
1 

                 

 

 

 

PREDICTING CLICKS ON MOBILE 

ADVERTISEMENTS 

 

A Major Qualifying Project 

Submitted to the faculty of 

Worcester Polytechnic Institute 

In partial fulfillment of the requirements for the 

Degree of Bachelor of Science 

 

 

 

Submitted by: Christina Webb, Alexander Gorowara 

 

Submitted to: Project Advisor, Professor Carolina Ruiz 

 

 

Date: April 30
th
, 2015 

  



2 

Acknowledgements 
 

We have taken efforts in this project. However, it would not have been possibly successful 

without the kind support and help of many individuals and our sponsor. We would like to extend 

our sincere thanks to all of them. 

 

We would like to express our very great appreciation to our sponsor Chitika Inc., specifically the 

CEO Dr. Venkat Kolluri and two project liaisons from Chitika Inc., Joseph Regan and Stijn 

Peeters. Their valuable and constructive suggestions during the planning and development of this 

project, and well as their willingness to give us their time so generously has been much 

appreciated. 

 

We would like to express our deep gratitude to Professor Carolina Ruiz, our project advisor, and 

Ahmedul Kabir, CS Ph.D. student, for their patient guidance, enthusiastic encouragement and 

useful critiques of this project work. 

 

Finally, we wish to thank all of our friends and people who helped us for their encouragement 

and support throughout this project.  



3 

Table of Contents 
Acknowledgements ....................................................................................................................................... 2 

Table of Contents .......................................................................................................................................... 3 

Table of Figures ............................................................................................................................................ 4 

Table of Tables ............................................................................................................................................. 5 

Abstract ......................................................................................................................................................... 6 

Executive Summary ...................................................................................................................................... 7 

1 Introduction ................................................................................................................................................ 9 

1.1 Problem Description ........................................................................................................................... 9 

2 Background .............................................................................................................................................. 11 

2.1 Machine Learning Overview ............................................................................................................ 11 

2.1.1 Performance Metrics .................................................................................................................. 11 

2.1.2 Machine Learning Algorithms ................................................................................................... 15 

2.1.3 Clustering Algorithms ................................................................................................................ 20 

2.2 Software Tools .................................................................................................................................. 23 

2.2.1 The R Project ............................................................................................................................. 23 

2.2.2 Weka .......................................................................................................................................... 23 

2.2.3 Python ........................................................................................................................................ 23 

3 Methodology ............................................................................................................................................ 24 

3.1 Data Description ............................................................................................................................... 24 

3.2 Phase One.......................................................................................................................................... 28 

3.2.1 Classifier Choice ........................................................................................................................ 28 

3.2.2 Data Separation .......................................................................................................................... 29 

3.2.3 Feature and Value Selection ...................................................................................................... 31 

3.2.4 Feature Creation ......................................................................................................................... 33 

3.2.5 Algorithm Modification ............................................................................................................. 34 

3.3 Phase Two ......................................................................................................................................... 37 

3.3.1 Data Set Variants ....................................................................................................................... 37 

3.3.2 Experiments ............................................................................................................................... 38 

4 Results ...................................................................................................................................................... 40 

5 Conclusion ............................................................................................................................................... 51 

Bibliography ............................................................................................................................................... 52 

Appendix A: Phase One Experiments ......................................................................................................... 53 



4 

Table of Figures 

Figure 1: Sample ROC Curve ..................................................................................................................... 13 

Figure 2: A Bayesian network .................................................................................................................... 18 

Figure 3: A Naive Bayes network ............................................................................................................... 18 

Figure 4: A freshly initialized k-means algorithm ...................................................................................... 21 

Figure 5: Distribution of target attribute: users who clicked vs users who did not click ............................ 25 

Figure 6: Location of Users based on Latitude and Longitude data ........................................................... 26 

Figure 7: User-Submitted Data ................................................................................................................... 27 

Figure 8: F1 Score, Precision, and Recall from the Base Data Set ............................................................. 42 

Figure 9: F1 Score, Precision, and Recall from the CFS Data Set .............................................................. 44 

Figure 10: F1 Score, Precision, and Recall from the Domain Data Set ...................................................... 46 

Figure 11: F1 Score, Precision, and Recall from the Manual Data Set ...................................................... 48 

 

 

  



5 

Table of Tables 

Table 1: An example of true and false ........................................................................................................ 12 

Table 2: The conversion process from nominal to numeric ........................................................................ 15 

Table 3: The Manually Discovered Ten Attribute Data set ........................................................................ 31 

Table 4: AUC Results ................................................................................................................................. 40 

Table 5: Data Sets and Threshold Statistics ................................................................................................ 49 

  



6 

Abstract 
 

We explored methods of improving upon Chitika, Inc.'s existing means of predicting 

which users would most probably click on an advertisement in a mobile application.  We used 

machine learning algorithms, primarily Naive Bayes, that trained on demographic and behavioral 

information supplied by the user and his/her mobile device.  After an exploratory phase, we 

gathered performance data using the AUC metric on twenty-eight different experimental 

conditions.  When compared to the control condition, in which no preprocessing was performed 

on the data before being given to the unmodified Naive Bayes algorithm, we found only minor 

improvements in AUC. 
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Executive Summary 
 

Chitika, Inc. is an online advertising company that connects ad providers (companies that 

want consumers to see their advertisements) with content providers (companies that have 

consumer-visible website space to rent). Chitika’s revenue is derived from the efficient arbitrage 

of ad space.  The task they gave us was to seek out methods which could improve their already 

successful predictions of which users would or would not click on ads. 

In order to improve these predictions, we worked mainly with the Naïve Bayes machine 

learning algorithm, which uses Bayes’ Rule and observed probabilities to calculate the 

probability of a given datum belonging to a previously defined group.  We also relied heavily on 

clustering algorithms, which group data into different sets without any previously existing labels 

or definitions of those sets. 

We conducted experiments using these and other tools on a data set with over 4.5 million 

user impressions, collected across a week of activity on a single mobile application.  This data 

was naturally and heavily skewed towards non-clickers, who made up 99.55% of the sample.  

Our experiments on this data covered four different modification conditions to the data set itself, 

and seven experimental methods, for a total of twenty-seven different experimental conditions. 

Overall we found at best minor improvements relative to the control condition of an 

unmodified data set which received no treatment before being run through Naïve Bayes.  

However, our experiments with the method using the Expectation-Maximization clustering 

algorithm were sufficiently unusual and high-performing to deserve further inspection.  We are 



8 

optimistic that the approaches which we have documented will be of use to Chitika as they 

consider trade-offs in speed, complexity, and performance. 
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1 Introduction 

1.1 Problem Description 
 Chitika, Inc. is an online advertising company that connects ad providers (companies that 

want consumers to see their advertisements) with content providers (companies that have 

consumer-visible website space to rent). Chitika’s revenue is derived from the efficient arbitrage 

of ad space. 

 One mechanism by which such companies operate is called real-time bidding (RTB).  

When a user visits a content provider’s website, the content provider announces this user’s 

arrival on an ad exchange.  The user’s visit (called an impression) comes with some information: 

data such as location, browser version, device version, and much more.  Based on this 

information, networks such as Chitika bid for the ad space for this particular impression - the 

right to show a single ad to that single user.  If the ad is successful (which, in most cases, means 

that the user clicks on the ad), the network is then paid.  In this model, which must happen 

sufficiently fast for the user to have no noticeable delay, the ad network takes the risk that the 

user will not click, but reaps the reward if he/she does. The problem posed by Chitika to us 

appeared very simple: they wanted to improve their prediction of users’ likelihood to click on 

ads. .  This meant that they wanted to explore new ways to quantify the probability that a given 

user, distinguished by a limited amount of demographic, technical, and behavioral information, 

would find their ad enticing enough to click on it.  

 Our greatest asset in this project was the amount of data with which Chitika supplied us, 

full of anonymized user records including (where available) demographic information and 

behavioral history, coupled of course with the all-important target attribute: whether or not they 
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had clicked on the ad. A more detailed description of this data can be found in Chapter 33 

Methodology. 

 We defined our goal for the project as the search for a well-tuned classification algorithm 

that a) performed well on classifying entirely unfamiliar users and b) could do so quickly enough 

to avoid delaying the user. For the first condition, we relied almost exclusively on the AUC, area 

under the (receiver operating characteristic) curve, metric to evaluate classifiers, and for the 

second, we found in the course of our experimentation that a large and unmistakable gap existed 

between those algorithms that scaled well for our purposes and those that did not, removing the 

need to experiment more rigorously. 

 By the end of our project, we had explored multiple classification algorithms and 

proposed variations on each, with special focus on variations on the Naïve Bayes classification 

algorithm. We also experimented with a variety of data pre-processing techniques, mostly 

involving clustering, and dimensionality reduction of the data available to us. Compared to our 

starting point, in which we used an entirely unmodified algorithm, we found only minor 

improvements relative to the control condition of declining to preprocess the data set or modify 

the machine learning algorithm used, and were able to increase the AUC metric for our best 

performing classifiers from 0.57 to 0.59. 
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2 Background 

2.1 Machine Learning Overview 

2.1.1 Performance Metrics 

 In order to deliver a solution which suited the needs of the sponsor, it was necessary to 

utilize unambiguous and objective performance metrics.  We were fortunate to be inheriting a 

problem which the sponsor had already examined extensively, and as such they had a baseline 

performance measurement on a scale that we could easily use to assess our own results. 

2.1.1.1 Area Under the ROC Curve (AUC) 

 

 This metric is known as area under the receiver operating characteristic curve, Area 

Under the ROC Curve, or just AUC.  AUC can be applied to any classifier which judges test 

instances to be positive or negative by assigning them a probability of being positive.  With such 

a classifier, in order to obtain a binary prediction of positive or negative, one would have to 

select a threshold such that all test instances with a probability above it would be positive, and all 

below would be negative.  The AUC calculations are then done on the resulting pairs of 

probability and actual class. That is, for each test instance, the pair under consideration is of the 

form (p, class) where p is the classifier’s predicted probability that the instance is positive and 

class is whether the instance is actually positive or negative. For example, (0.6, positive)denotes 

an instance which the classifier predicts is positive with 60% probability and actually is positive;  

(0.1, negative) denotes an instance which the classifier predicts is positive with only 10% 

probability and is actually negative; and (0.7, negative) denotes an instance which the classifier 

predicts is positive with 70% probability and is actually negative. 

 The ROC curve is then created by calculating the false positive rate and true positive rate 

for various thresholds, and then plotting the value pair (false positive rate, true positive rate) for 
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each of the threshold.  The false positive rate (also known as 1-specificity) is the number of false 

positives divided by the total number of negative test instances (regardless of how they were 

actually classified), and the true positive rate (also known as sensitivity) is the number of true 

positives divided by the total number of positive test instances (regardless of how they were 

actually classified). Table 11 below gives an example of true and false positive rates. 

Table 1: An example of true and false 

 Predicted Class 

Actual Class  NEGATIVE POSITIVE 

NEGATIVE 300 100 

POSITIVE 200 400 

The number cells show how many instances with each real class label are given each predicted 

class label. The true positive rate is given as a function of: 

𝑇𝑃𝑅 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
=  

400

200+400
  

And the false positive rate is given as a function of: 

𝐹𝑃𝑅 =  
𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
=

100

300+100
  

 The resulting ROC curve will span the domain (FPR,TPR = (0,0),(1,1)) from the lower 

left corner to the upper right corner.  In the lower left are the points generated by high thresholds, 

which are strict enough to eliminate many potential false positives but also too strict to allow 

many true positives to be heard.  In the upper right are the points generated by low thresholds, 

which are permissive enough to admit most true positives (even if they are not very well-
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supported) but too permissive to filter out the majority of false positives.  The AUC, then, is a 

threshold-independent measure of the classifier’s performance, unlike other metrics such as 

accuracy or precision. 

 

Figure 1: Sample ROC Curve 

 Figure 1 above gives an example of a sample ROC curve plotted from eleven different 

thresholds. While the Area Under the Curve, AUC, can range from 0 to 1, in practice it ranges 

from 0.5 to 1. The baseline curve of TPR = FPR show in Figure 1 above is the practical minimum 

performance for a classifier; it is achievable by a classifier which blindly assigns a random 

probability to each instance, discarding all available information. The area under this curve is 0.5, 

so any classifier which has an AUC value of less than 0.5 at some point would be worse than 
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random guessing.  In fact, one could invert a classifier which scores less than 0.5 (transform all 

probabilities p that it outputs to 1-p) and thus create a better classifier.  If a classifier were good 

enough to be constantly incorrect, always giving a test instance the opposite of its true label, then 

simply by labeling each test instance the opposite of the classifier’s labels one could classify 

them perfectly. 

 2.1.1.2 Runtime Performance 
Additionally, while we did not measure this characteristic rigorously, the classifier needed to be 

fast.  We were not provided with an estimate of how fast it needed to be, but thankfully there 

seemed to be a natural divide among candidate procedures (combinations of algorithm and 

preprocessing) between the acceptably fast and the very, very slow.  (As a note, our focus was 

not on the time it took the algorithm to learn; merely how much time it took to classify new 

instances, which was the step that would need to be done in real time). 

Algorithms such as k-nearest-neighbors, which is a “lazy” learner that calculates the 

“distance” between the test instance and each training instance every time a classification is 

made, increase their classification time with the number of training instances, although the rate 

of increase can be slowed but not stopped. “Eager algorithms” such as logistic regression, on the 

other hand, are more time-intensive and resource-intensive when constructing the model that will 

later be used to classify a new instance. In exchange, once this step is done, they make 

predictions very quickly. Since the step of building the model is done infrequently and can be 

done offline long in advance of the need to make a prediction, we limited our search to “eager” 

learning algorithms only and quickly dismissed “lazy” learners.  
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2.1.2 Machine Learning Algorithms 

One of the algorithms we investigated was logistic regression.  It assigns probabilities by 

first transforming a test instance into a numeric vector (by rules explained below), then passing 

that vector to a logistic curve, which is bounded between 0 and 1. The output of that function is 

the predicted probability for the test instance.  

 The logistic curve equation has the form:  

𝑝(�⃗�)  =  1 / (1 + 𝑒−�⃗⃗� ∙𝑥 ⃗⃗⃗⃗ ) 

where 𝑝 is the probability that some instance (represented by the vector �⃗�) is a member of the 

positive class, and �⃗⃗� is a constant coefficient vector.  The vector �⃗� has at least as many elements 

as the number of attributes, and if all of the attributes are numeric, it has exactly as many; the 

first attribute becomes the first element, and so on. If there are any nominal attributes, however, 

these must first be converted into numeric attributes. 

A nominal attribute may have a number of distinct values; for example, an attribute color 

may have the values red, green, or blue. To convert the attribute color into a numeric attribute, it 

is replaced by three binary attributes: color = red, color = green, and color=blue, each of which 

can have the value 0 or 1. This process is demonstrated in Table 2 below.  

 
Table 2: The conversion process from nominal to numeric 

size color 

conversion 

 

size color=red color=green color=blue 

10 red 10 1 0 0 

15 blue 15 0 0 1 
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12 red 12 1 0 0 

17 green 17 0 1 0 

 

The vector �⃗⃗� is found by an iterative process (such as Newton’s method), as there is not a 

general solution for finding the coefficients as there is for least-squares linear regression (Scott, 

2002). 

 Once the coefficient vector is found, classifying a new instance is very quick, as there are 

only two significant steps: first, convert the instance into a vector; and second, give that vector as 

an input to the function 𝑝(𝑥)⃗⃗⃗⃗⃗.  For conversion, numerical values are simply transcribed; nominal 

values are handled in a way that is only slightly more complex.  Each nominal attribute, which 

may have a name such as color and may have valid values such as red, blue, and green, is 

converted into a series binary attributes, which may each have a value of 0 or 1.  There is one 

binary attribute for each possible value, so the attributes may be color_is_red, color_is_blue, and 

color_is_green.  (This process is also done when training the model; there are different 

coefficients for each binary attribute rather than one for the original nominal attribute).  Once the 

appropriate vector is created, it is passed as input to 𝑝(𝑥)⃗⃗⃗⃗⃗and its output is then the probability 

that the new instance belongs to the target class. 

Another probabilistic classifier which we examined is called the Naive Bayes model, 

named because it applies Bayesian probability calculations with the naive assumption that all 

attributes are  independent of each other.  It deals in hypotheses (such as target=0 or target=1), 

which are possible target values, and evidence (such as color=green or age=44), which is data 

from attributes.  The foundation of Naive Bayes is Bayes’ rule, which calculates the posterior 
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probability (denoted as 𝑝(ℎ|𝑒), the estimated probability that some hypothesis h is true after 

updating based on evidence e) as the function:  

𝑝(ℎ|𝑒) =
𝑝(𝑒|ℎ)

𝑝(𝑒)
𝑝(ℎ). 

 Terms of note are  prior probability (denoted as 𝑝(ℎ),the probability that some 

hypothesis h is true without any other data given) and the likelihood ratio or Bayes factor] 

(denoted as 
𝑝(𝑒|ℎ)

𝑝(𝑒)
, the ratio of the probability of evidence e occurring given that hypothesis h is 

true and the probability of evidence e occurring regardless of the truth of h) (Evidence-Based 

Diagnosis, n.d). 

The likelihood ratio is how many times more likely e is to occur given h than on its own; 

if it is very large (and greater than one), then e is strong evidence for h; if it is very small (and 

less than one), then e is strong evidence against h.  As a note, the likelihood ratio is bounded 

between 0 and 
1

𝑝(ℎ)
; e can never occur when h is true (in which case 𝑝(𝑒|ℎ) = 0) or it can occur 

if and only if h is true (in which case 𝑝(𝑒|ℎ) = 1  and 𝑝(𝑒) = 𝑝(ℎ)). 

 In order to use Naive Bayes as a classifier, one tests multiple competing, mutually 

exclusive hypotheses, all of which are statements about the value of the target class, such as 

target=0 or target=1.  Bayesian calculations are done for each hypothesis, and at the end one has 

the values 𝑝(𝑡𝑎𝑟𝑔𝑒𝑡 = 0|𝑒) and 𝑝(𝑡𝑎𝑟𝑔𝑒𝑡 = 1|𝑒). 

When instance to be classified has more than one non-target attribute, the likelihood 

ratios of each attribute’s value are multiplied together to obtain the posterior probability, like so: 

𝑝(ℎ|𝑒 && 𝑓) =
𝑝(𝑒|ℎ)

𝑝(𝑒)

𝑝(𝑓|ℎ)

𝑝(𝑓)
𝑝(ℎ). 
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This is the independence assumption that gives Naive Bayes its name. 

 

Figure 2: A Bayesian network 

 

Figure 3: A Naive Bayes network 

 If the two events e and f are not actually independent (for example. their likelihood ratios 

are both 
1

𝑝(ℎ)
, meaning that they occur if and only if h is true), the calculated posterior probability 

𝑝(ℎ|𝑒 && 𝑓)may be greater than 1, which is clearly not a legal value for a probability.  For this 

reason and others, most Naive Bayes algorithms calculate the posterior probability as the 

function: 

𝑝(ℎ|𝑒 && 𝑓)  =  𝑝(𝑒|ℎ)𝑝(𝑓|ℎ)𝑝(ℎ) 

It then normalizes the probabilities such that the sum of all posterior probabilities is 1.  Since the 

denominators of the likelihood ratios (the prior probabilities of e and f) are not dependent on h, 

they are implicitly included in normalization.  However, the prior probabilities of the evidence 

will be relevant later in our experimentation. 
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The probabilities used in likelihood ratios are generated, for the most part, from a simple 

counts of the number of times that an event e occurs and the number of times that it occurs 

accompanied by the hypothesis h.  This makes Naive Bayes incredibly fast to train; a single pass 

of the data, involving arithmetic more complex than can be performed by a four-function 

calculator, is sufficient to gather all the necessary information. 

 However, there are two scenarios in which a simple count is unsuitable.  The first is the 

case in which there is an event which is possible, but sufficiently rare that it does not occur in the 

training data (which may be a limitation of its size).  For such an event, the observed 𝑝(𝑒) and 

𝑝(𝑒|ℎ) are both zero.  To avoid multiplication (or division, if the prior probability of e is 

explicitly included) by zero, Naive Bayes may use Laplace smoothing (Peng,2004), calculating 

the conditional probability as the function: 

𝑝(𝑒|ℎ) =
𝑛(𝑒 && ℎ)  +  𝛼

𝑛(ℎ)  +  𝛼𝑑
 

  n(event) is the number of times that some event occurs, d is the number of different possible 

values of e (for example, if the color of an object can be either red, blue, or green, then d is 3), 

and ɑ is a parameter (generally 1).  This can be conceptualized as having a “virtual datum” 

corresponding to each possible event like e && h, so that no probability ever has a numerator of 

zero.  As the size of the training set increases but ɑ and d remain the same, this Laplacian 

smoothing becomes less and less significant, and eventually approaches total irrelevance. 

 The other case in which the conditional probabilities are not simple counts is when 

numeric attributes are involved.  Some numeric fields, such as the hour of the day (as an integer), 

can be appropriately approximated as nominal attributes, because they have a manageably small 
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and distinct number of possible values, much like nominal attributes.  But other numeric fields, 

such as an individual’s height in centimeters, cannot be fairly approximated as nominal; there is 

a large number of possible values, and it is unintuitive to say that a person who is 183 cm in 

height should be considered in an entirely separate category from one who is only 182 cm. 

 One solution is to discretize all numeric attributes before running them through Naive 

Bayes.  The 183 cm person falls into the same category of “160 cm - 190cm” as the 182 cm 

person, and the number of possible values becomes manageable.  Another solution is to use a 

numeric estimator, which assumes a certain probability distribution (such as Gaussian) and, 

given a value (such as 183 cm), calculates the probability of that value without involving counts 

at all.  Each hypothesis (such as target=0 and target=1) has its own estimator for each attribute; 

the height of the population for which target=0 is true may have a different mean and standard 

deviation from the population for which target=1 is true.  The conditional probabilities, then, for 

the 183 cm person are slightly different than the ones for the 182 cm person, but only slightly.  

The available distributions differ from implementation to implementation, and may be the same 

for each numeric attribute, regardless of the goodness of fit. 

 While Naive Bayes is incredibly swift and powerful, its independence assumption leaves 

a lot of territory to be explored. 

2.1.3 Clustering Algorithms 

 In the course of our experimentation, we relied at times on clustering algorithms - 

algorithms which, given a data set, cluster them into a (parameterized or automatically 

determined) number of different groups depending on their similarity, often with no knowledge 

of the target attribute.  Clustering algorithms can identify and act on similarities or memberships 

which are not explicit in the data, but which still have the potential to be useful.  We used 
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clustering algorithms mostly to separate data into different training and test sets, and the two 

algorithms we relied on were k-means and expectation-maximization (EM). 

 Before continuing, it is important to explain the concept of feature space.  In a previous 

section, we explained how a data instance can be represented as a vector; feature space is the 

space in which this vector can exist.  It has a finite number of continuous dimensions equal to the 

number of attributes (where each nominal attribute is replaced by a set of binary attributes), and 

one can apply a variety of distance metrics to any two points within it.  These distances are used 

to calculate the similarity of two non-identical points; distant points are very dissimilar, nearby 

points very similar. 

 The k-means algorithm randomly places k different points in this feature space (often by 

randomly selecting k different members of the training set), called centroids.  Any point in 

feature space belongs to the cluster of the centroid to which it is closest, as seen in Figure 4. 

 

Figure 4: A freshly initialized k-means algorithm 

Once the membership of every training instance is determined, the centroids shift to the center of 

their cluster, which is the mean position of the population of instances in the cluster.  Once the 

centroids have moved, cluster membership is recalculated; each centroid may leave some 

instances behind or incorporate new instances into its cluster.  This process is repeated until one 

of the following occurs: a set number of iterations is completed, the movement of the centroids 

becomes very small, or the number of training instances which change clusters in an iteration 
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becomes very small.  The parameters of the algorithm may be set to accept only one stopping 

condition, or it may have multiple potential stopping conditions. 

 One limiting feature of k-means is the fact that it is a discrete clusterer; while there are 

meaningful metrics relating each instance to each cluster (distance to centroid), there are no 

guidelines in the algorithm itself which can meaningfully rate each instance-cluster relation other 

than ordinally.  The algorithm does not lend itself to saying that an instance has a quantifiable 

mix of memberships.  For this reason (among others), k-means is very sensitive to its initial 

conditions; two random selections of initial centroids can have very different effects. 

 The other clustering algorithm we used, expectation-maximization (E-M), does not suffer 

from this limit; instead, it classifies instances proportionally, assigning a proportion of each 

instance’s cluster membership to each cluster. 

 The algorithm works by, as k-means, starting with random points somewhere in feature 

space and subsequently iterating until the clustering is stable.  However, unlike k-means, E-M 

does not blindly shift its center based on its membership.  Rather, it shifts based on the goodness 

of the fit, which is determined not discretely but by assigning each cluster a standard deviation in 

each feature dimension.  The multi-Gaussian, multi-dimensional distribution so constructed can 

cluster instances probabilistically: an instance in some given position has such-and-such 

probability of being in this cluster, and so-and-so probability of being in that cluster, et cetera.  

Additionally, the implementation with which we worked had built-in cross-validation to 

correctly select the number of clusters based on goodness of fit, so there was no need to test 

various k-parameters until an appropriate one was found. 
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2.2 Software Tools 

2.2.1 The R Project 

 The programming language R, which is designed to swiftly and efficiently handle vector 

and matrix data, has been our go-to tool for the vast majority of our data manipulation (The R 

Project for Statistical Computing, n.d).  While initially we did attempt to use its machine learning 

packages for classification, we found that other packages better suited our needs and were 

significantly easier to work with. 

 R proved its value, however, with an easy-to-use command-line interpreter, quick 

scripting capabilities with little setup, and well-documented libraries for nearly any need (such as 

reading from and writing to ARFF files - a format developed for a single software tool).  It may 

help that R is a non-commercial project frequently patronized by academia; perhaps in adapting 

it for their own needs, they conveniently gave us the same benefits. 

2.2.2 Weka 

 The data analysis tool Weka is a collection of machine learning algorithms for data 

mining tasks, and it has been the main tool for our experimentation (Hall, 2009). We use Weka 

to apply Naive Bayes, Logistic Regression, and the K-Means clustering algorithm to our data and 

to get the ROC value from our experiments.   

2.2.3 Python 

 We used Python to test some ideas in the first phase of our methodology when it was 

more practical to write our own algorithms from scratch instead of modifying Weka’s.  However, 

we did not have the resources and skills to optimize our Python code to work with larger data 

sets in a feasible timeframe, so we did not use it beyond the smaller experiments.  
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3 Methodology 
 Our methodology had two phases.  In Phase One, the exploratory phase, we used a small 

data set to rapidly test a large number of approaches in a very short time.  The Phase One data set 

came from a single day of observations from a single app on the Android platform, and had 

about twenty thousand instances (user impressions) and twenty-nine non-trivial attributes.  We 

excluded any attributes which are either totally uniform across the data set (such as the 

application ID) or have a number of distinct categorical values on the order of the size of the data 

set itself (such as a user identification code).  The Phase Two data set came from a series of six 

days of observations from an entirely different app (albeit one with many of the same user-

submitted fields), encompassing over four and a half million instances and twenty-seven non-

trivial attributes, many of which were identical to those in the Phase One data set. 

 Phase One’s best-performing and most feasible analysis approaches were examined in 

Phase Two, which took up the tail end of the project. 

3.1 Data Description 
The data set that we used for Phase One included thirty different fields, or attributes, 

including the target is_click, which was a simple yes or no.  These non-target fields ranged from 

simple numeric attributes, such as the hour of the day, to large categorical attributes with many 

possible values, such as in which of the 1700+ cities represented in the data the user could be 

found.  Most of the attributes were categorical (though the term nominal is used to describe them 

in some machine learning literature), and many of them had an overabundance of values. The 

data set we used for Phase Two included twenty-seven different attributes including the target. 

Figure 6 below illustrates the distribution of users who clicked and did not click in our Phase two 

data set. 
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Figure 5: Distribution of target attribute: users who clicked vs users who did not click 

 The large number of values was not an insignificant roadblock - each attribute multiplied 

the number of possible combinations of values, leading to a configuration space far too large for 

the available data to cover even a small corner of the realm of possibilities.  Many attributes were 

riddled with missing data. For example, data instances representing users who had turned off 

their GPS were missing longitude and latitude data. Figure 6 below shows a scatterplot of the 

location of GPS enabled users in the United States from our Phase One data set, which was 71% 

of the total users. 

no, 4511136, 
100% 

yes, 20376, 
0% 

no

yes
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Figure 6: Location of Users based on Latitude and Longitude data 

 

Some attributes were based on user input and were either missing or clearly incorrect, 

and still others were missing for reasons we do not know.  User age, for example, has an 

unusually large number of people who claim the earliest allowable birth year (1900). A 

histogram of this data is shown below in Figure 7. Notice that the large spikes are at ages 18 and 

94, and the smallest spike is at 114, the earliest allowable birth year. 
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Figure 7: User-Submitted Data 

 Another significant issue with the data was the natural imbalance between the two values 

of the target attribute - the non-clickers outnumbered the clickers by a factor greater than fifteen 

in the Phase One data set, and composed 99.55% of the Phase Two data set, which can be seen in 

Figure 5.  This meant that once the data was broken down into the subgroups we really cared 

about, one of those subgroups covered far less of the space of possible data than the combined 

data set.  
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3.2 Phase One 
 In Phase One, we took the “shotgun” approach: try a variety of approaches and note 

anything that looked promising.  Phase One took the majority of the project, ranging from our 

choice of classification algorithm to eventual modifications and deep involvement with 

clustering algorithms.  This phase was not rigorous in its analysis; we relied primarily on the 

AUC from ten-fold cross-validation to inform us which methods were worth further pursuit. For 

comparisons, we used a baseline AUC of 0.57 obtained from simple experiments with logistic 

regression, the sponsor’s original algorithm of choice. 

Later on, we kept a consistent training and testing set on which we could test methods 

that did not lend themselves to automatic cross-validation; the data separation section expands on 

a number of these and what difficulties came up.  While our approaches were not uniformly 

consistent across the entirety of Phase One, we believe that with the use of baseline 

measurements in many later experiments, we secured a number of potential-laden novel methods 

to take into Phase Two. 

In this section, we give a general overview of the types of approaches that we used.  A 

more detailed record of our experimental protocols and their results can be found in Appendix A 

of this report. 

3.2.1 Classifier Choice 

 Our sponsor had previously used the logistic regression classification algorithm, which is 

mentioned in the introduction.  The challenge of logistic regression is numerically solving for the 

vector of constants in the exponent, and in our particular case the issue was far larger than it 

seemed at first - the wealth of categorical variables in the data caused the size of the necessary 

vector to grow to over four thousand values. 
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 This was first noticed as a workflow issue - training a classifier on the twenty-thousand-

strong Phase One data set took several minutes, and therefore the resulting cross-validation took 

upwards of an hour for each experiment.  While not fatally damaging to the project, this delay 

made it difficult to quickly modify an experiment upon noticing an error or an opportunity in the 

output. 

 Further, if the classifier dragged with only twenty thousand instances, we were concerned 

that it would become impractical to experiment on a data set two orders of magnitude larger.  

Some preliminary experiments verified that the relationship between the number of instances and 

the time to train was such that even on a moderately sized compute cluster, experimentation 

would not be feasible. Instead, we sought a replacement algorithm which would be swift but 

similarly performant and we found the Naive Bayes algorithm.  Not only did it manage to train 

classifiers within tenths of seconds - a hundredfold improvement over logistic regression - but it 

also gave us a moderate boost in AUC, from 0.57 to 0.59. 

3.2.2 Data Separation 

 In the data separation experiments of Phase One, we explored the idea that treating the 

data as a monolithic whole to be judged by a single classifier could be improved upon.  Behind 

our experiments was the idea that the same evidence could mean different things in different 

contexts - someone searching for “firearms” in New York City is more likely to be purchasing 

them for self-defense than someone making the exact same search in rural Alabama, who may 

well be more concerned about wild animals.  It would, then, make sense to train different models 

on, in this example, urban and rural folk, lest the distinct meanings of the evidence be lost to the 

average. 
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 Instead of taking pre-selected categories of people and separating them into different data 

sets, one variant of this approach is to let a clustering algorithm decide.  The clustering algorithm 

would be trained on the training set, and then applied to both the training set and the test set, then 

each set would be separated into single-cluster sets.  Each cluster’s training set would then be 

used to create a classifier to be used to evaluate the appropriate cluster’s test set.  This is where 

the use of automatic cross-fold validation became impossible - the separation of the data sets was 

manual, and automating it as part of the classification algorithm would be non-trivial.  For many 

of these experiments, we instead compared the weighted performance of each classifier to the 

performance of a similar classifier trained on an undivided training set. 

 As an alternative to the above approach, we also explored the use of a probabilistic, 

rather than discrete, clusterer.  Where a clustering algorithm such as k-means will assign one and 

only one label - there is one and only one closest centroid for each datum - some algorithms, like 

E-M, have a probability distribution over the feature space.  One instance may be considered to 

belong to a specific cluster if that is the strongest cluster at its location, but it is still reasonable to 

say, for example, that an instance is 75% in cluster A and 25% in cluster B. 

 When using this algorithm, we constructed training sets in a variety of ways, some which 

included all instances in the training set at least once, some which resampled the training set to 

adjust the class balance.  When the classifiers were built and it came time to output a prediction, 

the probability that a given test instance belonged to the target class was calculated as the sum of 

the products of cluster membership (the proportion to which it belongs to the cluster) and the 

prediction from that cluster (the output from its classifier). The parameters for separating the data 

in these experiments can be found in Appendix A.  
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 We did perform some a priori separations, divisions of training and test sets made from 

domain knowledge rather than clustering algorithms.  Our most significant experiment in this 

direction was the use of geography to construct different classifiers based on census region.  

However, algorithmically informed separations composed the majority of our efforts in this 

category. 

3.2.3 Feature and Value Selection 

 In some cases, too much information can be misleading - whether the information is 

inaccurate or simply unimportant, small chance patterns can imply structure where there is none, 

and an algorithm (or a human, for that matter) is never perfect at telling order from certain kinds 

of very lucky chaos.  In addition, demanding information which may be unnecessary may make a 

classifier a burden on systems which then must continue collecting data which have long been 

abandoned in the name of backwards compatibility. 

 Our first major attempt with feature selection, or attribute removal, struck gold: by 

chopping off nineteen of the twenty-nine initial attributes in Phase One, we obtained a data set 

that was not only more comprehensible than the original but also had better performance with the 

same classification algorithm, and this is reflected in Table 3 below.   

Table 3: The Manually Discovered Ten Attribute Data set 

Hour Os_version 

Browser_family Browser_version 

Device Num_clicks_30 

Recency Frequency_hour 

Vendor Is_click 
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This was an accident of a brute-force approach; we literally went down the list of attributes, 

removing each one and adding it back if its removal hurt performance.  (That was how we 

stumbled on Naive Bayes; our problems with the long training time of logistic regression became 

far more apparent when we needed to judge dozens of different attributes).  Our other 

experiments with correlation-based feature selection had a great deal of overlap with the results 

that led us to this ten-attribute set. 

 Subsequent attempts operated under the assumption that it was possible for individual 

values to be misleading; Naive Bayes has no way of differentiating between a strongly supported 

likelihood ratio with many observations and a weakly supported likelihood ratio with few.  We 

considered the possibility that a single categorical value, such as a specific, possibly rare 

operating system version or a residence in a sparsely populated city, might occur in the training 

set once or twice and subsequently skew the results on the test set.  We performed experiments 

for each categorical value in each attribute, replacing the target value with a missing one, and 

while we found some minute improvement, we found that the specific values we removed did 

not confer any performance benefit to the test set after being selected through cross-validation on 

the training set - there was no reliable predictor of performance for single-value removal. 

 While feature and value removal proved a mixed bag, the stroke of luck that was manual 

feature selection ended up increasing our AUC from 0.59 to 0.60, not to mention making future 

experiments worlds easier and more comprehensible.  In Phase Two, we did further research on 

additional feature selection methods, and included the ten-attribute data set. 
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3.2.4 Feature Creation 

 In this portion of Phase One, we either combined or created attributes in the hopes that 

we would end up with a data set which better reflected reality in a way that Naive Bayes could, 

in its simple way, benefit from. 

 One avenue we explored was a brute-force method similar to the value removal 

mentioned in the previous section.  In the ten-attribute set, we made each possible combination 

of the nominal, non-target attributes, and included that unified attribute in place of its 

components.  For example, a browser’s family and its version, normally two separate attributes, 

could be combined to create a single family/version attribute.  We speculated that for some 

attributes, this could cut down on the skew created by highly correlated attributes while 

preserving the valuable information contained in them.  It was even a return to a purer form of 

Bayesian reasoning; given enough data, a Bayesian agent can do better by combining all the 

available evidence into one “attribute”, representing the state of the entire observable universe 

(or feature space).  Taking this ideal to its extreme is unreasonable - there simply are not enough 

observations in the training set to provide reliable numbers for every possible combination of 

values.  But we thought it might be useful for some subspaces of the feature space, places where 

every possible family/version combination, for example, is spoken for by a multitude of 

instances. 

 We found instead that while some attribute combinations produced promising gains in 

cross-validation performed on the training set, when we attempted to apply the same reasoning to 

the test set, we found that their performance there to be only weakly connected.  In particular, 

distinctly poor performance on the training set appeared to indicate similarly poor performance 
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on the test set, but we could not reliably select the best performers on the training set and be 

certain that they would perform above average on the test set. 

 An alternative that we tried focused instead on the target attribute by creating a 

replacement.  Instead of simply positive (1) or negative (0), we tried different subcategories 

within the positive and negative groups, carved out by the k-means clustering algorithm.  In this 

experiment, the target attribute could be 0-1, 0-2, 0-3, 1-1, or 1-2, for example, instead of just 0 

or 1. (We experimented with different numbers of clusters, as further documented in Appendix 

A). The logic behind this was that it was asking too much of Naive Bayes to decide which of two 

nebulous, poorly bounded masses in feature space a given instance could belong.  Instead, by 

asking it to decide amongst more clearly restricted clusters, we would be giving it more specific 

targets to hit. The classifier would be trained on data with (as above) five possible class values 

rather than two, and it would assign a probability to each during testing. Later, the probability 

assignments would be combined, and the posterior probabilities for all the negative clusters and 

all the positive clusters would be summed separately and given as a single prediction between 

positive and negative.  While this method did not yield any massive leaps in performance, it was 

interesting enough that we included a version of it - in which only negative instances are divided 

into subclasses - in Phase Two. 

3.2.5 Algorithm Modification 

 Some of our most ambitious experiments were modifications to the Naive Bayes 

algorithm itself.  While we did not deviate from the fundamentals of Bayesian reasoning, we did 

alter how we interpreted different pieces of evidence and different probabilities. 

 The first modification that we made concerned the Laplace smoothing mentioned in the 

introduction which prevents any probabilities from being equal to zero (Russell, 2010).  In 
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artificially inflating the counts for each “event”, Naive Bayes introduces something of an 

egalitarian bias: a quantitative tendency towards treating all events as equally probable.  We 

originally attempted to strengthen this bias, under the assumption that it would prevent poorly 

supported probabilities (such as one for an event which goes one way three out of four times, but 

has only four supporting observations) from becoming significant.  We introduced a tunable 

parameter which would allow us to control the magnitude of the Laplace smoothing.  Though we 

considered this idea independently of any existing research, we later found that the idea of 

tunable smoothing was already known in the literature as "m-estimation", for the parameter m 

(Tan, 2005).  While we assumed that we would need to increase this parameter to reduce the 

outsized effects of poorly represented events, we instead found that lowering it by three orders of 

magnitude produced better performance.  We called this modified algorithm "damped" Naive 

Bayes, according to our early efforts to "dampen" the impact of unreliable evidence. 

.  Instead of imposing equality on improperly supported events, we benefitted from letting the 

data speak for itself with fewer assumptions. This is the standard Naïve Bayes equation with 

Laplace smoothing, where X is a nominal attribute and |X| is the number of possible values of X: 

𝑝(𝑋 = 𝑥) =  
𝑛(𝑋 = 𝑥) + 1

𝑛 + |𝑋|
 

 

 The “damped” Naïve Bayes that we introduced has m as a user-adjustable value is shown 

in the equation: 

𝑛(𝑋 = 𝑥) =  
𝑛(𝑋 = 𝑥) + 𝑚

𝑛 + 𝑚|𝑋|
 



36 

Another assumption that we found can hurt Naive Bayes’ performance is the assumption 

that numeric attributes are normally distributed.  Some implementations of the algorithm, 

including Weka’s, have few options for how to handle numeric attributes, but they are limited to 

a choice of which distribution to select.  Instead of letting Naive Bayes keep only the mean and 

standard deviation from an attribute, we decided to treat numeric attributes like nominal ones: 

each probability would be determined by counting how many instances matched a value. 

 For numeric attributes with few possible values - such as the hour of the day or even an 

individual’s age - it is feasible to simply count how many of each value there are.  There is 

enough data for every hour or every age to be well-represented.  But this loses some information 

- it makes the assumption that 44-year-olds and 45-year-olds must be considered as differently as 

18-year-olds and 90-year-olds - and just does not work for numeric attributes with more possible 

values.  So instead, we considered every value that fell within some range of a target a match; 

44-year-olds were now lumped with ages 39 to 49, 45-year olds with 40 to 50.  There was 

overlap, and it was distinct from merely discretizing the attribute; each value had a slightly 

different probability, and the change was gradual - no sharp borders between groups.  For a range, 

we used the standard deviation of the attribute multiplied by some constant (on which we 

experimented later), according to the following formula: 

𝑝(𝑋 = 𝑥) =
𝑛(𝑥−𝑐𝜎<𝑋<𝑥+𝑐𝜎)

𝑛
 

 This treatment of numeric attributes allowed us to pursue one of our stranger 

experiments: event combination.  Instead of treating each attribute as independent, we could 

instead test different combinations of values at the moment of classification, allowing us to unite 

some values into a single event while keeping others separate.  Internet Explorer would be 
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considered separately from its version of 6.0, for example, but the combination of Firefox and 

version 35.0.1 could be used to get a more accurate picture.  Again, the Bayesian ideal is one in 

which all events are combined into a single observation about the state of the observable 

universe.  Unlike the simple combination of attributes, this would allow the classifier to use the 

probabilities of combined events if and only if they were well-supported, and would not prevent 

it from doing so if similar combinations happened to be only sparsely supported. 

 Ultimately, this approach and the treatment of numeric attributes described above were 

interesting, but did not make it into Phase Two because they were written outside of Weka - 

while tunable Laplace smoothing could be easily worked into the existing code base, the other 

two had to be written from scratch.  For this reason, they were slow and unwieldy, and did not 

output results in a format consistent with Weka; when it came time to move on to large-scale 

testing, we believe that we made the right decision in leaving them behind. 

3.3 Phase Two 
 In Phase Two, we conducted more rigorous experiments on a significantly larger data set 

from a different source in the same domain.  This data, which consisted of twenty-seven non-

trivial attributes and four and a half million instances, was taken from an iOS application during 

six days in February 2015.  Using some of the methods which showed promise in Phase One, we 

designed five experiments, each of which was repeated on five unique data sets derived from the 

original. 

3.3.1 Data Set Variants 

 In addition to the original data set (referred to as the Base data set), with twenty-seven 

attributes including the target, we attempted to prepare four other data sets.  First, a variation 

which replaced the existing geographical attributes with a region attribute, placing each data 
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instance in the Northeast, South, Midwest, or West, which we refer to as the Domain data set.  

Second, a minimal subset of attributes selected by Weka’s CFS Subset Evaluation algorithm 

(referred to as the CFS data set) - browser family and the number of recent clicks were the only 

two which made the cut (Witten, 2011).  Third, we attempted to get some useful results of 

applying the Principal Components Analysis algorithm in Weka to condense the available data 

into a lower-dimensional feature space (Tan, 2005).This approach failed due to the prohibitive 

memory demands of running Principal Components Analysis with a large number of categorical 

attributes with large numbers of values. Finally, we created a version with the same manual 

selection of ten attributes that we found by dumb luck in Phase One (referred to as the Manual 

data set).This manual selection of attributes can be seen in Table 3 in section 3.2.3 Feature and 

Value Selection. 

 

3.3.2 Experiments 

 We initially planned for five experiments one each data set.  We began with one 

unmodified Naive Bayes run (the Baseline experiment) and one Naive Bayes run with Laplace 

smoothing turned down to one percent (the Damping experiment); these were the simple runs.  

Two involved the separation of the training and test sets into different data sets; one with a k-

means discrete clustering for k = 3 (the K-Means experiment), and one with probabilistic 

clustering supported by the E-M algorithm.  We also attempted a division of the negative 

instances into a trio of subclasses (the Subclass experiment), as covered in the section 3.2.4 

Feature Creation. 

 Finally, as a pair of last-minute additions, we added experiments which dealt with the day 

of the week (the Day experiment) and the data carrier of each instance (the Carrier experiment). 
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In the former, we partitioned each training and test set into weekday and weekend groups, and in 

the latter, we divided each training and test set into ten groups –eight for the top eight carriers, 

one for the missing values, and one for everyone else. 
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4 Results 
  

We used the results from Phase One to guide our experimental design for Phase Two. In this 

section we choose to present and analyze only the results from Phase Two.   

In Phase Two, we focused on four summary statistics: AUC, recall, precision, and the 

harmonic mean of precision and recall, called the F1-score. The results for AUC are shown in 

Table 43 below:  

Table 4: AUC Results 

 Data Set 

Base CFS Domain Manual 

Experiment 

Baseline 0.585 0.531 0.587 0.586 

Carrier 0.560 0.558 0.566 0.579 

Damping 0.583 0.531 0.590 0.586 

Day 0.579 0.539 0.580 0.585 

EM 0.587 0.530 0.591 0.565 

K-Means 0.576 0.530 0.576 0.585 

Subclass 0.561 0.531 0.562 0.559 

 

Additionally, we recorded the three threshold-dependent summary statistics - recall, 

precision, and F1-Score - for one thousand evenly spaced threshold for each experiment and data 

set.  

 The summary statistics for the base data set, which included all 27 attributes from Phase 

Two, have a few distinctive features.  First, as demonstrated by the F1-Score and precision 

graphs in Figure 8, the EM experiment is an outlier, with very different behavior from the other 
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experiments.  Second, recall dropped dramatically at a very low threshold, which is common to 

all data sets.  It would appear that most instances were assigned a low probability of being 

positive, even those which were actually positive. 

 Third, precision leveled off fairly early, indicating that the mixture of true and false 

positives was relatively stable at all but the lowest thresholds.  This excludes the EM experiment, 

which was an odd entity. 
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Figure 8: F1 Score, Precision, and Recall from the Base Data Set 
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Graphs of the summary statistics for the data set with attributes selected by CFS are 

blocky and full of corners, as seen in Figure 9 below.  This is due to the fact that the feature space, 

which included one nominal and one numeric attribute, each with few possible values, was very 

small, and the limited number of possible instances in turn limited the number of possible 

probability outputs. 

These experiments tended to be stricter than those performed on the base data set, with 

higher precision but lower recall.  Once again, the EM experiment stands out, but not to the same 

extent.  Of note is the K-Means experiment, which maintains an F1-Score around 0.010 into 

higher thresholds than any of its peers, which appears to be largely due to a solid maximum 

precision that is the highest of the entire data set.  However, F1-Scores for the data set as a whole 

ultimately underperform compared to other data sets, with smaller upper and lower bounds. 
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Figure 9: F1 Score, Precision, and Recall from the CFS Data Set 
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While the data set which included domain knowledge about geography in some cases 

outperformed the base data set (as is shown in the tables later in this section), the shapes of its 

curves were, for the most part, not notably different from those of the base data set, as can be 

seen in Figure 10.  This is unsurprising; the domain data set differed least from the base data set, 

as only five attributes were removed and one added. 

However, we do see some interesting behavior from our friendly neighborhood outlier, 

the EM experiment.   Where in the base data set its precision remained relatively high for most 

thresholds and then dropped, here it seems to grow slowly and then increase suddenly at the 

end.  This is encouraging behavior; it implies that the actual positives are systematically being 

assigned higher probability at a greater rate than in other experiments.  While this may sound 

like a trivial achievement, it does stand out from its peers. 
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Figure 10: F1 Score, Precision, and Recall from the Domain Data Set 
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For the manually trimmed data set, which consisted of only ten attributes including the 

target, once again EM was the experiment to watch in Figure 11 below.  As in the domain data 

set, it maintained a higher precision than its peers with a sharp rise at the end, though its behavior 

was not quite as steady.  It did have a more impressive precision advantage over its peers, 

however, which is reflected in the graph of F1-Score graph, where the EM experiment achieves 

the highest maximum of any experiment in any data set and clearly outperforms its peers for a 

wide range of thresholds. 

Both the Subclass experiment and the Damping experiment joined EM’s sharp rise in 

precision at high thresholds, though this this rise was accompanied by a drop in recall sufficient 

to make the F1-Scores fairly ordinary. 
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Figure 11: F1 Score, Precision, and Recall from the Manual Data Set 



49 

 Finally, we examined the behavior of these three metrics at certain thresholds: those 

thresholds which maximized precision, and those thresholds which maximized F1-Score.  (We 

considered including those thresholds which maximized recall, but were reminded that recall is 

trivially easy to maximize by setting the threshold to 0.0, which is not useful).  The thresholds 

which do so may differ from experiment to experiment, and as such are included here in Table 

54 below; however, the “goodness” of these thresholds is not a point of our study. 

We note that as the positive instances composed only 0.45% of the total, a large random 

sample would have a precision of 0.0045.  If this sample included the entire data set (in which 

case the recall would trivially be 1), it would have an F1-Score of 0.0090.  These are the most 

natural, albeit unambitious, baselines for comparison.  

 
Table 5: Data Sets and Threshold Statistics 

Data 

Set/Experiment 

Threshold which 

maximizes Precision 

Precision at 

Threshold 

Recall at 

Threshold 

F1-Score at 

Threshold 

Base/Baseline 0.015 0.010 0.101 0.018 

Base/Carrier 0.018 0.008 0.084 0.014 

Base/Damping 0.021 0.011 0.087 0.020 

Base/Day 0.023 0.009 0.075 0.016 

Base/EM 0.849 0.009 0.005 0.007 

Base/K-Means 0.018 0.008 0.089 0.015 

Base/Subclass 0.016 0.008 0.062 0.014 

CFS/Baseline 0.058 0.057 0.005 0.009 

CFS/Carrier 0.142 0.044 0.002 0.004 

CFS/Damping 0.053 0.059 0.005 0.009 

CFS/Day 0.080 0.055 0.004 0.007 
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CFS/EM 0.163 0.040 0.002 0.003 

CFS/K-Means 0.058 0.061 0.005 0.010 

CFS/Subclass 0.056 0.059 0.005 0.009 

Domain/Baseline 0.017 0.010 0.095 0.019 

Domain/Carrier 0.017 0.009 0.100 0.017 

Domain/Damping 0.022 0.012 0.085 0.021 

Domain/Day 0.012 0.009 0.117 0.017 

Domain/EM 0.999 0.016 0.001 0.002 

Domain/K-Means 0.014 0.009 0.103 0.016 

Domain/Subclass 0.009 0.009 0.084 0.015 

Manual/Baseline 0.035 0.013 0.076 0.022 

Manual/Carrier 0.031 0.012 0.076 0.021 

Manual/Damping 0.035 0.013 0.076 0.022 

Manual/Day 0.027 0.012 0.080 0.021 

Manual/EM 0.998 0.021 0.004 0.007 

Manual/K-Means 0.033 0.012 0.077 0.021 

Manual/Subclass 0.999 0.010 0.004 0.006 

  

As shown above in Table 54 of F1-Score, the EM experiment on the Manual data set had 

the highest maximum among the experiments.  The majority of maximum F1-scores were more 

than twice as large as the F1-Score of a random sample, which would be 0.009. 
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5 Conclusion 
 We found and described a variety of approaches, not all of which were successful, but 

many of which were worth examining further. In Phase One, we documented a series of unusual 

ideas in the hopes that, even if they did not suit our purposes, they might provide inspiration later. 

In Phase Two, we were able to present a number of options to suit a number of potential trade-

offs between precision and recall. 

 Some experiments were able to, at their most discriminating points, improve precision 

values more than ten-fold over random sampling, though their recall values at such thresholds 

were discouraging. In light of these results, it may be more appropriate to frame our approaches 

as methods of reliably identifying a promising select few true positives rather than being able to 

correctly identify a large proportion of true positives. 

 Finally, though the vast majority of our Phase One experiments did not bear desired 

increases in AUC, and some of our Phase Two results were less than impressive, we are hopeful 

that our explorations into the territory of machine learning experimentation on a data set of 4.5 

million data instances with a drastically skewed target attribute will help guide future research 

into this application, if in no way other than telling them where not to go. We are also proud to 

present our sponsor with a comprehensive array of approaches, choices and trade-offs, and 

robust evaluation of each one of them.. 
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Appendix A: Phase One Experiments 
 

Experiment 1: 

● 65% train/35% test split 

● Training set used to create EM clusters 

● Cluster labels applied to instances of test set 

● Training and test sets split based on cluster label 

● Training sets used to generate logistic regression models tested on appropriate test sets 

Results:  

Cluster Training Set Size Test Set Size AUC 

1 273 186 0.517 

2 3334 1776 0.504 

3 1432 821 0.538 

4 8871 4708 0.517 

All (Weighted) 13910 7491 0.516 
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Experiment 2: 

● 65% train/35% test split 

● Training set used to create EM clusters 

● Cluster labels applied to instance of test set 

● Training and test sets split based on cluster label 

● Training sets used to generate naive Bayes models tested on appropriate test sets 

Results: 

Cluster Training Set Size Test Set Size AUC 

1 273 186 0.572 

2 3334 1776 0.543 

3 1432 821 0.465 

4 8871 4708 0.541 

All (Weighted) 13910 7491 0.534 
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Experiment 3: 

Training: 

● 65% train/35% test split 

● Training set used to create a Naive Bayes classifier (Model M0) which targets class membership 

in “is_click” 

● Predictions made from M0 on training set 

● New attribute added to training set based on error from M0 predictions (error = {yes, no}) 

● Attribute “is_click” temporarily removed 

● Training set used to create a Naive Bayes classifier (Model M1) which targets class membership 

in “error” 

● Predictions made from M1 on training set 

● Training set split into two sets: “classification=yes” and “classification=no” (predicted error, not 

actual) 

● Attribute “is_click” restored 

● Training set “error=yes” used to create a Naive Bayes classifier (Model M2) which targets class 

membership in “is_click” 

Testing: 

● Test set is run through M1 and split into two sets: “classification=yes” and “classification=no” 

(predicted error, not actual 

● Test set “classification=no” is evaluated in M0 and test set “classification=yes” is evaluated in 

M2 

Results: 

  

Model Test Set Size AUC 

M0 7174 0.566 

M1 (not terminal) 7491 0.825 

M2 319 0.532 

Total (weighted M0 + M2) 7493 0.565 

Note: due to instances in the test set which were identical except for their class values, two additional 

testing instances were created in merging the “is_click” attribute back into the test set.  Additionally, it 

may be worthwhile to redo this experiment to guard against error. 
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Constructed model M0 on training set 

Added “error” attribute from M0 error to training set 

Removed “is_click” attribute from training set 

Constructed model M1 on training set w/”error” attribute and w/o “is_click” attribute 

Restored “is_click” attribute to training set 

Split training set into “error=yes” and “error=no” (actual error, not predicted) 

Constructed model M2 on training set “error=no”, constructed model M3 on training set “error=yes” 

 

Ran test set through M0 and obtained AUC value 

Added “error” attribute from M0 error to test set 

Removed “is_click” attribute from test set 

Ran test set through M1 and obtained AUC value 

Added “classification” attribute from M1 to test set 

Restored “is_click” attribute to test set 

Split test set into “classification=yes” and “classification=no” (predicted error, not actual) 

Ran test set “classification=no” through M2 and obtained AUC value 

Ran test set “classification=yes” through M3 and obtained AUC value 

 

Results: 

 

Model Target Terminal 

Model(s)? 

Test Set AUC 

M0 is_click false 7491 (all) 0.573 

M1 error (from M0) false 7491 (all) 0.825 

M2 is_click true 7174 (M1 

predicted no) 

0.558 

M3 is_click true 317 (M1 predicted 0.500 
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yes) 

Total (weighted 

M2 + M3) 

is_click true 7491 (all) 0.556 

 

Note: Based on the fact that AUC(M0) > AUC(Total), we conclude that this particular method of 

classification (which does not include preprocessing) is not suitable for this data.  While further iterations 

might increase the AUC of the instances currently handled by M3, the performance of M2, which handles 

the majority of instances, restricts the maximum weighted AUC to 0.576, which is not significantly better 

than M0. 
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Experiment 4:  

● As above, but with 10-attribute training and test sets instead 

Results: 

 

Model Target Terminal 

Model(s)? 

Test Set AUC 

M0 is_click false 7491 (all) 0.597* 

M1 error (from M0) false 7491 (all) 0.669 

M2 is_click true 7243 (M1 

predicted no) 

0.575 

M3 is_click true 248 (M1 predicted 

yes) 

0.489 

Total (weighted 

M2 + M3) 

is_click true 7491 (all) 0.572 

* Model M0 performed with an AUC of 0.595 on data instances which were tested on M2. 
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Experiment 5: 

● 65% training, 35% testing 

● removed Zipcode 

● Ran Correlation attribute evaluator on data set 

● took out any attributes with a correlation less than .005 

○ removed was Lat, area_code. day. day_of_week, data, keyword, user_age, os_family, lng, 

user_gender 

● removed “is_click” attribute 

● Ran EM, default parameters 

● restored “is_click” attribute 

● added cluster to data set 

● separated clusters in R 

Results: 

 

Cluster Training Set Size Test Set Size AUC 

1 334 172 0.613 

2 351 180 0.526 

3 8199 4415 0.513 

4 5026 2724 0.501 

Total 13910 7491 0.511 
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Experiment 6: 

● Remove attributes one by one, progressing down the list and testing whether or not the AUC 

increases without said attribute (testing on the full data set rather than a train/test split) 

● Conduct 10-fold cross-validation with a Naive Bayes classifier 

Results: 

 

Attributes AUC 

 hour, os_version, browser_family, 

browser_version, device, vendor, num_clicks_30, 

recency, frequency_hour, is_click 

0.6 
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Experiment 7: 

● Use the ten attributes gathered by testing the effect of attribute selection on Naive Bayes (hour, 

os_version, browser_family, browser_version, device, vendor, num_clicks_30, recency, 

frequency_hour, is_click) 

● Split the attribute-selected data into a training set and a test set 

● Run the EM algorithm on the training set and save the cluster assignment model 

● Assign cluster labels to instances in both the training set and the test set 

● Split the training and test sets by cluster labels 

● Train one Naive Bayes model on each cluster-separated training subset, and test the models on 

the cluster-separated test subset with the corresponding cluster label 

Results: 

 

Cluster Train Size Test Size AUC 

No Clustering 

(Baseline) 

13910 7491 0.610 

1 5062 2725 0.564 

2 4318 2278 0.557 

3 4350 2448 0.548 

All (Weighted) 13910 7491 0.557 
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Experiment 8: 

● Use the ten attributes gathered by testing the effect of attribute selection on Naive Bayes (hour, 

os_version, browser_family, browser_version, device, vendor, num_clicks_30, recency, 

frequency_hour, is_click) 

● Split the attribute-selected data into a training set and a test set 

● Determine the effect of the size of the training set on the AUC by using a supervised Resample 

filter 

Results: 

 

Size of Training Set AUC Mean AUC Standard Deviation AUC 

13910 0.610 0.610 NA 

12159 0.599 0.600 0.0082 

12159 0.590 

12159 0.602 

12159 0.610 

11128 0.608 0.601 0.0127 

11128 0.614 

11128 0.585 

11128 0.598 

9737 0.596 0.601 0.0078 

9737 0.611 

9737 0.594 
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9737 0.604 

5564 0.597 0.586 0.0087 

5564 0.577 

5564 0.589 

5564 0.582 

1391 0.556 0.568 0.0156 

1391 0.568 

1391 0.558 

1391 0.590 
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Experiment 9: 

● Use the ten attributes gathered by testing the effect of attribute selection on Naive Bayes (hour, 

os_version, browser_family, browser_version, device, vendor, num_clicks_30, recency, 

frequency_hour, is_click) 

● Split the attribute-selected data into a training set and a test set 

● Run the FarthestFirst clustering algorithm on the training set and save the cluster assignment 

model 

● Assign cluster labels to instances in both the training set and the test set 

● Split the training and test sets by cluster labels 

● Train one Naive Bayes model on each cluster-separated training subset, and test the models on 

the cluster-separated test subset with the corresponding cluster label 

Results: 

 

Cluster Train Size Test Size AUC 

No Clustering 

(Baseline) 

13910 7491 0.597 

Train 1, Test 1 7887 4241 0.547 

Train 2, Test 2 6023 3250 0.565 

Train 1&2, Test 1 13910 4241 0.557 

Train 1&2, Test 1 13910 3250 0.583 

Train 1, Test 1 and 

Train 2, Test 2 

(weighted) 

13910 7491 0.555 

Train 1&2, Test 1 and 

Train 1&2, Test 2 

(weighted) 

13910 13910 0.568 

 

Note:  the weighted average AUC of the model trained on the entire training set but tested on two disjoint 

test sets is significantly below the AUC of the same model tested on the entire test set. 
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Experiment 10: 

● Use the train_10.arff and test_10.arff data sets (a 65%/35% train/test split of the original data 

reduced to ten attributes: hour, os_version, browser_family, browser_version, device, vendor, 

num_clicks_30, recency, frequency_hour, is_click) 

● Use R to randomly split the test_10.arff data set into two equally sized subsets, test_10_1.arff and 

test_10_2.arff 

● Train a Naive Bayes classifier on train_10.arff and test it on both subsets 

Results: 

 

Test Set Set Size AUC 

1 3745 0.601 

2 3746 0.593 

1 & 2 (Weighted Average) 7491 0.597 

1 & 2 (Single Set) 7491 0.597 
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Experiment 11: 

● Implement the AddClusterProbabilities filter, which takes a clustering algorithm or model and 

creates new attributes (one for each cluster) which reflect the probability of belonging to a 

specific cluster. 

● Train an EM model on the training set (less the target attribute). 

● Apply the AddClusterProbabilities filter to both the training set and the test set, using the model 

generated on the training set. 

● Create 4n new training sets, 4 for each of the n clusters generated by the EM model, according to 

the following rules (using the training set with cluster probabilities): 

○ First training set: add each instance to the training set a number of times equal to 

floor(cluster probability * 10); this is the non-inclusive set 

○ Second training set: add each instance to the training set a number of times equal to 

ceiling(cluster probability * 10); this is the all-inclusive set (it contains each instance at 

least once) 

○ Third training set: add each instance to the training set if and only if it the current 

cluster’s probability is greater than that of another cluster (i.e. if that instance would be 

assigned to that cluster); this is the simple set 

○ Fourth training set: as the first training set, but after applying the supervised Resample 

filter with replacement and with a bias towards a uniform class (at 100% sample size); 

this is the all-inclusive resampled set 

● Train a Naive Bayes classifier on each training set and name the file accordingly (e.g. 

cluster1_all.model, cluster3_non.model, cluster2_simple.model) 

● Generate a probability distribution from each model on every test instance 

● For each type of training set, calculate the predicted probability of membership in is_click = 1 of 

each instance in two ways: 

○ 𝑝(𝑖𝑠 − 𝑐𝑙𝑖𝑐𝑘 =  1)  =  𝛴𝑝(𝑐𝑙𝑢𝑠𝑡𝑒𝑟 =  𝑖)  ∗  𝑝(𝑖𝑠 − 𝑐𝑙𝑖𝑐𝑘𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑛𝑜𝑛−𝑖) takes into 

account the probability that the given instance belongs to a particular cluster and the 

confidence with which that particular cluster’s model has predicted that they will have an 

is_click value of 1; this yields the fine prediction 

○ 𝑝(𝑖𝑠 − 𝑐𝑙𝑖𝑐𝑘 =  1)  =  𝛴𝑝(𝑐𝑙𝑢𝑠𝑡𝑒𝑟 = 𝑖)  ∗  (𝑝(𝑖𝑠 − 𝑐𝑙𝑖𝑐𝑘𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛−𝑖)  >  0.5) may 

dampen noise which would otherwise be introduced by precisely following the predicted 

probabilities; this yields the coarse prediction 

● Calculate the AUC for each training type and prediction type 

Results: 

 

Training Type AUC (coarse) AUC (fine) 

All-Inclusive 0.505 0.602 
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Non-Inclusive 0.520 0.571 

Simple 0.529 0.573 

All-Inclusive (Resampled) 0.583 0.599 
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Experiment 12: 

● Use Weka’s logistic regression to build a classifier on the train_10 data set. 

● Test it on the test_10 data set. 

● Build another logistic regression classifier on the train_10 data set after applying the supervised 

Resample filter with a bias towards a uniform class, replacement in sampling, and a 200% sample 

size. 

Results: 

 

Condition AUC 

No Resampling 0.590 

Resampling 0.592 

Note: From these results, we can conclude that the limited set of attributes selected by trial and error on 

Naive Bayes is also beneficial to Logistic Regression, though Naive Bayes still has superior performance. 
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Experiment 13: 

● Construct Damped Naive Bayes class, which introduces virtual instances to each estimator in 

order to stabilize probability estimates, especially in cases in which there are few observations per 

symbol 

● Run Damped Naive Bayes on the train/test split with a variety of values of M, the damping 

parameter, D, the supervised discretization flag, and U, the uniformity flag 

○ When U is set, each symbol in an attribute receives a virtual instance of weight M; when 

U is not set, this weight of M is distributed among all symbols in the attribute (for a given 

attribute/class combination) 

Results: 

 

M U D AUC 

1.0 True True 0.584 

1.0 True False 0.597 

1.0 False True 0.596 

1.0 False False 0.605 

2.0 True True 0.579 

2.0 True False 0.593 

2.0 False True 0.596 

2.0 False False 0.605 

0.5 True True 0.588 

0.5 True False 0.600 

0.5 False True 0.596 

0.5 False False 0.606 
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4.0 True True 0.569 

4.0 True False 0.584 

4.0 False True 0.595 

4.0 False False 0.604 

0.25 True True 0.591 

0.25 True False 0.601 

0.25 False True 0.596 

0.25 False False 0.606 

8.0 True True 0.559 

8.0 True False 0.575 

8.0 False True 0.594 

8.0 False False 0.603 

0.125 True True 0.594 

0.125 True False 0.603 

0.125 False True 0.596 

0.125 False False 0.606 
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Experiment 14: 

● Begin with the original 29-attribute data set 

● For each city in the “city” attribute, count how many times that city occurs in the data 

● Add a new attribute, “pop”, which counts how many times a given instance’s city occurs in the 

data 

● Remove all attributes other than the “pop” attribute and the 10-attribute set found in previous 

experiments 

● Perform cross-validation on the new data under different experimental conditions using Naive 

Bayes 

Results: 

 

Experimental Condition AUC 

Baseline (no pop attribute) 0.600 

Pop as numeric attribute 0.599 

Pop as supervised-discretized attribute 

(note: Naive Bayes supervised discretization 

created only one bin) 

0.599 

Pop as unsupervised-discretized attribute with 10 

bins 

0.599 

Pop as unsupervised-discretized attribute with 7 

bins (number found by equal-width specification) 

0.600 
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Experiment 15 [FAILURE]: 

● Using the same population counts added in the above experiment, split the data into subsets based 

on population size.  Keep the ten attributes discovered in previous experiments, and possibly the 

pop attribute, if desired. 

● Include instances with no population count (because they have NA values for city) in all subsets.  

They account for less than one-half of one percent of the original data set. 

● Test each subset in its own cross-validated Naive Bayes model. 

● Experiment with different splits and record the weighted-average AUC values, as well as the 

individual AUC values. 

● EXPERIMENT VOID; NA VALUES REPLICATED 

Results: 

Experiment Include pop as 

attribute? 

Range Bin Size Bin AUC Weighted 

Average AUC 

1 Yes 1-Inf 21401 0.599 0.599 

2 No 1-Inf 21401 0.600 0.600 

3 Yes 1-100 10571 0.607 0.597 

101-Inf 10899 0.588 

4 No 1-100 10571 0.608 0.598 

101-Inf 10899 0.589 

5 Yes 1-50 7906 0.604 0.593 

51-Inf 13564 0.587 

6 No 1-50 7906 0.606 0.594 

51-Inf 13564 0.587 

7 Yes 1-100 10571 0.607 0.603 
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101-300 5560 0.595 

300-Inf 5408 0.603 

8 No 1-100 10571 0.608 0.604 

101-300 5560 0.595 

300-Inf 5408 0.604 

9 Yes 1-100 10571 0.607 0.607 

101-200 2809 0.598 

201-300 2820 0.620 

301-Inf 5408 0.603 

10 No 1-100 10571 0.608 0.608 

101-200 2809 0.601 

201-300 2820 0.619 

301-Inf 5408 0.604 

11 Yes 1-50 7906 0.602 0.611 

51-100 2734 0.653 

101-200 2809 0.598 

201-300 2820 0.620 

301-Inf 5408 0.603 

12 No 1-50 7906 0.603 0.611 
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51-100 2734 0.651 

101-200 2809 0.601 

201-300 2820 0.619 

301-Inf 5408 0.604 

 

Note: I noticed around the four-bin mark that the AUC values for the different classes seemed to start 

diverging - there could be a difference of nearly 0.10 between the majority and minority class.  All AUC 

values reported here are weighted averages reported by Weka, though I am mystified as to how a two-

class classifier can have different AUC values for each class.  ADDENDUM: I now suspect that this is 

related to the inclusion of NA values, which somehow acquired NA values for every attribute, including 

class. 
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Experiment 16: 

● Using the same population counts added in the above experiment, split the data into subsets based 

on population size.  Keep the ten attributes discovered in previous experiments, and possibly the 

pop attribute, if desired. 

● Take instances with no population count (because they have NA values for city) into its own 

subset.  They account for less than one-half of one percent of the original data set. 

● Test each subset in its own cross-validated Naive Bayes model. 

● Experiment with different splits and record the weighted-average AUC values, as well as the 

individual AUC values. 

Results: 

 

Experiment Include pop as 

attribute? 

Split Bin Size Bin AUC Weighted 

Average AUC 

1 Yes 1-Inf 21332 0.597 0.596 

NA 69 0.217 

2 No 1-Inf 21332 0.598 0.597 

NA 69 0.217 

3 Yes 1-100 10502 0.604 0.588 

101-Inf 10830 0.574 

NA 69 0.217 

4 No 1-100 10502 0.605 0.588 

101-Inf 10830 0.574 

NA 69 0.217 

5 Yes 1-50 7837 0.615 0.590 
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51-Inf 13495 0.578 

NA 69 0.217 

6 No 1-50 7837 0.616 0.590 

51-Inf 13495 0.577 

NA 69 0.217 

7 Yes 1-50 7837 0.615 0.591 

51-200 5405 0.576 

201-Inf 8090 0.582 

NA 69 0.217 

8 No 1-50 7837 0.616 0.592 

51-200 5405 0.576 

201-Inf 8090 0.583 

NA 69 0.217 

9 Yes 1-50 7837 0.615 0.588 

51-200 5405 0.576 

201-300 2751 0.578 

301-Inf 5339 0.569 

NA 69 0.217 

10 No 1-50 7837 0.616 0.588 
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51-200 5405 0.576 

201-300 2751 0.578 

301-Inf 5339 0.570 

NA 69 0.217 

11 Yes 1-50 7837 0.615 0.581 

51-100 2665 0.570 

101-200 2740 0.529 

201-300 2751 0.578 

301-Inf 5339 0.569 

NA 69 0.217 

12 No 1-50 7837 0.616 0.582 

51-100 2665 0.571 

101-200 2740 0.531 

201-300 2751 0.578 

301-Inf 5339 0.570 

NA 69 0.217 

Conclusion: 

 Binning instances based on the frequencies of their cities is not a useful method of separating 

instances. 
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Experiment 17: 

● Using US Census Bureau regions and divisions data (as found at 

http://www.census.gov/geo/maps-data/maps/pdfs/reference/us_regdiv.pdf), assign data instances 

to regions and divisions based on US State (extranational data will be assigned to region “Foreign” 

and division “Foreign”) 

● Test a variety of conditions to determine whether keeping the region and/or division attributes (or 

dividing into subsets based on those attributes) is useful, using the ten-attribute data set as a base 

● Use Naive Bayes with ten-fold cross-validation 

Results: 

 

Condition Keep 

Region? 

Keep 

Division? 

Split Size Split AUC Weighted 

Total AUC 

Baseline No No None 21401 NA 0.600 

R, D as 

attributes 

Yes Yes None 21401 NA 0.600 

R as 

attribute 

Yes No None 21401 NA 0.599 

D as 

attribute 

No Yes None 21401 NA 0.600 

Split into 

subsets 

based on 

Region 

No Yes Northeast 1533 0.507 0.584 

Midwest 2891 0.556 

West 5864 0.589 

South 11041 0.601 

NA 72 0.199 

Split into No No Northeast 1533 0.511 0.582 

http://www.census.gov/geo/maps-data/maps/pdfs/reference/us_regdiv.pdf
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subsets 

based on 

Region 

Midwest 2891 0.551 

West 5864 0.588 

South 11041 0.600 

NA 72 0.199 

Split into 

subsets 

based on 

Division 

No No East North 

Central 

2303 0.555 0.570 

East South 

Central 

1100 0.549 

Middle 

Atlantic 

1379 0.486 

Mountain 1835 0.544 

New 

England 

154 0.631 

Pacific 4029 0.590 

South 

Atlantic 

4832 0.581 

West North 

Central 

588 0.503 

West South 

Central 

5109 0.599 

NA 72 0.199 

Conclusion: geographical splitting at the granularity of region or division is counter-effective. 
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Experiment 18: 

● Use a 65%/35% train/test split on the ten-attribute data. 

● Declare Weka’s Naive Bayes algorithm as a baseline, but construct a Naive Bayes algorithm 

which uses a different estimator for numeric attributes as follows: p(attribute = value) = 

n(attribute - c * stddev <= value <= attribute + c * stddev)/N, where c is some adjustable 

parameter which is consistent within each classifier. 

● Train and test the resulting models with the same train and test subsets used for the baseline, 

varying the parameter c to maximize AUC. 

Results: 

Model Type c-parameter AUC 

Weka N/A 0.597 

Homebrew 0.001 0.599 

Homebrew 0.01 0.602 

Homebrew 0.0625 0.603 

Homebrew 0.125 0.601 

Homebrew 0.25 0.602 

Homebrew 0.5 0.600 

Homebrew 0.75 0.596 

Homebrew 1.0 0.596 

Homebrew 1.5 0.594 

Homebrew 2.0 0.594 

Notes: 

● The current design as of 1/12/15 uses lazy cached learning - each of 7490 test instances takes an 

average of 1/20th of a second to classify, compared to approximately ½ of a second without 

caching.  This classification time may be improved upon later. 
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● Subsequent experiments with a small m-parameter (0.01 or 0.0001) for m-estimation (as 

attempted in previous experiments) with a c-parameter of 0.0625 yielded an AUC value of 0.610. 

● The current design as of 1/13/15 rounds numeric values to the nearest one-hundredth of a 

standard deviation, which actually increases AUC very slightly and decreases average prediction 

time to about 1/100th of a second. 
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Experiment 19: 

● Use the homebrew python Naive Bayes algorithm on a 65%/35% train/test split. 

● Set the parameter for m-estimation to 1 (normal for Naive Bayes) and the parameter for numeric 

range inclusion to 0.0625. 

● When predicting the class of a test datum, combine events as follows: find the pair of events A = 

a, B = b such that the support (number of occurrences) for their intersection A = a & B = b is 

greater than any other pair.  Remove A = a, B = b from the list of events and replace it with A = a 

& B = b.  Stop if no intersection A = a & B = b has a support count greater than some minimum 

support. 

● When evaluating candidate events for combination, do not bother to collect the support count for 

the intersection if either of the candidate events have a support count less than the minimum. 

Results: 

 

Minimum Support AUC 

Baseline (no combination) 0.602 

100 0.595 

200 0.597 

500 0.594 

1000 0.580 

1500 0.581 

2000 0.592 

2500 0.596 

3000 0.595 
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Experiment 20: 

● Use the homebrew python Naive Bayes algorithm on a 65%/35% train/test split. 

● Set the parameter for m-estimation to 1 (normal for Naive Bayes) and the parameter for numeric 

range inclusion to 0.01. 

● When predicting the class of a test datum, combine events as follows: find the pair of events A = 

a, B = b such that the proportion between the product of the likelihood ratios for the separate 

events and the likelihood ratio of the intersection A = a & B = b is most extreme.  Merge those 

events. 

● Remove A = a, B = b from the list of events and replace it with A = a & B = b.  Stop if no 

intersection A = a & B = b has a support count greater than some minimum support. 

● When evaluating candidate events for combination, do not bother to collect the support count for 

the intersection if either of the candidate events have a support count less than the minimum. 

Results: 

 

Minimum Support AUC 

Baseline (no combination) 0.602 

100 0.601 

200 0.597 

300 0.596 

400 0.596 

500 0.588 

600 0.583 

700 0.581 

800 0.582 

900 0.581 
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1000 0.580 

1200 0.582 

1400 0.575 

1600 0.584 

1800 0.584 

2000 0.586 

2500 0.584 

3000 0.583 

3500 0.588 

4000 0.589 
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Experiment 21: 

● Use the homebrew python Naive Bayes algorithm on a 65%/35% train/test split. 

● Set the parameter for m-estimation to 1 (normal for Naive Bayes) and the parameter for numeric 

range inclusion to 0.01. 

● When predicting the class of a test datum, combine events as follows: find the pair of events A = 

a, B = b such that the proportion between the product of the likelihood ratios for the separate 

events and the likelihood ratio of the intersection A = a & B = b is most extreme.  Merge those 

events. 

● Remove A = a, B = b from the list of events and replace it with A = a & B = b.  Stop after some 

number of iterations, or if no intersection A = a & B = b has a support count greater than 10. 

● When evaluating candidate events for combination, do not bother to collect the support count for 

the intersection if either of the candidate events have a support count less than the minimum. 

Results: 

Maximum Iterations AUC 

Baseline (no combination) 0.602 

1 0.596 

2 0.596 

3 0.591 

4 0.587 
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Experiment 22[DISREGARD]: 

•    Repeat the experiment below for the 29-attribute and the 10-attribute data sets. 

•    Split the data set into positive and negative instances. 

•    Build clustering models on the positive and negative sets and save them.  Record the algorithms and 

parameters used for these models, which may be different for each set. 

•    Apply the model built on the positive set to the positive set, and apply the model built on the negative 

set to the negative set.  Give the cluster labels names which reflect whether they are built from positive or 

negative instances. 

•    Rejoin the positive and negative sets.  Remove the class variables, letting the cluster labels (which 

have the old class information in their names) become the class. 

•    Train and test a Naive Bayes model using leave-one-out cross-validation. 

•    Record all AUC values and, if necessary, distributions calculated by the model, as alternative methods 

of calculating AUC may be necessary. 

Results: 

Experiment Original 

Class Label 

Algorithm Cluster Class 

Label 

Cluster 

AUC 

Cluster Size Weighted 

Total AUC 

Base.10 Positive None Positive 0.598 1228 0.598 

Negative None Negative 0.598 20173 

Base.29 Positive None Positive 0.573 1228 0.573 

Negative None Negative 0.573 20173 

K-2-1.10 Positive K-Means, 

with k=2 

Positive-1 0.776 578 0.597 

Positive-2 0.741 650 

Negative None Negative 0.587 20173 

K-2-1.29 Positive K-Means, 

with k=2 

Positive-1 0.758 412 0.568 

Positive-2 0.635 816 

Negative None Negative 0.561 20173 
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K-1-2.10 Positive None Positive 0.579 1228 0.943 

Negative K-Means, 

with k=2 

Negative-1 0.951 12750 

Negative-2 0.989 7603 

K-1-2.29 Positive None Positive 0.578 1228 0.745 

Negative K-Means, 

with k=2 

Negative-1 0.780 6158 

Negative-2 0.745 14015 

  

  

Predicted Confusion Matrix Base.10 

Positive Negative 

40 1188 Positive Actual 

294 19879 Negative 

  

  

  

Predicted Confusion Matrix Base.29 

Positive Negative 

65 1163 Positive Actual 

666 19507 Negative 

  

  

Predicted Confusion Matrix K-2-1.10 
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Positive-1 Positive-2 Negative 

17 4 557 Positive-1 Actual 

0 38 612 Positive-2 

160 280 19733 Negative 

  

  

Predicted Equivalent Confusion Matrix K-2-1.10 

Positive Negative 

59 1169 Positive Actual 

440 19733 Negative 

  

  

Predicted Confusion Matrix K-2-1.29 

Positive-1 Positive-2 Negative 

25 6 381 Positive-1 Actual 

3 49 764 Positive-2 

262 509 19402 Negative 

  

  

Predicted Equivalent Confusion Matrix K-2-1.29 

Positive Negative 

83 1145 Positive Actual 
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771 19402 Negative 

  

  

Predicted Confusion Matrix K-1-2.10 

Positive Negative-1 Negative-2 

14 906 308 Positive Actual 

126 12404 40 Negative-1 

134 0 7469 Negative-2 

  

  

Predicted Equivalent Confusion Matrix K-1-2.10 

Positive Negative 

14 1214 Positive Actual 

134 19913 Negative 

  

  

Predicted Confusion Matrix K-1-2.29 

Positive Negative-1 Negative-2 

55 273 900 Positive Actual 

157 3568 2433 Negative-1 

376 1817 11822 Negative-2 
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Predicted Equivalent Confusion Matrix K-1-2.29 

Positive Negative 

55 1173 Positive Actual 

533 19640 Negative 

  

Note: it was observed at this point that the AUC values exhibited significant differences based on 

clustering without showing any real improvement in the confusion matrices.  It became clear that part of 

the AUC value was based on discovering distinctions within the “real” classes (e.g. distinguishing 

Negative-1 from Negative-2), which were not actually useful.  This error became far more pronounced 

when the Negative class was divided into clusters, as the Negative clusters formed the majority of the 

instances.  The decision was then made to alter the experimental protocol.  ALL DATA ABOVE 

SHOULD BE KEPT, BUT DISREGARDED. 

  

 

  



94 

 

Experiment 23: 

•    Repeat the experiment below for the 29-attribute and the 10-attribute data sets. 

•    Split the data set into a training set (65%) and a test set (35%). 

•    Split the training set and test set into subsets of positive and negative instances, designated positive-

train, negative-train, positive-test, and negative-test. 

•    Build clustering models on the positive-train and negative-train sets and save them.  Record the 

algorithms and parameters used for these models, which may be different for each set. 

•    Apply the model built on the positive-train set to the positive-train and positive-test sets, and do 

similarly for the negative model and sets.  Give the cluster labels names which reflect whether they are 

built from positive or negative instances. 

•    Reunite the positive-train and negative-train sets, and the positive-test and negative-test sets.  Remove 

the class variables, letting the cluster labels (which have the old class information in their names) become 

the class. 

•    Train a Naive Bayes model on the reunited training set, and save it. 

•    Record the predicted class distribution of the model on the reunited test set.  Compute the probability 

that each instance will belong to the “real” positive class as the sum of the probabilities that it will belong 

to each of the positive clusters. 

•    Calculate and record the AUC value for each experimental configuration. 

Results: 

Experiment Original 

Class Label 

Algorithm Cluster Class Label Cluster 

Size in Test 

Set 

AUC AUC with 

Resampling 

(Biased, 

500% w/ 

replace) 

base.10 Positive None Positive 430 0.597 0.604 

Negative None Negative 7061 

base.29 Positive None Positive 430 0.573 0.573 

Negative None Negative 7061 

em.10 Positive EM Positive-1 181 0.566 0.568 
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Positive-2 109 

Positive-3 140 

Negative EM Negative-1 1404 

Negative-2 1190 

Negative-3 1943 

Negative-4 2524 

k-equal.10 Positive None Positive 430 0.564 0.555 

Negative K-means, 

with k=16 

(approx. 

negative-to-

positive ratio) 

Negative-1 406 

Negative-2 185 

Negative-3 281 

Negative-4 321 

Negative-5 294 

Negative-6 446 

Negative-7 149 

Negative-8 282 

Negative-9 445 

Negative-10 1332 

Negative-11 1086 

Negative-12 950 

Negative-13 173 

Negative-14 299 
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Negative-15 105 

Negative-16 307 

em-plus.10 Positive EM Positive-1 181 0.520 0.522 

Positive-2 109 

Positive-3 140 

Negative None Negative 7061 

em-minus.10 Positive None Positive 430 0.580 0.582 

Negative EM Negative-1 1404 

Negative-2 1190 

Negative-3 1943 

Negative-4 2524 

Note: it was determined after experiment em.10 that two different methods of calculating the probabilities 

for use in the ROC curve were practically equivalent, owing most likely to the fact that most predictions 

were very strong, with a typical instance being 95% certain of its belonging to a particular cluster.  The 

two methods were as follows: P(Positive) = sum(P(Positive-i)), and P(Positive) = max(P(Positive-

i))/(max(P(Positive-i)) + max(P(Negative-i))).  The two methods returned AUC values for experiment 

em.10 which were identical to the least significant digit (0.001). 

Note: following observation of the experiments em-plus.10 and em-minus.10, in which it was observed 

that individual clusters had high AUC values, it was hypothesized that the closeness of the two AUC 

values as calculated in the note above was due to the easy separability of the two clusters – there is no real 

danger of an instance being ambiguously between Positive-1 and Positive-2, for example.  With this in 

mind, it would be wise to resume testing by multiple methods if the AUC of clusters should happen to go 

down below some rather obscene value, especially if non-globular clusters are used, which would make 

predictions among different clusters under the same “real” target more difficult. 
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Experiment 24: 

•    Remove a single value from a single nominal attribute in the ten-attribute data set, other than the class 

attribute. 

•    Perform 100-fold cross-validation on the resulting data set. 

•    Record the resulting AUC value. 

Results: 

    Experiments performed: 354 single-value removals, 1 multiple-value removal 

AUC Value Attribute-Value 

0.598 (Not replicated for brevity) 

0.599 (Not replicated for brevity) 

0.600 device-one, device-p769, device-sph-l900, 

browser_version-4.1, vendor-alcatel, device-lg730, 

os_version-2.3.3, device-vs410pp, device-sgh-

t999, device-sgh-i437z, vendor-lg, device-sph-

l300, device-ms840, device-sph-l710, 

browser_version-11.0.696.34, device-ls720, 

os_version-2.3.7, device-sgh-t399, device-other, 

device-l38c, browser_version-4.0, device-sm-

g730a, device-sch-i110, device-sgh-t989, device-

ls970, device-sch-r820, device-sgh-i337, device-

sch-r530m, vendor-other 

0.601 browser_version-30.0.0.0 

... ... 

0.608 (All Attribute-Value combinations named in the 

above cells) 

Note: leave-one-out cross-validation gave an AUC value of 0.607, compared to 0.598 for the otherwise 

unmodified ten-attribute data set. 

Attribute-Value AUC 

device-as680 0.599 
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device-sm-s765c 0.599 

browser_family-chrome 0.599 

device-sgh-i747 0.599 

device-electrify 0.599 

device-sm-n900a 0.599 

device-x500 0.599 

device-desire 0.599 

device-galaxy nexus 0.599 

device-droid x2 0.599 

device-sgh-t759 0.599 

device-a851l 0.599 

device-sgh-i407 0.599 

browser_family-silk 0.599 

device-sgh-i997 0.599 

device-one 0.6 

device-sm-c105a 0.599 

device-m660 0.599 

device-sm-g870a 0.599 

device-sch-r530c 0.599 

browser_version-30.0.1599.105 0.599 

device-sgh-t879 0.599 

device-sgh-t599 0.599 

device-gt-i8190 0.599 

device-sm-n900t 0.599 
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device-r800xhttp 0.599 

device-sgh-s959g 0.599 

device-p870 0.599 

device-sgh-m919n 0.599 

device-sph-m820 0.599 

device-ls995 0.599 

device-sgh-t769 0.599 

device-ls980 0.599 

device-p769 0.6 

device-as695 0.599 

device-vs700 0.599 

device-p659 0.599 

device-sch-r890 0.599 

browser_version-35.0.1916.141 0.599 

device-u8651 0.599 

device-h866c 0.599 

device-u8687 0.599 

device-sgh-i537 0.599 

browser_version-0.0 0.599 

device-sch-s720c 0.599 

device-amaze 4g 0.599 

vendor-zte 0.599 

device-sgh-t599n 0.598 

device-sph-m840 0.599 
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device-kftt 0.599 

device-droid razr 4g 0.599 

device-gt-i9505 0.599 

os_version-2.3.6 0.599 

device-sph-l900 0.6 

os_version-2.2.1 0.599 

device-sch-s738c 0.599 

os_version-2.3.4 0.599 

device-sch-i500 0.599 

device-ms770 0.599 

browser_version-37.0.2062.94 0.599 

os_version-4.1.2 0.599 

device-sch-r970c 0.599 

device-sgh-i847 0.599 

device-glacier 0.599 

vendor-amazon 0.599 

device-gt-n7105 0.599 

device-sgh-m819n 0.599 

device-sgh-t699 0.599 

device-gt-s5301l 0.599 

device-z995 0.599 

browser_version-36.0.1985.135 0.598 

device-h3000c 0.599 

browser_version-30.0.1599.92 0.599 
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device-0p9o110 0.599 

device-d801 0.599 

device-sch-r720 0.599 

device-sm-g386t 0.599 

browser_version-36.0.1985.131 0.599 

browser_version-37.0.2062.76 0.599 

device-vs450pp 0.599 

browser_version-4.1 0.6 

device-apa9292kt 0.599 

vendor-alcatel 0.6 

device-x515c 0.599 

device-d950 0.599 

device-acquire 0.599 

device-lg730 0.6 

device-droidx 0.599 

browser_version-31.0 0.599 

device-sch-r960 0.599 

os_version-2.3.1 0.599 

device-y301a1 0.599 

device-sch-i510 0.599 

vendor-samsung 0.598 

os_version-2.3.3 0.6 

device-ls840 0.599 

device-sgh-i547 0.599 
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device-sgh-i257 0.599 

device-z990g 0.599 

device-m866 0.599 

device-y301a2 0.599 

device-vs410pp 0.6 

device-a9192 0.599 

device-p999 0.599 

device-sch-l710 0.599 

device-sgh-t999 0.6 

device-u8730 0.599 

device-ls855 0.599 

device-ls860 0.599 

device-droid pro 0.599 

vendor-htc 0.599 

device-d500 0.599 

browser_version-33.0.1750.166 0.599 

device-sgh-i437z 0.6 

device-m865 0.599 

device-sgh-i437 0.599 

device-sm-g900az 0.599 

device-sch-i200 0.599 

device-c715c 0.599 

vendor-lg 0.6 

device-one touch 995s 0.599 
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device-xt615 0.599 

device-d800 0.599 

device-sph-m580bst 0.599 

device-sph-l300 0.6 

device-one touch 988 0.599 

device-sch-r830 0.599 

browser_family-mobile safari 0.599 

browser_version-30.0.1599.103 0.599 

browser_family-firefox 0.599 

device-u8686 0.599 

device-sph-d710bst 0.599 

device-ms840 0.6 

browser_version-30.0.0.0 0.601 

os_version-4.4 0.599 

browser_version-28.0.1500.94 0.598 

device-sch-r740c 0.598 

device-sgh-t959v 0.599 

vendor-sprint 0.599 

device-droid4 0.599 

device-vle u 0.599 

device-vm696 0.599 

device-milestone 0.599 

device-m886 0.599 

device-sch-r680 0.599 
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device-gt-i9152 0.599 

device-first 0.599 

os_version-4.4.2 0.598 

device-pn072 0.599 

browser_version-18.0.1025.308 0.599 

os_version-2.3.5 0.599 

browser_version-30.0 0.599 

device-z992 0.599 

device-m931 0.599 

os_version-4.4.4 0.599 

device-ls696 0.599 

device-h868c 0.599 

device-sph-m830 0.599 

device-sch-s968c 0.599 

vendor-huawei 0.599 

Device-nexus 5 0.599 

device-sch-r760x 0.599 

device-edownload 0.599 

device-ph39100 0.599 

device-lw690 0.599 

device-lg855 0.599 

device-apx515ckt 0.599 

device-ms690 0.599 

device-sgh-s730g 0.599 
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device-sch-r760 0.599 

device-sph-l710 0.6 

device-gt-i9500 0.599 

vendor-motorola 0.599 

device-sph-m930bst 0.599 

device-sph-l720t 0.599 

os_version-4.1.1 0.599 

os_version-4.0.4 0.598 

browser_version-33.0.1750.136 0.599 

browser_version-34.0.1847.114 0.599 

device-z998 0.599 

device-kfjwi 0.599 

os_version-0.0 0.599 

browser_version-33.0.1750.517 0.599 

device-u8680 0.599 

device-970.0 0.599 

device-l40g 0.599 

device-980.0 0.599 

browser_version-35.0.1916.138 0.599 

device-z777 0.599 

device-sch-s960l 0.599 

device-sm-g900t1 0.599 

device-gt-i9295 0.599 

device-gt-n7000 0.599 
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browser_version-4.2.2 0.599 

device-one m8 0.599 

device-c525c 0.599 

device-n910 0.599 

device-sch-i605 0.599 

device-sch-r920 0.599 

device-739.0 0.599 

device-sch-r970x 0.599 

device-gt-s7270l 0.599 

device-sgh-i777 0.599 

browser_version-11.0.696.34 0.599 

device-d850 0.599 

device-one s 0.599 

device-m865c 0.599 

device-sgh-t999v 0.599 

device-z740g 0.599 

device-sph-m580 0.599 

device-pn07120 0.599 

device-lg870 0.599 

device-sm-g900t 0.599 

device-gt-i9200 0.599 

device-droid bionic 0.599 

device-sch-r730 0.599 

device-d415 0.599 
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browser_version-36.0.1985.128 0.599 

device-ls720 0.6 

device-sph-d710vmub 0.599 

device-us730 0.599 

device-wx445 0.599 

device-ms695 0.599 

device-gt-i8190n 0.599 

device-m881 0.599 

device-sgh-t999l 0.599 

device-gt-n7100 0.599 

device-d321 0.599 

os_version-2.2.2 0.599 

device-sch-i535 0.599 

device-c800 0.599 

device-gt-i9300 0.599 

browser_version-33.0.0.0 0.599 

os_version-4.2.1 0.599 

device-sph-l710t 0.599 

device-sch-r930 0.599 

device-kfot 0.599 

os_version-2.3.7 0.6 

browser_version-4.2 0.599 

device-kfsowi 0.599 

device-sgh-i827 0.599 
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browser_version-30.0.1599.82 0.599 

device-sgh-i717 0.599 

device-sgh-i337m 0.599 

browser_version-32.0.1700.99 0.599 

device-sgh-t399 0.6 

device-sm-g900p 0.599 

device-ms870 0.598 

os_version-4.0 0.599 

device-other 0.6 

browser_version-22.0.1485.81203 0.599 

device-sgh-i437p 0.599 

device-l38c 0.6 

browser_version-4.0 0.6 

device-z990 0.599 

device-h881c 0.599 

device-c729 0.599 

device-gt-i9082l 0.599 

browser_family-opera 0.599 

os_version-x86_64 0.599 

device-sgh-i527 0.599 

browser_version-18.0.1025.166 0.599 

device-sch-i405 0.599 

device-sm-g730a 0.6 

device-sm-n900 0.599 
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device-us780 0.599 

device-sph-d600 0.599 

device-sch-i200pp 0.599 

browser_version-35.0.1916.122 0.599 

device-sph-l520 0.599 

device-padfone 0.599 

device-sch-i110 0.6 

device-sph-l600 0.599 

device-d959 0.599 

device-sph-d700 0.599 

device-0p6b130 0.599 

device-sch-r830c 0.599 

vendor-sonyericsson 0.599 

device-sgh-t589 0.599 

device-z993 0.599 

device-sgh-t679 0.599 

device-sgh-t989 0.6 

device-sch-i535pp 0.599 

device-sgh-i337z 0.599 

device-sph-d710 0.598 

device-m920 0.599 

device-sgh-i727 0.599 

Device-nexus 4 0.599 

device-sch-r970 0.599 
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device-u8665 0.599 

device-sch-i545 0.599 

device-sgh-i927 0.599 

os_version-4.0.3 0.598 

device-droid razr 0.599 

device-g510-0251 0.599 

device-h1000c 0.599 

device-sm-n900p 0.599 

os_version-4.3 0.599 

device-sgh-i747m 0.599 

device-sgh-i317 0.599 

browser_family-maxthon 0.599 

device-sch-r940 0.599 

device-p505 0.599 

device-sch-m828c 0.599 

device-sgh-m919 0.599 

browser_version-3.23 0.599 

device-sm-g900a 0.599 

device-apc715ckt 0.599 

device-as730 0.599 

device-droid3 0.599 

device-ms910 0.599 

device-sch-r530u 0.599 

device-sgh-t999n 0.599 
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device-one touch 909b 0.599 

device-d520 0.599 

browser_version-31.0.1650.59 0.599 

device-sm-n900v 0.599 

device-ls970 0.6 

device-sph-m930 0.599 

device-pn071 0.599 

device-sch-i800 0.599 

device-lw770 0.599 

device-sgh-t959 0.599 

device-sch-r820 0.6 

device-sgh-i337 0.6 

device-d851 0.599 

device-gt-i9080l 0.599 

device-sensation 0.599 

device-sm-g900r4 0.599 

device-sph-m950 0.599 

vendor-asus 0.599 

device-sch-r530x 0.599 

device-sgh-i577 0.599 

os_version-2.1 0.599 

device-u8652 0.599 

device-sch-r950 0.599 

device-gt-i8190l 0.599 
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device-sgh-t889 0.599 

device-sch-i435 0.599 

device-sch-r530m 0.6 

device-sph-l720 0.598 

vendor-other 0.6 

device-a510c 0.599 

device-onetouch 0.599 

os_version-4.4.3 0.599 

os_version-4.2.2 0.599 

device-p925 0.599 

browser_version-26.0.1410.58 0.599 

device-droid2 0.599 

device-h867g 0.599 

device-z740 0.599 

device-p930 0.599 

device-sch-i415 0.599 

device-m835 0.599 

Note: since there were no distinct training and test sets, even with cross-validation this may be a case of 

overfitting.  The experiment is replicated below with only a training set used for intermediate results, and 

a test set used for “final” results: 

  

Results with cross-validation on training set: 

Attribute Value AUC 

  

browser_version 28.0.1500.94 0.592 
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browser_family chrome 0.593 

mobile_safari 

browser_version 18.0.1025.166 

36.0.1985.135 

device sgh-t599n 

os_version 4.4.2 

vendor samsung 

  

browser_version 33.0.0.0 0.594 

device apa9292kt 

ms870 

other 

p870 

sch-i800 

sch-r530x 

sch-r740c 

sch-s968c 

sph-d710 

sph-l720 

z995 

os_version 2.3.6 

4.0.3 

4.1.2 
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4.4.4 

  

browser_family firefox 0.595 

maxthon 

opera 

silk 

browser_version 0 

11.0.696.34 

18.0.1025.308 

22.0.1485.81203 

26.0.1410.58 

3.23 

30 

30.0.1599.103 

30.0.1599.105 

30.0.1599.82 

30.0.1599.92 

31 

31.0.1650.59 

32.0.1700.99 

33.0.1750.136 

33.0.1750.517 

34.0.1847.114 

35.0.1916.122 
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35.0.1916.138 

35.0.1916.141 

36.0.1985.128 

36.0.1985.131 

37.0.2062.76 

37.0.2062.94 

4 

4.1 

4.2 

4.2.2 

device 

0p6b130 

0p9o110 

739 

970 

980 

a510c 

a851l 

acquire 

amaze_4g 

apc715ckt 

apx515ckt 

as695 

as730 

c525c 
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c715c 

c729 

c800 

d321 

d415 

d500 

d520 

d800 

d801 

d850 

d851 

d950 

d959 

desire 

droid2 

droid3 

droid4 

droid_bionic 

droid_razr 

droid_razr_4g 

droid_x2 

droidx 

electrify 

first 
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galaxy_nexus 

glacier 

gt-i8190l 

gt-i9080l 

gt-i9082l 

gt-i9152 

gt-i9200 

gt-i9295 

gt-i9300 

gt-i9500 

gt-i9505 

gt-n7100 

gt-s5301l 

gt-s7270l 

h1000c 

h3000c 

h866c 

h867g 

h868c 

h881c 

kfot 

kfsowi 

kftt 

l38c 
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l40g 

lg730 

lg855 

lg870 

ls696 

ls720 

ls840 

ls855 

ls860 

ls970 

ls980 

ls995 

lw690 

lw770 

m660 

m835 

m865 

m865c 

m866 

m886 

m920 

m931 

milestone 

ms695 
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ms770 

ms840 

ms910 

n910 

nexus_4 

nexus_5 

one 

one_m8 

one_s 

one_touch_909b 

one_touch_988 

one_touch_995s 

onetouch 

p505 

p659 

p769 

p925 

p999 

padfone 

ph39100 

pn071 

pn07120 

r800xhttp 

sch-i110 
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sch-i200 

sch-i200pp 

sch-i405 

sch-i415 

sch-i435 

sch-i500 

sch-i510 

sch-i535 

sch-i535pp 

sch-i545 

sch-i605 

sch-l710 

sch-m828c 

sch-r530c 

sch-r530m 

sch-r530u 

sch-r720 

sch-r730 

sch-r760 

sch-r760x 

sch-r820 

sch-r830 

sch-r830c 

sch-r890 
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sch-r920 

sch-r950 

sch-r970 

sch-r970c 

sch-r970x 

sch-s720c 

sch-s738c 

sch-s960l 

sensation 

sgh-i257 

sgh-i317 

sgh-i337m 

sgh-i337z 

sgh-i407 

sgh-i437 

sgh-i437p 

sgh-i437z 

sgh-i527 

sgh-i537 

sgh-i547 

sgh-i577 

sgh-i717 

sgh-i727 

sgh-i747 
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sgh-i777 

sgh-i827 

sgh-i847 

sgh-i927 

sgh-i997 

sgh-m819n 

sgh-m919 

sgh-m919n 

sgh-s730g 

sgh-s959g 

sgh-t399 

sgh-t589 

sgh-t599 

sgh-t679 

sgh-t699 

sgh-t769 

sgh-t879 

sgh-t889 

sgh-t959 

sgh-t959v 

sgh-t999 

sgh-t999l 

sgh-t999n 

sgh-t999v 
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sm-c105a 

sm-g386t 

sm-g730a 

sm-g870a 

sm-g900a 

sm-g900az 

sm-g900p 

sm-g900r4 

sm-g900t 

sm-g900t1 

sm-n900 

sm-n900a 

sm-n900p 

sm-n900t 

sm-n900v 

sm-s765c 

sph-d700 

sph-d710bst 

sph-d710vmub 

sph-l300 

sph-l520 

sph-l600 

sph-l710 

sph-l710t 
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sph-l720t 

sph-l900 

sph-m580 

sph-m580bst 

sph-m820 

sph-m830 

sph-m840 

sph-m930 

sph-m930bst 

sph-m950 

u8651 

u8652 

u8665 

u8680 

u8686 

u8687 

u8730 

us730 

us780 

vle_u 

vm696 

vs410pp 

vs450pp 

vs700 
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wx445 

x500 

x515c 

xt615 

y301a1 

y301a2 

z740 

z740g 

z777 

z990 

z990g 

z992 

z993 

z998 

os_version 0 

2.1 

2.2.1 

2.2.2 

2.3.1 

2.3.3 

2.3.5 

2.3.7 

4 

4.0.4 
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4.1.1 

4.2.1 

4.2.2 

4.3 

4.4 

4.4.3 

x86_64 

vendor alcatel 

amazon 

asus 

htc 

huawei 

lg 

motorola 

other 

sonyericsson 

sprint 

zte 

  

browser_version 30.0.0.0 0.596 

device sgh-i337 

sgh-t989 

os_version 2.3.4 

  

Results on Train/Test Split: 
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Attribute Value AUC 

None None 0.597 

browser_version 30.0.0.0 0.529 

device sgh-i337 0.595 

device sgh-t989 0.595 

os_version 2.3.4 0.595 

Conclusion: greedy single-value removal is not useful, as it leads to overfitting. 
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Experiment 25: 

• Take the ten-attribute data set and discretize all numeric attributes.  Create a 65%/35% train/test 

split. 

• Create nine choose two (36) duplicate train/test pairs, with each one corresponding to a possible set 

of two out of the nine non-target attributes.  Each train/test pair will have the two chosen 

attributes replaced by a single attribute which is the concatenation of the two chosen attributes 

(e.g. “device” and “vendor” being replaced by “device/vendor”). 

• Run 100-fold cross-validation using a Naive Bayes classifier on the training set of each of the 

duplicates and the original, recording the AUC of each selection. 

• Evaluate the Naive Bayes model on the corresponding test set, recording the AUC of each selection. 

• Compare the AUC of the two sets to determine if the training data can be used to accurately predict 

whether or not the combination of attributes will be helpful for test data. 

  

Results: 

Attribute Attribute Cross-Validation AUC Train/Test Split AUC 

None None 0.578 0.609 

1 2 0.575 0.605 

1 3 0.575 0.61 

1 4 0.579 0.614 

1 5 0.562 0.588 

1 6 0.565 0.61 

1 7 0.582 0.608 

1 8 0.575 0.608 

1 9 0.574 0.606 

2 3 0.572 0.607 

2 4 0.578 0.616 

2 5 0.566 0.59 
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2 6 0.57 0.602 

2 7 0.584 0.609 

2 8 0.575 0.608 

2 9 0.576 0.605 

3 4 0.579 0.616 

3 5 0.564 0.592 

3 6 0.566 0.604 

3 7 0.584 0.608 

3 8 0.575 0.608 

3 9 0.576 0.606 

4 5 0.559 0.591 

4 6 0.564 0.605 

4 7 0.583 0.607 

4 8 0.575 0.608 

4 9 0.572 0.606 

5 6 0.569 0.602 

5 7 0.581 0.609 

5 8 0.575 0.608 

5 9 0.579 0.616 

6 7 0.582 0.61 

6 8 0.575 0.608 

6 9 0.577 0.605 

7 8 0.575 0.608 

7 9 0.569 0.603 
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8 9 0.578 0.609 

Note: The value of R, the correlation coefficient, was found to be 0.7295.  However, despite the fact that 

this indicated a moderate positive correlation, the best combinations for each choice of first attribute on 

average underperformed the baseline of no combination. 

 

 

 

 


