
1

PREDICTING CLICKS ON MOBILE

ADVERTISEMENTS

A Major Qualifying Project

Submitted to the faculty of

Worcester Polytechnic Institute

In partial fulfillment of the requirements for the

Degree of Bachelor of Science

Submitted by: Christina Webb, Alexander Gorowara

Submitted to: Project Advisor, Professor Carolina Ruiz

Date: April 30
th
, 2015

2

Acknowledgements

We have taken efforts in this project. However, it would not have been possibly successful

without the kind support and help of many individuals and our sponsor. We would like to extend

our sincere thanks to all of them.

We would like to express our very great appreciation to our sponsor Chitika Inc., specifically the

CEO Dr. Venkat Kolluri and two project liaisons from Chitika Inc., Joseph Regan and Stijn

Peeters. Their valuable and constructive suggestions during the planning and development of this

project, and well as their willingness to give us their time so generously has been much

appreciated.

We would like to express our deep gratitude to Professor Carolina Ruiz, our project advisor, and

Ahmedul Kabir, CS Ph.D. student, for their patient guidance, enthusiastic encouragement and

useful critiques of this project work.

Finally, we wish to thank all of our friends and people who helped us for their encouragement

and support throughout this project.

3

Table of Contents
Acknowledgements ... 2

Table of Contents .. 3

Table of Figures .. 4

Table of Tables ... 5

Abstract ... 6

Executive Summary .. 7

1 Introduction .. 9

1.1 Problem Description ... 9

2 Background .. 11

2.1 Machine Learning Overview .. 11

2.1.1 Performance Metrics .. 11

2.1.2 Machine Learning Algorithms ... 15

2.1.3 Clustering Algorithms .. 20

2.2 Software Tools .. 23

2.2.1 The R Project ... 23

2.2.2 Weka .. 23

2.2.3 Python .. 23

3 Methodology .. 24

3.1 Data Description ... 24

3.2 Phase One.. 28

3.2.1 Classifier Choice .. 28

3.2.2 Data Separation .. 29

3.2.3 Feature and Value Selection .. 31

3.2.4 Feature Creation ... 33

3.2.5 Algorithm Modification ... 34

3.3 Phase Two ... 37

3.3.1 Data Set Variants ... 37

3.3.2 Experiments ... 38

4 Results .. 40

5 Conclusion ... 51

Bibliography ... 52

Appendix A: Phase One Experiments ... 53

4

Table of Figures

Figure 1: Sample ROC Curve ... 13

Figure 2: A Bayesian network .. 18

Figure 3: A Naive Bayes network ... 18

Figure 4: A freshly initialized k-means algorithm .. 21

Figure 5: Distribution of target attribute: users who clicked vs users who did not click 25

Figure 6: Location of Users based on Latitude and Longitude data ... 26

Figure 7: User-Submitted Data ... 27

Figure 8: F1 Score, Precision, and Recall from the Base Data Set ... 42

Figure 9: F1 Score, Precision, and Recall from the CFS Data Set .. 44

Figure 10: F1 Score, Precision, and Recall from the Domain Data Set .. 46

Figure 11: F1 Score, Precision, and Recall from the Manual Data Set .. 48

5

Table of Tables

Table 1: An example of true and false .. 12

Table 2: The conversion process from nominal to numeric .. 15

Table 3: The Manually Discovered Ten Attribute Data set .. 31

Table 4: AUC Results ... 40

Table 5: Data Sets and Threshold Statistics .. 49

6

Abstract

We explored methods of improving upon Chitika, Inc.'s existing means of predicting

which users would most probably click on an advertisement in a mobile application. We used

machine learning algorithms, primarily Naive Bayes, that trained on demographic and behavioral

information supplied by the user and his/her mobile device. After an exploratory phase, we

gathered performance data using the AUC metric on twenty-eight different experimental

conditions. When compared to the control condition, in which no preprocessing was performed

on the data before being given to the unmodified Naive Bayes algorithm, we found only minor

improvements in AUC.

7

Executive Summary

Chitika, Inc. is an online advertising company that connects ad providers (companies that

want consumers to see their advertisements) with content providers (companies that have

consumer-visible website space to rent). Chitika’s revenue is derived from the efficient arbitrage

of ad space. The task they gave us was to seek out methods which could improve their already

successful predictions of which users would or would not click on ads.

In order to improve these predictions, we worked mainly with the Naïve Bayes machine

learning algorithm, which uses Bayes’ Rule and observed probabilities to calculate the

probability of a given datum belonging to a previously defined group. We also relied heavily on

clustering algorithms, which group data into different sets without any previously existing labels

or definitions of those sets.

We conducted experiments using these and other tools on a data set with over 4.5 million

user impressions, collected across a week of activity on a single mobile application. This data

was naturally and heavily skewed towards non-clickers, who made up 99.55% of the sample.

Our experiments on this data covered four different modification conditions to the data set itself,

and seven experimental methods, for a total of twenty-seven different experimental conditions.

Overall we found at best minor improvements relative to the control condition of an

unmodified data set which received no treatment before being run through Naïve Bayes.

However, our experiments with the method using the Expectation-Maximization clustering

algorithm were sufficiently unusual and high-performing to deserve further inspection. We are

8

optimistic that the approaches which we have documented will be of use to Chitika as they

consider trade-offs in speed, complexity, and performance.

9

1 Introduction

1.1 Problem Description
 Chitika, Inc. is an online advertising company that connects ad providers (companies that

want consumers to see their advertisements) with content providers (companies that have

consumer-visible website space to rent). Chitika’s revenue is derived from the efficient arbitrage

of ad space.

 One mechanism by which such companies operate is called real-time bidding (RTB).

When a user visits a content provider’s website, the content provider announces this user’s

arrival on an ad exchange. The user’s visit (called an impression) comes with some information:

data such as location, browser version, device version, and much more. Based on this

information, networks such as Chitika bid for the ad space for this particular impression - the

right to show a single ad to that single user. If the ad is successful (which, in most cases, means

that the user clicks on the ad), the network is then paid. In this model, which must happen

sufficiently fast for the user to have no noticeable delay, the ad network takes the risk that the

user will not click, but reaps the reward if he/she does. The problem posed by Chitika to us

appeared very simple: they wanted to improve their prediction of users’ likelihood to click on

ads. . This meant that they wanted to explore new ways to quantify the probability that a given

user, distinguished by a limited amount of demographic, technical, and behavioral information,

would find their ad enticing enough to click on it.

 Our greatest asset in this project was the amount of data with which Chitika supplied us,

full of anonymized user records including (where available) demographic information and

behavioral history, coupled of course with the all-important target attribute: whether or not they

10

had clicked on the ad. A more detailed description of this data can be found in Chapter 33

Methodology.

 We defined our goal for the project as the search for a well-tuned classification algorithm

that a) performed well on classifying entirely unfamiliar users and b) could do so quickly enough

to avoid delaying the user. For the first condition, we relied almost exclusively on the AUC, area

under the (receiver operating characteristic) curve, metric to evaluate classifiers, and for the

second, we found in the course of our experimentation that a large and unmistakable gap existed

between those algorithms that scaled well for our purposes and those that did not, removing the

need to experiment more rigorously.

 By the end of our project, we had explored multiple classification algorithms and

proposed variations on each, with special focus on variations on the Naïve Bayes classification

algorithm. We also experimented with a variety of data pre-processing techniques, mostly

involving clustering, and dimensionality reduction of the data available to us. Compared to our

starting point, in which we used an entirely unmodified algorithm, we found only minor

improvements relative to the control condition of declining to preprocess the data set or modify

the machine learning algorithm used, and were able to increase the AUC metric for our best

performing classifiers from 0.57 to 0.59.

11

2 Background

2.1 Machine Learning Overview

2.1.1 Performance Metrics

 In order to deliver a solution which suited the needs of the sponsor, it was necessary to

utilize unambiguous and objective performance metrics. We were fortunate to be inheriting a

problem which the sponsor had already examined extensively, and as such they had a baseline

performance measurement on a scale that we could easily use to assess our own results.

2.1.1.1 Area Under the ROC Curve (AUC)

 This metric is known as area under the receiver operating characteristic curve, Area

Under the ROC Curve, or just AUC. AUC can be applied to any classifier which judges test

instances to be positive or negative by assigning them a probability of being positive. With such

a classifier, in order to obtain a binary prediction of positive or negative, one would have to

select a threshold such that all test instances with a probability above it would be positive, and all

below would be negative. The AUC calculations are then done on the resulting pairs of

probability and actual class. That is, for each test instance, the pair under consideration is of the

form (p, class) where p is the classifier’s predicted probability that the instance is positive and

class is whether the instance is actually positive or negative. For example, (0.6, positive)denotes

an instance which the classifier predicts is positive with 60% probability and actually is positive;

(0.1, negative) denotes an instance which the classifier predicts is positive with only 10%

probability and is actually negative; and (0.7, negative) denotes an instance which the classifier

predicts is positive with 70% probability and is actually negative.

 The ROC curve is then created by calculating the false positive rate and true positive rate

for various thresholds, and then plotting the value pair (false positive rate, true positive rate) for

12

each of the threshold. The false positive rate (also known as 1-specificity) is the number of false

positives divided by the total number of negative test instances (regardless of how they were

actually classified), and the true positive rate (also known as sensitivity) is the number of true

positives divided by the total number of positive test instances (regardless of how they were

actually classified). Table 11 below gives an example of true and false positive rates.

Table 1: An example of true and false

 Predicted Class

Actual Class NEGATIVE POSITIVE

NEGATIVE 300 100

POSITIVE 200 400

The number cells show how many instances with each real class label are given each predicted

class label. The true positive rate is given as a function of:

𝑇𝑃𝑅 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
=

400

200+400

And the false positive rate is given as a function of:

𝐹𝑃𝑅 =
𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
=

100

300+100

 The resulting ROC curve will span the domain (FPR,TPR = (0,0),(1,1)) from the lower

left corner to the upper right corner. In the lower left are the points generated by high thresholds,

which are strict enough to eliminate many potential false positives but also too strict to allow

many true positives to be heard. In the upper right are the points generated by low thresholds,

which are permissive enough to admit most true positives (even if they are not very well-

13

supported) but too permissive to filter out the majority of false positives. The AUC, then, is a

threshold-independent measure of the classifier’s performance, unlike other metrics such as

accuracy or precision.

Figure 1: Sample ROC Curve

 Figure 1 above gives an example of a sample ROC curve plotted from eleven different

thresholds. While the Area Under the Curve, AUC, can range from 0 to 1, in practice it ranges

from 0.5 to 1. The baseline curve of TPR = FPR show in Figure 1 above is the practical minimum

performance for a classifier; it is achievable by a classifier which blindly assigns a random

probability to each instance, discarding all available information. The area under this curve is 0.5,

so any classifier which has an AUC value of less than 0.5 at some point would be worse than

14

random guessing. In fact, one could invert a classifier which scores less than 0.5 (transform all

probabilities p that it outputs to 1-p) and thus create a better classifier. If a classifier were good

enough to be constantly incorrect, always giving a test instance the opposite of its true label, then

simply by labeling each test instance the opposite of the classifier’s labels one could classify

them perfectly.

 2.1.1.2 Runtime Performance
Additionally, while we did not measure this characteristic rigorously, the classifier needed to be

fast. We were not provided with an estimate of how fast it needed to be, but thankfully there

seemed to be a natural divide among candidate procedures (combinations of algorithm and

preprocessing) between the acceptably fast and the very, very slow. (As a note, our focus was

not on the time it took the algorithm to learn; merely how much time it took to classify new

instances, which was the step that would need to be done in real time).

Algorithms such as k-nearest-neighbors, which is a “lazy” learner that calculates the

“distance” between the test instance and each training instance every time a classification is

made, increase their classification time with the number of training instances, although the rate

of increase can be slowed but not stopped. “Eager algorithms” such as logistic regression, on the

other hand, are more time-intensive and resource-intensive when constructing the model that will

later be used to classify a new instance. In exchange, once this step is done, they make

predictions very quickly. Since the step of building the model is done infrequently and can be

done offline long in advance of the need to make a prediction, we limited our search to “eager”

learning algorithms only and quickly dismissed “lazy” learners.

15

2.1.2 Machine Learning Algorithms

One of the algorithms we investigated was logistic regression. It assigns probabilities by

first transforming a test instance into a numeric vector (by rules explained below), then passing

that vector to a logistic curve, which is bounded between 0 and 1. The output of that function is

the predicted probability for the test instance.

 The logistic curve equation has the form:

𝑝(�⃗�) = 1 / (1 + 𝑒−�⃗⃗� ∙𝑥 ⃗⃗⃗⃗)

where 𝑝 is the probability that some instance (represented by the vector �⃗�) is a member of the

positive class, and �⃗⃗� is a constant coefficient vector. The vector �⃗� has at least as many elements

as the number of attributes, and if all of the attributes are numeric, it has exactly as many; the

first attribute becomes the first element, and so on. If there are any nominal attributes, however,

these must first be converted into numeric attributes.

A nominal attribute may have a number of distinct values; for example, an attribute color

may have the values red, green, or blue. To convert the attribute color into a numeric attribute, it

is replaced by three binary attributes: color = red, color = green, and color=blue, each of which

can have the value 0 or 1. This process is demonstrated in Table 2 below.

Table 2: The conversion process from nominal to numeric

size color

conversion

size color=red color=green color=blue

10 red 10 1 0 0

15 blue 15 0 0 1

16

12 red 12 1 0 0

17 green 17 0 1 0

The vector �⃗⃗� is found by an iterative process (such as Newton’s method), as there is not a

general solution for finding the coefficients as there is for least-squares linear regression (Scott,

2002).

 Once the coefficient vector is found, classifying a new instance is very quick, as there are

only two significant steps: first, convert the instance into a vector; and second, give that vector as

an input to the function 𝑝(𝑥)⃗⃗⃗⃗⃗. For conversion, numerical values are simply transcribed; nominal

values are handled in a way that is only slightly more complex. Each nominal attribute, which

may have a name such as color and may have valid values such as red, blue, and green, is

converted into a series binary attributes, which may each have a value of 0 or 1. There is one

binary attribute for each possible value, so the attributes may be color_is_red, color_is_blue, and

color_is_green. (This process is also done when training the model; there are different

coefficients for each binary attribute rather than one for the original nominal attribute). Once the

appropriate vector is created, it is passed as input to 𝑝(𝑥)⃗⃗⃗⃗⃗and its output is then the probability

that the new instance belongs to the target class.

Another probabilistic classifier which we examined is called the Naive Bayes model,

named because it applies Bayesian probability calculations with the naive assumption that all

attributes are independent of each other. It deals in hypotheses (such as target=0 or target=1),

which are possible target values, and evidence (such as color=green or age=44), which is data

from attributes. The foundation of Naive Bayes is Bayes’ rule, which calculates the posterior

17

probability (denoted as 𝑝(ℎ|𝑒), the estimated probability that some hypothesis h is true after

updating based on evidence e) as the function:

𝑝(ℎ|𝑒) =
𝑝(𝑒|ℎ)

𝑝(𝑒)
𝑝(ℎ).

 Terms of note are prior probability (denoted as 𝑝(ℎ),the probability that some

hypothesis h is true without any other data given) and the likelihood ratio or Bayes factor]

(denoted as
𝑝(𝑒|ℎ)

𝑝(𝑒)
, the ratio of the probability of evidence e occurring given that hypothesis h is

true and the probability of evidence e occurring regardless of the truth of h) (Evidence-Based

Diagnosis, n.d).

The likelihood ratio is how many times more likely e is to occur given h than on its own;

if it is very large (and greater than one), then e is strong evidence for h; if it is very small (and

less than one), then e is strong evidence against h. As a note, the likelihood ratio is bounded

between 0 and
1

𝑝(ℎ)
; e can never occur when h is true (in which case 𝑝(𝑒|ℎ) = 0) or it can occur

if and only if h is true (in which case 𝑝(𝑒|ℎ) = 1 and 𝑝(𝑒) = 𝑝(ℎ)).

 In order to use Naive Bayes as a classifier, one tests multiple competing, mutually

exclusive hypotheses, all of which are statements about the value of the target class, such as

target=0 or target=1. Bayesian calculations are done for each hypothesis, and at the end one has

the values 𝑝(𝑡𝑎𝑟𝑔𝑒𝑡 = 0|𝑒) and 𝑝(𝑡𝑎𝑟𝑔𝑒𝑡 = 1|𝑒).

When instance to be classified has more than one non-target attribute, the likelihood

ratios of each attribute’s value are multiplied together to obtain the posterior probability, like so:

𝑝(ℎ|𝑒 && 𝑓) =
𝑝(𝑒|ℎ)

𝑝(𝑒)

𝑝(𝑓|ℎ)

𝑝(𝑓)
𝑝(ℎ).

18

This is the independence assumption that gives Naive Bayes its name.

Figure 2: A Bayesian network

Figure 3: A Naive Bayes network

 If the two events e and f are not actually independent (for example. their likelihood ratios

are both
1

𝑝(ℎ)
, meaning that they occur if and only if h is true), the calculated posterior probability

𝑝(ℎ|𝑒 && 𝑓)may be greater than 1, which is clearly not a legal value for a probability. For this

reason and others, most Naive Bayes algorithms calculate the posterior probability as the

function:

𝑝(ℎ|𝑒 && 𝑓) = 𝑝(𝑒|ℎ)𝑝(𝑓|ℎ)𝑝(ℎ)

It then normalizes the probabilities such that the sum of all posterior probabilities is 1. Since the

denominators of the likelihood ratios (the prior probabilities of e and f) are not dependent on h,

they are implicitly included in normalization. However, the prior probabilities of the evidence

will be relevant later in our experimentation.

19

The probabilities used in likelihood ratios are generated, for the most part, from a simple

counts of the number of times that an event e occurs and the number of times that it occurs

accompanied by the hypothesis h. This makes Naive Bayes incredibly fast to train; a single pass

of the data, involving arithmetic more complex than can be performed by a four-function

calculator, is sufficient to gather all the necessary information.

 However, there are two scenarios in which a simple count is unsuitable. The first is the

case in which there is an event which is possible, but sufficiently rare that it does not occur in the

training data (which may be a limitation of its size). For such an event, the observed 𝑝(𝑒) and

𝑝(𝑒|ℎ) are both zero. To avoid multiplication (or division, if the prior probability of e is

explicitly included) by zero, Naive Bayes may use Laplace smoothing (Peng,2004), calculating

the conditional probability as the function:

𝑝(𝑒|ℎ) =
𝑛(𝑒 && ℎ) + 𝛼

𝑛(ℎ) + 𝛼𝑑

 n(event) is the number of times that some event occurs, d is the number of different possible

values of e (for example, if the color of an object can be either red, blue, or green, then d is 3),

and ɑ is a parameter (generally 1). This can be conceptualized as having a “virtual datum”

corresponding to each possible event like e && h, so that no probability ever has a numerator of

zero. As the size of the training set increases but ɑ and d remain the same, this Laplacian

smoothing becomes less and less significant, and eventually approaches total irrelevance.

 The other case in which the conditional probabilities are not simple counts is when

numeric attributes are involved. Some numeric fields, such as the hour of the day (as an integer),

can be appropriately approximated as nominal attributes, because they have a manageably small

20

and distinct number of possible values, much like nominal attributes. But other numeric fields,

such as an individual’s height in centimeters, cannot be fairly approximated as nominal; there is

a large number of possible values, and it is unintuitive to say that a person who is 183 cm in

height should be considered in an entirely separate category from one who is only 182 cm.

 One solution is to discretize all numeric attributes before running them through Naive

Bayes. The 183 cm person falls into the same category of “160 cm - 190cm” as the 182 cm

person, and the number of possible values becomes manageable. Another solution is to use a

numeric estimator, which assumes a certain probability distribution (such as Gaussian) and,

given a value (such as 183 cm), calculates the probability of that value without involving counts

at all. Each hypothesis (such as target=0 and target=1) has its own estimator for each attribute;

the height of the population for which target=0 is true may have a different mean and standard

deviation from the population for which target=1 is true. The conditional probabilities, then, for

the 183 cm person are slightly different than the ones for the 182 cm person, but only slightly.

The available distributions differ from implementation to implementation, and may be the same

for each numeric attribute, regardless of the goodness of fit.

 While Naive Bayes is incredibly swift and powerful, its independence assumption leaves

a lot of territory to be explored.

2.1.3 Clustering Algorithms

 In the course of our experimentation, we relied at times on clustering algorithms -

algorithms which, given a data set, cluster them into a (parameterized or automatically

determined) number of different groups depending on their similarity, often with no knowledge

of the target attribute. Clustering algorithms can identify and act on similarities or memberships

which are not explicit in the data, but which still have the potential to be useful. We used

21

clustering algorithms mostly to separate data into different training and test sets, and the two

algorithms we relied on were k-means and expectation-maximization (EM).

 Before continuing, it is important to explain the concept of feature space. In a previous

section, we explained how a data instance can be represented as a vector; feature space is the

space in which this vector can exist. It has a finite number of continuous dimensions equal to the

number of attributes (where each nominal attribute is replaced by a set of binary attributes), and

one can apply a variety of distance metrics to any two points within it. These distances are used

to calculate the similarity of two non-identical points; distant points are very dissimilar, nearby

points very similar.

 The k-means algorithm randomly places k different points in this feature space (often by

randomly selecting k different members of the training set), called centroids. Any point in

feature space belongs to the cluster of the centroid to which it is closest, as seen in Figure 4.

Figure 4: A freshly initialized k-means algorithm

Once the membership of every training instance is determined, the centroids shift to the center of

their cluster, which is the mean position of the population of instances in the cluster. Once the

centroids have moved, cluster membership is recalculated; each centroid may leave some

instances behind or incorporate new instances into its cluster. This process is repeated until one

of the following occurs: a set number of iterations is completed, the movement of the centroids

becomes very small, or the number of training instances which change clusters in an iteration

22

becomes very small. The parameters of the algorithm may be set to accept only one stopping

condition, or it may have multiple potential stopping conditions.

 One limiting feature of k-means is the fact that it is a discrete clusterer; while there are

meaningful metrics relating each instance to each cluster (distance to centroid), there are no

guidelines in the algorithm itself which can meaningfully rate each instance-cluster relation other

than ordinally. The algorithm does not lend itself to saying that an instance has a quantifiable

mix of memberships. For this reason (among others), k-means is very sensitive to its initial

conditions; two random selections of initial centroids can have very different effects.

 The other clustering algorithm we used, expectation-maximization (E-M), does not suffer

from this limit; instead, it classifies instances proportionally, assigning a proportion of each

instance’s cluster membership to each cluster.

 The algorithm works by, as k-means, starting with random points somewhere in feature

space and subsequently iterating until the clustering is stable. However, unlike k-means, E-M

does not blindly shift its center based on its membership. Rather, it shifts based on the goodness

of the fit, which is determined not discretely but by assigning each cluster a standard deviation in

each feature dimension. The multi-Gaussian, multi-dimensional distribution so constructed can

cluster instances probabilistically: an instance in some given position has such-and-such

probability of being in this cluster, and so-and-so probability of being in that cluster, et cetera.

Additionally, the implementation with which we worked had built-in cross-validation to

correctly select the number of clusters based on goodness of fit, so there was no need to test

various k-parameters until an appropriate one was found.

23

2.2 Software Tools

2.2.1 The R Project

 The programming language R, which is designed to swiftly and efficiently handle vector

and matrix data, has been our go-to tool for the vast majority of our data manipulation (The R

Project for Statistical Computing, n.d). While initially we did attempt to use its machine learning

packages for classification, we found that other packages better suited our needs and were

significantly easier to work with.

 R proved its value, however, with an easy-to-use command-line interpreter, quick

scripting capabilities with little setup, and well-documented libraries for nearly any need (such as

reading from and writing to ARFF files - a format developed for a single software tool). It may

help that R is a non-commercial project frequently patronized by academia; perhaps in adapting

it for their own needs, they conveniently gave us the same benefits.

2.2.2 Weka

 The data analysis tool Weka is a collection of machine learning algorithms for data

mining tasks, and it has been the main tool for our experimentation (Hall, 2009). We use Weka

to apply Naive Bayes, Logistic Regression, and the K-Means clustering algorithm to our data and

to get the ROC value from our experiments.

2.2.3 Python

 We used Python to test some ideas in the first phase of our methodology when it was

more practical to write our own algorithms from scratch instead of modifying Weka’s. However,

we did not have the resources and skills to optimize our Python code to work with larger data

sets in a feasible timeframe, so we did not use it beyond the smaller experiments.

24

3 Methodology
 Our methodology had two phases. In Phase One, the exploratory phase, we used a small

data set to rapidly test a large number of approaches in a very short time. The Phase One data set

came from a single day of observations from a single app on the Android platform, and had

about twenty thousand instances (user impressions) and twenty-nine non-trivial attributes. We

excluded any attributes which are either totally uniform across the data set (such as the

application ID) or have a number of distinct categorical values on the order of the size of the data

set itself (such as a user identification code). The Phase Two data set came from a series of six

days of observations from an entirely different app (albeit one with many of the same user-

submitted fields), encompassing over four and a half million instances and twenty-seven non-

trivial attributes, many of which were identical to those in the Phase One data set.

 Phase One’s best-performing and most feasible analysis approaches were examined in

Phase Two, which took up the tail end of the project.

3.1 Data Description
The data set that we used for Phase One included thirty different fields, or attributes,

including the target is_click, which was a simple yes or no. These non-target fields ranged from

simple numeric attributes, such as the hour of the day, to large categorical attributes with many

possible values, such as in which of the 1700+ cities represented in the data the user could be

found. Most of the attributes were categorical (though the term nominal is used to describe them

in some machine learning literature), and many of them had an overabundance of values. The

data set we used for Phase Two included twenty-seven different attributes including the target.

Figure 6 below illustrates the distribution of users who clicked and did not click in our Phase two

data set.

25

Figure 5: Distribution of target attribute: users who clicked vs users who did not click

 The large number of values was not an insignificant roadblock - each attribute multiplied

the number of possible combinations of values, leading to a configuration space far too large for

the available data to cover even a small corner of the realm of possibilities. Many attributes were

riddled with missing data. For example, data instances representing users who had turned off

their GPS were missing longitude and latitude data. Figure 6 below shows a scatterplot of the

location of GPS enabled users in the United States from our Phase One data set, which was 71%

of the total users.

no, 4511136,
100%

yes, 20376,
0%

no

yes

26

Figure 6: Location of Users based on Latitude and Longitude data

Some attributes were based on user input and were either missing or clearly incorrect,

and still others were missing for reasons we do not know. User age, for example, has an

unusually large number of people who claim the earliest allowable birth year (1900). A

histogram of this data is shown below in Figure 7. Notice that the large spikes are at ages 18 and

94, and the smallest spike is at 114, the earliest allowable birth year.

27

Figure 7: User-Submitted Data

 Another significant issue with the data was the natural imbalance between the two values

of the target attribute - the non-clickers outnumbered the clickers by a factor greater than fifteen

in the Phase One data set, and composed 99.55% of the Phase Two data set, which can be seen in

Figure 5. This meant that once the data was broken down into the subgroups we really cared

about, one of those subgroups covered far less of the space of possible data than the combined

data set.

28

3.2 Phase One
 In Phase One, we took the “shotgun” approach: try a variety of approaches and note

anything that looked promising. Phase One took the majority of the project, ranging from our

choice of classification algorithm to eventual modifications and deep involvement with

clustering algorithms. This phase was not rigorous in its analysis; we relied primarily on the

AUC from ten-fold cross-validation to inform us which methods were worth further pursuit. For

comparisons, we used a baseline AUC of 0.57 obtained from simple experiments with logistic

regression, the sponsor’s original algorithm of choice.

Later on, we kept a consistent training and testing set on which we could test methods

that did not lend themselves to automatic cross-validation; the data separation section expands on

a number of these and what difficulties came up. While our approaches were not uniformly

consistent across the entirety of Phase One, we believe that with the use of baseline

measurements in many later experiments, we secured a number of potential-laden novel methods

to take into Phase Two.

In this section, we give a general overview of the types of approaches that we used. A

more detailed record of our experimental protocols and their results can be found in Appendix A

of this report.

3.2.1 Classifier Choice

 Our sponsor had previously used the logistic regression classification algorithm, which is

mentioned in the introduction. The challenge of logistic regression is numerically solving for the

vector of constants in the exponent, and in our particular case the issue was far larger than it

seemed at first - the wealth of categorical variables in the data caused the size of the necessary

vector to grow to over four thousand values.

29

 This was first noticed as a workflow issue - training a classifier on the twenty-thousand-

strong Phase One data set took several minutes, and therefore the resulting cross-validation took

upwards of an hour for each experiment. While not fatally damaging to the project, this delay

made it difficult to quickly modify an experiment upon noticing an error or an opportunity in the

output.

 Further, if the classifier dragged with only twenty thousand instances, we were concerned

that it would become impractical to experiment on a data set two orders of magnitude larger.

Some preliminary experiments verified that the relationship between the number of instances and

the time to train was such that even on a moderately sized compute cluster, experimentation

would not be feasible. Instead, we sought a replacement algorithm which would be swift but

similarly performant and we found the Naive Bayes algorithm. Not only did it manage to train

classifiers within tenths of seconds - a hundredfold improvement over logistic regression - but it

also gave us a moderate boost in AUC, from 0.57 to 0.59.

3.2.2 Data Separation

 In the data separation experiments of Phase One, we explored the idea that treating the

data as a monolithic whole to be judged by a single classifier could be improved upon. Behind

our experiments was the idea that the same evidence could mean different things in different

contexts - someone searching for “firearms” in New York City is more likely to be purchasing

them for self-defense than someone making the exact same search in rural Alabama, who may

well be more concerned about wild animals. It would, then, make sense to train different models

on, in this example, urban and rural folk, lest the distinct meanings of the evidence be lost to the

average.

30

 Instead of taking pre-selected categories of people and separating them into different data

sets, one variant of this approach is to let a clustering algorithm decide. The clustering algorithm

would be trained on the training set, and then applied to both the training set and the test set, then

each set would be separated into single-cluster sets. Each cluster’s training set would then be

used to create a classifier to be used to evaluate the appropriate cluster’s test set. This is where

the use of automatic cross-fold validation became impossible - the separation of the data sets was

manual, and automating it as part of the classification algorithm would be non-trivial. For many

of these experiments, we instead compared the weighted performance of each classifier to the

performance of a similar classifier trained on an undivided training set.

 As an alternative to the above approach, we also explored the use of a probabilistic,

rather than discrete, clusterer. Where a clustering algorithm such as k-means will assign one and

only one label - there is one and only one closest centroid for each datum - some algorithms, like

E-M, have a probability distribution over the feature space. One instance may be considered to

belong to a specific cluster if that is the strongest cluster at its location, but it is still reasonable to

say, for example, that an instance is 75% in cluster A and 25% in cluster B.

 When using this algorithm, we constructed training sets in a variety of ways, some which

included all instances in the training set at least once, some which resampled the training set to

adjust the class balance. When the classifiers were built and it came time to output a prediction,

the probability that a given test instance belonged to the target class was calculated as the sum of

the products of cluster membership (the proportion to which it belongs to the cluster) and the

prediction from that cluster (the output from its classifier). The parameters for separating the data

in these experiments can be found in Appendix A.

31

 We did perform some a priori separations, divisions of training and test sets made from

domain knowledge rather than clustering algorithms. Our most significant experiment in this

direction was the use of geography to construct different classifiers based on census region.

However, algorithmically informed separations composed the majority of our efforts in this

category.

3.2.3 Feature and Value Selection

 In some cases, too much information can be misleading - whether the information is

inaccurate or simply unimportant, small chance patterns can imply structure where there is none,

and an algorithm (or a human, for that matter) is never perfect at telling order from certain kinds

of very lucky chaos. In addition, demanding information which may be unnecessary may make a

classifier a burden on systems which then must continue collecting data which have long been

abandoned in the name of backwards compatibility.

 Our first major attempt with feature selection, or attribute removal, struck gold: by

chopping off nineteen of the twenty-nine initial attributes in Phase One, we obtained a data set

that was not only more comprehensible than the original but also had better performance with the

same classification algorithm, and this is reflected in Table 3 below.

Table 3: The Manually Discovered Ten Attribute Data set

Hour Os_version

Browser_family Browser_version

Device Num_clicks_30

Recency Frequency_hour

Vendor Is_click

32

This was an accident of a brute-force approach; we literally went down the list of attributes,

removing each one and adding it back if its removal hurt performance. (That was how we

stumbled on Naive Bayes; our problems with the long training time of logistic regression became

far more apparent when we needed to judge dozens of different attributes). Our other

experiments with correlation-based feature selection had a great deal of overlap with the results

that led us to this ten-attribute set.

 Subsequent attempts operated under the assumption that it was possible for individual

values to be misleading; Naive Bayes has no way of differentiating between a strongly supported

likelihood ratio with many observations and a weakly supported likelihood ratio with few. We

considered the possibility that a single categorical value, such as a specific, possibly rare

operating system version or a residence in a sparsely populated city, might occur in the training

set once or twice and subsequently skew the results on the test set. We performed experiments

for each categorical value in each attribute, replacing the target value with a missing one, and

while we found some minute improvement, we found that the specific values we removed did

not confer any performance benefit to the test set after being selected through cross-validation on

the training set - there was no reliable predictor of performance for single-value removal.

 While feature and value removal proved a mixed bag, the stroke of luck that was manual

feature selection ended up increasing our AUC from 0.59 to 0.60, not to mention making future

experiments worlds easier and more comprehensible. In Phase Two, we did further research on

additional feature selection methods, and included the ten-attribute data set.

33

3.2.4 Feature Creation

 In this portion of Phase One, we either combined or created attributes in the hopes that

we would end up with a data set which better reflected reality in a way that Naive Bayes could,

in its simple way, benefit from.

 One avenue we explored was a brute-force method similar to the value removal

mentioned in the previous section. In the ten-attribute set, we made each possible combination

of the nominal, non-target attributes, and included that unified attribute in place of its

components. For example, a browser’s family and its version, normally two separate attributes,

could be combined to create a single family/version attribute. We speculated that for some

attributes, this could cut down on the skew created by highly correlated attributes while

preserving the valuable information contained in them. It was even a return to a purer form of

Bayesian reasoning; given enough data, a Bayesian agent can do better by combining all the

available evidence into one “attribute”, representing the state of the entire observable universe

(or feature space). Taking this ideal to its extreme is unreasonable - there simply are not enough

observations in the training set to provide reliable numbers for every possible combination of

values. But we thought it might be useful for some subspaces of the feature space, places where

every possible family/version combination, for example, is spoken for by a multitude of

instances.

 We found instead that while some attribute combinations produced promising gains in

cross-validation performed on the training set, when we attempted to apply the same reasoning to

the test set, we found that their performance there to be only weakly connected. In particular,

distinctly poor performance on the training set appeared to indicate similarly poor performance

34

on the test set, but we could not reliably select the best performers on the training set and be

certain that they would perform above average on the test set.

 An alternative that we tried focused instead on the target attribute by creating a

replacement. Instead of simply positive (1) or negative (0), we tried different subcategories

within the positive and negative groups, carved out by the k-means clustering algorithm. In this

experiment, the target attribute could be 0-1, 0-2, 0-3, 1-1, or 1-2, for example, instead of just 0

or 1. (We experimented with different numbers of clusters, as further documented in Appendix

A). The logic behind this was that it was asking too much of Naive Bayes to decide which of two

nebulous, poorly bounded masses in feature space a given instance could belong. Instead, by

asking it to decide amongst more clearly restricted clusters, we would be giving it more specific

targets to hit. The classifier would be trained on data with (as above) five possible class values

rather than two, and it would assign a probability to each during testing. Later, the probability

assignments would be combined, and the posterior probabilities for all the negative clusters and

all the positive clusters would be summed separately and given as a single prediction between

positive and negative. While this method did not yield any massive leaps in performance, it was

interesting enough that we included a version of it - in which only negative instances are divided

into subclasses - in Phase Two.

3.2.5 Algorithm Modification

 Some of our most ambitious experiments were modifications to the Naive Bayes

algorithm itself. While we did not deviate from the fundamentals of Bayesian reasoning, we did

alter how we interpreted different pieces of evidence and different probabilities.

 The first modification that we made concerned the Laplace smoothing mentioned in the

introduction which prevents any probabilities from being equal to zero (Russell, 2010). In

35

artificially inflating the counts for each “event”, Naive Bayes introduces something of an

egalitarian bias: a quantitative tendency towards treating all events as equally probable. We

originally attempted to strengthen this bias, under the assumption that it would prevent poorly

supported probabilities (such as one for an event which goes one way three out of four times, but

has only four supporting observations) from becoming significant. We introduced a tunable

parameter which would allow us to control the magnitude of the Laplace smoothing. Though we

considered this idea independently of any existing research, we later found that the idea of

tunable smoothing was already known in the literature as "m-estimation", for the parameter m

(Tan, 2005). While we assumed that we would need to increase this parameter to reduce the

outsized effects of poorly represented events, we instead found that lowering it by three orders of

magnitude produced better performance. We called this modified algorithm "damped" Naive

Bayes, according to our early efforts to "dampen" the impact of unreliable evidence.

. Instead of imposing equality on improperly supported events, we benefitted from letting the

data speak for itself with fewer assumptions. This is the standard Naïve Bayes equation with

Laplace smoothing, where X is a nominal attribute and |X| is the number of possible values of X:

𝑝(𝑋 = 𝑥) =
𝑛(𝑋 = 𝑥) + 1

𝑛 + |𝑋|

 The “damped” Naïve Bayes that we introduced has m as a user-adjustable value is shown

in the equation:

𝑛(𝑋 = 𝑥) =
𝑛(𝑋 = 𝑥) + 𝑚

𝑛 + 𝑚|𝑋|

36

Another assumption that we found can hurt Naive Bayes’ performance is the assumption

that numeric attributes are normally distributed. Some implementations of the algorithm,

including Weka’s, have few options for how to handle numeric attributes, but they are limited to

a choice of which distribution to select. Instead of letting Naive Bayes keep only the mean and

standard deviation from an attribute, we decided to treat numeric attributes like nominal ones:

each probability would be determined by counting how many instances matched a value.

 For numeric attributes with few possible values - such as the hour of the day or even an

individual’s age - it is feasible to simply count how many of each value there are. There is

enough data for every hour or every age to be well-represented. But this loses some information

- it makes the assumption that 44-year-olds and 45-year-olds must be considered as differently as

18-year-olds and 90-year-olds - and just does not work for numeric attributes with more possible

values. So instead, we considered every value that fell within some range of a target a match;

44-year-olds were now lumped with ages 39 to 49, 45-year olds with 40 to 50. There was

overlap, and it was distinct from merely discretizing the attribute; each value had a slightly

different probability, and the change was gradual - no sharp borders between groups. For a range,

we used the standard deviation of the attribute multiplied by some constant (on which we

experimented later), according to the following formula:

𝑝(𝑋 = 𝑥) =
𝑛(𝑥−𝑐𝜎<𝑋<𝑥+𝑐𝜎)

𝑛

 This treatment of numeric attributes allowed us to pursue one of our stranger

experiments: event combination. Instead of treating each attribute as independent, we could

instead test different combinations of values at the moment of classification, allowing us to unite

some values into a single event while keeping others separate. Internet Explorer would be

37

considered separately from its version of 6.0, for example, but the combination of Firefox and

version 35.0.1 could be used to get a more accurate picture. Again, the Bayesian ideal is one in

which all events are combined into a single observation about the state of the observable

universe. Unlike the simple combination of attributes, this would allow the classifier to use the

probabilities of combined events if and only if they were well-supported, and would not prevent

it from doing so if similar combinations happened to be only sparsely supported.

 Ultimately, this approach and the treatment of numeric attributes described above were

interesting, but did not make it into Phase Two because they were written outside of Weka -

while tunable Laplace smoothing could be easily worked into the existing code base, the other

two had to be written from scratch. For this reason, they were slow and unwieldy, and did not

output results in a format consistent with Weka; when it came time to move on to large-scale

testing, we believe that we made the right decision in leaving them behind.

3.3 Phase Two
 In Phase Two, we conducted more rigorous experiments on a significantly larger data set

from a different source in the same domain. This data, which consisted of twenty-seven non-

trivial attributes and four and a half million instances, was taken from an iOS application during

six days in February 2015. Using some of the methods which showed promise in Phase One, we

designed five experiments, each of which was repeated on five unique data sets derived from the

original.

3.3.1 Data Set Variants

 In addition to the original data set (referred to as the Base data set), with twenty-seven

attributes including the target, we attempted to prepare four other data sets. First, a variation

which replaced the existing geographical attributes with a region attribute, placing each data

38

instance in the Northeast, South, Midwest, or West, which we refer to as the Domain data set.

Second, a minimal subset of attributes selected by Weka’s CFS Subset Evaluation algorithm

(referred to as the CFS data set) - browser family and the number of recent clicks were the only

two which made the cut (Witten, 2011). Third, we attempted to get some useful results of

applying the Principal Components Analysis algorithm in Weka to condense the available data

into a lower-dimensional feature space (Tan, 2005).This approach failed due to the prohibitive

memory demands of running Principal Components Analysis with a large number of categorical

attributes with large numbers of values. Finally, we created a version with the same manual

selection of ten attributes that we found by dumb luck in Phase One (referred to as the Manual

data set).This manual selection of attributes can be seen in Table 3 in section 3.2.3 Feature and

Value Selection.

3.3.2 Experiments

 We initially planned for five experiments one each data set. We began with one

unmodified Naive Bayes run (the Baseline experiment) and one Naive Bayes run with Laplace

smoothing turned down to one percent (the Damping experiment); these were the simple runs.

Two involved the separation of the training and test sets into different data sets; one with a k-

means discrete clustering for k = 3 (the K-Means experiment), and one with probabilistic

clustering supported by the E-M algorithm. We also attempted a division of the negative

instances into a trio of subclasses (the Subclass experiment), as covered in the section 3.2.4

Feature Creation.

 Finally, as a pair of last-minute additions, we added experiments which dealt with the day

of the week (the Day experiment) and the data carrier of each instance (the Carrier experiment).

39

In the former, we partitioned each training and test set into weekday and weekend groups, and in

the latter, we divided each training and test set into ten groups –eight for the top eight carriers,

one for the missing values, and one for everyone else.

40

4 Results

We used the results from Phase One to guide our experimental design for Phase Two. In this

section we choose to present and analyze only the results from Phase Two.

In Phase Two, we focused on four summary statistics: AUC, recall, precision, and the

harmonic mean of precision and recall, called the F1-score. The results for AUC are shown in

Table 43 below:

Table 4: AUC Results

 Data Set

Base CFS Domain Manual

Experiment

Baseline 0.585 0.531 0.587 0.586

Carrier 0.560 0.558 0.566 0.579

Damping 0.583 0.531 0.590 0.586

Day 0.579 0.539 0.580 0.585

EM 0.587 0.530 0.591 0.565

K-Means 0.576 0.530 0.576 0.585

Subclass 0.561 0.531 0.562 0.559

Additionally, we recorded the three threshold-dependent summary statistics - recall,

precision, and F1-Score - for one thousand evenly spaced threshold for each experiment and data

set.

 The summary statistics for the base data set, which included all 27 attributes from Phase

Two, have a few distinctive features. First, as demonstrated by the F1-Score and precision

graphs in Figure 8, the EM experiment is an outlier, with very different behavior from the other

41

experiments. Second, recall dropped dramatically at a very low threshold, which is common to

all data sets. It would appear that most instances were assigned a low probability of being

positive, even those which were actually positive.

 Third, precision leveled off fairly early, indicating that the mixture of true and false

positives was relatively stable at all but the lowest thresholds. This excludes the EM experiment,

which was an odd entity.

42

Figure 8: F1 Score, Precision, and Recall from the Base Data Set

43

Graphs of the summary statistics for the data set with attributes selected by CFS are

blocky and full of corners, as seen in Figure 9 below. This is due to the fact that the feature space,

which included one nominal and one numeric attribute, each with few possible values, was very

small, and the limited number of possible instances in turn limited the number of possible

probability outputs.

These experiments tended to be stricter than those performed on the base data set, with

higher precision but lower recall. Once again, the EM experiment stands out, but not to the same

extent. Of note is the K-Means experiment, which maintains an F1-Score around 0.010 into

higher thresholds than any of its peers, which appears to be largely due to a solid maximum

precision that is the highest of the entire data set. However, F1-Scores for the data set as a whole

ultimately underperform compared to other data sets, with smaller upper and lower bounds.

44

Figure 9: F1 Score, Precision, and Recall from the CFS Data Set

45

While the data set which included domain knowledge about geography in some cases

outperformed the base data set (as is shown in the tables later in this section), the shapes of its

curves were, for the most part, not notably different from those of the base data set, as can be

seen in Figure 10. This is unsurprising; the domain data set differed least from the base data set,

as only five attributes were removed and one added.

However, we do see some interesting behavior from our friendly neighborhood outlier,

the EM experiment. Where in the base data set its precision remained relatively high for most

thresholds and then dropped, here it seems to grow slowly and then increase suddenly at the

end. This is encouraging behavior; it implies that the actual positives are systematically being

assigned higher probability at a greater rate than in other experiments. While this may sound

like a trivial achievement, it does stand out from its peers.

46

Figure 10: F1 Score, Precision, and Recall from the Domain Data Set

47

For the manually trimmed data set, which consisted of only ten attributes including the

target, once again EM was the experiment to watch in Figure 11 below. As in the domain data

set, it maintained a higher precision than its peers with a sharp rise at the end, though its behavior

was not quite as steady. It did have a more impressive precision advantage over its peers,

however, which is reflected in the graph of F1-Score graph, where the EM experiment achieves

the highest maximum of any experiment in any data set and clearly outperforms its peers for a

wide range of thresholds.

Both the Subclass experiment and the Damping experiment joined EM’s sharp rise in

precision at high thresholds, though this this rise was accompanied by a drop in recall sufficient

to make the F1-Scores fairly ordinary.

48

Figure 11: F1 Score, Precision, and Recall from the Manual Data Set

49

 Finally, we examined the behavior of these three metrics at certain thresholds: those

thresholds which maximized precision, and those thresholds which maximized F1-Score. (We

considered including those thresholds which maximized recall, but were reminded that recall is

trivially easy to maximize by setting the threshold to 0.0, which is not useful). The thresholds

which do so may differ from experiment to experiment, and as such are included here in Table

54 below; however, the “goodness” of these thresholds is not a point of our study.

We note that as the positive instances composed only 0.45% of the total, a large random

sample would have a precision of 0.0045. If this sample included the entire data set (in which

case the recall would trivially be 1), it would have an F1-Score of 0.0090. These are the most

natural, albeit unambitious, baselines for comparison.

Table 5: Data Sets and Threshold Statistics

Data

Set/Experiment

Threshold which

maximizes Precision

Precision at

Threshold

Recall at

Threshold

F1-Score at

Threshold

Base/Baseline 0.015 0.010 0.101 0.018

Base/Carrier 0.018 0.008 0.084 0.014

Base/Damping 0.021 0.011 0.087 0.020

Base/Day 0.023 0.009 0.075 0.016

Base/EM 0.849 0.009 0.005 0.007

Base/K-Means 0.018 0.008 0.089 0.015

Base/Subclass 0.016 0.008 0.062 0.014

CFS/Baseline 0.058 0.057 0.005 0.009

CFS/Carrier 0.142 0.044 0.002 0.004

CFS/Damping 0.053 0.059 0.005 0.009

CFS/Day 0.080 0.055 0.004 0.007

50

CFS/EM 0.163 0.040 0.002 0.003

CFS/K-Means 0.058 0.061 0.005 0.010

CFS/Subclass 0.056 0.059 0.005 0.009

Domain/Baseline 0.017 0.010 0.095 0.019

Domain/Carrier 0.017 0.009 0.100 0.017

Domain/Damping 0.022 0.012 0.085 0.021

Domain/Day 0.012 0.009 0.117 0.017

Domain/EM 0.999 0.016 0.001 0.002

Domain/K-Means 0.014 0.009 0.103 0.016

Domain/Subclass 0.009 0.009 0.084 0.015

Manual/Baseline 0.035 0.013 0.076 0.022

Manual/Carrier 0.031 0.012 0.076 0.021

Manual/Damping 0.035 0.013 0.076 0.022

Manual/Day 0.027 0.012 0.080 0.021

Manual/EM 0.998 0.021 0.004 0.007

Manual/K-Means 0.033 0.012 0.077 0.021

Manual/Subclass 0.999 0.010 0.004 0.006

As shown above in Table 54 of F1-Score, the EM experiment on the Manual data set had

the highest maximum among the experiments. The majority of maximum F1-scores were more

than twice as large as the F1-Score of a random sample, which would be 0.009.

51

5 Conclusion
 We found and described a variety of approaches, not all of which were successful, but

many of which were worth examining further. In Phase One, we documented a series of unusual

ideas in the hopes that, even if they did not suit our purposes, they might provide inspiration later.

In Phase Two, we were able to present a number of options to suit a number of potential trade-

offs between precision and recall.

 Some experiments were able to, at their most discriminating points, improve precision

values more than ten-fold over random sampling, though their recall values at such thresholds

were discouraging. In light of these results, it may be more appropriate to frame our approaches

as methods of reliably identifying a promising select few true positives rather than being able to

correctly identify a large proportion of true positives.

 Finally, though the vast majority of our Phase One experiments did not bear desired

increases in AUC, and some of our Phase Two results were less than impressive, we are hopeful

that our explorations into the territory of machine learning experimentation on a data set of 4.5

million data instances with a drastically skewed target attribute will help guide future research

into this application, if in no way other than telling them where not to go. We are also proud to

present our sponsor with a comprehensive array of approaches, choices and trade-offs, and

robust evaluation of each one of them..

52

Bibliography
Peng, F., Schuurmans, D., & Wang, S. (2004). Augmenting naive Bayes classifiers with

statistical language models. Information Retrieval, 7(3-4), 317-345.

Menard, Scott W. (2002). Applied Logistic Regression (2nd ed.). SAGE. ISBN 978-0-7619-

2208-7.

Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann, Ian H. Witten

(2009); The WEKA Data Mining Software: An Update; SIGKDD Explorations, Volume

11, Issue 1.

Witten, I., & Frank, E. (2011).Data mining practical machine learning tools and techniques (3rd

ed.). Burlington, MA: Morgan Kaufmann.

Tan, P, Steinbach, M., & Kumar. V. (2005). Introduction to Data mining (1st ed.). Harlow:

Addison-Wesley.

The R Project for Statistical Computing. (n.d.). Retrieved April 30, 2015, from http://www.r-

project.org/

Evidence-Based Diagnosis. (n.d.). Retrieved April 30, 2015, from

http://omerad.msu.edu/ebm/Diagnosis/Diagnosis6.html

Russell, Stuart; Norvig, Peter (2010). Artificial Intelligence: A Modern Approach (2nd ed.).

Pearson Education, Inc. p. 863.

http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/978-0-7619-2208-7
http://en.wikipedia.org/wiki/Special:BookSources/978-0-7619-2208-7

53

Appendix A: Phase One Experiments

Experiment 1:

● 65% train/35% test split

● Training set used to create EM clusters

● Cluster labels applied to instances of test set

● Training and test sets split based on cluster label

● Training sets used to generate logistic regression models tested on appropriate test sets

Results:

Cluster Training Set Size Test Set Size AUC

1 273 186 0.517

2 3334 1776 0.504

3 1432 821 0.538

4 8871 4708 0.517

All (Weighted) 13910 7491 0.516

54

Experiment 2:

● 65% train/35% test split

● Training set used to create EM clusters

● Cluster labels applied to instance of test set

● Training and test sets split based on cluster label

● Training sets used to generate naive Bayes models tested on appropriate test sets

Results:

Cluster Training Set Size Test Set Size AUC

1 273 186 0.572

2 3334 1776 0.543

3 1432 821 0.465

4 8871 4708 0.541

All (Weighted) 13910 7491 0.534

55

Experiment 3:

Training:

● 65% train/35% test split

● Training set used to create a Naive Bayes classifier (Model M0) which targets class membership

in “is_click”

● Predictions made from M0 on training set

● New attribute added to training set based on error from M0 predictions (error = {yes, no})

● Attribute “is_click” temporarily removed

● Training set used to create a Naive Bayes classifier (Model M1) which targets class membership

in “error”

● Predictions made from M1 on training set

● Training set split into two sets: “classification=yes” and “classification=no” (predicted error, not

actual)

● Attribute “is_click” restored

● Training set “error=yes” used to create a Naive Bayes classifier (Model M2) which targets class

membership in “is_click”

Testing:

● Test set is run through M1 and split into two sets: “classification=yes” and “classification=no”

(predicted error, not actual

● Test set “classification=no” is evaluated in M0 and test set “classification=yes” is evaluated in

M2

Results:

Model Test Set Size AUC

M0 7174 0.566

M1 (not terminal) 7491 0.825

M2 319 0.532

Total (weighted M0 + M2) 7493 0.565

Note: due to instances in the test set which were identical except for their class values, two additional

testing instances were created in merging the “is_click” attribute back into the test set. Additionally, it

may be worthwhile to redo this experiment to guard against error.

56

Constructed model M0 on training set

Added “error” attribute from M0 error to training set

Removed “is_click” attribute from training set

Constructed model M1 on training set w/”error” attribute and w/o “is_click” attribute

Restored “is_click” attribute to training set

Split training set into “error=yes” and “error=no” (actual error, not predicted)

Constructed model M2 on training set “error=no”, constructed model M3 on training set “error=yes”

Ran test set through M0 and obtained AUC value

Added “error” attribute from M0 error to test set

Removed “is_click” attribute from test set

Ran test set through M1 and obtained AUC value

Added “classification” attribute from M1 to test set

Restored “is_click” attribute to test set

Split test set into “classification=yes” and “classification=no” (predicted error, not actual)

Ran test set “classification=no” through M2 and obtained AUC value

Ran test set “classification=yes” through M3 and obtained AUC value

Results:

Model Target Terminal

Model(s)?

Test Set AUC

M0 is_click false 7491 (all) 0.573

M1 error (from M0) false 7491 (all) 0.825

M2 is_click true 7174 (M1

predicted no)

0.558

M3 is_click true 317 (M1 predicted 0.500

57

yes)

Total (weighted

M2 + M3)

is_click true 7491 (all) 0.556

Note: Based on the fact that AUC(M0) > AUC(Total), we conclude that this particular method of

classification (which does not include preprocessing) is not suitable for this data. While further iterations

might increase the AUC of the instances currently handled by M3, the performance of M2, which handles

the majority of instances, restricts the maximum weighted AUC to 0.576, which is not significantly better

than M0.

58

Experiment 4:

● As above, but with 10-attribute training and test sets instead

Results:

Model Target Terminal

Model(s)?

Test Set AUC

M0 is_click false 7491 (all) 0.597*

M1 error (from M0) false 7491 (all) 0.669

M2 is_click true 7243 (M1

predicted no)

0.575

M3 is_click true 248 (M1 predicted

yes)

0.489

Total (weighted

M2 + M3)

is_click true 7491 (all) 0.572

* Model M0 performed with an AUC of 0.595 on data instances which were tested on M2.

59

Experiment 5:

● 65% training, 35% testing

● removed Zipcode

● Ran Correlation attribute evaluator on data set

● took out any attributes with a correlation less than .005

○ removed was Lat, area_code. day. day_of_week, data, keyword, user_age, os_family, lng,

user_gender

● removed “is_click” attribute

● Ran EM, default parameters

● restored “is_click” attribute

● added cluster to data set

● separated clusters in R

Results:

Cluster Training Set Size Test Set Size AUC

1 334 172 0.613

2 351 180 0.526

3 8199 4415 0.513

4 5026 2724 0.501

Total 13910 7491 0.511

60

Experiment 6:

● Remove attributes one by one, progressing down the list and testing whether or not the AUC

increases without said attribute (testing on the full data set rather than a train/test split)

● Conduct 10-fold cross-validation with a Naive Bayes classifier

Results:

Attributes AUC

 hour, os_version, browser_family,

browser_version, device, vendor, num_clicks_30,

recency, frequency_hour, is_click

0.6

61

Experiment 7:

● Use the ten attributes gathered by testing the effect of attribute selection on Naive Bayes (hour,

os_version, browser_family, browser_version, device, vendor, num_clicks_30, recency,

frequency_hour, is_click)

● Split the attribute-selected data into a training set and a test set

● Run the EM algorithm on the training set and save the cluster assignment model

● Assign cluster labels to instances in both the training set and the test set

● Split the training and test sets by cluster labels

● Train one Naive Bayes model on each cluster-separated training subset, and test the models on

the cluster-separated test subset with the corresponding cluster label

Results:

Cluster Train Size Test Size AUC

No Clustering

(Baseline)

13910 7491 0.610

1 5062 2725 0.564

2 4318 2278 0.557

3 4350 2448 0.548

All (Weighted) 13910 7491 0.557

62

Experiment 8:

● Use the ten attributes gathered by testing the effect of attribute selection on Naive Bayes (hour,

os_version, browser_family, browser_version, device, vendor, num_clicks_30, recency,

frequency_hour, is_click)

● Split the attribute-selected data into a training set and a test set

● Determine the effect of the size of the training set on the AUC by using a supervised Resample

filter

Results:

Size of Training Set AUC Mean AUC Standard Deviation AUC

13910 0.610 0.610 NA

12159 0.599 0.600 0.0082

12159 0.590

12159 0.602

12159 0.610

11128 0.608 0.601 0.0127

11128 0.614

11128 0.585

11128 0.598

9737 0.596 0.601 0.0078

9737 0.611

9737 0.594

63

9737 0.604

5564 0.597 0.586 0.0087

5564 0.577

5564 0.589

5564 0.582

1391 0.556 0.568 0.0156

1391 0.568

1391 0.558

1391 0.590

64

Experiment 9:

● Use the ten attributes gathered by testing the effect of attribute selection on Naive Bayes (hour,

os_version, browser_family, browser_version, device, vendor, num_clicks_30, recency,

frequency_hour, is_click)

● Split the attribute-selected data into a training set and a test set

● Run the FarthestFirst clustering algorithm on the training set and save the cluster assignment

model

● Assign cluster labels to instances in both the training set and the test set

● Split the training and test sets by cluster labels

● Train one Naive Bayes model on each cluster-separated training subset, and test the models on

the cluster-separated test subset with the corresponding cluster label

Results:

Cluster Train Size Test Size AUC

No Clustering

(Baseline)

13910 7491 0.597

Train 1, Test 1 7887 4241 0.547

Train 2, Test 2 6023 3250 0.565

Train 1&2, Test 1 13910 4241 0.557

Train 1&2, Test 1 13910 3250 0.583

Train 1, Test 1 and

Train 2, Test 2

(weighted)

13910 7491 0.555

Train 1&2, Test 1 and

Train 1&2, Test 2

(weighted)

13910 13910 0.568

Note: the weighted average AUC of the model trained on the entire training set but tested on two disjoint

test sets is significantly below the AUC of the same model tested on the entire test set.

65

66

Experiment 10:

● Use the train_10.arff and test_10.arff data sets (a 65%/35% train/test split of the original data

reduced to ten attributes: hour, os_version, browser_family, browser_version, device, vendor,

num_clicks_30, recency, frequency_hour, is_click)

● Use R to randomly split the test_10.arff data set into two equally sized subsets, test_10_1.arff and

test_10_2.arff

● Train a Naive Bayes classifier on train_10.arff and test it on both subsets

Results:

Test Set Set Size AUC

1 3745 0.601

2 3746 0.593

1 & 2 (Weighted Average) 7491 0.597

1 & 2 (Single Set) 7491 0.597

67

Experiment 11:

● Implement the AddClusterProbabilities filter, which takes a clustering algorithm or model and

creates new attributes (one for each cluster) which reflect the probability of belonging to a

specific cluster.

● Train an EM model on the training set (less the target attribute).

● Apply the AddClusterProbabilities filter to both the training set and the test set, using the model

generated on the training set.

● Create 4n new training sets, 4 for each of the n clusters generated by the EM model, according to

the following rules (using the training set with cluster probabilities):

○ First training set: add each instance to the training set a number of times equal to

floor(cluster probability * 10); this is the non-inclusive set

○ Second training set: add each instance to the training set a number of times equal to

ceiling(cluster probability * 10); this is the all-inclusive set (it contains each instance at

least once)

○ Third training set: add each instance to the training set if and only if it the current

cluster’s probability is greater than that of another cluster (i.e. if that instance would be

assigned to that cluster); this is the simple set

○ Fourth training set: as the first training set, but after applying the supervised Resample

filter with replacement and with a bias towards a uniform class (at 100% sample size);

this is the all-inclusive resampled set

● Train a Naive Bayes classifier on each training set and name the file accordingly (e.g.

cluster1_all.model, cluster3_non.model, cluster2_simple.model)

● Generate a probability distribution from each model on every test instance

● For each type of training set, calculate the predicted probability of membership in is_click = 1 of

each instance in two ways:

○ 𝑝(𝑖𝑠 − 𝑐𝑙𝑖𝑐𝑘 = 1) = 𝛴𝑝(𝑐𝑙𝑢𝑠𝑡𝑒𝑟 = 𝑖) ∗ 𝑝(𝑖𝑠 − 𝑐𝑙𝑖𝑐𝑘𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑛𝑜𝑛−𝑖) takes into

account the probability that the given instance belongs to a particular cluster and the

confidence with which that particular cluster’s model has predicted that they will have an

is_click value of 1; this yields the fine prediction

○ 𝑝(𝑖𝑠 − 𝑐𝑙𝑖𝑐𝑘 = 1) = 𝛴𝑝(𝑐𝑙𝑢𝑠𝑡𝑒𝑟 = 𝑖) ∗ (𝑝(𝑖𝑠 − 𝑐𝑙𝑖𝑐𝑘𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛−𝑖) > 0.5) may

dampen noise which would otherwise be introduced by precisely following the predicted

probabilities; this yields the coarse prediction

● Calculate the AUC for each training type and prediction type

Results:

Training Type AUC (coarse) AUC (fine)

All-Inclusive 0.505 0.602

68

Non-Inclusive 0.520 0.571

Simple 0.529 0.573

All-Inclusive (Resampled) 0.583 0.599

69

Experiment 12:

● Use Weka’s logistic regression to build a classifier on the train_10 data set.

● Test it on the test_10 data set.

● Build another logistic regression classifier on the train_10 data set after applying the supervised

Resample filter with a bias towards a uniform class, replacement in sampling, and a 200% sample

size.

Results:

Condition AUC

No Resampling 0.590

Resampling 0.592

Note: From these results, we can conclude that the limited set of attributes selected by trial and error on

Naive Bayes is also beneficial to Logistic Regression, though Naive Bayes still has superior performance.

70

Experiment 13:

● Construct Damped Naive Bayes class, which introduces virtual instances to each estimator in

order to stabilize probability estimates, especially in cases in which there are few observations per

symbol

● Run Damped Naive Bayes on the train/test split with a variety of values of M, the damping

parameter, D, the supervised discretization flag, and U, the uniformity flag

○ When U is set, each symbol in an attribute receives a virtual instance of weight M; when

U is not set, this weight of M is distributed among all symbols in the attribute (for a given

attribute/class combination)

Results:

M U D AUC

1.0 True True 0.584

1.0 True False 0.597

1.0 False True 0.596

1.0 False False 0.605

2.0 True True 0.579

2.0 True False 0.593

2.0 False True 0.596

2.0 False False 0.605

0.5 True True 0.588

0.5 True False 0.600

0.5 False True 0.596

0.5 False False 0.606

71

4.0 True True 0.569

4.0 True False 0.584

4.0 False True 0.595

4.0 False False 0.604

0.25 True True 0.591

0.25 True False 0.601

0.25 False True 0.596

0.25 False False 0.606

8.0 True True 0.559

8.0 True False 0.575

8.0 False True 0.594

8.0 False False 0.603

0.125 True True 0.594

0.125 True False 0.603

0.125 False True 0.596

0.125 False False 0.606

72

Experiment 14:

● Begin with the original 29-attribute data set

● For each city in the “city” attribute, count how many times that city occurs in the data

● Add a new attribute, “pop”, which counts how many times a given instance’s city occurs in the

data

● Remove all attributes other than the “pop” attribute and the 10-attribute set found in previous

experiments

● Perform cross-validation on the new data under different experimental conditions using Naive

Bayes

Results:

Experimental Condition AUC

Baseline (no pop attribute) 0.600

Pop as numeric attribute 0.599

Pop as supervised-discretized attribute

(note: Naive Bayes supervised discretization

created only one bin)

0.599

Pop as unsupervised-discretized attribute with 10

bins

0.599

Pop as unsupervised-discretized attribute with 7

bins (number found by equal-width specification)

0.600

73

74

Experiment 15 [FAILURE]:

● Using the same population counts added in the above experiment, split the data into subsets based

on population size. Keep the ten attributes discovered in previous experiments, and possibly the

pop attribute, if desired.

● Include instances with no population count (because they have NA values for city) in all subsets.

They account for less than one-half of one percent of the original data set.

● Test each subset in its own cross-validated Naive Bayes model.

● Experiment with different splits and record the weighted-average AUC values, as well as the

individual AUC values.

● EXPERIMENT VOID; NA VALUES REPLICATED

Results:

Experiment Include pop as

attribute?

Range Bin Size Bin AUC Weighted

Average AUC

1 Yes 1-Inf 21401 0.599 0.599

2 No 1-Inf 21401 0.600 0.600

3 Yes 1-100 10571 0.607 0.597

101-Inf 10899 0.588

4 No 1-100 10571 0.608 0.598

101-Inf 10899 0.589

5 Yes 1-50 7906 0.604 0.593

51-Inf 13564 0.587

6 No 1-50 7906 0.606 0.594

51-Inf 13564 0.587

7 Yes 1-100 10571 0.607 0.603

75

101-300 5560 0.595

300-Inf 5408 0.603

8 No 1-100 10571 0.608 0.604

101-300 5560 0.595

300-Inf 5408 0.604

9 Yes 1-100 10571 0.607 0.607

101-200 2809 0.598

201-300 2820 0.620

301-Inf 5408 0.603

10 No 1-100 10571 0.608 0.608

101-200 2809 0.601

201-300 2820 0.619

301-Inf 5408 0.604

11 Yes 1-50 7906 0.602 0.611

51-100 2734 0.653

101-200 2809 0.598

201-300 2820 0.620

301-Inf 5408 0.603

12 No 1-50 7906 0.603 0.611

76

51-100 2734 0.651

101-200 2809 0.601

201-300 2820 0.619

301-Inf 5408 0.604

Note: I noticed around the four-bin mark that the AUC values for the different classes seemed to start

diverging - there could be a difference of nearly 0.10 between the majority and minority class. All AUC

values reported here are weighted averages reported by Weka, though I am mystified as to how a two-

class classifier can have different AUC values for each class. ADDENDUM: I now suspect that this is

related to the inclusion of NA values, which somehow acquired NA values for every attribute, including

class.

77

Experiment 16:

● Using the same population counts added in the above experiment, split the data into subsets based

on population size. Keep the ten attributes discovered in previous experiments, and possibly the

pop attribute, if desired.

● Take instances with no population count (because they have NA values for city) into its own

subset. They account for less than one-half of one percent of the original data set.

● Test each subset in its own cross-validated Naive Bayes model.

● Experiment with different splits and record the weighted-average AUC values, as well as the

individual AUC values.

Results:

Experiment Include pop as

attribute?

Split Bin Size Bin AUC Weighted

Average AUC

1 Yes 1-Inf 21332 0.597 0.596

NA 69 0.217

2 No 1-Inf 21332 0.598 0.597

NA 69 0.217

3 Yes 1-100 10502 0.604 0.588

101-Inf 10830 0.574

NA 69 0.217

4 No 1-100 10502 0.605 0.588

101-Inf 10830 0.574

NA 69 0.217

5 Yes 1-50 7837 0.615 0.590

78

51-Inf 13495 0.578

NA 69 0.217

6 No 1-50 7837 0.616 0.590

51-Inf 13495 0.577

NA 69 0.217

7 Yes 1-50 7837 0.615 0.591

51-200 5405 0.576

201-Inf 8090 0.582

NA 69 0.217

8 No 1-50 7837 0.616 0.592

51-200 5405 0.576

201-Inf 8090 0.583

NA 69 0.217

9 Yes 1-50 7837 0.615 0.588

51-200 5405 0.576

201-300 2751 0.578

301-Inf 5339 0.569

NA 69 0.217

10 No 1-50 7837 0.616 0.588

79

51-200 5405 0.576

201-300 2751 0.578

301-Inf 5339 0.570

NA 69 0.217

11 Yes 1-50 7837 0.615 0.581

51-100 2665 0.570

101-200 2740 0.529

201-300 2751 0.578

301-Inf 5339 0.569

NA 69 0.217

12 No 1-50 7837 0.616 0.582

51-100 2665 0.571

101-200 2740 0.531

201-300 2751 0.578

301-Inf 5339 0.570

NA 69 0.217

Conclusion:

 Binning instances based on the frequencies of their cities is not a useful method of separating

instances.

80

81

Experiment 17:

● Using US Census Bureau regions and divisions data (as found at

http://www.census.gov/geo/maps-data/maps/pdfs/reference/us_regdiv.pdf), assign data instances

to regions and divisions based on US State (extranational data will be assigned to region “Foreign”

and division “Foreign”)

● Test a variety of conditions to determine whether keeping the region and/or division attributes (or

dividing into subsets based on those attributes) is useful, using the ten-attribute data set as a base

● Use Naive Bayes with ten-fold cross-validation

Results:

Condition Keep

Region?

Keep

Division?

Split Size Split AUC Weighted

Total AUC

Baseline No No None 21401 NA 0.600

R, D as

attributes

Yes Yes None 21401 NA 0.600

R as

attribute

Yes No None 21401 NA 0.599

D as

attribute

No Yes None 21401 NA 0.600

Split into

subsets

based on

Region

No Yes Northeast 1533 0.507 0.584

Midwest 2891 0.556

West 5864 0.589

South 11041 0.601

NA 72 0.199

Split into No No Northeast 1533 0.511 0.582

http://www.census.gov/geo/maps-data/maps/pdfs/reference/us_regdiv.pdf

82

subsets

based on

Region

Midwest 2891 0.551

West 5864 0.588

South 11041 0.600

NA 72 0.199

Split into

subsets

based on

Division

No No East North

Central

2303 0.555 0.570

East South

Central

1100 0.549

Middle

Atlantic

1379 0.486

Mountain 1835 0.544

New

England

154 0.631

Pacific 4029 0.590

South

Atlantic

4832 0.581

West North

Central

588 0.503

West South

Central

5109 0.599

NA 72 0.199

Conclusion: geographical splitting at the granularity of region or division is counter-effective.

83

Experiment 18:

● Use a 65%/35% train/test split on the ten-attribute data.

● Declare Weka’s Naive Bayes algorithm as a baseline, but construct a Naive Bayes algorithm

which uses a different estimator for numeric attributes as follows: p(attribute = value) =

n(attribute - c * stddev <= value <= attribute + c * stddev)/N, where c is some adjustable

parameter which is consistent within each classifier.

● Train and test the resulting models with the same train and test subsets used for the baseline,

varying the parameter c to maximize AUC.

Results:

Model Type c-parameter AUC

Weka N/A 0.597

Homebrew 0.001 0.599

Homebrew 0.01 0.602

Homebrew 0.0625 0.603

Homebrew 0.125 0.601

Homebrew 0.25 0.602

Homebrew 0.5 0.600

Homebrew 0.75 0.596

Homebrew 1.0 0.596

Homebrew 1.5 0.594

Homebrew 2.0 0.594

Notes:

● The current design as of 1/12/15 uses lazy cached learning - each of 7490 test instances takes an

average of 1/20th of a second to classify, compared to approximately ½ of a second without

caching. This classification time may be improved upon later.

84

● Subsequent experiments with a small m-parameter (0.01 or 0.0001) for m-estimation (as

attempted in previous experiments) with a c-parameter of 0.0625 yielded an AUC value of 0.610.

● The current design as of 1/13/15 rounds numeric values to the nearest one-hundredth of a

standard deviation, which actually increases AUC very slightly and decreases average prediction

time to about 1/100th of a second.

85

Experiment 19:

● Use the homebrew python Naive Bayes algorithm on a 65%/35% train/test split.

● Set the parameter for m-estimation to 1 (normal for Naive Bayes) and the parameter for numeric

range inclusion to 0.0625.

● When predicting the class of a test datum, combine events as follows: find the pair of events A =

a, B = b such that the support (number of occurrences) for their intersection A = a & B = b is

greater than any other pair. Remove A = a, B = b from the list of events and replace it with A = a

& B = b. Stop if no intersection A = a & B = b has a support count greater than some minimum

support.

● When evaluating candidate events for combination, do not bother to collect the support count for

the intersection if either of the candidate events have a support count less than the minimum.

Results:

Minimum Support AUC

Baseline (no combination) 0.602

100 0.595

200 0.597

500 0.594

1000 0.580

1500 0.581

2000 0.592

2500 0.596

3000 0.595

86

Experiment 20:

● Use the homebrew python Naive Bayes algorithm on a 65%/35% train/test split.

● Set the parameter for m-estimation to 1 (normal for Naive Bayes) and the parameter for numeric

range inclusion to 0.01.

● When predicting the class of a test datum, combine events as follows: find the pair of events A =

a, B = b such that the proportion between the product of the likelihood ratios for the separate

events and the likelihood ratio of the intersection A = a & B = b is most extreme. Merge those

events.

● Remove A = a, B = b from the list of events and replace it with A = a & B = b. Stop if no

intersection A = a & B = b has a support count greater than some minimum support.

● When evaluating candidate events for combination, do not bother to collect the support count for

the intersection if either of the candidate events have a support count less than the minimum.

Results:

Minimum Support AUC

Baseline (no combination) 0.602

100 0.601

200 0.597

300 0.596

400 0.596

500 0.588

600 0.583

700 0.581

800 0.582

900 0.581

87

1000 0.580

1200 0.582

1400 0.575

1600 0.584

1800 0.584

2000 0.586

2500 0.584

3000 0.583

3500 0.588

4000 0.589

88

Experiment 21:

● Use the homebrew python Naive Bayes algorithm on a 65%/35% train/test split.

● Set the parameter for m-estimation to 1 (normal for Naive Bayes) and the parameter for numeric

range inclusion to 0.01.

● When predicting the class of a test datum, combine events as follows: find the pair of events A =

a, B = b such that the proportion between the product of the likelihood ratios for the separate

events and the likelihood ratio of the intersection A = a & B = b is most extreme. Merge those

events.

● Remove A = a, B = b from the list of events and replace it with A = a & B = b. Stop after some

number of iterations, or if no intersection A = a & B = b has a support count greater than 10.

● When evaluating candidate events for combination, do not bother to collect the support count for

the intersection if either of the candidate events have a support count less than the minimum.

Results:

Maximum Iterations AUC

Baseline (no combination) 0.602

1 0.596

2 0.596

3 0.591

4 0.587

89

Experiment 22[DISREGARD]:

• Repeat the experiment below for the 29-attribute and the 10-attribute data sets.

• Split the data set into positive and negative instances.

• Build clustering models on the positive and negative sets and save them. Record the algorithms and

parameters used for these models, which may be different for each set.

• Apply the model built on the positive set to the positive set, and apply the model built on the negative

set to the negative set. Give the cluster labels names which reflect whether they are built from positive or

negative instances.

• Rejoin the positive and negative sets. Remove the class variables, letting the cluster labels (which

have the old class information in their names) become the class.

• Train and test a Naive Bayes model using leave-one-out cross-validation.

• Record all AUC values and, if necessary, distributions calculated by the model, as alternative methods

of calculating AUC may be necessary.

Results:

Experiment Original

Class Label

Algorithm Cluster Class

Label

Cluster

AUC

Cluster Size Weighted

Total AUC

Base.10 Positive None Positive 0.598 1228 0.598

Negative None Negative 0.598 20173

Base.29 Positive None Positive 0.573 1228 0.573

Negative None Negative 0.573 20173

K-2-1.10 Positive K-Means,

with k=2

Positive-1 0.776 578 0.597

Positive-2 0.741 650

Negative None Negative 0.587 20173

K-2-1.29 Positive K-Means,

with k=2

Positive-1 0.758 412 0.568

Positive-2 0.635 816

Negative None Negative 0.561 20173

90

K-1-2.10 Positive None Positive 0.579 1228 0.943

Negative K-Means,

with k=2

Negative-1 0.951 12750

Negative-2 0.989 7603

K-1-2.29 Positive None Positive 0.578 1228 0.745

Negative K-Means,

with k=2

Negative-1 0.780 6158

Negative-2 0.745 14015

Predicted Confusion Matrix Base.10

Positive Negative

40 1188 Positive Actual

294 19879 Negative

Predicted Confusion Matrix Base.29

Positive Negative

65 1163 Positive Actual

666 19507 Negative

Predicted Confusion Matrix K-2-1.10

91

Positive-1 Positive-2 Negative

17 4 557 Positive-1 Actual

0 38 612 Positive-2

160 280 19733 Negative

Predicted Equivalent Confusion Matrix K-2-1.10

Positive Negative

59 1169 Positive Actual

440 19733 Negative

Predicted Confusion Matrix K-2-1.29

Positive-1 Positive-2 Negative

25 6 381 Positive-1 Actual

3 49 764 Positive-2

262 509 19402 Negative

Predicted Equivalent Confusion Matrix K-2-1.29

Positive Negative

83 1145 Positive Actual

92

771 19402 Negative

Predicted Confusion Matrix K-1-2.10

Positive Negative-1 Negative-2

14 906 308 Positive Actual

126 12404 40 Negative-1

134 0 7469 Negative-2

Predicted Equivalent Confusion Matrix K-1-2.10

Positive Negative

14 1214 Positive Actual

134 19913 Negative

Predicted Confusion Matrix K-1-2.29

Positive Negative-1 Negative-2

55 273 900 Positive Actual

157 3568 2433 Negative-1

376 1817 11822 Negative-2

93

Predicted Equivalent Confusion Matrix K-1-2.29

Positive Negative

55 1173 Positive Actual

533 19640 Negative

Note: it was observed at this point that the AUC values exhibited significant differences based on

clustering without showing any real improvement in the confusion matrices. It became clear that part of

the AUC value was based on discovering distinctions within the “real” classes (e.g. distinguishing

Negative-1 from Negative-2), which were not actually useful. This error became far more pronounced

when the Negative class was divided into clusters, as the Negative clusters formed the majority of the

instances. The decision was then made to alter the experimental protocol. ALL DATA ABOVE

SHOULD BE KEPT, BUT DISREGARDED.

94

Experiment 23:

• Repeat the experiment below for the 29-attribute and the 10-attribute data sets.

• Split the data set into a training set (65%) and a test set (35%).

• Split the training set and test set into subsets of positive and negative instances, designated positive-

train, negative-train, positive-test, and negative-test.

• Build clustering models on the positive-train and negative-train sets and save them. Record the

algorithms and parameters used for these models, which may be different for each set.

• Apply the model built on the positive-train set to the positive-train and positive-test sets, and do

similarly for the negative model and sets. Give the cluster labels names which reflect whether they are

built from positive or negative instances.

• Reunite the positive-train and negative-train sets, and the positive-test and negative-test sets. Remove

the class variables, letting the cluster labels (which have the old class information in their names) become

the class.

• Train a Naive Bayes model on the reunited training set, and save it.

• Record the predicted class distribution of the model on the reunited test set. Compute the probability

that each instance will belong to the “real” positive class as the sum of the probabilities that it will belong

to each of the positive clusters.

• Calculate and record the AUC value for each experimental configuration.

Results:

Experiment Original

Class Label

Algorithm Cluster Class Label Cluster

Size in Test

Set

AUC AUC with

Resampling

(Biased,

500% w/

replace)

base.10 Positive None Positive 430 0.597 0.604

Negative None Negative 7061

base.29 Positive None Positive 430 0.573 0.573

Negative None Negative 7061

em.10 Positive EM Positive-1 181 0.566 0.568

95

Positive-2 109

Positive-3 140

Negative EM Negative-1 1404

Negative-2 1190

Negative-3 1943

Negative-4 2524

k-equal.10 Positive None Positive 430 0.564 0.555

Negative K-means,

with k=16

(approx.

negative-to-

positive ratio)

Negative-1 406

Negative-2 185

Negative-3 281

Negative-4 321

Negative-5 294

Negative-6 446

Negative-7 149

Negative-8 282

Negative-9 445

Negative-10 1332

Negative-11 1086

Negative-12 950

Negative-13 173

Negative-14 299

96

Negative-15 105

Negative-16 307

em-plus.10 Positive EM Positive-1 181 0.520 0.522

Positive-2 109

Positive-3 140

Negative None Negative 7061

em-minus.10 Positive None Positive 430 0.580 0.582

Negative EM Negative-1 1404

Negative-2 1190

Negative-3 1943

Negative-4 2524

Note: it was determined after experiment em.10 that two different methods of calculating the probabilities

for use in the ROC curve were practically equivalent, owing most likely to the fact that most predictions

were very strong, with a typical instance being 95% certain of its belonging to a particular cluster. The

two methods were as follows: P(Positive) = sum(P(Positive-i)), and P(Positive) = max(P(Positive-

i))/(max(P(Positive-i)) + max(P(Negative-i))). The two methods returned AUC values for experiment

em.10 which were identical to the least significant digit (0.001).

Note: following observation of the experiments em-plus.10 and em-minus.10, in which it was observed

that individual clusters had high AUC values, it was hypothesized that the closeness of the two AUC

values as calculated in the note above was due to the easy separability of the two clusters – there is no real

danger of an instance being ambiguously between Positive-1 and Positive-2, for example. With this in

mind, it would be wise to resume testing by multiple methods if the AUC of clusters should happen to go

down below some rather obscene value, especially if non-globular clusters are used, which would make

predictions among different clusters under the same “real” target more difficult.

97

Experiment 24:

• Remove a single value from a single nominal attribute in the ten-attribute data set, other than the class

attribute.

• Perform 100-fold cross-validation on the resulting data set.

• Record the resulting AUC value.

Results:

 Experiments performed: 354 single-value removals, 1 multiple-value removal

AUC Value Attribute-Value

0.598 (Not replicated for brevity)

0.599 (Not replicated for brevity)

0.600 device-one, device-p769, device-sph-l900,

browser_version-4.1, vendor-alcatel, device-lg730,

os_version-2.3.3, device-vs410pp, device-sgh-

t999, device-sgh-i437z, vendor-lg, device-sph-

l300, device-ms840, device-sph-l710,

browser_version-11.0.696.34, device-ls720,

os_version-2.3.7, device-sgh-t399, device-other,

device-l38c, browser_version-4.0, device-sm-

g730a, device-sch-i110, device-sgh-t989, device-

ls970, device-sch-r820, device-sgh-i337, device-

sch-r530m, vendor-other

0.601 browser_version-30.0.0.0

... ...

0.608 (All Attribute-Value combinations named in the

above cells)

Note: leave-one-out cross-validation gave an AUC value of 0.607, compared to 0.598 for the otherwise

unmodified ten-attribute data set.

Attribute-Value AUC

device-as680 0.599

98

device-sm-s765c 0.599

browser_family-chrome 0.599

device-sgh-i747 0.599

device-electrify 0.599

device-sm-n900a 0.599

device-x500 0.599

device-desire 0.599

device-galaxy nexus 0.599

device-droid x2 0.599

device-sgh-t759 0.599

device-a851l 0.599

device-sgh-i407 0.599

browser_family-silk 0.599

device-sgh-i997 0.599

device-one 0.6

device-sm-c105a 0.599

device-m660 0.599

device-sm-g870a 0.599

device-sch-r530c 0.599

browser_version-30.0.1599.105 0.599

device-sgh-t879 0.599

device-sgh-t599 0.599

device-gt-i8190 0.599

device-sm-n900t 0.599

99

device-r800xhttp 0.599

device-sgh-s959g 0.599

device-p870 0.599

device-sgh-m919n 0.599

device-sph-m820 0.599

device-ls995 0.599

device-sgh-t769 0.599

device-ls980 0.599

device-p769 0.6

device-as695 0.599

device-vs700 0.599

device-p659 0.599

device-sch-r890 0.599

browser_version-35.0.1916.141 0.599

device-u8651 0.599

device-h866c 0.599

device-u8687 0.599

device-sgh-i537 0.599

browser_version-0.0 0.599

device-sch-s720c 0.599

device-amaze 4g 0.599

vendor-zte 0.599

device-sgh-t599n 0.598

device-sph-m840 0.599

100

device-kftt 0.599

device-droid razr 4g 0.599

device-gt-i9505 0.599

os_version-2.3.6 0.599

device-sph-l900 0.6

os_version-2.2.1 0.599

device-sch-s738c 0.599

os_version-2.3.4 0.599

device-sch-i500 0.599

device-ms770 0.599

browser_version-37.0.2062.94 0.599

os_version-4.1.2 0.599

device-sch-r970c 0.599

device-sgh-i847 0.599

device-glacier 0.599

vendor-amazon 0.599

device-gt-n7105 0.599

device-sgh-m819n 0.599

device-sgh-t699 0.599

device-gt-s5301l 0.599

device-z995 0.599

browser_version-36.0.1985.135 0.598

device-h3000c 0.599

browser_version-30.0.1599.92 0.599

101

device-0p9o110 0.599

device-d801 0.599

device-sch-r720 0.599

device-sm-g386t 0.599

browser_version-36.0.1985.131 0.599

browser_version-37.0.2062.76 0.599

device-vs450pp 0.599

browser_version-4.1 0.6

device-apa9292kt 0.599

vendor-alcatel 0.6

device-x515c 0.599

device-d950 0.599

device-acquire 0.599

device-lg730 0.6

device-droidx 0.599

browser_version-31.0 0.599

device-sch-r960 0.599

os_version-2.3.1 0.599

device-y301a1 0.599

device-sch-i510 0.599

vendor-samsung 0.598

os_version-2.3.3 0.6

device-ls840 0.599

device-sgh-i547 0.599

102

device-sgh-i257 0.599

device-z990g 0.599

device-m866 0.599

device-y301a2 0.599

device-vs410pp 0.6

device-a9192 0.599

device-p999 0.599

device-sch-l710 0.599

device-sgh-t999 0.6

device-u8730 0.599

device-ls855 0.599

device-ls860 0.599

device-droid pro 0.599

vendor-htc 0.599

device-d500 0.599

browser_version-33.0.1750.166 0.599

device-sgh-i437z 0.6

device-m865 0.599

device-sgh-i437 0.599

device-sm-g900az 0.599

device-sch-i200 0.599

device-c715c 0.599

vendor-lg 0.6

device-one touch 995s 0.599

103

device-xt615 0.599

device-d800 0.599

device-sph-m580bst 0.599

device-sph-l300 0.6

device-one touch 988 0.599

device-sch-r830 0.599

browser_family-mobile safari 0.599

browser_version-30.0.1599.103 0.599

browser_family-firefox 0.599

device-u8686 0.599

device-sph-d710bst 0.599

device-ms840 0.6

browser_version-30.0.0.0 0.601

os_version-4.4 0.599

browser_version-28.0.1500.94 0.598

device-sch-r740c 0.598

device-sgh-t959v 0.599

vendor-sprint 0.599

device-droid4 0.599

device-vle u 0.599

device-vm696 0.599

device-milestone 0.599

device-m886 0.599

device-sch-r680 0.599

104

device-gt-i9152 0.599

device-first 0.599

os_version-4.4.2 0.598

device-pn072 0.599

browser_version-18.0.1025.308 0.599

os_version-2.3.5 0.599

browser_version-30.0 0.599

device-z992 0.599

device-m931 0.599

os_version-4.4.4 0.599

device-ls696 0.599

device-h868c 0.599

device-sph-m830 0.599

device-sch-s968c 0.599

vendor-huawei 0.599

Device-nexus 5 0.599

device-sch-r760x 0.599

device-edownload 0.599

device-ph39100 0.599

device-lw690 0.599

device-lg855 0.599

device-apx515ckt 0.599

device-ms690 0.599

device-sgh-s730g 0.599

105

device-sch-r760 0.599

device-sph-l710 0.6

device-gt-i9500 0.599

vendor-motorola 0.599

device-sph-m930bst 0.599

device-sph-l720t 0.599

os_version-4.1.1 0.599

os_version-4.0.4 0.598

browser_version-33.0.1750.136 0.599

browser_version-34.0.1847.114 0.599

device-z998 0.599

device-kfjwi 0.599

os_version-0.0 0.599

browser_version-33.0.1750.517 0.599

device-u8680 0.599

device-970.0 0.599

device-l40g 0.599

device-980.0 0.599

browser_version-35.0.1916.138 0.599

device-z777 0.599

device-sch-s960l 0.599

device-sm-g900t1 0.599

device-gt-i9295 0.599

device-gt-n7000 0.599

106

browser_version-4.2.2 0.599

device-one m8 0.599

device-c525c 0.599

device-n910 0.599

device-sch-i605 0.599

device-sch-r920 0.599

device-739.0 0.599

device-sch-r970x 0.599

device-gt-s7270l 0.599

device-sgh-i777 0.599

browser_version-11.0.696.34 0.599

device-d850 0.599

device-one s 0.599

device-m865c 0.599

device-sgh-t999v 0.599

device-z740g 0.599

device-sph-m580 0.599

device-pn07120 0.599

device-lg870 0.599

device-sm-g900t 0.599

device-gt-i9200 0.599

device-droid bionic 0.599

device-sch-r730 0.599

device-d415 0.599

107

browser_version-36.0.1985.128 0.599

device-ls720 0.6

device-sph-d710vmub 0.599

device-us730 0.599

device-wx445 0.599

device-ms695 0.599

device-gt-i8190n 0.599

device-m881 0.599

device-sgh-t999l 0.599

device-gt-n7100 0.599

device-d321 0.599

os_version-2.2.2 0.599

device-sch-i535 0.599

device-c800 0.599

device-gt-i9300 0.599

browser_version-33.0.0.0 0.599

os_version-4.2.1 0.599

device-sph-l710t 0.599

device-sch-r930 0.599

device-kfot 0.599

os_version-2.3.7 0.6

browser_version-4.2 0.599

device-kfsowi 0.599

device-sgh-i827 0.599

108

browser_version-30.0.1599.82 0.599

device-sgh-i717 0.599

device-sgh-i337m 0.599

browser_version-32.0.1700.99 0.599

device-sgh-t399 0.6

device-sm-g900p 0.599

device-ms870 0.598

os_version-4.0 0.599

device-other 0.6

browser_version-22.0.1485.81203 0.599

device-sgh-i437p 0.599

device-l38c 0.6

browser_version-4.0 0.6

device-z990 0.599

device-h881c 0.599

device-c729 0.599

device-gt-i9082l 0.599

browser_family-opera 0.599

os_version-x86_64 0.599

device-sgh-i527 0.599

browser_version-18.0.1025.166 0.599

device-sch-i405 0.599

device-sm-g730a 0.6

device-sm-n900 0.599

109

device-us780 0.599

device-sph-d600 0.599

device-sch-i200pp 0.599

browser_version-35.0.1916.122 0.599

device-sph-l520 0.599

device-padfone 0.599

device-sch-i110 0.6

device-sph-l600 0.599

device-d959 0.599

device-sph-d700 0.599

device-0p6b130 0.599

device-sch-r830c 0.599

vendor-sonyericsson 0.599

device-sgh-t589 0.599

device-z993 0.599

device-sgh-t679 0.599

device-sgh-t989 0.6

device-sch-i535pp 0.599

device-sgh-i337z 0.599

device-sph-d710 0.598

device-m920 0.599

device-sgh-i727 0.599

Device-nexus 4 0.599

device-sch-r970 0.599

110

device-u8665 0.599

device-sch-i545 0.599

device-sgh-i927 0.599

os_version-4.0.3 0.598

device-droid razr 0.599

device-g510-0251 0.599

device-h1000c 0.599

device-sm-n900p 0.599

os_version-4.3 0.599

device-sgh-i747m 0.599

device-sgh-i317 0.599

browser_family-maxthon 0.599

device-sch-r940 0.599

device-p505 0.599

device-sch-m828c 0.599

device-sgh-m919 0.599

browser_version-3.23 0.599

device-sm-g900a 0.599

device-apc715ckt 0.599

device-as730 0.599

device-droid3 0.599

device-ms910 0.599

device-sch-r530u 0.599

device-sgh-t999n 0.599

111

device-one touch 909b 0.599

device-d520 0.599

browser_version-31.0.1650.59 0.599

device-sm-n900v 0.599

device-ls970 0.6

device-sph-m930 0.599

device-pn071 0.599

device-sch-i800 0.599

device-lw770 0.599

device-sgh-t959 0.599

device-sch-r820 0.6

device-sgh-i337 0.6

device-d851 0.599

device-gt-i9080l 0.599

device-sensation 0.599

device-sm-g900r4 0.599

device-sph-m950 0.599

vendor-asus 0.599

device-sch-r530x 0.599

device-sgh-i577 0.599

os_version-2.1 0.599

device-u8652 0.599

device-sch-r950 0.599

device-gt-i8190l 0.599

112

device-sgh-t889 0.599

device-sch-i435 0.599

device-sch-r530m 0.6

device-sph-l720 0.598

vendor-other 0.6

device-a510c 0.599

device-onetouch 0.599

os_version-4.4.3 0.599

os_version-4.2.2 0.599

device-p925 0.599

browser_version-26.0.1410.58 0.599

device-droid2 0.599

device-h867g 0.599

device-z740 0.599

device-p930 0.599

device-sch-i415 0.599

device-m835 0.599

Note: since there were no distinct training and test sets, even with cross-validation this may be a case of

overfitting. The experiment is replicated below with only a training set used for intermediate results, and

a test set used for “final” results:

Results with cross-validation on training set:

Attribute Value AUC

browser_version 28.0.1500.94 0.592

113

browser_family chrome 0.593

mobile_safari

browser_version 18.0.1025.166

36.0.1985.135

device sgh-t599n

os_version 4.4.2

vendor samsung

browser_version 33.0.0.0 0.594

device apa9292kt

ms870

other

p870

sch-i800

sch-r530x

sch-r740c

sch-s968c

sph-d710

sph-l720

z995

os_version 2.3.6

4.0.3

4.1.2

114

4.4.4

browser_family firefox 0.595

maxthon

opera

silk

browser_version 0

11.0.696.34

18.0.1025.308

22.0.1485.81203

26.0.1410.58

3.23

30

30.0.1599.103

30.0.1599.105

30.0.1599.82

30.0.1599.92

31

31.0.1650.59

32.0.1700.99

33.0.1750.136

33.0.1750.517

34.0.1847.114

35.0.1916.122

115

35.0.1916.138

35.0.1916.141

36.0.1985.128

36.0.1985.131

37.0.2062.76

37.0.2062.94

4

4.1

4.2

4.2.2

device

0p6b130

0p9o110

739

970

980

a510c

a851l

acquire

amaze_4g

apc715ckt

apx515ckt

as695

as730

c525c

116

c715c

c729

c800

d321

d415

d500

d520

d800

d801

d850

d851

d950

d959

desire

droid2

droid3

droid4

droid_bionic

droid_razr

droid_razr_4g

droid_x2

droidx

electrify

first

117

galaxy_nexus

glacier

gt-i8190l

gt-i9080l

gt-i9082l

gt-i9152

gt-i9200

gt-i9295

gt-i9300

gt-i9500

gt-i9505

gt-n7100

gt-s5301l

gt-s7270l

h1000c

h3000c

h866c

h867g

h868c

h881c

kfot

kfsowi

kftt

l38c

118

l40g

lg730

lg855

lg870

ls696

ls720

ls840

ls855

ls860

ls970

ls980

ls995

lw690

lw770

m660

m835

m865

m865c

m866

m886

m920

m931

milestone

ms695

119

ms770

ms840

ms910

n910

nexus_4

nexus_5

one

one_m8

one_s

one_touch_909b

one_touch_988

one_touch_995s

onetouch

p505

p659

p769

p925

p999

padfone

ph39100

pn071

pn07120

r800xhttp

sch-i110

120

sch-i200

sch-i200pp

sch-i405

sch-i415

sch-i435

sch-i500

sch-i510

sch-i535

sch-i535pp

sch-i545

sch-i605

sch-l710

sch-m828c

sch-r530c

sch-r530m

sch-r530u

sch-r720

sch-r730

sch-r760

sch-r760x

sch-r820

sch-r830

sch-r830c

sch-r890

121

sch-r920

sch-r950

sch-r970

sch-r970c

sch-r970x

sch-s720c

sch-s738c

sch-s960l

sensation

sgh-i257

sgh-i317

sgh-i337m

sgh-i337z

sgh-i407

sgh-i437

sgh-i437p

sgh-i437z

sgh-i527

sgh-i537

sgh-i547

sgh-i577

sgh-i717

sgh-i727

sgh-i747

122

sgh-i777

sgh-i827

sgh-i847

sgh-i927

sgh-i997

sgh-m819n

sgh-m919

sgh-m919n

sgh-s730g

sgh-s959g

sgh-t399

sgh-t589

sgh-t599

sgh-t679

sgh-t699

sgh-t769

sgh-t879

sgh-t889

sgh-t959

sgh-t959v

sgh-t999

sgh-t999l

sgh-t999n

sgh-t999v

123

sm-c105a

sm-g386t

sm-g730a

sm-g870a

sm-g900a

sm-g900az

sm-g900p

sm-g900r4

sm-g900t

sm-g900t1

sm-n900

sm-n900a

sm-n900p

sm-n900t

sm-n900v

sm-s765c

sph-d700

sph-d710bst

sph-d710vmub

sph-l300

sph-l520

sph-l600

sph-l710

sph-l710t

124

sph-l720t

sph-l900

sph-m580

sph-m580bst

sph-m820

sph-m830

sph-m840

sph-m930

sph-m930bst

sph-m950

u8651

u8652

u8665

u8680

u8686

u8687

u8730

us730

us780

vle_u

vm696

vs410pp

vs450pp

vs700

125

wx445

x500

x515c

xt615

y301a1

y301a2

z740

z740g

z777

z990

z990g

z992

z993

z998

os_version 0

2.1

2.2.1

2.2.2

2.3.1

2.3.3

2.3.5

2.3.7

4

4.0.4

126

4.1.1

4.2.1

4.2.2

4.3

4.4

4.4.3

x86_64

vendor alcatel

amazon

asus

htc

huawei

lg

motorola

other

sonyericsson

sprint

zte

browser_version 30.0.0.0 0.596

device sgh-i337

sgh-t989

os_version 2.3.4

Results on Train/Test Split:

127

Attribute Value AUC

None None 0.597

browser_version 30.0.0.0 0.529

device sgh-i337 0.595

device sgh-t989 0.595

os_version 2.3.4 0.595

Conclusion: greedy single-value removal is not useful, as it leads to overfitting.

128

Experiment 25:

• Take the ten-attribute data set and discretize all numeric attributes. Create a 65%/35% train/test

split.

• Create nine choose two (36) duplicate train/test pairs, with each one corresponding to a possible set

of two out of the nine non-target attributes. Each train/test pair will have the two chosen

attributes replaced by a single attribute which is the concatenation of the two chosen attributes

(e.g. “device” and “vendor” being replaced by “device/vendor”).

• Run 100-fold cross-validation using a Naive Bayes classifier on the training set of each of the

duplicates and the original, recording the AUC of each selection.

• Evaluate the Naive Bayes model on the corresponding test set, recording the AUC of each selection.

• Compare the AUC of the two sets to determine if the training data can be used to accurately predict

whether or not the combination of attributes will be helpful for test data.

Results:

Attribute Attribute Cross-Validation AUC Train/Test Split AUC

None None 0.578 0.609

1 2 0.575 0.605

1 3 0.575 0.61

1 4 0.579 0.614

1 5 0.562 0.588

1 6 0.565 0.61

1 7 0.582 0.608

1 8 0.575 0.608

1 9 0.574 0.606

2 3 0.572 0.607

2 4 0.578 0.616

2 5 0.566 0.59

129

2 6 0.57 0.602

2 7 0.584 0.609

2 8 0.575 0.608

2 9 0.576 0.605

3 4 0.579 0.616

3 5 0.564 0.592

3 6 0.566 0.604

3 7 0.584 0.608

3 8 0.575 0.608

3 9 0.576 0.606

4 5 0.559 0.591

4 6 0.564 0.605

4 7 0.583 0.607

4 8 0.575 0.608

4 9 0.572 0.606

5 6 0.569 0.602

5 7 0.581 0.609

5 8 0.575 0.608

5 9 0.579 0.616

6 7 0.582 0.61

6 8 0.575 0.608

6 9 0.577 0.605

7 8 0.575 0.608

7 9 0.569 0.603

130

8 9 0.578 0.609

Note: The value of R, the correlation coefficient, was found to be 0.7295. However, despite the fact that

this indicated a moderate positive correlation, the best combinations for each choice of first attribute on

average underperformed the baseline of no combination.

