
WORCESTER POLYTECHNIC INSTITUTE

Dimension Reduction and LASSO
using

Pointwise and Group Norms
by

Melanie Jutras
A thesis

Submitted to the Faculty
of

WORCESTER POLYTECHNIC INSTITUTE
in partial fulfillment of the requirements for the

Degree of Master of Science
in

Data Science

December 2018

APPROVED:

Professor Randy C. Paffenroth, Advisor:

Professor Lane T. Harrison, Reader:

1



Contents

Abstract 4

Executive Summary 5

1 Introduction 8
1.1 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2 Novel Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Motivation 11
2.1 Broad Applicability to Many Domains . . . . . . . . . . . . . . . 11
2.2 Application to Cybersecurity Domain . . . . . . . . . . . . . . . 11

2.2.1 Security is Expensive . . . . . . . . . . . . . . . . . . . . . 12
2.2.2 Security is Hard . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.3 DNS Data Background . . . . . . . . . . . . . . . . . . . . 13

3 Methodology 15
3.1 Dimensionality Reduction . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Principal Components Analysis (PCA) . . . . . . . . . . . . . . . 16

3.2.1 PCA as an Eigendecomposition . . . . . . . . . . . . . . . 17
3.2.2 Singular Value Decomposition . . . . . . . . . . . . . . . . 17
3.2.3 Eckart-Young . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 Standardization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4 Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.4.1 Unregularized Least Squares . . . . . . . . . . . . . . . . 20
3.4.2 Norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4.3 Ridge Regression . . . . . . . . . . . . . . . . . . . . . . . 22
3.4.4 LASSO . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.5 Convex Optimization Problems . . . . . . . . . . . . . . . . . . . 23
3.5.1 Robust Principal Component Analysis (RPCA) . . . . . 24
3.5.2 Sparse PCA . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.6 Non-Linear Approaches . . . . . . . . . . . . . . . . . . . . . . . 26
3.6.1 The Kernel Trick . . . . . . . . . . . . . . . . . . . . . . . 26
3.6.2 Kernel Principal Components Analysis (KPCA) . . . . . 27

2



3.6.3 Cosine Function Background . . . . . . . . . . . . . . . . 27

4 RPCA Experiments and Results 28
4.1 Data Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2 Data Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2.1 Imbalanced Data . . . . . . . . . . . . . . . . . . . . . . . 29
4.2.2 Sparse Data . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2.3 Accuracy Measures and Sampling . . . . . . . . . . . . . . 30

4.3 RPCA on Original Data . . . . . . . . . . . . . . . . . . . . . . . 30
4.4 PCA on Original Data . . . . . . . . . . . . . . . . . . . . . . . . 32
4.5 PCA on Data Normalized with StandardScaler . . . . . . . . . . 32
4.6 PCA on Data Normalized with RobustScaler . . . . . . . . . . . 33
4.7 PCA on Balanced Data . . . . . . . . . . . . . . . . . . . . . . . 34
4.8 RPCA on Balanced Data . . . . . . . . . . . . . . . . . . . . . . 35
4.9 Kernel PCA with Cosine Results . . . . . . . . . . . . . . . . . . 37

5 Sparse PCA Experiments and Results 38
5.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.3 Interpreting Results . . . . . . . . . . . . . . . . . . . . . . . . . 48

6 Conclusions 56
6.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.2 FutureWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3



WORCESTER POLYTECHNIC INSTITUTE

Abstract

Data Science

Master of Science

by
Melanie Jutras

Principal Components Analysis (PCA) is a statistical procedure commonly used
for the purpose of analyzing high dimensional data. It is often used for dimen-
sionality reduction, which is accomplished by determining orthogonal compo-
nents that contribute most to the underlying variance of the data. While PCA
is widely used for identifying patterns and capturing variability of data in lower
dimensions, it has some known limitations. In particular, PCA represents its
results as linear combinations of data attributes. PCA is therefore, often seen as
difficult to interpret and because of the underlying optimization problem that is
being solved it is not robust to outliers. In this thesis, we examine extensions to
PCA that address these limitations. Specific techniques researched in this thesis
include variations of Robust and Sparse PCA as well as novel combinations of
these two methods which result in a structured low-rank approximation that is
robust to outliers. Our work is inspired by the well known machine learning
methods of Least Absolute Shrinkage and Selection Operator (LASSO) as well
as pointwise and group matrix norms. Practical applications including robust
and non-linear methods for anomaly detection in Domain Name System network
data as well as interpretable feature selection with respect to a website classifi-
cation problem are discussed along with implementation details and techniques
for analysis of regularization parameters.

4



Executive Summary

This thesis examines novel methods for robust and low-rank transformations
of high dimensional data. Specifically, we will demonstrate two distinct
approaches to develop mathematical models based on underlying patterns and
structure. The focus of one approach is to detect anomalies in high dimensional
data by separating the original data into a low rank component of normal data
and a sparse component which contains gross outliers. This type of processing
is easily visualized in terms of images or video. One can imagine separating an
image in two - one part containing the subject of the image and another which
simply contains anomalies or corruptions that may have been present in the
original data. A second approach to dimensionality reduction explored in this
research involves a similar separation of high dimensional data into low-rank
and sparse components, however, with more structured and interpretable
results. An example which illustrates the necessity of such an approach is that
of gene expression data. Data containing many more features than samples,
sometimes millions of features per sample, must be reduced in an interpretable
fashion. Of course, as with all real data, corruptions and outliers exist, and so
it is useful to be able to provide robust solutions. Although the methods we
explore here are applicable to many different types of high dimensional data,
we are not focused on image data or gene expression data. The application of
the research methods described here will be demonstrated on two very different
sets of computer network data in the interest of contributing to the important
domain of cybersecurity. The quadrant view in Figure 1 illustrates various
methods of PCA explored in this thesis.

Unstructured
Low-Rank

Structured
Low-Rank

Robust to 
Outliers

Sensitive to 
Outliers

Figure 1: Quadrant view of PCA Variants Explored
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We begin with an overview of the widely used Principal Components Analy-
sis (PCA) method of dimensionality reduction. We precisely define the underly-
ing mathematics with a particular focus on a least-squares view of the method.
After presenting various mathematical background necessary for the remainder
of the work, additional variants of PCA are defined and explored. A known
limitation of PCA is its sensitivity to outliers. A variant of PCA which is ro-
bust to outliers, Robust Principal Components Analysis (RPCA) is presented in
Section 3.5.1. The benefits of Robust PCA are described including its use of two
important pointwise matrix norms, the nuclear norm and the `1 norm. These
norms are defined in Section 3.4.2. Our experiments reveal how the method is
useful for separating high dimensional DNS data into low-rank and sparse com-
ponents. In a novel discovery regarding the DNS data, Kernel PCA is utilized
as well providing remarkable results.
Next, we move on to dimensionality reduction with a structured sparsity re-
sulting from Sparse PCA methods which are described in Section 3.25. This
structured sparsity is made possible by the group `2,1 norm also described in
Section 3.4.2. Finally, a variant of PCA which combines the benefits of struc-
tured low-rank and robustness will be presented in a novel formulation of Robust
Sparse PCA.

min
A,S
||X −AX − S||2F + λ||A||2,1 + φ||S||1 (1)

The parameters λ and φ in this optimization problem require careful tuning
to provide desired results. A unique scoring method combined with three di-
mensional data visualization was constructed for the purpose of analyzing our
Robust Sparse PCA formulation.

The details of the formulation are revealed in section 3.5.2. We apply these
methods to a dataset containing malicious and benign websites and demonstrate
the benefits of reducing dimensionality by uncovering low-rank data with sparse
features, which also has outliers removed.
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Chapter 1

Introduction

We live in a world of high dimensional data. Data collection and storage solu-
tions have enabled us to have access to seemingly unlimited supplies of infor-
mation. The human brain cannot even imagine, let alone visualize, the high
dimensions. This thesis is about dimensionality reduction and the search for
underlying structure. Pattern and structure can not always be determined with
traditional statistical methods due to the curse of dimensionality and the general
increased complexity involved with today’s data. There is a need for unsuper-
vised mathematically based methods for finding patterns in data. Principal
Components Analysis (PCA) is one of the most commonly used techniques in
machine learning for the purpose of gaining insight with respect to explained
variance. Although it is widely used and provides a great deal of information,
it is limited in the sense that it is not highly interpretable and it is not robust
to outliers.
We describe in this work, our research contributions in this area to the need for
anomaly detection in sparse high dimensional computer network traffic, specifi-
cally DNS data. We also explore the need for minimizing the number of measures
required for classification of various data. Again, due to the nature of the data
we are able to obtain, traditional methods for selecting a sparse set of features
has become too complex to achieve. We demonstrate solutions for this type of
problem with a focus on finding sparse measures related to classifying malicious
and benign websites.
Our approaches for dimensionality reduction provide solutions robust to outliers
by extending PCA in terms of the least squares methods of the Eckart-Young
theorem. Our method takes advantage of pointwise and group norms which
transform the data, providing a result that is interpretable and is both low-rank
and sparse in the features.
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1.1 Previous Work

Previous work in this area can be attributed dating back to the early 1800s
with development of the theory behind the singular value decomposition (SVD)
[12], research in the early 1900s with PCA followed in 1936 by the Eckart-
Young theorem. [11]. More recent advances and work that are more directly
applicable to the foundation of this thesis include Robust PCA by Candes et al.
[1], expanded by Paffenroth et al. [2], as well as the Elastic-Net [19] and various
Sparse PCA formulations [19][20]. Additionally, the work of Steven Boyd [3] in
the area of solving optimization problems, has had a significant impact. This
research of this thesis is particularly inspired by the Robust PCA extensions
made by Paffenroth et al. [2] In a novel largely unsupervised approach to Robust
PCA, thresholds for normal background data are optimized using unique semi-
supervised techniques. This approach was the basis for the DNS network data
analysis described herein.

1.2 Novel Contributions

Novel contributions of this thesis combine approaches for dimensionality reduc-
tion that result in robust and sparse solutions. Sparse solutions are derived in
different manners depending on the problem at hand. Referring back to the
quadrant view of PCA variants (Figure 1) presented in the Executive Summary,
there were novel contributions made in each quadrant.

• Cosine Kernel PCA applied to DNS network data reveals underlying non-
linear structure in a manner that allows a linear separation of the classes
normal vs blacklist

• Application of RPCA to DNS data, tuning the model utilizing a semi-
supervised approach based upon blacklist status discovered and utilized
for labels

• A unique approach to Sparse PCA to eliminate features, thereby reducing
cost and complexity of evaluating websites for classification as malicious
or benign

• A novel Robust Sparse PCA formulation which combines research from
all of the quadrants depicted in the figure noted above.

• Finally, a novel contribution which is applicable to all four quadrants was
demonstrated for the Robust Sparse PCA formulation. This contribution
was a unique scoring method combined with data visualization to tune
parameters which has potential for applicability to a wide scope of tuning
activities particularly for complex optimization problems.
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1.3 Organization

This writing is organized into the following sections. Chapter 3 describes the
methodology beginning with a discussion of the background and methods in-
volved in the work including PCA, standardization, regularization, optimization
problems and non-linear approaches. Novel contributions are included and dis-
cussed in the context of the combination and modification of various parts of
these methods. Chapter 4 is dedicated to experiments and results utilizing Ro-
bust Principal Components Analysis (RPCA) on DNS data. Chapter 5 covers
the experiments and results related to a novel Sparse PCA formulation. This
work is applied to a data set comprised of malicious and benign websites. We
then provide conclusions and discussion of future work.
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Chapter 2

Motivation

There is a broad application of this research to many different types of mod-
ern data. Complex high dimensional data is everywhere. Research in any one
particular domain has the potential to uncover methods that might also be use-
ful elsewhere. In this research we examine two motivating factors surrounding
dimensionality reduction. One is the basic need for mathematically based solu-
tions for identifying underlying structure of high dimensional data. The other
motivation is the applicability of these type of methods to the important field
of cybersecurity.

2.1 Broad Applicability to Many Domains

The big data revolution continues to bring us increasing volume, variety, velocity
and veracity of data. There is a need, now more than ever, for techniques to
reduce dimensionality for better understanding of data. Because real world data
will have some gross outliers or corruption for various reasons, it is important
that these methods be robust. A focus on cybersecurity is presented here, but
the methods are applicable to many domains.

2.2 Application to Cybersecurity Domain

Computer network traffic meets all of the criteria for Big Data. Billions of
network connections result in large scale, high speed data in a variety of formats
subject to uncertainty. In addition to the merits of studying network traffic
with a broad focus on Big Data, specific attention to DNS data is a critical
component with respect to advances in cybersecurity, a critical area of study
that is expensive and hard. Further details with respect to these two factors are
described the following sections.
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2.2.1 Security is Expensive

There is great potential for advancement in this area by taking a proactive
rather than a reactive approach to detecting anomalies. Recent U.S. gov-
ernment reports indicate that the federal spending budget for cybersecurity
activities is approximately $15 billion for FY 2019. [6] It should be noted
that this figure only includes federal spending allocated in budgets publicly
available. There are, however, other U.S. government entities whose work is of a
sensitive nature such that budgets are not publicly available. Additionally, the
numbers do not include non-government spending. Overall U.S. cybersecurity
spending in 2017 was estimated by the to be $60.4 billion.[7] With respect
to the global economy, the International Data Corporation has reported that
spending on cybersecurity will increase at a rate greater than that of overall IT
spending and is projected to be over $100 billion by the year 2020. [8]

2.2.2 Security is Hard

There are many factors that complicate data analysis and the underlying
mathematics required for solving problems. Three factors, in particular, are
notable as they relate to computer network traffic. These include the fact
that the data is unsupervised, high dimensional, and sparse. Unsupervised
problems can be difficult because they require detection of patterns in data
without any prior knowledge of the underlying structure. Without labeled data
points, it is difficult to assess a model. Uncovering a few labels can be useful,
but often leads to imbalanced data which can also be challenging to analyze.
High Dimensional data is known to be difficult and can lead to the curse of
dimensionality. As the number of features in the dataset increases, the data
quickly becomes very sparse. It is the sparsity that makes the math hard.

12



Further evidence of this being a particularly hard problem to solve is the inef-
fectiveness of current methods in place. For example, a common model today is
that malicious sites are publicly noted on a DNS Blacklist (DNSBL) as potential
sites to avoid. Numerous recent studies have demonstrated that the blacklist
model is failing with respect to detecting malicious sites. In 2015, threat in-
telligence firm RecordedFuture released results of a study indicating blacklists
missed more than 90% of notable malware sites. [9] Another study performed
by Sucuri’s Hacked Website in 2016 revealed that the top performer studied,
Google Safe Browsing, was only detecting fewer than 10% of 9000 known ma-
licious sites involved in that study.[10] It is clear that this field offers multiple
outstanding problems that have not yet been solved. Mathematically based
techniques are needed for anomaly detection in sparse high dimensional data
that are reliable and scalable.

2.2.3 DNS Data Background

The nature of Domain Name System (DNS) log data, even if only collected over
a short period of time, is that it is extremely large scale and high dimensional.
It is further complicated by the fact that individual features contain underlying
structure that has important meaning with respect to analysis, classification
and prediction.
The process of resolving host names to Internet Protocol addresses (IP ad-
dresses) is one of the most fundamental protocols required for internet com-
munication. Each device on the internet has a unique and specific IP address.
Every attempt at resolving a domain name to an IP address involves the orig-
inating IP address and the domain name query. Additionally, DNS packets
contain much more information than just the source and target IP addresses
involved. Some factors to consider with the collection of DNS log data include
the following:

• Logging must be turned on

• Costs to collect the data

• Costs to store the data

• Privacy concerns

13



For all of these reasons there are not a lot of freely available data sets of
DNS log data. Furthermore, any particular set of DNS log data represents
a mere fraction of that which would actually exist if all data were logged all
the time on a particular domain name server. In terms of making predictions
for the purpose of cybersecurity, this increases the complexity of the problem
and really highlights the fact that this clearly falls into the scope of problems
requiring an unsupervised or semi-supervised machine learning approach.
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Chapter 3

Methodology

3.1 Dimensionality Reduction

High dimensional data presents a number of challenges including interpretability
and computational complexity. Dimensionality reduction may be achieved by
eliminating features or by projecting data to a lower dimensional subspace.
The idea that structure is preserved in lower dimensions was demonstrated by
the Johnson-Lindenstrauss Lemma [16] which states that any set of n points in
high dimensional space can be mapped to k dimensions where k � n in such a
way that Euclidean distances between points are nearly preserved. The Lemma
was later proven and continues to have a major impact on the study of high
dimensional data. A formal description of the theorem as it was proven in [17]
is as follows.

Theorem 1. (Johnson-Lindenstrauss Lemma): For any 0 < ε < 1 and any
integer n, let k be a positive integer such that

k ≥ 4(ε2/2− ε3/3)−1 lnn

Then for any set V of n points in Rd, there is a map, f : Rd → Rk such that for
all u, v ∈ V

(1− ε)‖u− v‖2 ≤ ‖f(u)− f(v)‖2 ≤ (1 + ε)‖u− v‖2

Further this map can be found in randomized polynomial time.

While this thesis does not place specific focus on the preservation of Eu-
clidean distance between points in lower dimensions, the Johnson Lindenstrauss
Lemma provides important intuition for the fact that structure can be preserved
in spite of reduced dimension.
This thesis explores variations of the widely used method for dimensional-
ity reduction called Principal Components Analysis (PCA). Extensions to this
method utilizing the Least Absolute Shrinkage and Selection Operator (LASSO)
along with pointwise and group norms are described in the following sections.
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3.2 Principal Components Analysis (PCA)

Principal Components Analysis (PCA) is a statistical procedure useful for
dimensionality reduction. The method involves deriving a set of features that
are linear combinations of the original features. Because of the underlying
mathematics of PCA, the components are ordered in such a way that a small
number of components may reveal the true underlying structure of the data.
PCA is classically described in terms of maximizing variance. Alternatively,
PCA can be defined in terms of minimizing error as in traditional least-squares
regression problems. The following graphic depicts alternative views of PCA.[14]

Figure 3.1: Two Views of PCA

In this thesis we refer to PCA in terms of a least-squares problem. Let
X ∈ Rm×n, where ‖.‖F represents the Frobenius norm of a matrix, and ρ(Y )
refers to the rank of the matrix Y. Consider the following formulation:

min
Y
‖X − Y ‖2F s.t. ρ(Y ) ≤ k (3.1)

Note that the Frobenius norm of a matrix is simply the square root of the sum of
the squares of its entries, which we aim to minimize (i.e. this is a least-squares
problem formulation). Matrix norms are discussed in more detail later in this
document.
In the following sections we describe the mathematical background for this.
First we provide a brief review of the mathematics of PCA. This is followed
by a section describing the Singular Value Decomposition. Next we review
the Eckart-Young Theorem. Finally, we present an alternative view of PCA
which combines these ideas and which lays the foundation for a Sparse PCA
formulation.
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3.2.1 PCA as an Eigendecomposition

Consider the data matrix X ∈ Rm×n. PCA is defined as the eigendecomposition
of the covariance matrix of X, which is XTX. Eigendecomposition results in
a set of eigenvectors, W and a set of eigenvalues, λ. Each column of W is a
principal component, and it is important to note that the columns are ordered
by the size of λ. This means that for r � n, Wr is a truncated basis and
can be used for dimensionality reduction. Because the covariance matrix is an
mxm matrix, it can be computationally expensive to compute the principal
components. In the next section we will demonstrate an alternative method for
deriving the loadings which is much faster.

3.2.2 Singular Value Decomposition

The Singular Value Decomposition (SVD) is a method for matrix factorization
which can be used to compute the loadings of a matrix without having to
compute its covariance matrix. The matrix decomposition described here
results in a loadings matrix, V which is identical to the matrix W derived by
PCA. It can be shown that a truncated SVD provides the best approximation
of a matrix. The SVD is described here along with an explanation of the
truncated SVD.

Singular Value Decomposition M = UΣV T can be visualized as follows:

M


=


· · · · · ·

u 1 u ru r
+
1
um

σ1. . .
σr

0 . . .
0






vT1

vTr
vTr+1

vTn

For every matrix M ∈ Rm×n of rank r there is a singular value decomposition
which can be written as:

M = UΣV T (3.2)

Where the following conditions hold

1. U ∈ Rm×r with orthonormal columns, UTU = Ir

2. Σ ∈ Rr×r with non-increasing positive entries

3. V ∈ Rn×r with orthonormal columns, V TV = Ir

A matrix with orthonormal columns has the special property that its columns
are orthogonal (perpendicular) and columns have length=1. By definition, an
orthonormal matrix, Q has the property that QQT = QTQ = I where I is the

17



identity matrix having ones on the diagonal and zeros everywhere else.

Singular Value Decomposition can also be visualized as the sum of n
rank-1 matrices. M

 =

σ1u1vT1
+

σ2u2vT2
+ ...+

σnunvTn


Mathematically, using basic properties of matrix multiplication, UΣV T can be
rewritten as the equivalent formulation of the sum of leftmost singular column,
ui times singular value, σi times right singular vector vi.

M =

n∑
i=1

σiuiv
T
i (3.3)

A low-rank approximation, or truncated SVD, can be obtained by simply trun-
cating the sum above to include r rank-1 matrices for a rank r approximation
where r ≤ m ≤ n.

M̂ =

r∑
i=1

σiuiv
T
i (3.4)

This can be visualized as follows. M̂

 =

σ1u1vT1
+

σ2u2vT2
+ ...+

σrurvTr


Because the singular values are positive and non-increasing in value, the
matrix approximation using the first r rank-1 matrices, is the best rank-r
approximation for M. It follows that the matrix where i=(r+1) to n is small
because the sigmas are small.
As mentioned, the SVD relates to PCA in that it provides a way to compute
eigenvectors of a matrix without explicitly having to compute a covariance
matrix. Consider the SVD, M = UΣV T . It follows that MTM can be
decomposed as follows

MTM = V ΣTUTUΣV T = V (ΣTΣ)V T (3.5)

By definition of an eigenvalue decomposition, the columns of V are eigenvectors
of MTM

3.2.3 Eckart-Young

Matrix approximation has its roots in an eighty year old theorem presented by
Carl Eckart and Gale Young [11]. The theorem describes how the best rank-r
approximation of a matrix can be found by using the top rank-r matrix from a
truncated singular value decomposition.
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Given

M ∈ Rm×n,m ≤ n

and the SVD for M

M = UΣV T

Σ is a diagonal matrix of singular values in decreasing order.

σ1 ≥ σ2 ≥ σ3 ≥ ... ≥ σn ≥ 0

Then there exists a matrix

M̂ ∈ Rm×n,

where the SVD for M̂ is

M̂ = Udiag(σ1, ..., σr, 0, ..., 0)V T , where r ≤ m ≤ n

such that the sum of squared errors between M and M̂ is minimized.

‖M − M̂‖F = min‖M − M̂‖F =
√
σ2
r+1 + ..+ σ2

m (3.6)

Where M̂ is a unique minimizer if and only if σr+1 6= σr.

3.3 Standardization

PCA and many of its variants require features to be mean centered and scaled.
Working with the standardized normal distribution N (0, 1), where µ = 0 and
σ = 1 allows for an unbiased model regardless of large variations of mean values,
µ, of data features. When PCA is applied to data that is not standardized, the
results are influenced by the scales corresponding to the features rather than
the features themselves.
In order for PCA models to provide the best fit, standardization or Z-score
normalization can be applied as a method of preprocessing. It has been
shown that transforming any normal distribution by standardization allows
for computations to be performed on the standard normal distribution of that
data. This can be formally stated as follows. [12]

If X ∼ N (µ, σ2), then Z =
X − µ
σ
∼ N (0, 1) (3.7)

It follows that PCA will work best when performed on data transformed such
that the features are standardized to subtract the mean and divide by the stan-
dard deviation. Consider the matrix X whose columns are features.
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


· · ·
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e 1
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em

col(X)

Each column entry is standardized by subtracting the mean of the column, µj
and dividing by the standard deviation of the column, σj

Xij − µj
σj

(3.8)

3.4 Regularization

Regularization refers to techniques for tuning model parameters for the purpose
of balancing bias and variance in the model. By reducing variance, overfitting
can be avoided. Some popular methods of regularization are described in the
following sections.

3.4.1 Unregularized Least Squares

Regression problems are solved taking into account, explained variation and
unexplained variation. Given a linear regression model yi = a+ bxi + εi, where
a and b are the coefficients, the sum of squares of residuals (RSS) is

RSS =

n∑
1

(εi)
2 =

n∑
1

(yi − (α+ βxi))
2 (3.9)

The least squares method of linear regression aims to choose β coefficients
which minimize RSS.[14] Furthermore, the Gauss-Markov Theorem states that
Ordinary Least Squares (OLS) estimation results in Best Linear Unbiased
Estimators.

Theorem 2. (Gauss-Markov Theorem)
Let Y = Zβ + ε where Z is a nonrandom nxp matrix, β is an unknown point
∈ Rp and ε is a random vector with mean 0 and variance matrix σ2In. Let cβ
be estimable and let β̂ be a least squares estimate. Then cβ̂ is a best linear
unbiased estimate of cβ.
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This theorem is widely known and although we will not get into the details
here, it has been proven that the OLS coefficients β0, β1...βn do result in the
smallest variance among all linear unbiased estimates.[15] However, it should be
noted that we may not always want unbiased estimates. Rather than choosing
the best linear unbiased estimators, we use shrinkage methods to choose biased
estimators. Shrinkage is a method of regularization that shrinks the estimated
coefficients in the model. Shrinkage methods are particularly useful when unob-
served ”explanatory” variables are highly correlated, which can cause the model
coefficients β0, β1...βn to have high variance. By choosing biased estimators we
can get smaller variance. In the following sections we review matrix norms
which are used to implement the shrinkage methods. We then describe two
widely used methods for regularization by shrinkage known as Ridge Regression
and LASSO.

3.4.2 Norms

In the sections that follow, various models are presented which involve the use
of matrix norms. Some background information is provided here as a reference.
The concept of a norm is useful for measuring the magnitude of vectors and
matrices so that their relative values can be compared for the purpose of
estimating distance or similarity. We will also show how various matrix norms
can be used to induce certain properties of matrices such as sparsity.

In general terms, the entrywise `p norm where p ≥ 1 is

||A||p =

(
m∑
1

n∑
1

|api,j |

)1/p

(3.10)

Group norms or mixed norms refer to a combination of norms on a matrix.
In particular, the `2,1 norm offers a robust solution which will be referenced
in future sections of this paper. The general form of the `2,1 norm can be
described in terms of p and q.

The `2,1 norm where p, q ≥ 1 is

||A||p,q =

 n∑
1

(
m∑
1

|ai,j |p
)q/p1/q

(3.11)

The Frobenius norm is a special norm in the case of the `p,q norm were p = q = 2

||A||F =

√√√√ m∑
1

n∑
1

|ai,j |2 (3.12)
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The Nuclear norm is defined to be

||A||∗ =

min(m,n)∑
i=1

σi(A) (3.13)

3.4.3 Ridge Regression

Ridge Regression places a penalty on regression coefficients based on the `2
norm. This results in very small coefficients approaching zero. The lamdba
parameter controls the balance in the equation (bias variance tradeoff). Cross
validation should be used in the process of choosing the best lamdba parameter
for the problem.

Ridge Regression aims to minimize RSS (3.9) with an added `2 penalty
(3.10). Consequently, Ridge Regression is formally defined as [14]:

RSS + λ

p∑
j=1

β2
j (3.14)

It follows from (3.6) and (3.10) that this can be expressed as an optimization
problem for matrices as shown here.

min ||X −AX||22 + λ||A||2 (3.15)

We are not interested in solving a Ridge Regression problem strictly as defined
here, rather we form an optimization problem that takes advantage of these
properties. Details follow in the section describing a novel method for Sparse
PCA.

3.4.4 LASSO

Least Absolute Shrinkage and Selection Operator (LASSO) places a penalty
on regression coefficients based on the `1 norm. Due to the properties of the
`1 norm, this results in reducing the size of the coefficients, some of which
result in a value of zero thereby eliminating features. LASSO is limited by the
number of observations in the dataset. If the number of observations is less
than the number of features. Similar to Ridge Regression, it is important to
choose the right value for lambda that suits the needs of the model. The best
way to tune lambda is through cross validation.

LASSO aims to minimize RSS (3.9) with an added `1 penalty (3.10).
Consequently, LASSO is formally defined as [14]:

RSS + λ

p∑
j=1

|βj | (3.16)
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It follows from (3.6) and (3.9) that this can be expressed as an optimization
problem for matrices as shown here.

min ||X −AX||22 + λ||A||1 (3.17)

We are not interested in solving a LASSO problem strictly as defined here,
rather we form an optimization problem that takes advantage of these proper-
ties. Details follow in the section describing a novel method for Sparse PCA.

3.5 Convex Optimization Problems

Convex optimization problems refer to

• Minimizing convex objective function

• Subject to convex set of constraints

We begin with some formal definitions for Convex Sets and Convex Functions.
The following are given by Boyd in the widely referred to textbook, Convex
Optimization. [3]

Definition 1. Convex Set
A set C is convex if the line segment between any two points in C lies in C, i.e.,
if for any x1, x2 ∈ C and any θ with 0 ≤ θ ≤ 1, we have

θx1 + (1− θ)x2 ∈ C. (3.18)

Figure 3.2: Nonconvex Set Figure 3.3: Convex Set

Definition 2. Convex Function
A function f : Rn → R is convex if dom f is a convex set and if for all x,
y ∈ domf , and θ with 0 ≤ θ ≤ 1, we have

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y). (3.19)

Due to the theory found in the Boyd [3] text, functions defined such as this
are found to have unique minimum solutions.
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Figure 3.4: Convex Function

f(x)

a x θx+ (1− θ)y y b

f [θx+ (1− θ)y]

θf(x) + (1− θ)f(y)

x

y

3.5.1 Robust Principal Component Analysis (RPCA)

As discussed in section 3.2, the traditional PCA formulation is known to have
the problem of being sensitive to outliers. There has been a significant amount
of research over the past decade surrounding Robust Principal Component Anal-
ysis(RPCA). [1][2][18] As high dimensional data is now commonplace, it more
important than ever to be able to determine the underlying structure hidden in
data. At the same time, it is critical to be able to accomplish this despite the
presence of sparse gross outliers which do occur in real data for various reasons.
While PCA uncovers a low-rank approximation of the original matrix, RPCA
differs in that it attempts to separate the original matrix M into an optimal
combination of a low-rank matrix L and a sparse matrix S. The sparse matrix
that is recovered is not meant to represent small noise, rather it is intended
to capture large, sparse outliers. This can be solved as a convex optimization
problem. [1]

min ||L||∗ + λ||S||1 s.t.L+ S = M (3.20)

In the above optimization problem, the rank constraint is relaxed by utilizing the
nuclear norm, ||L||∗. As defined in section 3.4.2, minimizing the nuclear norm
will result in a low rank matrix due to sparse singular values. With respect to
the matrix S, minimizing the `1 Norm will result in sparse values.

∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗




L is low-rank

0 0 0 0 ∗ 0
0 0 0 0 0 0
0 0 0 0 0 0
0 ∗ 0 0 0 0
0 0 0 0 0 0
0 0 0 ∗ 0 0




S is sparse

(3.21)
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This represents the ideal RPCA and can be achieved by various techniques.
Previous research has indicated ideal values for λ can be determined based on
the dimensions of the data matrix.[1]

λ = 1/sqrt(max(m,n)) (3.22)

Although the ideal λ is useful for optimal recovery of L and S, that is not the
purpose of this research. Inspired by previous work in this area [2], an unsuper-
vised approach with the method of varying lambda to adjust the sparsity of S
will help to find the optimal lambda for the purpose of anomaly detection in DNS
data. If a small number of labeled data points are made available, this could
become a semi-supervised approach using cross validation techniques to deter-
mine optimal threshold values for separating anomalies from normal network
data. Success in this area would be noteworthy and could have implications for
future solutions to cybersecurity problems.

3.5.2 Sparse PCA

Section 3.5.1 describes a PCA solution that is robust to outliers, however we also
seek to address the issue of interpretability. We provide an algorithm for PCA
which is robust and improves interpretability. Sparse PCA is formulated as an
optimization problem which aims to balance bias and variance by minimizing
the loadings on the principal components through the use of a regularization
term. It will be shown here that the `1 norm can be used to induce sparsity in
the model while at the same time, the `2,1 norm will provide sparsity in the
features. Previous work in this area can be traced back to a maximum variance
approach of Jolliffe et al. called Simplified Component Technique-LASSO
(SCoTLASS) [20] as well as an approach which minimizes error by Zou et al. [19]

The maximum variance approach is as follows.

max vT (XTX)v, subject to

p∑
j=1

|vj | ≤ t, vT v = 1 (3.23)

The minimize error approach is shown here.

minθ,v

N∑
i=1

‖xi − θvTxi‖22 + λ‖v‖22 + λ1‖v‖1 subject to ‖θ‖2 = 1 (3.24)

Further details of the above research can be found in [15][20]. Inspired by
the previous methods, we present the following Sparse PCA formulation which
combines both the `2,1 norm and the `1 norm and is expressed as the following
optimization problem.

min
A,S
||X −AX − S||2F + λ||A||2,1 + φ||S||1 (3.25)
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This formulation is similar to RPCA in that it uncovers a low-rank matrix
and a sparse matrix. However, the key differentiator in this model is that
the low-rank matrix is comprised of a structurally sparse representation of
the original matrix. What this means is that it is sparse in the columns and
therefore more interpretable because it translates into sparse features.

0 0
0 0
0 0
0 0
0 0
0 0




· · ·

co
l 1
co
l 2

co
lm

A has some columns = 0

0 0 0 0 ∗ 0
0 0 0 0 0 0
0 0 0 0 0 0
0 ∗ 0 0 0 0
0 0 0 0 0 0
0 0 0 ∗ 0 0




Sparse S contains outliers

(3.26)

As discussed in 3.4, the regularization parameters must be tuned to balance the
bias and variance in the model. This is a difficult aspect of any optimization
problem and must be carefully analyzed. The methods used for tuning λ and φ
in our Sparse PCA formulation will be discussed in Chapter 5.

3.6 Non-Linear Approaches

3.6.1 The Kernel Trick

It is often the case that data cannot be separated into classes with a linear
boundary. One method for dealing with non-linearity is to transform the data
into a new (often higher dimensional) space such that the classes are linearly
separable in the new space. A key solution in the machine learning world is
called the Kernel Trick, and is based on Mercer’s Theorem. Explicitly defining
Mercer’s Theorem here would take us too far astray, however details can be
found in many sources such as the data mining textbook cited here. [5] In basic
terms, following closely from the Wikipedia description [22], given a non-linear
mapping function ϕ, data can be transformed into a new space in which a
linear boundary exists. For all x and x′ in the input space X , some functions
k(x, x′) can be written as an inner product in another space V. The kernel is
written as a feature map ϕ : X → V where

k(x, x′) = 〈ϕ(x), ϕ(x′)〉v.

In order to be valid, 〈., .〉v must be a proper inner product. If a kernel is
established to be valid, then one can conclude that the feature space of data in
that kernel exists even if we do not know exactly what that space is. This is
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very powerful because it allows us to find a feature space in which our data is
linearly separable.

3.6.2 Kernel Principal Components Analysis (KPCA)

Kernel PCA allows for non-linear separation of data through the use of a kernel
trick. As described in the previous section 3.6.1, data can be mapped to a
new feature space using a kernel function. Linear PCA is then performed in
that higher dimensional space. Because the feature space may be very high
dimension (in fact, it could be infinite dimensional), the kernel trick is used
and KPCA is computed on the kernel matrix. [14] Although we will not cover
Kernel functions extensively in this document, it should be noted that the cosine
function satisfies the conditions of Mercer’s Theorem and can therefore be used
to perform Kernel PCA. The cosine function is discussed further in section 3.6.3

3.6.3 Cosine Function Background

The cosine function has properties which turn out to be useful for machine
learning and the use of the kernel trick. Specifically, having a similarity function
depending on the angle rather than the length of two vectors allows for a different
way to discover non-linear structure. Cosine similarity is a measurement of the
angle between two vectors. If the angle between x and y is zero degrees then the
cosine similarity is equal to one. It does not matter if the magnitude (lengths)
of x and y are different. [5] The cosine function is defined as follows

cos(x, y) =
x · y
||x|| ||y||

(3.27)

where · indicates the vector dot product and ||x|| is the length of vector x.
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Chapter 4

RPCA Experiments and
Results

4.1 Data Description

For the purpose of this research, a large set of anonymized computer network
data was made available through collaboration with The MITRE Corporation
in Bedford, Massachusetts. Previous work done at MITRE involved a similar
study of sizeable network data containing a small number of data points
labeled as anomalies. [2] New research efforts will build upon previous work
and move forward in new directions with the goal of discovering novel methods
for anomaly detection in DNS data. The original dataset consists of 118 DNS
splunk logfiles in .csv file format. Each file spans about 30 seconds in time. In
total, the entire data set represents millions of rows of data captured over the
course of one hour which were then parsed and saved as client vs query matrices
as described below. In order to avoid data snooping, 18 of the original files
were chosen at random and set aside as holdout data. This left a remainder
of 100 files to analyze. These were split at random into a set of 20 test files
and 80 training files. In order to avoid overfitting, 40 of the training files were
altered slightly by removing 20% of rows at random.
Due to the complex nature of the data, and to avoid the Curse of Dimension-
ality, initial data analysis was performed utilizing just two features of primary
interest. These two features were the client IP address and the domain name
which was attempted to be resolved. Matrices were assembled indicating clients
vs queries and the counts of occurrences of each.

A critical step in the process of building the client vs query matrices was
the identification of specific blacklisted queries which were used for label-
ing some of the data as anomalous. This detection of blacklisted queries was
a key discovery which enabled some form of semi-supervised learning to be done.
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4.2 Data Challenges

There are two obvious challenges with this data.

• Very few labeled anomalies (Imbalanced classes)

• Sparsity of original matrix

These limitations mean that traditional approaches to RPCA may not be ad-
equate. Furthermore, it may be determined that methods other than RPCA
may be more suitable for data with such properties. It is clear that the opti-
mization of lambda alone is not going to be adequate for the accurate detection
of anomalies in this data. Some of the limitations with the data will require the
creation of a set of decision rules to determine a threshold parameter which will
further define the feature vectors in the matrices. These features can then be
passed to traditional classification algorithms (such as a Random Forest) and
cross validation can be used to determine the best lambda and threshold values.
The issues of class imbalance and data sparsity are described in further detail
below. These make for a very difficult problem to solve, however if accurate
techniques are discovered this would be considered groundbreaking work in the
field.

4.2.1 Imbalanced Data

As a binary classification problem, each query can be labeled as blacklisted =
TRUE or blacklisted = FALSE. A data set is said to be imbalanced when the
class distribution has an excessive amount of data labeled as one class compared
to another. [5] As an exmple, consider a dataset of 1 Million DNS queries where
99.5% (or 995,000) are labeled FALSE and just 0.5% (5,000) are labeled TRUE
anomalies. This is the level of imbalance seen in our data and is not uncommon
for many real world data sets involving network logs analyzed for cybersecurity.
Class imbalance problems are often likened to ”finding a needle in a haystack”.
Fortunately, there are some techniques for artificially balancing the data in
order to ease the analysis. It will be important to explore various sampling
based approaches to artificially balance the data. Details regarding balancing
the data will be described in sections below.

4.2.2 Sparse Data

Attempted classification on sparse data presents many challenges. This type of
problem is not unique to computer network data. Real world problems involving
classification of text documents is a frequently cited example. The sparsity of the
original matrix for the purpose of utilizing RPCA will be one of the challenges
this research will need to address.
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4.2.3 Accuracy Measures and Sampling

When dealing with imbalanced data, the traditional performance measure of
accuracy may be an inadequate measure of performance. Binary classification
problems often use the metrics of a confusion matrix to measure prediction
performance. However, due to the imbalanced nature of the data, the pre-
ferred method for measuring accuracy takes into consideration the measures of
precision and recall. The Receiver Operating Characteristic (ROC) Curve is a
common visual technique often used for graphical analysis detecting rare classes.
[5]

4.3 RPCA on Original Data

Shown here, is a graphical representation of the original matrix X where the x
axis represents queries that were attempted and the y axis represents individual
clients making those queries.
Initial attempts were made as described previously with respect to fine tuning

Figure 4.1: Client VS Query Matrix

the lambda parameter in the optimization problem. A range of lambda values
in the RPCA calculation resulted in

• a very small lambda which put most of the data into the sparse matrix S

• a very large lambda which essentially put all of the data into the low
rank matrix L, but nothing ended up in the sparse matrix S.
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Resulting low-rank matrix L and sparse matrix S for a small lambda:

Resulting low-rank matrix L and sparse matrix S for a large lambda:
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4.4 PCA on Original Data

The following plots serve as a visual baseline to demonstrate the value of
preprocessing. As a first step, PCA was performed on one of the original
matrices (before normalization).

4.5 PCA on Data Normalized with Standard-
Scaler

Preprocessing data by normalization is a critical step before applying most
machine learning algorithms. The python package, scikit-learn, provides a
StandardScaler method which is a standard z score normalization.
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4.6 PCA on Data Normalized with Ro-
bustScaler

Oftentimes, when many outliers are present, scaling using the mean and
variance of the data is found to be inadequate. The python scikit-learn package
offers a solution for this with its RobustScaler which uses robust estimates for
data center and range instead. The following plots demonstrate PCA on data
scaled with the RobustScaler method.
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4.7 PCA on Balanced Data

Data analysis is also complicated by the fact that the data is very imbalanced.
Only approximately 80 of the 60,000 queries in each matrix (0.1%) is labeled as
anomalous (denied due to blacklist status). This was observed to be consistent
across the 100 matrices. Therefore, analysis of a single matrix was deemed to
be appropriate for initial experiments. The following plots demonstrate PCA
results after various levels of stratification. As can be seen by the ROC Curve,
balancing the data provides significant improvement.
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4.8 RPCA on Balanced Data

After realizing the positive effects of balancing the data, RPCA was attempted
on a balanced data set. Surprisingly, this revealed anomalies in the low-rank
matrix and normal DNS data in the sparse matrix. Previous work that was
done in this area presumed the opposite, and experiments had poor results.
Further analysis on this remains to be done to confirm this and to perform
better fine-tuning of the RPCA lambda parameter.
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In the plots provided here, the lower half of the matrices contain the rows
where the anomalous queries exist. Very small values of lambda pushed all
of the data into the sparse matrix S. Very large values of lambda pushed
everything into the low-rank matrix L. For a lambda somewhere in the middle,
blacklisted queries appear to reside in L and normal queries in S.
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4.9 Kernel PCA with Cosine Results

Kernel PCA utilizing the cosine function demonstrates remarkable results.
These plots of principal components reveal distinct separation of data that was
once so intermixed that points were not able to be classified. Stratification
was initially one-to-one, but upon inspection of up to 200-to-1 balancing, the
results remain the same. The Cosine KPCA appears to separate the classes.
The dark points are training and the light points are test data. (Dark Blue =
Normal Train, Light Blue = Normal Test, Dark Red = Anomaly Train, Light
Red = Anomaly Test)
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Chapter 5

Sparse PCA Experiments
and Results

5.1 Data

For the purpose of demonstrating the Sparse PCA technique described in section
3.5.2, we make use of a dataset consisting of approximately 1500 websites each
characterized by the following twelve features

Furthermore, each sample is labeled True or False indicating whether or not
the website is malicious. The data set can be found on the Kaggle platform
along with a paper describing previous research. [21]. A boxplot of normalized
features, seen in Figure 5.1, provides a first glance at the data.
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Figure 5.1: Boxplots - All Features

An initial exploratory anlaysis utilizing PCA on normalized data z-scored by
features (see Figure 5.2), reveals there will be some difficulty classifying these
sites utilizing traditional techniques. The red dots in the plot indicate malicious
sites. They are so intermixed with the benign sites that they are difficult to see
in the plot.
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Figure 5.2: PCA - Website Data

A plot of explained variance (Figure 5.3), however, gives us some hope that
the data has a low rank as most of its variance can be explained with just a few
principal components.

40



0 2 4 6 8 10
Principal Components

0.5

0.6

0.7

0.8

0.9

1.0

Pe
rc

en
t o

f E
xp

la
in

ed
 V

ar
ia

nc
e

PCA Cumulative Explained Variance 
Website Data, All Features

Figure 5.3: Cumulative Explained Variance - All Features

We provide here, some results of traditional machine learning classifiers fit
on the dataset so that we might compare results to our proposed Sparse PCA
model.
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Figure 5.4: Random Forest
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Figure 5.5: Decision Tree
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Figure 5.6: Decision Tree ROC
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Figure 5.7: Random Forest ROC

5.2 Methods

Recall the Sparse PCA formulation (3.25).

minimizeA,S ||X −AX − S||2F + λ||A||2,1 + φ||S||1

We will show how this technique enables us to reduce dimensionality by elim-
inating some features while at the same time, separating outliers. Before we
proceed to explain how we go about tuning our model parameters, it is worth
noting there are two easy solutions to the model.

1. A = I and S = 0

2. A = 0 and S = X

We are not interested in the simple solutions enumerated above as we seek to
find a balance of an interpretable low-rank A and a sparse matrix of outliers,
S. In order to accomplish this we will tune λ and φ.

Tuning model parameters can be a tedious process. If we focus solely on
the dimensionality reduction (i.e. set the regularization parameter φ = 0 in
equation (3.25)) we find that as λ increases, the mean squared error of our
objective function increases as shown in Figure 5.2.
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Figure 5.8: Effect of lambda on MSE

Based on Figure 5.2 we might select an initial lambda value to be 500 and
then holding that value stable we see how changing phi impacts the error in
the model.

3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75
Phi

21.8

21.9

22.0

22.1

22.2

22.3

22.4

22.5

M
ea

n 
Sq

ua
re

 E
rro

r o
f (

X 
- A

X 
- S

)

Effect of phi on Error when lambda=500

Figure 5.9: Effect of phi on MSE when lambda=500

However, if we simply set λ = 0 and φ = 0 we obtain the solution for
minimizing our mean squared error term, ‖X − AX‖2F to be that A is the
identity matrix, A = I. We must make use of the regularization term λ‖A‖2,1
in order to eliminate some features by producing sparsity in the columns.
Another set of plots are shown in Figure 5.2 which could be useful for tuning the
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model involve plotting various outcomes with respect to λ and φ. For example,
it is helpful to see how many columns in our model matrix A become zeroed
out, or how many data points end up in the matrix S.
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Figure 5.10: Columns Remaining in A
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Figure 5.11: Data Points In S

While all of the above plots were are helpful in tuning the regularization
parameters, it is still a tedious process that requires more intuition. Data visu-
alization of the process is a critical component. Specifically, three-dimensional
plots are most beneficial in combination with a novel scoring method described
here. The ’perfect’ solution to a regularized optimization problem depends com-
pletely on the desired degree of bias and variance for the particular problem at
hand. Furthermore, a model may require parameters to be tuned on a case by
case basis. Consider the data set at hand. We wish to reduce dimensionality in
a structured manner while separating some degree of outliers. A scoring method
is presented here which allows λ to be tuned based on how many features we
would like to retain. At the same time, phi can be tuned based on level of
sparsity desired in outliers removed. The scoring method in combination with
the three dimensional plots allow for this visual inspection of the bias variance
tradeoff for our specific data set. The scoring method corresponds directly to
the model formulation (3.25) and is as follows.

ModelScore = Least Squares Term + Column Term + Outlier Term

Where

1. Least Squares Term = ‖X −AX − S‖

2. Column Term = |Columns in A - Desired Number of Columns in A|

3. Outlier Term = ‖S‖
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Figure 5.12: Least Squares component of Model Score. The least squared error
term rises quickly as λ increases.
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Figure 5.13: Number of Features component of Model Score. The number of
columns not zeroed out by the `2,1 norm in the formulation. Although this plot
doesn’t cover the full range of λ and φ required to view all combinations, it can
be seen that there are more possibilities for some combinations than others.
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Figure 5.14: Outlier component of Model Score. The norm of S is seen to be
quite large when φ is small. As soon as φ is big enough, the penalty for items
in S is sufficient to keep the matrix (and therefore, its norm) small.

Finally, a plot comprised of the three components of the score can be utilized.
5.2
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Figure 5.15: Total Model Score. This plot demonstrates what happens to the
total score as λ and φ change. The total score is the sum of the three components
seen in 5.2, 5.2 and 5.2.

5.3 Interpreting Results

One main result of the Sparse PCA method is the ability to separate data
into interpretable and structured low rank form with outliers removed. Even
with a small dataset as demonstrated here, it quickly becomes cumbersome to
experiment. For example, given n features and k desired features to measure,
there are

(
n
k

)
combinations.

To demonstrate measurable results of the Sparse PCA model, we provide
examples of dimensionality reduction on the website dataset. Recall that the
original dataset has 12 features for each website sample. Here are the results
demonstrating robust sparse solutions for various reduced sets of features. We
then compare these results to Receiver Operating Characteristic Plots where
the same features were manually eliminated and then analyzed with the same
machine learning algorithms. We discover comparable results, indicating that
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our Robust Sparse PCA solution may be able to replace a brute force and often
computationally expensive approach.
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Figure 5.16: Boxplot, 7 Features
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Figure 5.17: ROC, RSPCA 7 Features DT
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Figure 5.18: ROC, RSPCA 7 Features RF
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Figure 5.19: ROC, RSPCA 7 Features SVM
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Figure 5.20: ROC, 7 Manually Selected Features DT
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Figure 5.21: ROC, RSPCA 7 Manually Selected Features RF
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Figure 5.22: ROC, RSPCA 7 Manually Selected Features SVM
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Figure 5.23: Boxplot, 8 Features
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Figure 5.24: ROC, RSPCA 8 Features DT
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Figure 5.25: ROC, RSPCA 8 Features RF
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Figure 5.26: ROC, RSPCA 8 Features SVM
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Figure 5.27: ROC, 8 Manually Selected Features DT
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Figure 5.28: ROC, 8 Manually Selected Features RF

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Receiver Operating Characteristic - RBF SVM

AUC = 0.86

Figure 5.29: ROC, 8 Manually Selected Features SVM
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Chapter 6

Conclusions

6.1 Contributions

In this work we have examined methods for dimensionality reduction resulting
in arbitrary low-rank solutions capturing maximum data structure as well as
alternative methods resulting in structured low-rank solutions which are highly
interpretable with respect to data features. Both approaches are improved by
the addition of the Least Absolute Shrinkage and Selection Operator Norm for
the purpose of increasing robustness of the models. Methodologies for regular-
ization parameter tuning were presented as well. These novel methods are both
scalable with respect to data and extensible in a variety of domain applications.

6.2 FutureWork

This work can be applied to many domains. Future work could focus on a
number of different areas including examining how the methods scale, pushing
the boundaries of work done here to include non-linear interpretations, as well
advancements in the data visualization component of tuning the optimization
problem.

1. Big Data - Experiment on really high dimensional data

2. Deep Learning - Define in non-linear methods for use with neural networks

3. Data Visualization - Use advanced data visualization for model tuning
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