
Implementing Emulated Communication Models for
Hybrid and Dynamic Network Topologies

by

Joseph Murphy

A Thesis
Submitted to the Faculty

of the
WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the
Degree of Master of Science

in

Electrical and Computer Engineering
by

December 2022

APPROVED:

Professor Alexander Wyglinski, Research Advisor

Professor Bashima Islam

Professor Carlo Pinciroli

Abstract

In this thesis, network emulation is presented as a solution to testing, developing, and

extending communication systems in a time- and cost-effective manner. Complex hybrid and

dynamic wireless networks require extensive testing that is not easily conducted in hardware

testbeds and may not be modeled accurately enough in network simulation tools. Network

emulation provides the benefits of both hardware testbeds and simulation tools while also

minimizing the shortcomings of each. This thesis evaluates the Extendable Mobile Ad-hoc

Network Emulator (EMANE) as a network emulation tool by assessing its ability to emulate

several complex network models. These models include hybrid wireless rural broadband

deployments, an intelligent routing software development environment, and dynamic robot

swarm networks. The emulated models were determined to be accurate enough to their

hardware counterparts such that EMANE can be used as an effective tool for prototyping

and testing communication systems.

iii

Acknowledgements

I would first and foremost like to thank Professor Alexander Wyglinski for all the advice

and guidance he has provided me with, not only throughout this thesis and graduate

degree, but also my entire senior year and capstone design project. Without his insights

and advice, this project would not be complete.

I would like to thank Professor Carlo Pinciroli and Professor Bashima Islam for serving as

my research committee members and providing me with feedback on my work.

Thank you to both the teams at US Ignite and the U.S. Army DEVCOM for supporting

my graduate degree and providing me with the tools necessary to complete my research.

And lastly, a special thank you to all my friends and family for their endless support

throughout my entire academic career.

iv

Contents

List of Figures vi

List of Tables viii

1 Introduction 1

2 Overview on Network Emulation 3
2.1 Testing Communication Networks . 3
2.2 Evaluation of Network Testing Tools . 4
2.3 Using EMANE . 9

2.3.1 Emulation Model Processing . 12
2.3.2 Transport Boundary Processing . 16
2.3.3 Event Processing . 17

2.4 Routing in Mobile Mesh Networks . 19
2.4.1 Proactive Mesh Routing . 20
2.4.2 Reactive Routing . 21

2.5 Chapter Summary . 22

3 Hybrid Wireless Rural Broadband Networks 23
3.1 Hardware Testbed Network Topologies . 23

3.1.1 OVERCOME Testbed . 24
3.1.2 ZoomTel Testbed . 25

3.2 Creating the Networks in EMANE . 26
3.3 Hardware Results versus Emulation Results 28
3.4 Chapter Summary . 31

4 Networking Software Development Environment 32
4.1 Intelligent Method of Bandwidth Distribution 32
4.2 Implementing the Software . 34

4.2.1 Stage 1: Classification . 34
4.2.2 Stage 2: Allocation . 37

4.3 Effectiveness of the Program . 38
4.4 Chapter Summary . 40

v

5 Dynamic Robot Swarm Networks 42
5.1 Extending Existing Software . 42
5.2 Integrating the Software . 43
5.3 Integration Design Decisions . 46
5.4 Integration Results . 47
5.5 Chapter Summary . 48

6 Conclusion 49
6.1 Evaluating EMANE and Network Emulation 49
6.2 Limitations of Network Emulation . 50
6.3 Research Outcomes . 51
6.4 Future Work . 52

Bibliography 53

A Installation of EMANE 58

B Intelligent Router Source Code 60
B.1 Control Script . 60
B.2 Classification . 61
B.3 Allocation . 65

C ARGoS-EMANE Interface Source Code 70
C.1 Main Code . 70
C.2 Shared Memory Data Structures . 75
C.3 Drone Object . 77

vi

List of Figures

2.1 An example of the OMNeT++ Simulator GUI (from [1]). 6
2.2 An example of the CORE Emulator GUI (from [2]). 7
2.3 The configuration menu for EMANE, within CORE (from [3]). 8
2.4 Downloading the precompiled EMANE binaries using the wget command. . 10
2.5 Installing the EMANE program dpkg command. 10
2.6 Verifying EMANE installed correctly by displaying the version number. . . 10
2.7 An overview of an individual EMANE emulated network node. 12
2.8 A generic configuration file for an EMANE PHY Plugin 15
2.9 The packet complete rate (PCR) table and corresponding curve. 16
2.10 An example EMANE topology using the raw transport plugin. 17
2.11 An example EMANE topology using the virtual transport plugin. 18
2.12 An example of an EEL file provided to the EMANE event service. 19
2.13 An overview of an individual EMANE emulated network node. 21

3.1 The network topology of the testbed built as part of Project OVERCOME [4]
in Turney, MO. 24

3.2 The network topology of the experimental testbed built as part of the Zoom-
Tel project. 25

3.3 The emulation testbed topology corresponding to the OVERCOME project. 27
3.4 The emulation testbed topology corresponding to the ZoomTel project. . . 27
3.5 The console output of an iperf3 test used to find the throughput for part of

the ZoomTel EMANE testbed. 29

4.1 The modified OVERCOME EMANE testbed used for development of the
intelligent router program. The primary modification is the removal of the
mmWave environment. 33

4.2 An example of the output of the iftop utility used to measure bandwidth on
the OVERCOME network. 35

4.3 An example of the data output but the classification stage of the intelligent
router program. IP addresses have been censored for privacy. 35

4.4 An overview of the algorithm that operates to classify each host on the net-
work as a part of the intelligent router program. 36

vii

4.5 An overview of the algorithm that operates to allocate bandwidth to each
host on the network as a part of the intelligent router program. 38

4.6 The total network usage for thirty houses in the Project OVERCOME testbed
during weeks 2 and 3 of the intelligent router test. 40

4.7 The total network usage for thirty houses in the Project OVERCOME testbed
during weeks 2 and 3 of the intelligent router test. 41

5.1 The topology of the ARGoS-EMANE integration system. All the major
systems as well as the interconnections between them are displayed. 45

5.2 A dump of several events that were sent over the EMANE event channel.
These location events show that ARGoS is delivering location data to the
interface script, which is subsequently delivering location events to EMANE. 48

viii

List of Tables

2.1 Pros and Cons of Different Types of Network Testing 4
2.2 Overview of Advantages and Disadvantages of Different Networking Testing

Tools . 8

3.1 mmWave Model EMANE Parameters . 26
3.2 Ubiquiti LTU Model EMANE Parameters 26
3.3 Latency and throughput measurements from the Projects OVERCOME,

ZoomTel, and EMANE testbeds. 30

4.1 Priority groups for the intelligent router, based on user bandwidth behaviors 36

5.1 Contents of the shared memory metadata file. Includes which processes are
responsible for what data . 44

5.2 Contents of the shared memory robot pose file. Includes which processes are
responsible for what data . 44

5.3 Contents of the shared memory robot communications file. Includes which
processes are responsible for what data . 44

1

Chapter 1

Introduction

The need for wireless communications and network technology is rapidly growing. As an

increasing number of devices become network-enabled, the need for technology to support

this rapid growth becomes apparent. Despite this need for interconnectivity, there is still a

large divide in the amount of people with access to broadband services. A study conducted

in early 2021 found that rural broadband deployments are increasing, but rural communities

still lag behind suburban and urban communities in terms of connectivity [5]. Additionally

over the last 10 years, the number of adults in the U.S. that rely on the Internet has grown

by 10% [6]. This heavy reliance on networks and the Internet is expected to continue, with

experts estimating in the next 10 years, the number of Internet of things (IoT) devices alone

will triple from ten billion to thirty billion [7]. The demand for new wireless technologies and

systems creates issues with testing and deployment. Part of the reason rural communities lag

behind is due to the difficulty in rapidly developing, deploying, and testing communication

technology. To attempt to minimize this issue several tools have been created that allow

for testing networks, with the goal of lowering the difficulty of testing.

Many software and combination software-hardware platforms exist for testing networks.

Tools such as ns-3 [8], MATLAB [9], and GNURadio [10] all provide different platforms for

testing with different areas of focus. MATLAB is a good tool for doing signal processing

and analysis, but has little support for real-time networking. ns-3 provides great support

for network protocols, but abstractions are made at the physical layer that may call into

question the results in many use cases.

Despite several tools existing to test networks, the issue of cost, accessibility, and accu-

racy are still rampant. Many of the tools that have highly accurate models of the entire

2

OSI model, from the physical layer through the transport layer, are very expensive and

not attainable. NetSim [11] and OPNET [12] (now part of the Riverbed platform), provide

enterprise-grade modeling, but requires licensing to use. GNURadio allows for interactions

with wireless communication hardware and software-defined radios, but the hardware com-

ponent is still an expensive cost that needs to be avoided. Another issue with several of

the existing tools is the complexity to set up. Many tools require extensive programming

knowledge to be able to achieve the desired result, or do not provide an easy mechanism

with which to analyze results.

This thesis proposes several solutions to contribute to the field of network and commu-

nications testing:

• The Extendable Mobile Ad-hoc Network Emulator (EMANE) [13] is proposed as a

valuable testing tool that addresses issues with other similar networking simulation

tools. An overview of installing and using the tool is provided.

• An initial program designed to maximize bandwidth usage in a constrained wireless

network is developed. This is used as an example of how EMANE can be used as a

network software development environment.

• Basic integration between EMANE and the robot swarm simulator ARGoS is created.

EMANE is shown to be capable of extending and enhancing other tools to provide

accurate communication emulation when required.

The remainder of this thesis is organized as follows: Chapter 2 presents an overview of

the network emulator EMANE and the motivation behind the selection of this tool. An

overview of the how to use EMANE and its subsystems is presented. Three different use-

cases for the EMANE tool are considered to evaluate the effectiveness of the tool. Chapter 3

proposes the first use case for testing with EMANE, testing rural broadband deployments.

Two similar network topologies are proposed and tested with the help of EMANE. Chapter 4

explores a second use case for utilizing EMANE, development of networking technologies

and systems. In this case a program for more intelligent allocated limited bandwidth is

developed. Chapter 5 finally details a third use case for EMANE, integrating with other

simulation tools to provide more accurate communication models. The thesis is concluded

with a summary of work completed and recommendations for future work in Chapter 6.

3

Chapter 2

Overview on Network Emulation

Before utilizing the EMANE tool and presenting several situations in which we can use

the tool, we must first understand why EMANE was selected and why network emulation

is used over simulation or hardware testbeds in this thesis. After justifying the choices

behind selecting EMANE, an in-depth tutorial on the tool’s installation, configuration,

and operation is presented. Finally, a brief overview of mobile ad-hoc network (MANET)

routing is presented. These protocols are essential to understand as they are commonly

used in EMANE to create routes between nodes.

2.1 Testing Communication Networks

There are typically three ways new network architectures, technologies, and protocols

are developed and tested. These are network simulation, network emulation, and hardware

testbeds [14]. As expected, each of the three methods has pros and cons as shown in

Table 2.1.

Hardware testbeds are the most accurate since they encompass the devices expected

to be used in the network once development and testing are done. However, hardware

is expensive to purchase, time-consuming to deploy, and often difficult to troubleshoot if

errors do not consistently appear [15]. These factors make hardware testing not accessible

to users that have a low budget.

Network simulation is one solution to testing that solves many issues with testing on

hardware. Several free and open-source network simulators such as ns-3 [8] or OMNeT++ [1]

are commonly used and provide a solution to the high hardware costs. Similar to most

4

network simulators, these simulators operate on the concept that the behavior of a network

and its components can be modeled via statistical and mathematical models. Creating

models for network behavior allows simulators to run faster than real-time since the models

do not need to wait for events to happen. However, the caveat is that simulation models

must be highly accurate when developed, or results from the simulation will not match

expected hardware behavior. Researchers creating new simulation models must ensure the

models are validated against the expected hardware behavior to confirm the accuracy of

the models before they can be used in testing [16]. Simulation also has the benefit of being

highly repeatable since the behavior of the network can be more tightly controlled, and any

random processes can be set up to repeat previous random outputs [14].

Network emulation exists somewhere between testing on hardware and testing inside a

simulation. These emulators are still software that gets used to mirror the behavior of a

testbed, such as simulators. However, emulators operate on actual network data instead of

modeling the behavior of a network. Since emulation testbeds operate on actual network

traffic, they also can interface with hardware. This hardware-in-the-loop functionality allows

hardware testing without the need to build an entire hardware network. This characteristic

of operating on real network traffic also has the downside of introducing more computational

overhead. The system emulating the network needs to manage all the test traffic as well as

the effects and permutations that are imparted on the traffic.

Table 2.1: Pros and Cons of Different Types of Network Testing
Testbed Type Pros Cons

Hardware
• Highly accurate
• Does not require modification of networking software

• Expensive to build
• Time consuming to deploy and configure
• Errors can be sporadic

Simulation
• Free tools available
• Can run faster than real-time
• Easy to reconfigure and modify

• Models must be designed to be highly accurate
• Software must be translated to a simulation model

Emulation
• Free tools available
• Can run native implementations of network software
• Can interface with hardware

• Must run in real-time
• Requires higher computational overhead

2.2 Evaluation of Network Testing Tools

During the initial research for this thesis, several network simulation and emulation tools

were considered for use in this thesis. These programs all provide functionality that would

achieve the goals of performing inexpensive and less time-consuming network testing but

5

were eventually decided against in favor of EMANE. This section will highlight a few of

these tools and explain the reasoning behind why they were not selected before finishing by

introducing EMANE and explaining the driving reasons for its selection.

One of the most common tools, ns-3, is a discrete event-based network simulation tool

commonly used to simulate TCP/IP networks [8]. It is the successor to the ns-2 tool [17],

with the two significant differences being how simulation scripts are written and executed

in the simulator. In ns-3, the core simulator and experiment scripts are written in C++.

ns-3 also provides Python bindings so smaller scripts can be written using Python instead.

This makes ns-3 much simpler than ns-2, which required the use of Tcl scripts to create

experiments [18]. The migration from ns-2’s programming method to ns-3’s makes the tool

easier to use. However, it still requires a significant amount of programming knowledge to

understand how to utilize the library of models provided. Being one of the most commonly

used tools, ns-3’s library of simulation modules has been extensively validated, but these

modules typically focus on the network layer and above. ns-3 can be used as an emulator;

however, the motivation for the emulation mode in ns-3 was primarily driven by the ability

to use ns-3 with hardware [19]. Since we want to avoid wireless hardware equipment, this

option for ns-3 is not valuable for the research present in this paper. The wide-scale use and

extensive support of ns-3 made the tool a promising candidate, but it was decided against

due to the abstractions made at the physical layer.

OMNeT++ is another discrete event simulator written in C++, similar to ns-3. How-

ever, OMNeT++ it is not explicitly designed as a communications network simulator [1].

Despite not being designed as a communications network simulator, the ability to create

plugins for the tool has led to many researchers creating models of communication networks

that can be used. The issue with this collection of plugins is that many users have found

them to be highly incompatible with each other. This is likely due to the isolated nature

many of the modules were developed under [20]. One of the advantages of OMNeT++

is that it supports a graphical user interface that allows for more accessible building of

and interaction with network testbeds. Figure 2.1 shows an example of this GUI, which is

based on the Eclipse IDE. Since OMNeT++ is not designed for communications networks

specifically and many plugins are incompatible, it was decided not to be used.

The Common Open Research Emulator (CORE) is an emulation tool focused on the

emulation of layers three (network layer) and above in the OSI stack [2]. Of all the tools

presented so far, CORE is one of the easiest to use. Similar to OMNeT++, CORE provides

6

Figure 2.1: An example of the OMNeT++ Simulator GUI (from [1]).

the user with a GUI that takes the form of a blank canvas where users can drag and

drop preconfigured nodes, such as routers and servers, into a network implementation.

Figure 2.2 is a basic example of how a typical CORE session appears. CORE also allows

users to create virtual nodes via a Python framework, which is helpful for more complex

scenarios. Without any modification, CORE emulates the network layer and above perfectly,

as each virtual node is running the actual, unmodified software that would be running on

hardware [3]. Where CORE runs into issues is when wireless channels are introduced. By

default, CORE operates on the concept that if nodes are close enough to communicate,

they have a perfect connection, and if they are far enough apart by a certain distance,

they can not communicate. This simplification is not acceptable for most testing requiring

accurate wireless communication modeling. To solve this issue, EMANE was integrated

into CORE so that all physical and data link layer emulation happened through EMANE

instead [3]. Figure 2.3 shows the configuration menu for EMANE within CORE. With this

pairing, CORE and EMANE become a very valuable tool. However, in this thesis CORE is

not used independently or alongside EMANE. The main reasoning is that most protocols

being used at the network layer or higher are not present in CORE, and computational

7

complexity can be saved by running them in EMANE directly, without CORE.

Figure 2.2: An example of the CORE Emulator GUI (from [2]).

EMANE is a network emulation tool originally developed by the Naval Research Lab and

currently maintained by AdjacentLink LLC [13]. The tool is a discrete event-driven emulator

programmed in C++ and Python, and is configured by the user primarily through XML

files and Bash scripts. The software was developed with the intention of creating a platform

that could emulate the physical and data link layers of the OSI network model with high

accuracy, therefore avoiding many of the abstractions made by other tools. EMANE consists

of several subsystems and components required to create a fully functional testbed, and this

complexity can lead to an initial steep learning curve with the tool. However, given that

the tool is open-source, the online community around EMANE is rather small and most of

the discussion and troubleshooting surrounding the tool is only found on EMANE’s GitHub

issues page, not helping solve the initial complexity issue. Despite all this, once the user

forms a solid understanding of the tools and systems within the software, it can be used to

effectively and quickly create wireless networks. EMANE’s ability to be configured through

XML files makes deployment of networks very rapid, and because the included models are

pluggable, these configuration files can be reused in other networks using the same wireless

8

Figure 2.3: The configuration menu for EMANE, within CORE (from [3]).

technology. For these reasons and the reasons highlighted previously regarding other testing

tools, EMANE was selected as the tool of choice for this thesis. The next section is dedicated

to understanding how to install the tool, and how all the pieces work together.

Table 2.2 highlights the main advantages and disadvantages of each of these tools.

Table 2.2: Overview of Advantages and Disadvantages of Different Networking Testing
Tools

Tool Advantages Disadvantages

ns-3
Open-source

Extensive protocol library
Widely used and validated

Abstracts the PHY and MAC layers
Limited control of individual nodes
Simple wireless propagation models

OMNeT++
GUI-based

Large library of models
Not purpose built for network simulation
Provided models are often not compatible

CORE
Open-source
GUI-based

Simple models do not require programming knowledge

Only emulates the network layer and above
Limited network protocols available by default

EMANE
Open-source

Purpose built to emulate PHY and MAC layer
Can use any implementation of network software

Small online community
Initial steep learning curve

Requires extensive computing resources for large-scale networks

9

2.3 Using EMANE

Having selected EMANE for use in this thesis, we must now understand how to install,

configure, and operate the tool. This section will begin by detailing the installation of

EMANE. The primary two methods of installation are using the bundle of pre-built binaries

provided by AdjacentLink or building all the required programs from source. Compiling the

software from source is typically only necessary when making extensions to the tool, such as

adding custom modules. Since only the default included modules are used in this thesis, the

precompiled bundle is sufficient for our purposes. The installation instructions for EMANE

can be found in [21], but it should be noted that these instructions are sometimes out of

date. The full EMANE GitHub repository [22] may also provide guidance that is more up

to date. EMANE version 1.3.3 was the primary version of the tool used in this work, and

this version supports the Rocky 8, Fedora 37, and Ubuntu 20.04 Linux distributions.

These instructions assume a fresh installation of Ubuntu 20.04.4 is being used and that

the system is up-to-date with the latest software. If a different supported distribution of

Linux is used, the steps will be similar, however the exact commands will differ. Refer

to [21, 22] for further details. See Appendix A for a list of the specific commands used to

complete the entire installation process.

1. The first step is downloading the precompiled binaries. As seen in Figure 2.4, the

wget utility is used to download the compressed file, but any method for retrieving

this file can be used. This compressed file should be extracted before the next step.

2. To install the downloaded binaries, the dpkg application is used. Errors will be re-

ported upon installation, as not all the dependencies are installed. This will be fixed

after the initial installation via apt. Figure 2.5 shows the initial installation finishing

with errors, and the command used to fix these errors.

3. Lastly, we can verify that EMANE was installed correctly by having the program

output its version. Figure 2.6 shows that EMANE version 1.3.3 was successfully

installed.

4. Once installation of EMANE has been verified, additional support software (such as

testing tools and routing protocols) can be installed to use with EMANE. Appendix A

shows some examples of installing certain tools.

10

Figure 2.4: Downloading the precompiled EMANE binaries using the wget command.

Figure 2.5: Installing the EMANE program dpkg command.

Figure 2.6: Verifying EMANE installed correctly by displaying the version number.

11

Now that EMANE is installed, it is important to understand the major systems that

work together to enable network emulation. The main structure in EMANE that everything

operates around is known as the Network Emulation Module (NEM). Each NEM can be

thought of as a single network node, similar to a singular radio. As each NEM is an

independent network node, every NEM created requires network stack isolation within the

kernel of the host system. All the traffic flowing through the emulation testbed consists

of real IP packets and are therefore treated in the same way as regular network traffic by

the kernel. If the network stacks were not isolated, packets would not route through the

emulator and would instead just be switched between processes in the kernel, bypassing all

wireless channel effects.

There are several methods than can be used to create network stack isolation. Full

virtual machines could be used, but these are very computationally inefficient and would

not allow the emulated testbed to maintain a large number of nodes. Additionally, nodes

in EMANE do not need the full isolation provided by virtual machines, and it is even

beneficial if the file system could be shared. To solve this problem, containers are used

as the primary method of isolation. [23] examines several types of virtualization that can

be used for isolation nodes in CORE, but the same concepts apply to EMANE. Between

FreeBSD jails, Linux OpenVZ containers, and Linux namespaces containers, the namespaces

containers are found to be the most efficient. For most examples of EMANE and all the

testbeds created in this thesis, Linux Containers (LXCs) are used. These are lightweight

containers that are built on top of Linux namespaces and allow for the sharing of files and

other resources, while keeping processes and the network stack isolated.

Figure 2.7 shows how a typical EMANE emulation node appears, with one of these

structures existing per LXC. In this diagram, the NEM is visible, with all of its surrounding

subsystems and connections. The blue boxes within the NEM are the emulation models

that are responsible for imparting wireless channel effects on packets moving upstream and

downstream through the emulator. The green boxes represent the transport boundary.

This is the edge of the emulation node where packets leave the emulator and return to

normal application space. The orange box represents the event service that is responsible

for changing the state and settings of the emulator during runtime in order to create effects

in the network. These three systems are the major subsystems that make up EMANE and

allow it to create highly dynamic networks, used to test a variety of situations and will be

examined in depth in the next three subsections.

12

Figure 2.7: An overview of an individual EMANE emulated network node.

2.3.1 Emulation Model Processing

The emulation model processing is the system primarily responsible for modifying pack-

ets traveling through the NEM to mimic the behavior of a wireless signal. This system in

EMANE consists of two main parts, the Physical Layer Plugin and the Radio Model Plugin,

both of which can be seen in blue in Figure 2.7. As the names of the plugins imply, the

Physical Layer plugin is responsible for imparting the effects of the physical layer, and the

Radio model plugin is responsible for the MAC Layer. The Over the Air (OTA) Channel

Manager is primarily responsible for pulling packets addressed to the NEM off of the shared

bus, and putting packets ready to be transmitted onto the shared channel. This shared

OTA channel simply takes the form of a virtual interface bridge that all NEMs are attached

13

to, creating a bus topology. The NEMs use a multicast scheme to listen for packets as other

control channels also use this interface bridge to communicate. It is the main backbone of

the emulation that connects all the individual network nodes, both for control messages,

but also data payloads.

As previously mentioned, the shared PHY plugin is responsible for the effects of the

physical layer. It is possible to create a custom Physical Layer model, but is usually not

necessary and only one PHY model is included in EMANE by default. This model is

responsible for attributes such as path loss and signal propagation, fading, noise modeling,

and the antenna profile.

The first parameter to be set is the propagation model. This model is responsible for

calculating the expected path loss between two nodes, and has three options. The first two

options are freespace and 2ray. These use location data contained within the node and the

freespace or 2-ray flat earth model to calculate the path loss of a channel. The third option

is called precomputed and is used when the path loss is to be calculated external to the

emulator. This is useful if a more complex model is to be used, or a different tool is being

used to model signal propagation.

The second configuration step is related to the power characteristics of the node and its

virtual antenna. Transmit power can be set, and serves the same purpose it would on a

hardware radio. The antenna gains can be set as a static value, or a more complex profile

that contains a list of antenna pattern entries. The following is an example of the contents

of an antenna profile file from the CORE/EMANE documentation [2]:

<!-- 30degree sector antenna pattern with main beam at +6dB and gain

decreasing by 3dB every 5 degrees in elevation or bearing.-->↪→

<antennaprofile>

<antennapattern>

<elevation min='-90' max='-16'>

<bearing min='0' max='359'>

<gain value='-200'/>

</bearing>

</elevation>

<elevation min='-15' max='-11'>

<bearing min='0' max='5'>

<gain value='0'/>

</bearing>

14

The final piece of the PHY model that must be understood is noise modeling. EMANE

models noise by taking the transmission power of any NEM actively transmitting, and

adding it to the noise floor of any receiving node if that receiver’s set frequency is within

the bandwidth of the interfering signal. This results in all interfering signals being treated

as white noise [24]. EMANE provides parameters to set if the noise mode is for all signals

within the correct frequency, just signals that are out-of-band, or turning off noise processing

completely. Once all of these factors are set, EMANE can then use the following two

equations to determine if a packet can actually be received:

rxPower = txPower + txAntennaGain + rxAntennaGain− pathloss

rxSensitivity = −174 + noiseF igure + 10log(bandwidth)

If the received power (rxPower) is greater than the receiver’s sensitivity (rxSensitivity), the

packet is received. Figure 2.8 shows how a general Physical Layer Plugin configuration file

appears.

The second piece of the emulation model processing layer of EMANE is the Radio Model

plugins. Unlike the PHY plugin which is shared for all NEMs, the Radio plugin is different

depending on the type of waveform emulation desired. EMANE ships with four Radio

plugins:

• rfPipe - A generic wireless channel that does not do channel access functions

• IEEE802.11abg - A model specifically for 2.4GHz Wi-Fi waveforms

• TDMA - A generic time division multiple access scheme

• Bypass - A model specifically for testing that passes traffic along to the next layer

unchanged

Other plugins can be created by extending the emulator, and a plugin designed for LTE

and 5G is currently under development in collaboration with the srsRAN project [25,26].

These four plugins all operate differently, but for the purposes of this thesis only the

rfPipe model will be used. The goal of rfPipe is to create a simple model that handles

data rate, delay, jitter, and probability of packet loss due to signal to interference and noise

ratio (SINR). The data rate, delay, and jitter are all simple parameters that get set and are

implemented by holding packets at the radio model layer long enough to achieve the set

15

Figure 2.8: A generic configuration file for an EMANE PHY Plugin

values. The Packet Completion Rate (PCR) utilizes the signal, interference, and noise power

levels calculated by the Physical Layer model to find the SINR value, and compares that to

a lookup table. The portion of the table and corresponding curves, as seen in Figure 2.9,

are used to come up with a probability value that is used to decided if the packet should

be lost or otherwise corrupted due to noise.

One of the essential pieces of the emulation processing system is ensuring the models

used are accurate to hardware, to ensure results from the emulator are accurate. While

several studies use the rfPipe model [27–29], very little literature could be found validating

the models included within EMANE. The rfPipe model is generic enough that there are no

modulation schemes or other access functions that need to be validated, but the implemen-

tation of the behavior must still be checked. Similarly, the calculations performed at the

Physical Layer are fairly simple, but must also be validated. A validation similar to the one

16

Figure 2.9: The packet complete rate (PCR) table and corresponding curve.

found for the time-divison multiple access (TDMA) model [30], should be performed for all

models presently in EMANE, as well as for any custom models created. For the purposes

of this thesis, EMANE is being used to test parameters such as throughput and latency

which can be easily compared to hardware equivalent testbeds. Chapter 3 will examine this

to make comparisons between the two, however, if EMANE is to be used in more advanced

testbeds with highly complex models, validation is essential.

2.3.2 Transport Boundary Processing

The second system required to operate EMANE is the transport boundary. The trans-

port boundary is represented in Figure 2.7 by the green boxes, and is responsible for hand-

ing packets entering and exiting the emulator. Since EMANE is capable on operating on

actual TCP/IP packets, one of the main roles of the transport boundary is to translate

TCP/IP packets entering the emulator into something EMANE can operate on, and trans-

late EMANE’s packet back into TCP/IP packets. There are two types of transports that

can be used with EMANE: raw transports and virtual transports.

Raw transports are used for enabling the hardware in the loop functionality of EMANE.

When a raw transport plugin is initialized, it is connected to a hardware network interface

17

present on the emulation host machine. This breaks the convention of having EMANE

nodes exist within LXCs, but if only one EMANE node is present on the host the node can

run external to a virtualized environment. If multiple nodes exist, a pair of virtual network

interfaces can be created and bridged to the hardware interface to create a tunnel from

inside the LXC to the hardware interface on the host. This method is used in Chapters 3

and 4 and will be outlined in more detail there. Figure 2.10 shows an example of the layout

of the network interface on the host and the EMANE instance.

Figure 2.10: An example EMANE topology using the raw transport plugin.

The second type of transport are virtual transport plugins. These are more the com-

monly used plugins that carry data from the emulator instance to application space via a

virtual network interface. When EMANE is started in an LXC using a virtual transport,

the LXC is created with a pair of virtual interfaces. One of the interfaces is internal to

the LXC and is used as the endpoint for EMANE, the other is external to the LXC and is

bridged together with all the other nodes to allow traffic to pass. Figure 2.11 shows an ex-

ample layout of the virtual network interfaces bridged together between EMANE instances,

internal on the host machine.

2.3.3 Event Processing

Event processing is the system in EMANE that allows parameters of the simulator to

change during runtime. There are five main event types. The first type, “pathloss”, is used

when the propagation model is set to precomputed and allows an external tool to make path

18

Figure 2.11: An example EMANE topology using the virtual transport plugin.

loss calculations. The second type, “location”, is used to move nodes around and primarily

influences path loss values that are calculated internally to the tool when using freespace

or 2ray settings. The location event can take latitude, longitude, altitude, pitch, yaw, roll,

and velocity data for a node. The third event type is the “antenna profile” event. Similar

to the antenna profile setting in the Physical Layer plugin, this event can be used to feed

antenna data to a node, and change that data during runtime. The fourth event is used

to change the fading model being used. This event is fairly simple and is used to toggle

whether a node uses the Nakagami fading model or no fading model. The final event is

called “Comm Effect”, and is used to change generic communication parameters of a node,

such as the latency, jitter, or probability of packet loss and duplication.

There are two primary methods by which events get generated for distribution to nodes.

The first is using an EEL file. This file is a specific EMANE file that is taken in at the

start of emulation and contains “sentences” that outline event parameters and what time

during the simulation they should begin. Figure 2.12 shows an example of an EEL file

and the sentences contained within. The first value is the time the event is scheduled to

fire, in this case all of these events fire at the start of emulation. The second value is

the ID of the NEM the event is destined for, and this is followed by the event name and

any corresponding parameters for that event type. The other main method for generating

events is through Python bindings that allow direct subscription to the event channel for

publishing of events. Events are passed to NEMs via the event channel, but all this channel

is, is a different multicast service that the NEMs subscribe to on the same virtual network

19

interface bridge that the over the air channel lives on. By putting both of these channels on

the same bridge, the complexity of managing several network devices per NEM is lessened.

Figure 2.12: An example of an EEL file provided to the EMANE event service.

2.4 Routing in Mobile Mesh Networks

EMANE was designed originally to work with mobile ad-hoc networks (MANETs).

While emulating other network types is possible, MANET routing protocols work well with

EMANE’s architecture and are often used. This special classification of network is charac-

terized by its dynamic topology that often rapidly changes due to the mobility of network

nodes and the tendency for the wireless links to intermittently connect and disconnect [31].

This lack of a fixed topology means that any node that exists in the network must be able

to communicate without help from centralized infrastructure or a gateway and therefore

must be able to independently make routing decisions. Since the topology of a MANET is

a mesh, the primary method for traffic traveling through the network is through relaying.

Each node in the mesh acts as a router and upon receiving network traffic, must determine

if the traffic is destined for itself, or a different node in the network. In the second case, the

relaying node will use its knowledge of the routing table and network topology to determine

which neighbor node the packets must be forwarded to [32]. These types of routing protocols

can be separated into two categories, proactive protocols and reactive protocols [32].

20

2.4.1 Proactive Mesh Routing

The first category of MANET routing protocol is the proactive protocol. Proactive

protocols are similar to traditional routing protocols in the sense that they create and

maintain a routing table. By maintaining a routing table, any transmission that needs to

be sent can be done so immediately since the most efficient route is known. This allows

proactive protocols to operate with less latency than reactive MANET routing protocols as

they do not need to wait for route discovery at the time of transmission [33]. The caveat to

this is that these protocols require much higher control traffic as they must perform periodic

link sensing to ensure the routing tables are up-to-date. In a network where bandwidth is

constrained, it is essential to understand this limitation at the time of design as MANETs

are often already bandwidth restricted and adding another high usage system could create

instability in the network.

There are two routing protocols that the maintainers of EMANE often use in examples

and tutorials for the tool. These are the Open Link State Routing (OLSR) protocol [34] and

the Better Approach to Mobile Ad-hoc Networking (B.A.T.M.A.N.) protocol [35]. These

routing protocols are both proactive MANET routing protocols and are two of the more

common purpose built proactive protocols found in MANETs. They both operate on the

similar principle of link sensing via a discovery packet (called HELLO packets in OLSR and

OGM packets in B.A.T.M.A.N.), but differ in how the best routes are calculated.

When deciding between these two protocols it is found that B.A.T.M.A.N. typically will

outperform OLSR [36]. This can be attributed to the manner in which OLSR performs link

sensing. When evaluating two paths, the path with the least number of relays is considered

the best path in OLSR [34]. This concept is feasible in high speed wired networks where

queuing and relaying of data is often the slowest portion of a packets journey, but in wireless

networks where the quality of the medium can drastically vary, this does not work as well.

B.A.T.M.A.N. attempts to solve this issue by using identifying the link that first delivers an

OGM packet from a new node. That identified link is then flagged as the best way to send

a packet to the node indicated in the new OGM. Since the link with the lowest latency and

highest throughput is expected to deliver packets the fastest, it can be assumed it is the best

link [35]. Since B.A.T.M.A.N. nodes only measure which neighbor has a route to a given

destination, and does not share the topology of the entire network graph, the protocol also

produces less control traffic, which contributes to it performing better. Figure 2.13 shows

21

what topology information nodes might have in a network running B.A.T.M.A.N. Nodes B

and C maintain a list that indicates which nodes in the graph are accessible through each

neighbor. In this example, node B does not know the layout of connections between nodes

C, D, E, and F. It is only aware that C has the best route to all of those destinations, and

relies on C’s routing table to relay the packets the rest of the way. This has the benefit

of making topological changes that occur on the opposite side of the mesh transparent to

nodes not immediately effected, reducing the amount of traffic that needs to occur when

the mesh changes.

Figure 2.13: An overview of an individual EMANE emulated network node.

2.4.2 Reactive Routing

The other primary category of MANET routing protocol are reactive protocols, also

sometimes referred to as “on-demand” protocols [32]. These protocols are referred to as

on-demand protocols because routes to a destination are only found when the transmitting

node requires them. This has the benefit of greatly reducing control traffic present in the

network since topology and link state information is not periodically shared, but it does

22

result in higher latency as traffic must wait for a route to be found. This type of routing

protocol could be beneficial in a network that is constrained on bandwidth and will typically

only contain traffic that is not time-sensitive.

Two examples of reactive MANET protocols are AODV and DSR [37]. These protocols

generally act by sending out request packets upon needing a route, indicating the destination

the traffic is intended for, and waiting for a response. Nodes that have a route to that

destination respond, and once a full route is found the traffic is sent. The route is then

stored and considered a good route for that destination until an attempt at using the route

fails. At that point the discovery process is repeated to find a new route.

Generally, reactive protocols are found to not be as effective in highly mobile MANETs

[37, 38]. B.A.T.M.A.N. is found to have less maximum available bandwidth in some situ-

ations when compared to AODV, but will more reliably deliver packets successfully, and

often is able to react to changes in the graph faster. For this reason, proactive protocols

such as OLSR and B.A.T.M.A.N. are more commonly used in simple EMANE testbeds, as

seen in the tutorial [21].

All the testbeds in the remainder of this thesis will use the batman-adv implementation

of the B.A.T.M.A.N. protocol. This implementation is built into the Linux kernel and

installation instructions for using it can be found in Appendix A.

2.5 Chapter Summary

This chapter covered necessary background information on the differences between test-

ing networks in hardware, testing networks in simulation, and testing networks in emulation.

Network hardware testbeds are expensive and so simulation or emulation were decided to be

used instead. Several network simulators including ns-3, OMNeT++, CORE, and EMANE

were examined, and the emulator EMANE was determined to be the best tool for this thesis

thanks to its accurate modeling of the PHY and MAC layers, mechanisms to individually

control the software running on each node, and ability to interface with hardware. Having

selected EMANE, installation instructions were detailed, and an overview of the tool and its

subsystems was presented. The chapter then finished by presenting an overview of MANET

routing protocols, the type of protocol that will be used in the created EMANE testbeds.

23

Chapter 3

Hybrid Wireless Rural Broadband

Networks

The first testing scenario EMANE was placed under was emulating two wireless, hybrid

network topologies that were designed to more effectively deliver broadband to small rural

communities. Since deploying broadband to rural communities can be expensive through

traditional methods, wireless distribution topologies have become a popular way of bringing

the Internet to these communities. As was explained, testing wireless networks in hardware

is rather expensive, and finding a location that meets the environmental factors of the target

rural communities is challenging. To solve these issues, initial testing can be conducted in

EMANE. This allows an understanding of the interactions between the technologies selected

to be formed, and do basic validation that the proposed network can feasibly achieve its

goal.

3.1 Hardware Testbed Network Topologies

Both of the network architectures that will be examined in this chapter were eventually

set up in hardware. While these hardware testbeds were being built, emulated EMANE

testbeds were also set up. Both testbeds can be classified by two distinct wireless tech-

nologies, the first stage is a millimeter wave (mmWave) backhaul. This wireless, high data

rate backhaul was intended to replace the traditional wired backhaul, that makes reaching

these rural communities so difficult. The other technology used was Ubiquiti’s proprietary

LTU protocol [39]. The LTU leg of the network consisted of the distribution portion of

24

the network and was responsible for bridging the connected houses to the backhaul. By

abstracting both of these technologies into EMANE, testing characteristic behaviors of the

network with several hosts was possible. A pfSense router [40] was also used in both testbeds

to handle all routing requirements. Thanks to EMANE’s hardware in the loop capabilities,

the actual pfSense software was used in the experiment emulation testbed.

3.1.1 OVERCOME Testbed

The first of the two testbeds was located in Turney, Missouri (39°38’09.9“N 94°19’14.3“W),

a small community outside of Kansas City that was not currently covered by any of the In-

ternet Service Providers in the area. The topology of the network can be seen in Figure 3.1.

In order to create this topology in EMANE, we first had to understand the major charac-

Figure 3.1: The network topology of the testbed built as part of Project OVERCOME [4]
in Turney, MO.

teristics of the hardware being mimicked. The mmWave backhaul consisted of four Ubiquiti

airFiber 60LR radios [41]. These two pairs of point-to-point radios acted as the backhaul

of the network and carried the traffic from the nearest location with fiber, to the center

of the community. Once arriving at the center of Turney, the traffic was passed through a

commercial Netgate XG-1537 Max router running pfSense [42]. This router was primarily

responsible for switching traffic off the ISP’s network and onto the last leg of the network to

the homes. The final piece of the network was the LTU leg. The transmitting radios from

the center of town to all the homes were three Ubiquiti LTU Rockets [43]. These radios

connected to an Ubiquiti LTU Pro [44] at each house, which provided Internet connectivity

to the user.

25

3.1.2 ZoomTel Testbed

The second testbed topology was not deployed to an actual location where it would be

permanently used, and was instead just tested locally. The topology of what was tested

can be seen in Figure 3.2. The primary idea behind this network topology, and what

Figure 3.2: The network topology of the experimental testbed built as part of the ZoomTel
project.

makes it differ from the OVERCOME topology, is that the segment shown in Figure 3.2

is intended to be repeated and tiled to create a mesh of backhaul connections. This would

allow the pfSense route at the origin of the mesh to make routing determinations based

on the quality of links in the network, and could attempt to solve the issue of the delicate

nature of mmWave links, especially with respect to weather systems. In this thesis only

the single segment shown in Figure 3.2 was implemented for testing, but could easily be

expanded in EMANE.

The technologies used in this testbed are similar to the ones in the previous network, but

the equipment that implements primarily the mmWave links is different. In this network,

the fiber is directly connected to a pfSense router instead of the backhaul, this allows

the special routing functionality that was described. The hardware network tested in this

topology used a generic Dell OptiPlex desktop as the router. Since the pfSense software is

free to use, a commercial solution does not need to be purchased to use it. All the mmWave

links were created using the Siklu Kilo Series EtherHaul 1200 [45], four of which were used.

The LTU link used the same Ubiquiti LTU Rocket as the radio located at the backhaul,

but unlike the OVERCOME project, the LTU Lite radios [46] were used as the customer

premises equipment (CPE).

26

3.2 Creating the Networks in EMANE

In order to implement the mmWave and LTU wireless technologies into EMANE, the

rfPipe model was selected. Since the primary concern with the emulation testbed was

mimicking the general behavior of the network, it was decided the that rfPipe model would

work well enough, and a more complex model was not needed. Table 3.1 outlines the key

configuration parameters that were used to create the mmWave links. Table 3.2 outlines

the same parameters and their selected values for the LTU waveforms. Since the LTU

radios varied between testbeds and the characteristics of the basestation radio and CPE

radios were different from each other, values that would most accurately model the average

expected behavior were selected. This could cause some variation in the results, but it was

deemed acceptable for the proposed use case. Most of these parameters were selected based

on the datasheets of both radio platforms and the antennas (integrate or external) that were

used. This is information that would be available prior to purchasing hardware to validate

a design. The freespace path loss model was selected as the effects of multipath were not

expected to be a primary concern in the testbeds.

Table 3.1: mmWave Model EMANE Parameters

EMANE Parameter Value

Delay 0.5ms
Data Rate 1Gbps
Frequency 60GHz
Channel Width 500MHz
Fixed Antenna Gain 43dBi
Path loss Model Freespace

Table 3.2: Ubiquiti LTU Model EMANE Parameters

EMANE Parameter Value

Delay 2.5ms
Data Rate 200Mbps
Frequency 5.8GHz
Channel Width 20MHz
Fixed Antenna Gain 19.5dBi
Path loss Model Freespace

With the radio plugins configured in the NEMs, two EMANE environments were cre-

ated for the OVERCOME testbed, and three EMANE environments were created for the

27

Figure 3.3: The emulation testbed topology corresponding to the OVERCOME project.

Figure 3.4: The emulation testbed topology corresponding to the ZoomTel project.

ZoomTel testbed. These emulation topologies can be seen in Figure 3.3 and Figure 3.4,

respectively. It is important to note that the two individual mmWave links in the ZoomTel

topology are separate EMANE instances. These could have been put in the same envi-

ronment as was the case with the OVERCOME testbed. However, it was elected to make

them entirely separate to allow for more control over the events that were used to effect

the operational environment. If a weather system and its effects on the channel were to be

modeled, being able to only impart those effects on a single mmWave link is a very useful

ability to have, especially if the testbed was developed further to implement the poor link

quality avoidance routing system previously described.

In both testbeds, a pfSense router is virtualized and inserted into the emulation loop.

This was initially a difficult process as understanding exactly how the transports needed

to be configured to properly pass the TCP/IP traffic to and from the router to emulator

28

was not clear in the documentation. Several portions of the example configurations use

a transport plugin scheme that is later recommended to not be used, causing substantial

confusion. Eventually a tutorial [47] and a forum post [48] were found that detailed exactly

how to connect a virtual machine to a NEM container. The process primarily relies on

creating an additional pair of virtual network interfaces that connect the LXC to the host

machine, and having VirtualBox [49] bridge this interface. Since this new interface is not

a part of EMANE directly, and therefore not a member of any routing schemes, manual

routes needed to be configured so the LXC would properly forward the packets to and from

EMANE. This is an example of the code that was used to add these manual routes in the

ZoomTel testbed:

#!/bin/bash -

ip route add 10.150.2.0/24 via 10.100.1.2

ip route add 10.100.2.0/24 via 10.100.1.2

ip route add 10.150.3.0/24 via 10.100.1.2

ip route add 10.200.3.0/24 via 10.100.1.2

This script would run on startup of the initial mmWave LXC node and add routes to the

second mmWave emulation network, the LTU network, and the external TCP/IP networks

bridging the EMANE instances.

One of the important factors taken into consideration when virtualizing pfSense, was if

the virtualization of the router software would have performance impacts on the network.

The expectation was that there would not be any major impacts since pfSense is a very

lightweight program and is often virtualized in production environments. For reference, the

pfSense router running in production in the OVERCOME project connecting 30 households

to the Internet was never recorded at more than a few percent CPU usage. Similarly, the

virtual pfSense router never reached above 5% CPU usage and the router never indicated

it was dropping packets due to computational overload.

3.3 Hardware Results versus Emulation Results

Having built the emulation testbeds, it was time to use them for testing. Since the

hardware testbeds were already in the process of being built, data could be used off the

hardware testbed to determine the legitimacy of results produced by EMANE. If the results

29

showed that the key values such as data throughput and latency were accurate, EMANE

could be used as a development environment, as detailed in Chapter 4.

In order to get the relevant data from EMANE, tools such as iperf3 [50] and ping [51]

were used for generating and measuring traffic. The MGEN utility [52] was also used,

and is an open-source tool designed by the Naval Research Laboratory. It can be used to

generate and log a variety of TCP/IP and UDP/IP traffic and can be used to script traffic

behaviors to create repeatable experiments. An example of an iperf3 test can be seen in

Figure 3.5. The ZoomTel hardware testbed also used the iperf3 utility for testing. The

Figure 3.5: The console output of an iperf3 test used to find the throughput for part of the
ZoomTel EMANE testbed.

following command was used for running a test on the client:

iperf3 -c <server ip address> -bidir -t 60

This command sets the destination of the server (the node being transmitted to) with the

“-c” flag. The “-bidir” flag indicates the test should be run in bidirectional mode so that

both the throughput of the uplink and downlink can be measured. The final flag “-t 60”

indicates that the test should run for 60 seconds. This is to ensure a stable enough average

is measured since the total throughput can have slight fluctuations.

The OVERCOME testbed utilized several tools for recording data. Throughput and

latency tests were measured via the website speedtest.net [53]. This tool was used by the

engineers at the Internet Service Provider that installed the equipment at the users home,

and the aggregate data was found by taking an average of all results. Users that lived closer

30

Table 3.3: Latency and throughput measurements from the Projects OVERCOME, Zoom-
Tel, and EMANE testbeds.

Throughput (Upload) Throughput (Download) Total Throughput Latency

OVERCOME 62 Mbps 275 Mbps 337Mbps 6ms
ZoomTel 87 Mbps 87 Mbps 174Mbps 5.5ms
EMANE 96.6 Mbps 96.7 Mbps 193.2Mbps 10ms

to the center of town had better results, but this was offset in the average by houses further

away. Table 3.3 shows the average results from all three environments for comparison.

There are several discrepancies in the data to address. These discrepancies do not

necessarily imply the EMANE model is unreliable, but it does mean that further refinement

and testing should be conducted to ensure accuracy. Without conducting this further

verification, EMANE can not be used on its own for testing as the results can not be fully

trusted.

The first point of interest is the difference in total throughput between OVERCOME

and EMANE. OVERCOME has a much higher total throughput than EMANE, but this is

likely attributed to inaccurate configuration of the CPE devices abstracted in EMANE. The

OVERCOME hardware testbed used higher end LTU radios as CPE and the configuration

of the LTU model in EMANE was aligned more with the inexpensive LTU units used

in the ZoomTel testbed. This is why the results from ZoomTel and EMANE are much

similar. The uneven speeds in the OVERCOME testbed were a design decision made to

allow homes to have higher download speeds. This asymmetric behavior could not be

modeled in EMANE as the generic rfPipe model does not support this functionality. The

latency differences between EMANE and the hardware testbeds is possibly attributed to

the packet completion rate curves for the rfPipe models. These curves may not have been

modified enough from the baseline to line up with the actual expected behavior. Another

possibility is the delay parameters not being configured properly. The values chosen were

rather conservative estimates and may have been too high to properly model the accurate

behavior of the hardware wireless signal.

Looking at the throughput and latency of the rfPipe model is not necessarily enough

to declare that rfPipe is fully accurate to a hardware model as factors such as power and

noise calculations should be verified as well. Additionally, since EMANE models are highly

configurable, any given configuration would also need to be subjected to some level of

scrutiny to ensure it is accurate enough for the intended use case.

31

3.4 Chapter Summary

This chapter outlines how EMANE was used to create digital models of two separate

wireless hybrid network topologies that were designed with the intention of delivering broad-

band to harder to service areas. The architectures of both testbeds were detailed and the

hardware equipment being modeled was outlined. We then explained the parameters in

EMANE that were selected in order to mimic the behavior of the hardware radios. Two

rfPipe models were created, one for mmWave and one for LTU. After building an extensive

enough understanding of the transport models within EMANE, a virtual pfSense router

was also brought into the loop to create additional accuracies. The chapter finishes off by

showing throughput and latency measurements taken on all testbeds and comparing them.

The results are similar enough that the emulator could be used for initial testing in place

of the hardware testbed, but the discrepancies show there is room for further refinement of

the emulation model. Using a more custom model besides rfPipe could also result in better

results, but this new model would need to be vigorously tested to ensure its validity.

32

Chapter 4

Networking Software Development

Environment

The second scenario EMANE was used for was the development of an intelligent resource

allocation program. The goal of the network topologies presented in Chapter 3 were to

deliver greater amounts of connectivity to underserved rural communities. Introducing new

networking hardware is one way of achieving this goal, but another potential for increasing

the usability of the Internet is to better allocate resources in an intelligent manner. By

using the EMANE testbed developed in the previous chapter, an accurate environment for

developing this software can be created. Testing inside an emulated EMANE environment

allows the software to still act on an accurate network without needing to be deployed

to users. Developing in a production environment could have potentially several issues,

such as violating the privacy concerns of users, or diminishing the quality of service a user

experiences. This chapter will present the initial creation of a tool to achieve the goal of

more intelligently distributing network resources.

4.1 Intelligent Method of Bandwidth Distribution

The original proposal for the software developed in this chapter was to utilize machine

learning tools to create a model that would be able to allocate resources in a network with

high efficiency. This was deemed to be too complex of a first step and so instead a heuristic

approach was decided upon with a special focus on determining if EMANE could make

an adequate development environment for this tool. The primary motivation behind the

33

intelligent router program was the idea that using an identical, static bandwidth cap for

each house on the network is not efficient, and even a scheme were certain houses are able

to have higher reservations (similar to what most ISPs presently use) would leave too much

bandwidth unused. Ideally the only time the network should not be at 100% usage is when

there are enough users online to bring it to full capacity. There should not be a situation

where a user cannot access resources simply because they are allocated to another user, and

that user is not using them.

To facilitate the development of this tool, the OVERCOME EMANE testbed from

Chapter 3 was modified to create a better environment to develop in. Figure 4.1 shows

the modified environment. The primary difference is the removal of the mmWave model

and instead directly connecting the router to the Internet (or other upstream data source).

The intelligent router was only concerned with the distribution of network resources from

the aggregated central point, and as such the characteristics of the mmWave backhaul

were deemed unnecessary to model. The program was eventually deployed to the full

OVERCOME EMANE testbed before deployment to hardware, but this was a very minor

test to ensure the behavior did not change between virtual environments.

Figure 4.1: The modified OVERCOME EMANE testbed used for development of the intelli-
gent router program. The primary modification is the removal of the mmWave environment.

34

4.2 Implementing the Software

The algorithm for allocating bandwidth consists of two major stages: (1) classification

of the current state of the network, and (2) allocation to modify the state of the network.

4.2.1 Stage 1: Classification

In order to determine how bandwidth should be distributed to users, the program first

needed to be aware of the current state of the network. There were a few different tools that

were considered to determine the current usage of each host on the network. Because of

software was to run on pfSense, this greatly limited the available software. A majority of the

usable packages were only the ones made available through the pfSense add-on library. Since

the add-on programs and router could not tolerate any possible security vulnerabilities, tools

had to be extensively validated before being added to the plugin library. On top of this

most of the software made available by pfSense was graphical (as pfSense is effectively a

graphical layer for FreeBSD [54]). Needing a tool that would output to the console, or have

a redirectable output that could be intercepted by Python iftop [55] was selected. This tool

takes the average bandwidth traveling through an interface and outputs the values to the

terminal. Figure 4.2 shows an example output of this tool. This data was used to aggregate

the IP addresses and upload and download bandwidths (in Kbps) for each house present on

the network. Figure 4.3 is an example of a log file that shows the data generated by iftop.

(IP addresses have been censored for user privacy).

The bandwidth data was then used to classify each host into a priority level. In order to

not invade the privacy of the users on the network, it was decided that priority levels should

not be determined based on the user’s specific activity and traffic type. To identify what

services each user was using would require examining the user’s traffic which is not only

computationally inefficient, but also a breach of privacy. In addition to this, our algorithm

is not in a position to determine what type of traffic is more important. Identifying the

difference between a Zoom meeting and a Netflix stream does not indicate which one should

be prioritized and this was not a decision we were in a position to make. Instead, the four

created priorities were based on the amount of bandwidth being used. This would give

some insight into what the user was doing, and since high bandwidth activities are typically

more sensitive to limited datarates, it made sense to prioritize those users. Table 4.1 shows

the priority classifications, as well as the thresholds for “high” and “low” bandwidths. The

35

Figure 4.2: An example of the output of the iftop utility used to measure bandwidth on the
OVERCOME network.

Figure 4.3: An example of the data output but the classification stage of the intelligent
router program. IP addresses have been censored for privacy.

potential was also discussed for adding specific priorities to better control large uploads or

downloads, but was never implemented.

36

Table 4.1: Priority groups for the intelligent router, based on user bandwidth behaviors

Download Behavior Upload Behavior

Priority 1 High (>5Mbps) High (>200Kbps)
Priority 2 High (>5Mbps) Low (>200Kbps)
Priority 3 Low (<5Mbps) High (>200Kbps)
Priority 4 Low (<5Mbps) Low (>200Kbps)

Once the priorities were assigned, the final step was to flag all hosts that needed real-

location. The criterion for receiving reallocation was having a current average usage that

was within 5% of the currently set cap. Meeting this criterion would indicate to the al-

location stage that the house should receive more bandwidth (if possible). The logic for

this reallocation is discussed in the next subsection. Figure 4.4 provides an overview of the

classification process. The full source code for the classification stage of the router can be

found in Appendix B.

Figure 4.4: An overview of the algorithm that operates to classify each host on the network
as a part of the intelligent router program.

37

4.2.2 Stage 2: Allocation

Once the classification stage was complete, the allocation stage would run. This stage

read the data created by the previous stage and acted on it to impact the network and change

the amount of bandwidth an individual house was able to use. The primary decisions made

while designing the allocation stage related to the safety measures put in place to ensure

no user was allowed too much or too little bandwidth. Since the algorithm was set up to

continually take and give bandwidth, checks needed to be put in place to ensure a single

house was not able to accumulate all the bandwidth, starving the rest of the hosts. After

evaluating the average usages for the network, the minimum value a house could have was

set to 7.5Mbps. This value was a rather conservative estimate and in all likelihood could

have been set lower, but it did not impact the efficiency of the algorithm.

Once measures were put in place to protect the network, the method with which homes

were limited had to be decided upon. Since the algorithm implementation was running

alongside pfSense, we had to be careful that the method we used to set limits would not be

overridden by the primary router software. To ensure this, we used pfSense’s Limiters, a

group of settings that could be assigned to a firewall rule to ensure a maximum throughput

for any traffic caught by the rule. This method worked well because each house could be

assigned a firewall rule based on its IP address. Any traffic destined to that IP address

would pass through the limiter. Additionally, because these settings were stored in the

main configuration XML file, the Python script running the algorithm could easily edit and

update the file, instead of trying to fight against the default configuration.

With these design decisions out of the way, several steps were put in place to allocate

traffic. The first step was to look at the total amount of bandwidth allocated and deter-

mine if the network was at saturation. This was done by keeping a record of the sum of

all allocations that was then compared against the known network total. If bandwidth was

available, the algorithm would proceed to increase every flagged host’s bandwidth cap by

5Mbps. If there was no extra bandwidth available, lower priority hosts that did not require

as high limits would have their caps lowered, and the additional bandwidth could be redis-

tributed. Once all flagged hosts either had their caps raised, or were deemed unable receive

more bandwidth, the program would wait six seconds before returning to the classification

stage. This waiting period is primarily to account for inefficiencies in the pfSense system.

Since pfSense was directly being used to change bandwidth caps, a small waiting period

38

was required to allow the values to propagate through the system. The full behavior of the

allocation stage can be seen below in Figure 4.5, and the full source code for the allocation

stage of the router can be found in Appendix B.

Figure 4.5: An overview of the algorithm that operates to allocate bandwidth to each host
on the network as a part of the intelligent router program.

4.3 Effectiveness of the Program

Whether or not EMANE makes an appropriate environment to develop a tool similar to

this is difficult to answer from the observed data and results. One of the primary benefits

of developing in EMANE is that it is a closed environment that protects the program and

developer from errors effecting the quality of a network. If the tool were to be developed in

production, any small configuration error could easily result in taking down a network many

people rely on. Conversely, developing on a generic computer, or a router connected to only

a very limited number of hardware devices does not provide the traffic or tools necessary

39

to test the behavior. By operating in EMANE, any number of “houses” can be connected

downstream from the router, the amount of traffic being created at once and which hosts

the traffic comes from is controllable, and the attributes of the communication medium can

be modified.

This makes development very convenient, but should not be used as catch-all solution.

One of the major problems discovered during development is that the generated test traffic

did not resemble the behavior of the real user traffic enough. Traffic generated by a test tool

such as MGEN is typically not dynamic enough to mirror the behavior of an individual, let

alone an entire household. Extend this to covering the entire network, and generating test

traffic that is accurate for five or ten households is a difficult task.

One solution attempted during the development of the tool, was to use a packet capture

(in the form of a PCAP file) to record the traffic of consenting users and play it across the

network. The problem that was found with this solution was that different demographics

will have drastically different traffic usage behavior. The Internet usage of a New England

college student does not necessarily match that of an adult in a rural area such as Missouri.

This became a problem during testing as the algorithm was reacting slower to bandwidth

needs than in testing, as the high usages were more sporadic so the averaging approach at

classification tended to trend lower than required.

The other major result from the testing of the router, was the discovery that effective

testing of a program similar to this requires an ideal environment to test in. The OVER-

COME hardware network was not constrained enough due to the small number of houses

connected. An attempt was made to constrain the network during testing, but was overall

unsuccessful. The hardware testing schedule proceeded as follows:

• Week 1: No artificial bandwidth limits, no intelligent program.

• Week 2: All homes restricted to 25Mbps download in an attempt to create a lower

max network capacity.

• Week 3: Homes were assigned dynamic restrictions based on the algorithm.

Figure 4.6 shows the total usage of the network during each classification iteration for the

entire week 2 and 3 testing period. As can be seen by the blue traffic data, at no point

during the two-week period was the usage in the network even at 50% capacity. This caused

the intelligent algorithm to never have to remove bandwidth from a user to give to another

40

Figure 4.6: The total network usage for thirty houses in the Project OVERCOME testbed
during weeks 2 and 3 of the intelligent router test.

user, eliminating the point of the program. The artificial cap on the network also could not

be lowered further, because the individual households would have such a low base restriction

that users would be barely able to use the Internet during the control period. With the

project near completion, it was determined that another test could not be run, and the

algorithm would have to remain unfinished as future work.

However, one positive result from the test was data confirming that a stratification of

usage existed on the network. By confirming that there is a distribution of users that use

a significant amount of bandwidth and users that use little, it supports the core concept of

the algorithm that a flat distribution cap on a network, while fair, is not the most efficient

use of resources. Figure 4.7 shows an example of two houses on the network. The top house

with much higher usage, and the bottom house with less usage.

4.4 Chapter Summary

This chapter outlined the process for designing a piece of networking software while using

EMANE as the network environment for development. More specifically, a program that

sought to heuristically allocate network resources in an intelligent manner was outlined. The

41

Figure 4.7: The total network usage for thirty houses in the Project OVERCOME testbed
during weeks 2 and 3 of the intelligent router test.

specifics of the environment the tool was developed in were highlighted and the behavior

of the algorithm explained. The chapter finalizes by outlining lessons learned from the

development and testing of the tool, with the main takeaway being emulation environments

need to also validate the behavior of the test traffic, in addition to the models provided and

used.

42

Chapter 5

Dynamic Robot Swarm Networks

This chapter presents the third and final use case for EMANE that was explored in this

thesis. The primary work that will be covered relates to extending the robot swarm simu-

lator ARGoS [56], to introduce emulated communication models. The network outlined in

this chapter consists of a swarm of 25 simulated flying robots that are tasked with identi-

fying wildfire in an area. By operating in the context of a wildfire, several environmental

factors are introduced that must be considered. Primarily, the conditions this network is

present in are not prime for wireless communications as smoke or other obstacles may exist,

and well-deployed, centralized infrastructure is unlikely to be present. To this end, commu-

nications must happen in a distributed manner across the swarm mesh, and traffic must be

relayed to reach a command center. These conditions are the ideal operating parameters

for a mobile ad-hoc network (MANET) configuration, which is EMANE’s specialty. By

using EMANE and ARGoS together, this unique network behavior can be appropriately

captured.

5.1 Extending Existing Software

The robot swarm simulator, ARGoS, is a physics based simulator designed with the

intent filling the gap for large-scale heterogeneous robot swarms [56]. The tool models the

swarm and controls the environment it operates in, modeling the movement, physics, and

information transfer of the individual robots. One of the key attributes about ARGoS that

is essential to understand, is the manner in which ARGoS performs its simulation. ARGoS

will simulate the functionality of the swarm in specified time chunks. This is different

43

from EMANE which operates in real-time, and needing to account for these fundamental

differences influences the design process of integration. There are several reasons why it

is beneficial to integrate the two tools. For one, EMANE on its own does not handle the

mobility of nodes, the traffic that travels the network, or the management of an environment.

These are all things that must be set up externally, and as such having ARGoS handle them

is a natural fit. In the other direction, having EMANE handle communication for ARGoS

can allow more accurate modeling of channel effects. ARGoS has basic “medium” plugins

(the type of plugin responsible for communications), but these can be rather simple. One

such model, simply determines if two robots are within a set range, and have line of sight

(LOS). If these conditions are true then the two robots are free to exchange information with

no delay or maximum datarate. Another benefit to using EMANE is the ability to use the

native implementation of the B.A.T.M.A.N. routing protocol. By deploying this protocol

on EMANE, it can be further tested and developed in a proper swarm environment.

5.2 Integrating the Software

This section will detail the integration of EMANE and ARGoS and how the two software

operated together. The following section will shed light on several of the design decisions

that were made and explain the rationale behind them.

ARGoS and EMANE both ran on the same machine for the purposes of their integration.

EMANE also had an additional program that acted as an intermediary between it and

ARGoS, as EMANE is not a single process and needed something to manage it. Each

process was also completely separate from the other, neither process was a child. This is

important to understand as it dictated how the two processes attached to each other. If one

process was a child of the other, they would naturally be connected. Instead, part of the

initialization processing was the two processes connecting. ARGoS began the process by

opening a shared memory location with a name known by both ARGoS and EMANE. This

shared memory contained metadata pertaining to the simulation including the process ID

(PID) of ARGoS, the number of robots in the experiment, and the timescale being used.

Table 5.1 details the exact content of the shared metadata. After populating this data,

ARGoS put itself to sleep and waited for EMANE to indicate it was ready.

EMANE started up during this time and waited until it could find the shared memory

structure and to get ARGOS’s PID. With this PID, EMANE was able to directly communi-

44

Table 5.1: Contents of the shared memory metadata file. Includes which processes are
responsible for what data

Provided By Type Data

ARGoS uint16 t Number of Robots
ARGoS uint16 t Number of Communication Robots
ARGoS double ARGoS Timescale
ARGoS pid t ARGoS Process ID
EMANE pid t EMANE Process ID

cate with ARGoS. EMANE then set up the remaining two shared memory locations, and set

up its internal data structures. The second shared memory structure was used by ARGoS to

deliver information about the location and pose of robots to EMANE. This was essential for

ensuring both programs had the same representation of the virtual environment. Table 5.2

outlines the exact contents of this memory block. The third shared memory structure was

Table 5.2: Contents of the shared memory robot pose file. Includes which processes are
responsible for what data

Provided By Type Data

ARGoS uint16 t Robot ID
ARGoS double t Robot Latitude
ARGoS double Robot Longitude
ARGoS double Robot Altitude

used by both ARGoS and EMANE to deliver relevant data to performing communications.

ARGoS used the block to make requests of EMANE and EMANE used it to response with

the requested information. Table 5.3 outlines the exact contents of this memory block.

Table 5.3: Contents of the shared memory robot communications file. Includes which
processes are responsible for what data

Provided By Type Data

ARGoS uint16 t Transmitting Robot ID
ARGoS uint16 t Receiving Robot ID
ARGOS uint8 t Message Pointer
ARGoS uint32 t Message Size
EMANE uint32 t Amount of data transmitted

Having set up all the relevant structures used to communicate, the processes were ready

to proceed with actual simulation. This began when EMANE woke up ARGoS for the

first time. The two processes controlled each other via POSIX signals, specifically the

45

SIGSTOP and SIGCONT signals. These signals indicated to the operating system if a

process should be put to sleep or woken from sleep. When a process was done with its turn,

it signaled the other with a SIGCONT and then raised its own SIGSTOP to indicate to the

operating system to put it should be put to sleep. The main loop then began between the

programs. ARGoS first took its turn, moving robots, sensing the environment, and making

determinations about information sharing for 100ms of simulation time. Once it finished

the period, it updated the relevant information across the shared memory segments and

initiated EMANE. The EMANE interface script woke up and updated its internal store

of information. Any new location data was sent into the emulator via location events so

that the corresponding NEMs would move into the appropriate location and update their

communication links. EMANE then began the process of emulating communications. This

was done by measuring the throughput to adjacent nodes, instead of performing actual data

transfers. The reasoning for this is explained in the following section.

Once EMANE collected all the required information from its throughput tests, it pop-

ulated that information back into the shared memory blocks and woke ARGoS, starting

the process over again. This then continued until ARGoS finished its current experiment,

at which point it either reset, or terminated. In the case of termination, ARGoS signals

EMANE to also shutdown. If ARGoS is immediately starting another experiment, EMANE

is not informed as the transition between experiments is entirely transparent to EMANE.

Figure 5.1 shows the layout of all the pieces of software required to connect EMANE and

ARGoS. Appendix C contains the full source code of the EMANE side of the integration

process.

Figure 5.1: The topology of the ARGoS-EMANE integration system. All the major systems
as well as the interconnections between them are displayed.

46

5.3 Integration Design Decisions

Several design decisions were made during the development of the above process with

the goal of maximizing the performance of the interface, minimizing the latency between

each process running, and ensuring the system remained stable. The two biggest decisions

made were the decision to use shared memory for information sharing and the decision to

abstract the data being sent through EMANE. These decisions ensured that the interface

would still be accurate, without introducing unnecessary complexities that would further

slow down the system.

It was decided that one or more shared memory segments should be used to pass in-

formation between processes. Transferring data over the network was deemed needlessly

slow and complex. The time taken to output data from the tool, package it appropriately,

send it over the network, unpack it, and import it would have a taken an order of time

longer than the actual time needed to generate and consume the data being sent. Since

networking was not to be used, both processes needed to run on the same machine and

have access to the same hardware. For the same reason that using networking would be too

slow, performing file I/O to read and write data to a file would have also been too slow.

Since both processes are capable of accessing memory incredibly quick, using the operating

system to grant ARGoS and EMANE access to the same location in system memory was

the logical solution.

The second major design decision, was to not provide EMANE with the exact data

payloads ARGoS was sending between robots. ARGoS, and the algorithm running on the

robots, was not concerned with any form of transmission control or retransmission upon

failed delivery of data. This means that EMANE did not need to worry about what data

successfully made it to the receiver, just how much of it arrived. By avoiding handing

off the entire data payload to EMANE, time could be saved and a layer of complexity

was removed. EMANE instead can just characterize the transmission, and inform ARGoS

on what amounts of data can be given to each robot in a certain timeframe. This does

not compromise the validity of the channel effects EMANE imparts on transmission, as

throughput and latency were the primary two metrics being modeled anyway (as observed

in Chapter 3).

One of the major issues during development that had to be addressed was the difference

in programming languages used. ARGoS, and therefore its portion of the interface code,

47

was written in C++. The EMANE interface manager, was written in Python. Since

data was being accessed directly from memory, it was important that the exact size of the

data was accurately read. C++ provides the user with data types that are not present in

Python, with most data types in Python taking up larger amounts of space than the closest

equivalent in C/C++. Even when using a library such as ctypes, meant to introduce more

“C-like” types, the problem was still present. The solution ended up being to serialize and

deserialize the data instead of mapping the memory directly to a structure, as was done

in C++. The following code snippet uses a format string to interpret the exact number of

bytes each variable should be for serialization and serialization:

__struct_format: str = 'HHdIIddd'

def unpack(self, shm):

self.num_drone, self.num_comms, self.deltaT, self.argos_pid, self.emane_pid,

self.gw_lat, self.gw_lon, self.gw_alt \↪→

= struct.unpack(self.__struct_format, shm.buf.tobytes())

This solution worked well to solve the problem, and while it may have been slower than

the process used for memory access in C++, it was still much faster than EMANE takes

and did not affect overall run time. Further testing can be performed to determine if the

interface script would have an improvement on performance if written entire in C++.

5.4 Integration Results

The basic ability for ARGoS and EMANE to pass information back and forth is pre-

sented, with ARGoS delivering robot locations and EMANE delivering communications

metrics, but several factors remain to be implemented or improved upon. Figure 5.2 shows

a printout of EMANE’s event channel. By using the emaneevent-dump utility, any events

sent through EMANE can be observed. As observed in Figure 5.2, EMANE received loca-

tion events over time as ARGoS updated the manager script with new locations. It can be

seen from the initial numbers in square brackets that these events were only firing about

every one second. Since these events should be firing for every 100ms of simulation time, we

see that simulating 100ms of time took ARGoS and EMANE a combined ten times longer.

This behavior was expected from the start, but the extent of how bad it would be had been

unknown.

48

Figure 5.2: A dump of several events that were sent over the EMANE event channel. These
location events show that ARGoS is delivering location data to the interface script, which
is subsequently delivering location events to EMANE.

EMANE runs in real-time and therefore at a minimum would take 100ms to create

100ms of data. However, because the network needs time to reconfigure after locations

are updated, and the throughput tests need time to record data, it is much more likely

that EMANE takes anywhere from two to five times as long to generate that data. The

extended run-time above is on the extreme side and was recorded before optimizations

were started, but additional optimizations would be needed to bring that number down

further, if possible. As a final point to understand the extent of the slowdown imparted on

ARGoS by combining it with a real-time emulator, ARGoS running in isolation using an

internal communication medium plugin only takes about four seconds to run a 10-minute

experiment. With the best case scenario of EMANE adding 200ms of time per 100ms

emulation block, the ten-minute experiment would now take twenty minutes. This length

of emulation may be an acceptable trade off for the features EMANE brings to the testbed,

but is an essential consideration that must be made.

5.5 Chapter Summary

This chapter focused on introducing additional tools to EMANE to enable EMANE to

more dynamically model certain networks. By interfacing with the ARGoS robot simulation

tool, both tools receive enhancements in the forms of more accurate modeling of all parts

of a robot swarm network. The primary results found were that the software are able

to communicate through the designed methodology, but the real-time nature of EMANE

slows down ARGoS drastically. At the time of writing the interface is in the earlier stages

of development with only the basic functionality presented here implemented. The work is

being continued to further optimize the process and deliver additional functionality.

49

Chapter 6

Conclusion

6.1 Evaluating EMANE and Network Emulation

This thesis began by proposing network emulation as a solution to the difficulties present

in developing and testing communication networks. Chapter 2 introduced several issues that

often occur in network testing and development, including the expensive nature of hardware

testbeds, the difficulties in creating an accurate enough testbed, and the time required to

test multiple network topologies and configurations. The question now remains if emulation

is able to address these issues, and the remainder of this section will attempt to answer this.

A few limitations with EMANE were discovered in testing that must be considered when

determining if EMANE is an appropriate tool. The first limitation relates to the perfor-

mance of emulated networks. All the networks emulated in this thesis were able to match

the expected network performance. This was primarily due to the careful configuration

of the tool. Every design decision was made while considering the performance impacts

they would cause, and even with these considerations, initial configurations had instability.

These instabilities are caused by the computational load generated when all packets in a

network have to be handled by a single kernel, a problem unique to emulation. The system

was eventually made stable by ensuring enough computational resources were available for

the task. Nevertheless, in larger testbeds, a single server may not be sufficient, and a dis-

tributed approach to emulation may need to be considered. The other primary limitation

found with emulation and EMANE was the initial difficulty with using the tool. Emulation

was suggested as an easier alternative to other testing methods, and it still could be easier

provided enough documentation and tutorials are created. The difficulty with understand-

50

ing how to use EMANE was specifically attributed to the tool’s small user base. As more

researchers use the tool, it becomes easier to find help. The same can be said for the diffi-

culty in using network simulation and networking hardware. Every tool will have an initial

period of difficulty, especially if adequate documentation does not exist, and for this reason,

the difficulties experienced with EMANE should not invalidate it.

Despite these limitations, we still found emulation works as a good tool for testing

networks. Emulation primarily lowers the cost of testing, especially when using an open-

source tool like EMANE that costs nothing to use. For comparison, the hardware alone in

the testbed built in Chapter 3 cost over $15,000 USD, excluding costs for labor or permits

needed to deploy the network. This significant difference in cost is a strong argument for

simulation and emulation. Another issue proposed was the difficulty in creating an accurate

testbed. Our experiments showed that in addition to being flexible, EMANE is also able to

model several factors of a communications network accurately. In addition to writing models

that provide accuracy, hardware can be interfaced with the tool (as shown in Chapter 4) or

other software tools can be integrated to provide accuracy for externally controlled factors

(as seen in Chapter 5). This desire for an accurate representation of the physical channel

provides emulation with an advantage over simulation, as being able to use hardware for

specific segments can ensure perfect accuracy. As long as the tool is used with care to

ensure accuracy (as is the case with most testing tools), network emulation can provide an

ideal testing environment for communication networks.

6.2 Limitations of Network Emulation

The previous section discussed a few limitations found with EMANE during testing.

This section aims to provide concluding thoughts on network emulation as a whole and

some limitations and shortcomings discovered.

One of the biggest issues with network emulation, is the aforementioned performance

limitations. These limitations create issues with running large-scale testbeds, but more

importantly can create inaccuracies in the results. The delay throughput of a channel are

carefully configured, but these values do not take into account added delays caused by the

kernel. Packets switching through the kernel are assumed to have a small enough delay and

high enough throughput that they can be ignored. This behavior is acceptable for small

testbeds that do not push the limits of the host machine, but in larger testbeds where the

51

host machine is pushed to its limit, the impact of the kernel may affect results (especially

in very high speed, low latency networks). This problem does not disappear when moving

to a distributed layout. The distribution of work to other machines fixes the issue with

the kernel being overloaded, but introduces the new issue of the connecting fabric between

servers imparting its own communication behaviors. If two machines are directly attached,

the issue is minimal, but if a network switch (or worse a router) is introduced, the latency

increases. Sufficiently fast hardware connecting emulation hosts can be purchased, but this

is an expense that raises the total cost of emulation testing.

An additional limitation of network emulation is the amount of configuration available.

High configurability is beneficial to some degree, but if too many attributes need to be set,

it becomes more likely that data that is not readily available is required. Communication

technologies that have been extensively studied, like the IEEE802.11 family, has plenty of

data available to reference, but if the technology being emulated is new or less commonly

used, a hardware testbed may be needed to simply configure the emulation testbed. At

that point, the built hardware testbed could just be used for testing instead eliminating the

need for emulation in the first place.

The third major limitation to network emulation is the ability for randomness to affect

results. One of the flaws with hardware testbeds is the random nature of the operation

environment, affecting results and making it more difficult to replicate issues. Network

emulation reduces some amount of randomness present in the testbed, but the presence

of real network packets (both being operated on and generated) creates some inherent

randomness. If the host machine is running a process in the background unknown to the

operator, this can create unexpected behavior as less resources are available to the emulator.

All of these limitations must be considered when selecting network emulation as the testing

method of choice, and with careful consideration the limitations can either be deemed

irrelevant or can be accounted for.

6.3 Research Outcomes

Overall, this project was able to achieve its primary goal of evaluating and understand-

ing the EMANE tool. Several scenarios were presented where EMANE was shown to be

successful. The first use-case of rural broadband testing, showed that the basic rfPipe radio

model can be configured to match the characteristics of a hardware testbed. This scenario

52

does carry the warning that just because the characteristics of the network are the same,

not every model in EMANE is validated, and care must be taken to ensure the emulator

is configured right. The rfPipe model is simple enough that the throughput and latency

matching is enough to use it in basic testing, but advance models mimicking more complex

behaviors must be tested further. The second use-case shows that EMANE provides a good

environment for testing and developing networking software. Care must be taken when

selecting and modeling test traffic, but EMANE provides many avenues for creating and

using test data. The third use case shows that EMANE is able to work with other tools

to create a more complete system, with the timescale differences between software types

identified as the major obstacle to be considered.

6.4 Future Work

While each stage of this thesis had successes, there are still several pieces of work that

remain uncompleted. The following list outlines this future work:

• Conducting extensive validation of the models included within EMANE. EMANE is

not as widely used as many other network testing tools, and as such has been studied

less regarding its validity. If more advanced models are to be used in EMANE, it

should be ensured they are accurate enough for the advanced use cases.

• Creating additional wireless models for EMANE. By default, EMANE only has four

radio models accessible, with one being the generic model used in this thesis and

another being used for testing of EMANE itself. If EMANE is to be more widely

used, it needs to be able to model more modern waveforms and technologies.

• Additional testing and development of the intelligent router software. Due to the issues

described in Chapter 2 only one initial test was conducted with non-ideal conditions.

Further testing should be conducted to evaluate the tool in ideal conditions

• Further integration and optimizations between EMANE and ARGoS. Finding ways to

reduce the time EMANE adds onto the total simulation, while also adding function-

ality to allow for modeling of more communication factors like latency or advanced

routing techniques would allow the integration to be even more useful.

53

Bibliography

[1] OpenSim Ltd., “What is omnet++?” 2019. [Online]. Available: https:

//omnetpp.org/intro/

[2] J. Ahrenholz and T. Goff, “Common open research emulator,” 2022. [Online].

Available: https://coreemu.github.io/core/

[3] J. Ahrenholz, T. Goff, and B. Adamson, “Integration of the core and emane network

emulators,” in 2011 - MILCOM 2011 Military Communications Conference, 2011, pp.

1870–1875.

[4] U. Ignite, “Project overcome,” 2022. [Online]. Available: https://www.us-ignite.org/

program/us-ignite-communities/overcome/

[5] E. A. Vogels, “Some digital divides persist between rural, urban and suburban

america,” 2021. [Online]. Available: https://pewrsr.ch/3k5aU6J

[6] “Internet/broadband fact sheet,” 2021. [Online]. Available: https://www.pewresearch.

org/internet/fact-sheet/internet-broadband/

[7] M. Shafiq, P. Singh, I. Ashraf, M. Ahmad, A. Ali, A. Irshad, M. Khalil Afzal, and

J.-G. Choi, “Ranked sense multiple access control protocol for multichannel cognitive

radio-based iot networks,” Sensors, vol. 19, no. 7, 2019.

[8] nsnam, “What is ns-3?” 2022. [Online]. Available: https://www.nsnam.org/about/

[9] Mathworks, “Matlab,” 2022. [Online]. Available: https://www.mathworks.com/

products/matlab.html

[10] G. Project, “Gnuradio documentation,” 2022. [Online]. Available: https://www.

gnuradio.org/docs/

https://omnetpp.org/intro/
https://omnetpp.org/intro/
https://coreemu.github.io/core/
https://www.us-ignite.org/program/us-ignite-communities/overcome/
https://www.us-ignite.org/program/us-ignite-communities/overcome/
https://pewrsr.ch/3k5aU6J
https://www.pewresearch.org/internet/fact-sheet/internet-broadband/
https://www.pewresearch.org/internet/fact-sheet/internet-broadband/
https://www.nsnam.org/about/
https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html
https://www.gnuradio.org/docs/
https://www.gnuradio.org/docs/

54

[11] Boson, “Netsim network simulator,” 2022. [Online]. Available: https://www.boson.

com/netsim-cisco-network-simulator

[12] R. Technology, “Network performance management,” 2022. [Online]. Available:

https://www.riverbed.com/products/network-performance-management

[13] E. Schreiber, P. Kehoe, and S. Galgano, “Extendable mobile ad-hoc network

emulator (emane),” 2018. [Online]. Available: https://www.nrl.navy.mil/Our-Work/

Areas-of-Research/Information-Technology/NCS/EMANE

[14] S. Guruprasad, R. Ricci, and J. Lepreau, “Integrated network experimentation using

simulation and emulation,” in First International Conference on Testbeds and Research

Infrastructures for the DEvelopment of NeTworks and COMmunities, 2005, pp. 204–

212.

[15] M. Neufeld, A. Jain, and D. Grunwald, “Nsclick: Bridging network simulation and

deployment,” in Proceedings of the 5th ACM International Workshop on Modeling

Analysis and Simulation of Wireless and Mobile Systems, ser. MSWiM ’02. New

York, NY, USA: Association for Computing Machinery, 2002, p. 74–81. [Online].

Available: https://doi.org/10.1145/570758.570772

[16] P. A. B. Bautista, L. F. Urquiza-Aguiar, L. L. Cárdenas, and M. A. Igartua, “Large-

scale simulations manager tool for omnet++: Expediting simulations and post-

processing analysis,” IEEE Access, vol. 8, pp. 159 291–159 306, 2020.

[17] J. Heidemann and T. Henderson, “The network simulator - ns-2,” 2011. [Online].

Available: http://nsnam.sourceforge.net/wiki/index.php/User Information.

[18] N. Kamoltham, K. N. Nakorn, and K. Rojviboonchai, “From ns-2 to ns-3 - imple-

mentation and evaluation,” in 2012 Computing, Communications and Applications

Conference, 2012, pp. 35–40.

[19] S. Yadav, M. Gaur, and V. Laxmi, “Ns-3 emulation on orbit testbed,” in 2013 In-

ternational Conference on Advances in Computing, Communications and Informatics

(ICACCI), 2013, pp. 616–619.

https://www.boson.com/netsim-cisco-network-simulator
https://www.boson.com/netsim-cisco-network-simulator
https://www.riverbed.com/products/network-performance-management
https://www.nrl.navy.mil/Our-Work/Areas-of-Research/Information-Technology/NCS/EMANE
https://www.nrl.navy.mil/Our-Work/Areas-of-Research/Information-Technology/NCS/EMANE
https://doi.org/10.1145/570758.570772
http://nsnam.sourceforge.net/wiki/index.php/User_Information.

55

[20] S. Gupta, M. Ghonge, D. Thakare, and P. Jawandhiya, “Open-source network sim-

ulation tools an overview,” International Journal of Advanced Research in Computer

Engineering & Technology, vol. 2, 04 2013.

[21] AdjacentLink, “Emane-tutorial,” 2018. [Online]. Available: https://github.com/

adjacentlink/emane-tutorial

[22] ——, “Emane,” 2022. [Online]. Available: https://github.com/adjacentlink/emane

[23] J. Ahrenholz, “Comparison of core network emulation platforms,” in 2010 - MILCOM

2010 MILITARY COMMUNICATIONS CONFERENCE, 2010, pp. 166–171.

[24] T. Schucker, T. Bose, and B. Ryu, “Emulating wireless networks with high fidelity

rf interference modeling,” in MILCOM 2018 - 2018 IEEE Military Communications

Conference (MILCOM), 2018, pp. 822–828.

[25] srsRAN, “srsran your own mobile network,” 2022. [Online]. Available: https:

//www.srslte.com/

[26] AdjacentLink, “srsran-emane,” 2022. [Online]. Available: https://github.com/

adjacentlink/srsRAN-emane

[27] C. Kam, S. Kompella, G. D. Nguyen, J. E. Wieselthier, and A. Ephremides, “Modeling

the age of information in emulated ad hoc networks,” in MILCOM 2017 - 2017 IEEE

Military Communications Conference (MILCOM), 2017, pp. 436–441.

[28] Y. E. Sagduyu, Y. Shi, T. Erpek, S. Soltani, S. J. Mackey, D. H. Cansever, M. P.

Patel, B. F. Panettieri, B. K. Szymanski, and G. Cao, “Multilayer manet routing with

social-cognitive learning,” in MILCOM 2017 - 2017 IEEE Military Communications

Conference (MILCOM), 2017, pp. 103–108.

[29] C. Kam, S. Kompella, and A. Ephremides, “Experimental evaluation of the age of

information via emulation,” in MILCOM 2015 - 2015 IEEE Military Communications

Conference, 2015, pp. 1070–1075.

[30] A. Nikodemski, J.-F. Wagen, F. Buntschu, C. Gisler, and G. Bovet, “Reproducing mea-

sured manet radio performances using the emane framework,” IEEE Communications

Magazine, vol. 56, no. 10, pp. 151–155, 2018.

https://github.com/adjacentlink/emane-tutorial
https://github.com/adjacentlink/emane-tutorial
https://github.com/adjacentlink/emane
https://www.srslte.com/
https://www.srslte.com/
https://github.com/adjacentlink/srsRAN-emane
https://github.com/adjacentlink/srsRAN-emane

56

[31] S.-Y. Ni, Y.-C. Tseng, Y.-S. Chen, and J.-P. Sheu, “The broadcast storm problem in a

mobile ad hoc network.” in 5th annual ACM/IEEE international conference on Mobile

computing and networking, vol. 8, 08 1999, pp. 151–162.

[32] S. Puri and V. Arora, “Routing protocols in manet: A survey,” International Journal

of Computer Applications, vol. 96, no. 13, 2014.

[33] S. Kaur and K. Arora, “Performance evaluation of diverse manet routing protocols-a

review,” International Journal of Computer Applications, vol. 107, no. 17, 2014.

[34] T. H. Clausen and P. Jacquet, “Optimized Link State Routing Protocol (OLSR),”

RFC 3626, October 2003. [Online]. Available: https://www.rfc-editor.org/info/rfc3626

[35] M. Lindner, S. Eckelmann, S. Wunderlich, M. Hundebøll, A. Quartulli, and L. Lüssing,

“The b.a.t.m.a.n. project.” [Online]. Available: http://www.open-mesh.org/

[36] M. Abolhasan, B. Hagelstein, and J. C.-P. Wang, “Real-world performance of cur-

rent proactive multi-hop mesh protocols,” in 2009 15th Asia-Pacific Conference on

Communications, 2009, pp. 44–47.

[37] D. Kaur and N. Kumar, “Comparative analysis of aodv, olsr, tora, dsr and dsdv routing

protocols in mobile ad-hoc networks,” International Journal of Computer Network and

Information Security, vol. 5, no. 3, pp. 39–46, 03 2013.

[38] D. Seither, A. König, and M. Hollick, “Routing performance of wireless mesh networks:

A practical evaluation of batman advanced,” in 2011 IEEE 36th Conference on Local

Computer Networks, 2011, pp. 897–904.

[39] U. Inc., “Ltu customized technology for wisp operators,” 2022. [Online]. Available:

https://ltu.ui.com/

[40] NetGate, “pfsense open source security,” 2022. [Online]. Available: https:

//www.pfsense.org/

[41] UISP airFiber 60LR, Ubiquity Inc., 2021. [Online]. Available: https://dl.ui.com/ds/

af60-lr ds.pdf

[42] Netgate 1537 Security Gateway Manual, Netgate, 2022. [Online]. Available:

https://docs.netgate.com/pfsense/en/latest/solutions/xg-1537/index.html

https://www.rfc-editor.org/info/rfc3626
http://www.open-mesh.org/
https://ltu.ui.com/
https://www.pfsense.org/
https://www.pfsense.org/
https://dl.ui.com/ds/af60-lr_ds.pdf
https://dl.ui.com/ds/af60-lr_ds.pdf
https://docs.netgate.com/pfsense/en/latest/solutions/xg-1537/index.html

57

[43] LTU Rocket, Ubiquity Inc., 2020. [Online]. Available: https://dl.ui.com/ds/ltu-rocket

[44] LTU Pro, Ubiquity Inc., 2020. [Online]. Available: https://dl.ui.com/ds/ltu-pro

[45] Etherhaul – 1200 Series, Netgate, 2022. [Online]. Available: https://go.siklu.com/

etherhaul-1200-series-datasheet-lp

[46] LTU Lite, Ubiquity Inc., 2020. [Online]. Available: https://dl.ui.com/ds/ltu-lite

[47] S. Galgano, “letce2-tutorial: Experiment 3,” 2021. [Online]. Available: https:

//github.com/adjacentlink/letce2-tutorial/tree/master/exp-03

[48] ——, “How do i connect ”emane0” from one virtual machine (vm) to

”emane0” on another virtual machine (vm)?” 2019. [Online]. Available:

https://github.com/adjacentlink/emane/issues/102

[49] Oracle, “Virtualbox,” 2022. [Online]. Available: https://www.virtualbox.org/

[50] J. Dugan, S. Elliott, B. A. Mah, J. Poskanzer, and K. Prabhu, “What is iperf/iperf3?”

[Online]. Available: https://iperf.fr/

[51] ping(8) - Linux man page, Debian. [Online]. Available: https://manpages.debian.org/

testing/iputils-ping/ping.8.en.html

[52] “Multi-generator (mgen) network test tool.” [Online]. Available: https://www.nrl.

navy.mil/Our-Work/Areas-of-Research/Information-Technology/NCS/MGEN/

[53] Ookla, “Speedtest,” 2022. [Online]. Available: https://www.speedtest.net/

[54] FreeBSD Manual Pages, The FreeBSD Project, 2022. [Online]. Available:

https://www.freebsd.org/cgi/man.cgi

[55] iftop(8) - Linux man page, Debian. [Online]. Available: https://manpages.debian.org/

bullseye/iftop/iftop.8.en.html

[56] C. Pinciroli, V. Trianni, R. O’Grady, G. Pini, A. Brutschy, M. Brambilla, N. Mathews,

E. Ferrante, G. Di Caro, F. Ducatelle, M. Birattari, L. M. Gambardella, and M. Dorigo,

“ARGoS: a modular, parallel, multi-engine simulator for multi-robot systems,” Swarm

Intelligence, vol. 6, no. 4, pp. 271–295, 2012.

https://dl.ui.com/ds/ltu-rocket
https://dl.ui.com/ds/ltu-pro
https://go.siklu.com/etherhaul-1200-series-datasheet-lp
https://go.siklu.com/etherhaul-1200-series-datasheet-lp
https://dl.ui.com/ds/ltu-lite
https://github.com/adjacentlink/letce2-tutorial/tree/master/exp-03
https://github.com/adjacentlink/letce2-tutorial/tree/master/exp-03
https://github.com/adjacentlink/emane/issues/102
https://www.virtualbox.org/
https://iperf.fr/
https://manpages.debian.org/testing/iputils-ping/ping.8.en.html
https://manpages.debian.org/testing/iputils-ping/ping.8.en.html
https://www.nrl.navy.mil/Our-Work/Areas-of-Research/Information-Technology/NCS/MGEN/
https://www.nrl.navy.mil/Our-Work/Areas-of-Research/Information-Technology/NCS/MGEN/
https://www.speedtest.net/
https://www.freebsd.org/cgi/man.cgi
https://manpages.debian.org/bullseye/iftop/iftop.8.en.html
https://manpages.debian.org/bullseye/iftop/iftop.8.en.html

58

Appendix A

Installation of EMANE

1 EMANE + Addons v1.3.3:

2

3 Step 1: Install EMANE Bundle

4 $ cd EMANE_1.3.3-1_debs

5 $ sudo dpkg -i *.deb

6 $ sudo apt install -f

7

8 Step 2: Verify

9 $ emane -v

10

11 OLSRD v0.9.8

12 Step 1: Dependencies

13 $ sudo apt install bison flex

14

15 Step 2: Download Release

16 $ wget

https://github.com/OLSR/olsrd/wiki/files/0.9.8/olsrd-0.9.8.tar.gz↪→

17 $ tar xvf olsrd-0.9.8.tar.gz

18

19 Step 3: Make and Install

20 $ cd olsrd-0.9.8

59

21 $ make

22 $ sudo make install

23

24 Step 4: Verify

25 $ olsrd -v (NOTE: Might need to add install location

[/usr/local/sbin] to PATH)↪→

26

27 OLSRD Plugins

28 txtinfo:

29 $ cd lib/txtinfo

30 $ make

31 $ sudo make install

32

33 bmf:

34 $ cd ../bmf

35 $ make

36 $ sudo make install

37

38 iPerf v3.7

39 $ sudo apt install iperf3

40

41 gpsd + gpsd-clients v3.20

42 $ sudo apt install gpsd gpsd-clients

43

44 BATMAN:

45 $ sudo apt install batctl

46 $ sudo modprobe batman-adv

60

Appendix B

Intelligent Router Source Code

B.1 Control Script

1 #!/usr/local/bin/python3.8

2 import time

3 import datetime

4 import logging

5

6 import classify

7 import allocate

8

9 if __name__ == '__main__':

10

11 date = datetime.date.today()

12 logFileName = "./Logs/{today}.log".format(today=date)

13

14 # Setup logging

15 logging.basicConfig(filename=logFileName, filemode='a', level=logging.DEBUG,

16 format='%(asctime)s - %(levelname)s:%(message)s',

datefmt='%m/%d/%Y %I:%M:%S %p')↪→

17

18 nextStart = time.monotonic()

19 delta = 7.5 # 7.5 seconds between runs (time to perform all data collection

and processing)↪→

20

61

21 for i in range(8):

22 nextStart = nextStart + delta

23

24 # Classify code here

25 classData = classify.main()

26

27 # Allocation code here

28 allocate.main(classData)

29

30 # Wait until next classify time

31 if i != 7:

32 while nextStart > time.monotonic():

33 time.sleep(0.1)

B.2 Classification

1 #!/usr/local/bin/python3.8

2 import datetime

3 import logging

4 import re

5 import subprocess

6

7

8 # Get bandwidth data from iftop and parse

9 def flow():

10 # Run iftop

11 # Arguments: -t, text mode (remove ncurses)

12 # -c <file>, configuration input file

13 # -s #, measure for # seconds

14 # -i <network interface>, interface to listen on

15 # -L #, number of lines to display

16 #

17 # Redirect stderr to /dev/null

18 # Take stdout output and split each line into list

19 iftop = "iftop -t -c .iftoprc -s 3 -L 35 -i ens18" # (FIXME: Change network

interface to correct value)↪→

20 proc_out = subprocess.run(args=iftop, shell=True, universal_newlines=True,

62

21 stdout=subprocess.PIPE, stderr=subprocess.DEVNULL)

22 top_list = proc_out.stdout.split("\n")

23

24 # Trim list to only contain relevant lines of data (data with per IP

bandwidth)↪→

25 data_list = []

26

27 for i in range(len(top_list)):

28 if re.search('^ {1,3}[0-9]', top_list[i]):

29 data_list.append(top_list[i])

30 data_list.append(top_list[i + 1])

31 i + 1

32

33 # Count = 2 * number of hosts

34 # Two lines per host (one upload, one download)

35 count = len(data_list)

36

37 # If list is empty, no data to work on

38 if count < 2:

39 return -1

40

41 # Dictionary to hold host information, in-coming, and out-going traffic

42 global host_dict

43 global host_list

44

45 host_dict = {}

46 host_list = []

47

48 #

49 # For each host upload/download pair, extract information into format below

50 #

51 # Host | Up Rate | Down Rate

52 # <ip_addr> | Mbps | Mbps

53 # <ip_addr> | Mbps | Mbps

54 # "" | "" | ""

55 for i in range(int(count / 2)):

56 down_list = data_list[i * 2].split(" ")

63

57 up_list = data_list[(i * 2) + 1].split(" ")

58

59 while '' in up_list:

60 up_list.remove('')

61

62 while '' in down_list:

63 down_list.remove('')

64

65 host_ip = up_list[0]

66 up_rate = up_list[2]

67 down_rate = down_list[3]

68

69 # Standardize units

70 up_rate = unit(up_rate)

71 down_rate = unit(down_rate)

72

73 # Store data

74 host_data = [up_rate, down_rate]

75 host_dict[host_ip] = host_data

76 host_list.append(host_ip)

77

78

79 # Classify each host's priority

80 def priority():

81

82 global prio_dict

83 prio_dict = {}

84

85 prio = 5

86

87 for ip in host_list:

88 bandwidth = host_dict[ip]

89

90 if bandwidth[0] < 200.0 and bandwidth[1] < 5000.0:

91 prio = 0

92 elif bandwidth[0] > 200.0 and bandwidth[1] < 5000.0:

93 prio = 1

64

94 elif bandwidth[0] < 200.0 and bandwidth[1] > 5000.0:

95 prio = 2

96 elif bandwidth[0] > 200.0 and bandwidth[1] > 5000.0:

97 prio = 3

98

99 prio_dict[ip] = prio

100

101 logging.info(" CLASSIFY -- Host: %s; Upload: %.2fKbps, Download: %.2fKbps,

Priority: %d", ip, bandwidth[0], bandwidth[1], prio)↪→

102

103

104 # Strip unit, standardize to Kbps

105 def unit(measure):

106 if "Mb" in measure:

107 ret = float(measure.strip("Mb")) * 1024

108 return ret

109 elif "Kb" in measure:

110 ret = float(measure.strip("Kb"))

111 return ret

112 elif "b" in measure:

113 ret = float(measure.strip("b"))

114 return ret

115

116

117 def main():

118

119 outputDict = {}

120

121 if flow() != -1:

122 priority()

123 return host_dict

124

125 else:

126 logging.info(" CLASSIFY -- No data found")

127

128

129 if __name__ == '__main__':

65

130

131 date = datetime.date.today()

132 logFileName = "./Logs/{today}.log".format(today=date)

133

134 # Setup logging

135 logging.basicConfig(filename=logFileName, filemode='a', level=logging.DEBUG,

136 format='%(asctime)s - %(levelname)s:%(message)s',

datefmt='%m/%d/%Y %I:%M:%S %p')↪→

137

138 main()

B.3 Allocation

1 #!/usr/local/bin/python3.8

2 import csv

3 import datetime

4 import logging

5 import os

6 import xml.etree.ElementTree as ET

7

8

9 # Standard amount by which bandwidth should be raised or lowered (Kbps)

10 incrementAmount = 2500

11 decrementAmount = 1000

12

13 # Individual Host max BW and min BW (Kbps)

14 minHost = 7500

15 maxHost = 100000

16

17 # Max bandwidth (Kbps)

18 maxNetworkBandwidth = 25000 * 30

19

20 configFile = 'config.xml' # pfSense XML setting file (FIXME: Restore this

path to '/conf/config.xml')↪→

21 classifyFile = 'classData.csv' # classify script output file

22

23

66

24 def readClassifyData():

25

26 # Read data from classification script

27 # Dictionary {Key: Value} where Key is <ip address> and Value is (Upload,

Download)↪→

28 classifyData = {}

29

30 with open(classifyFile) as csvFile:

31 csvReader = csv.reader(csvFile)

32 for row in csvReader:

33 classifyData[row[0]] = (row[1], row[2])

34

35 return classifyData

36

37

38 def readXML():

39

40 # Get current download bandwidth allocations from limiters

41

42 tree = ET.parse(configFile)

43 root = tree.getroot()

44

45 currBW = {}

46

47 for queue in root.findall('./dnshaper/queue'):

48 ip_end = queue[0].text

49 if len(ip_end) > 5: # Catch limiters not named _# (where # is last octet

of IP address)↪→

50 continue

51 ip = "192.168.50.%s" % ip_end[1:] # (FIXME: Restore start of IP address

to appropriate value)↪→

52 bw = queue[5][0][0].text

53

54 currBW[ip] = bw

55

56 return currBW

57

67

58

59 def genBWList(currentAllocation, classifyData):

60

61 # Generate dictionary of IP : New Bandwidth Amount (In Kbps)

62 newBWList = {}

63

64 for key in currentAllocation:

65

66 if classifyData is None or key not in classifyData:

67 # Assume no reading means no usage

68 if int(currentAllocation[key]) > minHost:

69 newBWList[key] = str(int(currentAllocation[key]) -

decrementAmount)↪→

70 logging.info(" ALLOCATE -- Host: %s; Decrease cap, New Cap: %s",

key, newBWList[key])↪→

71 continue

72

73 downloadVal = classifyData[key][1]

74

75 if downloadVal > (int(currentAllocation[key]) * 0.95) and

int(currentAllocation[key]) < maxHost:↪→

76 newBWList[key] = str(int(currentAllocation[key]) + incrementAmount)

77 logging.info(" ALLOCATE -- Host: %s; Increase cap, New Cap: %s", key,

newBWList[key])↪→

78 elif downloadVal < (int(currentAllocation[key]) * 0.50) and

int(currentAllocation[key]) > minHost:↪→

79 newBWList[key] = str(int(currentAllocation[key]) - decrementAmount)

80 logging.info(" ALLOCATE -- Host: %s; Decrease cap, New Cap: %s", key,

newBWList[key])↪→

81 else:

82 newBWList[key] = currentAllocation[key]

83 logging.info(" ALLOCATE -- Host: %s; No change, New Cap: %s", key,

newBWList[key])↪→

84

85 return newBWList

86

87

68

88 def writeXML(newBW):

89

90 # 1. Get new bandwidth amounts as input arg (dictionary)

91 # 2. Parse /conf/config.xml and find each queue's IP

92 # 3. Use IP as key in dictionary to get new bandwidth value

93 # 4. Write out new XML file

94

95 tree = ET.parse(configFile)

96 root = tree.getroot()

97

98 for queue in root.findall('./dnshaper/queue'):

99 ip_end = queue[0].text

100 if len(ip_end) > 5: # Catch limiters not named _# (where # is last octet

of IP address)↪→

101 continue

102 ip = "192.168.50.%s" % ip_end[1:] # (FIXME: Restore start of IP address

to appropriate value)↪→

103 try:

104 queue[5][0][0].text = newBW[ip]

105 except KeyError: # Skip queue if corresponding IP is not in dictionary

106 continue

107

108 tree.write(configFile)

109

110 return 0

111

112

113 def reloadFirewall():

114

115 # 1. Remove /tmp/config.cache (Reloads config file)

116 # 2. Run /etc/rc.filter_configure (Reloads pfsense firewall)

117

118 os.system('rm /tmp/config.cache')

119 os.system('/etc/rc.filter_configure')

120

121 return 0

122

69

123

124 def main(classData):

125

126 # 1. Get and store current bandwidth allocations

127 # 3. Generate list of new bandwidth allocations

128 # 4. Write new allocation parameters out to XML File

129 # 5. Reload firewall

130

131 currAllots = readXML()

132 newBW = genBWList(currAllots, classData)

133 writeXML(newBW)

134 reloadFirewall()

135

136 return 0

137

138

139 if __name__ == '__main__':

140

141 date = datetime.date.today()

142 logFileName = "./Logs/{today}.log".format(today=date)

143

144 # Setup logging

145 logging.basicConfig(filename=logFileName, filemode='a', level=logging.DEBUG,

146 format='%(asctime)s - %(levelname)s:%(message)s',

datefmt='%m/%d/%Y %I:%M:%S %p')↪→

147

148 main({})

70

Appendix C

ARGoS-EMANE Interface Source

Code

C.1 Main Code

1 #!/usr/bin/env python3

2

3 import os

4 import signal

5 import struct

6 import sys

7 import time

8 from multiprocessing import shared_memory

9

10 from emane.events import EventService, LocationEvent

11

12 from libs.structs import *

13 from libs.drone import EMANEDrone

14

15 META_FORM = 'HHdIIddd'

16 META_SIZE = struct.calcsize(META_FORM)

17 POSE_FORM = 'Hddd'

18 POSE_SIZE = struct.calcsize(POSE_FORM)

19 COMM_FORM = 'HHdd'

20 COMM_SIZE = struct.calcsize(COMM_FORM)

71

21

22 EMANE_PID = os.getpid()

23 GW_ID = 0 # TODO: Select a constant ID for the gateway (Initialize a translation

table between EMANE IDs and ARGoS IDs?)↪→

24

25 def handler_sigcont(sig, frame):

26 return

27

28 def handler_sigterm(sig, frame):

29 shm_meta.close()

30 shm_pose.close()

31 shm_comm.close()

32 sys.exit(0)

33

34

35 def wait_for_argos():

36 time.sleep(0.1)

37 os.kill(sys_meta.argos_pid, signal.SIGCONT)

38 print("Sending SIGCONT to " + str(sys_meta.argos_pid))

39 signal.raise_signal(signal.SIGSTOP)

40

41

42 def translateID(ARGoS_ID):

43 pass

44

45 def init():

46 signal.signal(signal.SIGTERM, handler_sigterm)

47 signal.signal(signal.SIGCONT, handler_sigcont)

48

49 global shm_meta

50 global shm_pose

51 global shm_comm

52

53 shm_meta_exists = False

54 while(not shm_meta_exists):

55 try:

72

56 shm_meta = shared_memory.SharedMemory(name="argos_emane_meta",

create=False, size=META_SIZE)↪→

57 except FileNotFoundError:

58 time.sleep(5)

59 continue

60 shm_meta_exists = True

61

62 global sys_meta

63 sys_meta = RobotMeta()

64 sys_meta.unpack(shm_meta)

65 sys_meta.emane_pid = EMANE_PID

66 sys_meta.pack(shm_meta)

67

68 print("ARGoS found continuing setup")

69

70 shm_pose = shared_memory.SharedMemory(name="argos_emane_pose", create=False,

size=POSE_SIZE*sys_meta.num_drone)↪→

71 shm_comm = shared_memory.SharedMemory(name="argos_emane_comms", create=False,

size=COMM_SIZE*sys_meta.num_comms)↪→

72

73 global drone_nodes

74 drone_nodes = [EMANEDrone() for i in range(sys_meta.num_drone)]

75

76 global robotpose

77 global robotcomm

78 robotpose = [RobotPose() for i in range(sys_meta.num_drone)]

79 robotcomm = [RobotComms() for i in range(sys_meta.num_comms)]

80

81 print("Setting up gateway node")

82 gateway_service = EventService(('224.1.2.8', 45703, 'control0')) # These

values come from EMANE config files↪→

83 gateway_loc = LocationEvent()

84 gateway_loc.append(GW_ID, latitude=sys_meta.gw_lat, longitude=sys_meta.gw_lon,

altitude=sys_meta.gw_alt, yaw=0, pitch=0, roll=0)↪→

85 gateway_service.publish(0, gateway_loc)

86

87

73

88 def update_drone():

89 global shm_meta

90 global shm_pose

91 global robotpose

92

93 prev_drone = sys_meta.num_drone

94 sys_meta.unpack(shm_meta)

95

96 # NOTE: This should theoretically never fire (without EMANE being configured

to start with more nodes than ARGoS)↪→

97 # EMANE can not create new nodes during runtime

98 if(prev_drone < sys_meta.num_drone):

99 shm_pose.close()

100 shm_pose = shared_memory.SharedMemory(name="argos_emane_pose",

create=False)↪→

101 robotpose = [RobotPose() for i in range(sys_meta.num_drone)]

102

103 for i in range(sys_meta.num_drone):

104 buf = shm_pose.buf[i*POSE_SIZE:(i+1)*POSE_SIZE]

105 robotpose[i].unpack(buf)

106 drone_nodes[i].id = robotpose[i].id

107 drone_nodes[i].lat = robotpose[i].lat

108 drone_nodes[i].lon = robotpose[i].lon

109 drone_nodes[i].alt = robotpose[i].alt

110

111 print("Sending location events to EMANE")

112 service = EventService(('224.1.2.8', 45703, 'control0')) # These values come

from EMANE config files↪→

113 for drone in drone_nodes:

114 drone.location_event(service)

115

116

117 def communicate():

118 global shm_meta

119 global shm_comm

120 global robotcomm

121

74

122 prev_comms = sys_meta.num_comms

123 sys_meta.unpack(shm_meta)

124

125 if(prev_comms < sys_meta.num_comms):

126 shm_comm.close()

127 shm_comm = shared_memory.SharedMemory(name="argos_emane_comms",

create=False)↪→

128 robotcomm = [RobotComms() for i in range(sys_meta.num_comms)]

129

130 print(sys_meta)

131 # BUG: Correlate list index with drone id (breaks if drone poses or drone IDs

are not in sequential order)↪→

132 try:

133 for i in range(sys_meta.num_comms):

134 buf = shm_comm.buf[i*COMM_SIZE:(i+1)*COMM_SIZE]

135 robotcomm[i].unpack(buf)

136 # drone_nodes[0].inc_buffer(robotcomm[i].buff_size)

137 drone_nodes[i].buff = robotcomm[i].buff_size # NOTE:

138 robotcomm[i].sent = drone_nodes[i].do_broadcast()

139 buf = robotcomm[i].pack()

140 shm_comm.buf[i*COMM_SIZE:(i+1)*COMM_SIZE] = buf

141

142 # TODO: Check latency between all pairs and store to report to SySML

143 except:

144 pass

145

146 if __name__=='__main__':

147 iternum = 0

148

149 init()

150 print(sys_meta)

151 while True:

152 wait_for_argos()

153 time.sleep(1)

154 update_drone()

155 communicate()

156

75

157 print(iternum)

158 iternum+=1

C.2 Shared Memory Data Structures

1 import struct

2 from ctypes import *

3 from dataclasses import dataclass

4

5 @dataclass

6 class RobotMeta():

7 """

8 Struct containing metadata shared between ARGoS and EMANE

9

10 Attributes

11 ----------

12 num_drone - Number of active robots

13 num_comms - Number of robots attmempting to broadcast

14 deltaT - Time per step

15 argos_pid - ARGoS Process ID

16 emane_pid - EMANE Process ID (PID of Interface Script, not EMANE itself)

17 gw_lat - Latitude coordinate of gateway node

18 gw_lon - Longitude coordinate of gateway node

19 gw_alt - Altitude (meters) of gateway node

20 struct_format - Metadata used to unpack data from shared memory

21 """

22 num_drone: c_ushort = None

23 num_comms: c_ushort = None

24 deltaT: c_double = None

25 argos_pid: c_uint = None

26 emane_pid: c_uint = None

27 gw_lat: c_double = None

28 gw_lon: c_double = None

29 gw_alt: c_double = None

30

31 __struct_format: str = 'HHdIIddd'

32

76

33 def unpack(self, shm):

34 self.num_drone, self.num_comms, self.deltaT, self.argos_pid,

self.emane_pid, self.gw_lat, self.gw_lon, self.gw_alt \↪→

35 = struct.unpack(self.__struct_format, shm.buf.tobytes())

36

37 def pack(self, shm):

38 buf = struct.pack(self.__struct_format, self.num_drone, self.num_comms,

self.deltaT, self.argos_pid, self.emane_pid, self.gw_lat, self.gw_lon,

self.gw_alt)

↪→

↪→

39 shm.buf[:struct.calcsize(self.__struct_format)] = buf

40

41

42 @dataclass

43 class RobotPose():

44 """

45 Struct containing location of each robot

46

47 Attributes

48 ----------

49 id - Robot ID

50 lat - Latitude of robot

51 lon - Longitude of robot

52 alt - Altitude of robot

53 struct_format - Metadata used to unpack data from shared memory

54 """

55 id: c_ushort = None

56 lat: c_double = None

57 lon: c_double = None

58 alt: c_double = None

59 __struct_format: str = 'Hddd'

60

61 def unpack(self, buf):

62 self.id, self.lat, self.lon, self.alt =

struct.unpack(self.__struct_format, buf)↪→

63

64 def pack(self):

77

65 buf = struct.pack(self.__struct_format, self.id, self.lat, self.lon,

self.alt)↪→

66 return buf

67

68

69 @dataclass

70 class RobotComms():

71 """

72 Struct containing the communication data for each robot

73

74 Attributes

75 ----------

76 id_from - Robot ID Transmitting

77 id_to - Robot ID Receiving

78 buff_size - Size of data robot wants to transmit (bytes)

79 sent - Size of data actually transmitted (bytes)

80 struct_format - Metadata used to unpack data from shared memory

81 """

82 id_from: c_ushort = None

83 id_to: c_ushort = None

84 buff_size: c_double = None

85 sent: c_double = None

86 __struct_format: str = 'HHdd'

87

88 def unpack(self, buf):

89 self.id_from, self.id_to, self.buff_size, self.sent =

struct.unpack(self.__struct_format, buf)↪→

90

91 def pack(self):

92 buf = struct.pack(self.__struct_format, self.id_from, self.id_to,

self.buff_size, self.sent)↪→

93 return buf

C.3 Drone Object

1 from dataclasses import dataclass

2 from emane.events import *

78

3 from ctypes import *

4

5 @dataclass

6 class EMANEDrone():

7 '''

8 Corresponds to a single drone node

9 Holds its own ID, Location, and TxBufferSize

10

11 Attributes

12 ----------

13 id - Drone node ID

14 lat - Node's latitude

15 lon - Node's longitude

16 alt - Node's altitude

17 buff - Number of bytes this node needs to still transmit

18 sent - Number of bytes this node sent this iteration

19 '''

20 id: c_ushort = None

21 lat: c_double = None

22 lon: c_double = None

23 alt: c_double = None

24 buff: c_double = 0.0

25

26 def inc_buffer(self, size):

27 self.buff += size

28

29 def dec_buffer(self, size):

30 self.buff -= size

31

32

33 def location_event(self, service):

34 loc_event = LocationEvent()

35 loc_event.append(self.id, latitude=self.lat, longitude=self.lon,

altitude=self.alt, yaw=0, pitch=0, roll=0)↪→

36 service.publish(0, loc_event)

37 return 0

	List of Figures
	List of Tables
	Introduction
	Overview on Network Emulation
	Testing Communication Networks
	Evaluation of Network Testing Tools
	Using EMANE
	Emulation Model Processing
	Transport Boundary Processing
	Event Processing

	Routing in Mobile Mesh Networks
	Proactive Mesh Routing
	Reactive Routing

	Chapter Summary

	Hybrid Wireless Rural Broadband Networks
	Hardware Testbed Network Topologies
	OVERCOME Testbed
	ZoomTel Testbed

	Creating the Networks in EMANE
	Hardware Results versus Emulation Results
	Chapter Summary

	Networking Software Development Environment
	Intelligent Method of Bandwidth Distribution
	Implementing the Software
	Stage 1: Classification
	Stage 2: Allocation

	Effectiveness of the Program
	Chapter Summary

	Dynamic Robot Swarm Networks
	Extending Existing Software
	Integrating the Software
	Integration Design Decisions
	Integration Results
	Chapter Summary

	Conclusion
	Evaluating EMANE and Network Emulation
	Limitations of Network Emulation
	Research Outcomes
	Future Work

	Bibliography
	Installation of EMANE
	Intelligent Router Source Code
	Control Script
	Classification
	Allocation

	ARGoS-EMANE Interface Source Code
	Main Code
	Shared Memory Data Structures
	Drone Object

