.32), the

sum over n in Σ(n0, θ, ξ) may be approximated by an integral and evaluation of the

resulting integral gives

Σ(n0, θ, ξ) =
e−iN

2ξ/2

√
1 + 2iξN

exp

[
n0 ln

√
n0

N
+ (N − n0) ln

√
1− n0

N

]
×
(
e−η

2
− + (−1)n0e−η

2
+

) (3.33)

where

η∓ =
N

1 + 2iξN

(
θ

2
∓ arcsin

√
n0

N

)2

.

Then the probability P (n0, n+) = |〈n+, n0|Ψrec〉|2 , is

P (n0, n+) =
N !

n+!n0!
|Σ(n0, θ, ξ)|2 . (3.34)
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3.3.2 Michelson interferometer

After recombination, n0 atoms are counted in the cloud that is at rest, n+ atoms

are counted in the cloud moving to the right and n− atoms are counted in the cloud

moving to the left. The state vector that represent the n0 atoms being at rest and

n± atoms being the clouds moving to right and left respectively is given by

|n+, n−, n0〉 =

(
b†+

)n+√
n+!

(
b†−

)n−√
n−!

(
b†0

)n0

√
n0!
|0〉 (3.35)

The probability of measuring atoms in the state |n+, n−, n0〉 after recombination is

given by the modulus square of the probability amplitude 〈n0, n−, n+|Ψrec〉. Using

Eqs. (3.35) and (3.16), the probability amplitude is

〈n0, n−, n+|Ψrec〉 =
1√

2NN !

N∑
n=0

(
N

n

)
e−i[θ(n−N/2)+2ξ(n−N/2)2]

×〈0| (b0)n0

√
n0!

(b−)n−√
n−!

(b+)n+√
n+!

n∑
j=0

N−n∑
k=0

(
n

j

)

×
(
N − n
k

)
(−1)n−j

(
b†0e

iπ/
√

2

√
2

)j+k(
b†+ − b†−

2

)N−k−j

, (3.36)

where the irrelevant phase term exp(−iξN2/2) have been omitted, and the probability

P is given by

P = |〈n0, n−, n+|Ψrec〉|2 . (3.37)

Probability for ξ equal to zero

For ξ = 0, the probability amplitude Eq. (3.36) takes the form

〈n0, n−, n+|Ψrec〉 =

√
N !

2Nn+!n−!n0!
(−1)n− (−i sin(θ/2))N−n0

(√
2 cos(θ/2)

)n0

,

(3.38)

and the probability P is given by

P = |〈n0, n−, n+|Ψrec〉|2 =
1

2N
N !

n+!n−!n0!

(
sin2 θ

2

)n++n− (
2 cos2 θ

2

)n0

. (3.39)
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Eq. (3.39) is a binomial distribution and could be written as a product of two prob-

ability functions

P = P±P (n0), (3.40)

where

P± =
(N − n0)!

2N−n0n+!n−!
, (3.41)

and

P (n0) =
N !

n0! (N − n0)!

(
sin2 θ

2

)N−n0
(

cos2 θ

2

)n0

. (3.42)

The probability function P± describes the probability of observing n+ and n−

atoms in the right and left moving clouds respectively for a fixed number of atoms

in the cloud at rest. This function is independent of phase angle θ and is normalised

to unity. The probability function P (n0) is the probability of observing n0 atoms in

cloud at rest. It is normalised to unity and depends on the phase angle θ introduced

by the environment.

For very large population of atoms (N � 1), the factorials may be approximated

using Stirling’s formular,

n! =
√

2πnnne−n, (3.43)

and the probability densities that correspond to P (n0) and P± become

P (n0) =
2√

2πN sin θ
exp

[
− 2

N

(n0 −N cos2 (θ/2))
2

sin2 θ

]
, (3.44)

and

P± =

√
2

π (n+ + n−)
exp

[
− 2

n+ + n−

(
n+ − n−

2

)2
]
, (3.45)

respectively, where n+ + n− � 1.

Both the probability functions P± and P (n0) are Gaussian. For a fixed value of

n0 atoms in the stationary cloud, the peak of the probability function P± is located
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at (N − n0)/2, with an average values of n+ and n− given by

〈n+〉 = 〈n−〉 =
1

2
(N − n0) , (3.46)

and standard deviations

∆n+ = ∆n− =
1

2

√
N − n0. (3.47)

The number of atoms in the right and the left clouds are anticorrelated,

Cov(n+, n−) = 〈n+n−〉 − 〈n+〉 〈n−〉 = −1

4
(N − n0) (3.48)

0 500 1000 1500 2000
0

0.005

0.01

0.015

0.02

0.025

0.03

P
(n

0)

n
0

 

 

θ = π/4
θ =π/2
θ = 3π/4

Figure 3.1 The probability function P (n0) vs n0 at three different values of
θ.

The maximum of the probability function P (n0) is located at n0 = N cos2(θ/2).

Since n0 take values in the interval {0, N}, then θ take values in the interval 0 < θ < π.

The end points θ = 0 and θ = π are excluded because the probability function P (n0)
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Eq. (3.44) is not defined at the end points. To get the values of P (n0) at the end

points, one has to use Eq. (3.42) which gives that P (n0) = 1 for θ = 0, π. The

probability function P (n0 = N) = 1 for θ = 0 means that all the atoms are in the

cloud at rest after recombination and P (n0 = 0) = 1 for θ = π implies that no atom

is observed in the cloud at rest after recombination; all the atoms are found in the

clouds moving to the left and right after recombination. The probability of finding

any population of atoms in the cloud at rest for any other value of θ in the interval

0 < θ/2 < π/2 is well described by Eq. (3.44).

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

〈 n
0 〉/

N

θ/π (rad)

Figure 3.2 The relative mean value 〈n0〉 /N vs θ.

Shown in Fig 3.1 is the plot of the probability function Eq. (3.49) at three different

values of θ. The width of each peak on the graph scales roughly as
√

(N sin2 θ)/4 so

that the relative width of the distribution scales roughly as
√

sin2 θ/(4N). Because

of the dependence of the width of the distribution function on θ, the width of the

probability function is largest at θ = π/2 and vanishes at θ = 0, π. The changing val-
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ues of θ move the peak of the probability function P (n0) from n0 = N corresponding

to the situation where more atoms are in the stationary cloud towards n0 = 0 that

corresponds to situation where less number of atoms are in stationary cloud.
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n 0/N
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Figure 3.3 The relative standard deviation ∆n0/N vs θ.

The mean value and variance of the probability function P (n0) are

〈n0〉 = N cos2 θ

2
(3.49)

and

(∆n0)2 = N cos2 θ

2
sin2 θ

2
(3.50)

Figures 3.2 and 3.3 show the plots of the relative mean value and relative standard

deviation respectively. In Fig. 3.2 the contrast is unity and the visibility is maximum

(unity). So for non-interacting condensate, full fringes would be observed in every

run of the experiment. The error associated in counting the number of atoms in the
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stationary cloud shows a sinusoidal oscillations with a periodicity of π as shown in

Fig. 3.3. At θ = 0,mπ (where m is any integer value), the standard deviation is zero

and corresponds to situations where all the atoms are known with absolute certainty

to be either in the cloud at rest or in moving clouds. At this point, the width of the

probability function vanishes as previously described(see Fig 3.1). Even values of m

and zero corresponds to situation when all the atoms are in the cloud at rest while

odd values of m corresponds to the case when all the atoms are in the moving clouds.

The standard deviation is maximum at θ = moddπ/2 as shown in Fig. 3.3 [see also

Fig. 3.1] with modd = 1 and occurs when equal population of atoms are found in the

moving clouds and the cloud at rest.

Probability for ξ not equal to zero

The bra corresponding to the ket given in Eq. (3.35) is written as

〈n0, n−, n+| = 〈0|
∂n0

∂(b†0)n0

∂n−

∂(b†−)n−

∂n+

∂(b†+)n+

. (3.51)

The derivatives with respect to b†0 selects only terms with j + k = n0 from the sum

in Eq. (3.36) giving

〈n0, n−, n+|ψrec〉 =

√
N !n0!

2(3N−n0)n+!n−!
(N − n0)!ein0π/

√
2(−1)n−

N∑
n=0

e−iθ(n−N/2)+iφ(n2+(n−N)2)S(n, n0), (3.52)

where

S(n, n0) =

min(n,n0)∑
j=max(0,n0+n−N)

(−1)n−j

j!(n− j)!(n0 − j)!(N − n− n0 + j)!
. (3.53)

Comparing the probability amplitude Eq. (3.52) for ξ = 0 and Eq. (3.38) shows

that

N∑
n=0

e−inθS(n, no) =
2N

(N − no)!no!

(
cos

θ

2

)no (
−i sin

θ

2

)N−no
e−iNθ/2, (3.54)
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where the Fourier transform of Eq. (3.54) gives

S(n, n0) =
1

2π

2N

(N − n0)!n0!

∫ 2π

0

dθ ei(n−N/2)θ

(
cos

θ

2

)n0
(
−i sin

θ

2

)N−n0

. (3.55)

Using Eq. (3.52), one writes the probability density Eq. (3.37) as product of two

functions

P (n0, n−, n+) = P±P0(n0, θ, ξ), (3.56)

where P± is already defined in Eq. (3.41) and

P0(n0, θ, ξ) =
N !

n0!(N − n0)!
|Σ(n0, θ, ξ)|2. (3.57)

The function Σ(n0, θ, ξ) is

Σ =
e−iN

2ξ/2

√
1− 2iNξ

exp

[
(N − n0) ln

√
1− n0

N
+ n0 ln

√
n0

N

]
×
(
e−η

2
− + (−1)N−n0 e−η

2
+

)
, (3.58)

and

η± =
N
(

arccos
√
n0/N ± θ/2

)2

1− 2iNξ
. (3.59)

Comparing Eq. (3.57) and Eq. (3.34), it is seen that the function Σ(n0, θ, ξ) in both

equations are equivalent. It then means that probabilities P0(n0, θ, ξ) [Eqs. (3.34)

and (3.57)] are identical so that the results to be obtained in subsequent discussion

for Michelson-type interferometer are also applicable to the Mach-Zehnder-type in-

terferometer.
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3.4 Characteristic features of the probability den-

sity

The function P0(n0, θ, ξ) is proportional to the modulus squared of the sums of two

terms

P0(n0, θ, ξ) =

√
N

2πn0 (N − n0) (1 + 4N2ξ2)

∣∣∣e−η2− + (−1)N−n0 e−η
2
+

∣∣∣2 . (3.60)

The relative phase difference between the two terms in P0(n0, θ, ξ) as a function of

n0 changes rapidly due to the multiplier (−1)N−n0 . Thus, the interference terms are

neglected in calculating both mean and standard deviation. The mean population

〈n0〉 of atoms in the cloud at rest after recombination is

〈n0〉 =

∫ N

0

dn0 n0P (n0, θ, ξ). (3.61)

The evaluation of the above integral gives

〈n0〉 =
N

2

[
1 + exp

(
−1 + 4N2ξ2

2N

)
cos θ

]
. (3.62)

Similarly, the variance is

(∆n0)2 =
N2

2

1

4
+

exp
(
−21+4N2ξ2

N

)
cos 2θ

4
−

exp
(
−1+4N2ξ2

N

)
cos2 θ

2

 . (3.63)

These results are understood by studying the dependence of the function P0(n0, θ, ξ)

on the number of atoms n0 for different values of the strength of the interatomic in-

teractions ξ. At relatively small values of ξ such that ξ � 1/
√
N , the term exp(−η−)

in Eq. (3.60) for the probability dominates the other. The probability P0(n0, θ, ξ) is

then Gaussian

P0(n0, θ, ξ) ≈
√

N

2πn0 (N − n0) (1 + 4N2ξ2)
exp

−2N
(
θ/2− arccos

√
n0/N

)2

1 + 4ξ2N2


(3.64)
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with a maximum located at n0 = N cos2 θ/2. This situation is shown in Fig. 3.4.

The two curves in the figure are plots of the probability density P0(n0, θ, ξ) given by

Eq. (3.64) versus n0 for two different values of interatomic interactions strength ξ.

Both curves correspond to the same value of angle θ. The noticeable feature of Fig. 3.4

is the increase in the width of the probability distribution with ξ. This behaviour is

explained by Eq. (3.63), which in the limit ξ � 1/
√
N reduces to

∆n0 ≈
√
N

2

√
1 + 4N2ξ2 sin θ (3.65)

For very small values of ξ (ξ � 1/N), the influence of the interatomic interactions

on the operation of the beamsplitter is negligible. The relative standard deviation of

the number of atoms in the central cloud is inversely proportional to the square root

of the total number of atoms in the system: ∆n0 ∝ 1/
√
N . For 1/N � ξ � 1/

√
N ,

the width of the distribution grows linearly with increase in ξ.

The mean value of n0 for ξ � 1/
√
N reasonably corresponds to the position of

the peak. Equation (3.62) for 〈n0〉 in this limit yields

〈n0〉 ≈
N

2
(1 + cos θ) . (3.66)

As is seen, n0 depends on θ but not on ξ.

For large values of ξ (ξ ≈ 1/
√
N), the width of the probability density P0(n0, θ, ξ)

becomes of the order of the total number N of atoms in the system. The two terms

exp (−η−) and exp (−η+) in Eq. (3.60) are now comparable in magnitude. The tran-

sition to this limit is shown by Fig. 3.5 and Fig. 3.6. Black regions not resolved in

Fig. 3.5 and Fig. 3.6 correspond to rapid spatial oscillations with period 2. These

oscillations are clearly seen in Fig. 3.7, which shows part of Fig. 3.6 for a narrow

range of values of n0. The oscillations are caused by the interference between the two

terms in Eq. (3.60). As the magnitude of ξ approaches 1/
√
N , these terms become

comparable in magnitude. Because of the nearly π−phase change between the two



3.4 Characteristic features of the probability density 44

1000 1200 1400 1600 1800 2000
0

0.5

1.0

1.5

2.0

2.5

3.0

ξ = 0

ξ =
3

N

n
0

10
2  P

0

Figure 3.4 The probability function P0(n0, θ, ξ) vs n0 for ξ = 0 and ξ = 3/N .
For both curves, θ = π/4 and N = 2000.

terms very time n0 changes by one due to the factor (−1)N−n0 , the two terms consec-

utively add either in phase or out of phase when one steps through different values

of n0. Along with rapid spatial oscillations, both Fig. 3.5 and Fig. 3.6 demonstrate

oscillations of the envelopes at a much slower spatial rate which are more pronounced

for larger values of the interactions strength. These oscillations are due to the fact

that the relative phase of the terms exp (−η−) and exp (−η+) in Eq. (3.60) changes

with n0. The nodes in Fig. 3.6 correspond to the value of this relative phase being

equal to 0 or a π and an antinodes have the phase shifted by ±π/2.

Figs. 3.5 and 3.6 indicate that the probability P0(n0, θ, ξ) and, as a consequence,

〈n0〉 and ∆n0, become less sensitive to changes in the environment-introduced angle

θ. This fact is graphically illustrated in Figs. 3.8 and 3.9 showing the average value of

the number of atoms in the central cloud 〈n0〉 and the standard deviation ∆n0 versus
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Figure 3.5 The probability function P0(n0, θ, ξ) vs n0 for ξ = 0.2/
√
N ,

θ = π/4 and N = 2000.

θ as given by Eqs. (3.62) and (3.63), respectively. Fig. 3.8 demonstrates that increased

interatomic interactions eventually lead to the loss of contrast of interference fringes.

Additionally, larger interatomic interactions cause large shot-to-shot fluctuations in

the number of atoms in each of the three output ports, as is seen from Fig. 3.9. The

loss of contrast of the interference fringes can be quantified by writing Eq. (3.62) as

〈n0〉 =
N

2
(1 + V cos θ) , (3.67)

where

V = exp

(
−1 + 4N2ξ2

N

)
, (3.68)

where V is the fringe contrast. Figure 3.10 shows the fringe contrast Eq. (3.68) as a

function of ξ and demonstrates that the values of ξ approaching 1/
√
N result in the

washing out of interference fringes.
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Figure 3.6 The probability function P0(n0, θ, ξ) vs n0 for ξ = 1/
√
N , θ = π/4

and N = 2000.

3.5 Comparison with experiments

As shown in previous section, limited interference fringes were observed when the

nonlinear phase per atom ξ due to interatomic interactions is about the order of

1/
√
N . Experiments [31, 53, 60] have reported that loss of fringe contrast were due

to confinement effects [59, 60] and repulsion between the atomic densities [32, 59, 60]

during the splitting and recombination of clouds. In order to quantify the effects

due to interatomic interactions within the condensate, the phase ξ is calculated in

terms of experimental parameters. The experiments [31,53,60] to be discussed in the

following were conducted in parabolic traps with confining potential of the form

V =
M

2

(
ω2
xx

2 + ω2
yy

2 + ω2
zz

2
)
. (3.69)
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Figure 3.7 An enlargement of part of Fig. 3.6 showing fast-scale spatial
oscillations of the probability function

The density profiles of the moving clouds are well described by Thomas-Fermi ap-

proximation

|ψ±| =
µn
U0n

(
1− x2

R2
x

− y2

R2
y

− z2

R2
z

)
, |ψ±|2 ≥ 0, (3.70)

where Ri are the radial sizes of the cloud in the ith dimension, µn is the chemical

potential of the BEC cloud with n atoms and U0 = 4π~2asc/M is the strength of

two-body interaction within the cloud.

After splitting each of the moving clouds contains on the average N/2 atoms.

The repulsive nonlinearity is no longer balanced by the confining potential and the

radii of both clouds starts to oscillate. The maximum size of the oscillating clouds

is equilibrium size corresponding to N atoms and the minimum size lies below the

corresponding equilibrium size corresponding to N/2 atoms. For estimates, the num-

ber n of atoms in each cloud is taken to be N/2 atoms, that is n = N/2. Evaluating
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Figure 3.8 The normalised mean value of the number of atoms in the central
cloud 〈n0〉 /N vs θ for N = 2000.

Eq. (3.15) give the accumulated relative phase ξ due to interatomic interactions as

ξ =
2

7

µnT

n~
(3.71)

where µn = 2−2/5µ, µ the equilibrium chemical potential [71,75] is

µ =
~ω̄
2

(
15N

asc

ā

)2/5

, (3.72)

ω̄ = (ωxωyωz)
1/3, ā =

√
~/Mω̄.

The relative importance of interatomic interaction effects on the operation of the

interferometer is determined by the parameter P = ξ
√
N � 1,

P =

(
1800

75

)1/5 (asc

ā

)2/5

ω̄T N−1/10 (3.73)

shows that the contrast of the interference fringes decreases with the increase in P .

The condition of good contrast can be somewhat arbitrarily stated as P < 1/2 (for

P = 0.5, the contrast V = 0.6).
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Figure 3.9 Normalised standard deviation ∆n0/N vs θ for N = 2000.

Equation (3.73) shows that P ∝ T ω̄−6/5N−1/10. The dependence of P on the

total number of atoms in BEC clouds is very weak, and so this parameter is primarily

dependent on the duration of the interferometric cycle and averaged frequency of the

trap.

Experiments by Wang et al. [31] were conducted using the Michelson geometry.

The BEC consisted of about 105 Rb atoms [83]. The transverse and longitudinal

frequencies of the trap were 177 Hz and 5 Hz respectively. The propagation time T

was up to 10 ms. For these parameters and the value of the scattering length asc =

5.2×10−9 m [84], Eq. (3.73) yields P ≈ 1.6×10−2. Thus, the interatomic interactions

were not limiting the visibility of the interference fringes in these experiments.

Similar experiments wetre performed by Garcia [53] and Burke [59] also in the

geometry of a Michelson interferometer. In Ref. [53], a BEC cloud of about 104 87Rb

atoms has been produced in a trap with frequencies of 6.0 Hz, 1.2 Hz and 3.0 Hz,
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√
N .

respectively. The interferometric time T was about 40 ms. Using Eq. (3.73), the

value of the parameter P in the experiment evaluates to P ≈ 10−2, which was too

small to result in observed degradation of the contrast. The loss of visibility in the

experiment [53] was attributed by the authors to spatial noise on the splitting beams

and asymmetric splitting of the cloud due to the condensates’ residual motion when

it was loaded into the trap. At longer times, the loss of coherence might have been

caused by various noise sources. Similar results were reported in Ref. [59], where the

confinement frequencies were deliberately kept weak, making the atomic density and

thus interatomic interaction effects small.

Horikoshi et al. [32, 60] demonstrated a BEC Mach-Zehnder interferometer. The

number of atoms in Ref. [60] was about 3× 103 and the radial frequency of the trap

was fixed at 60 Hz. The experiments have been conducted for two different values
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of the axial frequencies and interrogation times T . At an axial frequency of ωz =

2π × 17 Hz and the propagation time of the cloud about T = 60 ms, the parameter

P = ξ
√
N estimated using Eq. (3.73) turns out to be about 0.38. For this value

of P , Eq. (3.43)gives the value of the fringe contrast about 70%. The experimental

value is 30% [60]. Similarly, for the axial frequency 10.29 Hz and interferometric time

97 ms Eq. (3.73) gives the value of P ≈ 0.5 corresponding to an estimated contrast

of 58%. In this case no fringes were observed experimentally with about 40% scatter

of data points. The authors of Ref. [60] conjecture that the vibrations could be the

main source of the loss of fringes in their experiments. The above estimates indicate

that the interatomic interactions could be also partly responsible for the observed

degradation of the interference fringe.



Chapter 4

Spatial phase and phase diffusion

of Bose-Einstein condensate

Besides the phase diffusion discussed in previous chapter, unwanted spatial relative

phase is another dephasing mechanism that washes out the interference fringe con-

trast. Spatial relative phase is accumulated via different mechanism by atomic clouds.

For example, in a single-reflection interferometer [31], during propagation the outer

edge of each cloud experiences a higher potential than the inner edge (the outer edge

in the first half of the cycle when the clouds move away from each other and the

trailing edge in the second part when the clouds move towards each other). The

outer edge thus accumulates a larger phase than the inner one. During the recom-

bination, the outer edge of one cloud interferes with the inner edge of another and

the phase difference accumulated due to the presence of the confining potential leads

to a coordinate-dependent residual phase across the cloud after recombination. An-

other mechanism for spatial phase accumulation is due to the repulsion of the two

atomic densities when they spatially overlap. During separation, the inner edge of

one cloud interacts with atoms in the other cloud until it has traversed the entire

52
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length of the other cloud, while the outer edge of each cloud hardly interacts with

any atoms in the other cloud and similarly during recombination. As a result, the

inner edge accumulates a larger phase than the outer edge. Still another mechanism

for accumulation of spatial phase is due to the fact that the velocities of the moving

clouds during reflection are different from their initial velocities due to the influence of

confining potential and the atom-atom interactions. As a result the reflection pulses

are not exactly on resonance and do not exactly reverse clouds’ velocities; the direc-

tion of propagation of each of the clouds does change but the speeds before and after

reflection are different.

Both single- and double-reflection interferometer geometries have been studies in

Refs. [59, 62–64]. According to the studies of Refs. [59, 64], symmetric motion of

the two clouds in a double-reflection geometry partially cancels the velocity errors

imposed by the reflection pulses and the phase imposed by the confining potential.

This conclusion has been confirmed experimentally in Ref [59]. The free oscillation

interferometer provides an even greater degree of cancellation of unwanted spatial

relative phase since it does not rely on the reflection pulses and do not suffer from

velocity mismatch effects. Experiments [59,60] where the atomic clouds were allowed

to be reflected from their classical turning points instead of using reflection pulses to

truncate their motion, confirmed a more accurate cancellation of unwanted spatial

relative phase.

In literature, both spatial phase and phase diffusion have been addressed sepa-

rately in the operation of guided-wave atom interferometers. The studies of Ref. [59,

60, 62–64, 85] focused on analysing the effects of spatial relative phase on the inter-

ference fringe contrast and in Ref. [82], phase diffusion was analysed and discussed

while neglecting spatial phase. In this chapter, for the first time the combined effects

of spatial phase and phase diffusion on interference fringe contrast are analysed qual-
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itatively using the probability of observing any number of atoms in the output ports

of a Michelson interferometer. It will be shown that the effects arising from spatial

phase on the interference fringe contrast dominates that due to phase diffusion. The

remainder of the chapter is organised as follows. The state vector of the system is

derived in Sec. 4.1 using the appropriate recombination matrix elements in the pres-

ence of spatial relative phase. This is followed by the derivation of the probability

of counting any number of atoms in the output ports of the interferometer and the

calculation of the population’s averages in the different limiting cases of the unwanted

phases in Sec. 4.2. The interference fringe contrast is optimised in the various limits

in Sec. 4.3 and then discussed in Sec. 4.4.

4.1 State vector at recombination

The dynamics of the mode-entangled states of a split cloud is described by the two

coupled [63,64] time dependent Gross-Pitaevskii equations

i~
∂ψ+

∂t
=

P 2

2M
ψ+ + V ψ+ + g1D

(
|ψ+|2 + 2|ψ−|2

)
ψ+,

i~
∂ψ−
∂t

=
P 2

2M
ψ− + V ψ− + g1D

(
|ψ−|2 + 2|ψ+|2

)
ψ−,

(4.1)

where g1D = 2~2as
Ma2⊥

is the strength of the two-body interaction, M is the mass of the

atom, a⊥ is the transverse oscillator length and as is the s-wave scattering length. The

normalised solutions ψ± of the two coupled Gross-Pitaevskii equation is expressed in

the hydrodynamic approximation as ψ± =
√
n±(x, t)e−iφ±(x,t)/2, where

n±(x, t) =
3

4L

[
1−

(
x∓ x0

L

)2
]

(4.2)

is the density of the atomic clouds moving to the right (denoted by plus sign) or left

(denoted by minus sign) respectively while φ± is the corresponding absolute spatial
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phase [63,64] accumulated by moving clouds,

φ±(x, t) = ±Mv

2~
(x∓ x0) +

d

2L2
0

(x∓ x0)2 ± s

3!L3
0

(x∓ x0)3. (4.3)

Parameter d is the strength of the quadratic phase in the clouds that moved to the

right and left respectively, s is the strength of the cubic phase in the clouds that

moved to the right and left respectively, x0 is the position of the center of mass of

the moving clouds, v is the velocity of the cloud just before recombination. L0 is the

initial equilibrium radius of the cloud in Thomas-Fermi approximation given by

L0 =

(
3~ω⊥asN
Mω2

)1/3

, (4.4)

whereN is the total number of atoms in the condensate, ω⊥ is the transverse frequency

of the parabolic trap, and ω is the longitudinal frequency of the trap.

Usually the quantity of interest in interferometry is not the absolute phases φ± but

the relative phase φ = φ+−φ−. The wave function of the system before recombination

in terms of the relative phase is

ψ =
1√
2

[√
n+e

−iφ/2 +
√
n−e

iφ/2
]
, (4.5)

where the irrelevant global phase term e−i(φ++φ−)/2 has been ignored since it does

not affect the physics of the problem. The relative phase φ is written in terms of

dimensionless variable z and parameter q as [85]

φ(z, q) = ∆K(q)z + Γ(q)z3, (4.6)

where

K(q) =
R

ε

[
∆V − Gq

R
+
Sq2

2R

]
,

Γ(q) =
S

6ε
,

(4.7)
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and

z = X
R
, q = X0

R
, R = L

L0
,

2εg = G, 2εs = S, X = x
L0
.

(4.8)

∆V is the dimensionless change in the speed of the clouds at recombination, q the po-

sition of the center of mass in the dimensionless variable and R is their dimensionless

radius.

At recombination, the wave functions ψ± =
√
n±e

∓iφ/2 are transformed as follows

ψ+ → −Qe
−iϕχ+ +De−iπ/2η+

2
+
Qe−iϕχ0 +De−iπ/2η0√

2

+
Qe−iϕχ− +De−iπ/2η−

2
, (4.9)

ψ− →
Qeiϕχ+ +Deiπ/2η+

2
+
Qeiϕχ0 +Deiπ/2η0√

2

−Qe
iϕχ− +Deiπ/2η−

2
, (4.10)

where Q =
√
A2 + (BC)2, D = B

√
1− C2, ϕ = arctan(BC/A),

η± =
η′± − Cχ±√

1− C2
, η0 =

η′0 − Cχ0√
1− C2

, (4.11)

χ±,0 =

√
n±,0 cosφ/2

A
, η

′

±,0 =

√
n±,0 sinφ/2

B
. (4.12)

The normalisation constants (A and B) and the overlap integral C [=
〈
χ±,0|η′±,0

〉
]

are defined as follows

A =
√∫

dz n±,0 cos2 φ
2
, (4.13)

B =
√∫

dz n±,0 sin2 φ
2
, (4.14)

C = 1
2AB

∫
dz n±,0 sinφ. (4.15)

Also, the density n+ of atomic cloud moving to the right, the density n− of atomic

cloud moving to the left and the density n0 of the cloud in the stationary cloud written
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in terms of the dimensionless variable z and parameter q are

n±(z, q) =
3

4

[
1− (z ∓ q)2] ,

n0(z) =
3

4

[
1− z2

]
.

(4.16)

According to Eqs. (4.9) and (4.10), six basis vectors [χ±,0, η±,0] are required to

completely describe the three atomic clouds produced by each atomic wave packet

ψ± at recombination in the presence of the spatial dependent phase φ. The clouds

from the wave packets ψ± are obtained from the basis vectors by superposing the

appropriate corresponding basis vectors. For instance, a cloud at rest after recombi-

nation produced by the wave packet ψ+ is obtained by adding χ0 and η0 basis vectors;

(Qe−ϕχ0/
√

2 +De−ϕη0/
√

2 =
√
n0/2e

−iφ/2), see Eq. (4.9). The two basis vectors χ0

and η0 are on top of each other as shown in Fig. 4.1. For small values of φ (φ� 1),

the basis set χ has an inverted parabolic (or dome) shape and the basis set η has an

S-shape figure as shown in Fig. 4.1a. This is because when φ is small, cosφ/2 and

sinφ/2 are slow varying functions of coordinate so that the basis set of the χ family

is described roughly by the atomic density χ ∝ √n, and the basis set of the η family

is described by the product of the atomic density and the relative phase η ∝ φ
√
n.

At large values of φ, both sinφ/2 and cosφ/2 vary rapidly with coordinate so that

both basis sets χ and η oscillate rapidly as shown in Fig. 4.1b.

Additional phase ξ is accumulated due to interatomic interactions that cause the

linear superposition of different number states within a cloud to evolve at different

rates. The phase ξ which is not contained within the mean field theory is obtained in

the second quantisation, with many-body Hamiltonian as given in Eq. (1) of Ref. [82].

Let b0, b+, b− be operators that act on vacuum state to create an atom belonging to

a cloud at rest, and moving to the right or left respectively. Then, Ψ̂ is expanded

in terms of the operators b± and the solution ψ±(x, t)
[
=
√
n±(x, t)e∓iφ(x,t)

]
of the
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Figure 4.1 The basis vectors χ0 and η0 versus the dimensionless coordinate
z. The parameters for the plots are K = 10−3,Γ = 0 for Fig (a) and K =
5,Γ = 0 for Fig (b).

Gross-Pitaevskii equation as

Ψ̂(x, t) = b+ψ+(x, t) + b−ψ−(x, t). (4.17)

At recombination, the pulses couple the operators according to the rules Eqs. (4.9)

and (4.10)

b+ → −Qe
−iϕbχ+ +De−iπ/2bη+

2
+
Qe−iϕbχ0 +De−iπ/2bη0√

2

+
Qe−iϕbχ− +De−iπ/2bη−

2
, (4.18)

b− →
Qeiϕbχ+ +Deiπ/2bη+

2
+
Qeiϕbχ0 +Deiπ/2bη0√

2

−Qe
iϕbχ− +Deiπ/2bη−

2
. (4.19)
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The state vector before the recombination pulses are applied is given by Eq. (3.16)

|Ψ(t)〉 =
1√

2NN !

N∑
n=0

N !

n!(N − n)!
eiΦ(t)

(
b†+e

−i(θ/2)
)n

(4.20)

×
(
b†−e

i(θ/2)
)N−n

|0〉 ,

Φ(t) =
ξ

2

[
2n2 + 2(n−N)2

]
, (4.21)

where the phase θ is the environment-introduced phase angle defined in Eq. (3.14) [see

also Eq. (11) of Ref. [82]] and the phase ξ is as a result of atom-atom interactions that

cause each number state contained within the mode-entangled states of the system

during propagation to evolve at different rate and it is defined as

ξ =
1

~

∫
t

dτ U,

U =
g1D

2

∫
dz |ψ±|4,

(4.22)

where g1D = 2~ωas, ω =
√
ωxωy is the geometric mean transverse frequency and

as is the s-wave scattering length. The recombination pulses applied at time t = T

transform the operator according to Eqs. (4.18) and (4.19), and the resulting state

vector of the system is

|Ψrec〉 =
1√

2NN !

N∑
n=0

N !

n!(N − n)!
exp

[
iξ
(
n2 + (N − n)2

)]
e−iθ(n−N/2)

[
−Q

(b†χ+
− b†χ−)e−iϕ

2
−D

(b†η+ − b†η−)e−iπ/2

2
+

Qe−iϕb†χ0
+De−iπ/2b†η0√

2

]n
[
Q

(b†χ+
− b†χ−)eiϕ

2
+D

(b†η+ − b†η−)eiπ/2

2
+

Qeiϕb†χ0
+Deiπ/2b†η0√

2

]N−n
|0〉 . (4.23)
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4.2 Probability

The state representing n+ atoms , n− atoms in the clouds that moved to the right

and left respectively and n0 atoms in the cloud at rest is given by

|n+, n−, n0〉 =

n+,n−,n0∑
j,k,l

b†χ+

j
b†η+

n+−j√
j!(n+ − j)!

b†χ−
k
b†η−

n−−k√
k!(n− − k)!

b†χ0

l
b†η0

n0−l√
l!(n0 − l)!

|0〉 . (4.24)

The probability of getting the state |n+, n−, n0〉 after recombination is given by the

modulus square of the the probability amplitude 〈n0, n−, n+| Ψ(T )〉

P =

n+,n−,n0∑
j,k,l

∣∣∣∣∣ 〈0| bχ+

jbη+
n+−j√

j!(n+ − j)!
bχ−

kbη−
n+−k√

k!(n+ − k)!

bχ0

lbη0
n0−l√

l!(n0 − l)!
|Ψrec〉

∣∣∣∣∣
2

. (4.25)

The probability P depends on three phase angles, (i) the environment-introduced

phase angle θ, (ii) the phase ξ is a time-dependent phase resulting from different

evolution rate of each number state contained within the mode-entangled states of

the system during propagation and (iii) the spatial dependent phase φ through Q

and D. The dependence of the probability P on the phase ξ when φ = 0 has been

previously described in Sec. 3.3.2 (and in Ref. [82]). This chapter focuses on the

understanding the combined effects of the unwanted phases.

4.2.1 Probability for ξ equal to zero

Substituting Eq. (4.24) into Eq. (4.25), only terms for which the n = n0 is selected

and the probability Pξ=0 becomes

Pξ=0 =
2n0−NN !

n+!n−!n0!

[
Q2 cos2

(
θ

2
+ ϕ

)
+D2 cos2

(
θ

2
+
π

2

)]n0

×[
Q2 sin2

(
θ

2
+ ϕ

)
+D2 sin2

(
θ

2
+
π

2

)]N−n0

, (4.26)

where the conservation of the total population n+ + n− = N − n0 have been used.

Note that for φ = 0, the angle ϕ and D are zero while Q is unity. Then one recovers
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the results in the ideal case obtained in Sec. 3.3.2 where both the interactions and

special dependent phases are equal to zero. Using Eq. (4.6) for φ, the overlap integral

C is zero and

Pξ=0 =
2n0−NN !

n+!n−!n0!

[
Q2 cos2

(
θ

2

)
+D2 cos2

(
θ

2
+
π

2

)]n0

×[
Q2 sin2

(
θ

2

)
+D2 sin2

(
θ

2
+
π

2

)]N−n0

. (4.27)

The probability Pξ=0 for ξ = 0 could be written as a product of two functions

Pξ=0 = P±P0,ξ=0, (4.28)

where P± is the probability of observing n+ atoms in the cloud moving to right and

n− atoms in the cloud moving to the left for a given number of n0 atoms in the central

cloud. The properties of the probability function P± is as described in Sec. 3.3.2, [see

also Sec. III of Ref. [82]]. The function P0,ξ=0 is the probability of observing n0 atoms

in the cloud at rest for ξ = 0,

P0,ξ=0 =
N !

n0!(N − n0)!

[
Q2 cos2 θ

2
+D2 sin2 θ

2

]n0
[
Q2 sin2 θ

2
+D2 cos2 θ

2

]N−n0

.

(4.29)

The probability P0,ξ=0 depends on the environment-introduced phase angle θ and

on the phase φ through the normalisation constants (Q and D) and is plotted in

Fig. 4.2. A prominent feature of Fig. 4.2 is that the peak of the probability function

P0,ξ=0 shifts towards one-half of the total number of atoms i.e. N/2 irrespective of

the environmental-introduced angle θ. Using Stirling’s approximation, the probability

function P0,ξ=0 is Gaussian

P0,ξ=0 =

√
1

2π(∆n0)2
exp

[
− 1

2(∆n0)2
(n0 − 〈n0〉)2

]
, (4.30)

with the peak of the probability located by the mean value 〈n0〉 of the distribution

〈n0〉 =
N

2

(
1 + cos θ

∫
dz n0(z) cosφ(z, q)

)
. (4.31)
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Figure 4.2 The probability function P0 versus n0 at different values of K
for N = 2000, θ = π/3 and Γ = 0.

For very small values of φ, cosφ is approximately unity and the mean value in

this limit is 〈n0〉 ≈ N cos2(θ/2) . The position of the peak is then determined by

the environment-introduced phase angle θ as shown in Fig. 4.2. At large values of φ

(|φ| � 1), the function n0(z) cosφ(z, q) oscillates rapidly so that on average it gives

roughly zero, and the position of the peak is approximately located at 〈n0〉 ≈ N/2

independent of the phase angle θ. The dependence of the mean value on the phase

angle φ is shown in Fig. 4.3 and demonstrates that the mean value goes to its limiting

value which is approximately N/2 at large values of φ.

Another parameter of interest in Eq. (4.30) is the standard deviation ∆n0,

∆n0 =

√
N

4

[
1− cos2 θ

(∫
dzn0(z) cosφ(z, q)

)2
]1/2

, (4.32)
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Figure 4.3 The normalised average number of atoms in the cloud at rest
〈n0〉 /N versus θ for N = 2000 and Γ = 0.

and is plotted in Fig. 4.4. For small values of φ, the standard deviation ∆n0 ≈(√
N/4

)
(1− cos2 θ)

1/2
. In this limit the standard deviation is zero at θ = 0, π or 2π

and maximum at θ = π/2 and 3π/2. The phase angles θ = 0, 2π corresponds to

situation where the all the atoms are known with absolute certainty to be in the

cloud at rest and the phase angle θ = π corresponds to all atoms being in the moving

clouds with absolute certainty. In these situations, the width of the distribution is

zero. At θ = π/2 or 3π/2 the width of the distribution albeit standard deviation is

maximum and corresponds to observing equal number of atoms between the moving

clouds and the cloud at rest with largest possible error.

As the spatial phase φ increase, the standard deviation deviation starts showing

dependence on the phase angle φ and causes the probabilities which were initially
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Figure 4.4 The relative standard deviation ∆n0/N versus θ for N = 2000
and Γ = 0.

known with absolute certainty at very small values of φ to be known only with some

error as shown in Fig. 4.4. The width of the probability is no longer zero for any value

of θ. At large values of φ, the standard deviations shows no sensitivity to changes in

the the phase angle θ for the same reason explained above. In this limit all width of

the of the probability and hence standard deviation have the same value
√
N/2 as

shown in Fig. 4.4.

4.2.2 Probability for ξ not equal to zero

Equation (4.23) can be re-arranged such that all creation operators that create an

atom say in the right cloud (b†χ+
, b†η+) are paired together and vice versa. The proba-

bility P of observing n+ atoms , n− atoms in the clouds that moved to the right and
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left respectively and n0 atoms in the cloud at rest becomes (ϕ = 0)

P =

n0,n−,n+∑
j=0,k=0,l=0

∣∣∣∣∣(Q)k(Deiπ/2)n−−k(Q)j(Deiπ/2)n0−j(Q)l ×

(Deiπ/2)n+−l

√
N !j!(n0 − j)!l!(n+ − l)!k!(n− − k)!

23N−n0
×

N∑
n=0

e−iθ(n−N/2)+iξ(n2+(n−N/2)2)S(n0, n+, n−, n, j, k, l)

∣∣∣∣∣
2

. (4.33)

The function S(n0, n+, n−, n, j, k, l) is determined by comparing Eqs. (4.27) and (4.33)

at ξ = 0 and evaluating the resulting fourier transform using the steepest descent

method. For very large number of atoms, the probability P becomes

P =
N ! 2n0−N

n0!n−!n+!

n0,n−,n+∑
j,k,l

(Q2)j+k+l(D2)N−j−k−ln0!n−!n+!

j! (n0 − j)! k! (n− − k)! l! (n+ − l)!
|Σ(n0, j, k, l)|2. (4.34)

where

Σ(n0, j, k, l) =
ei(mπ/2+N2ξ/2)

√
1− 2iNξ

(√
1− m

N

)N−m(√
m

N

)m
×[

e−imπ/2−N(θ/2−x0)2/(1−2iNξ) + eimπ/2−N(θ/2+x0)2/(1−2iNξ)
]
, (4.35)

m = n0 − j + k + l and x0 = arctan
√
m/(N −m).

In presence of both phases φ and ξ, the probability that describes the distribution

of atoms in the three clouds that emerge after recombination is given by Eq. (4.34).

Shown in Fig. 4.5 and Fig. 4.6 are the contour plots of the probability plotted at

different values of φ and ξ. The peak of the probability Eq. (4.34) is located approxi-

mately at n− = n+ irrespective of the value of φ and ξ and the inserts in those figures

are plotted along the line n+ = n−. At small values of φ and ξ plotted in Fig. 4.5 the

peak of the probability is located at n0 ∼ N cos2 θ/2 where θ = 2π/3. The influence

of the phase diffusion and spatial relative phase on the operation of the interferometer

is negligible. For small values of φ and large values of ξ, the width of the probability

function P becomes of the order of the total population N . The exponential terms in
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Figure 4.5 The contour plots of the probability function P as a function
of the relative number of atoms and total number of atoms in the moving
clouds after recombination for N = 100 atoms and Γ = 0. In (a) ξ

√
N = 0,

K = 0 and in (b) ξ
√
N = 0.01, K = 0.01. The inserts are plotted along the

green line.

Eq. (4.34) interferes as discussed in Ref. [82] which manifest as appearance of islets

of peaks in the contour plots of the probability shown in Fig. 4.6(a) that are seen

as oscillations in the insert. Similarly, for large values of φ and small values of ξ

plotted in Fig. 4.6(b), there is no noticeable change in the width of the probability

function P . However the peak of the distribution has moved towards one-half of the

total population of atoms N in accordance to the results of Sec 4.2.1. At large values

of φ and ξ, the probability function P is exactly one-half of the total population N

as shown in Fig. 4.6(c). Notice that the interference effects resulting from the large

values ξ is totally suppressed. This is because the overall amplitude of the probability
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Figure 4.6 The contour plots of the probability function P as a function
of the relative number of atoms and total number of atoms in the moving
clouds after recombination for N = 100 atoms and Γ = 0. The parameters
of the plots are as follows; in (a) ξ

√
N = 1, K = 1, in (b) ξ

√
N = 0.1, K = 5

and in (c) ξ
√
N = 1, K = 5. The inserts are plotted along the green line.

function P , which depends on the spatial relative phase φ through Q and D, is very

small at large values of φ except at values of N−n0 close to N/2, thereby suppressing

the interference effects. The suppression of the interference effect is also evident on

the insert shown in Fig. 4.6(c).

Approximate expression for probability function at small values of φ

To gain more insight into the behaviour of the probability function P , we consider

very small values of spatial relative phase φ. For small values of φ (|φ| � 1), D is

very small while Q is roughly of order unity. The probability P is then written to the
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lowest order terms in D. Keeping terms to order D2 in Eq. (4.34), the probability

function P is written as

P ≈ P±Pn0 , (4.36)

where

P± =
2n0−N (N − n0)!

n+!n−!
, (4.37)

and

Pn0 = P0 + P−1 + P+1. (4.38)

The properties of the probability function P± are well described in Sec. 3.3.2. The

probability Pn0 of observing n0 atoms in the central cloud consists of three terms.

The first term P0 is the zeroth order term in D of the probability function Pn0 and

corresponds to the contribution from term that peak at n0 = N cos2 θ
2
,

P0 =
Q2N√

1 + 4N2ξ2

√
N

2πn0(N − n0)

∣∣∣∣∣
[
e−i(N−n0)π/2−N(θ/2−x0)2/(1−2iNξ)

+ ei(N−n0)π/2−N(θ/2+x0)2/(1−2iNξ)

]∣∣∣∣∣
2

,

(4.39)

where x0 = arctan
√

N−n0

n0
, and Stirling’s approximation had been used in writing

Eq. (4.39). The other two terms P−1 and P+1 are corrections to P0 coming from

terms that peak at n0 − 1 = N cos2 θ
2

and n0 + 1 = N cos2 θ
2

respectively and are of

order D2. Using Stirling’s approximation, one writes P−1 and P+1 as follows

P−1 =
(Q2)N−1D2√

1 + 4N2ξ2

√
N(N − n0 + 1)

2π(n0 − 1)

∣∣∣∣∣
[
e−i(N−n0+1)π/2−N(θ/2−x−)2/(1−2iNξ)

+ei(N−n0+1)π/2−N(θ/2+x−)2/(1−2iNξ)

]∣∣∣∣∣
2

, (4.40)

P+1 =
(Q2)N−1D2√

1 + 4N2ξ2

√
N(n0 + 1)

2π(N − n0 − 1)

∣∣∣∣∣
[
e−i(N−n0−1)π/2−N(θ/2−x+)2/(1−2iNξ)

+ ei(N−n0−1)π/2−N(θ/2+x+)2/(1−2iNξ)

]∣∣∣∣∣
2

, (4.41)
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where x− = arctan
√

N−n0+1
n0−1

and x+ = arctan
√

N−n0−1
n0+1

.
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Figure 4.7 The probability function Pn0 and its constituents versus n0 for
N = 100 atoms at θ = 2π/3, Γ = 0 and ξ = 0.05/

√
N . Fig (a) is plotted at

K = 0.05 and Fig (b) is plotted at K = 1.

For |φ| � 1 both P+1 and P−1 are negligible and the dominant contribution to Pn0

comes from the term P0 as shown in Fig. 4.7a. Increasing the value of ξ broadens the

width of the probability density Pn0 . The function Pn0 has been studied previously

in Chap. 3 [see also Ref [82]] and needs no further analysis. As φ increases, the values

of |Q| and |D| are significantly different from unity and zero respectively, thereby

causing significant decrease in the height of P0. Also, the correction terms P−1 and

P+1 are no longer negligible. For |φ| values that are comparable to unity |φ| ∼ 1, the

approximation breaks down and the dominant contribution comes from the term P−1

or P+1 depending on the value of θ. For 0 ≤ θ/2 < π/4, the dominant contribution
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comes from P−1 and the probability function P approaches N/2 from the right, while

for π/4 < θ/2 ≤ π/2 the dominant contribution comes from P+1 and the probability

function P approaches N/2 from the left. For θ/2 = π/3 shown in Fig. 4.7b, the

dominant contribution comes from P+1 that peaks at n0 + 1 = N cos2 θ
2
. The shift

in peak of the distribution P0 from n0 = N cos2 θ
2

to n0 + 1 = N cos2 θ
2

at increasing

value of φ explains the shifts in the probability density P observed in Fig. 4.6b and

Fig. 4.6c and suggests that full expression Eq. (4.34) has to used while calculating

the probability P in the presence of φ.
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Figure 4.8 The relative mean value of atoms in the cloud at rest after
recombination versus the phase angle θ at ξ = 0.05/

√
N and Γ = 0.
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4.2.3 Moments of the probability function

The moments of the probability function like the mean value and standard deviation

are also affected by the variations in the spatial phase and the nonlinear phase per

atom. Figures 4.8 and 4.10 show that the relative mean value of the populations

found in the cloud at rest after recombination were sensitive to the phases φ and

ξ, and demonstrate that increases in either phase or both phases would eventually

lead to the loss of interference fringes. Similar results for the standard deviation

shown in Figs. 4.9 and 4.11 demonstrate that increases in the phases cause large

shot-to-shot fluctuations in the population of atoms in the output ports of the cold-

atom interferometer. These results are understood by calculating the moments of the

approximate probability function Pn0 when the spatial dependent phase is small. For

example, when φ (|φ| � 1) is very small the dominant contribution to the averages

comes from points around n0 = N cos2(θ/2) in the probability function Pn0 and the

mean evaluates to

〈n0〉0 = (Q2)N
N

2

(
1 + e−

1
2α cos θ

)
(4.42)

where α = N/(1 + 4N2ξ2). The correction to the mean is given by

〈n0〉+1 =
N2

8

(
Q2
)N−1

D2

[
3 + e−2/α cos 2θ + 4e−1/(2α) cos θ +

− 4

N

(
1 + e−1/(2α) cos θ

) ]
, (4.43)

〈n0〉−1 =
N2

8

(
Q2
)N−1

D2

[
1− e−2/α cos 2θ +

4

N

(
1− e−1/(2α) cos θ

)]
.

As φ increases, the dominant contribution to the mean value 〈n0〉 comes from

the points around n0 ± 1 = N cos2(θ/2) depending on the value of θ as explained

previously. At very large values of φ, the moments 〈n0〉 and (∆n0)2 calculated using

the probability Pn0 is very small because (Q2)N−1D2 and (Q2)N are small (i.e. the
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Figure 4.9 The relative standard deviation of atoms in the cloud at rest
after recombination versus the phase angle θ at ξ = 0.05/

√
N and Γ = 0.

approximation Pn0 breaks down as shown in Fig. 4.7b). So neither terms whose

peaks are at n0± 1 = cos2(θ/2) make significant contribution to the averages. In this

situation, all the terms in Eq. (4.34) are needed to correctly calculate the averages

of the distribution and explains the gradual slip of the relative mean value towards

one-half shown in Fig. 4.8 and large shot-to-shot variations in the standard deviation

shown in Fig. 4.9. Similarly, when the phase φ is very small, then only P0 is sufficient

to calculate the moments of the distribution plotted in Figs. 4.10 and 4.11. The

changes in the moments 〈n0〉 and (∆n0)2 with increasing ξ has been studied in Chp. 3

and elsewhere [82]. Note that in the averages, the phase φ regulates the overall

amplitude of the averages through Q and D, while the phase ξ regulates only phase

θ through α. As such effects from ξ on the mean value (albeit fringe pattern) would
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Figure 4.10 The relative mean value of atoms in the cloud at rest after
recombination versus the phase angle θ at K = 1 and Γ = 0.

be very hard to observe at large values of phase φ.

So far we have shown that increasing spatial phase mask the dependence of the

probability function on the environment-introduced phase angle by scrambling the

relative phase of the two counter propagating clouds during the interferometric cycle.

This manifests as shifts of the probability towards one-half of the total population.

We also showed that phase diffusion is responsible for the increased width of the

probability observed at the end of the interferometric cycle.
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Figure 4.11 The relative standard deviation of atoms in the cloud at rest
after recombination versus the phase angle θ at K = 1 and Γ = 0.

4.3 Optimisation of interference fringe contrast

Both spatial relative phase and phase diffusion limits the measurement precision of

BEC-based atom interferometers, which can be improved by optimising the interfer-

ence fringe contrast. This offers a way to tune or control the performance of the

interferometers in experimentally-controlled parameter space.

Consider the limit where the nonlinear phase per atom ξ is small and negligible.

The relative mean value of the population of atoms in the cloud at rest is 〈n0〉 /N =

(1/2) (1 + V cos θ), (See Eq. (4.31)). The function V called the contrast is defined as

V =

∫
dz n0(z) cosφ(z, q). (4.44)
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In the limit of interest where the magnitude of φ(z, q) is approximately unity, the

contrast V is evaluated by expanding the cosine function keeping terms only to second

order in phase φ(η, q). The result is V ≈ 1−f , where the function f , which measures

the amount by which the contrast V is different from unity, is

f =
1

10

(
∆K2 +

6

7
∆KΓ +

5

21
Γ2

)
, (4.45)

and K and Γ are defined in Eq. (4.8). A contrast value of unity means that f = 0

and a contrast value of zero implies that f is unity. The limit on f is arbitrarily set

to one-half, f ≤ 1/2, and corresponds to observing a contrast value that is 50% or

more. Near the end of the interferometric cycle, the dimensionless strength S of the

cubic phase is [85]

S = −35

V0

|q|3. (4.46)

For a single reflection interferometer, the change in the dimensionless speed [85]

at recombination is

∆V =
1

V0

[
V 2

0 T
2 − 2

4

]
, (4.47)

where T ≥ R, that is the clouds completely separate after splitting pulses are applied.

Since the center of masses of the two clouds are not exactly on top of each other at

recombination, q is very small. The strength of the effective dimensionless linear

phase K to first order in q becomes

K =

[
RT

V0

V 2
0 T

2 − 2

4
−GT q

]
1

ε
, (4.48)

Similarly, the strength of the effective dimensionless cubic phase is

Γ = − 35

6εV0

|q|3. (4.49)

Substituting the values of K and Γ into the function f Eq. (4.45), one writes

fS =
1

10ε2V 2
0

[(
V 2

0 T
2

4
− 1

2
+
V0T

2
q

)2

− 5

(
V 2

0 T
2

4
− 1

2
+
V0T

2
q

)
|q|3
]
, (4.50)



4.3 Optimisation of interference fringe contrast 76

where GT = −T/2 [63] and we have assumed that the value of RT at recombination

is roughly of the order unity. The function fS depends on the dimensionless distance

V0T traveled during interferometric time. For traveled distances that are large in

comparison to the radial size of the clouds V0 T >> 1, the clouds separate and fS has

the following form

fS =
1

10ε2V 2
0

(
V0T

2

)4 [
1 +

4

V0T
q

]
. (4.51)

It is evident from Eq. (4.51) that the function f cannot be optimised by minimising

it with respect to q because when V0T >> 1, 1/(V0T ) ≈ 0. Similar conclusion was

reached previously in Ref. [63]. Requiring that the function f be less than one half

implies that (
V0T

2

)4

≤ 5ε2V 2
0 . (4.52)

Similarly for a double reflection interferometer both GT [63] and ∆V [85] are given

by

∆V = − 3T 2

20V0

, (4.53)

GT ≈ − 7

16
T. (4.54)

The function f in the case of double reflection interferometer becomes

fD =
1

10ε2

[
T 2

(
− 3T

20V0

+
7

16
q

)2

−
(
− 3T

20V0

+
7

16
q

)
5T

V0

|q|3
]
. (4.55)

For dimensionless interferometric times that are much less than than the initial di-

mensionless speed of the atomic clouds T/V0 << 1, the function fD is

fD ≈
T 2

10ε2

(
− 21

160

T

V0

q +
49

256
q2

)
. (4.56)

The function fD Eq. (4.56) could be optimised by minimising it with respect to q.

The value of q that minimises the function fD is

qm =
12

35

T

V0

. (4.57)
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At this value of qm, the function f is

fD = − 9

4000

T 2

ε2
T 2

V 2
0

. (4.58)

Requiring that |f | be at most one-half implies that

3T 2 ≤ 20
√

5εV0. (4.59)

In the double reflection interferometer at the least 50% contrast is measured when

Eq. (4.59) is met provided that the interferometric time is much less than the initial

speed of the clouds. For times longer than the initial speed, contrast of 50% or more

would be observed only if the clouds do not separate. This is because on a time scale

comparable to or greater than the initial speed other decoherence mechanisms come

into play. The possible way for the clouds to still maintain their coherence is if there

is a weak link between them.

Nonlinear phase per atom defined in Eq. (4.22) is a possible source of such deco-

herence mechanism at longer times. The evaluation of the phase ξ using Eq. (4.22)

gives

ξ =
32/3

5

(
Mω2

⊥
~ω

a2
s

)1/3(
1

N

)1/3

ωT. (4.60)

When the phase due to interatomic interactions is present and the spatial relative

phase phase is small and negligible, more than 50% fringes is observed if the contrast

V = e−1/(2α) [Eq. (4.42)] is about 60% [see Fig. 3.10]. This corresponds to 1/(2α) ≈

ξ
√
N ≤ 1/2 or in terms of measurable experimental quantities

fP =
~

Mω2ω2
⊥a

2
sT

3N1/2
≥ 72

125
≈ 0.6. (4.61)

Since fP ∝ {T 3(ω⊥ω)2N1/2}−1, one could make fP small by manipulating the total

number N of atoms, the trap frequencies ω⊥, ω and the the time T of the experiment.

For instance, the phase due to interatomic interactions is reduced by using fewer atoms
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N in experiment, and by the use of traps with smaller frequencies while increasing

the time of the experiment. Re-expressing the Eqs. (4.52) and (4.59) in terms of

dimensional measurable quantities gives

fS =
~2

NasM2ω⊥ω4v3
0T

6
≥ 9

64
√

53
≈ 0.01, (Single Reflection), (4.62)

fD =
v0

Nω⊥asω2T 2
≥ 9

20
√

5
≈ 0.2, (Double Reflection), (4.63)

respectively. The parameters fS and fD measure the amount by which contrast due

to spatial phase distortion is different from unity in a single-reflection and double-

reflection interferometer respectively.

For a given atomic specie, the mass M , initial speed v0 imparted by the splitting

laser pulses and the s-wave scattering length as are fixed. Then fS ∝ (Nω⊥ω
4T 6)

−1
.

Since the goal is to maximise time T of the experiment, one is left with manipulating

the total number N and the trapping frequencies. Already the numerator of fS is very

small, so the total number and trapping frequencies have to be made small in order to

increase the contrast in singe-reflection interferometer. This conclusion was previously

arrived at in Ref. [62]. In double reflection interferometer, the situation is different;

the numerator is roughly ∼ 10−2. For a given atomic specie, fD ∝ (Nω⊥ω
2T 2)−1.

The spatial phase distortion could be minimised by reducing the the total number N

of atoms used in experiment, use traps with smaller frequencies while increasing the

time of the experiment.

4.4 Discussion

Guided-wave atom interferometer using BEC has been demonstrated in several exper-

iments [31,53,59]. In the earliest experiment [31], a single reflection atom-Michelson

interferometer was used to interfere a BEC cloud containing 105 87Rb atoms. The
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transverse and longitudinal frequencies of the trap are 177 Hz and 5 Hz respectively.

The propagation time was up to 10 ms and the initial speed of the cloud v0 = 11.7

mm/s. For these parameters and value of the s-wave scattering length as = 5.2×10−9

m, fS = 6× 10−7 is several orders of magnitude less than 0.01 and fP = 70. The loss

of contrast in the experiment is due to spatial phase that was accumulated by the

clouds during the propagation time.

Similar experiments were performed in Ref. [59]. The frequencies of the trap used

in the experiment are (ωx, ωy, ωz) = 2π(6.0, 3.3, 1.2) Hz respectively. The trap was

used to confine and manipulate about 3 × 104 87Rb atoms for propagation times up

to 12 ms. The values of fS and fP evaluated at these parameters are fS = 0.01 and

fP = 2× 106, and show that the loss of contrast is due to spatial phase accumulated

by the two moving clouds during their propagation. A double reflection realised in the

same geometry [53] was used to manipulate about 104 87Rb atoms for a propagation

time of about 44 ms. The fS and fP values for these parameters are 90 and 8× 104

respectively. These values suggest that more than 50% of contrast is observed and

the loss of contrast is more likely to be due to spatial phase distortion than phase

diffusion. Even though phase diffusion is not remotely the cause loss of contrast in

the experiment, the value fP in the double reflection interferometer is two order of

magnitude smaller than the value of fP in the single reflection interferometer. This

is because the double reflection interferometer was operated at a longer propagation

time.

Recently, it [85] was shown that a contrast of at the least one-half could be mea-

sured in a free oscillation interferometer if

fF =
Mv4

0

~ω2
⊥ωa

2
sN

2
≥ 0.1.

Such an interferometer was realised [61] and used to trap and manipulate about 105
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87Rb atoms [83]. The transverse and longitudinal frequencies of the trap are 80 Hz and

4.1 Hz respectively. The atoms were allowed to propagate for a time corresponding

to the longitudinal period of the trap T = 2π/ω. At these values, the parameter

fP = 0.04 and fF = 7× 103. The loss of contrast in this experiment is more likely to

be as a result of phase diffusion because the duration of the experiment allowed for

significant accumulation of the phase due to interatomic interactions.
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Singapore, 2005), Vol. 1.

[69] C. J. Foot, Atomic Physics (Oxford University Press, New York, 2005).

[70] W. J. Mullin , “Bose-Einstein condensation in a harmonic potential,” J. Low

Temp. Phys. 106, 615–641 (1997).

[71] F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, “Theory of Bose-

Einstein condensation in trapped gases,” Rev. Mod. Phys. 71, 463 (1999).

[72] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover,

New York, 1972).

[73] C. J. Pethick and H. Smith, Bose-Einstein condensation in dilute gases (Cam-

bridge University Press, Cambridge, 2002).

[74] L. Pitaevskii and S. Stringari, Bose-Einstein condensation (Oxford University

Press, Oxford, 2003).

[75] G. Baym and C. J. Pethick, “Ground-State Properties of Magnetically Trapped

Bose-Condensed Rubidium Gas,” Phys. Rev. Lett. 76, 6 (1996).

[76] E. M. Wright and D. F. Walls, “Collapses and revivals of Bose-Einstein conden-

sates formed in small atomic samples,” Phys. Rev. Lett. 77, 2158 (1996).



BIBLIOGRAPHY 90

[77] W. Li, A. K. Tuchman, H. Chien, and M. A. Kasevich, “Extended Coherence

Time with Atom-Number Squeezed States,” Phys. Rev. Lett. 98, 040402 (2007).
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Cold-atom interferometers with optical splitting and recombination use off-resonant laser beams to split
a cloud of Bose-Einstein condensate (BEC) into two clouds that travel along different paths and are then
recombined again using optical beams. After the recombination, the BEC in general populates both the
cloud at rest and the moving clouds. Measuring a relative number of atoms in each of these clouds yields
information about the relative phase shift accumulated by the atoms in the two moving clouds during the
interferometric cycle. We derive the expression for the probability of finding any given number of atoms in
each of the clouds, discuss features of the probability density distribution, analyze its dependence on the relative
accumulated phase shift as a function of the strength of the interatomic interactions, and compare our results with
experiment.

DOI: 10.1103/PhysRevA.82.053603 PACS number(s): 03.75.Dg, 37.25.+k, 03.75.Kk

I. INTRODUCTION

Using wavelike properties of atoms for atomic interfer-
ometry has been a subject of intense and extensive study
[1]. Atoms are sensitive to electromagnetic fields due to
their electric and magnetic moments; their mass allows
them to be deflected in the gravitational field thereby mak-
ing them attractive in the measurements of inertial forces
[2]. Atom interferometers have been used to measure the
gravitational constant [3], acceleration [4–6], electric polar-
izability [7], and fine-structure constant [8] to very high
accuracy.

The technical realization of neutral-atom interferometers
took some time compared to their electron- and neutron-based
counterparts. Part of the reason is that atoms have large
mass, resulting in smaller de Broglie wavelengths for the
same velocity. Also, neutral atoms cannot easily propagate
in dense matter unlike, e.g., neutrons, and therefore they
require more ingenious ways to coherently split and diffract
the atomic beam. An atom interferometer [9] realized in a
double-slit diffraction geometry worked with a stream of
supersonic gaseous atoms and used mechanical gratings. Later
experiments [10,11] used standing light waves to coherently
diffract the atomic beam. The standing light wave is formed
using a laser beam that is detuned from atomic resonance to
avoid spontaneous emission, and is retroreflected by a mirror.
The spatially varying envelope of the standing wave creates
an effective optical potential acting as a diffraction grating
for atoms that can be used to split and recombine an atomic
beam.

Another technique [4,12] for diffracting an atomic beam
exploits Raman transitions between two hyperfine ground
states of an atom via a third quasiexcited state. The laser pulses
(often called Raman pulses) consist of two counterpropagating
light beams with frequencies which are different by the
Bohr transition frequency between the two hyperfine states.
Absorption of a photon from one laser beam and stimulated

*zozulya@wpi.edu

reemission into another one in this case is accompanied by a
transition between the two hyperfine states.

The use of Bose-Einstein condensates (BECs) [13] in atom
interferometers is appealing for many reasons. A BEC has
a narrow momentum distribution that minimizes the spread
in momentum during the splitting and recombination of the
atomic cloud and reduces the expansion of the condensate
during propagation. BECs can be easily manipulated and con-
fined in a very small area on an atom chip [14]. Finally, a BEC
has large coherence length allowing for good fringe contrast
and helping to determine any offset phases more accurately.
Since the experimental demonstration of interference between
two different Bose condensates [15], several experimental
techniques for the manipulation of BECs and different BEC-
based interferometric geometries have been proposed and
demonstrated [14,16–19].

In trapped-atom interferometer geometries [16,17,20–22]
the BEC is kept in a trap confining the atomic cloud in all
three dimensions. This trap is dynamically transformed into a
double-well trap to create two arms which were physically
separated in space. After some time, the trap is switched
off allowing the condensates in each arm to fall, expand,
and interfere. An example of this type of interferometer is
a double-well atom Mach-Zehnder interferometer that has
been attracting recent theoretical ( [23,24]) and experimental
( [20–22]) attention in relation to a generation of squeezed
states and sub-shot-noise measurements. In some of the experi-
ments, the external motional states are used to produce interfer-
ence fringes by controlling the Josephson tunneling between
wells through trap deformation [20,23,24] by manipulating the
barrier in the middle of the well. During the splitting the barrier
is raised slowly so that the condensates follow the ground state
of the well adiabatically. The fluctuation in the relative number
of atoms is reduced when the tunneling energy between the
wells is smaller than the interaction energy. Counting the
population of atoms in each well site gives information on
the squeezed states. Another method [21,22] uses the internal
(spin) states of BECs trapped in a deep potential well to form
the arms of the interferometer. A BEC cloud initially in a
hyperfine state |a〉 is put in superposition of two hyperfine
states |a〉 and |b〉 using the π/2 pulse. Feshbach resonance [21]
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or a state-dependent potential [22] is used to tune down the
interspecies scattering, thereby leading to increased in-
traspecies interactions that cause oscillation of the conden-
sates. The two clouds are recombined at the end of the inter-
ferometric cycle using a π/2 pulse with a controlled phase or
a state-dependent potential [22]. Information on squeezing is
obtained by counting the population of atoms in each hyperfine
state.

In guided-wave interferometers the BEC is kept in a waveg-
uide. The condensate is tightly confined in two transverse
dimensions but allowed to propagate along the third dimension
[14,25]. The waveguide potential along this guiding dimension
is typically weakly parabolic either because of the difficulty of
completely canceling magnetic-field gradients or by design. A
typical example is the Michelson-type single reflection atom
interferometer realized in Ref. [14]. In this interferometer,
the BEC cloud ψ0 is initially at rest in a waveguide. Splitting
pulses that consist of a pair of counterpropagating laser beams
detuned from atomic resonance and that act as a diffraction
grating are incident on the cloud. These pulses split the
condensate into two harmonics, ψ+ and ψ−, that move with
the initial velocities ±v0, respectively. In a single-reflection
interferometer, the directions of propagation of these
harmonics are reversed at time T/2 (where T is the duration of
the interferometric cycle) (i.e., in the middle of the cycle with
the help of a reflection pulse). The harmonics are then allowed
to propagate back and are recombined when they overlap again
using the same optical pulses that were used to split the original
BEC cloud. After recombination, the condensate is, in general,
in a superposition of ψ0, ψ+, and ψ− with the relative ampli-
tudes, depending on the amount of the accumulated phase shift,
between the arms of the interferometer acquired during the
cycle.

In a double-reflection interferometer [25,26], the optical
reflection pulse is applied twice at times T/4 and 3T/4. After
the first reflection pulse, the harmonics change their direction
of propagation and start moving back. They pass through each
other, and exchange their positions by the time 3T/4. The
harmonic that was on the right at T/2 is now on the left and
vice versa. The second reflection pulse applied at 3T/4 again
reverses the directions of propagation of the harmonics and,
finally, they are recombined at time T .

The authors of Refs. [26–28] investigated interferometric
geometry that does not rely on reflecting optical pulses
but instead uses the gradient of the confining waveguide
potential for reversing the direction of propagation of the
BEC harmonics. In this “free-oscillation” interferometer
the moving BEC clouds propagate in a parabolic confining
potential. They slow down as they climb the potential, stop
at the their classical turning points after one-quarter of the
trap period (T/4) has elapsed, and turn back. At T/2 the
clouds meet at the bottom of the potential, reach again their
turning points at 3T/4, and are recombined at time T . The
duration of the interferometric cycle is thus equal to the
oscillation period of the parabolic longitudinal waveguide
potential T .

Another waveguide interferometer that uses BEC is the
Mach-Zehnder-type atom interferometer [18,27]. Here the
two counterpropagating waves used for a π/2 splitting
pulse are frequency-shifted with respect to each other

resulting in a traveling optical potential. This π/2 pulse
transforms the original BEC at rest into two clouds of
equal amplitude. One of these clouds remains at rest and
the other propagates with velocity v0. A π pulse in the
middle of the cycle stops the moving cloud and brings the
one that was at rest into motion. Finally, the second π/2
pulse applied at the end of the cycle recombines the two
clouds.

Both in trapped-atom and guided-wave interferometers, the
interference fringes depend on the relative phase accumulated
by the atomic clouds in different arms during the interfero-
metric cycle. Apart from the accumulated phase shift induced
by fields or interactions of interest during the experiment,
an unwanted phase may be accumulated due to confinement
effects and interatomic interactions resulting in a decrease in
the visibility of the interference fringes. For example, in the
single-pass interferometer [14], during propagation the outer
edge of each cloud experiences a higher potential than the
inner edge (the outer edge is the leading edge in the first half
of the cycle when the clouds move away from each other and
the trailing edge in the second part when the clouds move
toward each other). The outer edge thus accumulates a larger
phase than the inner one. During the recombination, the outer
edge of one cloud interferes with the inner edge of another
and the phase difference accumulated due to the presence
of the confinement potential leads to a coordinate-dependent
residual phase across the clouds after the recombination.
Another mechanism for phase accumulation is due to mutual
interaction of two BEC clouds ψ− and ψ+ when they spatially
overlap. During the separation, the inner edge of one cloud
interacts with atoms in the other cloud until it has traversed
the entire length of the other cloud, while the outer edge of each
cloud hardly interacts with any atoms in the other cloud (and
similarly during the recombination). As a result, the inner edge
accumulates a larger phase than the outer edge. The above two
contributions have opposite signs but different magnitudes so
the net coordinate-dependent phase is not zero. Still another
mechanism of accumulation of the unwanted phase is due to the
fact that the velocities ±v of the moving harmonics ψ+ and ψ−
during the reflection are different from their initial velocities
±v0 due to the influence of the confining potential and the
interatomic interactions. As as result, the reflection pulses
(which are formed by the same pair of counterpropagating
beams as the splitting and recombination pulses) are not
exactly on resonance and do not exactly reverse the clouds’ ve-
locities (the direction of propagation of each of the clouds does
change but the speeds before and the after the reflections are
different).

A theoretical analysis of the single- and double-reflection
interferometer geometries has been carried out in Refs. [26,
29–31]. According to the analysis of Refs. [26,31], sym-
metric motion of the two clouds in the double-reflection
geometry partially cancels the velocity errors imposed by
the reflection pulses and the phase imposed by the confining
potential. This conclusion has been confirmed experimentally
in Ref. [26]. The free-oscillation interferometer provides
an even greater degree of cancellation of the unwanted
coordinate-dependent phase since it does not rely on reflection
pulses and does not suffer from the velocity mismatch effects.
Recent experiments [26,27], where the atomic clouds were
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allowed to be reflected from their classical turning points
instead of using reflection pulses to truncate their motion,
confirmed a more accurate cancellation of the unwanted
phase.

An additional mechanism that could lead to dephasing
of the interference fringes is due to atom-atom interactions
within each of the two clouds. These interactions result in the
so-called phase diffusion in the BEC clouds [32–36]. The aim
of the present paper is to analyze effects of the atom-atom
interactions within each of the BEC clouds on the operation
of cold-atom interferometers using optical pulses for splitting
and recombination of the condensate in the framework of the
approach discussed in Refs. [32–36]. The basic physics of
the interferometric cycle in the presence of the interatomic
interactions can be described as follows: The BEC, which
is initially in a number state with N atoms, is split by the
optical pulses into two clouds moving in opposite directions.
After the splitting the system is in a mode-entangled state
with each cloud being a linear superposition of number states.
This superposition is concentrated around the mean N/2 with
the relative uncertainty of the order of 1/

√
N . In the presence

of interatomic interactions, each number state evolves with
different rate that results in the accumulation of relative time-
dependent phases between the different number states. The
recombination process is sensitive to these phases and thus the
interactions should influence the contrast of the interferometric
fringes. Specifically, we derive the expression for the
probability density of observing any given number of atoms in
each of the three output ports of the optical beamsplitter and
recombiner and analyze it in different limits. Due to a large
difference between the characteristic momenta of the conden-
sate and the momentum imparted to the atoms by the optical
beams, it turns out to be possible to analyze both the splitting
and the recombination (detection) of the BEC explicitly
without making any ad hoc assumptions about the process of
detection (e.g., invoking phase states to describe the detection
process).

Finally we note that the approach of the present paper is
complementary to that of Refs. [26,29–31] which previously
discussed the single- and double-reflection interferometer
geometries. The analysis of these papers is carried out in
the framework of the mean-field theory and thus cannot
account for the mode-entangled nature of the two BEC clouds
after the splitting, the subject discussed in the present paper.
Degradation of the interference fringes in Refs. [26,29–31]
is due to the accumulation of a coordinate-dependent phase
across the BEC clouds during their evolution due to con-
finement and mutual interaction. Our analysis disregards
these effects for simplicity since they have been previously
studied. The more general analysis will be reported in a later
publication.

The remainder of the paper is organized as follows. In
Sec. II we discuss the operation of the optical beamsplitter
and recombiner and obtain the expression for the state
vector of the system after recombination. In Sec. III we
derive an expression for the probability density. Characteristic
features of the probability density, including the mean, the
standard deviation, etc., are calculated and discussed in
Sec. V. The results are compared with the experiment in
Sec. VI.

II. OPTICAL BEAMSPLITTER OPERATION

Consider a BEC cloud ψ0 at rest in a confining potential
before the beginning of the interferometric cycle. As was
discussed in the Introduction, the splitting optical pulses
transform the initial BEC cloud into two clouds ψ±1 moving in
opposite directions. The clouds are allowed to evolve during
time T and are subject to the action of the recombination
optical pulses (which are identical to splitting optical pulses).
After the recombination, the atoms in general populate all
three clouds ψ0 and ψ±. The relative population of the clouds
depends on the phase difference between the clouds ψ±
acquired during the interferometric cycle.

Let b†0, b†−1, and b
†
+1 be operators which, acting on a vacuum

state, create an atom belonging to a cloud at rest and moving
to the left or right, respectively.

The many-body Hamiltonian that describes the atomic
BEC during the interferometric cycle is of the form

H =
∫

dr �̂†(r,t)H0�̂(r,t)

+ U0

2

∫
dr �̂†(r,t)�̂†(r,t)�̂(r,t)�̂(r,t), (1)

where H0 is a single-particle Hamiltonian and
U0 = 4πh̄2asc/M , with M being the atomic mass and
asc the s-wave scattering length. The single-particle
Hamiltonian H0 accounts for the confining potential for the
BEC and also includes effects of the environment resulting
in different rates of evolution for the BEC clouds propagating
in opposite directions. Finally, the quantity �̂(r,t) is the field
operator

�̂(r,t) = b+1ψ+1(r,t) + b−1ψ−1(r,t), (2)

where ψ±1(r,t) are wave functions of the BEC clouds moving
to the right and left, respectively. These wave functions
are solutions of the two coupled Gross-Pitaevskii equations
[see, e.g., Eq. (9) of Ref. [30]] and are normalized to one,∫

dr|ψ±1(r,t)|2 = 1.
Using Eq. (2) in (1) results in the following Hamiltonian

describing effects of the environment and the interatomic
interactions:

Heff = −W

2
(n̂+1 − n̂−1) + g

(
n̂2

+1 + n̂2
−1

)
. (3)

Here n̂±1 = b
†
±1b±1 are the number operators, W is the

relative environment-introduced energy shift between the
right- and left-propagating clouds, and

g = U0

2

∫
dr|ψ+1|4 = U0

2

∫
dr|ψ−1|4 (4)

is the coefficient characterizing strength of the interatomic
interaction. The Hamiltonian (3) neglects effects due
to overlap of the right- and left-propagating clouds
assuming that most of the time the clouds are spatially
separated.

The state vector of the system at the beginning of the
interferometric cycle before the splitting pulses is given by
the relation

|�ini〉 = (b†0)N√
N !

|0〉, (5)
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where |0〉 is the vacuum state and N is the total number of
atoms in the BEC.

Splitting and recombination pulses couple the operators
b±1 and b0 according to the rules (see the Appendix in
Ref. [30] for the corresponding splitting and recombination
matrices),

b−1 → 1

2
b+1 + e−iβ

√
2

b0 − 1

2
b−1,

b0 → (b+1 + b−1)
e−iβ

√
2

, (6)

b+1 → −1

2
b+1 + e−iβ

√
2

b0 + 1

2
b−1,

where β is a phase factor.
A single-atom state is transformed by the splitting pulses

as

b
†
0|0〉 → 1√

2
(b†+1 + b

†
−1)|0〉,

so the product state vector of the N -particle system, Eq. (5),
after the splitting acquires the form

|�split〉 = 1√
2NN !

(b†+1 + b
†
−1)N |0〉

= 1√
2N

N∑
n=0

(
N

n

)1/2

|n,N − n〉, (7)

where

|n+,n−〉 = (b†+1)n+
√

n+!

(b†−1)n−
√

n−!
|0〉 (8)

is the state with n+ atoms traveling to the right and n− to the
left, respectively, and (N

n
) = N !/n!(N − n)! is the binomial

coefficient.
Time evolution of the state vector is governed by the

Hamiltonian (3),

|�(t)〉 = |�split〉 exp

[
−(i/h̄)

∫ t

0
Heffdt ′

]
.

States |n+,n−〉 given by Eq. (8) are eigenstates of the
Hamiltonian (3) with the eigenvalues

E(n+,n−) = −W

2
(n+ − n−) + g(n2

+ + n2
−). (9)

The state vector of the system at time T immediately before
the recombination is thus given by the relation

|�(T )〉 = 1√
2NN !

N∑
n=0

(
N

n

)
eiθ(n−N/2)−iξ [n2+(N−n)2]

× (b†+1)n(b†−1)N−n|0〉. (10)

Here

θ = 1

h̄

∫ T

0
dtW (11)

is the environment-introduced accumulated phase difference
between the right and the left clouds and

ξ = 1

h̄

∫ T

0
dtg (12)

is the accumulated nonlinear phase per atom due to interatomic
interactions. The recombination pulses act on |�(T )〉 in
accordance with Eq. (6). The resulting state vector of the
system after the recombination has the form

|�rec〉 = 1√
2NN !

N∑
n=0

(
N

n

)
eiθ(n−N/2)−2iξ (n−N/2)2

×
(

−1

2
b
†
+1 + eiβ

√
2
b
†
0 + 1

2
b
†
−1

)n

×
(

1

2
b
†
+1 + eiβ

√
2
b
†
0 − 1

2
b
†
−1

)N−n

|0〉, (13)

where we have omitted the irrelevant phase term
exp(−iξN2/2).

III. PROBABILITY DENSITY

The state that has n+ atoms in the cloud moving to the right,
n− in the cloud moving to left, and n0 = N − n+ − n− in the
cloud at rest, is described by the state vector

|n+,n−,n0〉 = (b†+1)n+
√

n+!

(b†−1)n−
√

n−!

(b†0)n0

√
n0!

|0〉. (14)

The probability of this outcome after the recombination is
given by the modulus squared of the probability amplitude
〈n+,n−,n0|�rec〉. Using Eq. (13), this probability amplitude
can be written as

〈n+,n−,n0|�rec〉

= 1√
2NN !

N∑
n=0

(
N

n

)
eiθ(n−N/2)−2iξ (n−N/2)2

×〈0| (b0)n0

√
n0!

(b−1)n−
√

n−!

(b+1)n+
√

n+!

(
−b

†
+1 − b

†
−1

2
+ eiβ

√
2
b
†
0

)n

×
(

b
†
+1 − b

†
−1

2
+ eiβ

√
2
b
†
0

)N−n

|0〉. (15)

Equation (15) can be recast as

〈n+,n−,n0|�rec〉

= 1√
2NN !

N∑
n=0

(
N

n

)
eiθ(n−N/2)−2iξ (n−N/2)2

× 1√
n+!n−!n0!

〈0| ∂n0

∂(b†0)n0

∂n−

∂(b†−1)n−

∂n+

∂(b†+1)n+

×
(

−b
†
+1 − b

†
−1

2
+ eiβ

√
2
b
†
0

)n

×
(

b
†
+1 − b

†
−1

2
+ eiβ

√
2
b
†
0

)N−n

|0〉. (16)
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The product of the two terms in parentheses can be represented
as the double sum(

−b
†
+1 − b

†
−1

2
+ eiβ

√
2
b
†
0

)n (
b
†
+1 − b

†
−1

2
+ eiβ

√
2
b
†
0

)N−n

=
n∑

i=0

N−n∑
j=0

(
n

i

)(
N − n

j

)(
eiβb

†
0√

2

)i+j

(−1)n−i

×
(

b
†
+1 − b

†
−1

2

)N−i−j

. (17)

The derivatives with respect to b0 in Eq. (16) will select only
the term with i + j = n0 from this sum, yielding

〈n+,n−,n0|�rec〉

= eiα

√
N !2n0−N

n0!n+!n−!

N∑
n=0

eiθ(n−N/2)−2iξ (n−N/2)2
I (n,n0), (18)

where

I (n,n0) = iN−n0

(
N

n

)(
N

n0

)−1

2N

n∑
i=0

N−n∑
j=0

δi+j,n0

(
n

j

)

×
(

N − n

j

)
(−1)n−i (19)

and

α = βn0 + (π/2)(n− − n+). (20)

The unwieldy expression (19) can be written in a much more
manageable form by evaluating Eq. (16) for ξ = 0. In this
case, summation in Eq. (16) can be readily carried out and,
after differentiation, Eq. (16) results in the expression

〈n+,n−,n0|�rec〉ξ=0

= eiα

√
N !2(n0−N)

n0!n+!n−!

(
cos

θ

2

)n0
(

sin
θ

2

)N−n0

. (21)

Comparison of Eq. (18) for ξ = 0 and Eq. (21) then shows that

N∑
n=0

einθ I (n,n0) = eiθN/2

(
cos

θ

2

)n0
(

sin
θ

2

)N−n0

(22)

immediately yielding

I (n,n0) = 1

π

∫ π

0
dx eix(N−2n)(cos x)n0 (sin x)N−n0 . (23)

Using Eq. (18), we can write the probability density

P (n+,n−,n0) = |〈n+,n−,n0|�rec〉|2

as the product of two functions,

P (n+,n−,n0) = P±(n+,n−,n0)P0(n0,θ,ξ ), (24)

where

P±(n+,n−,n0) = (N − n0)!

n+!n−!2N−n0
(25)

and

P0(n0,θ,ξ ) =
(

N

n0

)
|
(n0,θ,ξ )|2 (26)

with the function 
(n0,θ,ξ ) given by the relation


(n0,θ,ξ ) =
N∑

n=0

eiθ(n−N/2)−2iξ (n−N/2)2
I (n,n0). (27)

The function P± describes the probability of observing n+
and n− atoms in the right and left clouds, respectively, for any
given number n0 = N − (n+ + n−) atoms in the central cloud.
This function is independent both on θ and the nonlinearity ξ

and is normalized to one,

N−n0∑
n+=0

P± =
N−n0∑
n+=0

(N − n0)!2n0−N

n+!(N − n0 − n+)!
= 1. (28)

With the use of Stirling’s approximation in Eq. (25), P± can
be simplified to

P± =
√

2

π (N − n0)
exp

[
(n+ − n−)2

2(N − n0)

]
, (29)

with n+ + n− = N − n0. The function P0(n0,θ,ξ ) describes
the probability of observing n0 atoms in the central cloud. The
effects of both the external phase θ and the nonlinearity ξ are
contained in this function. It is also normalized to one,

N∑
n0=0

P0(n0,θ,ξ ) = 1. (30)

The function 
 (27) satisfies the symmetry relations


(n0, − θ ) = (−1)N−n0
(n0,θ ),
(31)


(n0,π − θ ) = 
(N − n0,θ ).]

The probability function P0 given by Eq. (26) is periodic in θ

with the period 2π . Relations (31) allow us in the following
to restrict our analysis to the values of θ lying in the interval
0 � θ � π/2 since

P0(n0, − θ ) = P0(n0,θ ),
(32)

P0(n0,π − θ ) = P0(N − n0,θ ).

IV. EVALUATING THE PROBABILITY
DENSITY FUNCTION P0

The exact expression for the probability density distribution
function P0 given by Eq. (26) is relatively complex and does
not lend itself readily to an easy interpretation. In the following
we shall transform and simplify it to make it more amenable
for the subsequent analysis.

The integral I (n,n0) given by Eq. (23) can be evaluated in
the complex plane by the method of steepest descent to yield

I (n,n0) = 1√
πN

exp

[
(N − n0) ln

√
1 − n0

N
+ n0 ln

√
n0

N

− (n − N/2)2

N

]
[ei(N−2n) arccos

√
n0/N

+ (−1)N−n0e−i(N−2n) arccos
√

n0/N ]. (33)
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Using Eq. (33) in the expression for 
 [Eq. (27)], approximat-
ing the summation by integration, and evaluating the integral,
we get


(n0) = 1√
1 + 2iξN

exp

[
(N − n0) ln

√
1 − n0

N

+ n0 ln

√
n0

N

]
[e−η− + (−1)N−n0e−η+ ], (34)

where

η∓ = N (arccos
√

n0/N ∓ θ/2)2

1 + 2iξN
. (35)

Finally, the use of the Stirling approximation and Eq. (34) in
Eq. (26) results in the expression for the probability density
P0,

P0(n0) = 1√
2π (1 + 4ξ 2N2)

√
N

n0(N − n0)

× |e−η− + (−1)N−n0e−η+|2. (36)

Equation (36) is not applicable at the two end points,
n0 = 0 and n0 = N , where it has to be replaced by the
expressions

P0(0) = 1√
1 + ξ 2N2

exp

[−2(π − θ )2N

1 + ξ 2N2

]
,

(37)

P0(N ) = 1√
1 + ξ 2N2

exp

[ −2θ2N

1 + ξ 2N2

]
.

V. FEATURES OF THE PROBABILITY DENSITY

Expressions (25) and (36) for the probability density
functions P± and P0 give the probability P (n+,n−,n0) =
P±P0 of observing any given number of atoms in the three
output ports (three atomic clouds) of an optical beamsplitter.
The function P± describes the probability of observing n+ and
n− atoms in the right and left clouds, respectively, for a fixed
number n0 = N − (n+ + n−) atoms in the central cloud. This
probability is the Gaussian distribution (29) with the average
values of n− and n+ given by

〈n−〉 = 〈n+〉 = 1
2 (N − n0) (38)

and the standard deviations

�n− = �n+ = 1
2

√
N − n0. (39)

The numbers of atoms in the right and left clouds are
anticorrelated,

Cov(n+,n−) = 〈n+n−〉 − 〈n+〉〈n−〉 = − 1
4 (N − n0). (40)

The probability to find n0 atoms in the central cloud is given
by the function P0(n0,θ,ξ ) Eq. (36). The dependence of this
function on its arguments is not trivial, so we start the analysis
by evaluating the expectation value of the atoms on the central
cloud 〈n0〉 and the standard deviation �n0.

The function P0 is proportional to the modulus squared of
the sum of two terms: P0 ∝ |e−η− + (−1)N−n0e−η+|2, where
η∓ are given by Eq. (35). The relative phase difference between
them, as a function of n0, changes rapidly due to the multiplier

(−1)n0 . Thus, the interference terms can be neglected in
calculating both the mean and the standard derivation,

〈n0〉 ≈
√

N√
2π (1 + 4ξ 2N2)

∫ N

0
dn0

√
n0

N − n0

× (e−2Reη− + e−2Reη+).

Evaluation of the above integral yields

〈n0〉 = N

2
[1 + exp(−2ξ 2N ) cos θ ]. (41)

Similarly, the standard deviation evaluates to

(�n0)2 = N2

8
[1 − exp(−4ξ 2N )][1 − exp(−4ξ 2N ) cos 2θ ].

(42)

To understand these results, we shall look at the dependence of
the function P0 on the number of atoms n0 for different values
of the strength of the interatomic interactions ξ . At relatively
small values of ξ such that ξ 	 1/

√
N , the term exp(−η−) in

the expression (36) for the probability dominates the second
one. The probability P0 is then a simple Gaussian

P0 ∝ exp

[
−2N (arccos

√
n0/N − θ/2)2

1 + 4ξ 2N2

]
(43)

with the maximum located at n0 = N cos2 θ/2. This situation
is shown in Fig. 1. The two curves in this figure are plots
of the function P0(n0) given by Eq. (36) versus n0 for two
different values of the interatomic interaction strength ξ . Both
curves correspond to the same value of the angle θ . The most
noticeable feature of Fig. 1 is the increase in the width of the
probability distribution with ξ . This behavior is explained by
Eq. (41), which in the limit ξ 	 1/

√
N reduces to

�n0 ≈
√

N

2
sin θ

√
1 + 4ξ 2N2. (44)

1000 1200 1400 1600 1800 2000
0

0.5

1.0

1.5

2.0

2.5

3.0

ξ = 0

ξ =
3

N

n
0

10
2  P

0

FIG. 1. Probability function P0 vs n0 for ξ = 0 and ξ = 3/N .
For both curves, θ = π/4 and N = 2000. Note that the abscissa axis
range is from n0 = 1000 to 2000.
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For very small values of ξ (ξ 	 1/N), the influence of the
interatomic interactions on the operation of the beamsplitter
is negligible. The relative standard deviation of the number
of atoms in the central cloud is inversely proportional to
the square root of the total number of atoms in the system:
�n0/N ∝ 1/

√
N . For 1/N 	 ξ 	 1/

√
N , the width of the

distribution linearly grows with the increase in ξ .
The mean value of n0 for ξ 	 1/

√
N reasonably closely

corresponds to the position of the peak. Equation (41) for 〈n0〉
in this limit yields

〈n0〉 ≈ N

2
(1 + cos θ ) . (45)

As is seen, n0 depends on θ but not on ξ .
For larger values of ξ ≈ 1/

√
N , the width of the probability

distribution function P0 becomes of the order of the total
number of atoms in the system N . The two terms exp(−η−)
and exp(−η+) in Eq. (36) are now comparable in magnitude.
The transition to this limit is shown by Figs. 2 and 3. Black
regions not resolved in Figs. 2 and 3 correspond to rapid
spatial oscillations with the period 2. These oscillations are
clearly seen in Fig. 4, which shows part of Fig. 3 for a
narrow range of values of n0. The oscillations are caused
by the interference between the two terms in Eq. (36). As
the magnitude of ξ approaches 1/

√
N , these terms become

comparable in magnitude. Because of the nearly π -phase
change between the two terms every time n0 changes by one
due to the factor (−1)n0 , the two terms consecutively add either
in phase or out of phase when one steps through different values
of n0. Along with rapid spatial oscillations, both Figs. 2 and
3 demonstrate oscillations of the envelopes at a much slower
spatial rate which are more pronounced for larger values of
the interaction strength. These oscillations are due to the fact
that the relative phase of the terms exp(−η−) and exp(−η+)
in Eq. (36) changes with n0. The nodes in Fig. 3 correspond
to the value of this relative phase being equal to 0 or a π and
antinodes have the phase shifted by ±π/2.

0 500 1000 1500 2000
0

0.5

1.0

1.5

2.0

2.5

3.0

n
0

10
3  P

0 

FIG. 2. Probability function P0 vs n0 for ξ = 0.2/
√

N , θ = π/4,

and N = 2000.

0 500 1000 1500 2000
0

0.5

1.0

1.5

2.0

n
0

10
3  P

0

FIG. 3. Probability function P0 vs n0 for ξ = 1/
√

N , θ = π/4,

and N = 2000.

Figures 2 and 3 indicate that the probability P0 and,
as a consequence, 〈n0〉 and �n0, become less sensitive to
changes in the environment-introduced angle θ . This fact
is graphically illustrated by Figs. 5 and 6, showing the
average value of the number of atoms in the central cloud
〈n0〉 and the standard deviation �n0 versus θ as given
by Eqs. (41) and (42), respectively. Figure 5 demonstrates
that increased interatomic interactions eventually lead to the
loss of contrast of interference fringes. Additionally, larger
interatomic interactions cause larger shot-to-shot fluctuations
in the number of atoms in each of the three output ports, as is
seen from Fig. 6.

The loss of contrast of the interference fringes can be
quantified by writing Eq. (41) as

〈n0〉 = N

2
(1 + V cos θ ), (46)

1100 1110 1120 1130 1140 1150
0

1

2

3

4

5

6

n
0

10
4  P

0 

FIG. 4. An enlargement of a part of Fig. 3 showing fast-scale
spatial oscillations of the probability function.
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0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

θ/π (rad)

〈 n
0〉/N

ξ = 0

ξ =
1√
N

ξ =
10

N

FIG. 5. Normalized mean value of the number of atoms in the
central cloud 〈n0〉/N vs θ for N = 2000.

where

V = exp(−2ξ 2N ) (47)

is the fringe contrast. Figure 7 shows the fringe contrast V
[Eq. (47)] as a function of ξ and demonstrates that the values
of ξ approaching 1/

√
N result in a washout of the interference

fringes.

VI. DISCUSSION

The value of the accumulated nonlinear phase per atom
due to interatomic interactions ξ given by Eq. (12) depends
on the volume of the BEC clouds [cf. Eq. (4)]. Experiments
[14,18,25–27] to be discussed in the following were conducted
in parabolic traps with confining potentials of the form:

V = M

2

(
ω2

xx
2 + ω2

yy
2 + ω2

zz
2
)
. (48)

0 0.5 1 1.5 2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

θ/π (rad)

∆ 
n 0/N

ξ = 0

ξ =
1√
N

ξ =
10

N

FIG. 6. Normalized standard deviation �n0/N vs θ for N = 2000.
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FIG. 7. Interference fringes contrast V as a function of the
strength of the interatomic interactions ξ

√
N .

Density profiles of the moving clouds are well described by
the Thomas-Fermi approximation

n(r) = |ψ±|2 = 15

8πRxRyRz

(
1 − x2

R2
x

− y2

R2
y

− z2

R2
z

)
(49)

(recall that ψ± are normalized to one).
Immediately after the splitting pulses, the density profiles

of the moving clouds are the same as that of the initial BEC
cloud containing N atoms and being in equilibrium in the
confining potential given by Eq. (48). After the splitting,
each moving cloud contains on the average N/2 atoms. The
repulsive nonlinearity is no longer balanced by the confining
potential and the radii of both clouds start to oscillate. The
maximum size of the oscillating clouds is the equilibrium size
corresponding to N atoms and the minimum size lies below the
equilibrium size corresponding to N/2 atoms. For estimates,
we can take R2

i in Eq. (49) to be given by equilibrium size of
a cloud with N/2 atoms: R2

i = 2µ/Mω2
i , where [37,38]

µ = 1

4

(
15√
2π

)2/5 (
N

U0

ā3

)2/5

(h̄ω̄)3/5 , (50)

U0 = 4πh̄2asc/M , ω̄ = (ωxωyωz)1/3, and ā = √
h̄/Mω̄.

Evaluation of the constant g [Eq. (4)] yields g =
(15U0)/(28πRxRyRz). The accumulated nonlinear phase per
atom due to interatomic interactions ξ , Eq. (12), is then given
by the expression

ξ = 1

7
(30

√
2)2/5

(as

ā

)2/5
ω̄T N−3/5, (51)

where T is the duration of the interferometric cycle.
The relative importance of interatomic interaction effects

on the operation of the interferometer is determined by the
parameter P = ξ

√
N ,

P = 0.64
(as

ā

)2/5
(ω̄T ) N−1/10. (52)

Figure 7 shows that the contrast of the interference fringes
decreases with the increase in P . The condition of good
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contrast can be somewhat arbitrarily stated as P < 1/2 (for
P = 0.5, the contrast V = 0.6).

Equation (52) shows that P ∝ T ω6/5N−1/10. The depen-
dence of P on the total number of atoms in the BEC clouds
is very weak, and so this parameter is primarily dependent
on the duration of the interferometric cycle and the averaged
frequency of the trap.

Experiments by Wang et al. [14] were conducted using the
Michelson geometry. The BEC consisted of about 105 87Rb
atoms [39]. The transverse and longitudinal frequencies of the
trap were 177 and 5 Hz, respectively. The propagation time
T was up to 10 ms. For these parameters and the value of
the scattering length as = 5.2 × 10−9 m [40], Eq. (52) yields
P ≈ 1.6 × 10−2. Thus, the interatomic interactions were not
limiting the visibility of the interference fringes in these
experiments.

Similar experiments were performed by Garcia [25] and
Burke [26] also in the geometry of a Michelson interferometer.
In Ref. [25], a BEC cloud of about 104 87Rb atoms has been
produced in a trap with the frequencies of 6.0, 1.2, and
3.0 Hz, respectively. The interferometric time T was about
40 ms. Using Eq. (52), we can evaluate the value of the
parameter P in the experiment as P ≈ 10−2, which was too
small to result in observed degradation of the contrast. The
loss of visibility in the experiment [25] was attributed by the
authors to spatial noise on the splitting beams and asymmetric
splitting of the cloud due to the condensate’s residual motion
when it was loaded into the trap. At longer times, the
loss of coherence might have been caused by various noise
sources. Similar results were reported in Ref. [26], where the
confinement frequencies were deliberately kept weak, making
the atomic density and thus the interatomic interaction effects
small.

Horikoshi et al. [18,27] demonstrated a BEC Mach-
Zehnder interferometer. The number of atoms in Ref. [27]
was about 3 × 103 and the radial frequency of the trap was
fixed at 60 Hz. The experiments have been conducted for
two different values of the axial frequencies and interrogation
times T . At an axial frequency of ωz = 2π × 17 Hz and the
propagation time of the cloud about T = 60 ms, the parameter
P = ξ

√
N estimated using Eq. (52) turns out to be about

0.38. For this value of P , Eq. (47) gives the value of the
fringe contrast about 70%. The experimental value is 30%
[27]. Similarly, for the axial frequency 10.29 Hz and the
interferometric time 97 ms, Eq. (52) gives the value of P ≈ 0.5
corresponding to an estimated contrast of 58%. In this case no
fringes were observed experimentally with about 40% scatter
of the data points. The authors of Ref. [27] conjecture that
vibrations could be the main source of the loss of fringes
in their experiments. The above estimates indicate that the
interatomic interactions discussed in the present paper could
be also partially responsible for the observed degradation of
the interference fringe.

ACKNOWLEDGMENTS

This work was partially supported by the De-
fense Advanced Research Projects Agency (Grant No.
W911NF-04-1-0043). A.A.Z. thanks E. Zhirova for helpful
discussions.

APPENDIX: MACH-ZEHNDER-TYPE INTERFEROMETER

In a Mach-Zehnder-type cold-atom interferometer, the
optical splitting π/2 pulse transforms a BEC cloud at rest
in a superposition of two clouds ψ0 and ψ+1. The first cloud
is at rest and the second one is moving. The clouds evolve
during the time T/2 and are then subject to the action of a π

pulse. It stops the moving cloud and brings the one at rest into
motion, i.e., transforms the ψ0 cloud into ψ+1 and vice versa.
After additional evolution time T/2, the clouds are subject to
a recombination π/2 pulse. After the recombination, both ψ0

and ψ+1 are in general populated.
Analysis of a Mach-Zehnder-type interferometer parallels

that given in the paper for the Michelson-type interferometer
and is somewhat simpler because with the Mach-Zehnder
interferometer there are only two output ports as opposed to
three in the case of a Michelson-type interferometer.

Let b†0 and b
†
+1 be operators which create an atom belonging

to a cloud at rest and moving to the right, respectively. The
Hamiltonian is of the form [cf. Eq. (3)

Heff = −W

2
(n̂+1 − n̂0) + g

(
n̂2

+1 + n̂2
0

)
, (A1)

where the notations are the same as in Sec. II.
The state vector of the system at the beginning of the

interferometric cycle before the splitting pulse is given by
Eq. (5).

The splitting and recombination π/2 pulse couples the
operators b1 and b0 according to the rules

b0 → 1√
2

(b0 + ib+1),

(A2)

b+1 → 1√
2

(ib0 − b+1).

For the π pulse, similarly, one has

b0 → ib+1, b+1 → −ib0. (A3)

By repeating steps of Sec. II, we arrive at the following
expression for the state vector of the system after the
recombination pulse:

|�rec〉 = 1

2N
√

N !

N∑
n=0

(
N

n

)
eiθ(n−N/2)−2iξ (n−N/2)2

× (b†0 − ib
†
+1)n(b†0 + ib

†
+1)N−n|0〉. (A4)

The probability to have after the recombination n0 atoms at
rest and n+ = N − n0 atoms moving is given by the mod-
ulus squared of the probability amplitude 〈n0,N − n0|�rec〉.
Here

|n0,n+〉 = (b†0)n0

√
n0!

(b†+1)n+
√

n+!
|0〉 (A5)

is the state with n0 atoms at rest and n+ atoms moving,
respectively.

Repeating steps of Sec. III, the probability P (n0) =
|〈n0,N − n0|�rec〉|2 can be written as

P (n0,θ,ξ ) =
(

N

n0

)
|
(n0,θ,ξ )|2 , (A6)
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where 
 is given by Eq. (27) with the function I (n,n0)
in Eq. (27) given by the relation (23). The probability P

[Eq. (A6)] is thus completely identical to the probability

P0 [Eq. (26)] of Sec. III. All relations of Secs. IV and
VI equally apply to the case of the Mach-Zehnder-type
interferometer.
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